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ABSTRACT

Very-long-baseline interferometry (VLBI) has the
potential to perform geodetic measurements accurate to
the centimeter level and astrometric measurements accurate to a
very small fraction of a second of arc. Until recently,
only phase-delay-rate (i.e. fringe-rate) measurements
had been used for such purposes. The accuracies
achievable with such measurements are on the order of a
few meters in baseline components and about 0.1 arc-second
in source positions. Also, only the equatorial components
of the baseline are measurable with this method. Accurate
group delay measurements, on the other hand, which are
relatively insensitive to fringe-phase variations with
periods of minutes, were not made because of the limited
bandwidth of the recording systems. Group-delay measure-
ments, if accurate to the nanosecond or better level,
would overcome most of the limitations of the phase-
delay-rate measurements and, as well, allow the deter-mina
tion of clock-synchronizations and all three components
of the baseline.

In this thesis, a technique is described, known as
"frequency-switched" VLBI, which allows a wide recording
bandwidth to be synthesized by sequential sampling of
several frequency "windows" distributed widely compared
to the instantaneous recording bandwidth. In this
fashion, the effective recorded bandwidth may easily ex-
ceed the instantaneous recorded bandwidth by a factor of
a hundred or more, allowing group-delay measurements to
be made to nanosecond or sub-nanosecond accuracy. When
implemented with highly-stable frequency standards (such
as the hydrogen maser) and digital recording, the
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"frequency-switched" technique is significantly more
powerful, for geodetic and astrometric measurements, than
measurements of phase-delay rate alone.

The thesis begins with a brief review of the develop-
ment of VLBI. The "frequency-switched" technique is then
presented, along with analyses of maximum-likelihood es-
timates of observables and analysis of signal-to-noise
relations. The effect of one-bit clipping of the data is
discussed and compared to the analog case. Practical
data-processing algorithms are developed and discussed in
detail and the limitations of the algorithms are examined.

The application of this "frequency-switched" technique
in a transcontinental 3-station VLBI experiment in October
1969, using antennas in Massachusetts, West Virginia, and
California is then described. Observations were made at
both L-band (~1660 MHz) and X-band (-7800 MHz), with a
"synthesized" bandwidth spanning 36 MHz around each of
these frequencies. From these data, the components of
all three baselines were estimated to accuracies of a few
meters and the positions of eight sources estimated to
within a few tenths of an arc-second. More recent ex-
periments, the results of which are briefly discussed,
have considerably improved upon these accuracies. The
future of the technique is discussed and suggestions are
made for continuing work.

Thesis Supervisor: Irwin I. Shapiro

Title: Professor of Geophysics and Physics
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CHAPTER 1

INTRODUCTION

1.1 BRIEF HISTORY OF VERY-LONG-BASELINE INTERFEROMETRY

Very-long-baseline interferometry (VLBI) is still a

relatively young science. The very first experiments were

conducted by a group at the University of Florida (Refer-

ences 1, 2 ) in 1965 to investigate radio bursts from

the planet Jupiter. Data were recorded independently by

analog recorders at each end of the baseline, and the re-

corded bandwidth of 2.4 kHz was small enough that timing

control pulses could be sent over telephone lines. The

observing frequency of 18 MHz was low enough that fre-

quency signals from WWV could be used to control the local

oscillators.

It was not until 1967 that VLBI measurements at micro-

wave frequencies with truly independent time and frequency

standards was demonstrated by researchers in Canada

(Reference 3 ), closely followed by NRAO-Cornell (Refer-

ence 4 ) and independently by an MIT-NRAO group (Refer-

ence 5 #. The system developed by the Canadian re-

searchers was a sophisticated extension of the analog

recording and processing techniques used earlier at

Florida. The recorded bandwidth was extended to 4 MHz

through the use of video tape machines and special techniques

were developed to synchronize recordings during playback for

Both the NRAO-Cornell and MIT-NRAO groups, however, used the
same digital recording system (so-called "Mark I" system)
developed by NRAO.
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2
processing. The system developed by NRAO, on the other

hand, made use of a fully digitized data recording system

which had the major advantage that the recordings were

fully compatible with tape systems on large general-pur-

pose computer systems, leading ultimately to greatly

increased flexibility and reliability of VLBI measure-

ments. The one major drawback of the digital system,

however, was a limitation of the recorded bandwidth to

360 kHz, resulting in lower signal-to-noise ratios

on continuum observations than were obtainable with the

Canadian analog system.

The early VLBI measurements made by NRAO, Cornell,

and MIT were primarily aimed at developing high-resolution

maps of radio sources and/or placing upper bounds on

their angular sizes. Spectral-line sources, such as OH,

were prime targets for source-structure studies because

individual features may be identified by Doppler dif-

ferences and their relative positions may be determined

from fringe-rate differences between the features (Refer-

ence 6 ). No particular attempts were made in these

early measurements to determine highly-accurate absolute

source positions or baseline components, due primarily to the

limitations imposed by the then-available frequency standards.

The rubidium atomic clocks then generally in use as fre-

quency standards possessed fractional stabilities on the

order of a few parts in 1012 over periods from a few seconds

2Although the recording bandwidth capability of the Canadian
system was 4 MHz, the actual video bandwidth used in early
experiments was limited to 1 MHz in order to reduce playback-
synchronization requirements.
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to a few hours, which translates into uncertainties of

a large fraction of a microsecond per day. This limits

absolute source position measurements to accuracies of

the order of several seconds of arc or more, and base-

line measurements to several tens of meters, making

any such measurements relatively uncompetitive with

short-baseline-interferometer position measurements or

conventional high-precision ground surveys (References

7, 8, 9 ).

In late 1967 the first hydrogen-maser frequency

standards became available for limited use in VLBI ex-

periments. The hydrogen maser offered at least a ten-

fold improvement in frequency stability over rubidium

standards, reportedly as high as a few parts in 1014

over periods of hours. Immediate impact was felt on

VLBI measurements, for suddenly it became possible,

at least in principle, to model the reference clocks to

a few nanoseconds per day, dramatically increasing the

potential use of VLBI to determine high-accuracy source

positions and baseline components. Potentially, both delay

and delay-rate measurements could be made with sufficient

accuracy to determine source positions to small
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fractions of a second of arc and baseline components

to the several-centimeter level. The prospect, though

tantalizing, was still a long way from reality as limi-

tations unrelated to the frequency standards became

dominant. The existing VLBI recording systems were pri-

marily of use to measure accurate phase-delay rates,

sometimes called "fringe rates". Measurements of total

phase-delay, however, were impossible due to insufficient

knowledge of initial conditions. Precise measurements of

group-delay, on the other hand, required the examination

of the relative phases of the received signals over a

bandwidth wider than was possible to obtain with the exist-

ing VLBI recording systems. The accuracy of the group-

delay measurement is inversely proportional to the re-

corded bandwidth, the group-delay measurement accuracy of

the 360 kHz bandwidth digital recording system being on

the order of a few tenths of a microsecond. Similarly, the

Canadian 4 MHz bandwidth analog recording system has the

potential of group-delay measurement accuracies of a few

tens of nanoseconds. These accuracies, although perhaps

impressive, are still far too small to take full ad-

vantage of the few-nanoseconds-per-day stability offered

by hydrogen masers.
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High-accuracy group-delay measurements offer some advantages

over phase-delay-rate measurements although they are in

some ways complementary. As we shall see in Chapter 2, phase-

delay rate is independent of the polar component of the

baseline, so that only the equatorial components may be

estimated. In addition, the declination of at least one

source must be known a priori in order to solve for source

positions. Group-delay measurements, on the other hand,

suffer from neither of these disadvantages. In addition,

clock synchronization errors may be determined (a poster-

iori, of course) to approximately the same level of ac-

curacy as the accuracy of the group-delay measurements.

No other technique, so far as is known to the author, has

the realistic potential of synchronizing widely-separated

clocks to sub-nanosecond accuracy.

Owing to the seeming advantages of group-delay measure-

ments in conjunction with phase-delay-rate measurements,

much thought was given as to how such measurements might

be made within the basic framework of the existing VLBI

recording hardware, in particular the 360 kHz bandwidth

digital recording system. The problem was solved in a

rather ingenious manner after a suggestion by A. E. E.

Rogers (Reference 10 ) and has become commonly known as

"frequency-switched" VLBI. Rogers suggested sequential sampling

of several "frequency windows", each of bandwidth 360 kHz

but spanning overall a much larger bandwidth. The sampling

of these windows would be cyclical so that each frequency

window would be sampled many times during the course of a
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few-minute observation. When the tapes are brought to-

gether for processing each frequency window may be pro-

cessed as a separate observation, yielding a "fringe-

phase" for each window. Then, provided the frequency

windows are not too widely spaced and that some means is

available to calibrate the instrumental phases for each

window, it should be possible to extrapolate the fringe

phase from one window to the next and hence synthesize

an apparent recorded bandwidth equal to the largest separa-

tion of the frequency windows. Such a procedure is inde-

pendent of the instantaneous recorded bandwidth, provided

that the signal-to-noise ratio in each frequency window

remains acceptably high. An appreciation of the possible

improvement in group-delay measurement accuracy may be

had by noting that a group-delay uncertainty of 0.1 micro-

second, typical for a relatively high signal-to-noise

measurement over a single 360 kHz bandwidth, may be re-

duced, by frequency-switching over a total bandwidth 100

times as large (36 MHz), to an uncertainty of about one

nanosecond.
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1.2 ANALOG TO APERTURE-SYNTHESIS ANTENNA ARRAY

The "frequency-switched" VLBI technique for deter-

mining group delay has a nearly exact analog in the linear

multiple-antenna aperture-synthesis array. It is useful

to pursue this analogy to understand the principle and

technique of frequency-switched VLBI. Consider a phased

linear-array of antennas. The Fourier transform of the

spatial array structure defines a "beam pattern" on the

sky (see, for example, Reference 11 ) which, depending

on the details of the array spacings, generally has many

repeating "fringe groups", of which each group consists of

a "central fringe" plus several sidelobes. One of these

fringe groups is the "central fringe group". The "central

fringe" of the "central fringe group" is defined as that

single fringe which would be present if the entire linear

array were filled. The approximate angular width of this

fringe is X/D where X is the wavelength and D is the

maximum spacing of the array. Now suppose a point source

is moving through the beam of the antenna array and the

problem is to determine when the source is at the peak of

the "central fringe" of the "central fringe group". This

determination may be made in three logical steps: 1) De-

termine when the source is within the "central fringe

group", 2) Determine when the source is on the "central

fringe" of that fringe group, and 3) Ascertain when the

peak of the central fringe has been reached. Step 1 is
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usually accomplished by choosing the "fringe group"

spacings, controlled primarily by the minimum array

spacing, to be large enough that the proper fringe group

can be chosen from a priori knowledge of the source

position. Picking the proper fringe within the fringe

group, Step 2, is usually assisted by choosing the relative

array spacings so that the sidelobes immediately surround-

ing the central fringe of the group are substantially lower

in amplitude. Step 3 is then simply a matter of "peaking

up" the amplitude, assuming that the proper fringe has been

located by Steps 1 and 2.

If, instead of antenna spacings, we think of frequency-

window spacings, the Fourier transform of these frequency-

window spacings forms a function known as the "delay

resolution function", which is entirely analogous to the

"beam pattern" of the antenna array. Figure l.la shows

schematically an array of six frequency windows placed

at the relative frequencies of 0, 1, 4, 6, 24, and 36 MHz,

respectively. Figures 1-lb and l-lc show the corresponding

delay resolution function. A sharply defined peak occurs

every 1 microsec (inverse of the minimum window spacing),

each peak being surrounded by complicated lower sidelobes.

Each such peak and its immediate sidelobes are exactly

analogous to a "fringe group" of the antenna array, while
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each peak corresponds to the "central fringe" of that

group. The width of each peak is approximately 15 nano-

seconds, approximately the inverse of the maximum window

spacing, and the detailed sidelobe structure between peaks

is determined by the spacing of the interior windows. A

broad envelope, produced by the 360 kHz bandwidth of the

individual windows, surrounds the entire function, in the

same way that the size of the individual antennas in an

array imposes a broad envelope over the beam pattern.

Our analogy to the antenna array is now nearly

complete, and the three-step procedure outlined to "deter-

mine when a source is on the peak of the central fringe

of the central fringe group" can be translated directly,

by analogy, to "find the maximum of the main peak of the

central delay ambiguity". The procedure, then, is to

1) use a priori knowledge to determine the proper ambiguity

of the delay resolution function; 2) find the main peak

within this ambiguity, and 3) maximize on the main peak.

The reader may be prompted to ask why a priori

knowledge is generally used to find the proper delay am-

biguity because, as indicated in Figure l.lb, the peak

of the proper ambiguity is higher than any of the others

and should require no a priori knowledge to properly

choose it. The answer is twofold: 1) noise on a given

observation may, in fact, cause the wrong ambiguity to be

higher than the proper one, and 2) data processing in a
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computer is much speeded if each frequency window is

processed individually and then only the amplitude and

phase from each window is used to construct the delay

resolution function; this effectively removes the broad

envelope, due to the 360 kHz individual-window bandwidth,

from the delay resolution function and makes all am-

biguities of equal amplitude.

A selection of the exact spacing of the frequency

windows is of course very important. The minimum

spacing must be chosen small enough that a priori in-

formation is sufficient to choose between the major am-

biguities of the delay resolution function. The maximum

spacing in large part determines the width of the main

peak of the delay resolution function, but must not be

chosen so large that sidelobes become too high. The

intermediate frequencies are chosen to lower the side-

lobe levels of the delay resolution function as much as

possible. Generally a set of frequency spacings must

be chosen which reflects a compromise between high delay

resolution and tolerable sidelobe levels. Higher side-

lobe levels may be tolerated as a priori knowledge of the

group delay increases. Some semi-empirical optimization

of window-spacings has been attempted (Reference 10 ) but

no general rules of optimization have yet been formulated

(see also Section 5.3 ).
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1.3 EARLY FREQUENCY-SWITCHED VLBI EXPERIMENTS

The first frequency-switched VLBI experiment was

conducted in April 1968 between the 120' antenna of the

Haystack Observatory in Tyngsboro, Mass. and the 84'

radio facility of Chalmers University at Onsala, Sweden.

The observing frequency was chosen to be -1660 MHz,

near the frequency of earlier OH observations. In order to

implement this experiment a considerable amount of new

equipment was built and tested. The results from this

first experiment, however, were very few and poor due

mainly to the problems involved in "shaking down" all

of the new equipment.

In October of 1968 a second switched-frequency ex-

periment was attempted between Haystack and the NRAO 140'

antenna at Green Bank, W. Va. The primary purpose of

this experiment was to monitor the apparent position

difference between the quasars 3C273B and 3C279 as the

sun travelled through their vicinity. The results, it

was hoped, would enable a precise determination of the

relativistic bending of electromagnetic waves in a gravi-

tational field. The experiment was conducted at two

widely separated frequency bands, the first near 7500 MHz

(X-band) spanning a synthesized bandwidth of 44 MHz with

16 frequency windows and the second near 1610 MHz
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(L-band) spanning a synthesized bandwidth of -5 MHz

with 8 frequency windows. Using two widely-separated

bands of frequencies it was hoped to be possible to

measure the effect of the solar corona on the delay

measurements, and hence remove its effect in the gravi-

tational-bending determination.

Figure 1-2 shows a basic block diagram of the

equipment used for the October 1968 experiment and is

typical of frequency-switched VLBI experiments. At

each station the incoming signal is amplified by a low-

noise amplifier before being mixed with a radio-frequency

local-oscillator signal. (Separate amplifiers and local

oscillators were used for L-band and X-band, but for

simplicity only one is shown in Figure 1-2.)

A second stage of mixing translates the signal to

a band spanning 0-360 kHz, where it is clipped, sampled

and recorded on magnetic tape. The independent hydrogen

masers at each site control all local oscillator signals

as well as all timing and control signals. Both local

oscillators at each site are controlled in a programmed

manner so that different "frequency windows" are se-

quentially selected. During the October 1968 experiment

both the first and second local oscillators at each site

were programmed to "switch frequencies"; it was necessary

to switch first local oscillatoisbecause of the relatively

narrow bandwidth of the IF between the first and second

mixing stages. Switching of the first local-oscillator
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Simplified block diagram of frequency-switched VLB/ system
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signal proved to be particularly troublesome because it

was generated with the aid of a phase-locked loop which

had to be retuned and relocked at each change of fre-

quency, at a switching rate of five times per second.

Despite the equipment troubles encountered, many ob-

servations from the October 1968 experiment showed good

fringes but the delay results were disappointing. They

showed scatter of many tens of nanoseconds, far more

than could be accounted for if all the equipment were

performing properly. Subsequent investigations revealed

that the most probable primary cause of the observed prob-

lems were switching transients in the first local oscil-

lator signal. These transients were apparently not so

large or fast as to prevent fringes from being observed

but caused the observed fringe phases to drift randomly

over an unacceptably large range. The net result was

that the wide bandwidth could not be adequately "synthesized",

and the measured group delays were unreliable (Reference 12 ).

After some improvements in equipment and procedure,

another switched-frequency VLBI experiment was conducted

in January 1969 between Haystack and the NRAO 140' an-

tenna (Reference 13 ). All observations were made at

L-band near 1660 MHz, spanning a synthesized bandwidth
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of 110 MHz with six frequency windows. Both the

first and second local oscillators were switched and,

in addition, the L-band parametric amplifiers were syn-

chronously retuned by means of programmed bias voltages.

Reduction of the data from this experiment yielded a

3-component vector baseline between a well-defined point

on each antenna as well as high-accuracy source positions.

The agreement of the VLBI-determined baseline with that

of a high-precision survey was to within 2 meters in length

and to about 5 meters in orientation (References 13, 14).

The position of six radio sources were simultaneously

determined to accuracies varying from -0.2 to 1.0 arc-

seconds. These results still were not up to initial

expectations, but represented a significant improvement

in the state-of-the-art.

Following the January 1969 experiment, a reassessment

of the switched-frequency technique was made. A persistent

and nagging problem still remained in switching the first

local oscillator. Even though improvements had been

made in the area, switching transients was still a major

concern and no really suitable solutions seemed in sight.

Fortunately, at approximately the same time, very wide-

band solid-state IF amplifiers were becoming available.

With the availability of these amplifiers, IF bandwidths

of 100 MHz were not uncommon and the need to switch the

first local oscillator suddenly disappeared. In ad-
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dition, broadband low-noise microwave amplifiers were

also becoming available so that the need to synchronously

retune the rf amplifiers also vanished. The result of

these developments was that the switched-frequency

VLBI hardware could be significantly simplified, and

only the second local oscillator needed to be switched.

This simplified procedure has been used in all succeeding

switched-frequency VLBI experiments.

In the spring of 1969 planning began for another

switched-frequency experiment to be conducted in October

1969, the goals being to make high-accuracy geodetic and

astrometric measurements as well as another attempt to

measure the gravitational bending of radio waves. The

experiment was to be conducted at two frequencies, L-band

and X-band, and involved the participation of three major

radio antennas: the 120' Haystack antenna in Tyngsboro,

Mass., the 140' NRAO antenna at Green Bank, W. Va., and

one of the 90' antennas at the Owens Valley Radio Observatory

near Big Pine, Calif. This was the first switched-

frequency VLBI experiment to be attempted using three

antennas and offered a unique opportunity to collect

simultaneous data on three baselines, allowing, for the

first time, internal consistency checks to be made around
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three baselines. Among other checks, each baseline

vector may be determined individually and a realistic

estimate of the measurement accuracy determined by

examining the sum of the three independently-determined

baseline vectors around the three baselines. Similarly,

source positions may be determined from data taken on each

individual baseline, and the resulting positions com-

pared for consistency. Goals for measurement accuracies

were set at about 1 meter in baseline vector

components and a tenth of a second of arc for

source positions.

Although the initial goals for the October 1969 ex-

periment proved to be somewhat optimistic, the result of the

experiment yielded results significantly improved over previous

results and a still greater appreciation of some of the

remaining problems. The author has been heavily in-

volved with the development of the switched-frequency

VLBI technique starting with the first experiment in

April 1968 and has contributed to the effort in almost

all of its phases, including theory, hardware, and soft-

ware.

1.4 SYNOPSIS OF CONTENTS OF THESIS

By its very nature, VLBI involves many people

working simultaneously on its many aspects. The work

presented in this thesis is part of a continuing program
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of VLBI development being carried out at MIT and else-

where. Earlier work in this area has been published in

theses by Moran (Reference 6 ) and Hinteregger (Refer-

ences 13, 14 ). Preston (References 15, 16 ) has

applied the technique of VLBI to satellite tracking.

Rogers (References 10, 17 ) has made extensive contributions

to both the engineering of VLBI systems and the analysis of

VLBI data. The reader is referred to these sources for

extensive background material. In addition, a number of good

general-interest articles have been published on the sub-

ject (References 18, 19, 20, 21, 22).

Chapters 2 and 3 of this thesis are intended to

outline the basic principles underlying VLBI. Chapter

2 details the basic geometry of VLBI measurements and

shows how VLBI may be applied to precision geodesy and

astrometry. The sensitivity of interferometer measurements

to geodetic and astrometric parameters is discussed in

some detail. Chapter 3 discusses the signal and noise

analysis problems of VLBI from the viewpoint of a relatively

simple model. Signal detection problems are studied and

the effects of infinite-clipping of the signals are dis-

cussed and compared to the analog signal case. Estimates

of group-delay and phase-delay-rate measurement accuracies

are made, resulting in simple,useful formulas.

Chapter 4 outlines in detail the data processing
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algorithms and procedures that have actually been imple-

mented and used for the analysis of VLBI data. Also,

an analysis is made of possible systematic errors intro-

duced into the data processing due to the many ap-

proximations that had to be made in the VLBI data-

processing system.

Chapters 5, 6, and 7 deal with the design and

execution of the October 1969 VLBI experiment which was

briefly described in the previous section. The design

and goals of the experiment are presented, the instrument-

ation is discussed in some detail, and the actual execution

of the experiment is outlined. Chapter 7 gives the re-

sults and post mortems of the experiment and discusses

possible areas for improvement and future work.
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CHAPTER 2

THE GEOMETRY OF VLBI MEASUREMENTS

2.1 BASIC VLBI GEOMETRY

The basic geometry of VLBI measurements has been dis-

cussed by several authors [among them Moran (Reference 6 )

and Williams (Reference 23 )] and we shall briefly

review it here in the light of the experiments conducted for

this thesis. In this simple analysis, we shall ignore any

effects of polar motion, aberration, and relativity. For

more details, the reader is referred to Ash (Reference 24)

and Williams (Reference 23).

Consider the two right-handed frames of reference

shown in Figure 2-1, designated as S and S', with the

origin of both frames being at the center-of-mass of the

earth. Frame S is defined by the non-rotating axes x,

y, z. The z-axis is aligned with the instantaneous spin

axis of the earth. The x-axis is defined to lie in the

direction of the true equinox of date and the y-axis completes

a right-handed coordinate set. The second reference frame,

designated S' and with axes x', y', z', is fixed in the

rotating earth. The axes z and z' are coincident. The

axis x' is in the direction of the Greenwich meridian and

the y' axis completes the right-handed set. The right-

ascension of date of the Greenwich meridian, designated

aG' relates S and S'. The transformation from S to S' is
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A I
i = cosaG + 1 sin G

1 -1 sinaG + 1 cosa G  (2-1)
y x G y G

1 =1
z z

and, similarly, from S' to S by

A A
I

1 = i cosa - i'sinax x G y G
A A

iy = isina + i'cos G  (2-2)y x G y G
1 =

z z

Define the baseline vector b fixed in S'

b = b'' + b' 1' + b'i' (2-3)xx y y zz

where b', b', b' are constant components of thex y z
baseline and not a function of time. (In Figure 2-1

we show b translated in the S' frame so that one end of

it is fixed at the origin of S'. This is done simply to

clarify the geometry of Figure 2-1 and will have no

effect on the results of our computations as long as

we assume that the observed sources are infinitely distant.)

If we define the baseline right-ascension and declination,

ab and 6b', respectively, as shown in Figure 2-1, then b

may be written in the S frame as

= b[cos 6 b(cosa b i x + sinabiy ) + sin6b iz ]  (2-4)

where b 1E l is the length of the baseline and ab' 6b

are the instantaneous right-ascension and declination,

respectively, of b within the S coordinate frame. ab

is a function of time
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ab(t) = ('b + aG(t) (2-5)

where a b is the baseline right ascension at the
o

instant S and S' are aligned (i.e. when the sidereal time

of the Greenwich meridian is zero).

In a similar manner we may define the "source

vector" es to be a unit vector in the direction of the

radio source fixed in the S coordinate system

e = cos6 (cosa i + sina i ) + sin6 i (2-6)
Ss sx sy s z

where as 6s are the right-ascension and declination of

date,respectively, of the source. We may use the

transformation of Equation (2-2) to write es in the S'

frame as

e= cos6 s [c os(a G-a ) i  - sin(a G-a )i]+ sin6 i'
Sx sz

(2-7)

If we define T to be the travel time of a wave-

front, propagating from the source in the direction

-s', from the "reference station" at the foot of b to

the "remote station" at the head of i, then

Tg =-(bese). From Equations (2-3) and (2-7),

= lcos6 [b'cos( )-bysin(a-a ]+b'sin6 }
g c s xsG s y G s z s

(2-8)

where c is the speed of light. Using Equations (2-4) and

(2-6) we may rewrite Equation (2-8):
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g = -b[cos6s 6 cos(a b-a )+sin6 sin6 ]  (2-9)

We should note two points regarding the results of

Equations (2-8) and (2-9): 1) these results do not

include any effects of polar motion, aberration, relativity,

or transmission media, and 2) since this analysis is based

on the propagation of a single wavefront from one station to

the other, these are, strictly speaking, phase delay (as

opposed to group delay) results. For propagation in a

vacuum, as we have assumed, phase and group delay are,

of course, the same.

We note that the bracketed term of Equation (2-8)

and the first term of Equation (2-9) vary sinusoidally

with a period of one sidereal day; the remaining term,

the so-called "polar-component" of Tg, is constant and,

in a real experiment, is indistinguishable from a clock

synchronization error if observations are made only on a

single source.

In a realizable VLBI experiment, T7 cannot be measured

directly since it is not readily separable from the effects

of media propagation and instrumental delays. More speci-

fically, if we define Tt to be the total propagation time

of a particular wavefront as measured by comparing the clock

readings made by the crew at each station upon the arrival

of that wavefront at their station, we would find Tt to be

made up of several independent components
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S= T + T T + T (2-10)

where Tc = synchronization error of the clocks at the

two sites

T. = instrumental delay differences (due to am-

plifiers, waveguides, cables, mixers, etc.)

between the two sites

Tp = propagation media delay differences due to

atmosphere, ionosphere, interplanetary and

interstellar plasmas (although scale sizes of

interstellar matter are usually much larger

than the earth-based baseline and hence neg-

ligible)

Complicating the measurements is the fact that Tc Ti,

and Tp may be time-dependent and behave in an unpre-

dictable and/or unmeasurable manner. We shall examine

each of these in somewhat more detail later.

We may take the time derivative of Equation (2-10)

to get the total delay rate

dT dT dT dTi dT~ (2-11)S- (2-11)t t dt dt dt dt

where we have assumed that T , T , T. and T may all

be described independently. The quantity known as total

"fringe rate"l is then

IThe term "fringe rate" has grown naturally into the VLBI
repertoire of nomenclature, and has an intuitive meaning
if one visualizes the "fringe pattern" to be a set of parallel
lines in the sky, fixed in the frame of the rotating earth,
and sweeping past the source at a rate of 2nv t lines per second,
where vt is defined in Equation (2-12).
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Vt -YIt + A w (2-12)
0

where w is the rf observing frequency that is translated

to zero-frequency (i.e. DC) in the video spectrum of

the "reference" station and where Aw0 is the local

oscillator "offset" at the "remote" station.

The main component of vt is the component due to

i . From Equations (2-5), (2-8), and (2-9) we have the

geometric component of the fringe rate, v g

V = WT (rad/sec) (2-13a)g g

= -cos6 [b'sin ) + b'cos(a-a )]atc s x (G-s N Gss)

(2-13b)

= b cos6 cos6 sin(b- ) G (2-13c)
c s b b s -t

DaG -4
where - 0.73 x 10 rad/sec is the rotation rate of

the earth. For w = 10 GHz and b = 6000 km, we see from

Equation (2-13) that v may be as large as ~10 4Hz. The

maximum v occurs, as we would intuitively expect, when

sa -b (i.e. when -9 = 0). We note that only the

"equatorial component" of the baseline, b cos 6b, appears in

the expression for v g, so that fringe rate measurements

alone can measure only b' and b' of Equation (2-3). Nox y

information is gained about the z-component b'. It isz

also interesting to note from Equation (2-13c) that the
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source declination is inseparable from the equatorial baseline

component, except by observing several sources. And even

then, if the equatorial baseline component is not known,

at least one additional constraint must be applied in order

to solve for the source declination. For example, the

declination of one source could be fixed, or a priori

source declination information could be used to restrain

the "average" declination corrections.
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2.2 INTERFEROMETER RESOLUTION

The minimum fringe spacing of the interferometer

occurs along a direction in the sky parallel to the

projection of the baseline vector, b, onto a plane per-

pendicular to es. If, as before, es and b are the source

and baseline vectors, respectively, then this projection

is, from simple geometry, just the vector

b E (e s x b) x e (2-14)

The minimum fringe spacing occurs along this direction

and may be visualized as a set of parallel lines drawn

perpendicular to the plane which contains p and es" The

angular spacing of the lines is X/l pl, where A is the

wavelength at which the observation is being made. We

recognize XA/1pI as just the angle through which b must

be rotated in order to change the signal delay (i.e. the

difference in time of arrival at the two ends of the base-

line of a signal from the source) by A/c.

In most VLBI work, the "resolution" is expressed in

terms of the fringe spacing in the "East-West" and "North-

South" directions. If we define a right-handed spherical

coordinate system (r,8,f) coincident with the already

defined Cartesian coordinate system S of Figure 2-1, then

the East-West component of , as viewed from the source,

is bipý ', where i is perpendicular to 6s (see Figure 2-1).
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The resolution in the East-West direction

(i.e. i1 direction), conventionally designated as u and

expressed as inverse fringe spacing, is

U PA

b
= cos6b sin(ab-as) (fringes/radian) (2-15)

where we have used Equations (2-5), (2-7), and (2-14).

Similarly, the "North-South" resolution (more correctly,

the resolution in the i direction) is designated by v and

is given by

v= P

b=- [sin6 cos 6bcos(ab- a )-sin6bcosss] (2-16)

The quantities u and v are, of course, functions of

time as the baseline rotates. From Equations (2-15) and

(2-16) we note that

22 (v-v )
S+ = 1 (2-17)

a b

where

b
a = - cos6A b

bb - cos6 sin6
A b s

bv sin6. cos6
o A D
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Equation (2-17) indicates that u and v trace out an

ellipse as a result of the earth's rotation. It should

also be noted that any earth-based VLBI experiment may

make measurements only over the part of the u-v "track"

for which the source is visible to both stations. In

the special case that both stations are in the same

hemisphere and the magnitude of the source declination

is larger than the magnitude of the site's latitudes

(North Pole in the Northern Hemisphere, South Pole in

the Southern Hemisphere), the source will be visible to both

stations at all times and the entire u-v track may be

observed.
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2.3 MEASUREMENT SENSITIVITIES

2.3-1 Sensitivity of Delay and Fringe Rate to Small Changes
in Model Parameters

In this section we shall examine the effects on Tg

and \ of small errors in the baseline vector, source

position vectors, polar motion

and UT1. 2  In doing so we may gain an idea of the

accuracy with which these quantities may be determined with

VLBI. In this discussion we shall ignore propagation media

and instrumentation effects except for clock synchronization

and rate errors. Analyses of this type have been done by

others [see, for example, Moran (Reference 6 ), Rogers

(Reference 10), Williams (Reference 23 )] and here we shall

give a brief discussion relevant to the experiments carried

out for this thesis. We shall also examine the relative

sensitivities of delay and fringe-rate data and show how

delay and fringe-rate data are in large part complementary.

Consider an observation made at time t which yields

a measured delay Tm and measured fringe rate vm. In order

to carry out the processing of the data, a set of a priori

baseline, source position, and clock synchronization para-

meters b', b', b', s , 6 , T [as defined by Equations
x y z s s c

(2-3), (2-6), and (2-10)] are assumed. Parameters associated

with precession and nutation appear only when the coordinate

system of date is transformed into a reference coordinate

2UT1 is a measure of time defined by the earth's rotation angle.
Small irregularities in the rotation rate of the earth may be
measured by determining UT1 as a function of atomic time.



-47-

system (such as the mean equinox and equator of

1950.0 ), and need not immediately concern us here. The

observed delay Tm may be written

r = T + T + AT (2-18)
m go C

where t is the a priori geometric delay as given by

Equation (2-8) or (2-9), Tc is the a priori clock synchroniza-

tion error, and AT is the residual delay unaccounted for by

the a priori model. If the measurement errors are negligible

and if the errors in the model are small, we may do a first-

order expansion of AT around the a priori
3T aT aT a+T

AT Ab' + -- Ab' + Ab' +
x 3b' y ab' z a s

x y z s

(2-19)

aT
+ - S A6 + AT

6 s c
s

x y z s errors in

the model parameters and all the partial derivatives are un-

derstood to be evaluated at the a priori values.

Similarly, the observed fringe rate vm may be written

as

V = v + WT + Av (2-20)
m go Co

where v is the a priori fringe rate, w is the observing

frequency, and T is the assumed clock-rate offset. For

small errors in the model we may write
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3V av av av av
Av = Ab' b Ab 6 + (2-21)b x ab y b z s s c

x y z s s

where again it is understood that all partial derivatives

are to be evaluated at the a priori values. We note that

the radio frequency w is defined with respect to the frequency

standard of each station and is not an unknown or variable

parameter of the model.

We now wish to evaluate each of the partial derivatives

in Equations (2-19) and (2-21) and make order-of-magnitude

estimates of their values.3 To meaningfully examine these

estimates we need to keep in mind that the approximate ac-

curacies of real measurements using the switched-frequency

technique with the available equipment in 1969 was on the order

of a few nanoseconds (10- 9 sec) in delay and a millihertz

(10- 3 Hz) in fringe rate.

First consider the dependence of Tg upon the baseline

components. From Equation (2-8)

S= 1 cos6 cos(a - s) (2-22a)
ab' c s G s

aTb 1 cos6 sin(x (X ) (2-22b)=b c s (G- s= - 1 sin6 (2-22c)
Db' c sz

These all have an order-of-magnitude value of 1/c or

This type of sensitivity analysis is very simplified. A more
meaningful discussion would require a complete correlation or

covariance analysis.
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about 3 ns/meter, independent of the length of the base-

line. Similarly, the fringe-rate partials are, from

Equation (2-13b)

av oG

a- b cos6 sin(aG- s )  (rad/sec-m) (2-23a)

av x

y

-= 0 (2-23c)ab'z
G -4

Recalling that G- 0.73 x 10-4 rad/sec is just the

rotation rate of the earth, and choosing the observing

frequency to be - 7.8 GHz, we find the sensitivity of

Vg to the baseline components b' and b' to be about
g x y

2 x 10- 3 Hz/m. Note that, as with the delay partials, the

sensitivity is independent of the baseline. Comparing the

sensitivity to the corresponding delay sensitivity of

~3 ns/m we see that, for the assumed observation frequency

and observational accuracies, delay and fringe-rate measure-

ments will lead to nearly the same accuracies in the equa-

torial baseline components b' and b'. Fringe-rate informa-x y

tion alone, of course, gives us no information about the

polar baseline component, b'.z
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Next let us examine the sensitivities of T and v
g g

to small changes in source position. From

Equation (2-8)

9-s = - cos6 [b'sin x G-aG)+bcos(a G -a ) ]  (2-24a)

l= {sin6 [bxcos(a -a )-b'sin(a -a )]-bzcos 6 }a6 c s x G s y G s )  s

(2-24b)

We recognize the quantity in brackets in Equation (2-24a)

to be dependent on the equatorial components of the base-

line. Order-of-magnitude calculations with a

baseline length of -3000 km yield a sensitivity of about

50 ns/arc-sec.

Similarly, the partials of fringe rate with respect

to source position may be found from Equation (2-13b)

E = - - cos6 [b'cos(a -a )-b'sin(aG-as) ] G (2-25a)

av aa
S- sin6 [b'sin (a -a )+b'cos(a -a ) (2-25b)D6 c s x G s y G_ s at

Order-of-magnitude values for these partials for a baseline

length of -3000 km and an observing frequency of ~7800 MHz

are about 25 x 10-3 Hz/arc-sec.
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Finally, the sensitivity of Tg and \g to UT1 may be

found by differentiating Equations (2-8) and (2-13b) with

respect to the Greenwich hour angle aG

--9= -os61 [b'sin(a G-a s)+b cos(a-a (2-26a)

G G

a-a cos6 [b'cos (aG-s)-b 'sin(a G-a s) ]  (2-26b)Da c s x Gs y G s -t

We note from Equations (2-24a) and (2-26a) that

a =  aG (2-27)
s G

and from Equations (2-25a) and (2-26b) that

av av
= _ 9 (2-28)

s G

so that as and aG are, in fact, directly related and

hence cannot be determined independently. What Equations

(2-27) and (2-28) really tell us is that the origin of

right-ascension cannot be determined by measurements of

Tg and v g. In general, a right-ascension origin must

be established by other means; for example, a priori

source right-ascension information may be used to

constrain the "average" right-ascension corrections to

a minimum.
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2.3-2 Some Comments on the Character of
AT and Av

Suppose a series of observations are made on

one source so that AT(t) and Av(t) of Equations (2-19)

and (2-21) are measured at several times during a single

pass of the source. Suppose further that the independent

clocks used at the two sites have an initial synchronization

error c at t=0 and a constant rate offset T . Then
c  c

Equations (2-22) and (2-24) may be used in Equation (2-19)

to write

AT(t) = A cos(a G-as )+B sin(G -s )+CT +D t (2-29)

where

A -[-Ab'cos6 -b'Acscos6 +b'A6 sin6s ]  (2-30)
T c s s x s

B - [Ab'COS6 -b'Aa cos6s-b'A6 sin6 ] (2-31)T y x y s s

C -1 [Ab'sin s+b'zA6 cos6 + (2-32)It c
D = 1 (2-33)

T C

Thus we see that a series of observations on one source will

yield 4 knowns (AT , B , CT, D ) compared to the 6 unknowns (Ab',T T T T x

Ab', Ab'z,A6 ,TcTc (Aas must be fixed since VLBI gives no
y s c c s

information about a right-ascension origin.) Clearly this

is insufficient for a complete solution. Observations taken

on each additional source will yield 3 more knowns (since DT

is common for all sources) along with 2 more unknowns (Aas'

ASs for each additional source), so that observations
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(c three sources (10 unknowns) are the minimum

necessary to determine all the unknown parameters. An

absolute minimum set of observations to determine all

parameters (except one right-ascension) would consist

of 4 observations on one source and 3 observations each on

the remaining two sources.

In a similar fashion Equations (2-23) and (2-25) may be

used in Equation (2-21) to write the fringe-rate error

Av as

Av(t) = A cos(aG-s)+B sin(a G-as)+C (2-34)

where

A - G [Ab'cos6 -b'Aax cos6 -b'66 sin6 ] (2-35)
v cT y s x s s y s s

aG

B G [Ab'cos6 +b'Aa cos6 s-b'A6 sins ]  (2-36)
v c at x s y s s x s s

C = WT (2-37)
V c

But comparison of Equations (2-29) and (2-30) shows

immediately that

A W=  a G B (2-38)

aaG
B = -w-- A (2-39)
v at T

C = wD (2-40)
V T

These last equations imply that the constants to be

solved for in Equations (2-29) and (2-30) are equivalenrt,

except that b' and T do not appear in the expressionz(t). Thus, the addition of fringe-rate data to an

for Av(t). Thus, the addition of fringe-rate data to an
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existing set of delay data does not reduce the minimum number

of sources on which observations are necessary in order to

solve for all the unknown parameters.

For fringe rate data alone, observations on a single

source yield 3 knowns (A , B , C ). Each additional source

yields 2 more knowns (since C is common to all sources).

As we implied earlier, the declination

of one source and the right-ascension of one source must be

fixed, or some equivalent constraints applied.

Consider observations on n different sources. Then,

3 observations on one source and 2 observations on each of

the (n-l) other sources allows complete solutionfor Abx , Ab

Tc, (n-l) right-ascension corrections and (n-l) declination

corrections.

It is interesting to note how delay and fringe-rate ob-

servations complement one another. In order to show this

we shall define the "sensitivity vectors" T and ý for

delay and delay-rate measurements,respectively. Consider a

source with assumed a priori coordinates as, 6s, and with

coordinate errors Acs and A6s . The actual arc-lengths of the

position errors are A6s in the direction

of increasing declination and Aas cos6 s in the direction

of increasing right-ascension. We are therefore led to

define
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S _ 1~ g i (2-41a)
T -a0 cos6 x 36 ys s s

S- 1 i (2-41b)V Da cos6 x ys s s

where the length of the ix component is a measure of the

sensitivity in the direction of right-ascension and the

length of the iy component is a measure of the declination

sensitivity. The partial derivatives may be evaluated

directly from Equations (2-9) and (2-13c) to yield

= - b{cos6 bsin(ab-as)i -[sin6 cos6 cos(awa

+sin6bcos6s]i y} (2-42a)

bb 3aG ^

wb A

Sc at [cs6bcos (ob- s)ix

+ sin6 scos 6bsin(a b-a )i ] (2-42b)

Comparing these with the expressions for u and v given

in Equations (2-15) and (2-16) we see that the above

may be rewritten

1 ^T =  c[(u)i x +(v)iy (2-43a)

Sc = t [(Xu)ix+(Xv)i ] (2-43b)
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The quantities Xu and Xv are just the projections of the

baseline on a plane perpendicular to the source direction
A

e , so we see from these equations that T is proportional

to these projections, whereas i is proportional to their rate

of change.

From Equation (2-42) it is evident that ST (t) and S (t)

both trace out ellipses in the x-y plane with the time-

variable components exactly 90* (i.e. 6 hours) out of phase.

The ellipses are identical except for a scale factor and

for the fact that S is offset by a constant vector in

the Iy direction. In fact, we can easily relate 9T and 9

directly

8aG -1
(t+6 hrs) = (W t) W(t)- sin6bcos6 y (2-44)

Over large areas of the sky, in particular where

sin 6bcos 6s < sin scos6b' 9 (t) and 9 (t) are approximately

orthogonal. Over these areas of the sky a single measure-

ment of delay and fringe rate is sufficient to establish

the position of a source, provided all baseline, clock,

atmosphere, etc., parameters are assumed known.



-57-

CHAPTER 3

SIGNAL AND NOISE ANALYSIS

3.1 INTRODUCTION

In this chapter we shall examine the signal, noise,

and signal-detection problems that arise in VLBI work.

First, in Section 3.2, we shall examine a simple statis-

tical model of VLBI observations to determine the optimum

procedure, based on the "maximum-likelihood" and "least-

squares" criteria, for estimating the VLBI observables.

These results will be applied in Section 3.3 to a de-

tailed signal-to-noise analysis; simple expressions for

the signal-to-noise ratio and the probability densities of

correlation amplitude and phase are developed.

In Section 3.5 we shall examine the effect of

infinite-clipping of the recorded signals, which is a common

technique used for many VLBI recording systems, and which

results in a simple modification of the signal-to-noise ex-

pressions derived in Section 3.3. Expressions for the

mean and variance of the correlation amplitude estimates

for both analog and infinitely-clipped signals are also

derived and compared.

In Section 3.6 we examine the statistics of the group

delay and phase-delay rate estimates based on the signal-to-

noise results of Section 3.3 and on the actual estimation
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procedures used in actual VLBI data processing. Simple

useful expressions are developed for both switched-

frequency and non-switched-frequency observations.

The signal detection problem as applied to VLBI is

examined in Section 3.7. Computations of signal detection

probabilities are made as a function of the expected signal-

to-noise ratio (SNR) and as a function of the supposed

accuracy of the a priori model.

Finally, in Section 3.8 we shall give a brief summary

of the important results of the chapter that are most often

used in day-to-day VLBI work.
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3.2 OPTIMUM ESTIMATES OF OBSERVABLES

3.2-1 Introduction

The usual method of VLBI data reduction is to

"cross-correlate" the data from the two ends of the

baseline. In this

section we wish to show that the cross-correlation pro-

cedure is in fact the optimum processing procedure for

obtaining so-called "maximum-likelihood" estimates of

delay, delay rate, and fringe phase. Two slightly dif-

ferent approaches, one in the frequency domain and the

other in the time domain, will be taken in Sections 3.2-2

and 3.2-3 to show that both approaches arrive at the same

result. Unless otherwise explicitly stated, "delay" will

mean group delay and "delay rate" will mean "phase delay

rate".

3.2-2 Maximum-Likelihood Estimatesof Observables: Fre-
quency Domain Analysis

The maximum likelihood (ML) estimates of delay and

fringe phase may be found after the method outlined by

Wozencraft and Jacobs (Reference 25),

and as applied by Rogers (Reference 10).

Here we review and somewhat expand those calculations.

For purposes of this analysis, we consider the two re-

ceiver systems as diagrammed in Figure 3-1. 1 The signal

For simplification of the analysis and "clarity" of presenta-
tion of the main idea, we shall not consider the actual hetero-
dyning operations that take place in an actual receiver. The
results of such an analysis are equivalent (see Appendix F).
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Receiver I

-b - -+N
X1: S+*N,

Receiver 2

x = S' NOX2 4I2

N2

Figure 3 -

Receiver mode/s for maximum -

likelihood estimate analysis
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S is Gaussian noise and is represented by N complex

components

= (SI,..., ,...S ); 1 6 j - N (3-1)

for which each complex component has independent

Gaussian real and imaginary parts, and for which all

components are independent, i.e. \SiS •  0 for

i Z j. In practice, each component of • corresponds

to an independent point in the received frequency spec-

trum. In the second receiver the signal S suffers a

delay so that S' is related to S by

i' i e (3-2)

where w is a frequency in the observed spectrum.

At each station the signals are corrupted by

additive independent Gaussian noise signals N1 and N2

(NI, N2 , S and all their components are assumed

independent Gaussian). The observed quantities are

then the quantities X = + N1 and X = + N211 2

The ML estimate of T, which we shall

denote as T, is defined (see Van Trees, Reference 26)

as the value. of T which maximizes the conditional



probability p(X 1,X21T), where T

is the parameter whose value is

S2varied to maximize p(X 1 ,X21T) .

As the first step towards finding the ML estimate

of T we need to compute p(ý,'1 ÷ 2) which is simply

N S1 Ij1 2

p(=,N1 2 12 exP{- 2  2
j=l 27r 20 2a 2

s. s. n

expI- 2J 21 exp{- 22 (3-3)
20 2rwo 20

nlj n2j n2j

where we have assumed identical variances for the real

and imaginary parts of all signals. Now recalling

2 The so-called "maximum a posteriori" (MAP) est mate,
on the other hand, is chosen to maximize p(T IX1 1X2);
se, for example, Van Trees (Reference 26). From Bayes'
rule

In p( IXl,X 2 ) = In P(X1, X21

+ In p(T ) - In P(X1,X2

Now p(? ~,2 ) is not a function of T and p(T)
approac es a constant for the case where a priori
knowledge of T approaches zero. Therefore, we see
that the ML estimate corresponds to
the limiting case of a MAP estimate for which a priori
knowledge approaches zero.
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that X1 = S + NI, X2  2
1 ~ 1 X2 = +i 2

that ý' is related

to 9 by Equation (3-2), and that the Jacobian is unity,

we have

p (X 1  21'X2 3 2 2 2
j=1(2 )O) sJ2 a 2sj nij n2j

Isj12
22%

J

-Ix j-Sj 12

nlje

-iWjT 2
-Ix .- S.e I

2
202n2j

N

=3 2 2 2
j=l (2n) 0 0 na2

sj nlj n2j

-Ix 1 2
*exp{ 2 2

20

nlj

I X2j
202

n2j

.exp{- 1[W S 2 2 2 I 2n a

S. n n2j

+Re { S [__, +
J 02nl

- iW.T

X*. e
2}
n2j

(3-4)

i "I
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Now define

a2 T2  a2
S n fnSj j 2j

2 2 2 2 2 2
0 1 +C a +2 a

nlj nj sj n2j sj nlj

2 -iw•t2x o2. X*. e 2
+ a•

nlj n2j

(3-5)

(3-6)

and integrate Equation (3-4) over S to get the desired

probability density

00

P(ý 1 Ix 2 IT) P(ýVý2'g IT-)d

00N
frI

Sj=1 3 2 2 2-(2rr) a a a
s inlj nj2i

12

exp{- 2
20

1Ij

S 2 12 }exp{- 12  Re(Sj Y ]}dg (3-7)
2 }e 2 2xp{--- 2
2n 2a. a

n2j

Recalling that we must integrate over both the real

and imaginary parts of Sj, we can complete the square

of the last factor of Equation (3-7) to do the inte-

gration
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SIS 12 Re[S.-Y.] 01 2
/ exp{- .-_+ I}-dS.= I I exp{- [ S.-Y 2

- x{ 2 2 C- -00 23 c

-Iyjl y 2]}d[Re(S )]d [Im(Sj)]

22.
= 2x a exp{ -- --- (3-8)

so that Equation (3-7) becomes

N C2I x1 2

p(X X21) = iI expf- 3
1,X2  2 2 2 2 2j=1 (2ir) o2 a 202

Sj lj n2j nlj

2 2IX2 -1 IY 12
I_ + j _ 1 (3-9)

- 2 2
2a 2a

n2j 3

The ML estimate of T is now just the value of T which

maximizes this quantity. Of the terms in the exponent

of Equation (3-9 ) only the last is a function of .

From Equation (3-6)

4 4 .~
1. a. iJ* .T

I 2 = 4  IX*1 2 + 4 IX*2j 3 e 2

nlj n2j

4 ~
+ Re[X .X*. e 3 (3-10)

a a2 2 1  2j

nlj n2j



But IXje-l'j TI = IX2jI so that only the last term of

Equation (3-10) is a function of T. To find the ML

estimate of r, then, it is sufficient to maximize

N 2 2 .

I2 exp{ - Re[X X*. e (3-11)
j=l 2 2 a 2  lj - 2j

s nlj n 2j nlj n 2j

If the variances are independent of j (as is the

usual case for continuum interferometry) this is

equivalent to maximizing over

N -i. T
E Re[X lj*Xj e (3-12)

j=1

But this is just cross-correlation (with fringe

rotation) followed by summation over independent

points in the frequency spectrum, which is the long-used

VLBI estimation procedure (see, for example, Moran, Refer-

ence 6 , or Hinteregger, Reference 13 ).

This analysis can easily be extended to find

the ML estimate of fringe phase, #,

simply by substituting

' = e eiT + ] ; 0 < t < T (3-13)

for Equation (3-2) and carrying through the analysis

in a similar manner. Usually, there is no a priori

knowledge of the value of 4, so that
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the ML estimates of T and 4 are the same as the MAP

estimates and are found by

maximizing p(X1,'2IT, ,) simultaneously over the search

parameters T and 4. We shall denote the resulting estimate as
A A
T and O, respectively. In this case, it is easy to

see that the quantity which is to be maximized is (for

the case of variances independent of j)

N , -i[j+]
Z Re {XIj.X 2j e } (3-14)

j=l

Since the sum of the real parts is the

real part of the sum, maximizing expression (3-14) is

the same as

[RN  , -il[j.+5]

max over Re X1 j X 2 j e
, ~ • j=1l

i~N * -ij 1
=max over Re {e-i  E X Xje (3-15)

T, lj

But, clearly, this quantity can always be maximized by
A

choosing 4 to make the sum of (3-15) entirely real.

Therefore, expression (3-14) may be maximized by first

performing

N , -iwj
max over I Xl j. 2j e (3-16)

2 

j

to find T and then choosing 4 to make the bracketed

{} part of expression (3-16) lie entirely along the real

axis, i.e. choosing $ such that



N -
Imi X X X

j=]
tan 4 = -- - (3-17)

N , -
Re{ X XIj .X 2 e

j=1

where T is the value of delay which

maximize s expression (3-16).

We may extend this analysis further to estimate the

delay rate, T. For the case where I I<< i, which is ap-

plicalble to all VLBI work, an observation may be broken

into many time-segments such that the change of delay

during each segment is small. Expression (3-12) may then

be evaluated for each of these segments and then summed

over the observation, i.e. if tk is the time at the middle

of the kth data segment the estimates of T, T and 4 may

be found by evaluating

K• N -i [ j(i+Ttk
max over . Re{XI *X25e (3-18)

ST, k= j=l

where -, T, and 4 are the "trial" parameters, K is the

total number of data segments in the observation, and Xlj,

X2j are, by implication, functions of k. Following

the same argument that led to Expressions (3-16) and

(3-17), we find that the delay and delay rate estimates,

_6-
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desiqgnated and i respectively, may first be found by

evaluating

max over

T *

K

k=l

N
E 1 j" X2 je

j=1

-iW (i+rtk)
3 kI

The fringe phase estimate, 4, may then be found in a

similar manner as given by expression (3-17):

tan

K N *
Im{ E E X• X e

^ k=l j=1

K N 4.

-i (f+Ttk) }

(3-20)

Re{ l E X * X2j e
k=1 j=1 l j

where i and [ have been found from Expression (3-19).

"'
·r

-imj (i+tk) }



-70-
3.2-3 Maximum Likelihood Estimate of Observables: Time

Domain Analysis2

Consider a simple model similar to that of Figure

3-1, except generalized to K stations, each with associated

delay tk, where Tk may be a slowly varying function of time

(i.e. ;k << 1). Let xk(t) be the signal observed at site k

at time t, where xk(t) is composed of a "signal" component

s(t) and a "noise" component nk(t) such that

xk(t) = s(t-Tk) + nk(t)

The noise signals nk(t) are assumed to be non-zero Gaus-

sian and statistically independent of s(t) and of n (t)

for k / k.

On the basis of xk(t) from all of the stations

we wish to make a maximum-likelihood (ML) estimate of some

parameter set a which is deterministically

related to a set of model

This analysis was originally outlined by I. I. Shapiro,

private communication.
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delays Ik (a). For the case of additive Gaussian noise

it is easy to show that the ML estimate is equivalent

to the "least mean-square error" estimate. 3 We are

therefore led to define the "mean-square error"

function Q(a)

K T
Q(X) K f [xk(t) - s (t-Tk())] 2dt

k=l 0

where K is the number of observing stations and 0 < t < T

is the period over which the observation is conducted. In

order to find the least-mean-square (or ML) estimate of a, we
4.

simply minimize Q(a) over the parameter set a. For

convenience, let us define xk(t) = s(t-Tk) - 0 outside

of the interval 0 < t < T so that we may rewrite Q(a)

Consider a k-component signal vector x(a,t) with zero-

mean additive Gaussian noise n such that the noisy received

signal is

y = x(a,t) + n

The probability density of y is simply

1 1 T Tx ) -1p[ylx(a,t)] = exp {-( - ( -x) }
/(2-) k [M

T
where M = n n is the covariance matrix of the noise. The

ML estimator maximizes p[ylx(a,t)] over x(a,t), which is

equivalent to minimizing the exponent (y -x )M-1 (-x). But

this is equivalent to minimizing the mean-square error.
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as

K
Q(a) E= I [xk(t) - s(t-Tk ]dt (3-21)

k=l - k

where, for brevity, we have dropped the explicit de-

pendence of Tk on a. Assuming that Tk is a slowly

varying function of time (i.e.,I kl<< 1), we may

make a simple change of variables to rewrite Equation (3-21)

as

K
Q(a) E f f [x k ( t + T k ) -s(t)] 2dt

k=l -c

K 02
E f Xk (t+ Tk )dt

k=l -o (3-22)

2 2 K+ K[ f s (t) - E xk(t+T)s(t)dt]
-0 -K k=l k

With another change of variables the first term of

expression (3-22) may be written

K O K 0
E f xk(t+i k)dt = f x (t)dt (3-23)

k=l -o k=l -_ k

But the right-hand side of Equation (3-23) is independent

of a and so is not involved in the minimization of Q(a).

We are therefore left with minimizing only over the second

term of expression (3-22) which, upon completion of the
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square, reduces the least mean-square criterion to

*K 2

1 2min over [K f [s(t)-- Y x(t +ldt

on K
K [ xk (t +Tk)] dtl (3-24)

-M k=l

The value of the first integral of this expression

is always 20 and may be minimized to zero by

setting

s(t) =x k ( t + k) (3-25)
k=l

But this is just the least-mean-square estimate of

s(t) which will result after the minimization of the

entire expression (3-24). Clearly, then, the minimiza-

tion of (3-24) reduces simply to the minimization of

the second integral of (3-24) which is equivalent to

K2 K
max over f [ E xk(t + ]2dt (3-26)

-O k=l

which may be rewritten as

K 00 00
max over { xk(t+ k)dt + x k (t+ k)x(t+ )dt}+k k k 2

a k=l -0 kk -~
(3-27)
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We may change variables to show that the first term of

(3-27) is independent of a so that the least-squares

(or ML) minimization criterion finally reduces to

max over I (t+ Tk)x (t+,)dt (3-28)

For a simple 2-station interferometer where we define

the delay to the reference station 1 to be zero (i.e.

T1 ~.- 0), expression (3-28) reduces to the familiar cross-

correlation

max over f x l (t)x 2 [t+T(a)]dt (3-29)

where T(U) is the model delay to the "remote" station 2.

We now wish to show that expression

(3-29) is equivalent to the expression (3-12) of

Section 3.2-2. By a simple change of variables we may

rewrite (3-29) as

max Qver L x 1 (t-T)x 2 (t)dt (3-30)

If we define X1 (A) and X2 (w) to be the Fourier transforms

of x1 (t) and x2 (t), respectively, we may rewrite (3-30)

as
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r 211"max over f fX (1)e~0 (t-T) dlx2(t)dt

max over -{ x2(t)eiwtdtelWT X()

=max over- f X (M )X2 (•)e-1T dw (3-31)

t L

For real xl (t) and x2 (t), X1 (-w) = X*(w) and X2 (-W) = X()

so that expression (3-31) is equivalent to

max over L [X1 (a )X2*(( ,)e + X*X2 (w)e Ida
•£ 0

max over 2Re( f X1 (w)X2(U)e-1WT (3-31a)
0

which is equivalent to Equation (3-12).

We note that the analysis leading to Expression (3-29)

places no restriction upon the parameter set a. In

particular, may include time, so that in the case where

T(U) may be approximated by a constant delay, T, plus

a delay rate, T, Expression (3-29) may be simplified to

max over f xl (t)x2 [t+(ý + Tt)]dt (3-31b)
T ,1 T
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3.3 SIGNAL-TO-NOISE ANALYSIS

The signal received at the output of each receiver

consists of a "signal" component due to the source being

observed, and a "noise" component due to all other causes

(see Figure 3-1). Generally, the "signal" and "noise"

components are independent and have Gaussian statistics.

The outputs of the two receivers can be written in the

frequency domain as

x M() = /f S(W) + 's NI (W) (3-32)

X2() = a2 S' () + s2 N2 (W) (3-33)

where (see Equation 3-13)

S' (C) = S()e-i[ (+ t)+ (3-34)

and where Tal Ta2 Tsl, Ts2 are the antenna temperatures

(due to the source) and the system noise temperatures (due

mostly to receiver noise) at the two sites, and where the

comnlex quantities S1 (w), N1 (w), and N2 (w) are independent

and have independent real and imaginary parts. The real and

imaginary parts are all assumed to have a variance of 1/2

with identical probability' density functions of the form

4 In this analysis we shall consider S(w) to be only the
portion of the signals X1 (w) and X2(w) which are cor-
related. Any actual lack of correlation due to a fringe
visibility less than 1 may be modelled simply by including
the uncorrelated portions of the signals in the independent
noises N1(w) and N2 (w). We assume that the radiation from
the source is spatially incoherent.
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2
p(z)- 1 exp [- z ; 02 1 (3-35)

o/ 27T 202 2

It follows then that X1(w) and X2 (w) are also Gaussian

with independent real and imaginary components.

We now wish to examine the statistics of the es-

timates of "correlation amplitude" and "fringe phase"

so that we may develop expressions for expected signal-

to-noise ratios and fringe-phase errors. Assume that

expression (3-16) of Section 3.2-2 has been maximized over
A

T to find the estimates, t and T, of delay and delay

rate, respectively. As indicated by Equation (3-15),

the estimate, $, of fringe phase is made simply by com-

puting the phase angle of the quantity

-iw. (T+Tt)
, XI 00 )X 2 (W )e 3 (3-36)

Later it will be convenient to normalize Equation (3-36)

by the product of the observation bandwidth and length,

BT. Accordingly, let us define the vector

,1 i -i j (T+Tt)
R BT X1 ( j ) X 2 ( i ) e  (3-37)

The amplitude of ý, when properly normalized to the total

received power, is just the "correlation amplitude es-

timate". It is of interest to examine the statistics

of both the amplitude and phase of R.

As the first step in examining the statistics of

, we shall assume that the estimates T and T are close

enough to T and t, respectively, that Iw(T-9) << 1 and
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Iw(T-r)tj<< 1 for all values of the radio frequency

(. included in the summation of (3-37) and for all

values of t included in the observation, 0 < t < T. We

are led to define a "rotated cross-spectrum" S12(w)

S12(W) X1() 2 ( ) eW( t) (3-38)

which, using Equations (3-32), (3-33), and (3-34) becomes

S 1 2 (W) = alTa 2 S(w)S (M)e /Ts Ta2 N1 ( )S ()e
2al a2 sl a2

+/T'T T S(w)N 2 () + V/T TI N (w)N 2 ()al s2 2 sl s2 1 2
(3-39)

where

' iW(T+ýt)N2 ((= 2) = N2 (w)e (3-40)

and where we shall assume that N2 () has the

same statistics as N2(w), a generally good assumption

for broadband receiver noise.

We now wish to show that all of the terms comprising

S12 (w) are independent and that, furthermore, the real

and imaginary parts of each term are independent. Since

S(M), N1 (w), N2 (w) are Gaussian, it is sufficient to show

that the terms of the right-hand side of Equation (3-39) are

uncorrelated (see, for example, Davenport and Root, Reference

27 ). This is easily shown by using the expansion of the

expectation of the products of four zero-mean Gaussian

variables (see again Reference 27 )

1 x2x3x4> = (xlx2 (x 3x4  + Kxlx 3 <Kx2x4+ (xlx4)(x x

(3-41)
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Hence, for example, the correlation of the first and last

terms of Equation (3-39) is

<SS*NlN'*> = <SS*> <NN*2 +<SNl> <S*N*>

+(SN <S *N = 0 (3-42)

This result shows that the first and last termsof Equation (3-39)

are uncorrelated and hence statistically independent. It is

easy to show, in the same manner, that all of the terms of

Equation (3-39) are independent. Furthermore, since

S12( L)) is generally evaluated as the sum over a large

number of independent short time intervals spanning an

observation [see Section 3.2-2 and Appendix F], we may

use the Central Limit Theorem to infer that each of the

terms of Equation (3-39) is approximately Gaussianly

distributed.

We can now proceed to evaluate the statistics of

R of Equation (3-37). Substituting Equations (3-38) and

(3-39) into (3-37), we have

V 1 sT e or S(w )S*(w)BT al a2 J

+ /TslTa2 ei• O N (Wj)S*(w.) + /T alT E S(W )N'*(wj)
sl a2 al s2 j 2

+ /Ts Ts2 E N (wj )N'*(w.)] (3-43)

where the summation over w. is implied to be over the

independent points in the frequency spectra Sl (w), Nl(w),

and N2(w). Since we have shown that the terms of S12(w)
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of Equation (3-39) are independent, it follows that the

terms of R of Equation (3-43) are also independent and we

may examine the statistics of ý term-by-term.

Let us first examine the statistics of the first

term of A. This is the so-called "signal" term, and we

see that it is a vector with a phase angle equal to the

fringe phase, 4o. For an observation of length T and span-

ning a bandwidth B (assumed uniform), there are BT independent

Fourier components in Sl(w). Recalling that we defined the

real and imaginery parts of Sl(w) to have a variance of 2

for all values of wj, the mean of the first term of A is just

/Tal Ta2 e . The variance is easily found by using the

expansion of Equation (3-41) to be TalTa2 /BT. It is con-

venient to define a "mean signal vector" 9 with amplitude

= /Tal a2 (3-44)

and a noise vector N which is aligned with S and whose

amplitude has a standard deviation of

alT a2T = (3-45)
0 BT

It should be noted that N is not receiver noise, but is

simply "self-noise" due to power variations in the re-

ceived signal. Furthermore, Ns is always aligned in the same

direction as S, namely at the angle corresponding to the

fringe phase, o"
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The last three terms of Equation (3-43) are due to

receiver noise and, as we have already established, are

independent of the first or "signal" term. We now wish

to show that not only are these three terms independent

of each other, but that their real and imaginary parts are

also independent. This independence will allow us to simply

sum the variances of the real and imaginary parts of these

terms to determine their overall contricution to A. Con-

sider, for example, the second term of Equation (3-43) in-

volving the product N1 (w)S*(w). Separate Nl (w) and S (M)

into their real and imaginary parts

N1(w) = n + in.1 r 1 (3-46)
S*(c) = s - is.r 1

and form the product

NI)S*(&) = (n sr + n.s ) + i(n.s - n si ). (3-47)

Then the correlation between the real and imaginary

parts is

KRe[NI (w)S * (w) ] Im [NI (w)S* (w) )= -nrsnn s
(3-48)

rnrsrnrsi> + Knisinisr> - Knisinrsi>

It is easy to show that each one of these four terms is

identically zero by the expansion of the expectation of the

products of four zero-mean Gaussian variables as given in
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Equation (3-41). Therefore we have

(Re[N1(a)S*(w)]Im[N(w1)S*(M)]> = 0 (3-49)

implying, because all their components are Gaussian,

that Re[N 1 (w)S*(w)] and Im[N 1 (w)S*(w)] are independent.

Similar arguments can be used to show that the real and

imaginary parts of the third and fourth terms of

Equation (3-43) are independent.

We have succeeded, then, in showing that not only

are the last three terms of Equation (3-43) independent,

but that their real and imaginary components are inde-

pendent as well. This result allows us to compute the variance

of the last three terms simply by summing the variances of

the individual terms. For an observation of bandwidth B

and duration T there are again BT independent Fourier com-

ponents; recalling that we defined the variance of the real

1and imaginary parts of S(w), NI(w), and N2(w) to be 2' we

can easily compute the variance of the real part and the

imaginary part of the last three terms of Equation (3-43)

to be

(T T + T T + T Tsl a2 al s2 +Tsl s2)
2 BT (3-50)2BT

It is easily shown (see Section 3.4) that a complex vector

with independent, zero-mean Gaussian components with a

common variance o2 leads to a Rayleigh distribution of the

2
vector amplitude with variance (2 - ),2 and a uniform

distribution in phase. The variance of the amplitude of
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the noise contributed by the last three terms of

Equation (3-43) is then simply (2 - ) times expression

(3-50) and we are led to define a "receiver noise

vector" Nn whose amplitude has a standard deviation given by

= T 1slT +TalTs2 sT s2 (2  (3-51)S(2 - ) (3-51)
iyi l/ 2 BT 2

and whose phase is uniformly distributed.

It is useful to construct the vector diagram of the

real and imaginary parts of ý as shown in Figure 3-2. The

vector 9 is the "signal" component of amplitude /TalTa2 ;

its phase is the fringe phase, $ . The vector N is
O S

the 'belf-noise" of the signal and is aligned with 9, has

zero-mean amplitude and standard deviation

ala2
BT . The vector Nn is the noise vector arising from

the last three terms of Equation (3-43). It is uniformly

distributed in phase and has a Rayleigh amplitude dis-

tribution with a standard deviation given by Equation (3-51).

Now that we have the statistics of the components of

R, we can compute the statistics of R itself. For the

general case this is very difficult, but fortunately most

VLBI observations are made under circumstances where we

may make simplifying assumptions. For almost all practical

VLBI systems Ta T so that N , and the product
T i chosen arge enough so hn

BT is chosen "Large enough so that u I + < 11. In thesen
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circumstances we may neglect Ns and consider only the

effects of N , which has a mean amplitude small with

respect to the mean of IS1. Define the phase error, e,

as shown in Figure 3-2. If we neglect N , the phase error

due to a small Nn is approximately

N niNn i
6 (3-52)

where 1 is a unit vector perpendicular to ý and

Nn .i is then the component of hn perpendicular to

S (see Figure 3-2). But the variance of a component of

fn along any direction is the same as along the real or

imaginary parts as given by expression (3-50). Therefore

the variance of E, which is identical to the variance of

(see Figure 3-2), is given by
(3-53)

2 2 n 1 slT a2 Tal Ts2 TslT s2. 1
E i+ T Ta2 2BT

+ al a2

which, for the common case where Tal << Tsl and

Ta2 << Ts2, reduces simply to

2 Ts1 Ts2 10 s2 (3-54)TalT 2BT
al a2

It is convenient, at this point, to define a signal-

to-noise ratio as

SNR - p0o2BT (3-55)
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where p is the "normalized correlation amplitude",
o

defined in the general case by the ratio of the

geometric means of the antenna temperatures and the total

temperatures 5

Tal Ta2
Po (T +Tsl)(T 2 +T2 ) (3-56)

Using Equation (3-56) in Equation (3-55) and referring

to Figure 3-2, we see that SNR corresponds closely

to the ratio of Jij to Iknl, so that SNR does have a

"physical" meaning. For the case where Tal << Tsl and

Ta2 << Ts2, pobecomes

Tal a2p (3-57)o T Tsl s2

Using Equations (3-55) and (3-57) in Equation (3-54), we

have the simple result

1
o Z 1 (3-58)SNR

Let us proceed now to compute the variance of the

amplitude of R. For the case of small E, (IR may be

approximated by

IRRI I~I + Ir + IS Nf (3-59)
s n

where S is a unit vector in the direction of S.

Since 9 is a constant vector and (Nsl and IS-N I are

5The definition in Equation (3-56) is strictly true only
for a fringe visibility, y, equal to 1 (i.e. a completely
unresolved source). For y < 1, the right-hand side of
Equation (3-56) must be multiplied by y.
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zero-mean independent random variables, the variance of

RII is simply

02  2 + 2 (3-60)I I IN I IS _ N

The expression for 2 is given by Equation (3-45).

The variance of IS'N n is simply the variance of the com-

ponent of Nn which lies in the direction of 1. But the variancen

of ISN nl is the same along any given direction, and in par-

ticular is the same as along the real or imaginary parts of
4-

Nn as given by expression (3-50). Therefore

2 (T al+T sl)(T a2+T s2)
G A (3-61)IBI BT

A useful quantity is the ratio of a to ISI, which

might be called the "normalized standard deviation" of

. From Equations (3-44) and (3-61)

a (TalTs) (Ta 2 s2 (3-62)
1 BT (TalTa2) (3-62)

or, in terms of SNR as defined by Equations (3-55) and

(3-56),

R SNR (3-63)

An approximate lower limit of signal detectability is

set when this quantity becomes equal to unity, or ap-

proximately when SNR vF27 In practice, the minimum
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useful SNR is somewhat larger because, in general, the

signal is found by searching over a large number of trial

delays and delay rates, thus increasing the probability

that a noise "spike" may be larger than the actual signal

(see Section 3.7). For typical experimental conditions where

B 3 360 kHz and T x 180 seconds, the minimum useful SNR is

10, which corresponds to a correlation amplitude of

po 0.001.
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3.4 CALCULATION OF THE PROBABILITY DENSITY FUNCTION
CORRELATION AMPLITUDE AND FRINGE PHASE

3.4-1 Probability Density Functions for Ta s

For the usual case where T << T (i.e. where the systema s

temperature greatly exceeds the source temperature), it is

instructive to compute the actual probability density

functions for the amplitude and phase of R. In such a

case we can neglect the self-noise Ni (see Figure 3-2) and
+

consider only the signal S and noise N . As we have shown
n

in Section 3.3, the real and imaginary parts of N are in-
n

dependent and Gaussianly distributed and each has a variance given

by Equation (3-50). Figure 3-3 illustrates the situation

and defines the quantities a, b, 4, o, po' p, x, y, and

o. The probability densities of x and y about their respective

means are independent and are given by

(x-a)2

p(x) 1 e 202 (3-64)

_(y-b) 21 20

p(y) = - e (3-65)

and
(x-a)2 +(y-b)2

y) = p(x)p(y) 2 e 2 (3-66)

Using the law of cosines we have

-, 2 2 2 2 2INn = (x-a) +(y-b) = po+p -2p pcos( ). (3-67)
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Figure 3 -3

Vector diagram of signol and noise vectors for

derivation of amplitude andphase distribution of R.
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The region of the x-y plane is such that

p < +x2y2 " p+dp p > 0 (3-68)

is a circular ring with inner radius p and outer

radius p + dp, shown as area A in Figure 3-3. With

x = pcos4, y = psiný, we have dxdy = pdp de. Therefore,

given po and 0o, the probability that p falls between

p and p+dp is

p(P poP 0 )dp = /Ip(x,y)dxdy

1 2 2212 [Po+p -2popcos(4o- ¢)]
2- e pdpdq

27Ta 4=0

- 1 2 22 1 pcos(g'-4)-[p o +p ] + - p
Pd e 2a 2 o e d' (3-69)

27a 2  0

where we have made the change of variables 0' = #-0o

The integral over 4' can be expressed in terms of the modi-

fied Bessel function of order zero (see Papoulis, p. 196,

Reference 28):

2'rr co 2n1 acose aI (O) f e dO = E (3-70)0 n=0 2 (n!)

We note that p(PIpo0,o ) is completely inde-

pendent of 0o, so that the desired result is simply



1 P 2 2+ p )
22 o

a

pp
Io( - ) ;

(3-71)

p > 0

For small values of x we see by inspection of Equation

(3-70) that 1O (x) may be approximated by

1O (x) 1 (3-72)

so that for po = 0, the distribution of Equation (3-71)

becomes Rayleigh

2
p

P(p Po=0) = 2 e 202; p > 0

with (see Papoulis, p. 148, Reference 28 )

ST> • o2 (2 - a 2
p = o - 2 = (2- 02

For large values of its argument Io(a) may be

approximated by (Hildebrand, p. 151, Reference

10 () e

so that Equation (3-71) becomes

(3-73)

(3-74)

29 )

(3-75)

1
p(ppo 0 ) e

aS--'-ic

1 2-. (p-po) 2

p0

1
2 (p-p)

1 20
- e

a 2
; p > O, p = P0

(3-76)
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The mean and variance are given by

2
\P>= P0

( =(Ip CP, (3-77)

Figure 3-4 shows a plot of I (x) as well as
0

of P(Pj PO) for several values of - We note that,

for the case of large o (say, for - 5),

that

o SNR (3-78)
a

where SNR is given by Equation (3-55).

The distribution of the phase angle ý in Figure 3-3

is a difficult function to calculate directly except

in the cases po 0 and -o large4. For the case p = 0
a 0

(i.e. no signal), R = N and the distributionn
of $ is uniform

P ($j0) = 22--T

This result follows from Equation

b = 0, x = pcosC, y = psiný.

dependence completely disappears,

tribution. For the case of large

(3-66) by setting a = 0,

Thus, the 4

implying a uniform dis-

signal-to-noise ratios,

4Papoulis (Reference 28, p. 501) gives an analytical
form for the probability density of t in the general case.

0 < ý-< 2n (3-79)
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discussed in the text.
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( See Figure 3-3),

N "i
(3-80)

where i is a unit vector perpendicular to 5. Thus

Nn" i is just the component of N in the directionn o n

perpendicular to S and has the same Gaussian distribu-

tion function as the x or y.components of N . This result also
n

follows from Equation (3-66) by noting that it retains

exactly the same form under a rotation of x, y about their

mean. Therefore
2 2

o 202 o

p(EIPo) P e c -- large. (3-81)02 2o a

3.4-2 Alternate Derivation of Probability Density for the
"No-Signal" Case

It is illuminating to derive the no-signal am-

plitude distribution [see Equation (3-73)] in the absence of

signal from another point of view, in particular, as a 2-

dimensional random walk. Consider the case where the signal

at each station is recorded as infinitely-clipped one-bit

samples (this is the standard digital

recording technique). The sampling

period, ATs , is generally chosen to satisfy the Nyquist

criterion

AT, 2 (3-82)

where B is the sampled (video) bandwidth. When this

criterion is satisfied, each one-bit sample may be
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considered independent of all others (see, for example,

Papoulis, p. 370, Reference 28 ). When cross-

correlation processing is done, the cross-power spectrum

computation yields a vector whose two rectangular com-

ponents have independent noises. Consider the no-signal case

where K bit-pairs have been cross-correlated. Each component

of the power spectrum may be considered to be the result of

a one-dimensional random walk with K steps, where each step

has equal probability of being positive or negative.

Accordingly, let us define the random variable, zi , which is

the result of correlating one bit-pair which can have two

equally likely outcomes

ý+1/K (Matching bits)
= (3-83)

-1 /K (Non-matching bits)

Pr(z.= +1/K) = Pr(z = -1/K) = 1/2
1 i

The outcome, x, of the 1-dimensional random walk is

simply the sum of the increments z.

K
x = z. (3-84)

i=l1

which has a range of -1 7 x r 1, so that the value of x

corresponds directly to the normalized amplitude of one

component of the cross-power spectrum. Since all the zi

are independent, x has mean and variance

<(x> K zi = 0
a2  = K 2  K 1  1 (3-85)
x z 2 KK
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Since K is, in general, a very large number, we

may apply the Central Limit Theorem to find the probability

density function for x

Kx2

/KI 2p(x) K e (3-86)

But this function is identical to the density of Equation (3-64)

if we set a = 0 (no signal) and a = /Ti/K . Similarly,

a random-walk analysis of the other component, y, of

the cross-spectrum yields an identical distribution.

If, as before, we define the amplitude

S= x2+y2 (3-87)

then the density of p in the no-signal case is re-

duced to that of Equation (3-73) where we set

02 = 1/K. For an observation of length T, K = T/AT
s

= 2BT, so that the no-signal density becomes

2
2

p(pIp =0) 2 e 2 p > 0 (3-88)

2 1where a = 2BT. The mean and variance of p are

< r 2 / T7 (3-89)

2 (2 2BT
2 iT 1
p = (2 ) ( )P 2 2BT

and where the "dimension" of p is the"fraction of correlated
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bits". For the no-signal case, if BT >> 1, the re-

sults of Equations (3-88) and (3-89) are correct for

a VLBI system using infinitely-clipped samples which

satisfy the Nyquist criterion of Equation (3-82).
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3.5 EFFECTSOF INFINITE CLIPPING ON CORRELATION COEFFICIENT
AND SNR

Most of our discussions in the previous sections have

implicitly assumed that the recorded signals at each VLBI

station were faithful reproductions of the actual waveforms,

i.e. analog recordings. For some VLBI recording systems

this is true, but with other recording systems, including

the one used in the experiment reported in this thesis, we

record a substantially distorted version of the signal in

a digital form. The most common technique is to clip the

analog waveform (which we shall denote as x(t)), preserving

only information about the zero-crossings, and then

to sample the clipped waveform at a uniform rate. Each

sample may have only one of two values: +1 if x(t) > 0 and

-1 if x(t) < 0. The resulting stream of samples is then

stored digitally on magnetic tape, one bit per sample. In

this section we shall discuss the effect of this clipping and

sampling procedure on the correlation coefficient and the

signal-to-noise ratio.

The auto-correlation of clipped noise has been analyzed

by Van Vleck and Middleton (Reference 30 ) and the same

techniques have been applied by several authors [Weinreb

(Reference 31 ), Moran (Reference 6 ), Staelin (Reference

32 ), Thomas (Reference 33 )] to analyze the cross-

correlation of clipped noise. For completeness we shall

include a brief derivation here. Let x(t) be the signal
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(voltage) received by Station 1 and y(t) be the signal

received by Station 2, where x(t) and y(t) are stationary

zero-mean Gaussian variables. The joint probability den-

sity of x(t) and y(t+T) is given by

1 2 2
p(x,y) exp{- 21 _ 2p xy (3-90)

2 1-212 2(1-p) 02 01 2

2
+ •-1 }

2

where X E x(t), Y - y(t+T), po= p(T) is the "true" correlation

2 2
coefficient, and ol, 02 are the variances (i.e. total powers)

of x(t) and y(t) respectively. (See, for example, Wozen-

craft and Jacobs, Reference 25). By direct integration

of Equation (3-90) it can easily be shown that

2 = x22 / t)

2 <y2 (t) (3-91)

p(T) = <x(t)y(t+T)>

In any real VLBI experiment it is desired to form an

estimate of p(T) from a finite-length sample of
0

x(t) and y(t). If, for example, the actual signals



x(t) and y(t) are available for a time interval extending

from t=O to t=T , a reasonable estimate of p(T), designated
o

p(r), is
T

xA (t)y(t+T)dt
p(r) (3-92)T T

[ /x (t)dt y 2(t)dt]
o 0

where T << T. Or, in the case of uniformly-sampled analog

signals,

K
E x(mAt)y(mAt+T)

p(T) m=l (3-93)
K K 2 1/22 2

{(F x (mAt)) (E y (mAt))}
m=1 m=l

where the intersample time At is usually chosen large

enough to make the samples statistically independent and K

is the number of samples. [The estimator given by

Equation (3-93) is extensively analyzed in Appendices

A, B, and C.] On the other hand, if only infinitely-

clipped replicas of x(t) and y(t) are available for in-

spection, it is not possible to use the estimation al-

gorithm of Equation (3-93). It is this latter case that

we wish to investigate further.

We start by defining the infinitely-clipped replicas

of x(t) and y(t+T) to be X' (t) and Y' (t) respectively,

where

+1 for x(t) > 0
X' (t) = { -1 x(t) < 0

(3-94)

+1 for y(t+T) > 0
-1 y(t+T) < 0
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Note that all total power information has disappeared from

X' and Y' and that, in fact, <X,2 (t) = <Y,2(t)> = 1

rmgardless of the total powers 02, G2 of the original signals

x(t) and y(t). We now need to examine the relationship

between p(T), as defined in Equation (3-91), and the

correlation coefficient of X'(t), Y'(t) defined by

P' (t) <X'(t)Y'(t)> (3-95)

where Y' (t) is implicitly a function of through

Equation (3-94). We may write p' (T) explicitly in terms

of the probability density of Equation (3-90) as

p'(f) = / f X'Y'p(X,Y)dXdY (3-96)
-C- -Mo

which may be broken into integrations over each of the

four quadrants of the X-Y plane

0 0 00 0 0 0 0
p' (T) = { fI + f f + f f + f f }X'Y'p(X,Y) dXdY

-0 -00 0 0 -0 0 0 -

(3-97)

which may be rewritten in a simpler form as

p' (T) = P + P - P - P (3-98)
-- ++ +- -+

where, for example, P is the probability that both

X' and Y' equal -1. From the symmetry of p(X,Y), however,

P = P and P = P so that Equation (3-98) may be
++ -- +- -+

rewritten

p' (T) = 2P - 2P (3-99)
++ +-

Since the sum of all probabilities must be 1, we



have

2P + 2P =1
++ +-

which, taken with Equation

0' (t) = 4P - 1 =4

(3-99), leads to

f p(X,Y)dXdY - 1
0 0

which, substituting p(X,Y) from Equation (3-90) with

l1 = 02 = 1 (since X', Y' are completely independent

of (1l and 2', we are free to choose them for convenience)

becomes

p' (T) = 4f 1 exp{- X -2 PY+Y
0 0 2 (1- p2) 1/2 2(1-p2 )

(3-102)

Making the substitution X = rcos8,

becomes

ir/2
1

p' (T) = 4f f exp{
0 0 2(lp2)1/2 exp0 0 2T (1-p )po

Y = rsinO, Equation (3-102)

2
r (l-2posin~cosO)

2(1-p 2 )
0

rdrdO - 1 (3-103)

Performing the further substitution # = 20 and

2 = r2 (1-psin), Equation (3-103) reduces immediately
2(1-p 2 )

to

7r o* 2 1/2 2
p' (T) = 41 (1-pn) e - zdzd -1l200 (1- psin@)0 0 o

(3-104)

which is easily evaluated with the use of tables (see,

for example, Dwight, Reference 34 ) to yield

-103-

(3-100)

(3-101)
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p'T) = 2in p-T) (3-105)

In general, we will only have a finite-length sample of

X'(t) and Y'(t) from which to make an estimate of p'(T).

Let us denote this estimate as p' (T) and define it

as

1 K
P'(T) H KE X'(mAt)Y'(mAt) (3-106)

m=l

where X'(t) and Y'(t) have been sampled at an interval

At sufficiently large so that the samples are statistically

independent. From ^' (T) we now wish to make an estimate

of the true correlation coefficient pAT), which we shall

designate c (T) so as to distinguish it from ý(T) of

Equation (3-92). A logical choice for ^ (T) is based on

the inverse of Equation (3-105) and we are led thereby

to define the estimator

p (T) E sin[ p'()] (3-107)
c 2

Since the functional relationship between ^' (T) and

PC (T) is non-linear, we must carefully examine the

statistics of pc(T) to check for any possible biases or

unreasonably large variance. Such an analysis has been

carried out for the auto-correlation case by Weinreb

(Reference 31) and is performed for the case of cross-

correlation in Appendix D of this thesis. We shall sum-

marize the results here and compare them with the statistics

of the analog estimate of P(rT), [i.e. -e (T) of Equation (3-92)]

which is analyzed in
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detail ill Appendices A, B, and C.

For the case of infinitely-clipped and sampled

signals, the results of Equations (D.17) and (D.18)

of Appendix D show that

2

(T) P,)[ K (1-p2 (T)] (3-108)

2 n 2 2
c  4K [1-po (T)] [1-p' (T)] (3-109)

for the case where K >> n, where K is the number

of samples used to find ' (T) of Equation (3-106),

and where ' (T) = sin 1 po(T) as given by Equation

(3-105). For large values of K, the bias in the

estimate of f(T) is small compared with the noise

(T) and is usually neglected. We shall see later

in Chapter 4, however, that the computer processing

program called VLBI 1, which does the "raw" bit-by-

bit correlations, has K = 16 so that the

bias of the estimate of p(T) is in fact non-negligible.
o

The results of Equations (B. 17) and (B. 21 ) of

Appendix B show that the mean and variance of

ý(T), the "analog" estimate of p(T) defined in
o

Equation (3-93), is

b(T)) = po(T) (3-110)

2  1 2 2
a• {l - Po ('T)[2 - Po (0)]} (3-111)

From Equations (3-109) and (3-111) we can examine

the increase in noise due to the infinite-clipping of
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the signals. For very small correlation amplitudes

(i.e. ~Jt) << 1), Equation (3-105) becomes

p'(P) pT) and Equation (3-109) becomes

2 2 2 4 20t [1- po(T)] [1- PO (o

S-[1 -1.4p o ( T ) ]04K . (3-112)

Also, for pdT) << 1, Equation (3-111) becomes

(3-113)

so that the increase in noise due to infinite-clipping

is approximately

•c ( T )  1-1.42 (T) 1/2
. [ 2 0

(T) 2 1-2 PO (T)
-[1+0.3p (T)]2 o

For the case of large correlation amplitude (p(U)
0

Equation (3-111) becomes approximately

2 1 2"a K[1-p(T)]

(3-114)

= 1)

(3-115)

so that the increase in noise due to infinite-

clipping in this case, using Equations (3-105), (3-109)

and (3-115) , is

'

2 1 2
O[(T) [1-2 P (T)]
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p (-r) r'(2 1/2

[- sn p T ] (3-116)

For most VLBI observations paT) << 1 so that the

result of Equation (3-114) applies, indicating that

the noise level (and hence the SNR) of the infinitely-

clipped signal case is approximately a factor of

higher than for the analog signal case. Therefore, in

applying any of the earlier results of this chapter to

the infinitely-clipped signal case, the SNR of Equation

(3-55) should be decreased by a factor of ; or, equi-

valently, the true correlation amplitude pomay be

replaced by an "effective true correlation amplitude

Peff'

Peff = 2 (3-117)

Usually, the small loss of SNR implied by Equation

(3-114) for the infinitely-clipped signal case is more

than offset by the advantages of the one-bit digital

recording system, advantages which lie primarily in the

ease of data-taking and data processing.
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3.6 GROUP-DELAY AND PHASE-DELAY RATE ESTIMATION

3.6-1 Single-Band Delay Estimation

As we have seen in Section (3.2-2) the

maximum-likelihood estimate of group delay is found

simply by maximizing the expression (3- 16).

For a VLBI system with little or no dispersion of the

signal through either the propagation medium or the

electronic system, the observed fringe phase at any

given frequency within the observing band is proportional

to that frequency. For such a case the best estimate of

group delay is simply the best-fit straight line through

the measured phases as a function of frequency.

Consider an observation,of length T,covering a

single frequency window of bandwidth B and having a

true correlation amplitude po. Let the observed

fringe phase be computed for K uniformly-

spaced independent points wl .. k

within the bandwidth B, so that the spacing between

points is B/K. The signal-to-noise ratio of the point

at frequency Wk is then given by Equation (3-55) to

be

(SNR)k Po / 2( )T (3-118)

where we assume that p is independent of k.

The r.m.s. error of the observed fringe phase, #, is then

determined from Equation (3-58) to be
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(SNR)k SNR (radians) (3-119)
Sk (SNR)k SNR

where SNR E p/r2BT is the signal-to-noise ratio of
0

the total bandwidth B.

I'he variance of the estimate of the slope of the

best-fit straight line through the K points is just

the variance of the estimate of the group delay, which

we shall designate a . From Equation (E.35) of

Appendix E it follows directly that

2 ýkK^ 2  (3-120)
K Aw2rms

where

2 1 2Ar (W _ ) (3-121)rms K (kk=l

and where

K- 1W K E Wk (3-122)
k=l

For K uniformly-spaced points spanning a bandwidth

B, Arms may be approximated byrms

B 2
2 1 B2 B

Aw 1 (-) 2d - (3-123)rms B 2 12

Using Equations (3-119) and (3-123) in Equation

(3-120) we then have
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2 12S~ 2 2 (3-124)
B (SNR)

where again SNR = / 72BT. Equation

(3-124) is independent of K, as intuition indicates

it should be. Note also that Equation

(3-124) is independent of the observing frequency;

the similar result for delay rate, as we shall see,

is not independent of the observing frequency.

3.6-2 Switched-Frequency Delay Estimation

The case of delay estimation for switched-

frequency VLBI data is a simple extension of the above.

In fact, it may be considered identical except that

the frequencies which are sampled are not uniformly

spaced and Equation (3-120) must be evaluated explicit-

ly. Using Equation (3-119) in Equation (3-120)

2 10 2 2  2 (3-125)
Arms (SNR)rms

where Arms is defined in Equations (3-121) and

(3-122) and where we have assumed that the cor-

relation amplitude is independent of frequency.

Usually, the spacings of the frequency windows of a

multi-frequency observation are large compared to the

bandwidth of a single window so that only the spacings

between the frequency windows need be used to calculate

rms
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The results of Appendix E allow us to easily

generalize the result of Equation (3-125) to the case

of a frequency-dependent correlation amplitude. This

case is encountered in practice when, for example, the

gain of the front-end amplifier varies from one frequency

channel to another, causing a related variation in system

temperature over the frequency channels. Then, for the

case of N frequency channels wl, ... , wN' each with band-

width B and with associated correlation amplitude pn, we

may use Equation (E.26) of Appendix E to find the variance

of the group delay estimate for an observation of length T

2 1 1oYa - E (3-126)
n=l a2

n

where

N N 2 N w 21 n n
A E ( 1 )( -) 2 (3-127)

n=1 a n=1 2 n=1 2n n n

2 -_

n
tn

where p is the correction amplitude of the n
n

frequency channel and where we have assumed that

the bandwidth B is relatively small compared to the

spacing of the frequency channels. For the case that

Po is independent of n, Equation (3-126) reduces
n

to Equation (3-25).



-112-

3.6-3 Single-Band Delay Rate Estimation

The estimation of phase-delay rate is performed

in a manner exactly analogous to the estimation of group

delay. As we shall see in Section 4.4, the estimate of

phase-delay rate is made by assuming that the a priori

phase-delay rate computations are accurate enough so that

the residual phase-delay rate is a constant over the

duration of the observation. The estimation of phase-

delay rate then reduces to a simple straight-line least

squares fit of the residual phase-delay rate vs. time.

Consider a single-channel observation of integration

time T seconds (not necessarily continuous) divided into

L segments of length T/L seconds each. Assume that the

correlation amplitude, p, is constant over the entire

observation. Then from Equations (3-55) and (3-58) the

rms phase errorfor the £th segment is

o V S/ (3-128)
T SNR

p 2B( )

where SNR = pI2BT from Equation (3-55) and where B is

the bandwidth. If the radio frequency is w, then the

corresponding rms phase-delay error is ao /w. From

Equation (E.35) of Appendix E, the variance of the

estimate of the slope of the best-fit straight line

through the L segments of phase delay is just
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2

2 _ 1o 2  2 2 (3-129)S 2  (SNR) 2Z LAT w AT (SNR)rms rms

where

2 1 2AT (t -t) (3-130)rms L =Z=1
where t is the epoch of the center of the Zth

segment, and where

L
t = F tR (3-131)L £=1

In the usual case the integration period is continuous

over T seconds, in which case AT2  = T 2/12. Substitutingrms

this and Equation (3-128) into Equation (3-129) we then

have the variance of the estimate of phase-delay rate

for a continuous observation of length T

2 12
2 2 (3-132)
T wT (SNR)

where SNR = p/2BT, p is the correlation coefficient and

B is the bandwidth. For an observation which is non-

continuous but which has a total integration time T,
2

c~ must be found by explicitly evaluating Equation (3-129).

3.6-4 Switched-Frequency Delay-Rate Estimation

The extension of the result of Equation (3-129)

to the switched-frequency case is straight-forward.

Consider the case of switching cyclically through N

frequency channels with the nth channel at radio frequency w
n
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Again, let us divide the observation into L time-segments,

each with phase variance 0. Then we may use Equation (E.26)

to calculate 02
T

2 L
Sn (3-133)

t £Z=l 2

where n is implicitly a function of time-segment number

Q, and where

2 22 2
n n___Z nl

A = n )  (3-134)
2 2 2k=1 k =l o R=1 a

where

ao =  (3-135)
SNR

For convenience let us choose L to be equal to the

total number of "switching times" in the observation,

where a "switching time" is the time spent at one

frequency-channel before switching to the next frequency

channel (typically 0.2 seconds). If the N frequencies

are switched through in a cyclical fashion, there will

be K = L/N such "switching cycles" in an observation. If the

frequency-switching is very rapid compared to T, as is

usually the case, we may assign an "average" epoch tk to

the kth cycle and make the approximatiorns
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L 2 2 N L/N
Sn t ( W n) k) (3-136)

= n= 1 nl k=l

and

L 2 N 2 L/N
E W t ( 9 E )( E tk) (3-137)
=l n= 1 n k=l

If we define

2 1 N 22 =N X1 n (3-138)
n=l

then, using Equation (3-136) and (3-137), we find that

Equation (3-134) becomes

N2 (2 2 L/N 2 L/N 2
4 [ t -( C t,) I4 7 E0CI k=l k=l

2
N2 ( 2 ) L 2SAT (3-139)N4 N rms

where AT2  is defined by Equation (3-130). Sub-rms

stituting Equations (3-135) and (3-139) into Equation

(3-133) we have

2 1 (3-140)
T 2 2 2

Ii AT (SNR)
rms

This is just the result we might have guessed from

Equation (3-129). In the usual case of a continuous

observation of length T, Equation (3-140) reduces to
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2 12
A 12 (3-141)
T 22 2w T (SNR)

where w is given by Equation (3-138) and SNR = p2-B .
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3.7 SIGNAL DETECTION CHARACTERISTICS

3.7-1 Signal Detection Probabilities

The usual procedure for detecting fringes in

VLBI data processing is to compute the quantity jIl

of Equation (3-37) for a large number of trial delays

and delay rates, spanning a range within which the

signal is expected, and then to simply pick the trial values

which maximize IRI. In the case of a weak signal, it is

of some interest to compute the probability of success-

fully detecting the signal using this procedure. In

this regard we may formalize the question to ask:

Given M independent values of J(i (such as M inde-

pendent points in a trial fringe-rate spectrum), M-1

of which contain only Rayleigh distributed noise and

one of which contains a signal of strength po embedded

in identical noise, what is the probability that the

signal will be detected by the procedure of choosing the

trial for which IjI is a maximum?

Let p(pipo) be the probability density of the

correlation amplitudefor the channel containing the

signal, where po is the true "effective" signal cor-

relation amplitude [see Equation (3-117)]; let p(pl0)

be the probability density for the correlation am-

plitudes for each of the remaining M-1 channels, which contain

no signal. These are the same probability densities
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that we have discussed earlier in Section 3.4 , and

are given by Equations (3-71) and (3-73), respectively.

The probability that the correlation amplitude of the"signal

channel falls in the range p to Ps +dps and that all the M-1

"noise channels" have correlation amplitudes less than p8 is

Ps M-l1
(Ps I o) dps] [I p(al0)da] (3-142)

0

To find the probability of successful detection,

given a true signal amplitude po, we integrate over all

Ps

p00 P M-1

Pr[ps > all pnPol P (Ps p po) [fp(a(j0) d]M-l dp0 0

(3-143)

This function has been numerically computed and is

shown in Figure 3-5 for several values of M. As we

would expect, the probability of successful signal

detection approaches M for the small SNR case and 1 for

the large SNR case. In practice M is typically on the

order of a thousand or more, making the detection of very

weak signals (say po < 5a) difficult. It is often pos-

sible, however, to substantially reduce M (often down to

10 or so) if the a priori source position, baseline and

clock parameters are well enough known.

This technique is particularly useful for the special

case in which the
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Figure 3-5

Signal detection probability for a search over M independ-
ent channels. Horizontal axis is equivo/ent to effective
SNR.
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correlation amplitude is reduced at certain baseline

orientations due to small-scale source structure. Such

small -scale structure is not untypical of a number of

sources used for VLBI (see, for example, References ).

Observations made at times when the baseline orientation

is such that the correlation amplitude is relatively high

can be used to increase the accuracy of

the a priori model and to allow the search range to be sub-

stantially reduced, thus significantly increasing the

probability of detecting a weak signal.
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3.7-2 Distribution of Maximum Correlation Amplitude in
No-Signal Case

As we noted in the previous section the usual pro-

cedure for signal detection is simply to pick the maximum

amplitude among M independent channels (or trials). In

order to make a determination of whether such a maximum

is indeed a signal, or is just noise, it is useful to know

the expected characteristics of the no-signal case. We

can find the probability distribution for the maximum

amplitude in the no-signal case as a simple extension of

the work of the previous section.

The probability that the maximum is found in the

th channel with amplitude between Pn and p +dp

and that all other M-1 channels have amplitudes less than

pn. isnPn

j M-I

[P(P 1O)dPn ][ p(al0)dc] (3-144)
j ) 0

where p(pl0O) is the Rayleigh probability density given

by Equation (3-88) as

p2

p(p0) p= - e ; p > 0 (3-145)
a2

where a2 - 1 If all channels have the same Rayleigh2BT

statistics, then each channel is equally likely to contain

the maximum. Thus the probability that the maximum
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lies in the range pn to Pn+dpn is

pn M-1
M[p(Pn 0)dp )][ f p(al0)da]

0

The probability density function for the maximum correlation

amplitude is then

Pn M-1
p(pn ) = Mp(pn 10)[ p(aJ0)da] (3-146)

0

This function has been computed numerically and is plotted

in Figure 3-6a for several values of M; <Pn- and a are

plotted in Figure 3-6b as a function of M. For a

typical observation recorded on the Mark I digital record-

ing system (see Section 6.7) with B = 360 kHz and T = 180 sec,
-1/2 -4

the value of a in Equation (3-145) is a = (2BT) t 0.88 x 10 .

For M - 4000, as it typical, Figure 3-66 shows the ex-

pected value of the maximum noise peak to be <Pn > -

-4
4.lu - 3.6 x 10-4 . If the Van Vleck "correction" of

Equation (3-107) is applied as a matter of routine to all

the data (as is usually the case), this value is raised

to x 3.6 x 10 5.7 x 10 , which is close to typical

empirical values.
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p(p4)

(o)

(b)

Figure 3 -6

(a) Probability density for maximum correlation amplitude over
M independent trio/s in the no-signalo/ case.

(b) Mean and standard deviation ofpn as o function of M.
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3.8 SUMMARY OF IMPORTANT RESULTS

In this section we shall briefly review and re-

state the important results of this chapter that

are commonly used in "everyday" calculations. Consider

a switched-frequency VLBI observation with instantaneous

recording bandwidth B and duration T. Let the off-

source system temperatures be T and T and let the
1 S2

antenna temperatures due to the source be T and T . If
aI  a2

we assume a fringe visibility y (0 5 y 5 1), then

from Equation (3-56) the 'true" correlation coefficient

is
/T T

1 2
Po= Y Ta +Ts )(T +T ) (3-147)

1 1 2 2

which, for the usual case of Tal << Tsl and

T << T , reduces to
a2  s2

1 2
Pod Y T T (3-148)

1  2

In order to compute the signal-to-noise ratio (SNR),

we must define an "effective" correlation coefficient,

Peff' which is dependent upon the type of recording

system used. For an analog system where the exact

replicas of the signals are recorded and processed,

eff o (3-149)
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For a one-bit infinitely-clipped system, as is com-

monly used for many VLBI observations, the results of

Section 3.5 show us that, for po << i,

Pff p  (3-150)
eff If o

Then the signal-to-noise ratio is given by

nquation (3-55) as

SNR = peff 2BT (3-151)

We note that 2BT is just the number of bits recorded

at each station if sampling is done at the Nyquist

rate. If we let K E 2BT, then SNR is simply

SNR = Peff / K (3-152)

For the usual case where p << 1, the rms fringe-phase error

is given by Equation (3-58) as

Uh^ N (radians) (3-153)
SNR

If the observation covers N frequency windows wl..

Wn " '.C N in a sequentially-switched manner and the

correlation coefficient is independent of n, the rms

error of the group delay determination is given by

Equation (3-125) as

F = (3-154)
S_ A •SNR

rms
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where

m N (w-) 2 (3-155)rms -N n=
n=1

and
N- 1

N nn=1

The rms error in the determination of phase-delay rate,

again under the assumption that the correlation coef-

ficient is independent of frequency window, is given

by Equation (3-141) as

1• •2 T.SNR (3-156)

where

2 1 2
N n 2
n=l

For purposes of "getting the feel" of signal-

to-noise ratios for real interferometer systems, it

is convenient to "calibrate" oneself in terms of some

set of standard parameters and then simply scale up or

down, as the case may be, for any particular system

of interest. Consider a typical, but hypothetical,

one-bit digital VLBI system using two identical an-

tennas and having the following easy-to-remember parameters:
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Antenna diameter

Antenna efficiency

Receiver system temperature

Recording bandwidth

Integration time

Source strength

Fringe visibility

D = 1-00 ft.0

n = 50%

T = 100 0Ks
o

B = 360 kHz

T = 180 secondso

S = 1 flux unit

y =1

The antenna temperature, T , for this set of para-a0

meters, assuming that the antenna receives only a

single polarization (either linear or circular) from

a broadband, unpolarized source, is given by (see, for

example, Kraus, Reference 35 )

rl AS
T o o 0 0.132o Ka 2k

2
where A = '(D /2) is the antenna area,

k = 1.38 x 10- 23joule/OK is the Boltzmann constant,

1 f.u. - 10- 26 watt m-2 Hz-1

Then the signal-to-noise ratio may be determined from

Equations (3-147), (3-150) and (3-151) to be

SNR - 15

The signal-to-noise ratio for any one-bit digital

VLBI system with parameters D1, D2, n1 ' n2' Tsl Ts2

B, T, S, may then be easily determined from the

relation
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l n2 B T
SNR 15. [ B0.5 0.5 360kHz 180 sec

1 D D
100 0 K 100 0 K 1 2
T T 100 ft 100 ft
s1 s2

S
1 f.u.

(3-157)

Or, if instead, the antenna temperatures T anda1

are known

a a21 _2

SNR - 15 [ [ 1
0.130K 0.130K

1B T
360 kHz 180 sec

(3-158)

T
2
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CHAPTER 4

DATA PROCESSING - ALGORITHMS AND SOFTWARE

4.1 THE BASIC DATA-PROCESSING PROCEDURE

Data taken during the actual VLBI experiment,

which is more fully described in Chapters 5 and 6, were

collected on several thousand reels of magnetic tape.

Each tape contains approximately three minutes of data

from a single station with the data being a one-bit

clipped-and-sampled image of a 360 kHz bandwidth video

signal (see Section 6.7). The sampling rate is controlled

to be precisely 720 kbits/sec relative to the station

clock. While being recorded on tape, these digital data

are turned off for a few milliseconds near the end of

every 0.2-second period to provide a periodic timing

marker. Each of these (slightly less than) 0.2 second

segments of data is called a "record" and the blank por-

tion is called a "record gap". One full tape holds ap-

proximately 900 records of data. The first bit of each

record is related in a precisely known way to the reading

of the clock at the observing site, so that the time as-

sociated with any given bit within a record is easily de-

termined simply by counting bits from the beginning of

the record. If, during tape playback, the bit count be-

comes confused within a single record, due to a bad spot

on the tape, for example, timing "sync" is easily re-
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established at the beginning of the next record.

The clocks at all of the stations are synchronized

a priori to within a few microseconds and the observa-

tion starting times are carefully coordinated in advance

of the experiment so that data records on the tapes of

the various stations are recorded nearly simultaneously.

The maximum signal delay from one antenna to another due

to earth geometry is limited to Z20 msec, so that the

cross-correlation of the data from different stations

may be carried out on a record-to-record basis simply

by shifting one bit stream relative to the other by the

amount of the expected signal delay and ignoring the

relatively small amount of data lost due to non-overlapping

bits at the beginning and end of each record.

Each 3-minute observation generates a set of tapes,

one from each station, from which it is desired to find

the best possible estimates of group delay, phase-delay

rate, fringe phase, and correlation amplitude for each

baseline. Measurements from many such observations are

then combined to determine baseline components and source

positions. The processing of data from a single 3-minute

observation on a single baseline is broken, for convenience,

into two steps. The first step is a basic cross-correlation

and data-compression processing, dubbed "VLBI 1" which

computes delays and fringe rates based on an a priori
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model of baseline vectors and source coordinates, and

then performs the necessary bit-by-bit cross-correlation.

Cross-correlation is performed on one record at a time

and covers a delay search range of about 10 microseconds,

centered around the a priori computed delay. This range

is generally large enough to insure that the actual signal

delay is covered. Typically, after an initial search of

several observations has been made to determine approximate

clock synchronization errors, calculations of delay for

further observations are within one or two microseconds of the

actual delay. The resulting cross-correlation coefficients for

each record are written on an intermediate tape, along

with the relevant processing parameters. A data-compression

ratio of about 200-to-1 is achieved by VLBI 1, reducing

the mass of data from thousands of tapes to a much more

manageable volume.

In the processing of an observation, the second step,

dubbed "VLBI 2", combines the record-by-record data

from the output of VLBI 1 and conducts an iterative trial

search in delay and delay rate (i.e. fringe rate), around

the a priori values calculated by VLBI 1, to maximize the

correlation amplitude. The resultant best estimates of

correlation amplitude, group delay, phase-delay rate, and

fringe phase are punched onto cards as the final results

of a particular observation. In the case where three

stations are participating simultaneously, the data from

each of the resulting three baselines are processed inde-

pendently as a separate observation.
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4.2 HISTORICAL SETTING

Up to the time of the October 1969 experiment described

in this thesis, VLBI data processing for all experiments

performed by the MIT group had been done almost entirely

using the CDC 3300 computer at Haystack, with programs

written initially by Moran (Reference 6 ) and modified

for special purposes by this author and others. However,

the minimum processing time for a single 3-minute con-

tinuum observation was about one hour, making the reduction

of the 3000 pairs of tapes from the October 1969 experiment

completely impractical. It was decided, therefore, to

write an entirely new set of programs to run on an IBM

360 Model 91 computer at the NASA Goddard Space Flight

Center, the use of which was made possible through the

cooperation of Dr. T. A. Clark at Goddard. This machine

is basically about 30 to 50 times faster than the

CDC 3300, reducing the projected processing time from

~ 3000 hours to about 100 hours.

In order to prepare for the expected onslaught of

data immediately following the October 1969 experiment,

a large programming effort was mounted by H. F. Hinteregger

starting in the summer of 1969. This effort was joined

by the author (who had been busy building equipment during

the summer) immediately following the experiment, and

later was joined by Dr. A. E. E. Rogers. The culmination
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of this effort, which was concluded some six months and

more than 10,000 Fortran statements later, was a set of

reasonably well-proven and efficient data-reduction and

data-management programs. As always seems the case when

data-reduction readiness falls far behind data-collection

enthusiasm, strenuous attempts are made to get at least

some data-reduction underway as soon as possible, even

though programs are still evolving and being proven. This

procedure inevitably causes at least some problems and

incompatibilities with later-reduced data. Fortunately,

such evolution problems were minimal with the October

1969 data. This was due, at least partly, to the adoption

of the two-stage VLBI 1-VLBI 2 data-reduction technique

which allowed the conceptually simpler VLBI 1 program to

be developed, proven, and put into service long before

the more complicated and subtle VLBI 2 program was finally

tested and proven. Confident processing of the data could

proceed through the time-consuming VLBI 1 program, with

the easy reprocessing through VLBI 2 being accomplished

as upgraded versions of VLBI 2 became available.
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4.3 THE BASIC DELAY AND DELAY RATE ESTIMATION ALGORITHMS

In Section 3.2 we analyzed two simple statistical

models of the VLBI problem, one in the frequency domain and

the other in the time domain, to determine the maximum-like-

lihood (ML) estimates of delay and delay rate. In the

frequency domain we found [see Equation (3-19)] that such

estimates were given by

-i. (T+Tt k
max over IEEX1 (( )X2(w )e j  1 (4-1)

where X1 (w), X2 (w) are the spectra of the signals received

at the two stations and -,i are the "trial" values of delay

and delay rate. Implicitly assumed in Expression (4-1) are

1) the points, l., in the received spectrum of a given

station are statistically independent, 2) the signal power

is independent of jm at each station, and 3) the delay rate,T,

is <<1. In the time-domain, theequivalent ML expression is

given by (3-31b) as

T ~
max over f xl (t)x2 (t+T+Tt)dt (4-2)

- 0
TT

where xl(t) and x2 (t) are the signals received at the two

stations and where we have changed the limits of integration

to reflect an observation spanning the finite interval

0 < t < T. In such a case we must insure that T << T,

where T is the actual delay; typically, T - 2x10 -3 seconds
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and T 3 102 seconds, so that this condition is well

met in practice.

Neither expression (4-1) nor expression (4-2) lends

itself to direct computation. Direct computation of X1( )

and X 2 ( ()) of expression (4-1) is not practical

on even the most sophisticated computing

equipment. For analog recording systems, expression (4-2)

could, with difficulty, be calculated since one tape may

be "offset" by I and "speeded up" by T so that the signals

on the two tapes come into precise alignment. On the

other hand, digital recordings of sampled data can only be

"offset" by an integral number of sampling periods, making

the direct computation of expression (4-2) possible only

for discrete values of '. Efficient computation of the ML

estimates of delay and delay rate from digital recordings,

then, requires that some other algorithm be developed which

closely approximates the results of expressions (4-1) or

(4-2).

In practice, of course, xl(t) and x 2 (t) are not re-

corded directly, but rather are recorded as bandlimited video

signals, xl(t) and x2(t), after being "mixed down" from the

radio frequency (see Figure 1-2 and attendant explanation).



-136-

The effects of the mixing and bandlimiting operation allow

some approximations to be made which simplify the com-

putational aspects of the ML function. Such an analysis

is performed in Appendix F and we shall only quote the

results here. The results of Equations (F. 14 , (F. 17),

and (F. 18) of Appendix F show that the ML estimates of

delay and delay rate may be computed in a basic three-step

procedure:

Step 1: For each record, k, compute the "record cross-cor-

relation function" given by

Lk -iw t
k C k m•9-Rk12 (T +mAs) C 1 EC Rk ( +ms) e  m ; (4-3)

m = -3,-2,...2,3

where

k thR 9('+mATs) is the correlation coefficient for the t

short segment of data of length At, where

At is small enough that the change of fringe

phase over At is small, i.e.j I¶Atl<< 1

(see Equation 4-7),

Tk is the trial delay for the kth record,

'ý is the nearest integral bit shift to I,

th
Tk is the trial delay rate for the k record,

t is the time of the middle of the tth data segment,

starting at zero for £=l,
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k is the center radio frequency for the kth record

Lk is the number of segments in the k t h record,

r s is the sampling period (-1.39 lisec for Mark I), and

C1 is a normalization constant.

As we shall see in Equation (4-7), the form of Rk(Q'+mAT )

is somewhat different than that implied by Equation (F.17 )

due to the infinitely-clipped nature of the actual re-

corded video signals.

Step 2 :For each record, k, compute the "counter-rotated

video cross-spectrum" given by

VmA . k~
k k -1 o k k Tk-S (W.) C E R 2 (T '+mAT )e e e
12 j 2 m=-312 k s

j = i, ... , 7 (4-4)

where

•. is the video frequency,

k is the total local oscillator frequency for the kth

record, and

C2 is a normalization constant.

SteP 3: Evaluate the function

7 K
max over EI E S (.) (4-5)

j=l k=l 12
o o

where - is the trial delay for the epoch corresponding

to the start time of the observation,
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T is the trial delay rate for the epoch corresponding

to the start time of the run, and

K is the number of records in the observation.

The actual algorithms used by VLBI-1 and VLBI-2 are

close to those given in Equations (4-3), (4-4), and (4-5),

although we shall see that they differ in some respects,

usually for computational efficiency. The "record cross-

correlation function" of Equation (4-3) is computed by

VLBI-1, while the operation of Equations (4-4) and (4-5) are

performed by VLBI-2. We note here that the algorithms given

by Equations (4-3), (4-4), and (4-5) may be used for both

single-band and frequency-switched VLBI data since the

narrowband approximations made in Appendix F restrict only

the instantaneous recording bandwidth, and not the total

bandwidth spanned by the frequency windows.
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4.4 THE VLBI 1 ALGORITHMS

VLBI-1 performs the cross-correlation and "fast fringe

rotation", as given basically by Equation (4-3), on a

record-by-record basis and places the results for each record

onto a summary tape with no further summation. Correlation

is performed for seven adjacent delays spaced one sampling

period (,: 1.39 psec) apart and centered

around the bit shift nearest to the calculated a priori

delay. For each of the seven trial delays the correlation

coefficient for each record is computed by a 4-step

procedure:

1) The two bit strings, one from each of the two

stations, are aligned to the proper trial delay.

2) Starting with the first pair of overlapping

bits, the data are divided into adjacent segments of 16

bits each, corresponding to the interval At (z 22.2 psec) in

expression (4-5). The 16-bit segment length is short enough that,

for fringe rates Z 20 kHz, the fringe phase may be

considered to a good approximation to be constant over the

duration of the segment.

3) The correlation coefficient for each 16-bit
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segment is computed and the Van Vleck correction applied.

This (real) correlation coefficient is then "counter-

rotated" by the a priori change in fringe phase, as com-

puted from the beginning of the record.

4) The (complex) correlation coefficients from all of

the segments are summed and normalized to yield the complex

correlation coefficient for the record. We may mathematically

state the cross-correlation procedure outlined above as

follows: The actual "record cross-correlation function" com-

putod1 for t:1e kth record of data is

Lk  . k k k kL k - (t-t )
Rk(T k+mAT 1) E Rk (Tk+mAT)e m ap 1
12 ap s Lk £=1 ap

m = -3,-2,...,2,3

(4-6)

where

T k,' = closest integral-bit shift delay to the a priori
ap

k
value of total delay, T , as calculated for the

ap

center of the kth record
*k
Tap = a priori delay rate computed for the

center of the kth record

ATs = sampling period (1.39 sec)

A very efficient machine algorithm for performing the

bit correlation operation of Equation (4-6) was developed

by Hinteregger and is described in detail in Reference 13
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k

tP = epoch of the reference station at the

center of the ath 16-bit segment of the

k t h record. k = 1 corresponds to first

segment .

I = mid-band radio frequendv)J for the kth

record.

kk th
R k(Ta+mATs) correlation coefficient of the th 16-bit

th ·th
segment of the kth record for the m delay.

Lk = number of 16-bit segments correlated in the

kth record.

k k,The segment correlation coefficient Rk (Tkp+mAT) is

computed simply by offsetting the data bit strings by delay

Tk'+mAT and then counting the number of matching bits in
ap s

the th 16-bit segment of data. If there are q matching

bits, then

Z ap- s 8 (4-7)Rk l Tk+mATs)= sin . -8

where a simple Van Vleck correction has been applied

[see Equation (3-107)].2

2In Appendix D we compute an additional bias in the cor-

relation amplitude that results from applying the Van
Vleck correction to a short segment of data. For 16-bit data
segments, the mean correlation amplitude is reduced by the
factor ~0.929; a suitable correction is therefore applied
to the correlation amplitude at the completion of processing
through VLBI-1 and VLBI-2.
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Several points should be noted with regard to the

cross-correlation algorithm of Equation (4-6):

1. The a priori total delay and delay rate for

the center of the kth record, designated

lk and ik ,respectively, are calculated only once forap ap

each record and are then held constant over the record.

As we shall see in Section 4.6 , this approximation is

quite good for all observations of interest and leads only

to a small, correctable bias in the estimated parameters.

2. The central trial delay, Tk' may differ byap

as much as one-half a sampling period from T . This leadsap

to an error in fringe phase of w v (Tp - T k) [see Appendix F].
3 ap ap

This quantity is applied as a correction phase, known as

the "fractional-bit correction", and is applied in VLBI 2

after the computation of the record cross spectrum

[Se Equations (4-4) and (4-8)].

3. The rotation phase applied to the first segment

is zero and advances at a uniform rate for the succeeding

segments. This means that the record cross-correlation

coefficient R (Tk +mAT ) of Equation (4-6) must be further
12 ap s

counter-rotated by the a priori total fringe phase,

k k th
designated 4k and calculated for the time tk of the kth

apny summation

record, before any summation
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of Rk or Sl2 over different records may be attempted12 12
[see Equation (4-5)]. In practice, k is calculated byap

VLBI 1 and passed to VLBI 2, which performs the necessary

counter-rotation.

4. Since the bit string from the record of one

station must be "shifted" with respect to that from the

other to compensate for the delay, only the overlapping

parts of the two records may actually be cross-

correlated. If the station clocks are closely

synchronized, the amount of data lost is just equal to the

total delay. For a record length AT = 0.2 seconds and a

delay of 1.5 x 104 microseconds, about the maximum ac-

tually encountered, ~7% of the total data cannot be cor-

related. Also, since the delay changes at a rate of up

to -2 lisec/sec, the number of 16-bit segments correlated

per record changes slowly from the beginning to the end

of a single 3-minute observation. The

number of segments, Lk, that can be correlated for each

record must therefore be calculated carefully to account

for these effects in order that R 2 (T k+mATs ) may be properly

calculated and normalized.

After the data for a given record have been cross

correlated, all of the relevant parameters and cross-

correlation coefficients are placed in intermediate storage,

usually tape, which serves as an input to VLBI 2 at a later
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time. The actual parameters which are recorded on this

tape for each record are:

the a priori total delay computed for the

center of the reference station's kth record,

the closest integral-bit shift delay to Tkap
ap

k
T ap'

ark ,
ap

( Tap, the a priori total fringe rate which was

used to counter-rotate the data of record k,

where Aýk is the mid-band radio frequency form

record k,

kkap' the a priori total fringe phase computed for

the reference station epoch corresponding to

the first correlated bit of the kth record

of the reference station tape,

Lk, the number of 16-bit segments correlated for

record k,

Rk k2I+mA, • ,the normalized complex cross-correlation
12 ap s

coefficient for the mth of seven trial delays from

record k.

In addition, some other relevant parameters, such as the

record lengths and parity as read by the machine, are

recorded along with the above data.
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4. 5 THE VLBI 2 ALGORITHMS

The basic purpose of VLBI-2 is to accumulate the

record-by-record correlations (from VLBI-1) with many

different trial delays and delay rates, so as to find the

maximum of the quantity in expression (4-5). The a priori

calculations of delays and delay rates used by VLBI 1

are assumed to be of sufficient accuracy that the actual

delay and delay rate may be characterized, over the dura-

tion of a 3-minute observation, simply by the addition of

a small constant "residual delay" and "residual delay rate".

That is to say, all higher order residuals, such as delay

accelerations, are assumed to be negligible. Except

under extraordinary circumstances, such as occur with ob-

servations close to the sun which are highly influenced

3by the solar corona, this assumption is valid.

Processing of frequency-switched data through VLBI 2

to find the maximum-likelihood estimates of group delay

and phase-delay rate is accomplished in three steps:

1. For each record of data the "counter-rotated video

cross-spectrum", S 2(k ), is computed as basically given by

Equation (4-4).

2. A "coarse search" in delay and delay rate is made by

maximizing the sum of the correlation amplitudes of the indivi-

3
If the assumption of negligible higher-order residuals is in-

valid, it is often possible to break an observation into several
shorter time segments over which this assumption is valid. Pro-
vided the signal-to-noise ratio remains sufficiently high, each
of these shorter data segments may then be processed individually.
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dually processed frequency windows. The range of this

search is generally about ±5 microseconds in delay and
2.52.5 Hz in fringe rate around the a priori estimates,

where N is the number of frequency channels. (Since

one cycle of switching through the N frequency channels

takes N/5 seconds, there are ambiguities in fringe rate

spaced 5/N Hz apart.)

3. A "fine search" in delay and delay rate is made,

centered around the values found in Step 2, by coherent-

ly summing over all frequency channels to make use of the

full precision of the switched-frequency technique. The

range of the fine search is typically about ±0.5 micro-

seconds in delay and ±+10 mHz in fringe rate around the best

estimates from Step 2.
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4.5-1 Cross-Spectrum Computation

The first step of the VLBI-2 processing is to compute

the video cross-spectrum k (v) as basically given by

Equation (4-4), for each record. Seven discrete uniformly-

spaced points, spanning w = 45 kHz to v = 315 kHz, are

computed

• v k . v k k,3 -1W.mAT -iJ -1.(T -T ')
S k () R Rk ('+mAT )e s e ap e j ap ap
12 j 7m=-3 12 ap s

j = 1,...,7

(4-8)

where k is the record number and all other quantities are de-

fined at the end of Section 4.4. The last factor on the

right-hand side of Equation (4-8) is the so-called

"fractional bit-shift correction", which corrects for the

fact that Tk ' is restricted to an integral number ofap

bit-shifts.

4.5-2 "Coarse Search" in Delay and Delay Rate

All of the processing described to this point has

been in preparation for an attempt to detect the signal

and make estimates of the delay and delay rates. The

first step in further processing is to make a coarse search

in delay and delay rate, and then make rough estimates of

their values once a signal has been detected. The first

step of this coarse search is to compute an approximation

to Expression (4-5) for each frequency channel individually
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for many trial values of residual delay and delay rates,

designated At and A!, respectively. Designate the

th
"coarse search function" for the n frequency channel as

Fn(AT,AT), defined by

K 7 -iW AT(t -t )-iw.AT
F (AT ,AT) E S12 (w )e st (4-10)

k=l j=l

where

n = frequency channel number; 1 < n N

a)n = the local-oscillator frequency of channel n

tst= epoch of the reference station at the nominal

start time of the observation

tk = the reference station epoch corresponding to the

first bit (not the first correlated bit) of

the kth record of the reference station tape;

1 5 k • K,

and where the summation over k includes only those

k v
records from frequency channel n. Note that S12( W) need

not be recomputed for every trial residual delay rate AT

provided that accumulated residual fringe phase "error"

over the duration of one record is small (i.e. I nATAT I< < 1,

where AT = 0.2 seconds). The coarse search for the ML

estimates of delay and delay rate is completed by maximizing

the sum of IFn(AT,AT)I over all N frequency channels, i.e.,

N
max over E IF (AT,AT) I (4-11)

AT,AT n=l

The estimation procedure of (4-11) is sometimes referred
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to as an "incoherent search" because the phase information

of the frequency channels is not used. It is basically a

single-band (360 kIHz wide) estimation procedure which

has a very broad peak in delay compared to the peak of the

multi-frequency delay resolution function (see Figure 1-1).

Typically, the search range of AT is about ±4 psec with

trial spacings at intervals of Z1 Usec. For observations

of moderate signal-to-noise ratio4 the delay can be determined

to about ±0.1 vsec by interpolating to the peak of Expres-

sion (4-11). This procedure drastically reduces the range

of delays that must be searched in the "fine search", re-

sulting in a considerable savings in computation time.

The coarse search over residual delay rate is, for

computational speed and convenience, usually conducted in-

4We note, incidentally, that the signal-to-noise ratio

of the procedure of (4-11) is reduced by a factor of

from the fully "coherent" estimation procedure that

will be performed in the fine search [see Section 4.5-3].
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stead as a search over residual fringe rate. The range

of the search is --- Hz quantized in steps of .4.89 mHz.

(The summation over k in Equation (4-10) is done by a 1024

discrete-point FFT with the input spacing being 0.2 seconds,

so that the resolution in residual fringe rate after the

transform is 1/(1024 x 0.2) z 0.00489 Hz). A simple

parabolic interpolation is used to reach the final "coarse

search" estimate of residual fringe rate, and hence of

residual delay rate.

In order to save computation time, the summation over k
in Equation (4-10) is often done using the so-called
discrete Fast-Fourier Transform (FFT). The output of the
FFT, in such a case, is the residual fringe rate spectrum
for the nth frequency channel. It is convenient to com-
pute an approximation to the summation in Expression (4-11)
simply by performing an FFT for each of the frequency chan-
nels, then summing the amplitude of each residual fringe
rate "box" over the N frequency channels and interpolating
to the peak of this "summed spectrum". The residual fringe
rate of each frequency channel is proportional to the radio
frequency of that channel, so that the residual fringe
rate is slightly different from channel to channel, and the
peak of the "summed" spectrum may be somewhat smeared and/or
broadened as a result. Provided, however, that the total
fractional bandwidth spanned by the highest and lowest
frequency channels is small and that the residual delay
rate is also small, this broadening is not serious and
this estimation procedure is suitable for the "coarse
search" estimate of delay rate.
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Estimation of the group delay with full multi-channel

precision can proceed at this point only if the coarse

search estimate of the group delay is accurate to within a

"major ambiguity" spacing of the delay resolution function,

which for the October 1969 experiment is 1 microsecond (see

Figure 1-1). Otherwise, the final determination of the

multi-channel group delay has a high probability of being

wrong by one or more ambiguities.6

4.5-3 "Fine Search" in Delay and Delay Rate

At the conclusion of the coarse search, the delay

and delay rate have been estimated to approximately the

limit of single-band accuracy, and, for most purposes, the

delay information in the individual channel cross-spectra

has been nearly exhausted. It is therefore computationally

convenient (i.e. time-saving) to perform a preliminary sum-

mation over the cross-spectrum of each record of data, fix-

ing the delay at the coarse search estimate,

before proceeding with the multi-band fine delay search.

If we designate the coarse search estimate of delay and

delay rate as AT and AT, respectively, then the summation,

to be performed for the kth record is defined by

6In case such ambiguities do occur, they can usually be
detected by the final source-position and station-location
fitting program, VLBI 3, where the postfit residuals
stand out in a characteristic manner if the wrong ambiguity
has been chosen.
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7 -i WAk -iwATtk
) E S12 ()e e (4-12)

j=l1

The amplitude and phase of Dk(AT,AT) are the correlation ampli-

tude and residual phase for the kth record, given the coarse

search estimates AT and AT. The amplitude and phase of

Dk(AT,AT) are very weak functions of small changes in AT.

The amplitude varies with AT approximately as the broad

envelope over the delay resolution function in Figure 1-lb.

The phase error of Dk(Af,AT) due to a small error in AT is

approximately the phase error at mid-video-band, which, for

an error of 0.1 jisec at 180 kHz mid-band, amounts to a ~7

degrees of phase. This phase error will be common to all

records (and hence all frequency channels) and hence will have a

negligible effect on the fine delay search, which depends

primarily on the phase as a function of frequency window.

We are now almost prepared to compute the full

multi-channel delay function. First, however, we must

take into account that the difference phase between the

local oscillators of the two stations usually varies from

channel to channel, although it remains fairly constant

for any given channel as long as the instrumentation is

operating smoothly and without interruption at both sites.

These difference phases, which we shall designate AO a r-e

usually known as "oscillator correction phases", or

"phase-calibrator correction phases" and must be determined

(see Section 7.3-2) and applied as a correction to the

fringe phase of each channel.
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With the knowledge of Dk(A0,AT) and n we may now

construct the full multi-channel maximum-likelihood es-

timation function, designated D(AT',AT'),

K -iwoAT' K -iwnT' (tk-tst)
D() {e E Dk (A^, k)e
',') k=l k=l

_iAýosc

e n (4-13)

where AT' and AT' are the trial residual delay and delay

rates relative to A? and AT, respectively, and where the

superscript n is, by implication, a function of the record

number k, The final estimates of delay and delay rate are

made by maximizing ID(AT',A')j over AT' and A+'. Typically

by maximizing ID(AT',AT')I over AT' and AT'. Typically,

a coarser search with spacings of about 10 nanoseconds in

delay and 5 millihertz in fringe rate (corresponding to

about 1 picosec/sec at 8 GHz) is made, followed by a finer

search with spacings of 1 nanosecond and 1 millihertz. The

final estimates of AT' and AT', which we shall designate

as At' and AT', are then made by a simple parabolic inter-
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polation to the maximum of ID(At',Ai')I. The final

estimates of the total delay and delay rate, designated

i0 and io, and referred to the epoch tst of the reference
station as defined after Equation (4-10), are

0 = T +Ai + A0' (4-14)o o

T = T +AT + AT' (4-15)o o

where To and ro are, respectively, the a priori estimates of the

total delay and delay rate computed (by VLBI 1) for the

epoch tst. The final estimate of the correlation am-

plitude is just ' EC.ID(Ai',AT')I, where C is a factor

necessary to correct for the amplitude biases introduced

by the processing algorithms.7  The final estimate

of residual fringe phase, designated A4 and referred to the

radio frequency l, is just the phase of D(A' ',A')e 0

The final estimate of the total fringe phase, referred to

frequency w1 and epoch tst, is then

oO = 40 + A4 (4-16)

where 0o is the a priori estimate of total fringe
A

phase at epoch tst. 4o is, of course, generally ambi-

guous by several 2n rotations since it is not usually

possible to determine T0 with enough accuracy to

resolve the fringe ambiguity.

7C includes the Van Vleck bias discussed in Footnote 2 of this
chapter as well as the biases which will be discussed in
Section 4,5.
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It is interesting to examine D(AT',AT') near its

maximum as a function of AT'. For this purpose let us set

AT' = 0 and osc 0 so that we may writen

N -iwn1 AT' K
D(AT',0) = {e 0o Dk(Al,AT ) } (4-17)

K n=l k=l

where the inner summation includes only records from chan-

nel n. Accordingly, let

us define the complex correlation coefficient for chan-

nel n

P1n Dk(0A ,0) ((4-18)channel

n

We may then write the magnitude of D(AT',0) as

N -i(w n 1)AT'

ID(AT',)I p'e o o (4-19)
n=l

where we have included a constant factor exp{+iw AT'l }

which does not affect ID(AT',0)I. The form of Equation (4-19)

lends itself to a simple pictorial interpretation where

the complex correlation coefficient, p', of each channel may

be considered as a simple vector. Consider the case where

ID(AT',0)I is maximized precisely at AT' = 0. Then, if

all instrumental phases have
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been properly calibrated and removed,and if we

ignore noise for the moment, the vectors p' will all

have the same residual phase, res , as shown in Figure 4-la,
N

with D(0,0) _ 1 E IP' . As AT' moves away from zero,
K n= n

the vector corresponding to channel n rotates by an angle

-n 1)AT'. Figure 4-1b shows a pictorial representation of

Equation (4-18) for AT'=10 nanoseconds with 6 channels placed

at 0, +1, +4, +6, +24, +36 MHz with respect to Channel 1

(this is the actual set of frequencies used for the

October 1969 experiment). We see that JD(10 nsec,0)j

is considerably reduced from ID(0,0)1 and that the phase

angle has changed. Figure 4-Ic shows ID(AT',0)I as a

function of AT' covering a range of 1 microsecond, which

is the spacing of the "major ambiguity" for this case

where the lowest common denominator among the frequency

spacings is 1 MHz.

We should note, in regard to Figure 4-1ic, that the

so-called "major ambiguities" have the same amplitude

because of the approximation made in Equation (4-13) that

Dk(A +AT', AT+AT') D Dk(AT,AT). If this approximation

were not made, i.e. if Dk(AM+AT', AT+AT') were substituted

for Dk(A0,AT) in Equation (4-13), the effect would be

sin x
to multiply ID(AT',0)I of Figure 4-1c by a x -type

envelope function produced by the finite 360 kHz bandwidth
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of the individual channels, as shown in Figure 1-lb,

where the assumption has been made that the correlation

amplitude is constant across the 360 kHz bandwidth of each

channel. The reason for making the approximation used in

Equation (4-13) is to vastly decrease the computation

time required to compute the many trial values of D(AT',AT').

As long as the coarse search estimates, AT and AT,are

close to the proper delay ambiguity, as is usually the

case, there is no need to perform all the extra computations.

At the conclusion of VLBI 2 processing, the estimates

of delay, delay rate, correlation amplitude, and all other

relevant parameters are punched onto cards to await further

processing.
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4. 6 ANALYSIS OF POSSIBLE SYSTEMATIC ERRORS DUE TO
DATA-PROCESSING ALGORITHMS

Approximations made at various stages in VLBI 1

and VLBI 2 may contribute small systematic biases to

the final estimates of the observables. As the quality of

VLBI data improves over the years, it is important to know,

and keep in mind, the magnitude of all these possible

biases. In this section we shall discuss the approximations

made in VLBI 1, and VLBI 2 examine their effects, and try to es-

tablish the limits of their applicability.

For convenience, each approximation and its con-

sequences will be discussed separately. Also included

in this discussion will be "other problems" which cannot

properly be classed as "approximations", but which also

may cause some bias in the estimates of the observables.

Approximation No. 1 - VLBI 1 computes the cross-

correlation function for only seven discrete delays, center-

ed around the a priori total delay.

Consequences - We may analyze this problem with

sufficient accuracy by considering the ideal case

of identical square bandpasses of bandwidth wo at the

two stations. Furthermore, suppose that the receivers

are noiseless and that the actual group delay, T, is zero.

Then the cross-correlation function has the analytic form
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sinfo T
R I(T) = T o (4-20)

12 W0T T

Now, suppose that we don't know T = 0, and are instead

trying to estimate the delay T using the algorithms of

VLBI 1 and VLBI 2. Let Tap be our a priori estimate of

T; Tap is presumably not equal to zero. Then R12 (T) is

computed for seven trial delays centering around Tap, and

the cross-spectrum, S12 (wY), of Equation (4-8) is then

computed as the discrete sum

+3 sinw (mAT+T ) -i(mAT )
S ( s a e s (4-21)17 2_ 3 o (mAT+Ta)2 m- 3 o s ap

; j = 1,..., 7

where AT - r is the sample-bit spacing. The fre-
s o

quencies wj are customarily chosen to be 45, 90, 135,

180, 225, 270, and 315 kHz.[In Equation (4-21) we have

neglected the fact that Tap generally will not fall on

an integral-bit shift, and that a "fractional-bit cor-

rection" will have to be made. In a real observation the

delay is constantly changing from record to record, so

that any biases due to the fractional-bit correction will

average very close to zero and may be neglected.] Sup-

pose that we have calculated S 2(wY) of Equation (4-21)

for this simple case. Then our estimate of delay, designated i,

will be found by computing (see Equation 4-1.1)
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7 -i•v -'
max over E S12 (W )e (4-23)

T' j=l

Three questions arise:

1. How does T, which should be zero by definition,

vary as a function of ap?
ap

2. How does the phase of (4-23), which should be

zero by definition, vary as a function of Tap?

3. How does the amplitude of (4-23) vary as

a function of T ?ap

Question No. 1 may be answered empirically by com-

puting (4-23) as a function of Tap. The results of such

a calculation are shown in Figure 4-2a. Question No. 2

is answered simply by computing the phase of (4-23) as a

function of Tap and is plotted in Figure 4-2b. Question

No. 3 may be similarly answered by computing the amplitude

of (4-23) as a function of Tap; the results are shown inap

Figure 4-2c.

It is important to note that the results of Figure

4-2a apply only to group delay estimation over a single

frequency channel. The estimate of switched-frequency

group delay will not be biased because the phase (Figure

4-2b) of every channel is affected similarly. The
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switched-frequency estimates of total and residual fringe

phases will, however, be biased by the small amounts shown

in Figure 4-2b. The effect on correlation amplitude of

Figure 4-2c will, of course, be common to both switched

and unswitched observations. Finally, we should note that

the biases shown in Figure 4-2 are due only to inaccuracies

in the a priori model. If desired, the a priori model may

be upgraded and the data reprocessed, but this is not

generally necessary.
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Approximation No. 2 - The a priori delay is cal-

culated for the epoch corresponding to the middle of the

record at the reference station, and the bit shift de-

termined by this delay is held constant over the duration

of the record.

Consequences - Because the delay is actually

changing somewhat over the duration of the record, some

loss of coherency, or "phase smear", will occur. This smear

will result in a somewhat lowered correlation amplitude

and a possible phase bias. We can easily estimate the

maximum possible phase smear by examining the case of

maximum expected delay rate. The maximum delay rate

encountered in any real VLBI experiment is T z 2 lsec/sec,

so that the maximum delay change over the 0.2-second

duration ATof a single record is TAT z 0.4 isec. The

resulting accumulation of differential phase error over the

record at video frequency wV will then be about w vAT; for

Wv = 360 kHz, T = 2 psec/sec and AT = 0.2 sec, the

phase smear is about 500 . However, since the phase is

corrected with respect to the delay at the center of the

reference station record, the phase smear actually ac-

cumulates to only about ±25* (at WV = 360 kHz) at the

beginning and end of the record and is very nearly sym-
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metric about the center of the record. The phase

bias is therefore negligible and, in any case, common

to all channels so that the multi-channel group delay

determination will be unaffected.

The reduction in cross-correlation amplitude due

to this "phase smear" is easily calculated. At any

given video frequency, v , the phase smear leads to a

reduction in correlation amplitude by a factor of

w vTAT

2
1 ie

I e deO (4-24)
WvtAT wvTAT

2

where T is the delay rate and AT is the record duration.

8We are neglecting here the fact that, due to the shifted

bit strings, the actual data correlated for a given record

are not exactly centered around the middle of the reference

station record. The effect is to produce a slight asymmetry

in the phase smear around the center of the reference

station record, so that a slight phase bias may be intro-

duced. Since the maximum asymmetry of actual correlated

data about the center of the reference station record is

about 104 psec, the maximum phase bias due to the effect,

which will be common to all channels, is a few degrees at

most.



-166-

Then, if the actual correlation amplitude is

independent of wv, the correlation amplitude taken co-

herently over the video bandwidth wo is reduced by the

factor

w TAT
V

o 2
S dw 1 d2 e i  (4-26)

Wo 0 v w AT
v w TATv

2

This integral may be evaluated by noting that the inner

integral is symmetric about e = 0 so that e may be
2

replaced with cos 0. Then, for 0 << 2f, cos6 = 1- 2

and (4-26) may be evaluated directly to yield approximately

2 2 AT2

1 - o (4-27)
72

Substituting the "worst case" - = 2 Psec/sec, and

with wo = 360 kHz and AT = 0.2 sec, we find a value

of ~ 0.989, indicating a 1% reduction in correlation

amplitude.

Approximation No. 3 - The a priori delay rate is

calculated for a time corresponding to the middle of the

record at the reference station and the fringe rate de-

termined from this delay rate is held constant over the

duration of the record.
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Consequences - There are two sources of possible

systematic bias due to this approximation. As we shall

see, only the estimate of correlation amplitude is sub-

stantially affected by them; group delay estimates

are negligibly affected.

Firstly, since the a priori calculation of fringe

rate is not exactly correct, a phase error will develop

over the duration of a record. For the moment, assume

that the actual fringe rate is constant over a record.

Then any error in the a priori fringe rate will lead to

a phase error which develops linearly over the duration

of a record. If the center of correlated data (for this

record) is used as a reference epoch for this record,

the accumulation of phase error will be symmetric around

this reference, and the resultant estimate of fringe phase

will be unbiased. In VLBI 2, however, the a priori

fringe phase is started at zero at the beginning of each

record [see Equation (4-6)]

and then is later rotated to the total a priori

fringe phase calculated for a time corresponding to the

beqinning of the record [see Equation (4-8)1. Thus

the final estimate of fringe phase for that record will

be biased by an amount equal to half the fringe phase

error developed over the record. Suppose the a priori

estimate of fringe rate is in error by Aw. Then for a

record of length AT, the error in the estimate of fringe

phase (for that record) will be AwAT/2. If Aw remains

relatively constant over an entire observation (see
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Section 4.5), the final estimate of fringe phase for the

observation will be biased by AwAT/2. Usually IAwl z 1 Hz

so that the largest fringe phase error due to the cause

is about 360. Attendant to this phase error will be

a "phase smear" and a corresponding reduction in correla-

tion amplitude which is exactly analogous to the "phase

smear" analyzed in Approximation No. 2. Correlation ampli-

tude will be reduced by a factor of approximately

+AoAT
2 2

1 f ei dO 1 - A AT (4-28)
AwAAT A(AT 24

2

For Aw = 1Hz and AT = 0.2 sec this factor is about

0.934, a reduction in correlation amplitude of about 7%.

How will this error in a priori fringe rate affect

the estimate of multi-frequency group delay? The es-

timate of group delay will, of course, be unaffected if

the phase biases are common to all frequency channels.

This will not quite be the case, however, since Aw is

proportional to the radio frequency of each par-

ticular channel. If the total frequency spread of the

sampled bands is AF around some mean frequency F,

the total spread in Aw between the highest and lowest

AFradio frequency will be approximately F AF , apart

from any dispersive effects such as the ionosphere, etc.
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The corresponding spread in phase biases over the sampled

channels will then be approximately

A = ( ) (AT2) (4-29)
bias

and the corresponding bias in the estimate of the group

delay will then be approximately

AT ~ AwAT (4-30)
bias AF 2F

For F = 8000 MHz, AT = 0.2 sec, and Aw = 1 Hz we

find ATbias 12.5 picosec, which is entirely
bias

negligible.

Again, we should emphasize that the biases indicated

in Equations (4-28) and (4-30) are due to inadequacies

of the a priori model and may be reduced to an arbitrarily

small value simply by improving the model. These biases

are in no way inherent in the data.

The second possible source of bias due to Approximation

No. 3 results from the assumption that the fringe rate is

constant over the duration of a record, when in fact it

is not constant. Some phase smearing will result, re-

gardless of the accuracy of the a priori fringe rate cal-

culation. The maximum rate of fringe rate change on an

intercontinental baseline at an 8000 MHz radio frequency

is about 0.5 Hz/sec. This is equivalent to a change of

0.1 Hz over a record, which corresponds to an "average"
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fringe rate error over a record of about 0.05 Hz

if the a priori calculation of fringe rate at the

center of the record is exactly correct. The resultant

phase smearing over a record is less than 20 which is

usually neglibible. This smearing is a much

much smaller effect than that due to an error in the

a priori fringe rate; hence, the analysis resulting in

equations (4-28) and (4-30), where we assumed a constant

fringe rate over a record, is justified.

Approximation No. 4 -- When performing the"fringe

rotation"of Equation (4-6), VLBI 1 updates the fringe

phase in a step-wise fashion once every 16 bits (cor-

responding to ~22.2 microseconds of data).

Consequences -- The first consequence of this

approximation is a "phase smear" exactly analogous to that

of Approximation No. 3. Let T be the delay rate, w be the

radio frequency, and At 22.2 microseconds be

the time interval over which the fringe phase is held

constant. Then there will be a phase smear of +!At•

symmetric around the center of the 16-bit segment. Since

all phases are referred to the center of the 16-bit seg-

ment [see Equation (4-6)], there will be no phase bias or

effect on group delay determination, but there will be

a reduction in correlation amplitude by a factor of
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SAT1 2  io (wrAt )
Se d 1 - ( t (4-31)

WTAT' wTAT' 24
2

For the "worse case" of w = 8000 MHz, T = 2 Psec/sec,

At = 22.2 sec, the fringe rate is 16 kHz and the

factor of Expression (4-31) is - 0.794, more than 20%

reduction in correlation amplitude! This, then, is a

significant bias which must be taken into account.

Higher fringe rates suffer increasingly large reductions

in correlation amplitude until the useful limit of the

algorithm of Equation (4-5) is reached, approximately when

the phase change over a 16-bit segment reaches 1800.

This limit is at a fringe rate of about 22 kHz, where the

correlation amplitude is reduced by almost 40%!

We note here again that the correlation ampli-

tude is also biased due to the fact that a simple Van

Vleck correction is applied to the correlation coef-

ficient of each 16-bit segment [see Equations (4-6) and

(4-7)]. We can use Equation (4-8) with K = 16 to com-

pute that the correlation amplitude is reduced by a factor

of about 0.929 due to this effect, more than a 7% re-

duction! It is important, then, that this factor must

also be applied as a correction when computing correlation

amplitudes.
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Approximation No. 5 -- VLBI 2 estimates only a

constant delay residual and a constant delay-rate residual

for each 3-minute observation. No effort is made to

fit any higher-order terms (see Section 4.5).

Consequences -- Clearly, the effects of this

approximation are entirely dependent on the a priori

model. If the model is accurate enough so that there is no

need to fit higher-order residuals, then the model is

sufficient. If, on the other hand, significant higher-

order residuals are present, but not estimated, the re-

sulting estimates of delay and delay rate may be biased.

Let us examine the models used in VLBI 1 so that we can

place upper limits on such biases.

First let us assume only the simple earth-star model

analyzed in Chapter 2, and neglect any effects due to

instrumentation or propagation (i.e. atmosphere, ionos-

phere, solar corona, etc.). We can easily calculate the

consequence of unestimated higher-order residuals by

examining the change in residual fringe rate over the

course of a 3-minute observation. From Equation (2-13c) we

see that the geometric fringe rate,v , is affected the

same way by an error in baseline coordinates ab' 6b, as

by an error in source coordinates as, 6s. Therfore,

we shall just consider the effect of an error in source

coordinates. Let as, 6s be the actual source coordinates
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and let Aus, A6s be the errors, assumed small. Then

from Equation (2-13c) we can easily calculate the cor-

responding error in the total fringe rate to be

Avg c at cos 6b[sin6 sin(a b- sa)A 6

+ cos 6 s cos(ab-as)As] (4-32)

where w is the radio frequency, b is the base-
aG

line length, and --t is the rotation rate of the earth.

It is simplest to consider the effects of Acs and A6S

separately. Suppose that A6s = 0, then

wb DaG
Av - c t cos6 cos6 cos(ab-a s ) Aa s  (4-33)

and the time rate of change of Av isg
wb DacG2

0 b G -)2 cos6bcos6sin(ba -a)Ass (4-34)g c at b s b s s

which has a maximum magnitude of

IAvg (I aG) 2  (4-35)
max

regardless of the values of ast 6s' ab' 6b'

Similarly, if Acs = 0 we find that

Sb a ) 2
S - ) cos6 sin6 cos(a. -a )A6 (4-36)
-C c "t bD S "b s
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which has a maximum magnitude of

IA I w b ( )2 A2 (4-37)
g max c at s

Usually, Acs and A6s are less than about 10 arc-sec.

If we use Aso, A6s = 10 arc-sec in Equations (4-35) and

(4-37) with w = 8 GHz, b = 4 x 10 6m and Gt

-5
7.3 x 10- 5 rad/sec, we find

-4 rad -2 mHz
AI) gl 1.8x104 rad 2.9 x 102 mHz (4-38)

max sec

Over a 3-minute observation, then, the residual fringe

rate may change by as much as about 5 mHz, which corres-

ponds to a delay rate error of about 0.6 picosec/sec.

This error will lead to a bias in the total fringe-rate es-

timate of about 2.5 mHz since, historically, the reference

epoch of an observation is at the beginning of the ob-

servation. If the reference epoch were at the center of

the observation there would be a far smaller bias since A g

will be very nearly symmetric around

the center of observation.

Generally, however, A s and A6s are on the order of 1 arc-

sec, much smaller than the 10 arc-sec error we assumed

above, so that the fringe-rate estimate bias will be

< 0.25 mHz, or - 0.03 picosec/sec in delay rate.
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The possible biases that we have just calculated

above may or may not be important depending on what

other unmodelled systematic effects might contribute

even larger values of higher-order derivatives of the

residual fringe rate (i.e. delay rate). Some effects,

such as instrumental drifts, cannot be adequately model-

led and hence are simply left out of the a priori model.

Others, such as the neutral (dry) atmosphere, wet atmos-

phere, and ionosphere are usually modelled with some dif-

ficulty, if at all. Of these, the neutral atmosphere is

the most important (at least at the high observing fre-

quencies) and the most amenable to simple modelling. If

left unmodelled, the neutral atmosphere may introduce a large

change in the residual fringe rate during the course of one

observation. For example, consider the case of a long

east-west baseline in which the source is setting at the

easterly antenna but is still relatively high in the sky

of the westerly antenna. At the westerly antenna there

will be a small delay rate acceleration due to the atmos-

phere, but the easterly antenna will be looking through a

rapidly increasing atmospheric thickness as it approaches

the horizon. If the source elevation is = 100 at the

easterly antenna and decreasing at the rate of about 0.25 deg/min

the "atmospheric delay rate"(due to the atmosphere above

the easterly antenna alone) will increase by -2 picosec/sec

during a single 3-minute observation (Reference 36 ). At
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50 elevation the increase may be as much as about

10 picosec/sec. Clearly, large systematic biases of

delay-rate estimates will occur in such a situation if

the neutral atmosphere is left unmodelled.

Early versions of VLBI 1, including the version which

was used to process the data from the October 1969 ex-

periment, did not include an atmospheric model. However,

mostly due to the fact that two of the three antennas which

were used were of the equatorial-mount type with limited

hour-angle coverage, most observations were at elevations

above 200, where the maximum bias of the delay-rate es-

timate is -0.1 ps/sec. Later versions of VLBI 1 now

incorporate a semi-empirical analytical a priori model of

the neutral atmosphere (eference 36 ) and, except perhaps

for some extremely low-elevation observations, the biases

of the delay rate estimates due to the neutral atmosphere

are negligible (i.e. -0.01 picosec/sec). In any case the

atmospheric model may be improved a posteriori in a bootstrap

manner to reduce any biases to an arbitrarily small value.

Other Possible Systematic Errors -- There are, of

course, other possible sources of systematic error which

we have not discussed, but they are all believed to be

negligible. These include such things as machine-

precision limitations in calculation of the a priori para-

meters (most critical in VLBI 1) and errors in interpolating

to the peak of a discretely-computed function, for example.
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In regard to machine precision we note that, at 8 GHz,

the calculation of a priori total fringe phase must be

precise to about 12 decimal digits in order for the error

to be below about 0.1 degrees of phase; this means that

all of the intermediate calculations, including the trigo-

nometric functions, must be somewhat more precise

if 12 decimal digits of precision are to be maintained

in the final result. In this regard, double pre-

cision calculations on the IBM 360 system are barely suf-

ficient.
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4.7 IMPLEMENTATION AND TESTING OF VLBI 1 and VLBI 2

VLBI 1 and VLBI 2 were written, debugged and test-

ed at the NASA Goddard Space Flight Center during the

period from about November 1969 through May 1970.

Almost all of the work was done using the IBM 360 Model

91 machine located at Goddard.

4.7r% Implementation of VLBI 1 and VLBI 2

Because of the extremely large volume of data to

be processed, it was imperative that every effort be made

to make programs extremely machine-efficient.. This is

particularly true of VLBI 1, by far the most time-con-

suming of the processing operations. Several of the

"efficiency-critical" sections of VLBI 1, including the

actual bit-by-bit correlation and 'ast-fringe rotatiol',

were written in assembly language using high-efficiency

algorithms developed specially for this application. The

exact algorithms used to obtain efficient bit correlation

and fringe rotation are described fully elsewhere (Hin-

teregger, Reference 13 ), and we shall not describe them

in detail here. All "precision-critical" computations

were performed using full machine double-precision (ap-

proximately 14 significant decimal digits) to ensure that

the effects of computation errors were much smaller than
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algorithm-dependent errors. Special care was taken to

ensure that a priori parameter estimates varied in a

smooth way from observation to observation, as well as

within a single observation, so that "residual observables"

could be interpreted meaningfully over a set of several

observations.

A major factor in increasing the efficiency of VLBI 1

was gained by writing it to simultaneously process all

three baselines of a 3-station observation. This compli-

cated the bookkeeping aspects of the program but increased

the processing efficiency several-fold over a program

only able to process a single baseline at a time. Also

as an aid to efficiency, input and output were stream-

lined as much as possible. All critical a priori parameters

such as station locations, source positions, observing fre-

quencies, and clock-offset parameters were permanently

stored in large tables and were called up by codes. This

not only streamlined the processing-setup procedure but

also helped to reduce the likelihood of input parameter mis-

takes. Several separate bookkeeping and sorting programs

were written to help support the library aspects of the

project and help expedite the data flow to and from the

main processing programs.

When VLBI 1 and VLBI 2 reached their final working

versions, they alone contained nearly 7000 punched cards

of programming. A 3-minute observation on a single base-

line can be processed through VLBI 1 with about 90 seconds



-180-

of machine computation time, although the actual time on

the machine is longer since a minimum of three minutes is

required to physically read an entire tape; processing

of a single-baseline observation through VLBI 2 takes about

15 seconds. The corresponding times for a 3-baseline

observation are 270 seconds through VLBI 1 and 45 seconds

through VLBI 2, although minimum tape reading time through

VLBI 1 is increased to 6 minutes because only two tapes

may be read simultaneously on the Model 91. Including

time to mount and demount tapes on tape drives, each 3-

baseline observation typically requires about 10 minutes

of physical processing time.

Because of the very large volume of data to be

processed, VLBI 1 was also implemented on three other

machines at Goddard, two IBM Model 75 machines and

one IBM 360 Model 95. The Model 75 is roughly one-third

as fast as the Model 91, and the Model 95 is nearly twice

as fast as the Model 91.

4.7-2 Testing of VLBI 1 and VLBI 2

Testing of VLBI 1 and VLBI 2 poses somewhat of a

special problem because of the difficulty of generating

artificial test data which adequately models real data

in all respects. Artificial-data tapes of correlated

noise may be fairly easily generated, but it is very dif-

ficult to simulate a smoothly changing delay of the signal
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on one tape with respect to the other. In practice,

therefore, one is forced to use real VLBI data to do the

final testing of the VLBI data-reduction programs.

Testing of VLBI 1 and VLBI 2 with real data can be

broadly broken into two phases: 1) comparison of

results with other programs (i.e., those already imple-

mented at Haystack) and 2) self-consistency tests within

the programs under test. Comparison of test results with

the results from other programs was useful only for

single -band data since the available programs at

Haystack had been fully tested only for that type of data.

When good agreement with these programs was reached, pro-

gram testing moved into the second test phase, that of

internal consistency tests.

The basic premise of the internal consistency tests

is that the estimates of the observed parameters should

be independent of errors in the a priori model to within

the expected noise, except for small possible biases that

we have indicated in Section 4.4. These tests are easily

performed by slightly changing one or more of the

a priori parameters and verifying that the estimates of

delay, delay rate, fringe phase and correlation amplitude

remain unchanged to within the noise. A further valuable
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check of internal consistency is provided by processing

data from a 3-station experiment, since simple geometrical

constraints require that the sum of delays and the sum

of the delay rates around the three baselines meet a simple

"closure criterion" (see Section 7.3-5 ). All of these tests

were performed and carefully checked to insure proper operation

of the programs.
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4.8 BRIEF DESCRIPTION OF VLBI 3

After the completion of processing through VLBI 1

and VLBI 2, the estimates of delay and delay rate for each

observation are used as input data to a final parameter

estimation program, dubbed VLBI 3, which estimates many

model parameters using a least-squares algorithm. Most

of the work on this program has been done by others, pri-

marily D. S. Robertson, and we shall discuss it only

briefly here. The model parameters that can be estimated

by VLBI 3 include 1) the 3-dimensional baseline vectors

between the observing stations, where one station is

usually defined as an origin of coordinates, 2) the source

positions, where the right-ascension origin may be defined

by fixing the right-ascension of a single source or, al-

ternatively, a priori covariances may be assigned to the

right-ascensions of a set of sources to constrain the

weighted mean-square right-ascension adjustments to a mini-

mum, 3) the coefficients of a power series that describe

clock synchronizations as a function of time, with

provisions for handling clock "breaks" as needed, 4) the

zenith excess-electrical path-length due to the atmosphere

based on a simple model by Chao (Reference 36), 5) the

polar motion of the earth, and 6) a parameter usually denoted

by y, related to the relativistic "bending" of electromag-
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netic waves in a gravitational field. Any or all parameters

may either be fixed or estimated, although, of course,

the data must be sufficient to allow for the solution of a

given set of parameters (see Section 2.3-2).

The theoretical model used by VLBI 3 takes into ac-

count, in as complete a way as possible, the effects of

precision, nutation, polar motion, earth tides, and

deviations of UT 1 from atomic time. A crude ionospheric

model is also provided, although in practice the ionospheric

contributions to delay and delay rate are sometimes es-

timated a priori and applied as fixed corrections to the

observed delays and delay rates. Such estimates may be im-

plied, for example, from observations of the Faraday ro-

tation of radio signals transmitted from a satellite in

synchronous orbit. At L-band the corrections due to the

ionosphere are typically in the range from about 0.1 to 3

nanoseconds for (differential) delay measurements and from

about 0.05 to 1.0 picosec/sec for delay rate measurements.

At X-band the corresponding ionospheric corrections are

reduced by a factor of approximately 25.

Typically, processing of data through VLBI 3 takes

place in a multi-step procedure. First, all parameters

except clock synchronization errors are fixed at the

best a priori estimates as an aid to identify any ob-

viously bad data which would otherwise badly distort any
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more complete set of solution parameters. As the bad

points are weeded out (or explained) more and more solution

parameters may be used, until the information in the ob-

servation set is exhausted. Also, studies are usually

conducted to measure the sensitivity of particular para-

meters to slight changes in the data or solution parameter

set so as to estimate the real accuracies of the solution

parameters.
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CHAPTER 5

DESIGN OF A 3-STATION FREQUENCY-SWITCHED VLBI EXPERIMENT

5.1 GENERAL OUTLINE AND GOALS OF THE EXPERIMENT

In the spring of 1969, with the lessons of three

frequency-switched VLBI experiments in hand, planning began

for another, more ambitious such experiment to be con-

ducted during the first two weeks of October 1969. Three

antennas would be used: the 120' Haystack antenna in

Tyngsboro, Mass., the 140' NRAO antenna at Green Bank, W.

Va., and one of the 90' antennas at the Owens Valley Radio

Observatory near Big Pine, California. As conceived, the

experiment had three primary and interrelated goals:

1) to determine the three components of the baseline vector

for each of the three baselines to an accuracy of the

order of one meter, 2) to measure the positions of about

a dozen widely separated radio sources to an accuracy of

about a tenth of an arc-second, and 3) to measure the gravi-

tational bending of radio waves as they passed near the

sun, to be accomplished by monitoring the apparent change

in the position difference between 3C273B and 3C279 as

the sun passed through their vicinity and occulted 3C279.

If accomplished, all of these measurements would represent

significant advances in the application of VLBI to pre-

cision geodesy and astrometry. Goals 1 and 2 are, of

course, very closely related since the baseline vector

components and source positions must all be estimated
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simultaneously. Goal 3, however, is relatively independent

since it involves observing only an apparent change

in the positions of two radio sources and is relatively

insensitive to small errors in baseline vectors or

source positions.

The decision to use three stations in this experiment

was primarily motivated by a desire for data redundancy.

Since data from a single baseline is sufficient, with

enough observation4 to determine all baseline components

and source positions, the inclusion of three antennas

provides automatic data redundancy. A powerful test of

the internal consistency of the data can be performed by

solving for baseline components and source positions

from data collected on each individual baseline. Source

positions should be consistent to within expected errors

from baseline to baseline, and the baseline vector compo-

nents should sum to zero around the three baselines. Any

inconsistencies in these respects would lead one to sus-

pect that unmodelled systematic biases existed in the

data. The magnitude of these inconsistencies would give

a good idea of the real accuracy of the data. These

tests are important because no independent non-VLBI method

presently exists against which checks could otherwise be

made.
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5.2 CHOICE OF RF OBSERVING FREQUENCIES

In order to attempt to measure and correct for the

frequency-dependent effects of the ionosphere and solar

corona and to separate these effects from the frequency-

independent effects of the gravitational bending, obser-

vations were scheduled to be made at two widely-separated

basic observing frequencies. The first frequency was

chosen to be near 7800 MHz (X-band) at a wavelength of

-3.8 cm and the second was chosen to be near 1600 MHz

(L-band) at a wavelength of -19 cm.

Due to the strong variability of both the ionos-

phere and solar corona, it was possible in advance only

to make rough estimates of their expected effects. Day-

time ionospheric contributions to the radio path length

in the zenith direction were estimated to be as large as

~1.5 nanoseconds at X-band and ~30 nanoseconds at L-band

(Reference 37 ). Depending on the exact conditions

during an observation (projected baseline, ionospheric

irregularity structure, position of day-night boundary,

etc.), the effect of the ionosphere on the VLBI group-

delay measurements could be widely varying up to those

corona could only be rougtl ,-;1 h , i ,v d t ': . / ~a t h

with closest solar approach equal to 10 :,olhir rad ii, ii 1b

refraction due to the averagqe solar croronr wil'; rlI ijr;l ('ri

to be --0.01 arc-sPconu1s nt -,iir,,I "ir,,I . ;r .

at L-barld . ver a ,()j'j k.1 a , ,J) ," ,1 ,•A k,,zr, f3,=f.=
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deflections correspond to delay changes of approximately

0.4 nanoseconds at X-band and 10 nanoseconds at L-band. As

would be expected, the refraction is a strong function of

the close-approach radius to the sun.

The gravitational bending effect, unlike the effects

of the ionosphere and the solar corona, is independent of both

time and frequency. Based on Einstein's predictions, a

ray with closest solar approach of 10 radii will be de-

flected by approximately 0.175 arc-sec, which corresponds

to ~7 nanoseconds of delay change on a 3000 km projected

baseline. The bending is inversely proportional to the

closest approach of a ray to the sun and is approximately

1.75 arc-sec at the limb of the sun. No data existed which

could adequately predict the closest distance to the sun

for which useful VLBI observations could be made; therefore

observations were scheduled right up to the time of the

3C279 occultation and immediately following.

Another reason for the choice of the X-band and L-band

frequencies was that the necessary parametric amplifiers

and mixers necessary to operate at these frequencies were

either in-hand or available for all three sites. And also,

not incidentally, the X-band frequency is near the limit

of the operating capability of the 90' antenna at OVRO.

Ideally, it would have been possible to monitor X-band and

L-band simultaneously, but equipment restrictions pre-

vented this possibility. In fact, a 15-minute changeover
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period was necessary at Haystack. Provided

that the ionosphere and the solar corona remained relatively

constant for periods longer than about 15-30 minutes,

this restriction would not be a problem. It was not

expected that the ionosphere would pose any particular

problems in this respect, but very little, if any, data

were available concerning irregularity scale-size

statistics for the solar corona for periods of minutes

or hours, particularly for scale sizes on the order of the

projected baseline lengths.
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5.3 CHOICE OF SWITCHED-FREQUENCY WINDOWS

Due to the recent availability of wide-bandwidth IF

systems, and in view of the many problems encountered in earlier

experiments in which the high-frequency phase-locked first

local oscillators were synchronously switched, it was

decided not to attempt such a procedure in this experiment.

Instead, the first local oscillator would be fixed and

the bandwidth of the first IF would be broadened as much

as possible; then, only the much lower frequency second

local oscillator would be switched (see Figure 1-2).

This procedure considerably simplifies the switched-

frequency procedure, although available IF-amplifier band-

widths restricted the total "switched-bandwidth" to

$40 MHz.

The choice of the number and spacing of the frequency

windows to be observed, as we indicated in Section 1.2,

is a compromise between high delay resolution and toler-

able sidelobe levels of the delay resolution function.

To achieve the highest delay resolution, the choice is

clear: choose two frequency windows, placed at the upper

and lower extremities of the receiver frequency band.

This choice maximizes the quantity Aw of Equation (3-154)rms

and hence minimizes the expected error in the measured

delay. Unfortunately, this choice also creates the worst

sidelobe (or ambiguity) problems. Perhaps the sidelobe
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problems may be tolerable for a particular set of base-

lines and/or sources where the a priori knowledge is

very good) but unacceptable for others where a priori

knowledge is relatively poorer. Since it is undesirable

from an operational point of view to use a different set of

frequency windows for each baseline and/or source, a single

compromise set is usually chosen. One logical choice of a

set of frequency windows is a set which has "non-redundancy"

in the spacing of the windows, which tends to minimize the

sidelobe levels. Such an array is a so-called "Arsac"

sequencel, which has four frequency windows placed at

relative frequencies 0, 1, 4, 6. Every unit spacing

between 1 and 6 is represented in this sequence and none

are duplicated. In practice, it is usually desirable to

choose the "unit" spacing to be 1 MHz so that such an

Arsac sequence would cover a total of only 6 MHz. In

order to span a wider bandwidth some other sequency must

be used, but there is no known sequence of more than four

frequencies which has non-redundant spacings. Therefore,

a "minimally-redundant" sequence of frequencies is usually

'Named after J. Arsac (Reference ), an "Arsac array"
originally pertained to antenna spacings in a linear
array.
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chosen for a sequence of more than four frequencies.

Such a sequence may be determined empiracally by a search

on a digital computer or, in practice, well-approximated

by an educated judgment.

For the October 1969 experiment a choice of six

frequency windows was judged to be suitable for the

anticipated operating conditions. The set of relative

frequencies chosen was 0, 1, 4, 6, 24, 36 MHz. This

selection constitutes two overlapping Arsac arrays,

one which has a unit spacing of 1 MHz and the other which

has a unit spacing of 6 MHz. The arrays have two elements,

0 and 6 MHz, in common. If that the correlation

amplitude in each frequency window is the same, the delay

resolution function associated with this set of frequencies

is the same as that shown in Figure l.lb. The highest

sidelobes have an amplitude of 67% of that of the main

lobe, with the spacing to the nearest major sidelobes being

±1 microsecond. For observations where the a priori know-

ledge of the group delay is poor, there is a chance that

the wrong lobe will be chosen. This was judged not to

be a serious problem, however, since fitting of the group-

delay data to an earth-star model should easily reveal

the existence of such discrepancies and allow them to be

corrected, i.e. allow the proper lobe to be chosen. This

did, in fact, turn out to be the case.
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5.4 EXPECTED SYSTEM PERFORMANCE AND MEASUREMENT ACCURACIES

Based on the specifications of the equipment avail-

able for the experiment, estimates were made of the ex-

pected performance of the interferometer system as a

whole. Table 5-1 shows the a priori estimates of system

temperature and antenna efficiencies for each of the

three participating stations at each of the two basic ob-

serving frequencies. Using the data of Table 5-1 we can

calculate the approximate expected correlation amplitudes,

signal-to-noise ratios, rms group-delay errors, and rms

phase-delay-rate errors from Equations (3-148), (3-151),

(3-154), and (3-156). Table 5-2 summarizes the results

of these calculations for correlated flux densities of

5 f.u. and 15 f.u., which represent approximately the

range of correlated fluxes expected from the set of "major"

sources to be observed. These sources include 3C273B,

3C279, 3C84, 3C345, 3C454.3, 4C39.25, 3C120 , 2134+00, and

VR042.22.01. It was not anticipated that variations in

correlated flux densities due to small-scale source

structure would be of significant concern; previous experi-

ments, at least, had not indicated that such a concern

might be warranted, although admittedly most of the

earlier measurements had generally beeen made on shorter

baseline, or at lower frequencies, or had not been
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carefully calibrated to measure fringe visibilities.

If the measurement accuracies stated in Table 5-2

were indeed achieved and the results were free from un-

known sources of bias or error, the goals of the ex-

periment should easily have been achieved. Previous ex-

perience with earlier frequency-switched experiments, how-

ever, had indicated that these numbers were somewhat op-

timistic, particularly the delay-rate-error estimates,

since delay-rate estimation is vitally dependent upon

stable local oscillators and these had always proved

troublesome. In practice, delay-rate errors were usually

dominated by systematic effects which appeared to be

mainly due to local-oscillator drifts. Group-delay estimates,

on the other hand, are nearly independent of local oscil-

lator drifts provided the drifts are the same for each

frequency window. This had usually been the case

in practice, and previous experience had indicated that

random errors in the group-delay estimates did usually not

exceed the theoretical errors by much more than a factor

of two or three. Even with these increased errors, provided

they are not systematically biased, the goals of the ex-

periment should have been attainable.
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CHAPTER 6

INSTRUMENTATION FOR EXPERIMENT

6.1 INTRODUCTION

The October 1969 experiment was the first VLBI

experiment done by the MIT group which used an antenna

at the CalTech Owens Valley Radio Observatory. At the

time of conception of the experiment no suitable in-

strumentation existed at this site for either of the

proposed observing frequencies (~7840 MHz and ~1660 MHz).

The entire receiving system from feed horns to back-end

video converters had to be engineered and constructed

in a period of about four months. This project was under-

taken by the author in the summer of 1969.

The instrumentation situation at the Green Bank

antenna was similar to that at Owens Valley, although

at Green Bank appropriate feed horns and a temperature-

controlled front-end box were already available. Curt

Knight undertook the project to complete all of the Green

Bank instrumentation. At Haystack, most of the basic

instrumentation already existed since several switched-

frequency VLBI experiments at both X-band and L-band had

already been done and most of the instrumentation was in-

tact.

Apart from some differences in detail, the receiver

systems at each of the three stations were quite similar.

Therefore, in this chapter we will discuss only the
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OVRO instrumentation. After first examining a basic block

diagram of the system, we shall proceed to discuss more

detailed design goals, implementation, and testing of the

receiver system.

6.2 BASIC SYSTEM DESCRIPTION

Figure 6-1 shows the basic block diagram of the

entire VLBI receiving and recording system. Two radio-

frequency bands are covered, one from ~1610 to ~1650 MHz

(L-band) and the other from -7790 to -7840 MHz (X-band).

A dual-frequency, concentric-element feed horn collects

the energy concentrated at the focus of the dish. The

L-band signal is first amplified by an uncooled parametric

amplifier, followed by an uncooled tunnel-diode amplifier,

before the RF signal is mixed with a phase-stable oscillator

signal at 1575 MHz. Similarly, the X-band signal is am-

plified by an uncooled two-stage parametric amplifier be-

fore being mixed with a phase-stable local-oscillator sig-

nal at 7875 MHz. The resulting IF bands from both X-

and L-band cover a range of approximately 40-80 MHz. The

L-band IF signal is from the upper sideband and the X-band IF

signal is from the lower sideband. At this point, a

switch is used to select either L-band or X-band to be

processed through the remainder of the receiver system.

The "back-end" part of the receiving system, i.e. the

part of the system after the first mixing operation, is
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common to both the X- and L-band systems. The 40-80 MHz

IF signal is upper-sideband-mixed with a programmable

oscillator whose output frequency is controllable over

the range ~10-50 MHz. The resulting IF signal is filtered

through a bandpass filter covering the range -30.0-30.4 MHz,

and a final mixing with 30 MHz takes place in a single-

sideband mixer which translates the signal to the 0-360 kHz

video band. This video signal is infinitely clipped, one-

bit sampled and recorded on magnetic tape.

All local-oscillator signals are derived from a

hydrogen-maser frequency standard (and clock) which has

a basic output at 5 MHz. The first (high-frequency) local-

oscillator signal is derived by locking the frequency of

a klystron oscillator,with a phase-lock loop, to a multi-

ple of the maser 5 MHz signal. The programmed local os-

cillator is a commercially available frequency synthesizer

which can be electronically programmed, and which has

the special property of returning to the same phase it

would have had without frequency switching, after

having been switched to another frequency and then switch-

ed back again. The output frequency of this synthesizer

is controlled by a digital programmer which is in turn

controlled by the reading of the time on the hydrogen-

maser clock.

A phase-calibration system is used to calibrate

the phases of the output frequencies of the programmable
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oscillator relative to the hydrogen-maser reference. This

calibration is accomplished by injecting a maser-controlled

1 MHz signal into a step-recovery diode which generates

extremely short pulses at a 1 MHz rate. The frequency

spectrum of this train of pulses is a "comb" of harmonics

spaced at 1 MHz intervals spanning ~1-100 MHz. The phase

of each harmonic is well-defined (e.g., zero) at every

other zero-voltage crossing of the 1 MHz driving waveform,

thereby providing a reference against which the phase of

each local-oscillator frequency in the programmed sequence

may be calibrated. The phase-calibration system was pro-

grammed to be activated for only a few seconds at the

beginning of each observation. Note that this system does

not calibrate the high-frequency (first) local oscillators.

6.3 FEED HORN SYSTEM

In order to be compatible with existing feed-horn

systems at Haystack and NRAO, a feed system was required

at OVRO which could receive linear polarization at both

X-band and L-band. A concentric feed design was chosen

so that both X-band and L-band signals could be received

simultaneously, if desired, and also so that the antenna

pointing would be the same at both frequencies.

Since time was at a premium, it was decided to copy

the basic design of an existing dual frequency X-L-band
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feed already in use on the NRAO 140' antenna. The

focus-to-diameter ratio (commonly called "f/D ratio")

of the NRAO antenna is 0.42857 and is nearly the same for

the OVRO antenna, so that the same feed horns may be used

on both antennas. The only change in design of the feed

for the OVRO antenna was to scale the size of the L-band

horn from the original design frequency of -1450 MHz of the

NRAO horn to a design centered around -1630 MHz. The

horn was fabricated at the MIT Research Laboratory of

Electronics and then tuned and tested by the author in a

large microwave-anechoic chamber at the MIT Lincoln Labora-

tory.

6.4 RF AMPLIFICATION SYSTEM

The choice of an RF amplification system for micro-

wave VLBI depends on several factors including noise

figure, gain, gain stability, bandwidth, and cost. The

significance of each of these factors depends on the par-

ticular requirements of a given experiment, but some gen-

eral comments can be made regarding each.

The noise figure (i.e., noise temperature) specifi-

cation depends primarily on the signal-to-noise require-

ment for observations on the weakest radio sources. This

requirement not only depends on the parameters of the

station in question, but also on the performance of all

other participating stations. For example, the approximate
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minimum usable correlation coefficient for a 3-minute

frequency-switched VLBI observation is -0.15%. Let us

estimate the maximum allowable system temperature Ts at

OVRO for the case where the minimum source flux-density to

be observed is ~4 flux units. At L-band the poorest per-

forming antenna is Haystack where the system temperature

is -250 0K and the antenna efficiency such that the antenna

temperature Ta is ~0.4 0K for a 4 f.u. source. The per-

formance of the OVRO antenna is such that T ~ 0.40K (based

on an antenna efficiency of 40% for a 4 f.u. source.

Therefore, the minimum acceptable system temperature at

L-band at OVRO is approximately

0.4 x 0.4T = r 2900K
Smin 250 x (.0015)

Similarly at X-band, Haystack performs more poorly than

NRAO and hence dictates the maximum tolerable T at
s

OVRO. At Haystack a 4 f.u. X-band source will yield

Ta - 0.80K; at OVRO the same source will yield Ta ~ 0.20 K

(based on an antenna efficiency of 25%). We can then

easily calculate that the minimum acceptable Ts at OVRO is

again -2900 K.

The gain of the RF amplifier is important primarily

for two reasons. The first is to reduce the contributions

to the total system temperature, Ts , of noisy devices,

such as mixers, which follow the first stage of amplifi-

cation. (Recall that the contribution to Ts of any element
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M is TM/G, where TM is the noise temperature of the element

and where G is the total gain preceding element M.) The

second purpose of the RF amplifier is to reduce the noise

contributions from an unwanted sideband by adjusting the

amplifier for high gain over the band of interest and

for a low gain over the undesired band which will unavoid-

ably be imaged into the IF after mixing. The difference

in gain between these two bands is known as the "side-

band rejection" and is typically 10-20 db for the parametric

amplifiensused. We should note also that some interferometer

systems are double-sideband systems where it is desired

to include both sidebands and in which "sideband rejection"

is not wanted.1

The bandwidth requirements of an amplifier vary in

importance, obviously, with the goals of a particular

experiment. The inherent bandwidth of low-noise microwave

amplifiers varies considerably between different types and

also depends, in most cases, on the details of adjust-

ment. Maser amplifiers, though very low noise, are

generally limited to bandwidths of a few tens of MHz.

This limitation is not fundamental, but is usually imposed

by problems of relatively narrow bandwidth of the so-

called "slow-wave" structures internal to the maser. Para-

metric amplifiers have instantaneous bandwidths ranging

1For several reasons, double-sideband systems are not par-
ticularly appropriate for VLBI work (see, for example,
Reference 13).
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from a few MHz to a few hundred MHz, depending on the de-

tails of the design. The bandwidth limitations generally

stem from the bandwidth limitations of the actual micro-

wave structure design and are not inherent in the amplifying

element. Indeed, very wide-band parametric amplifiers

may be fairly easily built simply by "stagger-tuning"

multiple stages since detuned stages appear nearly trans-

parent (i.e., no loss or gain) to out-of-band signals.

Tunnel-diode microwave amplifiers, though generally not

competitive with masers or parametric amplifiers for low-

noise characteristics, generally have a very large fraction-

al bandwidth. A fractional bandwidth of nearly 50% is

not uncommon.

Gain stability of microwave preamplifiers may or

may not be important again depending on requirements of

a particular experiment. Good gain stability is primarily

important for a VLBI experiment if correlation amplitudes

are to be accurately normalized to obtain meaningful

fringe amplitudes. Good gain stability is also a very

useful, if indeed not absolutely necessary, to aid in

determining when the antenna is properly pointed toward

a weak source. Dicke switching may be employed to over-

come both of these problems, but only at the expense of

halving the integration time on a source, and is there-

fore not generally employed.
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After all the technical factors have been considered,

cost is the final consideration that must be taken into

account. Prices of maser amplifiers and cooled para-

metric amplifiers tend to start at many tens of thousands

of dollars. Uncooled parametric amplifiers generally

have a price tag of from several thousanr to several tens-

of-thousands of dollars. Uncooled tunnel-diode amplifiers

are usually priced in the several-thousand-dollar range.

The RF amplifier instrumentation for the OVRO site

for the October 1969 experiment was chosen to meet

several specific criteria: 1) The operating frequencies

had to match those of the other sites, with instantaneous

bandwidths of at least 50 MHz; 2) It was preferred,

obviously, to keep noise temperatures as low as possible,

with 300 0K set as a practical maximum; 3) Small physical

size was of utmost importance because the entire two-band

receiver system had to be fitted into less than 3 cubic

ft. of space; and 4) The amplifiers had to be available

for delivery and use almost immediately. To be sure, the

experiment would not have been undertaken had not equip-

ment meeting the necessary specification been available.

Uncooled parametric amplifiers were chosen for both the

L-band and X-band preamplifiers. In addition, a following

tunnel-diode amplifier was used for L-band. We shall des-

cribe these items more fully below.
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The L-band parametric amplifier chosen was a two-

stage commercial unit with a gain of

about 15 db over a bandwidth of ~50 MHz

and with a noise temperature specification of about 2500 K

(although in actual operation it was believed to be more

nearly ~600 0K). A klystron was employed to generate the

pump signal for the paramp. Input and output L-band

signals were connected through standard type-N coaxial

connectors. The L-band tunnel-diode amplifier was also

of commercial manufacture;

gain was ~ 10 db over a bandwidth of ~ 300 MHz with a

noise temperature of-10000 K. For a gain of 15 db for the

L-band parametric amplifier, the contribution of the

tunnel-diode amplifier to the total system temperature was

~32 0K.

The X-band parametric amplifier was an uncooled

two-stage unit designed and built at MIT Lincoln Labora-

tory (see Getsinger & Kessler, Reference 39).

The amplifier was unique in that it was designed by a

computer program which was given the desired specifications

of the amplifier and then optimized a practical design to

meet these specifications as closely as possible. The

amplifiers built from these designs have proven to closely

meet the expected performance criteria and, at the time

they were built, were among the best available. The

units which were obtained for VLBI use had originally

been built for use in artificial earth-satellite research,
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but had become surplus when they were no longer required

for satellite observations. The design center-frequency

is 7840 MHz with 20 db gain over a bandwidth of 50 MHz

(the gain-bandwidth product depends on the exact details

of adjustment). Amplifier noise temperature was ~1500-

200 0K.

6.5 LOCAL-OSCILLATOR SYSTEM

6.5-1 General Comments

The performance characteristics of the local os-

cillator system in a VLBI experiment in large part deter-

mine the success or failure of an experiment. The per-

formance requirements of the LO system can be qualitatively

stated in one word -- stability. Perfect oscillators, of

course, do not exist, and we must examine the effects of

imperfections in practical systems. All of the imper-

fections of practical oscillators may be broadly classed

as phase noise -- that is, the deviations of oscillator

phase from the phase of a perfect oscillator. In the

context of VLBI observations made with the Mark I record-

ing system, phase noise may be separated into three cate-

gories:

1. Short-term phase noise with a time scale

-0.2 sec (the length of one Mark I record);

2. Medium-term phase noise with a time scale

-3 minutes (the length of a standard ob-

servation); and
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3. Long-term phase noise with a time scale

greater than a few minutes.

We shall briefly examine the consequences of each

of these.

Short-term phase noise -- Phase noise of this type

will cause a reduction of correlation amplitude (even,

conceivably, the complete loss of signal) over one record

of data, which is the smallest basic integration time.

Consider a simple case where the local-oscillator phase

noise, A6, is Gaussianly distributed with a variance

G26. At any given instant the correlation amplitude 
will

be reduced by a factor of cos AO due to this phase noise.

If GAG A 1 radian, as it generally must be, then
A 2

cos A 1 - 2 and the average reduction in correlation

amplitude will be simply ,(1 - 2 ). As long as the

mean short-term phase noise is zero, it will cause no bias

in the estimate of either the group delay or the phase-

delay rate.

Short-term phase noise is often very difficult to

detect experimentally. It can be detected during actual

operations only if a more stable calibration signal exists,

which is usually not the case. It is usually nearly im-

possible to detect short-term local-oscillator phase noise

a posteriori because receiver noise almost always dominates

the correlation coefficient over integration times shorter

than one record.
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Medium-term phase noise -- This type of noise, with

a time-scale of longer than one record but shorter than

the length of an observation, again acts to reduce the

correlation amplitude. However, it usually is quite de-

tectable a posteriori on a high signal-to-noise observa-

tion where fringe phase is well-defined over a few-second

integration. As long as the phase noise is small and in-

dependent of frequency channel there will be no effect

on the estimate of group delay. However, the estimate of

phase-delay rate (derived from the observed fringe rate)

may be biased if the mean phase noise over the 3-minute

observation is non-zero.

Long-term phase noise -- This type of phase noise,

if frequency-channel independent, will tend to bias only

the phase-delay rate estimates and will have no effect on

group-delay estimates. It can generally be detected only

by examining a series of observations on the same source

taken over a period of a few hours. Long-term phase

noise will show up as an inconsistency between the phase-

delay rates and the time development of the group delay

(after any frequency-dispersive effects have been removed).

6.5-2 High-Frequency Local Oscillators

Of the various local oscillator signals needed to

operate VLBI hardware, the high-frequency oscillator is

almost always the most critical. The mildest requirements

on its performance for any VLBI experiment are that short-

term and medium-term phase noise be smaller than ap-
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proximately one radian. And, if phase-delay-rate data

are to be used for geodetic or astrometric purposes, com-

parable long-term stability is demanded. Here again we

note that such long-term stability must be defined with

respect to the reference source which is ultimately keep-

ing the station time.

High-frequency VLBI local-oscillator systems are

generally of one of two types. The first, and less com-

mon, type is direct multiplication from a lower-frequency

reference source at (generally) 1 MHz, or 5 MHz. There

are several problems with this type of system. Any phase

noise at the reference frequency will produce greatly

magnified phase noise on the local-oscillator signal. Re-

quired multiplication factors are often as high as 1000

or more, so that even a very small phase noise on the

reference signal will be magnified to unacceptable pro-

portions in the local-oscillator signal. Furthermore,

very phase-stable multiplier chains with large multiplica-

tion factors are very difficult to build. Further dif-

ficulty is often encountered in extracting sufficient power

from such a multiplier chain to drive the mixer. Recently,

some reference frequency standards have been built with

a 100 MHz output available to the experimenter, relieving

many of the problems of direct multiplication. At least

one regularly-used VLBI station (Goldstone) successfully
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uses a direct-multiplication system, multiplying a 100-MHz

reference signal to generate a high-frequency local-oscil-

lator signal at 7800 MHz.

A more common type of system used to generate the

high-frequency local-oscillator signal is the so-called

"phase-locked loop". This is effectively an independent os-

cillator which is allowed to oscillate freely over a short

time period (typically a few milliseconds, <<0.2 sec, the

record length) during which its stability is high, but

which is "locked" to an exact multiple of the reference

frequency over a longer period of time. In this way the

effect of short-term noise on the reference frequency is

minimized.

Such a phase-locked loop was used to generate the

L-band local-oscillator signal for the October 1969 ex-

periment. A basic block diagram of the system used is

shown in Figure 6-2. The 5-MHz reference signal from the

hydrogen maser is first multiplied by 9 through a broadband

multiplier and then subsequently by 6 to generate a 270 MHz

signal. This signal enters a harmonic mixer which ef-

fectively multiplies the 270 MHz signal by a factor of

6 and mixes it with a sample of output from the 1575-MHz

oscillator frequency. A filter at the output of the har-

monic mixer allows only components near 45 MHz to pass

(i.e. only those components which have resulted from
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mixing 1575 MHz with the sixth harmonic of 270 MHz). The

phases of this signal are compared with the reference

45 MHz signal (by simple mixing) to generate a voltage pro-

portional to their phase difference. This "error" signal

is then filtered through a circuit with an adjustable

time constant before being applied as a

correction signal to adjust the

voltage-controlled oscillator (VCO) to the proper frequency.

A small part of the output from this oscillator is "leaked-

off" to drive the L-band RF mixer, while the major

portion of it is used to drive a x5 multiplier to generate

the 7875 MHz X-band local-oscillator signal. The in-

efficiency of direct multiplication is well illustrated

here; with 210 mw of L-band power into the x5 multiplier,

only ~14 mw of useful X-band signal emerges from the mul-

tiplier.

In practice, the phase-error signal is passed through

a filter with a time constant of several milli-

seconds before being applied to the VCO in order

to eliminate as much as possible the effects of

noise picked up on the 5-MHz reference signal on the

several-hundred-foot long cable from the control room



-216-

oscillator drop-out for any reason, would attempt an auto-

matic search and oscillator-relocking procedure.

Early experiments in switched-frequency VLBI attempted

to rapidly switch the high-frequency local oscillator as

well as the low-frequency local oscillator. In principle

this switching should be possible, but in practice there

are considerable technical problems. These primarily stem

from the fact that the VCO must be retuned and the phase-

locked loop restabilized in less than the 5 millisecond gap

between data records. Switching the first local oscillator

was attempted in experiments performed in October 1968

and January 1969 but subsequently abandoned when it becamse

possible to avoid the complications of rapid phase-locked-

loop switching of the first local oscillator simply by

widening the bandwidth of the first IF. The IF bandwidth

had been previously limited by the relatively narrow band-

width of available IF amplifiers, but amplifiers are now

available with bandwidths well in excess of 100 MHz so that

switching of the first local-oscillator frequency is no

longer necessary and has been discontinued.

6.5-3 Low-Frequency Local Oscillators

After the initial signal conversion from RF to IF,

the remainder of the local-oscillator signals may be clas-

sified as "low frequency". Although phase noise in these

oscillators has the same effect on the data as that of the

high-frequency oscillators, these low-frequency oscillators

are relatively easy to construct and control. In general,
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they are responsible for far less phase noise than the high-

frequency RF oscillators.

The second local oscillator, as indicated in the block

diagram of the system in Figure 6-1, is the frequency-

switched oscillator. In principle, the easiest way to

switch the oscillator frequency is probably to build one

fixed oscillator for each frequency channel and then connect

them sequentially to the mixer in the proper time order.

In practice this is not difficult to do, but it is an expen-

sive and time-consuming task to design and build all of

the necessary oscillators (particularly when the frequency

selections seemed to be changing from experiment to ex-

periment). An easier solution is simply to adopt a ready-

made commercial unit with the proper characteristics for

the job.

The Hewlett-Packard Model 5100 frequency synthesizer

was chosen for the job of switched-frequency oscillator.

This instrument is a general-purpose synthesizer which can

generate any frequency from 0 to 50 MHz in 0.01 Hz steps,

allowing almost complete flexibility in the choice of

frequency selection. In addition, it has two character-

istics which are demanded for its use as a switched-frequency

local oscillator. The first is that the output frequency

can be electronically selected, allowing it to be controlled

by an external digital controller. And secondly, the
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internal electronics of the synthesizer are such that, upon

switching from one frequency to another and then back again,

the phase returns to the same value it would have had, had

the frequency never been changed. In other words, changing

the frequency of the synthesizer is equivalent to simply con-

necting the output terminal of the synthesizer to a fixed

oscillator of the desired frequency which has been running

uninterrupted for all time, regardless of the previous

history of frequency selections. The only restriction is

that, after the selection of some initial frequency has been

made, all further changes must be in exact multiples of

100 kHz. The reason for this restriction lies in the method

that is used to generate frequencies lower than 100 kHz

within the synthesizer and need not concern us here. In any

case this restriction is of no serious concern to us since

the minimum frequency step size is usually 1 MHz or more.

There is, however, one cause of concern in the use of

the HP5100 synthesizer as the switched-frequency oscillator,

a problem which was not fully recognized until several

experiments, including the October 1969 experiment, had been

completed. This concern relates to a problem of "phase-

settling transients" when the device has been set to one

frequency for a relatively long period of time (such as the

few minutes between observations) and then is suddenly

switched to another frequency. If the synthesizer output

is compared to an ideal stable oscillator immediately after

the synthesizer frequency has been changed, the synthesizer

phase may drift through a large fraction of a rotation over
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a period of a minute or more before "settling" to a final

constant phase. This "settling" process seems to be more

or less exponential, most likely indicating internal thermal

transients. Because the effects are fairly frequency-inde-

pendent, it is not believed that group-delay measurements

were significantly affected, however phase-delay rates may

possibly show some bias due to this problem. Unfortunately,

since the problem was not discovered until some time after

the October 1969 experiment was completed, it was not pos-

sible to reassemble the necessary equipment to make more

precise measurements of the effects. More recent experiments

have reduced the "phase settling" problem by leaving the

HP5100 synthesizers switching continuously even between ob-

servations.

The final stage of IF conversion takes place with a

local oscillator of 30 MHz which is derived by direct multi-

plication from the maser 5 MHz signal. Problems of transients

or drifts affecting this oscillator are negligible compared

to those introduced by the first and second local oscillators.

6.6 FREQUENCY CONVERTERS AND IF SYSTEM

Frequency conversion to video, as shown in Figure 6-1,

takes place in three conversion steps. The primary re-

quirement for all the elements in the frequency conver-

sion and IF system is wide-band performance so as to re-

duce to a minimum any undersirable phase-dispersion
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characteristics.

Both the L-band and X-band mixers are of commercial

manufacture (both by RHG Electronics Lab., Inc.) and are

followed by built-in wide-band IF preamplifiers with band-

width 10-150 MHz. The noise figures of these mixers are

8.3 db (~17000 K) and 10.5 db (~30000 K), respectively. A 40-

80 MHz bandpass filter follows the first stage of mixing

in order to prevent the mixing of harmonics of the second

local-oscillator with frequencies in the higher part of

the 10-150 MHz IF passband.

The second conversion takes place in a standard com-

mercial mixer of bandwidth -10-100 MHz. This mixing is im-

mediately followed by a narrow-band (30.0-30.4 MHz) image

rejection filter.

The final frequency conversion to video is accomplished

in a single-sideband converter of unique design. (Rogers,

Reference 40 )- In this converter, the local oscillator is

separated into two quadrature components by a quadrature hy-

brid and mixed with the IF signal. Two very-wide-band

450 phase shifters are then used to form quadrature com-

ponents before adding. The uniqueness of the design stems

from the very wide bandwidth of the 450 phase shifters, al-

lowing the local oscillator to be shifted over a large range

and requiring only a low-pass filter to select the video

bandwidth.
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6.7 RECORDING SYSTEMS

6.7-1 General Comments

Some of the very earliest VLBI experiments em-

ployed analog recording systems (References 1 and2 ), and

in fact, the present-day recording system developed by the

Canadians (Reference 3 ) is basically an analog system.

On the other hand, all of the recording systems developed

specifically for VLBI in this country, outside of the very

early work, are exclusively digital in nature. There are

advantages and disadvantages to both techniques, which we

shall briefly review.

The advantages of analog recording are primarily the

ready availability of low-cost off-the-shelf recorders

and the relatively low-cost of constructing a processing

terminal. A mild advantage is that the usable data band-

width, for a given recording bandwidth, is about twice

that of the clipped and sampled digital systems. The pri-

mary disadvantages of analog recording systems are the

difficulty of maintaining time-base stability during play-

back and, in general, the relative inflexibility of the

data-processing procedure. Neither of these disadvantages

needs be serious if one is interested only in obtaining

fringe amplitudes, delays, and fringe rates over an in-

stantaneous bandwidth of no more than a few MHz, where

playback time-base stability need be oc~d to no better than
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several tens of nanoseconds in order to obtain results which

are not limited by the recording or playback system. Switched-

frequency delay-interferometry, on the other hand, demands

time-base stability on playback (as well as during re-

cording) of a very small fraction of a nanosecond, which is

more difficult to achieve with analog recording systems.

The primary advantage of digital recordings for delay

interferometry is that the playback time-base stability is

absolutely faithful to the recording time-base stability.

The position of a bit in the sampled-data stream unambiguously

labels the time at which it was taken, completely elimina-

ting problems of tape stretch, wow, flutter, or alignment

in assigning a time-tag to any bit of data. A further major

advantage of digital recording is the extreme flexibility of

data processing with general-purpose digital computers.

The disadvantages are the complexity and high cost of

special recording hardware and the high costs of data proces-

sing.

Another consideration in the choice of data record-

ing systems is the duration of a recording on a single

reel of tape. This duration varies widely from system to

system and is not generally dependent on whether the system

is analog or digital. The NRAO Mark I digital system

(720 kbit/sec sample rate) fills a standard 2400-ft reel

of 1/2-inch-wide computer tape in 3 minutes. The Canadian ana-

log recording system (4 MHz bandwidth) fills a 1000-ft reel
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of 1-inch wide video tape in 15 minutes. And the new NRAO

Mark II system (4 Mbit/sec sample rate) fills a 1000-ft

reel of 2-inch wide video tape in one hour. Obviously,

greater convenience is afforded by longer recordings. The

relative shortness of the 3-minute Mark I recordings is

somewhat compensated for, however, by its direct compatibility

with standard computer tape-reading facilities.

6.7-2 The NRAO Mark I Recording System

The NRAO Mark I recording system was chosen for use

in the October 1969 experiment. At the time, there were no

other viable alternatives and, furthermore, the Mark I

system was a proven recording system with which we had had

some previous experience. The main drawback was the very

large number of magnetic tapes needed to perform a large

experiment.

In principle, the Mark I recording system is quite

simple. The bandlimited video signal (0-360 kHz) from the

output of the video converter is first infinitely clipped

(i.e. the output of the clipper takes on one of two values

depending on whether the video output voltage is above or

below zero), then is sampled at a rate of 720,000

samples per second. The sampling rate is controlled by

internal digital logic, which is in turn driven by a

5 MHz signal from the hydrogen maser station reference.

Uniformity of sampling rate with respect to the station

reference clock is essential in obtaining an accurate

switched-frequency group-delay estimate. Any internal
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drifts or changes in the digital logic controlling the

sampling times will directly affect the group-delay es-

timate by the amount of the drift.

After sampling, the data are formatted for output

onto a standard 7-track computer tape drive operating at

a tape speed of 150 inches per second and writing at a

density of 800 characters per inch. The data stream is in-

terrupted for ~5 milliseconds out of every 0.2 sec in

order to generate a "record gap" which separates physical

records on the tape. This data-blanking is precisely timed

so that the first data-bit of each record is separated by

exactly 144,000 samples (corresponding to 0.2 sec of real

time) from the first data-bit of the adjacent records. In

addition, the sample-time of the first data-bit of the first

record is precisely controlled. By simply correcting

records and bits within a record, then, the sample-time of any

given bit is easily determined. Occasionally, due to errors

occurring during playback, some "bit slippage" may occur so

that calculation of the sample-time within a single record

will be in error. This error is usually not serious because

the bit count is reinitialized at the beginning of each

record. Generally, when "bit-slippage" occurs, it is in

multiples of 6 bits (the length of a tape "character") so

that any correlation "signal" is almost entirely lost (a

shift of 6 bits corresponds to more than 8 psec, several

times the width of the main lobe of the cross-correlation

function). The only effect is then to add a small amount of
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noise to the observation. Another error that can occur

during playback is a loss of record count. This loss

can occur if a very bad section of tape is encountered

such that several records are read as one or vice versa.

A complete loss of signal, of course, results. And since

no identifying data are written on a record by the Mark

I system, this type of error is generally irrecoverable,

although it happens infrequently. Newer VLBI recording

terminals, including the terminal used at Haystack for the

October 1969 experiment, includes time identification as

an integral part of each record, thus eliminating possible

problems of this sort.

Time synchronization of the Mark I recording system

is basically a simple procedure. An external time reference

from Loran C or a "traveling" rubidium clock, for example,

is compared to a periodic pulse generated within the record-

ing system. This pulse is adjusted forward or backward

to match as closely as possible the epoch of the external

reference source. The precision of this adjustment is

typically about one microsecond. The rate at which site

time progresses is then determined by the site frequency

standard, which is not necessarily the same device from

which the site epoch is derived. Typically, for example,

the site epoch is set by comparison to a"travelinq" cesium

standard, but once set, site time is maintained by a hydro-

gen maser.
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6.8 FREQUENCY STANDARDS

VLBI has become synonymous with "independent-

standards" interferometry; that is, the participating sites

take data completely independently, with no communication

of any sort passing between them (except, of course, for

the usual frantic phone calls). Of all the technical

developments that have made VLBI possible, modern frequency

standards are among the most important. Here we shall first

briefly examine the characteristics of currently available

devices. Then we shall discuss the requirements of various

types of VLBI experiments and the corresponding suitability

of particular types of frequency standards.

6.8-1 Characteristics of Existing Standards

Figure 6-3 shows a plot of the RMS fractional fre-

quency stability vs. averaging time for a variety of common-

ly used standards. (Reference 41 ). It must be noted

that there exists considerable controversy over the estimates

of some of the characteristics indicated in this plot, par-

ticularly in regard to the hydrogen maser. Data published

as early as 1968 ( 1ference 42 ) indicate measured

-15
stabilities of 7 x 10 over a 1 minute averaging period.

A study made by NRAO in 1970 (Reference 43 )

measured the fractional stability of 1 x 1012 over the same

averaging period between a specific pair of masers. On the

other hand, data taken between Haystack and Goldstone in

1972 is not inconsistent with fractional stabilities of several

parts in 1014 over one day. Emerging from this controversy
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seems to be the simple facts that 1) estimates of hydrogen-

maser stability vary widely,and 2) hydrogen masers themselves

seem to vary widely in their stability. Based on our own

experience, however, the stability of a well-engineered and

-13
properly-running hydrogen maser is at least 1 x 10 over a

day.

In contrast to the maser-stability uncertainties, the

stability performance of other types of standards is quite

well known. Here again, however, the plots of Figure 6-3 re-

present only a general indication of the average performance

to be expected. The author's experience and that of others,

however, warns that some of these devices, as with hydrogen

masers, show significant variation between different models

of the same type of device and even from serial number to

serial number within a given model.

For averaging periods of up to -1 second, Sulzer

crystal oscillators (not shown in Figure 6-3)

appear to be the best available, and it

is logical, therefore, that for best stability, the Sulzer

oscillator should be phase-locked to the hydrogen maser with

a phase-locked loop time-constant of a few seconds. In fact,

the short-term stability of all the atomic-frequency standards

is essentially limited by the short-term stability of their

associated phase-locked crystal oscillators and all current-

ly available atomic standards could be improved by employing

state-of-the-art Sulzer oscillators. Such a feature is

not yet generally commercially available, but probably



-229-

will be if demand increases.

6.8-2 Frequency-Stability Requirements

Frequency-stability requirements vary considerably

from one VLBI experiment to another. The stability require-

ments for simply obtaining fringes are, in general, much

less stringent than requirements for doing good astrometric

or geodetic work. Almost always a fairly large constant

frequency offset can be tolerated, as long as it is not so

large that observed fringe rates fall outside the limits of

a practical search, usually about ±2.5 Hz for the Mark I

recordings. In order to simply obtain good fringe-amplitude

results, random fluctuations in the phase of primarily the

first local oscillator must be less than about one radian

over the integration period. Assuming that the fractional

stability of the first local oscillator closely reflects

the fractional stability of the frequency standard, this

requirement can be approximated by

(y) wT < 1 (6-1)

where is the fractional stability of the frequency

standard, w is the radio frequency of the observations,

and T is the integration time. In cases where the frequency

standard is-the major limitation in fringe-phase stability,

expression (6-1) can be used to estimate the maximum
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usable observing frequency for a given integration time,

namely

-1Af 1
w~ ( f-) - (6-2)max f T

From Figure 6-3 we see

that even a rubidium standard is sufficiently stable to

be used at X-band (~4cm) if T - 100 seconds. Rubidium

standards have in fact been used for a number of VLBI

experiments operating at X-band. They have also been used

at even much higher frequencies, namely near the water

vapor line at 22 GHz, where some sources are extremely

strong, allowing the integration time to be cut signifi-

cantly. The measurements made using rubidium as a standard

usually cannot be used directly to obtain high precision

astrometric or geodetic results. However, it is sometimes

possible to circumnavigate the long-term stability problems

of the frequency standard by frequently observing a

"reference" source. If such a reference source can be

periodically observed at intervals short enough such that

the random drift of the standard is small (with respect to

some measurement goal) between observations, then the

reference source itself may be considered a high-precision

clock against which all measurements of time are referenced.
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Often this procedure is difficult to implement over a

large area of the sky because of the practical limitations

of rapid antenna movement. Recently, however, VLBI ex-

periments have been conducted by the author and others in

which four antennas, forming two interferometers with nearly

co-located baselines, have been used (References 44, 45).

The pair of antennas forming each end of the baseline have

a common frequency standard, so that both long-baseline in-

terferometers are identically affected by frequency-standard

instability. If the two interferometers are pointed toward

two different sources in the sky, one interferometer may be

considered the reference for the other. The observable of

interest effectively becomes the difference between the

single-interferometer observables, which has all effects of

clock instabilities removed.

The hydrogen-maser standard is the only frequency stan-

dard which has long-term instabilities which are not large

compared to the uncertainties in some of the other unknown

parameters. Long-term stability approaching a part in 1014

implies stability of nearly 1 nanosecond over the course of

1 day, a typical duration for a VLBI experiment. The un-

certainties in present estimates of the electrical path

length of the atmosphere and ionosphere (at X-band) is a

large fraction of a nanosecond. Thus, the use of a hydrogen-

maser standard must always be considered desirable for
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any high-accuracy long-term experiments since it reduces to

a minimum the number of clock parameters which must be

estimated. Experience has shown that the difference between

two well-adjusted and properly-functioning hydrogen masers

can usually be well-characterized over a one-day period by

a constant offset and linear rate.

Certain types of experiments require the stability of

the hydrogen maser. For example, experiments at 22 GHz

(water vapor) which require integration times ;100 secs to

obtain sufficient SNR would not be successful without the

use of a hydrogen maser (unless another simultaneous inter-

ferometer on a stronger source can provide a "clock" refer-

ence). Also several recent experiments by this author and

others have been successful in "connecting" fringe phase

from one observation to another taken some minutes later.

In other words, successful attempts were made to extrapolate

the phase delay from one observation of a source to the next

without introducing any 2T ambiguities into the time

development of the fringe phase. If, say, two 3-minute

X-band observations of the same source are made 10 minutes

apart, a minimum necessary condition to successfully "con-

nect" fringe phases is that the phase uncertainties at X-

band be no more than about one radian over ten minutes, cor-

responding to a stability of about 3 x 10
-14. Clearly, no

frequency standard other than the hydrogen maser could be
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used to attempt such an experiment. For the immediate

future at least, hydrogen-maser frequency standards should be

adequate for practically all VLBI experiments which require

stability of a few nanoseconds over periods up to several

days.

6.8-3 Frequency-Standards Used for October 1969 Experiment

The frequency-stability requirements for the Oc-

tober 1969 experiment were set primarily by the require-

ments of the astrometric and geodetic portions of the ex-

periment. During the planning of the experiment it was

believed that all systematic effects could be modelled to

the level of a few nanoseconds over a day. This consideration

included the assumption that the performance of the reference

standards could be modelled adequately to the level of a

few tenths of a nanosecond per day. Only the hydrogen maser

can begin to meet this requirement. Masers were therefore

used at all three sties during the experiment. The maser

used at NRAO was a Varian Model H-10, one of the first such

units ever to be produced commercially. Haystack and OVRO

were supplied with newly designed and constructed units from

the NASA Goddard Space Flight Center. The primary output

of all units is a 5 MHz signal. In addition, the units at

Haystack and OVRO each had provisions for generating two

1 pps signals, each of which could be arbitrarily offset
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with calibrated thumbwheel switches, a feature particularly

useful for monitoring critical timing points within the

VLBI system. Each maser was also equipped with a set of

emergency batteries which would, in the case of a power

failure, keep the maser operating for a period of up to

several hours.

6.9 THE OVRO ANTENNA

The antenna used at the OVRO site was one of a pair of

equatorially-mounted primary-focus 90-ft-diameter dishes

normally used as a short-baseline interferometer. The an-

tennas are mounted on tracks and can be moved to a number

of locations. The location of the antenna for the October

1969 experiment was chosen to be as close as possible to

the antenna control building where the hydrogen-maser fre-

quency standard was housed. The surface of the dish is

divided into "inner" and "outer" areas. The inner 45-ft

diameter is composed of a solid metal reflecting surface.

The remaining outer area is of punched aluminum, with

~ 1/8" punched holes with a comparable separation. The

efficiency of the dish is estimated to be -40% at L-band

(11 cm) and -20% at X-band (3.8 cm). Source tracking is

by means of a simple sidereal drive. Initial source acquisi-

tion is essentially manual. Pointing accuracy at L-band is

sufficient to point "blind", but blind-pointing at X-band

can not be considered reliable. Although pointing cor-

rection curves were generated to aid in pointing the an-

tenna, they are often useless during periods of high winds

at the site, of which there were several during the October



-235-

1969 experiment. Of the problems encountered during

actual data-taking, antenna pointing at X-band was one of

the most severe.

All front-end receiver equipment was housed in

an aluminum box with ~3 cubic feet of interior volume.

The receiver box was mounted on a ring which could be re-

motely rotated through 3600 to adjust for proper linear

polarization alignment with the other participating antennas.

In addition, the receiver box could be extended or retract-

ed several inches toward the center of the dish to adjust

focussing of the feed horn.

Signals to and from the antenna passed through various

long cables. The 5-MHz maser reference signal was sent

through -300' of buried Spiraline coaxial cable to the

base of the antenna, and then through ~150' more of Spiraline

to the antenna focus. The IF signal from the receiver to the

control room followed a similar path. All control and moni-

tor signals were sent through -250' of heavy multiconductor

cable strung over the ground from the control room to the

antenna base, and then through various available twisted-

pair and coaxial cables to the focus. Most heavy power sup-

plies, including two high-voltage power supplies for the

klystrons and a high-current thermoelectric-cooling-system

controller were housed in the base of the antenna.

6.10 CONSTRUCTION, TESTING, AND INSTALLATION OF THE
RECEIVER AT OVRO

6.10-1 Receiver Construction

All of the front-end receiver equipment was placed
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within a specially constructed aluminum housing designed

to be compatible with the size, shape and mounting restraints

imposed by the antenna structure. A basic aluminum housing

provided by OVRO was extensively modified for application

to the October 1969 experiment. Large access panels were

added for operational convenience. The entire structure was

strengthened by the addition of welded reinforcing bars. A

heavy-duty feed-mount support frame was constructed to hold

the feed-horn assembly in the proper position.

A temperature-control system was installed to maintain

a constant internal temperature. This was necessitated

because of the large day-to-night temperature variations

(-40°F) in the desert-like climate of the Owens Valley area.

Four thermoelectric heat pumps were used for this application,

each with a maximum capacity of 100 watts (heating or

cooling). Internal dissipation within the receiver equip-

ment was estimated to be -300 watts, mostly due to the par-

amp pump klystrons. Four fans were used to keep a constant

flow of air circulating through the receiver equipment and

the temperature-control air ducts along the side of the

equipment box. Large finned radiators, in direct thermal

contact with the thermoelectric heat pumps within the air

ducts, served to control the temperature of the circulating

air. Internal air temperature was sensed by a thermistor,

whose "output" was used to control the magnitude and direction

of current through the thermoelectric heat pumps. A special

controller built by NRAO was used to drive the thermo-
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electric units, with currents of up to 30 amperes (Reference

46). This controller uses silicon-controlled rectifiers

to control the current to the heat pumps; careful filter-

ing and screening are used to eliminate radio interference

as much as possible.

A major problem in the construction of the receiver

was the very limited space into which all of the receiver

equipment had to be fitted. As mentioned earlier, only

3 ft3 of space was available for the installation of the

complete X-band and L-band receivers and local-oscillator

systems. Figure 6-4 shows a view of the completed re-

ceiver box as it would look installed on the antenna.

In Figure 6-5 the outside shell and temperature-control

system have been removed to show the construction of the

interior equipment rack. Here the L-band feed horn

is clearly visible. The concentric X-band feed is partially

visible in Figure 6-4 behind a weatherproof fiberglass

radome. Finally, Figure 6-6 shows a view of the completed

receiver box with only the top cover removed. The four

thermoelectric coolers, two on each side, are mounted

on ducts into which radiating fins extend. Total weight

of the finished box was nearly 300 lbs. Ground support

equipment for the receiver box, excluding the hydrogen

maser, was housed in standard equipment racks in both the

antenna base and antenna control building.
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Figure 6-4: Completed Receiver Box

Figure 6-5: Interior Equipment Rack

;i'
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Figure 6-6

Receiver box with top cover removed
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6.10-2 Receiver Testing and Installation

Unfortunately, the stringent demands of the ex-

periment schedule did not allow nearly as complete a test-

ing and checkout of the receiver system as would have

been desirable. Only two days of time were available for

complete system checkout before shipment to California.

All systems seemed to be working well except for some

difficulty in tuning both the X-band and L-band parametric

amplifiers. Estimates of the total system temperatures

were made and proved to be a good deal higher than expected.

At that time there was little that could be done to fully

investigate the problems. All further testing had to

be done in California. This normally would not constitute

a severe problem, except that much of the sophisticated

test equipment which was available at Haystack was not

available at OVRO. After arrival in California (a few days

late as usual, following normal air freight procedures)

the whole system was again tested "on the bench" as care-

fully as possible before the receiver box was actually

mounted on the antenna. Again paramp problems were en-

countered. After a few hectic days of work the whole

system was installed on the antenna and prodded into life.

All systems appeared to be working properly except that

system temperatures were much higher than desired. X-band

system temperature was estimated to be -300 0K and L-band
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temperature was nearer -800 0K. Careful calibrations of

system temperatures were difficult because of a fairly

large uncertainty in the dish and feed system efficiency

and a fairly large uncertainty in noise-tube temperatures.

The reasons for the high system temperatures were never

entirely explained and extensive post mortems were not

possible because all equipment had to be removed from the

antenna and effectively dismantled immediately upon com-

pletion of the experiment.
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CHAPTER 7

CONDUCT, ANALYSIS AND RESULTS OF THE EXPERIMENT

7.1 PRELIMINARY SETUP AND TESTING

Toward the middle of September 1969 the necessary

equipment was being gathered at the three sites for the up-

coming experiment. The receiving equipment, which had all

been constructed at Haystack, was shipped to NRAO and OVRO.

Approximately 3000 maqnetic tapes were obtained through the

tape-reconditioning facility of the NASA Goddard Space Flight

Center and were distributed to the three sites. A hydrogen

maser, also from NASA/GSFC, was also shipped to each of the

participating stations.

Time synchronization at Haystack and NRAO was accom-

plished by comparison of the VLBI clocks with WWV and Loran-C

signals. WWV is used for a coarse synchronization to about

the millisecond level and Loran-C for the fine synchronization

to a few microseconds. At OVRO no Loran-C or equivalent signal

was available, so that synchronization had to be done by other

means. A rubidium clock, obtained for the duration of the

experiment from the National Bureau of Standards at Boulder,

Colorado, was synchronized to a primary cesium standard at

NBS. The operating clock was then flown to the OVRO station

and the hydrogen maser was synchronized to it.

At OVRO, where the author was located, several problems

were encountered during the setup period. Particular problems
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were encountered in tuning both the X-band and L-band para-

metric amplifiers and adjusting their gains and bandwidths

to the desired specifications. System temperatures at both

X-band and L-band were significantly higher than had been

expected. When mounted on the antenna, the X-band system

temperature was ~300 0K, but the tuning of the parametric

amplifier was quite sensitive to mechanical vibrations and

stresses. When tuned as best as possible the gain at the

center of the band was approximately 20db with a 3db band-

width of ~30MHz. Since the parametric amplifier was relied

upon for sideband rejection as well, the actual X-band

sideband rejection was ~20db over most of the observed fre-

quency band. At L-band the parametric amplifier performance

was even poorer and the system temperature, mounted on the

antenna, was ~800 K. Gain was approximately 15db over a

bandwidth of approximately 50 MHz. As with the X-band system,

the L-band parametric amplifier was relied upon for sideband

rejection, so that actual sideband rejection was about 15db.

Several other problems were encountered during the

setup period. One problem was due to the very large day-to-

night temperature changes, often 40-50 0F, of the desert atmos-

phere at the OVRO site, taxing the front-end-box temperature

control system to its limits. After several days of experi-

mentation it was found that an internal temperature setting

of about 80 F was about optimum for lessening, as much as

possible, the load placed upon the temperature-control system.
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Another problem, potentially more serious, was the -300 lb

weight of the box itself. This weight was several times

more than had previously ever been mounted on the antenna

and there was some concern about the mechanical strength

of the systems which are used to focus (i.e., to move the

feed toward or away from the surface of the dish) and to

rotate the box. A decision was made to go ahead and try.

Fortunately, nothing broke.

After the entire receiving and recording system was

set up, test tape recordings of both the phase calibrator

signal and broadband noise were made and sent back to Haystack

for spectrum analysis. The results of these tests were

satisfactory and the system was judged operationally ready

to proceed even though the high system temperaturesat both

X-band and L-band were still of concern.

Similar setup and test operations took place at Hay-

stack and NRAO under the direction of Hans Hinteregger at

Haystack and Tom Clark and Curt Knight at NRAO. Numerous

people were stationed at each site to help with the observa-

tions to be made during the coming days.
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7.2 CONDUCT OF THE EXPERIMENT

7.2-1 Scheduling of Observations and Sources Observed

An attempt was made to schedule observations so that

each primary source was sampled as often as possible each

day. Of course, considerable attention was paid to 3C273B

and 3C279 during the daytime, pursuant to the gravitational-

bending measurement. Typically, a 3-minute observation was

made every 10 to 15 minutes, according to a master schedule

prepared in advance. Since simultaneous X-band and L-band

observations were not possible, some periods of time were

devoted to all X-band others to all L-band, and some periods

to mixed X-band and L-band observations. Ideally, mixed

X-band and L-band observations would have been scheduled for

most of the experiment, but the 15-20 minute changeover time

from X-band to L-band at Haystack would have made such a

schedule inefficient.

Except for some brief periods of a few hours for

maintenance and repair, observations were conducted on a

24-hour-a-day around-the-clock basis from 1 October to 15

October 1969. A basic set of eight sources, including 3C273B

and 3C279, were chosen for concentrated observations.

These sources are listed in Table 7-1 along with their a priori

coordinates.

In addition some observations were also made on a number

of weaker or more speculative sources from which, unfortunately,

very few useful results were obtained, due partly at least to
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receiver problems. Many of these sources simply could not

be seen well enough (if at all) in total power to point the

antennas properly, particularly at OVRO. With a more

sensitive system many of these sources might have shown

fringes or more consistent fringes. Sources such as CTA102,

1127-14, 2134+00, VR042.22.01, 3C371, OK290 and OJ287 have in

fact shown good fringes in later experiments using more

sensitive equipment, notably the extremely sensitive Haystack -

Goldstone interferometer. The sources included in this latter

category include 0735+17, 0736+01, 2134+00,

0438-43, 3C371, 3C380, CTA102, 0742+10, 1127-14, NRAO530,

OV080, 3C405, 3C418, OX161, OX074, 2145+06, 2127+04, 2203-18,

2345-16, 3C446, 2328+10, 0048-09, 0106+01, 0C328, 0202+14,

0605-08, 0607-15, 1055+01, 3C309.1, NRAOl40, 0420-01, 0834-20,

01363, 0J287, OK290, and 1148-00.

7.2-2 Observing Frequencies

The two basic observing frequencies were ~7840 MHz

(X-band) and ~1660 MHz (L-band) (also see Section 5.2). Several

different sets of switched-frequencies were used during various

parts of the experiment. The exact sequences used, including

single-band frequencies, are listed in Table 7-2; also in-

dicated is whether the observations associated with a par-

ticular sequence are upper or lower sideband. Generally,

all X-band observations were lower sideband and L-band ob-

servations were upper sideband.
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Although most of the observations were made using the

switched-frequency technique to determine group delay, oc-

casional single-band observations were made in order to aid

in the determination of the a priori clock offsets in later

data processing. Although in principle it is possible to

determine the same information from frequency-switched ob-

servations, in practice it is very time consuming because

of the significantly more complicated nature of the frequency-

switched data processing.

7.2-3 Details of a Single Observation

Each single observation consisted of recording approximately

3 minutes of data on magnetic tape. The recording system, once

armed, started the tape automatically at a precisely controlled

instant relative to the master station clock. Also at this

instant, the frequency-switching controller took over control

of the synthesizer controllinq the frequency-switched second

local oscillator, switching at a rate of five times per

second. During the first ~5 seconds of the observation, a

high-level phase-calibration signal, as described in Section

6.2, was added into the first IF signal, appearing in the

video at a frequency of 100 kHz in each frequency window. At

the end of this 5 second period, the phase-calibration system

was shut off and normal VLBI data were recorded. Total power

information was recorded separately on a continuously-running

paper-chart recorder.
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An important detail that had to be adjusted for each

observation was the direction of the polarization of the linearly-

polarized feeds. The direction of polarization of the signal

received at the Haystack antenna, which has an azimuth-ele-

vation type of mount, changes as a function of azimuth and

elevation. The NRAO and OVRO antennas, on the other hand,

are of the polar-mount type and maintain a constant polari-

zation angle on the sky. In order to keep the polarization

angle of all antennas in the same direction (on the sky),

the feeds at NRAO and OVRO were rotated, for each observation,

to match the Haystack polarization angle. The feed at Haystack

was of a non-rotatable type.

7.2-4 Operational Difficulties Encountered

Some operational difficulties were encountered at each

of the three participating stations. Both Haystack and NRAO

had been used previously for VLBI experiments and, as a

result, there tended to be fewer problems there than at

OVRO, which was being used for the first time.

At OVRO two primary and somewhat related problems were

encountered. The higher than anticipated system temperatures

at both X-band and L-band made pointing at all but the

strongest sources very difficult. Due to the characteristics

of the antenna pointing system, it was sometimes possible to

point "blind" at an L-band source and acquire it successfully;

at X-band, however, with a beamwidth of a few minutes of arc,

the only way that a source could be reliably acquired was
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to carefully monitor total power. Any source with a total

flow of less than about 10 F.U. at X-band, which corresponds

to an increase of about 0.4oK in antenna temperature, was

practically undetectable since the gain fluctuation in

the parametric amplifiers were on the order of 0.50K over

a period of a few seconds. The pointing difficulty was exag-

gerated whenever winds of more than a few mph, which were not

uncommon, were buffetting the antenna. High winds

forced the total shutdown of operations on several occasions.

Also at OVRO, some difficulty was experienced in keeping

the X-band parametric amplifier properly in tune from one day

to the next, apparently due to mechanical instabilities. Re-

tuning was required several times during the course of the

experiment. The only other further problem of note at OVRO

was the loss of synchronization to the hydrogen maser when,

approximately halfway through the experiment, a switch was

accidentally changed. The VLBI equipment was immediately re-

synchronized and remained synchronized for the remainder of

the experiment.

At NRAO the major problem turned out to be several

massive power failures at the site, resulting in loss of clock

synchronization on several occasions. Following restoration

of power, in each instance, all equipment had to be brought

back up to operating status, usually accompanied by warm-up

drifts and instabilities. Post data-analysis indicates that

the hydrogen maser at NRAO had several clock synchronization
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"breaks" during the course of the two week experiment.

At Haystack, operations proceeded smoothly for the

most part. However, several days of bad weather, including

rain on some occasions, caused the radome to be wet and raised

the system temperature by -70-1000K.
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7.3 DATA PROCESSING THROUGH VLBI 1 AND VLBI 2

7.3-1 Determination of the Coarse Clock Synchronizations

At the completion of the experiment all of the data

were shipped back to the NASA Goddard Space Flight Center

where the nearly 3000 magnetic tapes were organized and cata-

loqued. The first stage of the data-reduction procedure was

to take samples of single-band data from each baseline in-

dividually and do a systematic search for fringes by off-

setting the a priori clock synchronization error in steps.

Each pass through VLBI and VLBI 2 covers an effective search

range of about 6-7 microseconds. Typically, synchronization

errors were less than -15 microseconds, requiring only three

or four passes through VLB 1 and VLBI2 to locate the proper

synchronization. In principle, of course, it is necessary

to examine only two baselines to determine the clock synchroni-

zation errors for all three baselines. In practice,trials

are usually made on all three baselines to insure that the

clock-synchronization determinations are proper. Sample data

selected from throughout the experiment were processed in

this manner to determine if any anomalous clock synchronization

"breaks" occurred during the experiment, and to determine the

periodic adjustment of clock synchronizations, if necessary,

to compensate for differences in clock rates. The clock

synchronization parameters determined by this procedure are

very coarse usually accurate only to the order of a few tenths

of a microsecond, and are intended only to become part of the
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a priori model for the actual processing of the data.

7.3-2 Determination of Phase-Calibration Correction Phases

The second stage of the data processing requires de-

termining the so-called "phase-calibrator correction phases"

(see Equation 4- 13).These are a set of constant phases which

are to be added to the measured phase-calibration phases to

take into account the initial arbitrariness of the oscillator

phases of each of the frequency-switched channels. Once

determined, this set of correction phases should remain con-

stant for the duration of the experiment as long as the

synthesizers controlling the switched-frequency oscillators

are not disrupted. The procedure for determining these

phases is relatively straightforward. Several 3-baseline

samples of frequency-switched data are selected from each

period of time for which the phase coherence of the switched-

frequency oscillators is believed to have been maintained.

These data are first processed through VLB1 1and VLB1 2 with

no correction phases, using the a priori clock synchronization

parameters determined in the first stage of the processing.

Then, using the data from the two baselines with the highest

correlation amplitudes, the residual fringe phase for each

frequency channel at zero residual delay is noted and then

is applied as a "correction phase" for a reprocessing through

VLBI 2. After several iterations of all the sample observations

through VLBI land VLBI 2a set of correction phases is found

which minimizes the fluctuations, from observation to observation,
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of the individual-channel residual fringe phases around the

mean residual fringe phase and causes the empirically-

determined delay resolution functions to be nearly symmetric.1

The correction phases for the third baseline are then chosen

such that the sum of the correction phase around the three

baselines for each frequency channel is zero. This insures

that the local oscillator phases are handled consistently so

that the sum of the group delays around the three baselines

should be nearly zero (within the limits of the expected errors).

1
This procedure may seem to destroy knowledge about the clock
synchronizations. However the actual clock synchronizations
cannot be determined from this experiment to any higher ac-
curacy than a single-band observation will allow. The reason is
that only the relative phases of the switched-frequency local-
oscillator signals can be determined by the phase-calibration
method employed,. Their phases, relative to the phase of the
hydrogen-maser clocks, are not known and were not measured, and
thus the exact relation between the actual clock synchronization
and the apparent clock synchronization is not known.

Put another way, the set of "phase-calibrator correction phases"
simply defines the relation of the switched-frequency oscil-
lator phases to the readings on the station clock. In so doing,
a small arbitrary constant is, in effect, added to the true
clock readings at each site. This has no effect on any of the
geodetic or astrometric measurements. The only consequence
is to introduce a small unknown constant bias in the final
clock synchronization solutions. A more sophisticated
switched-frequency oscillator system, in which the relation
of the oscillator phases to the readings on the station clocks
is precisely known, would eliminate this small synchronization
uncertainty and allow the true clock synchronization to be
determined to the full accuracy of the switched-frequency
technique.
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7.3-3 Mass Processing of Data Through VLBI 1 and VLBI 2

Once the a priori clock synchronization estimates and

phase-calibrator correction phases had been determined from

samples of data taken throughout the experiment, all parameters

were in hand for the mass processing of the entire set of data

through VLB11 and VLBI2 Both VLBI 1 and VLBI 2 could simul-

taneously process all three baselines of a three-station

observation, typically requiring about 8-9 minutes of time

using an IBM 360 Model 91.

The output of VLBI iwas collected on a set of archival

tapes to maintain a permanent record of the record-by-record

correlations of the original data. Processing through VLBI2

could then take place immediately or at any later time. The

phase-calibrator correction phases could be entered as

an input to VLBI 2, so that their values could be modified

if necessary, without reprocessing through VLBI 2. The out-

put of VLBI 2was collected on punched cards, approximately

six cards per baseline-observation. The data on these

cards contained all of the information needed for final

processing through VLBI 3 as well as some additional data for

post-mortem analysis of individual observations.

7.3-4 Examples of Results of Individual Observations

In this section we shall examine the results from

several typical individual observations. In so doing we

shall be able to point up some of the strong and weak points

of the experiment and also, to some extent, to compare the
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experimental results with predictions.

The first observation which we shall examine is a

switched-frequency X-band 3-station observation on the source

3C273B taken at 1545 UT on 2 October 1969. Figures 7-1, 7-2

and 7-3 show the results from each of the three baselines

respectively. The results from each individual baseline are

displayed in three different ways in parts (a), (b) and (c)

of each figure:

(a) Correlation amplitude vs. residual fringe rate.

The coarse delay-rate search (see Section 4. 5-2)

is conducted by computing the correlation amplitude for

trial residual fringe rates spaced at -4.89mHz. The plot

shows 256 trial values, spanning a range of ±0.625Hz. The

width of the signal peak should be approximately l/T, where T

is the length of the observation. Any significant broadening

of the signal peak or high sidelobes near the main peak may

indicate poor oscillator stability, mispointing of one or

both of the antennas during part of the observation (so that

the actual time spent pointing at the source is <T), or un-

known factors such as the atmosphere, ionosphere and the solar

corona.

(b) Experimental delay resolution function vs. residual delay

The phase-calibrator and correction phases are applied

to the residual phases before constructing the delay resolution

function. The function is computed for 256 discrete residual



-258-

delays spanning ±500 ns (i.e., one full delay ambiguity)

around the best estimate of the delay determined in the initial

signal search. Any asymmetry around the peak of the function

is due to either noise or systematic bias in either the data,

phase-calibrator, or correction phases. The final estimate

of group delay is determined by interpolating to the peak

of the delay resolution function. It is interesting to compare

the experimental results with the theoretical delay reso-

lution function as shown in Figure 4-Lc.

(c) Correlation amplitude and residual phase vs. time for

each of the six frequency channels. For this plot the final

estimates of residual delay and delay rate have been applied

as corrections so that both phase vs. time and phase vs.

frequency-channel should be nearly constant and equal. Each

point represents 2 seconds of actual integration time on a

particular frequency-channel. Any systematic trends in phase

vs. time will also be indicated by a broadening of the fringe

rate spectra in the first plot, although deviations

of 5 1 radian are necessary in order for the broadening to

be evident. Deviations of the phase from one frequency-

channel to another indicates that either the phase-calibrator

system is not perfect, or that there are unaccounted-for dis-

persions in the equipment; phase deviations from frequency-

channel to frequency-channel will also be evidenced by asym-

metries about the peak of the delay resolution function.
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Examination of Figures 7-1, 7-2 and 7-3 indicates that

the fringe rate spectra are not noticeably broadened for any

of the three baselines, nor do any high sidelobes exist, sug-

gesting, at least, that there are no severe fringe-phase in-

stabilities over periods of time from about -0.2 to ~100

seconds. Large phase deviations with a period of 50.2

seconds would tend more to reduce the amplitude of the peak

than to broaden it because the averaging period before the

computation of the fringe rate spectrum is -0.2 seconds (i.e.,

one record). Large phase deviations with a period 5100 seconds

would tend to shift the signal in fringe rate more than broaden

it or reduce its amplitude. The delay resolution functions

for the NRAO-Haystack and Haystack-OVRO baselines are quite

symmetric, while the NRAO-OVRO delay resolution has a slight

asymmetry.

The residual phase vs. time plots, particularly those

of data from the NRAO-Haystack and NRAO-OVRO baselines (Figures

7.1c and 7.2c) show systematic trends on the order of a few

radians. Particularly evident is an apparent phase transient

at the beginning of the NRAO-Haystack observation. Each

frequency channel shows a transient of similar character. It

is now believed that these transients were primarily due to

the initiation of the switching of the frequency synthesizers

at the beginning of the observation. The

systematic behavior of the phase vs. time of the data from

the NRAO-OVRO baseline is somewhat less pronounced due to the
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much lower signal-to-noise ratio, but there does seem to be

a fairly large component ( ~2 radians) of a systematic nature

common to all six frequency channels. Such systematic

behavior of the fringe phase was observed on many switched-

frequency runs throughout the experiment, at both X-band and

L-band.

Table 7-3 details the numerical results of the ob-

servations presented in Figures 7-1, 7-2 and 7-3. For each

baseline the results are given for the actual measurement as

well as for so-called "a priori" and "a posteriori" models.

The "a priori" model gives the pre-experiment estimates of

the observation parameters, including the a priori delay and

delay rate and the originally expected correlation amplitude,

signal-to-noise ratio (SNR), rms phase noise, observation

length and the expected rms errors in the measured delay and

delay rate. The "measured" parameters include the actual

measured delay, delay rate, correlation amplitude, rms phase

noise, and observation length. Based on the observed cor-

relation amplitude and actual observation length, the "a post-

eriori" model gives the theoretical SNR, theoretical rms

errors in the measured delay and delay rate, and the theore-

tical rms phase noise. Clearly, the correlation amplitudes

of the actual data are below the original expectations, par-

ticularly on the baselines involving OVRO. Also, the

"measured" rms phase noise is significantly higher than the

"a posteriori" model would imply. This discrepancy is pri-
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marily due to the large systematic trends remaining in the

residual fringe phase over the duration of a 3-minute ob-

servation. If these systematic trends are removed, the

measured rms phase noise should correspond closely with

the theoretical value.

Figures 7-4, 7-5, 7-6 and Table 7-4 show the results

of a typical 3-station single-band observation. The par-

ticular observation chosen is an L-band observation on

3C273B. Again, we note from Table 7-4 that the measured

correlation amplitudes are much smaller than was a priori

expected. The measured phase noise and mean noise levels agree

well with the "a posteriori" model, which is based on the

measured correlation amplitude and actual observation length.

The phase noise calculations of the "a posteriori" model have

been made using the large signal-to-noise ratio assumption

implied in Equation (3-58) which is probably only barely

adequate for the extremely low correlation amplitudes measured

on the NRAO-OVRO and Haystack-OVRO baselines. In fact, the

measured correlation amplitude of 0.0009, on the Haystack-OVRO

baseline is very near the limits of detection (see Section 3.7)

as is clearly evidenced by the surrounding noise level in the

fringe rate spectra plot of Figure 7.6a.
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Figure 7- 4
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(a) Correlation amplitude vs. residual fringe role.
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Figure 7-6
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(a) Correlation amplitude vs. residual fringe rate.
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7.3-5 Delay and Delay Rate Closure Tests

A powerful test of the internal consistency and quality

of the data are the so-called "closure tests" in which the

measured delays and delay rates are summed around the three

baselines.2 In order to understand exactly how the delays

must be summed for these tests we must carefully define the

meaning of "delay". Consider two stations, i and j, and let

a marked wavefront reach station i at the instant that the

reading on the station i clock is ti. If the reading on the

clock of station j is tj at the instant this marked wavefront

reaches station j, the delay Ti. is defined as TijEt. - ti..

Now consider a network of 3 stations, designated 1, 2

and 3. Suppose, for simplicity, that the clocks at all three

stations are exactly synchronized (this assumption will not

affect the closure result). Now let us examine a marked

wavefront which arrives at station 1 at time t = 0. This

wavefront will arrive at station 2 at t = T 12 , at which time

the delay from station 2 to station 3 will have increased by

an amount T,1 2 23 , where ,23 is the delay rate of station 3

with respect to station 2 and where we have made the assumption

(valid for this analysis) that 123 is constant over a time T12.

Finally, the wavefront will arrive at station 3 at time t =

T + T T2 . But this must just be the delay between stations

1 and 3, T-r , so that

2Not only is the "closure test" a good test of the data but
also of the data reduction programs:
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T 1 3 = T 1 2  + T2 3 + T12T23 (7-1)

which is the so-called "delay closure" condition. We can

now define a "delay closure error," AT, given by

AT T12 23 - T13 +T12 23 (7-2)

where .j and T.. are the estimated values of delay and delay

rate, respectively.

By simple differentiation we obtain the corresponding

"delay-rate closure error," AtE, given by

+++ T (7-3)A E  12 23 - 113 + T12 23+ 122 3  (7-3)

where '23 is the delay acceleration, usually computed a

priori. The power of the closure tests of Equations (7-2)

and (7-3) is that AT and Aý are completely model-independent

since the closure condition of Ecuation (7-1) must be satis-

fied regardless of any vagarities of the real world!

We may now apply Equations (7-2) and (7-3) to compute

the closure errors of the actual data. By far, the largest

number of successful 3-baseline observations were taken on source

3C273B. The closure errors AT and 6AT have been computed

for these observations and the results are shown in Figure

7-7. The error bars for AT have been calculated as the

root-mean-square of the aT of the "a posteriori" model (see

Tables 7-3 and 7-4), while the corresponding error bars for

ATý are generally too small to be shown (see Tables 7-3 and

7-4 for typical values).
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From Figure 7-7 we see that the delay closure errors,

Arc, are scattered approximately in the manner one would

expect for the given error bars. This indicates that the

theoretical delay-estimation accuracies have probably been

closely achieved in practice and that the actual data closely

approximates the conditions assumed in the maximum-likelihood

analysis for group delay.

The delay-rate closure errors, on the other hand,

scatter much more widely than can be explained on the basis

of their small individual error bars. Although not entirely

explained, the probable reason for this wide scatter is that

the assumptions of the delay-rate estimation algorithm have

been violated in some manner. Recall from Section 4.5

that the delay rate estimation procedure fits only a constant

residual delay rate to an observation and ignores any higher

order residuals that may be present.3 If this assumption is

violated, the theoretical values of the expected estimation

errors will be badly underestimated. Based on the highly

systematic character of many of the residual phases (see

Section 7.3-4), the computed theoretical error bars are un-

doubtedly highly optimistic. The actual scatter of ATE is,

in fact, a good indicator of the actual random errors in the

delay-rate data.

3Generally, for geodetic and astrometric purposes, it is not
useful to attempt to fit higher order residuals to individual
observations since there exists no provisions for modelling
such short term (often random) in VLBI 3.



*0

*

*0

*0

*

7 ?01/
-e--- 7 0/0/

7 Z1/9
7 ££l/

-+--- O0. l/-4 00.1/
---I 7 6£917 009/

- 81/6/
-1 7 6f11

*---I 7 9/91
-1 7 0g9/

-- i Ol/9/-/300 /

990Z

906/4?
9061

-I ,99/- /30 6

g9/9/
7 pr6/7 008/

-I 602l
.-e 9 £9/1991

C0£91/ - /o0 9

I- ---- "-- 7 6981
9/y/

--1 60/1

09g/-/o0 9

-I9t61 -/-30 P

-- 4-- £09991

I----e-t--'/- n o0

•, , to, .Ln X'o

(3Os/39sd2,V7

-279-

Iq

KZ

I
S

S

0

S

0

6

0

0

S

0

0

0

I I

C0

bq

C ýq) 1,

F-.---

I-

k-s--f-

F-s--H--

H-.--

t--

I-
I--

I I v

I· I I'

I I I F I I

% + N 4z

i-- 0

(09sa) 91, V



-280-

7.4 BASELINE AND SOURCE POSITION RESULTS

At the completion of processing through VLBI 1 and

VLBI 2, the data were sorted and edited to remove all

observations that were obviously bad. When this pro-

cedure was completed, approximated 500 observations re-

mained, of which approximately 70% were from X-band. Each

estimated delay and delay rate was assigned an error based

on the measured correlation amplitude and length of the

observation (see Tables 7-3 and 7-4 for examples). A

correction for the ionosphere was also applied to the delay

and delay rates, based on observations of Faraday rotation

of radio signals transmitted from a satellite in synchronous

orbit. The resulting corrections at L-band ranged up to

~3 nsec in delay and 1 psec/sec in delay rate and were

roughly a factor of 25 smaller for X-band.

As we indicated earlier only about 500 out of the

total of 3000 observstions made were usable for the final

processing through VLBI 3. Table 7-5 lists the number

of usable delay and delay rate observations obtained for

each source on each baseline. Note that the largest

fraction of these observations are on the Haystack-NRAO

baseline and that 3C273B observations form a large part of

the total data set on the baselines involving OVRO. Also
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note that generally, except for observations on

3C279, more observations yielded good information

about delay rate than delay. This is due to the fact

that delay-rate data is generally useful to a lower sig-

nal-to-noise ratio than switched-frequency delay data.

The observationson 3C279, on the other hand, suffered

severe fringe phase corruption due to phase scintil-

lation caused by the solar corona, rendering some delay

rate (i.e. fringe rate) data useless while the group

delay information, which depends only on the difference

phases between the frequency windows, remained good.

The data can be analyzed through VLBI 3 in a variety

of ways to judge its accuracy and internal consistency.

Source positions may, for example, be fixed at a priori

values determined by other means and the baselines inde-

pently solved for. Or, conversely, the baselines may be

fixed and the source positions solved for. The data from

each baseline may be examined individually to solve for

baseline and source coordinates, or, alternatively, the

L-band and X-band data may be used in separate solutions.

Many such computer experiments were performed on the data

in order to try to uncover and/or understand systematic

errors that appeared. On the basis of the results of these
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many computer experiments the real accuracy of the data

may be estimated and the final "best" estimates of the

solution parameters are obtained.

7.4-1 Baseline Solutions

Figure 7-8 shows the baseline component

solutions for examples of nine different processings of

the data through VLBI 3. Table 7-6 lists the data and

constraints that were applied in each of these solutions.

In each case where the source positions were solution

parameters, the right-ascension origin was defined by

fixing the right-ascension of 3C273B at the value given

by Hazard (Reference 48). The error bars shown in Figure 7-8

are based on the rms post-fit residuals. Clearly, the

solutions for the Haystack-NRAO baseline appear to be the

most internally consistent as the solutions for all three

components fall within a range of -1 meter. The scatter

of the solutions on the two baselines involving OVRO are

much larger, on the order of several meters. The error

bars, however, are also significantly larger, indicating

primarily the relative lack of data on those two baselines.

Note particularly the very large error bars on the Haystack-

OVRO and NRAO-OVRO baseline solutions using L-band data

alone; this primarily reflects the fact that very little

useful L-band data was obtained on those two baselines.
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It is interesting to examine the baseline lengths

corresponding to the solutions of Figure 7-8. These are

listed in Table 7-7 along with their formal errors based

on post-fit residuals. For the Haystack-NRAO baseline

the solutions all fall within a range of -0.9 meters,

which is comparable to the range of the solutions of the

baseline components shown in Figure 7-8. On the two

baselines involving OVRO, however, the range of baseline

lengths is "3 meters, which is about a factor of three

smaller than the range of the solutions of the correspond-

ing baseline components. This indicates that the orienta-

tion of these two baselines is less well-determined than

their lengths. From Figure 7-8 we see that the orientation

uncertainty appears to be largely confined to the equa-

torial plane (i.e., the x and y components), which is

directly related to an uncertainty in the right-ascension

origin. In fact, if we were to draw a line of constant-

baseline-length on the x-y plots of Figure 7-8 (assuming

a fixed z-component), the x and y baseline component solu-

tions for the baselines involving OVRO would scatter

fairly closely about this line.

7.4-2 Baseline Closure Test

An important test of the internal consistency
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of the data is the "baseline closure test", in which each

of three baselines is solved for independently; then,

if the data are internally consistent, the sum of the

resulting baseline solution vectors should be zero to

within the expected error. Solutions 5, 6, and 7 of

Figure 7-8 and Table 7-6 are three such independent

baseline solutions. For each of these solutions the

source positions were fixed at the best a priori co-

ordinates and only clock parameters and baseline components

solved for (because of the relatively few data points

on the baselines involving OVRO, simultaneous solutions

of baseline components and source positions yielded

large error bars and little useful information). The

solution baseline components and their sums around the

three baselines are given in Table 7-8. We see that the

"closure errors" are somewhat larger than the formal er-

rors would imply, but are nevertheless approximately con-

sistent with what we might expect on the basis of the

scatter of the solutions shown in Figure 7-8. On the

basis of these closure tests and the scatter of the

solutions in Figure 7-8, we can judge that the true ac-
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curacy of the solution baseline components is on the

order of several meters, somewhat poorer than originally

expected-but roughly consistent with the observed scatter

in the baseline solution of Figure 7-8.
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7.4-3 Character of the Post-Fit Residuals

An examination of the post-fit delay and delay-

rate residuals may yield some clue as to the reasons that

the apparent accuracy of the baseline solution is some-

what poorer than would be theoretically expected. Figures

7-9 and 7-10 show some typical examples of post-fit delay

and delay-rate residuals. The particular residuals shown

are from baselines Haystack-NRAO and Haystack-OVRO of

Solution 1 of Table 7-8, and include only a fraction of

the data actually used in Solution 1. Strong non-random

trends are evident in both the delay and delay-rate re-

siduals, the trends being quite different even from day

to day on the same source. The trends in the delay re-

siduals, being on the order of a few nanoseconds, are con-

sistent with the scatter of a few meters in the baseline

solutions (although, of course, the correspondence is not

exact; see Section 2.3-1). The trends in the delay-rate

residuals, being on the order of -~1-2 picosec/sec, are

likewise roughly consistent with the observed scatter in

the baseline solutions.

The most-likely explanations for the non-random trends

in the delay and delay-rate residuals were drifts and in-

stabilities in the experiment instrumentation.

The delay-rate trends were probably caused

by drifts in both the first and
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second local oscillators relative to the hydrogen-maser

frequency standard. The trends in the delay residuals,

on the other hand, may have been caused either by drifts

between the relative phases of the switched-frequency local-

oscillators or by changes in the frequency-dispersive

characteristics of any of the RF or IF amplifiers or

filters. Despite many efforts to find an alternative

explanation which might be amenable to modelling in

VLBI 3, the observed systematic trends in the delay and

delay-rate residuals remain mostly unexplained. And,

since most of the instrumentation was dismantled soon

after the conclusion of the experiment, extensive tests

to determine the exact causes were not possible. We might

add, however, that data taken in more recent experiments,

using much.improved equipment, still show some unex-

plained systematic trends in the residual delays and delay-

rates, although they are reduced by more than an order

of magnitude from those observed in the October 1969 data

(Reference 50). This lends support to the conclusion that

the systematic trends in the residuals of the October

1969 data stem mostly from instrumental unknowns rather

than from deficiencies in the models used by VLBI 3.



-293-

4-

ace84-
3C/4
3CI20

0 4C39.738 /o/c/G9
O 3CZ738 / /el69

Figure 7-9

Typical Delay and Delay-Rate Residuals
from the Haystack-NRAO baseline

--•-4 -- 4 UT (hr)"4-

'4'

vI

I-.

-- 4- -t

-J

-i-

I*1

Z L/ T(hrs)24

c

44

u



-- 4·--.- 
t·g~--- · -4 LT/r

04t

U UT (hrS)

C 3C2730 /0//4/69
0 3CZ7E31 /0//2/(9
0 3cZ73B /0//3/41
! 3c2738 /0////(9

Figure 7-10
Typical Delay and Delay-Rate Residuals

from the Haystack-OVRO Baseline

-294-

0

Ij
* .1~-- -4---t--

0

3

2

1 -35c454.3 1o0/4194
4. 3C454.3 /o/
) c+154:3 1o/3/19

V 3cI95 /o/7/G(
CD 3C34-5 o-///9
0 3c3f //15 // q

-(P



-295-

7.4-4 Comparison of VLBI and Survey Baseline
Results

A special high-precision ground survey was

conducted in 1972 under the direction of the First Geo-

detic Survey Squadron, Warren Air Force Base, Wyoming, to

measure the positions of the Haystack, NRAO, and OVRO en-

tennas (Reference 51). The accuracy of this survey,

although difficult to judge, is believed to be good at

least to the ten-meter level in all components. Due

to the fact that there may be some difference between

the right-ascension origins of the VLBI and survey re-

sults, it may be expected that a slight rotation in

the equatorial plane might be necessary in order to make

a meaningful comparison. Table 7-9 shows the results of

such a comparison. The VLBI results are from Solution 1

of Table 7-6 and have been rotated in the equatorial (i.e.

X-Y plane) by 0.9 arc-seconds in the direction of in-

creasing right-ascension in order to approximately mini-

mize the least-squares error between the VLBI and survey

results. The agreement is to within 6.4 meters in all

components and to within 3.7 meters in length. In view

of the fact that the estimated accuracy of the VLBI

results is a few meters, these disagreements are not

particularly surprising. And, since these particular
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baselines have not, at least to date, been redetermined

with improved instrumentation, it is difficult to draw

any meaningful conclusions about the comparative ac-

curacy of the VLBI and survey results. The only

other VLBI determination of any of these baselines was

the Haystack-NRAO baseline by Hinteregger in January

1969 (see Section 1.3 and Reference 14). His results

are in disagreement with the VLBI results presented here

by as much as -5 meters, again indicating that the ac-

curacy of the VLBI measurements up to and including

October 1969 is on the order of a few meters.

An improved VLBI determination of the Haystack-NRAO base-

line, however, should be soon available at which time

it should be possible to make a more meaningful judgment

of the results presented here.
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7.4-5 Source Position Results

From the data of the October 1969 experiment, the

positions of the eight sources of Table 7-1 were determined,

except for the right-ascension of 3273B, which was fixed

at the value given by Hazard (Reference 48) to provide a

3
right-ascension origin3. The results are given in Table

7-10 along with the comparable results from other data

and experimenters using both VLBI and other techniques.

The quoted error bars for the October 1969 solutions

are based on the post-fit residuals.

Unlike the baseline solutions, it is possible to draw

some conclusions about the accuracy of the source position

results since more recent switched-frequency VLBI experi-

ments, most notably those using the Haystack-Goldstone

baseline (Reference 50), have considerably increased the

accuracy of the position solutions. In all cases, except

for the right-ascension of 3C84 and the declination of

3C120, the error bars of the October 1969 solutions overlap

the solution with the smallest quoted error. The dis-

crepancy in the 3C84 right-ascension is small, and the

October 1969 solution for the declination of 3C120 falls

amidst the rather large scatter of the variously-determined

declination for that source. It is interesting to note that

3
It would also have been possible to have incorporated an

a priori covariance matrix to constrain the right-ascension
corrections but the small improvement perhaps attainable
in relating our reference to FK4 did not seem worth the
effort.
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the October 1969 solution for this coordinate is the only

October 1969 solution coordinate which is in poor agree-

ment with the other switched-frequency VLBI coordinates

(Reference 50).

The large error bars on the October 1969 declination

solutions of 3C273B and 3C279 are due to the very low

declinations of these sources, which causes the measure-

ments of delay and delay rate to be relatively insensitive

to small changes in declination (see Chapter 2). The

error bars on 3C279 are particularly large because of the

relative scarcity of measurements on that source (see

Table 7-5).

As a whole, the source position solutions for the

October 1969 experiment are in quite close agreement

with the best positions now available and, at the time

the 1969 measurements were made, represented a significant

improvement in source position measurements.
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7.5 CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The switched-frequency VLBI technique has been

demonstrated as a means of improving the quality of

VLBI measurements for purposes of geodesy and astrometry,

although much work remains to be done to develop the

technique to its full potential. The problems in the

October 1969 experiment appear to have been predominant-

ly instrumental and will undoubtedly be solved as state-

of-the-art technology advances. Already much improve-

ment has been made in instrumentation and at least a

tenfold increase in measurement accuracy has been demon-

strated in recent experiments conducted by our group be-

tween Haystack and the NASA 210' Goldstone antenna. The

greatest remaining stumbling block now appears no longer

to be instrumentation stability, but rather calibration

of the excess electrical path lengths contributed by the

ionosphere and the neutral atmosphere. The calibration

of the ionosphere can, in principle, be solved by making

simultaneous measurements at two widely-spaced sets of

frequencies, thus taking advantage of the known frequency-

dispersive characteristics of an ionized plasma. The

calibration of the neutral atmosphere is more difficult.

The dry component of the neutral atmosphere may perhaps
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be estimated to the few-centimeter level by relatively

straightforward modelling, but estimation of the wet

component (due primarily to water vapor in the lower

troposphere) appears to be substantially more dif-

ficult. Present uncertainties in the wet component are

estimated to be as much as 30-40 cm. One hopeful approach

to the solution of this problem is the use of passive

radiometers observing near the -22 GHz natural water-

vapor resonance frequency, although as yet this tech-

nique is unproven.

In the next few years it is perhaps reasonable to

expect that the overall uncertainties in switched-fre-

quency VLBI measurements will approach the few-centimeter

level. When this accuracy is achieved it should be pos-

sible to determine the positions of a set of reference

sources to a hundredth of an arc-second or better while

at the same time determining baseline coordinates to the

few-centimeter level. Once an accurate set of reference-

source positions has been compiled, the estimation of

additional baselines becomes vastly simplified, and

the number of measurements needed to determine accurate

baseline components is drastically reduced.

An area of continuing improvement is VLBI recording

systems. Recent improvements have increased the recording
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bandwidth to several megahertz, while state-of-the-art

improvements promise to increase this by still another

order of magnitude in the near future. Such wide-band-

width recording systems will allow accurate VLBI measure-

ments to be made with much smaller and less expensive

antennas than are required today. As costs are reduced

it should be possible to increase the number of usable

antennas substantially, while at the same time providing

a much increased coverage of geodetic and astrometric

measurements.
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NOTATION FOR APPENDICES

In Appendices A, B, C, and D we compute the mean

variance of the estimates of the "true" cross-correlation

function based on both analog and digital data techniques.

Appendices A, B, and C deal with the analog case, the main

results being given by Equations (B. 17) and (B. 21). Ap-

pendix D deals with the digital case, the main results being

summarized by Equations (D. 17), (D. 18), (D. 22), and (D. 23).

In order to lessen confusion between similar quantities

in the analog and digital cases, we shall adopt a slightly

different set of notation in Appendices A, B, C, and D than

has been used in the text. The following quantities will

be used frequently:

x(t), y(t) Two stationary, ergodic, band-

Rxx (T),R yy (T)

xy(T)

limited, zero-mean random time

coeLticieunt p (L) , .tS lt .ii by

Equation (B. 1).

The true unnormalized auto-correlation

function of x(t) and y(t), respectively,

as defined by Equation (A. 7).

The true unnormalized cross-correlation

function of x(t) and y(t) as defined

by Equation (A. 2).
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p(T)

RXX(T), R (T),

R xy(T), p(T)

x'(t), y'(t)

p' (T)

p' (T)

The true normalized cross-

correlation function, as

defined by Equation (B. 1)

Estimates of R xx(T), R (T), R xy(T), and

P(T), respectively,based upon analog

samples of x(t) and y(t)

Infinitely-clipped versions of

x(t) and y(t)

x' (t) +1 for x(t) ; 0
-1 x(t) < 0
(t) +1 for y(t) 7 0
-1 y(t) < 0

The true normalized cross-cor-

relation function of x' (t) and

y' (t)

Estimate of p' (T) based on samples

of x' (t) and y' (t), as defined by

Equation (D. 2)

Estimate of p(T) based on p'(T),

as defined by Equation (D. 3)
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APPENDIX A

COVARIANCE ANALYSIS OF THE ANALOG CROSS-CORRELATION ESTIMATE

Define the following estimate of the unnormalized cross-

correlation function

R (nT) 1 F x(kAt)y(kAt + nAT)
xy K k=l

(A.1)

where x(t) and y(t) are band-limited, stationary zero-

mean jointly Gaussian random variables with true cross-cor-

relation

Rxy(nAT) <x(t)y(t + nAT)>

1= lim
K-*m 2K k=-K

E x(kAt)y(kAt + nAT)

and where t is large enough for the successive samples of x(t)

and of ylt) to be independent. We wish to examine the mean and

variance of R (nAT).xy The mean is easily found to be

1 K
R (nAT) - k (kAt)y(kAt + nAT

k=l

(A.3)

= R (nAT)xy

The covariance of R (nAT) is, by definition,

2
Cxy(n,m) < [R (nAT) - R (nAT)][R (mAT)
xy xy xy xy

-RY(mATr)l>

(A.2)
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= Rxy (nAT)R xy(mAT) - Rxy (nA)Rxy(mAT)

K K
= E < x(kAt)y(kAt + nAr)x(gAt)y(gAt+mAT

K k=l g=1

-Rxy (nA)Rxy (mAT) (A.4)

Using the expansion of the expectation of the product of

four zero-mean Gaussian variables [see Equation (3-41) 1

we have

<x(kAt)y(kAt + nAT)x(gAt)y(gAt + mATr)

= <x(kAt)y(kAt + nAT)> <x(gAt)y(gAt + mAT) >

+ <x(kAt)x(gAt))"><y(kAt +nAT)y(gAt + mAT) (A.5)

+ <x(kAt)y(gAt + mAT)* <x(gAt)y(kAt + nAT)i

The first term of the right-hand side of Equation (A.5)

2
is just R (nAI)(R (mAT), so that o of Equation (A.4)

xy xy

becomes xy

K K
S(n,m) E E {R xx[(g-k)At]Ryy [(g-k)At
R K k=l g=1l
xy

+ (m-n)AT] + Rxy [(g-k)At + mAT] Rxy [(k-g)At

(A.6)
+ nAT]}

where we have used the property of stationarity of

x(t) and y(t) to retain the same limits on the sum-

mations and where R and R are the auto-correlation
xx yy

functions of x(t) and y(t) defined by
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/ \
Rx(nAT) (x(t)x(t + nAt

Ryy(nAT) <Ky(t)y(t + nAT >

Now,it is easy to show that

E f (q-k)f (k-g) = E (K-li )f (-i)

k=l q=1 I i=-K I z

where fl and f2 are any two functions, so that Equation

(A.6) can be rewritten

2

R
xy

(A.7)

(A.8)

(n,m) - E (K- i){R (iAt) R [iAt
K(nm) 2 i=-K yy

+ (m-n)AT] + R xy(iAt + mAT) R xy(-iAt
xy xy

(A.9)

+ nAT)}

For the practical case of interest, x(t) and y(t) are

bandlimited and K >> 1 so that

(A.10)

for i > i where i
max max

<< K. Then, under the further

assumption that mAT << i maxAt and nAT << i maxt,

Equation (A.9) may be simplified to

Rxx(iAt) = R yy(iAt) = Rxy(iAt) 0
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2 1 K
0 (n,m) K . {R (iAt)R yy[iAt + (m-n)AT]

R i=-K
xy

(A.11)

+ Rxy (iAt + mAT)Rxy(-iAt + nAT)}

Thus we have found the (unnormalized) cross-correlation

covariance in terms of the auto-correlation and cross-

correlation functions of x(t) and y(t).

It is instructive to examine Equation (A.11) for

the limiting case where At is large enough so that

R (iAt) = R (iAt) = R (iAt) = 0 for i / 0 (A.12)xy xx yy

This condition implies that the successive products

x(iAt)y(iAt + nAT), x(iAt)x(iAt + nAT), and y(iAt)y(iAt

+ nAT) are linearly independent, e.g., that

x(iAt)y(iAt+nAT)* x (jAt)y(jAt+nAT) = 0 (A.13)

for i # j

with similar expressions for the other products. The

condition of Equation (A.13) is approximately

valid for most continuum VLBI work. Under this con-

dition, Equation (A.11), with n = m, reduces to

2 1 2
a (n) k [Rxx (0)R (0)+R (nAT)] (A.14)
R xx yy xy
xy

We note that if we set x(t) = y(t), then R (nAT)
xy

becomes an auto-correlation and
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R (nA) = (n) = R (nA) = R(nA ) (A.15)
xx y xy

Noting that the auto-correlation is necessarily an

even function of nAT, we can write the covariance

of the auto-correlation estimate R (nAT) by in-

spection

2 K
u2 (n,m) 2 1 {R (iAt)R [iAt+(m-n)ATI]K . xx xx
R i-K
xx

(A.16)

+R xx(iAt+mAt)R xx(iAt-nAt)}

For the condition of Equation (A.13) this reduces

further to

2 1 2 2
S(n) [R2 (0) + R (nAT)] (A.17)R ( K xx xx

xx

which is consistent with the results of Weinreb

(Reference 31) for the variance of the auto-

correlation estimate.
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APPEN•DIX B

COVARIANCE ANALYSIS OF THE NORMALIZED ANALOG CROSS-COR-
RELATION ESTIMATE

Define the true normalized cross-correlation function

to be

R (nAT)
p(nAT) R xy (B.1)

R xx (0)Ryy (0)

where Rxy, Rxx, Ryy have been defined in Equations

(A.2) and (A.7). Define an estimate of p(nAT), de-

signated p(nAT), to be

p(nAT)
(.r xy ) 

(B.2)

xx(0)1 (0)xx •yy

where R is defined in Equation (A.1) and Rxx Rxy aut-correlation function estimates defined byy
are auto-correlation function estimates defined by

R (nAT) - E x(kAt)x(kAt+nAT)xx K
k=--1

A

R (nAT) - y(kAt)y(kAt+nAT)
yy K k=1kc=l

In this appendix we wish to examine the mean and

variance of p(nAT). To do so, we first define the

fractional errors

R (nAT)-R (nAT)
xy(n) xy xyxy R (0)xy

(B.3)

(B.4)

(B.5)
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R (nAT)-R (nAT)
E (n)R (0)xx R (0)

xx

C (n)
yy

R (nAT)-Ryy (nAT)

R (0)
YY

Clearly, from Equations (B.3),

< Rxy (nAT)>

Rxxy (nAT)

<R yy(n-)

(B.4), and (A.3)

= R (nAT)xy

= R (nAT)xx

= R (nAT)
YY

so that

<c xy(n)> = < exx(n) > = Eyy(n)>

F•om Equations (B.5),

covariances

<xy (n)Exy (m)>

(B.6), (B.7) and (A.4) we have the

2
o^ (n,m)

= xy

R (0)xy

2̂a (n,m)
R

cE (n) c(m) = xx
<xx xx R2 (0)

R (0)xx

(n)e (m)>

2
a (n,m)
R

= YY
2

R (0)
YY

where the covariances are obtainable from

Equations (A.11) and (A.16).

(B.6)

(B.7)

(B.8)

- 0 (B.9)

(B.10)

of R xy, R and Rxy xx' YY
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Using Equations (B.5)

rewrite j0(nAi) of Equation

j (nAT)

, (B.6), (B.7), we can

(B.2) as

R (nAT)+R (0)E (n)
xy xy xy

[Rxx (0)+Rxxxx xx
(0)Exx(0)]1/2[R yy(0)4 Ryy (0) yy

Since Exy' EXXI Cyy are all << 1, ^(nAT) can be expanded

around Exy xx

p (nAiT)

y=
yy

= 0 to yield

1 (fR (nAT)+R (0)F:
n •Inn n xy xy

xx •V•yy kU

(n)]

1 1[i- Ixx(0)] [1- yy (0)]

[p(nAT)+p(0)E x (n)] [1- E ( [ 1-
xy 2 xx 2 yy()

1 1
- p(nAT) [1- 2.x (0)- -y (0)]+p(0)E (n)

2 xx 2 yy OlP()xy~

where we have neglected all terms of order E2 Using

Equation (B.12) in the definition of the covariance of

ý(nAT) we then have

o2(n,m) - <[[(nAT)-p(nAT)] [(mAT)-p(mAT)]>
< 1

= [p (0) xy(n)- p (nAT) (xx(0)+eyy(0))]

[p(0)xy (m)- fp(mAT) xx (0)+yy(0))

(B.11)

(0 )1/2

(B.12)

(B.13)
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2 /1P (0) ( e (n) (m) -p (0) (mA) < (0) (n)Sxy xy y2 xx xy

+ r (O)r (n) 1 p(0)p(nAT)1  )(m)+r + (O) (m)2
yy xy / \xx xy yyX Vxy

(B.14)
1 2 2+ -p(nAT)p(mAT) (0) + 2 (0)EcOyy (0) + Cyy(0)
4 xx xx yy yy

Equations (B.10), (A.11), and (C.7) can now be used to

evaluate the last expression of Equation (B.14) in order

2
to explicitly state a\(n,m) in terms of the cross-cor-

relation and auto-correlation functiornof x(t) and y(t).

The resulting expression is rather complicated. For the

practical cases of interest, however, we may make the

assumption of linearly independent samples (as discussed be-

low Equation (A.12)), and set m = n to get simply the

variance a (n); using Equations (B.10), (A.14), (A.17),

(C.9), and (C.17) we have

(n)1 [R (0)R (0)+R (nAT)]
xy KR2 (0) xx yy xy

2 > KR2 (0)>xy

yx(o> <y (0) K (B.15)

/x2 Rxy(nAT)

xx xy yy( )xy (n> K R x(0)

2
R (0)

xx (0)yy K R (0)R (0)
xx Ryy

Substituting these into Equation (B.14), with m = n, we

have the result
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2  R (0)R (0) R (nAT)p (0) {xx yy xy0 (n) xx YY + }
p K 2 2R (0) R (0)xy xy

R (naT)4p(0)p(nAT) Rxy (nA)(B.16)
K R (0)

xy

2 R (0)p (nAT) {1 + xy
K Rxx (0) Ryy (0)

Using the definition of p(nAT) in Equation (B.1),

the above immediately reduces to

2 1 2  2S (n) 1 p (nAT) [2-p (0)]} (B.17)

which is the result we are seeking.

It is illuminating to examine Equation (B.17) for

cases of both large and small correlation. For the case of

auto-correlation (i.e. p(O) = 1) Equation (B.17) reduces

to

2 1 2k2(n) [1 - p (nAT)] (B.18)

which is identical to the result given by Weinreb

(Reference 31 ) for auto-correlation. For the

case of small correlation (i.e., p(0) << 1), Equation

(B.17) reduces to

2 1 2S(n) 1 [1 - 2p (nAT)] (B.19)
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Finally, for the case of no correlation, Equation (B.17)

reduces simply to

2 1O (n) = 
(

The mean of (nAT) follows directly from Equation (B.12)

and (B.9),

K (nA•) = p (nAT)

B.20)

1B.21)

showing that the estimate 0 (nAT), at least to the order of

E, is an unbiased estimate.

(
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APPENDIX C

CROSS-COVARIANCE ANALYSIS OF THE ANALOG CROSS-CORRELATION

AND

AUTO-CORRELATION ESTIMATES

In Appendix B we derived the covariance of the

normalized analog cross-correlation estimate. During the

course of that derivation it was necessary to know the

cross-covariances of the estimate "errors" xy(n), XX (n),

E (n). These quantities are defined in Equations (B.5),
YY

(B.6) and (B.7). In this appendix we shall derive the

necessary cross-covariances and, as a side result, the cross-

covariance of the analog cross-correlation and auto-

correlation estimates. From Equations (B.5) and (B.6) we can

write directly

EXX (n) Xy (m) Rxx (0)Rxy (0) Rxx(nAT) Rxy (mAT)

- R xx(nAT)Rxy (mAT)> (C.1)

where R xy(nAT), R xy(nAT), R xx(nAT), R xx(nAT) have been

defined by Equations (A.1), (A.2), (A.7), (B.3), res-

pectively. From Equations (A.1) and (A.7) we can evaluate

the cross-covariance

^ K K
R (n)R (mAT) = E E x(kAt)x(kAt+nAT)x(gAt)y(gAt

+Axx (xy K2 k=l g=l

+mAT) (C.2)



-320-

which, using the expansion of the expectation of the

product of four zero-mean Gaussian variables [See

Equation (3-41)], becomes

\ (nAT)R (mAM)A Z E { x(kAt)x(kAt
K k=1 g=1

+nAT> <x(gAt)y(gAt

+mAT)> + <x(kAt)x(gAt>

x (kAt+nAT) y (gAt+mAT)

+ •x (kAt)y(gAt+mAT) ><x (kAt

+nAT)x(gAt)> }

K K
2 E Z {R (nAT)R xy(mAT)2 xxK k=l g=l

(C.3)

+ R xx[(g-k)At]Rxy [(g-k)At

+ (m-n)AT] + R [(g-k)Atxy

+ mAT]R [(g-k)At-nAT]}

Noting the first term of the last expression is independent of

k and g, and using the property of Equation (A.8),

Equation (C.3) becomes
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Rxx(nA)Rxy(mT) = Rxx (nAT) Rxy (mAT)

K
21 E (K-liI){R (iAt)R (iAt

K2 i=-K xx xy

+ (m-n)AT) + R xy(iAt+mAT)R xx(iAt-nAT)}

Proceeding as in Equation (A.10), we assume

R (iAt) = Rt) =R (iAt) 0xx xy

for i > i where imax max << K. Then, under the

further assumption that nAT << i At, Equation (C.4)max

may be written

Rxx (nAT) Rxy (mAT = Rxx (nAT)R xy(mAT)

1 K
+ - I {R (iAt)R [iAt

Ki=-K xx xy

(C.6)

+ (m-n)AT] +Rxy (iAt+mAT)R xx (iAt

-nAT) }

Using Equation (C.6) inEquation (C.1) yields

K
E1 (n)E(M1 ( 1 T {R (iAt)R [iAtR (0)R (0) i=-K xx xy

xx xy

(C.7)
+ (m-n)AT] + R xy(iAt+mAT)R xx(iAt

-nAT) }

For the practical case of interest we assume At is

(C.4)

(C.5)
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large enough so that the conditions of Equation (A.12)

apply and (C.7) becomes

S (n) 1(m) {R (0)R [(m-n)AT]
xx xy KR , (O)R (0) xx xyxx Rxy

(C.8)

+ R (mAT)R (-nAT)}
xy xx

This result, and the equivalent result for E:yy(n) xy(m)>

are required in order to evaluate the expression for

the covariance of the normalized cross-correlation

estimate as given in Equation (B.12). In particular,

the value of <EXX (0)exy(m) is required, which follows

immediately from Equation (C.8),

2 R (mAT)KC0 (O)c (m)) 2 xy (C.9)
< xx xy m  K R (0)xy

The expression for yy (O)xy(m) is identical.

Finally, we must evaluate the quantity

< xx(n)cyy (m) , which follows in a manner exactly

analogous to the above. From Equations (B.6) and (B.7)

we can write directly

_R (nAT)R (mAT)

I(xx (n) yy(m R (O)R (0) { Rxx (nAT)yy >
(C.10)

-Rxx(nAT)Ryy (mAT)}

From the definitions of R and R in Equations
xx yy

(B.3) and (B.4) we can write
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R R (nAr)R yy(mAT)
xx yy

1
2K k

K K

=1i g=l
(kAt)x (kAt

+nAT)y(gAt)y(gAt+mAT)

which, by the expansion of the product of Gaussian

variables, becomes

1

KSRxx (nAT)Ryy (mAT)>

K K
E E

k=l g=l
{ <(kAt)x(kAt

+ nAT)> <y(gAt)y(gAt

+ mAT)Ž + <x(kAt)y(gAt)>)

x (kAt+nAT) y (gAt+mAT

+ <x (kAt) y (gAt+mAT)> x (kAt

1
K2

K

+ nAT)y(gAt)> }

SRxx(nAT)R (mAT)

K K
E E Rxy [(g-k)At]Rx [(g-k)At+(m-n)AT]

k=1 g=l

+Rxy [(g-k)At+mATr]Rxy[ (g-k)At-nAT]}

Applying the property of Equation

(C.12)

(A.8), Equation (C.12) becomes

= Rxx(nAT)R (mAT)Rxx(nAT)R yy(mAT)>

(C.11)
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K
+ 1 (K-lil){R (iAt)R [(iAt+(m-n)AT]
K2 i= K  xy xyK 1=-

+ Rxy (iAt+mAT) Rxy(iAt-nA'r)} (C.13)

Proceeding as near Equation (C.15), Equation (C.13) further

reduces, in the practical case, to

SRxx (nAT)R (mAT) = Rxx(nAT)Ryy (mAT)

K

+K i {R x(iAt) R [iAt+ (m-n)AT]
i=-K

+R xy(iAt+mAT) R xy(iAt-nAT) }xy xy (C.14)

Substituting this into Equation (C.10) we have

c (M) 1
Cxx (n yy(m) Rxx(0)R y(0) K

K
i=-K {R xy (iAt)R xy[it+(m-n)AT]+Rxy (iAt+mAT)Rxy(iAt
i=-Kxyx yx

-nATr) I (C.15)

Assuming that At is large enough so that the conditions

of Equation (A.12) are met, we obtain

<E (n) -KR 1 {R (O)R [(m-n)AT]
xx Yyy KRx(0)R (0) xy xy

(C.16)+R y(mAT)R xy(-nAT) }xy xy
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The value of <Exx(0)E y(0> is needed in order to

evaluate the expressions in Equation (B.14). From

Equation (C.16),

R 2  (0)<E (0) (0) 2 xy·2 (C.17)
xx yy K R xx(0O)R yy(0) (C.17)

The result of Equation (C.17) is used in Appendix B

to assist in the computation of the covariance of the

normalized analog cross-correlation estimate.



-326-

APPENDIX D

MEAN AND VARIANCE OF THE NORMALIZED CROSS-CORRELATION ESTIMATE

FROM AN INFINITELY-CLIPPED SIGNAL

The method used here to compute the mean and variance

of the normalized cross-correlation estimate is similar

to that used by Weinreb (Reference 31)

to compute similar quantities for the normalized auto-

correlation estimate.

In Section 3.5 we derived the so-called "Van Vleck

clipping correction"which indicates the relationship between

the "true" cross-correlation function p(T) and the one-

bit-sample (so-called "clipped") cross-correlation

function p' (T) [see Equation (3-105)].

p(T) = sin[lp' (T)] (D. 1)

In general only a finite number of samples of the clipped wave-

forms x' (t) and y' (t) are available from which an es-

timate of p'(T) may be made. We shall define this

estimate, designated ý' (T), to be

K
(T) K x' (mAt)y' (mAt+T) (D.2)

m=1

where At is the sampling interval chosen to make the

samples independent (see Appendix A for more details).

We now wish to estimate p(T), the true cross-correlation

function, based on 0' (T). Designate this estimate to
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be c(T). One possible choice of an estimator follows from

the relation of Equation (D.1), from which we are led

to define c (c) as

pc(T) - sin[2 '(T)] (D.3)

We now wish to examine the statistics of c (T) in

detail. Since Equation (D.3) is a non-linear estimator

(and hence may be a biased estimator) we must determine

the mean as well as the variance. Clearly, from

Equation (D.2), the mean of B'(T) is just p'(T); the

mean of c(T) is not so easily found, however, The mean

and mean-square (and hence the variance) of ^c(T) can

be expressed in terms of p[' (T)], the probability density

function of ^' (T), (dropping the explicit dependence

on T for convenience), as

Sp = f sin(1^')p(0')d0' (D.4)
-oo

=-I sin ( P')p(•')d•' (D.5)

In order to evaluate p(0') we may use its character-

istic function M A(v), which is the Fourier transform

of p(p') [see, for example, Reference 28]

_ 1 o -i '
P(') M ̂  , (v)e dv (D.6)

-0oo
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Substituting this into Equation (D.4) we have

oo 2 2 oo
= 

e
C -o0

- e

2i
I M, (v)en

i P Vdvd '

CO 0ip' (- v) -i~ + v) 1
f f M,(v) e 2 -e 2dvd'

-0 -c S Lp 2i

2iM (v)[ 2 ()- (v + )]dv (D.7)
- OO

where we have used the property

I efiaeB-B')d
-00

Therefore

2u6 (3-B ')

Sp1 [ (a) -M M ( )]

since

(D.8)

f f(x)6(ax)dx = If(0)A
-00

Similarly , it is easy to show

>=2 1 1 ( (^1 (0) -i(·rr< ýMo , r (f). 9)

We must now find Ma, (v). From Equation (D.2) , we see that

ý' is just the sum of K independent random variables.

Therefore we make use of the property that the character-

istic function of the sum of statistically independent

random variables is just the product of the character-

m
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istic functions of the individual terms (Ibference 28 )

K
M , (v) = II M (v) (D.10)m=l m

where Mm(v) is the characteristic function for the

term 1x'(mAt)y'(mAt+T). Each such term may assume

1either the value of K with probability 2P++, or the1
value -- with probability 2P (where we have usedK +-

the fact that P+ = P_ and P =P_+, implicit from the

probability density of Equation (3-90) , so that M (v)

becomes
v
K --

Mm(v) = 2 P++e + 2P e K (D.11)

Using Equations (3-99), (3-100), and (3-105) of the text

we have

P 1[+p'] 4 [ + sin p] (D.12)
1 1 2 -i1

P_ [ - sin p]l (D.13)

Upon substitution of Equations (D.12) and (D.13)

into Equation (D.11) and thence into Equation (D.10),

we obtain an expression for MA, (v) which can be substitutedP
into Equations (D.8) and (D.9) to yield

T F• 2 s-i iK
c(T) = 21--[1(cos 2- +j sin-1p(T)sin r)K

T .2 -1 C K-(cos 2 -T -sin p(T)sin 2T) i (D.14)_f K T2K
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S2(T : = - [(cos +j2sin p(T)sin 7)

S 2 . -1 . K (D.15)
+(cos -jcsin p(T)sin )

These expressions, then, represent the mean and mean

square of c(T), the estimate of p(T) based on a finite

number of infinitely-clipped samples of x(t) and y(t),

in terms of the true cross-correlation p(T). We note that no

approximations whatever have been used in their deri-

vation except that the samples of x(t) and y(t) are assumed

to be independent.

For most cases of interest, K is a very large

number compared to n, in which case the following

approximations may be made

2a a
K 22K

. a a
I & (D.16)

2
a b K e a  a b

(1+e-- ( + 2)
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The last approximation may be seen to be appropriate

by taking the logarithm of both sides of the equation and

then expanding the logarithm. Substituting these ap-

proximations into Equations (D.14) and (D.15) and using

2 2 < 2 we readily find
C

)  p()[1 - (1-p' (T)) (D.17)

2 I 2 22 - p(T) ][ - p' (T) (D.18)
C

where P' (T) 2 sin-lp(T) as given in Equation (D.1).

From Equation (D.17) we see that< c(T) is biased by
t a2 2 h-Iun2 21

the amount p(T)[(sin p(T)) -l] from the desired
8K 7T

value p(T). For large K, this bias will be on the order

of /RT times smaller than ao and hence is usually
PC

neglected. In practice, the effective value of K depends

largely on the exact algorithms used for data proces-

sing. For the VLBI 1 program (see Section 4.3), for ex-

ample, the effective value of K is 16, while for some

earlier algorithms it is much, much larger (see, for example,

Moran, Reference 6).

Equations (D.14), (D.15), (D.17) and (D.18) have

been numerically computed for several values of K. Figure

D-l shows the typical behavior of Equations (D.14) and

(D.17) for several values of K. Note that, for p Z 0.1,

the quantity <( icj/p is nearly constant. Table D-1

lists, for many typical values of K, the values <c>/P

and o^ for p Z 0.1.
Pc
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22~
P

-4d -~ -9 -PF

/O ' /O 0 IO " /O '

Figure D-1

Typico/l behavior of /p for several values
of K as computed from Equation (D.14)[solid
lines] and its approximation for large K
Equation (D. 17) [dashed lines].
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P

0.637

0.769

0.867

0.929

0.963

0.981

0.990

0.995

0.998

0.999

0.707

0.612

0.484

0.365

0.267

0.193

0.137

0.098

0.069

0.049

Table D-1

Table of • /p and a, as computed using Equations (D.14)PC

and (D.15). The values given are accurate to ~±0.002 over

the range 0 < p Z 0.1. As p approaches 1, <pc /p 1 and

Fur 0.
Pc

Figure D-l

Bias and Variance of Estimate c (T)
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An Alternate Method

An alternate, somewhat more straightforward ap-

proach may also be taken in arriving at the mean and

variance of ýc(T). We may consider ^'(T) of

Equation (D.2) to be a one-dimensional random walk with K

steps, each step being described by a random variable s with

probabilities
Pr[s = +1] = 2P++ (D. 19)

(D. 19)

Pr[s = -1] = 2P-+

which are just the probabilities of matching and non-

matching bits,respectively,as discussed immediately

before Equation (D.11) and where P++ and P_+ are related to

p and p' by Equations (D.12) and (D.13). We may then write

i' (T) in terms of s as
1 K

1' () = 1 s (D.20)
' m=l m

Note that D'(T) can take on only K discrete values

in the range -1 ~' (T) < 1. The probability that

' (T) = q is the probability that (K+q)/2 bit pairs
K

are matching and (K-q)/2 bit pairs are non-matching. But

this is just the familiar binomial probability distribution

for (K+q)/2 "successes" (matching bit pairs) and (K-q)/2

"failures" (non-matching bit pairs) in K trials.

(See, for example, Papoulis, Reference 28.) Hence

K K+q K-q

Pr[•p (T)=K = (2P+) 2 (2P+_) (D.21)c K ++
2
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where q may take on the discrete values -K, -K+2,...,0,...,

K-2, K. Then the mean and mean square of ^c(T), from

Equations (D.1) and (D.21), are

<c (t = E sin(- !) Pr () = q]
2 K c K

'K K+q K-q
Ssin( K (2P) 2 2

SKin(- K+q) (2 P++) (2P_)
q 2 K 2)

p0 (T) =c q sin2 ( T ) Pr[' (T) = K

K+q K-q
= • sin 2  ) K2 (2P ) 2 2Ssin 2( )K+ P++ (2P+_)

These expressions may be evaluated numerically to yield

the same results as given in Table D-1. We note, in-

cidentally, that the characteristic of the distribution

of (D.21) is

+ iv( 9 )
M, (v) = z Pr(p'=K)e
P q

KK+
K (2P 2

= 2P++ e

- _ _"_ %
Siv -iv
K + 2P K+ 2P e

(D.23)

(D.24)

which is, as we should expect, identical to M., (v)

as given by Equations (D.10) and (D.11).

(D.22)

w -- v
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APPENDIX E

REVIEW OF LEAST-SQUARES FIT OF DATA TO A STRAIGHT LINE

Suppose that we have a set of data, designatedY

which consists of N independent pairs of measurements

(xi, yi) of an independent noiseless variable x and a

dependent noisy variable y. We wish to fit the data with

an equation of the form

S= + bx (E.1)

where we must determine the coefficients a and f.

Assume that the data points have been derived

from a parent distribution which determines the probability

of making any particular observation, and that the actual

relationship between y and x is given by

y(x) = a +bx (E.2)

We cannot determine the coefficients a and b exactly from

a finite number of observations, but we want to extract from

the data the most-likely value for a and b, where we shall

define "most-likely" below . Assume further that the

parent distribution is Gaussian, so that for any given

value of x = xi the probability Pi for making the ob-

served measurement yi is

1 1 1 Yi-Y(xi ) 21 exp{- -[ ] } (E.3)
1

The probability P(y) of making the observed set of

measurements is then
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N 1 1 i-y(xi ) 2
P(Y) = exp [ I } (E.4)

i=1 U. Vi- 2 1
1

where we have allowed each individual measurement to

have its own variance (i.e. weight) ai..

We now wish to find the "maximum likelihood" (or

"most-likely") estimates of a and b, which are defined

as the values of a and b which maximize the conditional

probability

N 1 yi-Yi 2
P(Yla,") = H8 exp{- (E.5)

i=l ai /2r 1

which is equivalent to maximizing the logarithm

in P(YIa,S) = n [ 1 1 i (E.5)
i i  I2/ I1

where the summations are understood to run from i=l

to i=N. The first term is independent of a and b, so

maximizing Equation (E.5) is equivalent to minimizing

the quantity

2 - Yi-i 2

i 1

1 ^ 2
= [ c (y i - &- b x i ) ]  (E.6)

1 1

which is just the least-squares criterion. Therefore, for

a Gaussianly distributed variable, we see that the maximum-

likelihood estimates and least-squares estimates are

identical.
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In order to solve for & and b we take the partial

22derivatives of • and set them to zero

-= -2E (y--B ) 0 (E.7)
i

1

2 x.=-2[ -- (yi-abXi)] = 0 (E.8)

ab i O.

These equations can be rearranged to yield a pair of

simultaneous equations (all sums are from i=1 to N)

Yi 1 ^ x12 -2 )+ b 2 (E. 9)
2 i . i

x y x, A x.

2 2 -- )+ b E (E.10)
2 i. i c2

which have the solutions

2
1 x Yi xi x y

. . y .. . Y.

1 1 1 1

a 2 )  i2 (. 2)( - -)] (E.12)

1 1 1 1

where
2x. X. Y

A = (1) _)_ )2 (E.13)i y. i i. i 2.

1 1 11i _E )2 (E.13)Cr i i CTi CFa
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Estimation of Variances of a and b

Suppose that the quantity zj is an explicit

function of the jth set of individual measurement

u., vj, ...

. = f(uj,v ,...) (E.14)

Further assume that the most probable value for z

is given by z such that

z = f(u,v,...) (E.15)

In the limit of an infinite number of sets of

measurements we can write the variance of z as

2  1 K -2
a = lim K- (z. - z) (E.16)z K j j

For small deviations of z. from z we can express
z.-z in terms of the partial derivatives with respect

to u and v

zj - z ( - u) + (v V• + (E.17)

where the partial derivatives are understood to be

evaluated at u = uj, v = v.,... Substituting

this result into Equation (E.16) we then have

2 1 Kz z +a z lim K E [(u -u) + v) 2 az K K) j= Ju + (v -v +
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lim
K-+oo

K
K2 Jz 2 +

+ 2(u -u)(v j-v) a +
Dv

(v - ) 2 z) 2
(v -v) (av)

(E.18)

... are to first order independent of

then this Equation (E.18 )may be rewritten as

2 az 2 2Sa ) - + Uu au v
z) 2

(y
2 a)z 3z

+ 2a + 3zuv +u v

If ' •-a ,

2zz (E.19)
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If the measurements uj, vj, ... are statistically in-
2

dependent, then a = 0 and we are left with theuv

result

2 2 (z 2 az 22• a ) + ( + (E.20)

We can now apply this result to estimate the

variances of A and 6 of Equations (E.11) and (E.12).

The set of measurements Yl,. 'Yiy, 'YN correspond

to uj,vj,...in Equation (E. 14), so that the es-

timated variances of a and b are

2 N2 D 2
oa E[ok( y ) ] (E.21)

k=l k

2 22 ab 2
C [k(E k )  ] (E.22)

Sk=1 k

From Equations (E.11) and (E.12)

2x. x x i

2 2 2 2
k k i

ab_ 1 Xk 1 1 x (E.24)
AYk a 2  2 2 2

a i a. a I .
Substituting Equation k 1(E.23) into (E.21) we then have

Substituting Equation (E.23) into (E.21) we then have
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2 2
2 1 x 2 x x 2 2

S2 [ (  - 2xk (  -) ( + x k ( -•
a kGA 1. iC. . . 2

k 1 1 1 1

2 2 2
x. x x i X. X.i2

12 -2 ) -2(U 2 2 2 2A i .i G 1 G 1 (5 1 G G.1i i i i i 1

2 .
12 i 2 2 ) I

i2 2y C2 . 2
A 1 1

X 
2

2
i

(E.25)A 2io
i

In a similar manner, substituting Equation (E.24) into

Equation (E.22) yields

2 1 1
S^=A E 2 (E
b i a.

1

where A is given by Equation (E.13).

For the case where a. is independent of i,
1

Equations (E.11), (E.12), (E.25), and (E.26) reduce to

1 2
S= 1r[ (x i ) (i) - (Ex )(ExiY i ) (E

1 1 1 1

.26)

.27)

"! O
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S 1 [N(xiYi) - (x i ) (v.i)]b =- A 1 ii 2

22 U 2

2
a~

N
A'

where A' =N x ( i)2
1 1

A' may be written in a more convenient form

A' = N2Ax 2
rms

where

2  1 2Ax Z(x - x)rms N i1

where

- 1
xE - x.

N . 1

Using Equation (E.32) in Equation (E.30) we then

have

2 a
b 2NAxrms

(E.34)

(E.35)

which emphasizes the intuitive notion that the estimate

of the slope of the fitted straight line becomes

better for a broader range of the independent sample

variable xi.

(E. 28)

(E.29)

(E.30)

(E.31)

(E.32)

(E.33)
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APPENDIX F

DERIVATION OF THE ALGORITHMS USED BY VLBI 1 AND VLBI 2

In this appendix we examine the effect of mixing

the radio-frequency signals with a local oscillator

signal; then we will develop a practical algorithm, con-

sistent with the maximum-likelihood (ML) estimation pro-

cedures of Section 3.2, for the processing of the recorded

video signals to estimate the delay and delay rate. For

simplicity we shall first analyze the case for a constant

delay, T, and then we will extend it to the case for a

slowly changing delay (i.e. Iýi << 1).

Designate the radio-frequency signals arriving at

station 1 and 2 as xl(t) and x2 (t), respectively, with

the corresponding radio-frequency spectra X1 (w) and X2 ( w).

Let x1 (t) and x2 (t) each be single-sideband (SSB) mixed

with a local oscillator signal at frequency w . Designate

the resulting video signals as x (t) and x2(t) and their

V v
corresponding spectra as X (w ) and X2 (w ), respectively,

where wv is the video frequency. After the mixing operation

(assumed upper-sideband) the radio-frequency spectra

are simply translated in frequency by wo so that

X (WV) = X1 (W) (F.1)

X2( V) = X2 () (F.2)
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From expression (3-12), the ML estimate of

is found by computing

max over EX1 (M)X2 (w)e I

which, using (F.1) and (F.2), is equivalent to

v (v_ v
max over E X (W )X (V )e

v 2T W

Let us define the "counter-rotated video cross-

spectrum" S12 (W ) as

-viWv
S 2 ( V )  X (wv) .X * ( V)e w12 1 2

-iw0

so that (F.4) becomes

max over I Ev S12 (W) I

From the familiar Fourier transform relations

g(t) = f21 I G(w)e dw

-iwt
G(w) = f g(t)e dt

0oo

it is easy to demonstrate the relation

v r* v . v
x 2 (T-t) *+ X (w )e1 T
22

(F.3)

(F.4)

(F.5)

(F.6)

(F.7)

(F.8)

(F.9)

- -

2n
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so that using the property that multiplication in

the frequency domain is equivalent to convolution in

the time domain (see, for example, Papoulis,

Reference 28, p. 159), we see that S 1 2 (Wv) of

Equation (F.5) may be rewritten as

.V V -1-iTS12( v) = [x l(AT) x2(T-A)]e i ATd AT e  o (F.10)
--OO

whereD indicates convolution. Or, writing out the

convolution operation explicitly, we have

- 0 -.ivAT  -iw•o
S 1 2 (v) = f { x l(t)x2(t+-AT)dt e1 wTdAT'e (F.11)

-00O -- O

where it is clear that the convolution, in this case

is really just a "cross-correlation" of x (t) with x2(t).

V V
If xl(t) and x2(t) are narrowband signals which have

been sampled at the Nyquist rate with sampling period

ATs, and if - is within approximately ±ATs of the actual

delay, T, then the range of AT in (F.11) may be restricted

to approximately ±2AT s around i since the cross-correlation

function dies rapidly as T moves away from T. In practice,

the cross-correlation is computed over a range

-3AT - AT - 3ATr so that S1 2 (W) of (F.11) becomes a

summation
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+3 -iVmA (F.12)

S 1 2 (WV) R 2 (-mATs)e (F.12)
m=-3

where we have defined the "cross-correlation function"

R12 (-mAT s ) as

R12(T-mAs) Ex 1(t)X2(t+ý-mATs) (F.13)
t

The summation over t in (F.13) is, by implication, per-

formed over the discrete samples of x (t) and x2(t).

For the Mark I recording system, where the recording

bandwidth is 360 kHz and ATs - 1.39 psec, S12(W ) is

normally computed for seven evenly-spaced frequencies

w = 45, 90, 135, 180, 225, 270, 315 kHz.

In practice, a correction must usually be applied

to S12(W) due to the fact that xv(t) and xv(t) can not

be offset by exactly i, but are instead restricted to

the nearest integral number of sample periods. If we

designate the delay corresponding to the integral number

of sample periods as f', then the actual quantity computed

in (F.13) will be R12 ( '-mATs ) instead of the desired

R12 (ý-mATs). But clearly, from the form of the sum-

mation of Equation (F.12), this introduces a simple

correction factor into the computation of S12 (W ), namely
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V ~
+3 -v -iw (T-T')

S1 2 (W) E R1 2 (i'+mATs)e m e (F.14)
m=-3

The last factor on the right-hand side of (F.14) is

known as the "fractional-bit correction".

For the case where the delay rate, T, is small but

non-zero (i.e. |I1 << 1) we may approximate the spectrum

of the signal received at station 2 as simply being

Doppler-shifted by an amount Wm , where wm is the mid-

band radio frequency. This approximation is valid over

a time interval, AT, which is short enough that the

change in delay over AT is small compared to the inverse

bandwidth B, i.e., TAT << /B. The video signal at

station 2 is Doppler-shifted by the same amount. Let

X2'( v ) be the spectrum of the video signal which would

be received at station z if 0 = 0; then the relation

between the actual received video spectrum X (wV), and

X, ((V) is simply
2

XV, (W X( (wV+wmm) (F.15)

or, equivalently, the relation between the corresponding

video signals x2' (t) and x2 (t) is

-iw{tV. 1W m Tt r .

x2 t( ) = x2(

)t e

(F.16)
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But this is exactly equivalent to mixing x2(t) with an

additional oscillator of frequency wm (the fringe rate)

in order to bring the frequency spectra Xl(w) and X2v()

into "alignment" before cross-correlation. Therefore,

the inclusion of a delay rate may be accounted for by

"numerically mixing" x2(t) with the frequency mT so that

R12(W'-mAT s ) becomes

AT -iW i(t+ý'-mAT)
R1 2 (i'-mATs) I ( {x (t)x 2 (t+f'-mAt s )e m s } (F.17)

t=o

where it is understood that TAT << 1/B. In VLBI 1,

the right-hand side of (F.17) is computed by first

performing a direct cross-correlation of x (t) and

x2(t) over a short "sub-segment" of data of length

At such that the fringephase changes only a small amount

over the interval At, i.e. 1wm Atj << 1. The result

of this sub-segment cross-correlation is then multiplied

by exp{-iw m(t-'-mAT s ) and summed with the similar

results from the other sub-segments within AT (see

Section 4.3). The interval AT is chosen to be 0.2

seconds, the length of one record of data. The values

of ± and T are updated for each record, and

R1 2 (2'-mATs) and S1 2 (Wv) are computed individually for

each record. Then, as indicated by expression (3-12),
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the values of S12()v ) are summed over the observation

and then over frequency, so that the ML estimation of

delay and delay rate may be written as

7 K
max over jI I Sk2 ( j) (F.18)

, * j=1 k=l

where K is the total number of records in the ob-

servation and S (k ) is the "counter-rotated cross-
12 3

video spectrum" for the kth record as given by

Equation (F.14).
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