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Abstract
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layer on longitudinal wave propagation in a circular rod. Wavenumber-frequency solutions
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Chapter 1

Introduction

This study investigates the effect of a continuous longitudinal dynamic absorber layer

on longitudinal wave propagation in a circular rod. Previous studies [21,22,36,42] relating

vibration control to a continuous dynamic absorber layer focused on the attenuation of

flexural or longitudinal wave propagation. In this study, an apparatus for measuring phase

velocity and flexural/longitudinal wave coupling energy ratio is designed. In addition, a

relaxation mechanism is employed to simulate the behavior of the isolator/dynamic

absorber.

One of the basic principles in engineering is to start analysis with simple cases. For

that reason, modeling of the dynamic absorber in several simple combinations of vibratory

elements is studied here.

Hooke Newton Maxwell Kelvin Zener

Figure 1-1: Elements of a vibratory system

9

I L
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The mechanical response of viscoelastic bodies are poorly represented by either a

spring or a dashpot, which obey Hooke's law and Newton's law, respectively. J.C. Maxwell

suggested a series combination of the spring and dashpot elements, which is merely a linear

combination of perfectly elastic behavior and perfectly viscous behavior. Another simple

element which has been used frequently in connection with viscoelastic behavior is the so-

called Kelvin or Voigt model, with a spring and a dashpot in parallel. Creep and stress

relaxation studies[2,3,13,14,33,38,39,40,43] reveal that the response of either Maxwell

model or Kelvin model to several kinds of deformation does not fully represent some real

damping systems. Different combinations of vibratory elements continue to appear in their

applications, as cited by S.H.Crandall in the foreword of [33]: vibration theory was

essentially complete - except for a realistic treatment of damping.

(a) iLT

I-.

(C)

(b)

Figure 1-2: Schematic diagrams of dynamic equivalent vibratory systems, Ref[3]

(a)

(c
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When a spring is used as a vibration isolator and damped with a dashpot in parallel

(right, the Kelvin or Voigt model) the conventional analysis accurately predicts force

transmitted, deflection and damping loss. But when the elastic element is adhesive vinyl

foam tape (also known as weatherstrip) with internal damping the conventional analysis

may be in substantial error. For such a visco-elastic material, representation with a

relaxation spring added in series with the dashpot (left, known as Zener model) more

precisely simulates the behavior of the isolator. It is also regarded as possessing "one and

one-half " degrees of freedom[23].

F.F 0 e F-F

Relaxat
unit

Y1

xi

Figure 1-3: Mass-spring-damper model of the dynamic absorber

I I

All
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Chapter 2

Analytical Model

2.1 Coupled Wave Equations

We first consider a infinite slender elastic rod with a continuously distributed layer of

similar masses, springs and dashpots, transporting longitudinal waves (see Figure 2-1).

kI

r ~ I1 '

Figure 2-1: Semi-infinite rod with dynamic absorber

The equations of motion of this freely suspended rod with Kelvin coupling between

u(x,t) and v(x,t) are:

m 2-+ K,(u-v) + C-a(u-v)=O
at

2aat
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m,-+K,(v-u) + C-(v-u)=E s,
at2 at TX2

where EI, mi, p,, sl are modulus of elasticity, unit length mass, density and cross

sectional area, of the rod, m,, C, p 2, K, are the unit length mass, resistance, density and

stiffness, of the dynamic absorber layer. Finally, u and v are longitudinal displacements of

the rod and absorber, and wo which follows is the natural resonance frequency of the

absorber:

- K,
02 -m2

The damped resonance frequency is usually approximated as mo[7,43]:

(2= 002(1- 2)= 020

with the viscoelastic damping factor typically small, where

- C2

4Kmn

Since u and v are both space and time dependent, we assume the solution is harmonic

and substitute -io for the time derivatives

v = V.ei-(k 'x - w -t)

u = U-ei'(k'x-w
't)

in the equation:

E l a2v a'- K, C
S(v-u) - - (v-u) = 0

pI at 2 t2 2 Inl nlat

which corresponds to,



-12-

K2V -KI2V + ---(V-U) - iC•-O(V-U)=O
mE, m,E,

where

1 E=

We can normalize the above equation, with the following non-dimensional

parameters:

K
y - ratio of wavenumber

K,

=2 mass ratio

K, = -o 2m, stiffnless

C
- loss factor
oom2

Wo
normalized frequency

Therefore the normalization yields the following equation:

V - v + -P(V-U) - iP;l(V-U)=o

The coupled equations can now be rewritten as:

V -v + (V-U)-

- U + -- U-V)
On 2

ifp(V-U)=otO.

- il(U-v)=o
on



-13-

This is a set of two coupled homogeneous linear equations in U and V. For a

nontrivial solution to exist, the determinant of the coefficients must vanish. This leads to

the dispersion relation:

y-1+j3Y -j3Y
-Y -1+Y

=0
with Y = 1 i

(o)2 (on

(y - 1 + 1Y).(-1 + Y) - P- =

72(-1 + Y) + 1 - Y - Y = 0

1

1-ilco

(on

The roots of this equation in the wavenumber y represent a right going wave and a

left going wave. Therefore, there are two different natural modes that can propagate in this

semi-infinite rod with an absorber layer. Each mode, of course, can be left going and right

going.
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2.2 Resonance Characteristic and Relaxation Mechanism

For realistic treatment of damping influence in the vibration isolation, when we look

at the indirectly coupled viscous dampling Zener model[35], the complex ratio of stress or

strain or, equally, the complex stiffness Kc of the three-element mounting may be written as

1
Kc=K+

(I/NK) + (l/i71()

It is readily shown that the stiffness approximately equals K at low frequency,

K + iro. near resonance, and K + NK at high frequency. Therefore this is consistent with

the concept of the mass-control, damping-control and stiffness-control regions of a dynamic

absorber[24].

Kc K+imoC K isoC
2 - - - (1 + )

m mm K

K isoC+-(1"+')c
m 2K

In our light damping situation,

OC
K

is small near the resonance frequency. We shall therefore be able to approximate

2Oo =

Following the analysis in the previous section, we can easily write down the wave

equation for the three-element combination with Zener coupling as:

m, 1 + K ( x t - x, ) + NK( x - x3 ) = Es,x

m2  + K(x 2 -x I ) + C ( X-x 3 ) =0

NK( x, -x 3 ) + C ( x, - x 31 ) =0
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where xI, x2, x3 are the displacements at points shown in Figure 2-2, N is the stiffness

ratio of the relaxation spring over the main spring.

X1

Figure 2-2: Three-element spring and dashpot combination

Again we assume a harmonic solution, substitute -iO for the time derivatives, and

normalize with the same non-dimensional parameters.

X1 = XIei-(k-x-w-t)

X2 = X.ei-(k-x-w-t)

X3 = X 3 .ei-(kx - w-t)

(Y - 1)XI + I(X 1-X2 )/on2 + N0(XI-X3)/0,n 2 = 0

-X 2 + (X:-Xl)/On2 - i0(X2-X3)/1, n = 0

N(XI-X3)/,n 2 - ir(X2-X3)/m,, = 0

The wavenumber-normalized frequency solution is thus obtained:
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1-

1+
irlon-N

2.3 Wavenumber Analysis

We introduce a complex wavenumber K, describing propagation of a lightly

exponentially decaying wave, Kc = Kr + iK. The imaginary part of the wavenumber

representing the right traveling wave is separated to yield an exponentially decreasing

amplitude envelope:

ei'(kc-x-wt) = e-kix.e4i-(krx-w-t)

The attenuation per wavelength in dB(dB/A) is stated in terms of the wavenumber

components as

Attn = 20-loge-K,-k

where X is the wavelength at each frequency without coupling. We normalize this

term to the corresponding wavenumber ratio

Yi = Ki.--

and obtain:

Attn = 54.6yi(dB/X)

In such a dispersive wave propagation pattern, phase and group velocities are defined

as:

C•
K
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and

do)
gdK

respectively.

The velocities c and c9 can be determined from the dispersion relation. To avoid

some complex algebraic manipulation, we write a computer program (enclosed in Appendix

A) solving for both the imaginary component and the real component of the wavenumber

from the above dispersion relation, for both the relaxation (Zener) and non-relaxation

(Kelvin) cases.

The following figures, which depict a lightly damped system with different mass

ratios, show that both the peak and bandwidth of attenuation increase dramatically with

increasing 1, for both relaxation and non-relaxation models. These figures also reveal that

with increasing loss factor, the attenuation and the phase speed peak drops considerably, for

the non-relaxation model, but the attenuation bandwidth widens.

Furthermore, by increasing loss factor, the relaxation model predicts the attenuation

and phase speed drop in the low damping region, increase in the high damping region, and

possesses a transition frequency, which is referred to as optimum (attenuation is a

maximum at the optimum damping point).

Analytical results are also obtained when holding mass ratio and loss factor

unchanged, increasing the stiffness ratio N factor, which causes the attenuation and phase

speed to drop.

The analytical model is therefore consistent with the concept of a dynamic absorber.
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Attenuation vs. Normalized Frequency

eta=0. l,beta=3
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10o

Normalized Frequency,w/wO

Figure 2-3: Attenuation vs. normalized frequency ratio for 03=3,
=--0.1,0.3,1.0
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Attenuation vs. Normalized Frequency
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Normalized Frequency,w/wO

Figure 2-4: Attenuation vs. normalized frequency ratio for 11=0.2,
13=1,2,3
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Phase Speed vs. Normalized Frequency
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Figure 2-5: Phase Speed vs. normalized frequency ratio for 3=3,
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Phase Speed vs. Normalized Frequency

100

Normalized Frequency,w/wO

Figure 2-6: Phase Speed vs. normalized frequency ratio for 11=0.2,
O3=1,2,3
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Attenuation vs. Normalized Frequency

10o- I 100

Normalized Frequency,w/wO

Figure 2-7: Attenuation vs. o,, for j=3, N=1,
1--0.1,0.34,1.0
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Attenuation vs. Normalized Frequency
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Figure 2-8: Attenuation vs. (.n for r~=0.2, N=1,
3=1,2,3
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Attenuation vs. Normalized Frequency
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Figure 2-9: Attenuation vs. o,, for 1=0.2, 5=3,
changing N factor
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Phase Speed vs. Normalized Frequency

10o

Normalized Frequency,w/wO

Figure 2-10: Phase speed vs. (o. for 3=3, N=l,
1=--0.1,0.34,1.0

cfl,',

a

10-' 10'



-26-

Phase Speed vs. Normalized Frequency
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Figure 2-11: Phase speed vs. co, for 1--0.2, N=l,
0= 1,2,3
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Phase Speed vs. Normalized Frequency
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Figure 2-12: Phase speed vs. o, for P3=3, ,=0.2,
changing N factor
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Chapter 3

The Experiment

3.1 Experiment Design

An experiment should be planned to bring into prominence those factors to be studied

and to enable their effects to be assessed in relation to the unavoidable errors of

experimentation.

The first object to undertake an experimental investigation of wave propagation is to

build an apparatus that closely resembles the analytical model: a thin elastic rod with a

continuously distributed layer of masses, springs and dashpots, transporting longitudinal

waves. A Delrin rod is a solid material used in Olivieri's experiment, which has a very low

modulus of elasticity, an average density for a crystalline plastic and one-third of the

compressional wave speed that is in steel or aluminum. The use of the Delrin rods was

considered fixed, due to the desirability shown in Olivieri's experiment.

To simulate one dimensional propagation of longitudinal waves in an infinite

medium, we dampen the propagating waves at the end of the test rod with sand. Enough

sand is placed around the end of the rod to reduce wave reflection.

The other end of the rod (not immersed in sand) is drilled and fitted with a bolt, then

connected tightly perpendicular to a Wilcoxon Research Fl shaker with a matching Z-602

impedance head.

Input to the shaker was provided by a signal generator with gain provided by a

McIntosh power amplifier. The frequency range of the signals, limited by the linearity of

the shaker, power amplifier and signal generator, is considered to be low-bounded by 40

Hz.
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U,

0
c0a,EC

Uo
0

E
0

S

0caa,

E
0

0,
c

*0
0o

Figure 3-1: Experiment apparatus

Accelerometers, which were implemented in previous experiments[21,22,36,42] to

measure attenuation spectra, are considered poor choices in measuring phase velocity and
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wave coupling energy ratios, because of their phase lag and sensitivity axis difference, and

high mass. Instead, strain gauges are used.

3.2 Signal Conditioning

In order to measure longitudinal and flexural waves separately, we need to

investigate the strain gage balancing and amplifying circuits.

All commercial strain indicators employ some form of the following Wheatstone

bridge circuit to detect the change of resistance in the gage with strain.

Vs

Figure 3-2: Resistance bridge with cancellation of flexural vibrations

In the above well-known Wheatstone circuit, vs and vo are the source and output

voltage of the balancing circuit, respectively; Rgl and Rg2 are two matched gages

connected as nonadjacent arms of the bridge circuit (with the same length leadwires, they

maintained identical temperature-compensation); and R1, R2 are reference resistors on the

two other arms. We find:
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Vo_ Rg2  R2

v, R,+Rg2 RgI+R,

where

Rg2 = Ro + A Rt - A Rf

Rgl =Ro+ AR,+ ARf

R1 = R2 = Ro

where A R, and A Rf donate to the resistance changes in the two strain gages mounted

on the opposite side of the rod at the same distance from the drive point, which reflects the

changes in resistance according to the longitudinal and flexural wave propagation. Then:

vo  AR, - ARy+Ro Ro
vS 2Ro+AR - ARf 2Ro+AR, + ARf

1 Ro I
2 +(ARt- IAR.) (ARI + ARf)

1+ 1+
2Ro 2Ro

1 AR - AR ARI - R ARI+AR
[= -0 G(1 )(,- (1 )]2 Ro 2Ro 2Ro

SAR1 - AR, AR- ARf AR +ARf AR,+AR
2 Ro 2Ro Ro 2Ro

With the obvious assumption Ao << 1, we obtain

vo  ARi

vS 2Ro

The change of resistance in the strain gage due to longitudinal strain is proportional

to the gage factor Fg and actual strain E as ARt = Fg-Ro-• so the bridge circuit output

voltage is vo=Vs -T-.
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Recall in this case that the measurement cancels out the flexural modes and only

contains the longitudinal modes.

In order to investigate the amount of flexural wave energy coupled from longitudinal

excitation, the following circuit configuration is used:

+

Vs

Figure 3-3: Resistance bridge with cancellation of longitudinal vibrations

where "~ with the << 1 assumption.

In practice, a Wheatstone bridge is never precisely balanced as a result of the finite

tolerances of the bridge resistors. Consequently, some method must be introduced to

slightly change the resistance ratios of one side of the bridge. Thus, the pot and trim

resistors are introduced as shown:
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+

Vs

Figure 3-4: Decide the range of Rt under the most unfavorable combinations
of resistors

Given that the resistors RI, R2, R3, R4 are 350.0( ±+ 0.3% (for Micro-Measurement

CEA series gages and carefully chosen reference resistors), the maximum value of Rt, for

which the bridge can be balanced under the most unfavorable combination of resistors, is

decided to be 8.7 kQ. The 50 kQ Rp resistor draws little current and acts simply to control

the voltage on one side of Rt.

We now construct this bridge circuit on a proto-board. With a Tektronix ocilloscope

and a regulated power supply, we are able to balance the bridge to vo less than or equal to

25 gv.

Considering that the contact resistance at mechanical connections within the bridge

circuit can lead to errors in the measurement of strain, a "wiggle" test is made on wires

leading to the mechanical connections. The actual change in balance does occur, so we

decided to wire-wrap and solder the bridge circuit on a Vector-board to insure that good

connections have been made.

The following circuit layout diagram shows six channel balancing bridge circuits and

their differential amplifers:
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Table 3-I: AD624A specifications (@ V, = 15v, Gain = 100, R, = 2k• and TA = 25 OC

The operational amplifier we chose is a AD624 precision instrumentation amplifier.

The AD624 amplifier is designed primarily for use with low level transducers (including

strain gages), with low noise, high gain accuracy, and low temperature coefficient. For the

adjustable pretrimmed gain of 1000, the linearity range of the dynamic response is DC to 25

KHz. The 5V/gs slew rate and 15 gs settling time permit the use in our multiple channel,

high sampling rate data acquisition applications.

Speci- Value Un-
fication it

Gain Max Error ±1.0 %

Gain Nonlinearity ±0.005 %

Input voltage range ±10 v
(Max Differ. Input Linear)

Output rating ±10 v

Dynamic response 25 kHz
(small signal -3dB)
Slew Rate 75 ps

Power supply range Min ±5 v
Max ±18
Typ ±15
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Figure 3-6: AD624 functional block diagram

- INPUT I

+ INPUT r2

RG, -

INPUT NULL E4

INPUT NULL E-

REFERENCE

-Vs 7
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Too often in experiment designs, noise is considered to be one step down from the

weather: hardly anyone even talks about it. Yet it is the noise level in a measurement circuit

that ultimately limits the ability of that circuit to transmit faithfully the information carried

by the signals being processed. To avoid a "noise-limited" statement that would likely

appear in the "conclusion and discussion" chapter, we shall now incorporate into discussion

the possible noise sources and their effects.

W12 AUTO SPEC CH.A MAIN Ys -U. 5dB
Yo -6. 5[d /1. OOV 2  

PWR 80dB X& 61. 50OHz
Xa 54.00Hz - 100Hz LIN
SETUP S1* #As 10C

10-4'--. ..... .---- ........ ...-........... r......

60 70 60 90 100 110 120 130 140 150
SETUP S1

MEASi.:REMENT: DUAL SPECTRUM AVERAGING
TRIGGER: FREE RUN
DELAY: CH. A-*B: 0. Cms
AVERAGINGs LIN 100 OVERLAPs MAX

FRED SPAN: 100Hz AF: 125mHz Ts 8s ATL 7. 81ms
CENTER FREQs ZOOM 104Hz
WEIGHTINGs RECTANGULAR

CH. A: 8V 3Hz DIR FILT: 25. 6kHz 1V/V
CH. 8: 800mV - 3Hz DIR FILT:25. 6Hz V.,V
GENERATOR, VARIABLE SINE
SINE GENERATOR FREQ.a 203. 218Hz

Figure 3-8: Noise interference problem, initial testing of the conditioning circuit

N

W*

I)
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The interfering signals initially were dominated by the interference at 60 Hz and

harmonics of 60 Hz, introduced at the Wheatstone bridge circuit. A test signal of a pure

tone sine wave at 203 Hz is buried under the 60 Hz, and its harmonics (see Figure 3-9):

j12 AUTO SPEC CH.A CE
Y: -49.1dB /I.0OV 2  PWR 8OdB
X: GHz - 800Hz LIN

#As 100

0 100 200

INPUT MAIN Ys
XI 203Hz

300 400 500 600 700 800

SETUP 'A'i

MEASUREMENTs
TRIGGER:
DELA Y:
AVERAG INGs

FREC SPAN,
CENTER FRECQ

ElEGHTING%,

CH. As
CH. Bs
GENERATOR:

DUAL SPECTRUM AVERAGING
FREE RUN
CH. A-,8: O. COms
LIN 100 OVERLAP: MAX

800Hz AF 1Hz
BASEBAND
RECTANGULAR

5CmV + 3Hz DIR
30mV 3Hz DIR
VARIABLE SINE

SINE GENERATOR FREQ. s

T, Is

FILTs 25. 6kHz
FILT, 25. 6 Hz

203. 218Hz

Figure 3-9: 60 Hz and its harmonic interfering noises,conditioning circuit with proper bala

-71. 7dB

jo-2
' 10-2

T 10-4
U

10-a

ATs 488js

I V/V
IV/V

-- L ' · - 1'OD'-~t~~--~l-~..--~-JL

hi
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By carefully studying the coupling between the power lines and the experiment

apparatus, along with the use of power transformers and a regulated DC power supply, the

interference is reduced by about 10 dB from Fig3-9 (as shown in Figure 3-9, Figure 3-10).

With the battery supplied bridge circuits and DC transformer supplied operational

amplifier, the signal to noise ratio is satisfactorily increased to larger than 30 dB.

W12 [AUTO SPEC CH. A C 3 INPUT MAIN Yv -105.4dB
Ya -68. 7d- -/1. C3 51.0 PWR 80dB X8 203Hz
Xi OHz + 400Hz L. IN

#As 100

100 -A L____ _

N

E 10-2

10

I n"-4

0 50 100 150 200 250 300 350 400

SETUP Wi

MEASU'REMENT: DUAL SPECTRUM AVERAGING
TRIGGER: FREE RUN
DELAY: CH. A-B: 0. OOms
AVERAGINGs LIN :00 CVERLAPs MAX

FREQ SPAN: 800Hz AF: 1Hz Til s AT: 488Js
CENTER FREQa BASEBAND
WEIGHTINGs RECTANGULAR

CH. As 30mV + 3Hz DIR FILTsBOTH 1V/V
CH. Bs 30mV 3Hz DIR FILT: BOTH IV/V
GENERATOR: VARIABLE SINE
SINE GENERATOR FREC.: 203. 0OOHz

Figure 3-10: Response of pure tone excitation with battery suplied bridge circuits

I"
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W12 I0,'NCISE RATIO
Y, 27. 7dB 80dB
Xs OHz + 400Hz LIN
SETUP 01 #As 100

INPUT MAIN Y: 34. 9dB
Xi 203Hz

20

0

-20

-40

- .... ,. .. .,4
0 50 100 150 200

Figure 3-11: Response of pure tone excitation with SNR larger than 30 dB
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The drifts in power supplies and amplifier offsets are controlled by the balancing

adjustment in the circuit. The stray capacity fluctuations and electronic device noises are

problems in data acquisition with the Concurrent Computer, as shown in Figure 3-12. With

careful shielding, chase and signal grounding, wax-sealing the trimpot, and using the band-

pass and low-pass filters, we finally achieve an excellent degree of noise isolation in the

measurement apparatus.

Power-lin
ground

ac noise
source

(motor,
computer,
fan,relay,

etc.)

Sour
Netwo

V

ng

Load ground
iSAgnIy C YIuuIIU
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3.3 Data Aquisition and Spectrum Analysis

The strain gage output is collected and digitized at the Acoustics and Vibration Lab

using the Concurrent Computer.

Figure 3-13: Data aquisition diagram

%OW I I IF%- 16-8
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The analog input from the resistance bridge is amplified by the AD624 operational

amplifier. After passing through the Frequency Devices 9016 programmable low pass filter,

it is sampled, digitized and displayed with proper triggering, anti-aliasing, synchronizing

and clipping.

The AD12FA analog/digital converter, along with a SHI6FA sample and hold

module, are used to digitize the data. Two analog/digital channels (Channel 0 and Channel

5) contain amplified signals for flexural and longitudinal waves, respectively.

syne pulse to external de

sync pulse From external

or

external pulse For exter

tr ggered sweep!

pulses to 0/A converter

pulses to A/D converter

Inputs

Figure 3-14: Clock connections on the CKIO and SHI6FA modules
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sweep rate clock 0or exeternal
sync pulse

sweep length clock I

frame rate clock 2

framne length 
clock 3

burst rate clock 4

resuleteng
timing sequence

Figure 3-15: Sampling of a periodic timing signal
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Figure 3-16: LWB modules in the data flow diagram
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Figure 3-17: Synchronization virtual instrument
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The data acquisition on the Concurrent Computer takes place inside the Lab

Workbench (LWB) environment. The analog signal is demodulated using a demultiplexer

module to separate channel 0 from channel 5 ( and multi-channel demodulating, when

applicable).

The channel 0 signal provides the input for a trigger module that controls the data

flow in both channels. The synchronization enables us to measure phase speed in the time

domain. The trigger threshold and intervals are adjustable. This is of importance for future

experimental investigations of multi-mode wave propogation problems.

The power spectra, defined as the Fourier transform of the input time series, are

calculated and displayed with time series for both channels. We can now measure the ratio

of energy transformation as a result of flexural wave coupling with longitudinal excitation.



-48-

Chapter 4

Results

4.1 Resonance Frequency and Loss Factor

The quarter wavelength resonance frequency for a free rod of 3.10 m length, with a

longitudinal nondispersive wave speed of 1161 m/s, is determined to be 93 Hz. Three tests

are conducted to decide the resonance frequency for the Delrin rod with the attached

dynamic absorber layer.

An impedance head is installed between the shaker and the contacting surface of the

rod. The acceleration and force gage output from the impedance head are taken to the B &

K spectrum analyzer.

The drive-point impedance (defined as force over velocity, which comes from

integration of the acceleration) is obtained to decide the actual resonance frequency and

loss factor.

The first actual resonance peak occurs at a much lower frequency than predicted and

is considered to be caused by the resonance frequency of the shaker and sand termination

problem, as addressed in Larry Olivieri's report[21].

In order to experimentally decide the loss factor, we conduct a test of the resonance

frequency fo and the half power bandwidth (-3dB down from both sides of fo). The loss

factor 11 is defined as

fo

for a system consisting of a short rod with a single isolator located very closely to the drive

point(mass ratio is 3.2).
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Three measurements are conducted and reveal the following results (Plots are

enclosed in Appendix B):

Table 4-I: Resonance frequency and loss factor

4.2 Phase Speed From Cross Spectrum Function

The Fourier transform of the cross-correlation function, which is the expected value

of the product of two time series, is defined as the cross-spectral density function (Cross

Spectrum).

R, (r) = E [y(t) x(t+t) ]

S, (f) R,('t)-.e-i-2 'ftd r,

The phase speed of the wave propagation can be determined from the frequency and

the phase lag, through phase function 0,,(f) of the cross spectrum

9,(f)= i,(f)l e-i x(f)

Using the B&K 2032 dual channel signal analyzer to measure the frequency response

Measurement (Hz)
freq. span fto (Hz) f 3dB low(HZ) 3dB high

800 135 111 157 .341

400 134.5 109.5 156.5 .349

200 134.75 107.75 155.25 .353

Hz Tf = 134.75 1F =.348
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of a series of pure tone longitudinal excitations to the rod, the phase speed is obtained and

compared to the analytical prediction, where the crosses represent the experimental value.

Phase Speed vs. Normalized Frequency

I
U

10-' 100 10'

Normalized Frequency,w/wO

Figure 4-1: Phase speed vs. normalized frequency,o, = 27f,o = 2n* 134.75
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The experimental phase speed is dispersive, with shape as predicted, provided that N

= 1.4. The good agreement in shape confirms the analytical model used and also that the

attached mass system acts as a continuous longitudinal dynamic absorber. Although an

independent measurement of N was not carried out, the Zener model seems to be a

significant improvement over the Kelvin model.

4.3 Flexural-Longitudinal Wave Energy Ratio

Power densities referring to longitudinal and flexural wave energy are obtained from

the output of two independent sets of stain gages, measuring simultaneously at the same

distance away from the drive point. The ratio is presented in dB vs. normalized frequency,

and the results reveal that the coupling from longitudinal excitation to a bending wave is

much stronger at low frequency than at high frequency.

The estimated spectrum is calculated by Fourier transforming the auto-correlation

function of the time series from a sample function, in conjunction with a "window" which is

a weighting function applied to data to reduce the spectral leakage associated with the finite

observation intervals.

By applying a Hamming window, the power spectra we calculated achieves -30dB

down sidelobe level and good frequency resolution of .01 Hz, as shown in Appendix D and

Appendix E.

In the symmetric loading case, the flexural wave is considered to be induced by the

slight misalignment at the drive point, supporting fishing line, sand termination, and any

other imperfections for longitudinal wave propagation.

The experiment results show that the longitudinal to flexural wave coupling is

induced significantly by the asymmetric(disc mass adding through half circle weatherstrip

to the rod) loading of the resiliently mounted masses. It is also shown in Figure 4-2 that

both power spectra decrease linearly in logarithmic frequency scale.
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Above resonance frequency, the flexural wave diminishes(-30dB per decade)in the

symmetric loading case, while the longitudinal to flexural wave coupling grows (20dB per

decade) throughout the investigated frequency span for the asymmetric loading case.

Asymmetric Loading

Flex./Long.

Symmetric Loading

Energy

frequency Symmetric loading Asymmetric loading
(Hz) (dB) (dB)

19.531 9 18

39.063 2 13

58.594 -13 8

78.125 -8 5

117.19 -24 -3

156.25 -40 -8

195.31 -35 -25

410.16 -44 -20

800.78 -53 -15

Table 4-II: Flexural/Longitudinal coupling wave energy ratio

Vertical

Ratio



-53-

Fkex./ong. wave negy ra•io vs. Nrmalized Frequency

100 10'

Normalized Frequency,w/wO

Power spectrum measurements for a series of pure tone longitudinal
excitations to the Delrin rod with a dynamic absorber layer attached,
where the crosses represent asymmetric loading and circles for symmetric.

Figure 4-2: Longitudinal to flexural coupling wave energy ratio
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Chapter 5

Conclusions

For zero damping, a stop band exists for the range 1 < /coo < (1 + (3)n, in which the

wavenumber y is pure imaginary. Realistic treatment of damping is applied and the effects

of damping parameters to the longitudinal wave propagation through the dispersion relation

is verfied from the experiment. The results confirm the analytical model used and that the

attached mass system acts as a dynamic absorber.

The three-element combination(Zener model) does stiffen by a small amount as the

frequency increases and, by association, is said to possess a transition frequency. This

model gives better prediction than the Kelvin model when the loss factor is not too

small(1r> 0.2 in our case).

It is also shown that the interaction between longitudinal and flexural waves may lead

to significant rates of transformation of the compressional wave energy into bending, as the

coupling is much stronger in the asymmetric loading case than symmetric.

Future work may be suggested to have a continuous isolation layer, with

consideration of wave propagation in the isolator layer. Also an investigation of multi-mode

wave propagation within one layer would appear worthwhile.
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- Velocity, displacement

> Velocity, displacement

-

Figure 5-1: With wave propagation in the dynamic absorber layer

In complex structure testing, e.g. fluid loaded cylindrical shell, use of rubber as a

mounting material is generally expected. For this, it is important to fully model the

viscoelatic behaviour. Experimental investingation of the stiffness ratio N-factor may thus

be important.
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Appendix A: Computer Program for Wavenumber Analysis

for k-1:250:
tl(k)-(2*k+1)/50.0;
rl(k, ) -l+beta/(l-(tl(k)*tl(k))/(1+i*ata*tl(k)*N/(i*ata*tl(k)-N)));
r(k,1) -sqrt(rl (k,1));
att (k, 1) 54.6*imaqg (r (k, 1) ) ;
c (k, 1) -1161/(real (r (k, 1)));
end;

for k-1:250;
tl(k)-(2*k+1)/50.0;
rl(k,2) -1+beta/(1- (tl(k)*tl(k)) / (+i*ata*t(k)*N/(i*ata*tl(k)-N)));
r(k,2)-sqrt(rl(k,2));
att(k,2)-54.6*imag(r(k,2));
c(k, 2)-1161/(real(r(k,2)));
end;

for k-1:250;
tl(k)-(2*k+1)/50.0;
rl(k, 3)-1+beta/(1-(tl(k)*tl(k)) / (l+i*ata*tl(k)*N/(i*ata*tl(k)-N)));
r(k,3)-sqrt(rl(k,3));
att(k,3)-54.6*imag(r(k,3));
c(k,3) -1161/(real (r (k,3)));
end;

text(2.2,2900,'N-0.1,eta-0.204,beta-3.23')
>> axis([-1,1,0,30001)
>> semilogx (t1, c)
>> grid
>> axis([-1,1,2,4])
>> loglog(o,c)
>> title('Phase Speed vs. Normalized Frequency')
>> xlabel('Normalized Frequency,w/w0')

text(2,1500,'Non-relaxation')
>> text(2.2,2500,'Relaxation')

>> ylabel('Phase speed (m/s)')
text(1,40,'eta-0.204, beta-3.23')
text(.3,0,'Kl=.6 K2,eta-0.204,beta-3. 2 3')
text (2.2,2900, 'N-0.1')
text(.2,50, 'Relaxation with N-factor,eta-0.204,beta-

3.2 3')
>> print('oe -h')
text(.7,1800,'Non-relaxation')
text(.3,2500,'Relaxation with N-1)
text(1,40,'Loss factor 0.284, Mass ratio 3.23')

text(.7,2800,'Relaxation with N-.3')
text(.7,2200,'Relaxation with N-1.5')

semilogx (tl, c)
semilogx (tl, att)

axis ([-1,1,2,41)
axis ([-1,1,0,30001])

axis([-1,1,0,2001)
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text(.12,20, 'Relaxation with N-factor,eta-0.2 N-1')
>> clg
>> semilogx(ti,att)
>> title('Attenuation vs. Normalized Frequency')
>> xlabel('Normalized Frequency,w/wO')
>> ylabel('Attenuation (dB per wave length)')
>> text(.12,20, 'Relaxation with Mass-factor,etaO0. 2 N=1')
>> text(1.2,150,'Beta-3')

>> title('Attenuation vs. Normalized Frequency')
>> xlabel('Normalized Frequency,w/wO')
>> ylabel('Attenuation (dB per wave length)')
>> grid
>> text(l.2,190,'eta=0.1,beta=3')
>> text(1.2,100,'eta-0.3,beta=3')
>> text(1.2,40,'eta=1.0,beta=3')
>> text(.1,20,'Non-relaxation')

>> axis((-I,1,0,200])
axis ([-i,1, 0,3000])

for k=1:250;
tl(k)=(2*k+1)/50.0;
rl(k,l) =l+beta/(1-tl (k)*tl(k) / (l-i*ata*tl(k)));
r (k,l)=sqrt(rl (k,1));
c(k,1)=1161/ (real (r (k, 1)));
att(k,i)=54.6*imaq(r(k,1));
end;

for k=1:250;
tl(k)=(2*k+1)/50.0;
rl(k,2)=l+beta/ (1-tl(k)*tl(k)
r(k,2)=sqrt(rl(k,2));
c(k,2)=1161/(real(r(k,2)));
att(k,2)=54.6*imag (r(k,2));
end;

/ (1-i*ata*tl(k))) ;

for k=1:250;
tl (k)=(2*k+l) /50.0;
rl(k,3) =l+beta/(l-tl(k)*tl(k) / (1-i*ata*tl(k)));
r(k,3) sqrt(rl(k,3));
c(k,3) 1161/(real (r(k,3)));
att(k,3)=54.6*imag(r(k,3));
end;
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Appendix B: Drive Point Impedance Diagram

Measurement f (Hz)freq. span f a (Hz) f 3dB Iow(HZ) 3dB high

800 135 111 157 .341

400 134.5 109.5 156.5 .349

200 134.75 107.75 155.25 .353

Hz fT =34.75 " =.348
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Appendix C: Cross Spectrum Data

Cross spectrum data
= 3.23, 11= 0.348, f o0 134.75 Hz

f f f phase delay phMe speed
(Hz) (degree/120.0cm) (m) (m/s)

0.20 26.625 31.0 13.94 371.0

0.31 41.687 34.4 12.56 523.5

0.56 74.00 91.2 4.737 350.5

0.63 84.00 79.0 5.468 459.3

0.70 93.00 79.4 5.441 506.0

0.73 97.00 88.4 4.887 474.0

0.77 103.00 100.5 4.299 442.7

0.84 112.00 104.5 4.134 463.0

0.99 132.00 107.8 4.007 529.0

1.27 168.25 77.1 5.603 942.7

1.41 187.25 67.9 6.362 1191

1.73 229.5 53.4 8.090 1857

1.80 239.0 50.9 8.487 2028

1.92 256.0 59.7 7.236 1852

2.68 356.0 101.2 4.269 1520

3.43 456.0 145.0 2.979 1359

4.24 564.0 180.0 2.400 1354

4.80 638.0 255.9 1.688 1077

5.66 753.0 279.3 1.547 1165
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Appendix D: Longitudinal-Flexural Coupling Data(Symmetric Loading)

Power Spectrum Data
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Longitudinal wave power spectrum
for pure tone excitation @ 195.31 Hz

Flexural wave power spectrum for
pure tone excitation @ 195.31 Hz
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Appendix E: Longitudinal-Flexural Coupling Data(Asymmetric Loading)

Power Spectrum Data
Asymmetric loading

frequency longitudinal flexural Energy ratio F/L
(Hz) ( x10 5 ) ( xlo0 ) (dB)

19.531 2.0705 133.37 18'

39.063 1.9188 40.502 13

58.594 1.1283 7.7021 8

78.125 1.6532 4.7221 5

117.19 1.6897 0.92276 - 3

156.25 1.1827 0.20135 -8

195.31 0.83341 2.8741 x10-3  -25

410.16 0.4790 4.7251 x10 3  -20

800.78 0.86933 2.8937 x10 2 -15
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Longitudinal wave power spectrum
for pure tone excitation @ 19.531 Hz
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Longitudinal wave power spectrum
for pure tone excitation @ 78.125 Hz
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