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Mangosteen peel can be used as an activated carbon precursor because of its 

high lignin content and hardness. In this study, mangosteen peel activated 

carbon (MP-AC) was prepared by a physical activation method using CO2 at 

850°C. The Brunauer-Emmett-Teller (BET) analysis was used to assess the 

optimal activation time to identify the largest surface area. The properties of 

MP-AC were characterized by the SEM-EDS and FTIR analyses. The results 

showed that MP-AC obtained from the 120-minute activation time had the 

largest BET specific surface area of 588.41 m2/g and was selected as an 

adsorbent in the dynamic adsorption of ammonia gas. The values of moisture 

content, ash content, and iodine number of MP-AC were 6.07%, 9.8%, and 

1153.69 mg/g, respectively. Breakthrough curve indicated that with lower inlet 

concentration and higher adsorbent mass, longer breakthrough time is reached. 

Equilibrium data was best fitted to the Langmuir isotherm, while the pseudo-

first order kinetic model favorably described the adsorption kinetics. The 

results revealed a potential to utilize MP-AC as an adsorbent for ammonia gas 

removal with average NH3 adsorption capacity of 0.41 mg/g. 
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1. INTRODUCTION

 Ammonia (NH3) is a colorless gas with pungent 

odor which is emitted from agriculture, fertilizer 

industry, fossil fuel combustion, and some chemical 

industries (Vohra, 2020). The typical NH3 

concentrations emitted from the industrial process can 

range from 5 to 60 ppm (Chung et al., 2001) and 

ammonia from agricultural activities comprises 

approximately 80%-90% of total anthropogenic 

ammonia emissions (Xu et al., 2019). Ammonia is a 

threat to the environment due to its contribution to 

aerosol (PM2.5) formation that could adversely affect 

respiratory and cardiovascular systems, and its 

deposition leads to eutrophication, acidification, and 

loss of biodiversity (Xu et al., 2019). 

Adsorption using activated carbon is a simple 

and low-cost method (Guo et al., 2005) to purify NH3.

Many reports have described the adsorption of 

ammonia gas by activated carbon (Domingo-Garcia et 

al., 2002; Ro et al., 2015; Vohra, 2020). This 

adsorption process depends on some factors such as 

the pore size, area, and surface chemistry (Bernal et 

al., 2018). Lignocellulosic agricultural wastes with 

their abundant availability, biodegradability, and non-

toxic nature (Crini and Lichtfouse, 2018) can be used 

as an ideal precursor to produce activated carbon due 

to its high carbon content from the lignin composition 

(Nor et al., 2013). Several studies that used fruit peels 

for activated carbon productions such as durian peel 

(Chandra et al., 2009), rambutan peel (Ahmad and 

Alrozi, 2011), orange peel (Fernandez et al., 2014), 

and mangosteen peel (Nasrullah et al., 2019) have 

been conducted, and mangosteen peel has the highest 

lignin content of 48.63% (Devi et al., 2012).

Mangosteen (Garcinia mangostana L.) is a fruit 

largely found in Indonesia. The production in 2018 

reached 228,155 tons which increased 41.05% from 

the previous year (Statistics Indonesia, 2019). This 

mass production leads to the peel waste increase 

(Rattanapan et al., 2014) where, according to Foo and 

Hameed (2012) and this study, about 60-70% of 1 kg 

of mangosteen fruit is the peel. Mangosteen peel can 

be used as an activated carbon precursor because it 

hardens when exposed to air thus making it suitable 

for granular activated carbon productions, has high 

lignin content (Devi et al., 2012) and low volatile 
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substances, and it has porous properties comparable to 

commercial activated carbon (Chen et al., 2011). 

Physical activation using carbon dioxide (CO2) 

has advantages such as creating narrower pores, being 

easy to control, inexpensive, and environmentally 

safe (Ahmad et al., 2013; Rangabhashiyam and 

Balasubramanian, 2019). However, the use of CO2 

activation for mangosteen peel activated carbon (MP-

AC) is rarely reported. Mukti et al. (2015) was using 

steam activation, while other studies were using 

chemical activation (Rattanapan et al., 2014; 

Nasrullah et al., 2019). Although the effectiveness of 

mangosteen peel as an adsorbent in CO2 and ethylene 

gas adsorption (Giraldo and Moreno-Piraján, 2017; 

Mukti et al., 2015) is accepted, none has assessed the 

MP-AC for the NH3 adsorption. This study aims to 

characterize MP-AC prepared by CO2 activation for 

NH3 gas removal. Dynamic adsorption was used to 

illustrate the real conditions in the environment 

(Meneghetti et al., 2010; Patel, 2019) where emitted 

gas moves continuously through the bed. The 

adsorption capacities, kinetics, and isotherm were also 

investigated in this study. The results may provide 

necessary theoretical guidance of this material using 

physical activation method and implementation in the 

gas-phase dynamic adsorption. 

2. METHODOLOGY

2.1 Adsorbent preparation

Mangosteen peels collected from the market 

were washed with distilled water and then dried at 

105°C for 24 h (Li et al., 2018) before they were 

crushed using roll crushing machine and mortar 

grinder RM 200, and sieved into 10-20 mesh size. The 

carbonization was conducted in a tube furnace, 

Carbolite Gero HST 12/600 + 301 Controller, with a 

temperature of 700°C for 3 h under the flow of 

nitrogen (N2) gas. The process continued with CO2 

activation under N2 atmosphere at 850°C for 15, 120, 

and 180 min. The ramping rate for carbonization and 

activation process was 10°C/min. The purity of CO2 

and N2 gases used in this study was industrial grade 

≥99% from PT. Aneka Gas Industri. 

2.2 Activated carbon characterization 

The Brunauer-Emmett-Teller (BET) analysis 

(Quantachrome Nova Ver 11.0) carried out to 

determine the surface area through nitrogen adsorption 

experiment at the temperature of 77 K (-196.15°C). 

Scanning Electron Microscope-Energy Dispersive 

Spectroscopy (SEM-EDS, Analytical SEM JEOL 

JSM-6510A) was used to determine the morphological 

and elemental composition of MP-AC. The surface 

functional group was also determined using FTIR 

spectroscopy (IRPrestige-21 Shimadzu) at the wave 

interval of 4,000 and 340 cm-1. 

Moisture content, ash content, and iodine 

adsorption were determined according to the 

Indonesian standard, SNI 06-3730-1995 (Hastuti et 

al., 2015). The moisture content test was done by 

drying 1 g of the MP-AC at 105ºC until the constant 

mass. The MP-AC was heated in the furnace at 600ºC 

for 4 h to determine the ash content. Meanwhile, the 

iodine number test was performed by mixing 0.5 g of 

MP-AC with 50 mL of 0.1 N of iodine solution for 15 

min. The filtrate (10 mL) was then titrated with 0.1 N 

of sodium thiosulfate solution and starch as an 

indicator. The equations used were as follows: 

%Moisture content =
a−b

a
× 100%    (1) 

%Ash content =
b

a
× 100%    (2) 

Iodine number (
mg

g
) =  

(V1N1−V2N2)×126.93 ×fp

W
   (3) 

Where; a and b are initial and final mass of 

activated carbon (g) respectively; V1 is the analyzed 

iodine volume (mL); V2 is the volume of Na2S2O3 used 

(mL); W is activated carbon weight (g); N1 and N2 are 

the iodine and Na2S2O3 normality (N) respectively; fp 

is the dilution factor; and 126.93 is the iodine amount 

corresponding to 1 mL of Na2S2O3 solution. 

2.2 Adsorbate preparation 

An analytical grade stock solution of ammonia 

(NH4OH) was prepared in this study to make artificial 

gas by aerating dilute ammonia solution (Yani et al., 

2013) with an air flow of 880 mL/min for 30 min. The 

NH3 gas was produced and collected in a polyethylene 

bag with a volume capacity of 120 L. 

2.3 Adsorption experiment 

Dynamic adsorption experiments were 

conducted in the laboratory using the Duran glass 

column (diameter=1.2 cm, height=40 cm). The NH3 

gas was injected into the column at a flow rate of 

1.1 L/min. The outlet gas was measured by a gas 

sensor SKY2000-M2 at intervals of one reading per 

minute. The test was carried out continuously until 

the adsorbent reached saturated condition. The 

schematic diagram for the adsorption test is presented 

in Figure 1.
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Figure 1. Illustration of the adsorption system test 

The variations used in NH3 adsorption process 

were adsorbent mass (1, 3, and 5 g) and initial NH3 

concentrations (10±1, 20±1, and 40±1ppm). Data were 

collected twice for each variation and the adsorption 

capacity was calculated using equation 4 (Choo et al., 

2013): 

q (
mg

g
)  =

(C0−Ct) mg/L ×Flowrate (L/min)×t (min )

Adsorbent mass (g)
   (4) 

Where; t is the equilibrium time, C0 and Ct are 

the gas inlet and outlet concentrations.  

Activated carbon used in this study were 

disposed to the waste management and treatment 

facility by following applicable rules or can be 

regenerated using thermal, steam, and chemical 

processes (Reza et al., 2020).

3. RESULTS AND DISCUSSION

3.1 BET analysis and activation time selection

Microporosities and surface area are important 

properties that characterize carbon adsorbents 

(Saputro et al., 2020). The results of BET analysis at 

various activation times are shown in Figure 2. 

Figure 2 shows that the surface area increased 

from 39.06 m2/g to 588.41 m2/g with activation times 

of 15 and 120 min, respectively, and then decreased to 

535.62 m2/g with longer activation time (180 min). In 

the activation process, superheated CO2 diffuses into 

the inner precursor which burns the blockage of the 

byproducts, expands the pore, and increases the 

surface area (Lan et al., 2019; Yuliusman et al., 2017). 

The activation reaction can be seen below 

(Cheremisinoff dan Ellerbusch, 1978). 

CO2 + Cx → 2CO + Cx−1    (5) 

Figure 2. MP-AC surface area at various activation times. 

According to Yang and Lua (2003), the increase 

in activation time increases the BET surface area. 

However, it can also result in the excessive carbon-

CO2 reaction, thus causing the expansion of the pores 

and some pore walls to collapse. Therefore, the surface 

area decreases in 180 min, and 120 min was chosen as 

the optimum activation time used in this study. The 

surface area obtained is smaller compared to the 

previous MP-AC studies using steam and chemical 

activation (Mukti et al., 2015; Nasrullah et al., 2019), 

probably due to the temperature and activating agent 

being used (Gebreegziabher et al., 2019). However, 

the surface area of activated carbon usually ranges 

300-2,000 m2/g (Saputro et al., 2020), meaning that 

the result is still in the suitable range. 

The isotherm graph obtained (Figure 3) showed 

the BET type 1 according to IUPAC classification, 

which usually indicates that the material is micro-

shaped (Ambroz et al., 2018) with a relatively broad 

range of pore size distributions including wider and 
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narrower micropores (<~2.5 nm) (Giraldo and 

Moreno-Pirajan, 2018). 

Figure 3. BET isotherm graph 

3.2 Characterization of mangosteen peel activated 

carbon 

The results of moisture, ash content, and iodine 

number compared to other studies are shown in Table 1. 

Based on Table 1, the moisture content (6.07%) 

is higher than other studies’ which use chemical 

activation, and lower than that of using 

physicochemical activation. This content indicates 

the hygroscopic nature which can affect the 

adsorption capacity (Hastuti et al., 2015). Meanwhile, 

the ash content which indicates the mineral content in 

activated carbon (Hastuti et al., 2015) has the highest 

value (9.8%) of all. According to Rangabhashiyam 

and Balasubramanian (2019), it can be influenced by 

the pyrolysis temperature and the activation method. 

The physical activation has a lower efficiency in 

reducing the mineral content than chemical activation, 

so the ash content becomes relatively higher.

Table 1. Characterization of MP-AC

Activation/temperature (oC) Moisture content 

(%) 

Ash content 

(%) 

Iodine number 

(mg/g) 

References 

Physical CO2/850 6.07 9.8 1153.69 This research 

Chemical ZnCl2 600 4.8 1.45 N/A Nasrullah et al. (2019) 

Chemical ZnCl2  1.07 5.68 820 Rattanapan et al. (2014) 

Physicochemical KOH-CO2/828 9.08 1.63 N/A Ahmad and Alrozi (2010) 

The iodine number obtained is 1153.69 mg/g, 

higher than that of Rattanapan et al. (2014). This 

iodine number shows adsorption ability, illustrates the 

porosity of activated carbon, and its higher value 

attributed to the presence of micropores as already 

proven in the BET isotherm graph. The result is also 

included in the range of suitable activated carbon 

(500-1,200 mg/g) (Saka, 2012). 

3.3 FTIR and SEM-EDS analyses 

The surface functional group of MP-AC is 

characterized using FTIR as seen in Figure 4.

Figure 4. FTIR characterization spectrum of MP-AC 
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The FTIR result (Figure 4) shows many peaks 

which representing the complex nature of MP-AC 

(Nasrullah et al., 2019). The broad peak in 3,600-3,200 

cm-1 indicates the presence of hydroxyl (O-H) group

influenced by CO2 as an activating agent, and the peak

in 2,400-2,300 cm-1 shows a formation of nitrile

(C≡N) (Ahmad et al., 2013). The small peak that

occurs in 1,267.23 cm-1 and 1,120.64 cm-1 indicates the

MP-AC contains a lack of C-O stretching as oxygen

functional group in lactonic groups, alcoholic groups, 

and carboxylate moieties (Chen et al., 2011; Nasrullah 

et al., 2019). Moreover, the peaks in range of 1,620-

1,400 cm-1, 1,760-1,690 cm-1, 3,100-2,850 cm-1, and 

<900 cm-1, indicates C=C stretching, carbonyl group 

C=O, hydrocarbons C-H, and aromatic bond C-H, 

respectively (Ahmad et al., 2013). 

The results of SEM analysis before and after the 

adsorption process can be seen in Figure 5 as follows

Figure 5. SEM image (a) before; (b) after NH3 adsorption 

Before adsorption (Figure 5(a)), morphology 

shows presence of circular pores in different size and 

crevices after the carbonization and CO2 activation. It 

is shown that the MP-AC has porous nature that might 

affect the adsorption process (Nasrullah et al., 2019). 

After the adsorption (Figure 5(b)) there is an increase 

of impurities on MP-AC surface compared to the 

initial sample. This is because the adsorbate moves 

into the carbon pores during adsorption and results in 

the pore blockage (Basrur and Bhat, 2018). The 

surface elements of MP-AC determined using EDS is 

presented in Table 2. 

Table 2. EDS analysis result of MP-AC before and after NH3 

adsorption 

Sample  % mass 

C N O Other 

compounds 

Before adsorption 71.84 16.07 8.77 3.32 

After adsorption 70.62 16.94 9.43 3.01 

Based on Table 2, the major compounds of MP-

AC surface are carbon (71.84%), nitrogen (16.07%), 

and oxygen (8.77%). The N value of activated carbon 

is higher than dried mangosteen peel (1-2.67%) (Devi 

et al., 2014; Giraldo and Moreno-Pirajan, 2018; 

Nasrullah et al., 2019), probably due to the use of N2 

as the inert atmosphere during the pyrolysis and 

cooling processes (Ahmad et al., 2013). Meanwhile, 

after the adsorption, there is no significant difference 

to these three major compounds. 

3.4 Adsorption of NH3 

3.4.1 Effect of adsorbent mass and adsorbate 

concentration 

The breakthrough curves of NH3 adsorption at 

different adsorbent mass and adsorbate inlet 

concentration are presented in Figure 6. 

Based on Figure 6, initially, NH3 is fully 

adsorbed and adsorption process decreases with 

approaching equilibrium and gradually becomes 

constant. Figure 6(a) shows that for adsorbent mass of 

1, 3, and 5 g, the equilibrium time was 16, 23, and 25 

minutes respectively, indicating that saturation time 

becomes longer with the addition of adsorbent mass. 

This is due to the increasing surface area and available 

adsorption sites (Patel, 2019). Meanwhile, shown in 

Figure 6(b), smaller inlet concentrations produce the 

(a) (b) 
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longer breakthrough curves. According to Ding and 

Liu (2020) the decreasing inlet concentration 

decreases the amount of gas molecule passing the 

adsorbent, so the active sites are exhausted slowly.

Figure 6. NH3 breakthrough curve at different (a) adsorbent mass (10 ppm inlet concentration), and (b) different inlet concentration 

(adsorbent dosage 1 g/27.5 L) 

3.4.2 Adsorption capacity 

The adsorption capacity value is obtained from 

the breakthrough graph (Figure 6) which is calculated 

using Equation 4. The average NH3 adsorption 

capacity on MP-AC is 0.41 mg/g. The value is lower 

compared to commercial activated carbon which

ranges from 0.6 to 4.7 mg/g (Ro et al., 2015). This 

result correlates with the EDS result that the N 

compounds after and before adsorption do not show 

significant differences. The NH3 adsorption may be 

affected by several factors such as surface functional 

group, pore size and structure, and surface area (Kang 

et al., 2020; Yeom and Kim, 2017). Suspected in this 

study, acidic oxygen functional groups such as –OH, 

–NH, –C=O, –COOH, and metal ions is the main

factor affecting adsorption capacity (Ro et al., 2015;

Kang et al., 2020). According to the FTIR result, some

of acidic surface oxygen groups are present such as

–OH and –C=O. However, the nitrile group is also

found, thus increasing the basic nature of the activated

carbon, as supported from the EDS result that the

%mass of nitrogen can increase the basicity of the

activated carbon (Ahmad et al., 2013). This finding

might indicate that the surface of MP-AC is less acidic

in nature due to the use of physical activation method

(Nowicki et al., 2015) thus affecting the adsorption

capacity. Additionally, further research is needed to

enhance the NH3 adsorption capacity and the use in

numerous environmental applications.

3.4.3 Adsorption kinetics 

Lagergren pseudo-first and pseudo-second 

order kinetic models are evaluated to describe the 

mechanism of NH3 adsorption due to their good 

applicability in most cases (Ghasemi et al., 2014). The 

equations of pseudo-first order and pseudo-second 

order can be expressed as follows (Lagergren, 1898; 

Ho and McKay, 1999); 

qt = qe[1 − e(−kt)]  (6) 

qt =
k2qe2t

1+ k2qe2t
 (7) 

Where; qe and qt (mg/g) are the adsorption 

capacity at equilibrium and time t, respectively; k and 

k2 is the pseudo first and second order rate constant, 

respectively. 

The results of kinetic parameters for each 

kinetic model are presented in Table 3. 

For determining the appropriate kinetic model, 

calculated qe and R2 values should be taken into 

account (Unugul and Nigiz, 2020). According to the 

results in Table 3 and Figure 7, both pseudo-first order 

and pseudo-second order kinetic models show high 

and good R2 values. However, from the calculated qe 

value, the pseudo-first order kinetic model is close to 

the experiment data. This indicates that the pseudo-

first order kinetic model is more suitable to describe 

the  adsorption  mechanism  where  NH3 adsorption  is 
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physically controlled. The physisorption occurs due to 

the Van der Waals forces (Guo et al., 2005) and in the 

pore surfaces which contain hydroxyl group as a 

preferred site to bind NH3 (Yeom and Kim, 2017).

Table 3. Kinetics parameter of NH3 adsorption on MP-AC 

Mass 

(g) 

Co 

(ppm) 

qe exp 

(mg/g) 

Pseudo-first order Pseudo-second order 

k1 (min-1) qe1 (mg/g) R2 k2 (g/min.mg-1) qe2 (mg/g) R2 

1 10 0.413 0.205 0.404 0.971 0.394 0.516 0.986 

20 0.303 0.565 0.290 0.991 1.909 0.347 0.999 

40 0.316 0.793 0.309 0.996 2.507 0.370 1.000 

3 10 0.363 0.231 0.345 0.988 0.619 0.417 0.992 

20 0.450 0.201 0.475 0.996 0.259 0.650 0.992 

40 0.448 0.306 0.474 0.993 0.415 0.637 0.987 

5 10 0.427 0.134 0.441 0.994 0.204 0.586 0.986 

20 0.493 0.124 0.581 0.989 0.106 0.857 0.983 

40 0.515 0.169 0.612 0.989 0.135 0.908 0.984 

Figure 7. Adsorption kinetics of NH3 on MP-AC at 20 ppm inlet concentration and adsorbent mass of (a) 1 g, (b) 3 g, and (c) 5 g 

3.4.4 Adsorption isotherm 

In this study, to describe the interaction between 

adsorbate and adsorbent at the equilibrium, the 

Freundlich and Langmuir isotherm were investigated. 

The linear equation of Freundlich and Langmuir 

isotherm model is shown in Equation 8 and 9 

respectively as follows (Freundlich, 1906; Langmuir, 

1917): 

log qe = logKF +
1

n
logCe   (8) 

Ce

qe
=

Ce

q
+

1

qKL
   (9) 
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RL =  
1

1+KL.Co
 (10) 

Where; qe is the adsorption capacity at 

equilibrium (mg/g adsorbent), KF is the Freundlich 

constant, KL is the Langmuir constant (L/mg), n is the 

constant related to the adsorption energy of 

heterogeneity adsorbent site, Ce is the concentration 

of contaminants in equilibrium (mg/L), and RL is 

equilibrium parameter. 

The values of isotherm parameters for both 

Freundlich and Langmuir isotherm models are 

presented in Table 4.

Table 4. Isotherm parameters of NH3 adsorption on MP-AC 

Mass Freundlich Langmuir 

1/n N Kf (mg/g)(L/mg)1/n R2 q (mg/g) KL (L/mg) RL R2

1 g 0.195 5.1 0.15 0.615 0.297 820.63 0.09 0.992 

3 g 0.153 6.5 1.22 0.644 0.481 611.00 0.12 0.994 

5 g 0.146 6.8 1.10 0.877 0.557 544.21 0.13 0.999 

Based on determination coefficient (R2) from 

Table 4, the Langmuir isotherm is more suitable to 

describe the NH3 adsorption process with the R2 of 

0.999. The similar result has also been reported in 

previous studies for Methylene Blue adsorption (Foo 

and Hameed, 2012; Nasrullah et al., 2019), and in the 

NH3 adsorption on corncob activated carbon 

(Gebreegziabher et al., 2019). Langmuir isotherms 

indicates the monolayer adsorption where there is no 

interaction in adsorbate molecules (El maguana et al., 

2020), and the carbon surfaces have homogeneous 

structures and identical active sites (Kutluay et al., 

2019). Moreover, the equilibrium parameter (RL) 

value is in the range of 0<RL<1, suggesting that the 

NH3 adsorption using MP-AC is favorable (Hamzaoui 

et al., 2018). 

4. CONCLUSION

MP-AC prepared from physical activation using 

CO2 at 850oC for 120 min shows good porosity with 

surface area of 588.41 m2/g, 6.07% moisture content, 

9.8% ash content, and iodine number of 1153.69 mg/g. 

MP-AC can be used as an adsorbent material to 

remove NH3 with adsorption capacity of 0.41 mg/g 

which is lower than commercial activated carbon (0.6-

4.7 mg/g). The pseudo-first order kinetic and the 

Langmuir isotherm are best fitted to the experimental 

data. Consequently, mangosteen peel may be 

potentially used as an activated carbon precursor with 

further modification for NH3 adsorption and various 

environmental applications. 
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