
¦ 2021 Vol. 17 no. 2

Computational modeling of behavioral tasks:

An illustration on a classic reinforcement learning

paradigm

Praveen Suthaharan
aB

, Philip R. Corlett
a
& Yuen-Siang Ang

b

a
Department of Psychiatry, Connecticut Mental Health Center, Yale University
b
Institute of High Performance Computing, A*STAR

Abstract There has been a growing interest among psychologists, psychiatrists and neuroscien-

tists in applying computational modeling to behavioral data to understand animal and human be-

havior. Such approaches can be daunting for those without experience. This paper presents a step-

by-step tutorial to conduct parameter estimation in R via three techniques: MaximumLikelihood Es-

timation (MLE), Maximum A Posteriori (MAP) and Expectation-Maximization with Laplace approx-

imation (EML). We first demonstrate how to simulate a classic reinforcement learning paradigm –

the two-armed bandit task – for N = 100 subjects; and then explain how to develop the computational

model and implement the MLE, MAP and EML methods to recover the parameters. By presenting a

sufficiently detailed walkthrough on a familiar behavioral task, we hope this tutorial could benefit

readers interested in applying parameter estimation methods in their own research.

Keywords Computational modeling, reinforcement learning, two-armed bandit, parameter esti-

mation, maximum likelihood estimation, maximum a posteriori, expectation-maximization. Tools
R.

B praveen.suthaharan@yale.edu

10.20982/tqmp.17.2.p105

Acting Editor De-

nis Cousineau (Uni-

versité d’Ottawa)

Reviewers
One anonymous re-

viewer

Introduction
Cognitive scientists typically have a theory from which

hypotheses are generated. Often, these hypotheses are

couched in terms of behavioral differences between exper-

imental conditions and/or groups. Tomake sense of behav-

ioral data, two broad categories of statistical tools are nor-

mally used. Descriptive statistics summarize properties of

the data through measures of central tendency and disper-

sion, while inferential statistics allow a specific hypothesis

to be tested via methods such as analysis of variance. How-

ever, these tools are increasingly recognized as insufficient

to help us understand individual variability in human be-

havior (Bakeman& Robinson, 2005; Pagano, 2012). Compu-

tational modeling of data has emerged as a popular way to

investigate mechanisms underlying human thoughts and

behavior (Montague, Dolan, Friston, & Dayan, 2012; Corlett

& Fletcher, 2014; Wang & Krystal, 2014; Stephan & Mathys,

2014; Huys, Maia, & Frank, 2016; Patzelt, Hartley, & Gersh-

man, 2018; Huys, Browning, Paulus, & Frank, 2020). More-

over, applying computational models to behavioral data

may even garner insights into neural signals and brain

function (Niv, 2020).

Computational Modeling of Behavioral Data

Computational modeling. As defined by the National Insti-

tute of Biomedical Imaging and Bioengineering, computa-

tional modeling is the use of computers to simulate and

study complex systems using mathematics, physics and

computer science. In behavioral science, many facets of

computational modeling need to be considered for effec-

tive modeling of behavior (Wilson & Collins, 2019). This

has led to new insights on various processes including

reward learning (Daw, 2011; Huys, Pizzagalli, Bogdan, &

Dayan, 2013; Momennejad et al., 2017), impulsivity (Bickel,

Odum, & Madden, 1999), motivation (Lockwood et al.,

2017), decision-making (Ang et al., 2018), belief-updating

(Reed et al., 2020) and cognitive control (Dillon et al., 2015).

The Quantitative Methods for Psychology 1052

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/440346881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105
https://www.orcid.org/na
https://www.orcid.org/na
https://www.orcid.org/na
mailto:praveen.suthaharan@yale.edu
https://doi.org
https://doi.org/10.20982/tqmp.17.2.p105
https://www.orcid.org/0000-0001-5908-0402
https://www.orcid.org/0000-0001-5908-0402

¦ 2021 Vol. 17 no. 2

Typically, the goal of computational modeling of behav-

ioral data is to derive subject-specific estimates of param-

eters, or variables that index specific components of the

cognitive process of interest, that explain behavior.

Behavioral data. Behavioral data are complex; they

capture how agents (e.g., animals, humans, or robots) in-

teract with their environment – commonly in terms of the

actions performed (by the agent) and the rewards har-

vested (from the environment). Here, we examine a clas-

sic behavioral paradigm, the N-armed bandit task (Slivkins,

2019), where an individual is facedwith N=2 slotmachines.

One machine has a higher win probability. The agent

needs to learn which machine to choose to reap maximum

reward. This learning – accumulated by interacting with

the machines – is typically modeled using reinforcement

learning (RL) theory (Sutton & Barto, 2018). In this paper,

we focus on a relatively simple RL model: the Q-learning

model (Watkins, 1989).

The remaining sections of this paper are organized as

follows. Tutorial describes the behavioral task, computa-

tional model, and likelihood function. Tutorial – Part 1

provides a walkthrough of the R code on how to simulate

behavioral task data using the Q-learning model. Tutorial

– Part 2 provides a walkthrough on visualizing the behav-

ioral data using the powerful ggplot2 tool. Tutorial – Part

3 provides a walkthrough on how to implement three esti-

mation methods – Maximum Likelihood Estimation (MLE;

Myung, 2003), Maximum A Posteriori (MAP; Cousineau

& Hélie, 2013) and Expectation-Maximization (Do & Bat-

zoglou, 2008) with Laplace approximation (EML; Huys et

al., 2011) – to recover decision-making behavior from task

performance. Discussion provides a brief summary of the

results of model fitting on the two-armed bandit task, a

discussion on the importance of model fitting for eluci-

dating behavioral differences, and limitations. Taken to-

gether, the tutorial is intended for readers to grasp a basic

and intuitive understanding of how to implement a rein-

forcement learning model to a two-choice behavioral task

to generate behavior and then use parameter estimation

techniques to recover behavior.

Task and Model
Two-armed bandit task

Webeginwith a brief vignette of the two-armed bandit task

(see Figure 1).

Imagine walking into a new casino with only

two slot machines available. Unbeknownst to

patrons, both machines follow a Gaussian pay-

out distribution; one pays with (µ, σ) = (1, 2)
while the other (µ, σ) = (−1, 2). In other
words, there is a higher chance of winning

money on one machine and a higher chance of

losing on the other. To drum up publicity, the

owner says that players do not have to pay any-

thing upfront. Instead, you are givenN = 200
trials to pull any machine you like and the to-

tal outcome will be settled at the end. Thus,

one has to learn as quickly as possible which

machine has the better odds of payoff in order

to maximize earnings.

Computational model

How might people learn which slot machine is better over

time? Humans adopt algorithmic strategies of reinforce-

ment learning when performing tasks like the bandit task

(Schulz & Gershman, 2019). The Q-learning model itera-

tively updates values attributed to actions in order to im-

prove the learning behavior of an individual (Watkins &

Dayan, 1992). This model comprises two parts: Q-learning

update rule and Softmax decision rule.Q-learning update rule. Let t be the trial number, at be
a participant’s action on a trial, At and Bt be the specific
action of choosing machine A or machine B, respectively,
and rt be the reward obtained by the participant. The Q-
learningmodel posits that, on each trial, the subject assigns

an expected value QAt
and QBt

to each machine. Assum-

ing no initial bias for either machine, these two variables

are set to zero initially:

QAt
= 0, QBt

= 0

where t = 0. On every trial t, the participant selects a ma-
chine and receives the outcome rt. The difference between
the outcome obtained and the reward expected is quanti-

fied by the reward prediction error (RPE):

δt = rt −Qat (1)

where Qat can either be QAt or QBt depending on the

choice of machine at a particular trial. The RPE on that

trial is then used to update the value of the chosenmachine

according to the following equation:

Qat+1
= Qat + αδt (2)

in which α refers to learning rate (0 ≤ α ≤ 1) and acts to
scale the impact of δt when updating the expected value.
In other words, the higher the α value, the faster a partici-
pant learns which machine gives a better payout.Softmax decision rule. The expected values of each lever
are then converted to probabilities of choosing via the Soft-

max equation (Luce, 1986):

P (At) = P (At|βQAt , βQBt) =
eβQAt

eβQAt + eβQBt
(3)

P (Bt) = P (Bt|βQAt , βQBt) =
eβQBt

eβQAt + eβQBt
(4)

The Quantitative Methods for Psychology 1062

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

Figure 1 Two-armed bandit task. A classic reinforcement learning paradigm used to capture decision-making behavior.

The participant is presented with two slot machines, A and B, with different payoff distributions. On every trial t, an
individual chooses a lever at and is presented with a reward rt. To maximize winnings, one must learn which machine
has the better odds of payoff over the course of the task.

where equations 3 and 4 represent the probabilities of

choosing machines A and B, respectively. In rein-

forcement learning, a decision to be made – for exam-

ple, choosing a particular machine – requires one to ei-

ther explore other options or exploit the current choice

(Daw, O’doherty, Dayan, Seymour, & Dolan, 2006). This

exploration-exploitation mechanism is measured by β,
which refers to choice randomness (or more technically,

inverse temperature parameter) and represents how ran-

dom actions are (0 ≤ β < ∞); lower values cause actions
to be more equiprobable (i.e., an individual is still explor-

ing other choices across trials), whereas higher values de-

note more deterministic actions (i.e., an individual sticks

with a specific choice across trials).

Likelihood function

The observed choice data can now be used to estimate the

behavioral parameters. We fit the Q-learning model to

the two-armed bandit task data, generating the likelihood

function. Mathematically, after taking the logarithmic of

the likelihood function (Etz, 2018), the log-likelihood for

choosing machine A on a particular trial t (LLAt) and for

choosing machine B on a particular trial t (LLBt
) can be

written as (for derivation refer to Appendix D):

LLAt = log (P (At)) = Q1 − log
(
eQ1 + eQ2

)
(5)

LLBt = log (P (Bt)) = Q2 − log
(
eQ1 + eQ2

)
, (6)

whereQ1 = βQAt
andQ2 = βQBt

. The goal of parameter

estimation is to maximize (in other words, to take the sum

of the LL for each trial) so as to find the parameters that
most likely generated the choice data (see Figure 2). Al-

though the goal of parameter estimation is to maximize the

log-likelihood, we want to, in terms of optimization, think

of the log-likelihood function as a ‘cost’ function (other in-

terchangeable names are ‘loss’ or ‘error’ function). Thus,

as you can imagine, we would like to minimize the nega-

tive log-likelihood. Moreover, by default, the optimization

algorithm we use minimizes.

Tutorial
Getting Started

Installation of R. The simulation, visualization and esti-
mation procedures of this tutorial are all implemented in-

side the freely-available R/RStudio environment (Venables,

Smith, & R Development Core Team, 2009; Racine, 2012).

Therefore, the user needs to install the latest versions of

R (https://www.r-project.org/) and RStudio (https://rstudio.

com/products/rstudio/) to successfully execute the lines of

code presented in this tutorial. Note R version 4.0.0 and

RStudio version 1.1.447 were used at the time of publica-

tion.

Installation of twochoiceRL. The twochoiceRL package
can be installed from GitHub (see https://github.com/

psuthaharan/twochoiceRL) by running the following com-

mand in the RStudio console:

devtools::install_github("psuthaharan/
twochoiceRL")

This package can then be activated by running:

library(twochoiceRL)

It consists of three main functions:

?simulate_twochoiceRL
?plot_twochoiceRL
?estimate_twochoiceRL

The Quantitative Methods for Psychology 1072

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105
https://www.r-project.org/
https://rstudio.com/products/rstudio/
https://rstudio.com/products/rstudio/
https://github.com/psuthaharan/twochoiceRL
https://github.com/psuthaharan/twochoiceRL

¦ 2021 Vol. 17 no. 2

Figure 2 Likelihood as an inversion of probability. We intuitively define likelihood as representing the estimation of

behavior given a decision. In the Probability scenario, your brain executes a learning model to generate a decision –

choose machine A or machine B. In the Likelihood scenario, you have observed the data (i.e., you know an individual
chose machine A) and now consider what behavioral parameters (i.e., α and β) generated an individual’s decision to
choose machine A. The likelihood function allows us to search for values of the behavioral parameters that most likely
directed an individual to make a particular decision.

Note that if you add a ? before the function name in
the console, you will be able to view a detailed descrip-

tion of each function. The simulate_twochoiceRL
provides the functionality for simulating the two-armed

bandit task. The plot_twochoiceRL provides the

functionality for plotting the behavior of individuals who

completed the simulated two-armed bandit task. The

estimate_twochoiceRL provides the functionality for
recovering the behavioral parameters used to generate

the simulated behavior. The following sections will go in

more detail into these individual functions (see README
on GitHub for a quick walkthrough).

Part 1: Simulating data (simulate_twochoiceRL.R)
Overview

We have introduced the idea that fitting the computa-

tional model to the task data generates a likelihood func-

tion which we can use to estimate parameters. The Q-

learning model introduces two behavioral parameters that

shape an individual’s underlying decision-making process:

α represents how quickly an individual learns of the bet-
ter choice and β represents randomness of an individual’s
action. In the following section, let’s assume we have 100

hypothetical subjects with different α and β values. We
will demonstrate how to simulate their behavior in the

two-armed bandit task through the Q-learning model and

Softmax equation. The main function we focus on in Part

1 is simulate_twochoiceRL (see Appendix A, Listing
1). This function takes in several input parameters and ex-

ecutes a few procedures to generate a simulated dataset

of individuals performing the two-armed bandit task. For

users interested in copying lines 1-100 in Listing 1, please

remember to have the foreach library installed.

Procedures

Simulate parameters. When running simulations, it is
important to set a seed value (see Listing 1, line 14-15). A

seed value is any random number that holds data for repli-

cating results. The function allows the user to specify any

integer value for seed_value (defaults to 528).
The simulation begins with a random selection of val-

ues for each participant’s choice randomness and learn-

ing rate by drawing from a Gaussian distribution (see List-

ing 1, lines 17-19). We create a variable, n_subj, that
represents the number of subjects (defaults to 100) that

we want to simulate. The rnorm function is then used

to generate n_subj data points from a normal distribu-
tion with (µ1, σ1) =

(
mean1x, stdev

1
x

)
for x1 and (µ2, σ2)

= (mean2x, stdev
2
x) for x2. You will notice that x1 and x2

are used as inputs for β and α, respectively (see Listing
1, lines 21-23). We call this re-parameterization whereby

The Quantitative Methods for Psychology 1082

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

we introduce another variable (e.g., x1) as input to a func-
tion (e.g., the exponential function: ex) such that it pre-
serves the bounds of the original variable (e.g., β) while
allowing us to leverage the unbounded nature of the re-

parameterized variable (e.g., x1). To be more specific, as
we have mentioned in the Q-learning model, β is known
to be bounded (i.e., constrained) between [0,∞) and α
bounded between [0,1]. Moreover, the process of param-

eter estimation begins with random restarts (or starting

values). These values are fed into the optimization algo-

rithm to output the estimate (i.e., MAP) and the respec-

tive Hessian matrix. In the EML procedure, specifically,

these estimates and the Laplace values (diagonal elements

(or trace) of the Hessian matrix) are used to compute the

posterior hyperparameters (or mean and standard devi-

ation of the distribution that we are sampling from for

the model parameter estimates) on a particular iteration.

The succeeding iterations sample the new random restarts

from the previous estimated distribution. If the parame-

ters are bounded, you can imagine that there is a greater

possibility for the variance of the estimated distribution to

overlap the previously converged estimate, thus not allow-

ing the algorithm to robustly search the entire parameter

space. Weminimize the possibility of this issue by using an

unconstrained optimization technique for parameter esti-

mation, which requires our parameters to be unbounded

between (−∞,+∞). We remove the constraints by re-
parameterizing the model parameters in terms of x1 and
x2 using the following equations:

β = ex1 (7)

α =
1

1 + e−x2
(8)

We use the exponential function (equation 7) and sigmoid

function (equation 8) to transform β and α, respectively,
and perform our unconstrained optimization on x1 and x2
from (−∞,+∞).Initialize Q-learning vector. Now that we have demon-
strated how to simulate the behavioral parameters for

n_subj subjects, we want to use these parameters to gen-
erate simulated choices. To do this, we must first initialize

our expected values of choosing machines A and B to 0 (as-

suming no initial bias for either machine). We create a row

vector Q – updated over trials as an individual learns – to

hold these values (see Listing 1, line 33-34).Define softmax function. The probability of an individ-
ual choosing a machine, as discussed previously, is com-

puted by the softmax choice model. We code the function

based on equations 3 and 4, where the input x is a row
vector of the expected values for machine A and machine
B. We let y = x − max (x) to avoid numerical overflow
(see Appendix C on how this definition is equivalent to the

softmax equations introduced earlier).

Softmax choice function
softmax <- function (x) {
y <- x - max(x)
exp(y)/sum(exp(y))

}

Simulate data. We have now established three important
steps for simulating our two-armed bandit dataset – (1)

simulate parameters, (2) initialize Q-learning vector and

(3) define the softmax equation. These three procedures

– along with the Q-model – are the foundations for sim-

ulating our trial-by-trial data. Lines 36-77 in Listing 1

simulates an individual’s choice behavior across n_tr tri-
als (defaults to 200). In the bandit paradigm, we know

that the slot machines each has its own payoff distribu-

tion. Specifically, we have earlier assumed that machines

A and B follow a standard Gaussian-like payoff distri-

bution N (µ = 1, σ = 2) and N (µ = −1, σ = 2), respec-
tively (see Listing 1, lines 40-44). On each trial, we will first

generate the probabilities of an individual choosing each

machine using the softmax equation, incorporating the in-

dividual’s β and expected values Q (see Listing 1, lines 46-
47). Following that, either machine A or B will be sam-
pled based on these action probability values (see Listing

1, lines 49-50). A reward will then be given (see Listing

1, lines 52-53). Based on the individual’s action, reward

and learning rate (α), we will update the expected value
using the Q-learning model (see Equation 2) for the next

trial (see Listing 1, lines 55-56). We perform this sequence

for eachn_tr trial and save the trial data into a data frame
(see Listing 1, lines 58-64). This trial-by-trial data is stored

for each n_subj subjects in twochoiceRL_data (ini-
tialized in Listing 1, lines 11-12 and saved in Listing 1, lines

77-78). Note that the simulate_twochoiceRL function
has an additional parameter, trials_unique. This pa-
rameter serves to subset the data for estimation purposes.

If TRUE (by default), only unique trials (i.e., trials where

the individual selected a machine) is kept (see Listing 1,

lines 66-68). Otherwise, all trials are kept for plotting pur-

poses (see Listing 1, lines 70-72).

The function simulate_twochoiceRL outputs a
list containing the trial-by-trial task data, the number of

subjects the user specified to simulate, and the true param-

eter values for x1 and x2 that were used to generate the
behavior (see Listing 1, lines 93-98).

How do we view the resulting behavioral data for an

individual? First, we should store the function output to a

variable:

Save simulated data to a variable
data <- simulate_twochoiceRL(

seed_value = 528,

The Quantitative Methods for Psychology 1092

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

n_subj = 100,
n_tr = 200,
mean_x = c(1,0),
stdev_x = c(1,1),
mean_payoff = c(1,-1),
stdev_payoff = c(2,2),
trials_unique = TRUE,
progress_bar = TRUE)

Nowwe can view the data for individual 100 (see Figure 3):

View individual 100
View(data$twochoiceRL[[100]])

Part 2: Plotting data (plot_twochoiceRL.R)
Overview

Viewing data values is good. But, visualizing data is

more appealing. We will demonstrate how to plot the be-

havioral data of individuals using the ggplot2 tool (Wick-

ham, 2016). The main function we focus on in Part 2 is

plot_twochoiceRL (see Appendix A, Listing 2). This
function requires four input parameters – the simulated

dataset, the subject data to plot, line colors representing

the two choices, and whether a user would like to view

it in static form or animated form – to generate a plot of

the individual’s behavior. For users interested in copying

lines 1-68 in Listing 2, please remember to have both the

ggplot2 and gganimate libraries installed.

Procedures

Visualizing data. Wevisualize the change in expected val-
ues and choice probabilities across trials for an individual.

It’s important to set trial_unique to FALSE because for
plotting purposes we are interested to see the data values

for the relevant trials (where the individual selected the

machine) and the counterfactual trials (where the individ-

ual did not select the machine).

The following lines of code produces Figure 4:

Saving simulated data for plotting
data <- simulate_twochoiceRL(

trials_unique = FALSE)

Visualize behavior of subject 100
plot_twochoiceRL(data = data,

subj = 100,
colors = c("#009999","#0000FF"),
plot_type = "static")

Part 3: Parameter estimation (estimate_twochoiceRL.R)
Overview

Up until now, we have shown how to use simulated

behavioral parameters to generate choice data. How-

ever, in reality, we will only have participants’ choice

data to study behavior. We will demonstrate how to re-

cover (or estimate) the behavioral parameters from the

choice data using three different parameter estimation

techniques. The main function we focus on in Part 3

is estimate_twochoiceRL (see Appendix A, Listing
3). It utilizes three separate functions for each estima-

tion method: mle_twochoiceRL, map_twochoiceRL,
and eml_twochoiceRL. For brevity, we will unpack the
main function but leave the details of these individual esti-

mation scripts for the users to peruse through in the pack-

age.

Procedures

Performing MLE. In practice, the true behavioral param-
eters are not known. Hence, we will start the param-

eter estimation methods with random guesses for our

parameters (see Listing 3, lines 19-20). We create a

mle_twochoiceRL function that takes as input the sim-
ulated data (see Listing 3, line 25), a list of random guesses

for our parameters (see Listing 3, line 26), an objective

function that calculates the negative log-likelihood, gradi-

ent and Hessian (see Listing 3, line 27), an optimization al-

gorithm (Geyer, 2020) used to minimize the objective func-

tion (see Listing 3, line 28), the starting and maximum al-

lowed trust region radius (see Listing 3, line 29), and a user-

specified number of random restarts (or starting parame-

ter values) to search our parameter space (see Listing 3,

line 30). The execution of this function results in the MLE

estimates for each parameter (see Listing 3, lines 33-35).

We save these parameter estimates along with the true pa-

rameter values in a data frame (see Listing 3, lines 37-44)

for plotting (see Listing 3, lines 46-53).

To recapitulate, we simulated data in Part 1 and ob-

served which choices (or slot machines) each of our simu-

lated subjects preferred in Part 2. In Part 3, we are focused

on recovering their underlying decision-making process by

estimating how random their choices are (x1;β) and how
quickly they learn of the better choice (x2;α). The MLE
approach takes initial random guesses of these behavioral

parameters and outputs estimated behavioral parameters

that the algorithm believes is most probable to have re-

sulted in the simulated subject for choosing a particular

machine.

Performing MAP. Let’s now consider the case where you
not only take initial random guesses of the behavioral pa-

rameters but also have some previous information (i.e.,

The Quantitative Methods for Psychology 1102

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

Figure 3 Simulated two-armed bandit data from a single individual. We examine the first and last 10 trials of subject

100’s casino performance to illustrate the underlying decision-making process. The data contains 5 columns – the trial

number, the expected value of the chosen machine, the probability of choosing the machine, the participant’s chosen

machine, and the outcome of the choice. We can see that over time subject 100 learns to prefer machine A (i.e., Action =
1) as evident by the increase in probability.

prior knowledge) of an individual’s decision-making pro-

cess; for example, say we know an individual is a decisive

thinker (β > 10) and learner (α > 0.8). With this informa-
tion (i.e., an informative prior) we can provide a range for

our parameters and take initial random guesses from this

range, yielding more accurate estimates. We initialize an

assumed prior distribution (i.e., a relatively wide normal

distribution) for the parameters (see Listing 3, lines 162-

166). Therefore, in addition to the input parameters used

in the MLE function, the map_twochoiceRL function re-
quires prior information (see Listing 3, lines 178-179).

Performing EML. Like the MAP method, we begin by ini-
tializing priors for x1 and x2, but, unique to EML, also
variables for storing information on convergence and iter-

ations of the algorithm (see Listing 3, lines 301-304) where

it iteratively estimates the distribution for each parame-

ter estimates. The EML procedure (see Listing 3, lines

309-390) is a while loop that begins with random guesses

of our model parameter values for the first iteration (see

Listing 3, lines 312-315) and uses the previous MAP esti-

mates as initial guesses for successive iterations (see List-

ing 3, lines 335-337). The procedure currently loops un-

til the absolute difference between the previous LL and

current LL is less than 0.001 (see Listing 3, line 310); this

can be adjusted to allow the algorithm to iterate through

faster (diff >> 0.001) or slower (diff << 0.001). In addi-

tion to the input parameters used in the MAP function, the

eml_twochoiceRL function requires knowledge of the
iteration number (see Listing 3, line 354) and the MAP esti-

mates from previous iterations (see Listing 3, line 355). No-

tably, the EML procedure differs from the othermethods in

that the priors are iteratively updated using the calculated

MAP and the Laplacian values (see Listing 3, lines 376-385)

based on the Laplacian approximationmethod (Huys et al.,

2011). These iteratively updated, Laplace-approximated

posterior hyperparameters are returned by the EML pro-

cedure (see Listing 3, line 421). We graphically illustrate

the convergence of these hyperparameters (i.e., the mean

and standard deviation of the distribution from which we

are sampling our behavioral parameters) per EML itera-

tion (see Appendix B). It’s interesting that, in many cases,

the posterior hyperparameters converge around the mean

values of our simulated parameters. For those other cases,

it’s plausible that the parameter search of the algorithm

found a local minimum. Therefore, a couple of sugges-

tions would be to increase the maximum trust region ra-

dius (tr_rad) or the total number of restarts (nRes) in
hopes of finding the global minimum.

The estimation performance of our three methods –

MLE, MAP and EML – is summarized in Figure 5. The fol-

lowing lines of code will produce the estimation plots for

each technique, respectively:

The Quantitative Methods for Psychology 1112

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

Figure 4 Learning performance of simulated subject 100. The expected value and choice probability suggest this subject

clearly prefers lever A as evident by a higher probability. (a) Expected value for lever A and B across 200 trials. (b)
Probability of choosing lever A andB across 200 trials.

MLE estimation (Figure 5, left panel)
estimate_twochoiceRL(data = data,

method = "mle",
plot = TRUE)

MAP estimation (Figure 5 middle panel)
estimate_twochoiceRL(data = data,

method = "map",
prior_mean = c(0,0),
prior_sd = c(5,5),
plot = TRUE)

EML estimation (Figure 5, right panel)
estimate_twochoiceRL(data = data,

method = "eml",
prior_mean = c(0,0),
prior_sd = c(5,5),
plot = TRUE)

Three important measures of fit were considered in as-

sessing the fit between our estimated and true parame-

ters. Bias is a measure of closeness between the estimates
and truth; values may range in either direction – negative

or positive – but, ideally, the bias value should be close

to 0 (i.e., unbiased). Root Mean Square Error (RMSE) is
a measure of spread in the residuals (difference between

estimated and true values; prediction error); values – in

principle – range from 0 (perfect prediction with no error)

to∞ (very poor prediction with substantial error). Pear-
son’s correlation coefficient (r) is a measure of strength
in association between two variables; values range from

-1 (strong negative relationship) to +1 (strong positive rela-

tionship). To summarize, a good fit would, ideally, have a

Bias∼ 0, RMSE∼ 0, and r ∼ 1 or -1.
There aremany important differences to observe when

comparing the estimation performances of our methods.

Although the strengths in correlations prove relatively

strong across methods (x1: rMLE = 0.787, rMAP = 0.846,
rEML = 0.924; x2: rMLE = 0.827 , rMAP = 0.873, rEML =

0.917; p < 0.0001), it’s imperative we evaluate fit with addi-

tional measures. A reference line (y = x; dotted red line)
was added to visually measure underlying overestimation

or underestimation in the estimates. It’s quite evident – es-

pecially from the MLE and MAP results – that values were

overestimated (i.e., more points above the reference line)

and underestimated; this is also captured in the Bias (neg-

ative values) and RMSE (� 0). The iterative nature of the
EML algorithm, estimating the uncertainty of the parame-

The Quantitative Methods for Psychology 1122

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

Figure 5 Parameter recovery using three estimation methods. We compare the performance of parameter recovery

among the MLE, MAP and EML estimation methods. Each figure represents a scatter plot of our true (x-axis) vs estimated

(y-axis) points. Ideally, all the points should be close to our reference y = x line (red). We leverage Bias, RMSE and r to
evaluate performance of these estimation methods. It’s important to note that because of the different axis scales used, it

might seem as if MLE andMAP, specifically for x2, are better than EML but as the r suggests that is not the case. Therefore,
taking all the metrics into consideration, we can conclude that EML offers improved parameter recovery. Axes range are

shared to better assess the quality of the estimates.

ters, minimized the problem of overestimation and under-

estimation. All things considered, the three methods offer

compelling estimation performance, but the EML perfor-

mance illustrates improved parameter recovery, highlight-

ing the potential usefulness of EML in parameter estima-

tion.

Discussion
Computational modeling serves as an important tool for

exploring behavioral data. We can leverage different pa-

rameter estimation techniques for robust model fitting –

relating parameters to behavioral differences.

Tutorial summary. We presented a tutorial on how to im-
plement three estimation techniques, namely MLE, MAP

and EML, in context to a simple and classic behavioral

paradigm: the two-armed bandit task. We began with a

brief overview of the Q-learning model which is composed

of two parts: the Q-updating rule (which iteratively up-

dates an individual’s expectation of what the next choice

should be) and the Softmax decision rule (which converts

expected values of choices obtained from the Q-updating

rule to probabilities of choosing a particular choice). This

standard RL model is responsible for capturing behavior

on the task via two parameters: learning rate (α) and
choice randomness (β). We then proceeded to guide users
– via R code – on how to simulate behavioral data for 100

people each with different α and β values (true parame-
ters) and demonstrated parameter estimation with MLE,

MAP and EML on the simulated data to recover the α̂ and β̂
values (estimated parameters). Moreover, the flexibility of

the code – for example, the ability to adjust reward struc-

tures of the stimuli, the trust region radius of the optimiza-

tion algorithm, and priors of the parameters – gives users

more control over aspects of model fitting and estimating

The Quantitative Methods for Psychology 1132

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

of simulated behavior.

Value of computational modeling. Fitting models, like
reinforcement learning (RL) models, to behavioral data

can provide insight into unclear behavioral phenomena.

Several studies have leveraged Q-learning model param-

eters to characterize behavior between healthy and un-

healthy groups of various disorders (Li, Lai, Liu, & Hsu,

2014; Sethi, Voon, Critchley, Cercignani, & Harrison, 2018;

McCoy, Jahfari, Engels, Knapen, & Theeuwes, 2019). For

example, Li et al fit behavioral data (obtained from the

DRT – a two-choice task) to the Q-learning model and

found that patients with schizophrenia had higher learn-

ing rates (α) than healthy controls and the choice random-
ness (β) trended negatively with severity of positive psy-
chotic symptoms. The question of whether positive or neg-

ative symptoms of schizophrenia were related to dysfunc-

tion of RPE signaling was then revealed through model pa-

rameter correlations with symptom scales; dysfunctions of

RPE signaling during the DRT was more associated with

positive symptoms of psychosis. The findings from these

studies underscore the importance of utilizing behavioral

parameters to ascertain individual and group differences

in behavior, and unraveling relationship between behav-

ior and symptoms. Modeling could also have practical

utility; for example, parameters could be predictors of re-

sponse to different classes of antidepressants (Ang et al.,

2020; Whitton et al., 2020).

Limitations. Though we provide a detailed walkthrough
on modeling behavioral data, there are many other facets

of computational modeling that should be considered but

were not illustrated in this tutorial for simplicity’s sake.

These include implementing alternative estimation ap-

proaches, leveraging empirical priors, generating surro-

gate data, and performing model comparison. We also end

this section with some additional resources to accompany

this tutorial.

Alternative estimation approaches. The performance

of MLE and MAP point-estimates resulted in good corre-

lation, albeit overestimation of true values. On the other

hand, the EML method, despite starting from relatively

wider normal distribution priors, resulted in improved

performance compared to MLE and MAP. It is also im-

portant to note that the presented approach is not a fully

Bayesian approach since we have computed point esti-

mates (MAP) rather than the full posterior. An alternative,

robust yet computationally-expensive approach would be

the Monte Carlo Markov Chain (MCMC) for parameter esti-

mation (Makowski, Wallach, & Tremblay, 2002).

Empirical priors. Moreover, our prior here is estimated

hierarchically on the same data, which has been suggested

to increase the risk of overfitting (i.e., may be less gen-

eralizable). An alternative is to use empirical priors esti-

mated from separate datasets (Gershman, 2016), although

it currently remains unclear how hierarchical and empiri-

cal methods compare.

Surrogate data generation. In this tutorial, we have fo-

cused on simulated data as it allows us to know the true pa-

rameter values and howwell they can be recovered. In the

real world, however, the true parameters are unknown.

So how can we determine whether our parameter recov-

ery is satisfactory or not? One way to do that is to gen-

erate surrogate data – using recovered parameters to sim-

ulate performance based on the model (i.e., what we did

using simulate_twochoiceRL.R) – and then compare
the surrogate performance to real performance (Moulder,

Boker, Ramseyer, & Tschacher, 2018).

Model comparison. It is also important to realize that

here, we have focused only on estimating parameters for

one model; Q-learning model with two free parameters

(α, β). However, in reality, one might conceive several
plausiblemodels with different number of parameters that

describe the different ways participants perform a task,

so typically estimation has to be done for several mod-

els. How then does one decide which model is most suit-

able? Model comparison allows for the selection of the

best model among a collection of candidate models. Two of

the most common approaches are (i) Akaike Information

Criterion (AIC), which selects the model that minimizes

mean squared error, and (ii) Bayesian Information Crite-

rion (BIC), which selects the model that maximizes log-

likelihood (or minimizes negative log-likelihood) (Vrieze,

2012; Neath & Cavanaugh, 2012, 2). The interested reader

is encouraged to refer to a review by Burnham& Anderson

for an in-depth discussion on model selection (Burnham &

Anderson, 2004).

Additional resources. The literature is rich with best

practices for computational modeling and Bayesian pa-

rameter estimation. We provide a few that we believe

will paint a useful picture of these concepts in concert

with this tutorial. Wilson & Collins put together a great

guide for those interested in modeling behavioral data

(Wilson & Collins, 2019), and Zhang et al discuss the im-

portant pitfalls and best practices of using RL models to

the fields of social, cognitive and affective neuroscience

(Zhang, Lengersdorff, Mikus, Gläscher, & Lamm, 2020).

In addition to computational modeling, an overview of

Bayesian statistics for parameter estimation is intuitively

presented in this primer (van de Schoot et al., 2021). Tu-

torials and software packages are becoming invaluable

assets for practical learning of computational modeling

of behavioral data. Ahn et al. have created a com-

pendium of computational modeling functions for a wide-

array of behavioral tasks (Ahn, Haines, & Zhang, 2017).

Also, check out Nathaniel Haine’s post on parameter esti-

The Quantitative Methods for Psychology 1142

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

mation where he compares the estimation performance

of MLE, MAP and MCMC (http://haines-lab.com/post/

2018-03-24-human-choice-and-reinforcement-learning-3/).

Conclusion
Modeling cognitive processes using behavioral data can

provide researchers with an avenue to deeply understand

the brain, which could lead to a better understanding of

themechanisms underlying behavioral differences. There-

fore, it is important to educate researchers in this fieldwith

such computational approaches. This tutorial was written

to elucidate the implementation of (1) a traditional rein-

forcement learning model to model behavior and (2) pa-

rameter estimation methods to recover behavior. We ex-

hort more scientists to leverage these computational tools

for estimating unknown parameters in behavioral models

to obtain interesting behavioral insights and advance be-

havioral research.

Authors’ note
YSA is supported by the Kaplen Fellowship in Depression

from Harvard Medical School as well as the A*STAR Na-

tional Science Scholarship. The authors thank the Editor

and one anonymous Reviewer for detailed comments that

have substantially improved the manuscript. Latest up-

dates of the code can be found on Github at https://github.

com/psuthaharan/twochoiceRL.

References
Ahn, W. Y., Haines, N., & Zhang, L. (2017). Revealing neuro-

computational mechanisms of reinforcement learn-

ing and decision-making with the hbayesdm package.

Computational Psychiatry, 1, 24–57. doi:10.1162/CPSY_

a_00002

Ang, Y. S., Kaiser, R., Deckersbach, T., Almeida, J., Phillips,

M. L., Chase, H. W., . . . Pizzagalli, D. A. (2020).

Pretreatment reward sensitivity and frontostriatal

resting-state functional connectivity are associated

with response to bupropion after sertraline nonre-

sponse. Biological Psychiatry, 88(8), 657–667. doi:10 .

1016/j.biopsych.2020.04.009

Ang, Y. S., Manohar, S., Plant, O., Kienast, A., Le Heron,

C., Muhammed, K., . . . Husain, M. (2018). Dopamine

modulates option generation for behavior. Current Bi-

ology, 28(10), 1561–1569. doi:10.1016/j.cub.2018.03.

069

Bakeman, R., & Robinson, B. F. (2005). Understanding

statistics in the behavioral sciences. doi:10 . 4324 /

9781410612625

Bickel, W. K., Odum, A. L., & Madden, G. J. (1999). Im-

pulsivity and cigarette smoking: Delay discounting in

current, never and ex-smokers. Psychopharmacology,

146(4), 447–454. doi:10.1007/PL00005490

Burnham, K. P., & Anderson, D. R. (2004). Multimodel in-

ference: Understanding aic and bic in model selec-

tion. Sociological methods & research, 33(2), 261–304.

doi:10.1177/0049124104268644

Corlett, P. R., & Fletcher, P. C. (2014). Computational psy-

chiatry: A rosetta stone linking the brain to mental

illness. The Lancet Psychiatry, 1(5), 399–402. doi:10 .

1016/S2215-0366(14)70298-6

Cousineau, D., & Hélie, S. (2013). Improvingmaximum like-

lihood estimation using prior probabilities: A tutorial

onmaximuma posteriori estimation and an examina-

tion of the weibull distribution. Tutorials in Quantita-

tive Methods for Psychology, 9(2), 61–71. doi:10.20982/

tqmp.09.2.p061

Daw, N. D. (2011). Trial-by-trial data analysis using com-

putational models. Decision making, affect, and learn-

ing: Attention and performance XXIII, 23, 1–99. doi:10.

1093/acprof:oso/9780199600434.003.0001

Daw, N. D., O’doherty, J. P., Dayan, P., Seymour, B., & Dolan,

R. J. (2006). Cortical substrates for exploratory deci-

sions in humans. Nature, 441(7095), 876–879. doi:10.

1038/nature04766

Dillon, D. G., Wiecki, T., Pechtel, P., Webb, C., Goer, F.,

Murray, L., . . . Parsey, R. (2015). A computational

analysis of flanker interference in depression. Psy-

chological medicine, 45(11), 2333–2344. doi:10 . 1017 /

S0033291715000276

Do, C. B., & Batzoglou, S. (2008). What is the expectation

maximization algorithm?Nature biotechnology, 26(8),

897–899. doi:10.1038/nbt1406

Etz, A. (2018). Introduction to the concept of likelihood

and its applications. Advances in Methods and Prac-

tices in Psychological Science, 1(1), 60–69. doi:10.1177/

2515245917744314

Gershman, S. J. (2016). Empirical priors for reinforcement

learning models. Journal of Mathematical Psychology,

71, 1–6. doi:10.1016/j.jmp.2016.01.006

Geyer, C. J. (2020). Trust: Trust region optimization (Ver-

sion 0.1.8). Retrieved from http://CRAN.R-project.org/

package=trust

Huys, Q. J., Browning, M., Paulus, M., & Frank, M. J.

(2020). Advances in the computational understanding

of mental illness. Neuropsychopharmacology, 1, 1–19.

doi:10.1038/s41386-020-0746-4

Huys, Q. J., Cools, R., Gölzer, M., Friedel, E., Heinz, A., Dolan,

R. J., & Dayan, P. (2011). Disentangling the roles of ap-

proach, activation and valence in instrumental and

pavlovian responding. PLoS Computational Biology,

7(4), 1–99. doi:10.1371/journal.pcbi.1002028

The Quantitative Methods for Psychology 1152

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105
http://haines-lab.com/post/2018-03-24-human-choice-and-reinforcement-learning-3/
http://haines-lab.com/post/2018-03-24-human-choice-and-reinforcement-learning-3/
https://github.com/psuthaharan/twochoiceRL
https://github.com/psuthaharan/twochoiceRL
https://dx.doi.org/10.1162/CPSY_a_00002
https://dx.doi.org/10.1162/CPSY_a_00002
https://dx.doi.org/10.1016/j.biopsych.2020.04.009
https://dx.doi.org/10.1016/j.biopsych.2020.04.009
https://dx.doi.org/10.1016/j.cub.2018.03.069
https://dx.doi.org/10.1016/j.cub.2018.03.069
https://dx.doi.org/10.4324/9781410612625
https://dx.doi.org/10.4324/9781410612625
https://dx.doi.org/10.1007/PL00005490
https://dx.doi.org/10.1177/0049124104268644
https://dx.doi.org/10.1016/S2215-0366(14)70298-6
https://dx.doi.org/10.1016/S2215-0366(14)70298-6
https://dx.doi.org/10.20982/tqmp.09.2.p061
https://dx.doi.org/10.20982/tqmp.09.2.p061
https://dx.doi.org/10.1093/acprof:oso/9780199600434.003.0001
https://dx.doi.org/10.1093/acprof:oso/9780199600434.003.0001
https://dx.doi.org/10.1038/nature04766
https://dx.doi.org/10.1038/nature04766
https://dx.doi.org/10.1017/S0033291715000276
https://dx.doi.org/10.1017/S0033291715000276
https://dx.doi.org/10.1038/nbt1406
https://dx.doi.org/10.1177/2515245917744314
https://dx.doi.org/10.1177/2515245917744314
https://dx.doi.org/10.1016/j.jmp.2016.01.006
http://CRAN.R-project.org/package=trust
http://CRAN.R-project.org/package=trust
https://dx.doi.org/10.1038/s41386-020-0746-4
https://dx.doi.org/10.1371/journal.pcbi.1002028

¦ 2021 Vol. 17 no. 2

Huys, Q. J., Maia, T. V., & Frank, M. J. (2016). Computa-

tional psychiatry as a bridge from neuroscience to

clinical applications. Nature neuroscience, 19(3), 404–

499. doi:10.1038/nn.4238

Huys, Q. J., Pizzagalli, D. A., Bogdan, R., & Dayan, P. (2013).

Mapping anhedonia onto reinforcement learning: A

behavioural meta-analysis. Biology of mood & anxiety

disorders, 3(1), 12–99. doi:10.1186/2045-5380-3-12

Li, C. T., Lai, W. S., Liu, C. M., & Hsu, Y. F. (2014). Inferring

reward prediction errors in patients with schizophre-

nia: A dynamic reward task for reinforcement learn-

ing. Frontiers in psychology, 5, 1282–1299. doi:10 .

3389/fpsyg.2014.01282

Lockwood, P. L., Hamonet, M., Zhang, S. H., Ratnavel, A.,

Salmony, F. U., Husain, M., & Apps, M. A. (2017).

Prosocial apathy for helping others when effort is

required. Nature human behaviour, 1(7), 0131–0199.

doi:10.1038/s41562-017-0131

Luce, R. D. (1986). Response times: Their role in inferring

elementary mental organization (no. 8). on Demand:

Oxford University Press.

Makowski, D., Wallach, D., & Tremblay, M. (2002). Using a

Bayesian approach to parameter estimation; compar-

ison of the glue andmcmcmethods. Agronomie, 22(2),

191–203. doi:10.1051/agro:2002007

McCoy, B., Jahfari, S., Engels, G., Knapen, T., & Theeuwes,

J. (2019). Dopaminergic medication reduces striatal

sensitivity to negative outcomes in parkinson’s dis-

ease. Brain, 142(11), 3605–3620. doi:10 . 1093 / brain /

awz276

Momennejad, I., Russek, E. M., Cheong, J. H., Botvinick,

M. M., Daw, N. D., & Gershman, S. J. (2017). The suc-

cessor representation in human reinforcement learn-

ing. Nature Human Behaviour, 1(9), 680–692. doi:10 .

1038/s41562-017-0180-8

Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P.

(2012). Computational psychiatry. Trends in cognitive

sciences, 16(1), 72–80. doi:10.1016/j.tics.2011.11.018

Moulder, R. G., Boker, S. M., Ramseyer, F., & Tschacher, W.

(2018). Determining synchrony between behavioral

time series: An application of surrogate data gen-

eration for establishing falsifiable null-hypotheses.

Psychological methods, 23(4), 757–799. doi:10 . 1037 /

met0000172

Myung, I. J. (2003). Tutorial on maximum likelihood es-

timation. Journal of mathematical Psychology, 47(1),

90–100. doi:10.1016/S0022-2496(02)00028-7

Neath, A. A., & Cavanaugh, J. E. (2012). The Bayesian infor-

mation criterion: Background, derivation, and appli-

cations. 4, 199–203. doi:10.1002/wics.199

Niv, Y. (2020). On the primacy of behavioral research for

understanding the brain. In Y. Niv (Ed.), Current con-

troversies in philosophy of cognitive science (pp. 134–

151). doi:10.4324/9781003026273-16

Pagano, R. R. (2012). Understanding statistics in the behav-

ioral sciences (vol. 1). Washington: Cengage Learning.

Patzelt, E. H., Hartley, C. A., & Gershman, S. J. (2018). Com-

putational phenotyping: Using models to understand

individual differences in personality, development,

and mental illness. Personality Neuroscience, 1, 1–99.

doi:10.1017/pen.2018.14

Racine, J. S. (2012). Rstudio: A platform-independent ide

for r and sweave. Journal of Applied Econometrics, 27,

167–172. doi:10.1002/jae.1278

Reed, E. J., Uddenberg, S., Suthaharan, P., Mathys, C. H., Tay-

lor, J. R., Groman, S. M., & Corlett, P. R. (2020). Para-

noia as a deficit in non-social belief updating. Elife,

9(1), 1–99. doi:10.7554/eLife.56345

Schulz, E., & Gershman, S. J. (2019). The algorithmic ar-

chitecture of exploration in the human brain. Current

opinion in neurobiology, 55, 7–14. doi:10.1016/j.conb.

2018.11.003

Sethi, A., Voon, V., Critchley, H. D., Cercignani, M., & Har-

rison, N. A. (2018). A neurocomputational account of

reward and novelty processing and effects of psychos-

timulants in attention deficit hyperactivity disorder.

Brain, 141(5), 1545–1557. doi:10.1093/brain/awy048

Slivkins, A. (2019). Introduction to multi-armed bandits.

Foundations and Trends in Machine Learning, 12(1-2),

1–286. doi:10.1561/2200000068

Stephan, K. E., & Mathys, C. (2014). Computational ap-

proaches to psychiatry. Current opinion in neurobiol-

ogy, 25, 85–92. doi:10.1016/j.conb.2013.12.007

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning:

An introduction. doi:10.1109/TNN.1998.712192

van de Schoot, R., Depaoli, S., King, R., Kramer, B., Martens,

K., Tadesse, M., . . . Yau, C. (2021). Bayesian statistics

and modelling. Nature Review Methods Primers, 1, 1–

99. doi:10.1038/s43586-020-00001-2

Venables, W. N., Smith, D. M., & R Development Core Team.

(2009). An introduction to r. Racoon City: Bill & Ted.

Vrieze, S. I. (2012). Model selection and psychological

theory: A discussion of the differences between the

akaike information criterion (aic) and the Bayesian

information criterion (bic). Psychological methods,

17(2), 228–299. doi:10.1037/a0027127

Wang, X. J., & Krystal, J. H. (2014). Computational psychi-

atry. Neuron, 84(3), 638–654. doi:10 . 1016 / j . neuron .

2014.10.018

Watkins, C. J. C. H. (1989). Learning from delayed rewards.

Racoon City: Bill & Ted.

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine

learning, 8(3-4), 279–292. doi:10.1007/BF00992698

The Quantitative Methods for Psychology 1162

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105
https://dx.doi.org/10.1038/nn.4238
https://dx.doi.org/10.1186/2045-5380-3-12
https://dx.doi.org/10.3389/fpsyg.2014.01282
https://dx.doi.org/10.3389/fpsyg.2014.01282
https://dx.doi.org/10.1038/s41562-017-0131
https://dx.doi.org/10.1051/agro:2002007
https://dx.doi.org/10.1093/brain/awz276
https://dx.doi.org/10.1093/brain/awz276
https://dx.doi.org/10.1038/s41562-017-0180-8
https://dx.doi.org/10.1038/s41562-017-0180-8
https://dx.doi.org/10.1016/j.tics.2011.11.018
https://dx.doi.org/10.1037/met0000172
https://dx.doi.org/10.1037/met0000172
https://dx.doi.org/10.1016/S0022-2496(02)00028-7
https://dx.doi.org/10.1002/wics.199
https://dx.doi.org/10.4324/9781003026273-16
https://dx.doi.org/10.1017/pen.2018.14
https://dx.doi.org/10.1002/jae.1278
https://dx.doi.org/10.7554/eLife.56345
https://dx.doi.org/10.1016/j.conb.2018.11.003
https://dx.doi.org/10.1016/j.conb.2018.11.003
https://dx.doi.org/10.1093/brain/awy048
https://dx.doi.org/10.1561/2200000068
https://dx.doi.org/10.1016/j.conb.2013.12.007
https://dx.doi.org/10.1109/TNN.1998.712192
https://dx.doi.org/10.1038/s43586-020-00001-2
https://dx.doi.org/10.1037/a0027127
https://dx.doi.org/10.1016/j.neuron.2014.10.018
https://dx.doi.org/10.1016/j.neuron.2014.10.018
https://dx.doi.org/10.1007/BF00992698

¦ 2021 Vol. 17 no. 2

Whitton, A. E., Reinen, J. M., Slifstein, M., Ang, Y. S.,

McGrath, P. J., Iosifescu, D. V., . . . Schneier, F. R.

(2020). Baseline reward processing and ventrostriatal

dopamine function are associated with pramipexole

response in depression. Brain, 143(2), 701–710. doi:10.

1093/brain/awaa002

Wickham, H. (2016). Ggplot2: Elegant graphics for data

analysis. doi:10.1007/978-3-319-24277-4

Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for

the computational modeling of behavioral data. Elife,

8, e49547–99. doi:10.7554/eLife.49547

Zhang, L., Lengersdorff, L., Mikus, N., Gläscher, J., & Lamm,

C. (2020). Using reinforcement learning models in

social neuroscience: Frameworks, pitfalls and sug-

gestions of best practices. Social cognitive and affec-

tive neuroscience, 15(6), 695–707. doi:10 . 1093 / scan /

nsaa089

Appendix A: Code to simulate, visualize, and estimate two-choice behavior
Listing 1. R code to simulate two-choice behavior.

Usage:
Function to simulate two-choice data with default values
simulate_twochoiceRL(seed_value = 528,

n_subj = 100,
n_tr = 200,
mean_x = c(1,0),
stdev_x = c(1,1),
mean_payoff = c(1,-1),
stdev_payoff = c(2,2),
trials_unique = TRUE,
progress_bar = TRUE)

Source code:

1 simulate_twochoiceRL <- function(seed_value = 528,
2 n_subj = 100,
3 n_tr = 200,
4 mean_x = c(1,0),
5 stdev_x = c(1,1),
6 mean_payoff = c(1,-1),
7 stdev_payoff = c(2,2),
8 trials_unique = TRUE,
9 progress_bar = TRUE) { # start simulation
10

11 # initialize list for storing data for all subjects
12 twochoiceRL_data <- list()
13

14 # set seed value for replication
15 set.seed(seed_value)
16

17 # randomly generate values
18 x1 <- rnorm(n_subj,mean_x[1],stdev_x[1])
19 x2 <- rnorm(n_subj,mean_x[2],stdev_x[2])
20

21 # re-parameterize model parameters
22 beta <- exp(x1) # choice randomness
23 alpha <- 1/(1+exp(-x2)) # learning rate
24

25 # create progress bar if user specified
26 if (progress_bar == TRUE){

The Quantitative Methods for Psychology 1172

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105
https://dx.doi.org/10.1093/brain/awaa002
https://dx.doi.org/10.1093/brain/awaa002
https://dx.doi.org/10.1007/978-3-319-24277-4
https://dx.doi.org/10.7554/eLife.49547
https://dx.doi.org/10.1093/scan/nsaa089
https://dx.doi.org/10.1093/scan/nsaa089

¦ 2021 Vol. 17 no. 2

27 pb <- txtProgressBar(min = 0, max = data$subjects, style = 3)
28 }
29

30 # simulate trial-by-trial data for all subjects
31 for (i in 1:n_subj){ # start loop for subjects
32

33 # initialize expected value to zero for both choices
34 Q <- c(0, 0)
35

36 # simulate choice behavior across trials
37 simulate.trials <- foreach(t=1:n_tr,
38 .combine = "rbind") %do% { # start loop for trials
39

40 # Mean payoff for choices 1 and 2
41 mu <- c(mean_payoff[1], mean_payoff[2])
42

43 # Standard deviation of payoff for choices 1 and 2
44 sigma <- c(stdev_payoff[1], stdev_payoff[2])
45

46 # Generate action probability using softmax
47 action_prob <- softmax(beta[i]*Q)
48

49 # Use action probability to sample participant action
50 action <- sample(c(1,2), size = 1, prob = action_prob)
51

52 # Generate reward based on action
53 reward <- rnorm(1, mean = mu[action], sd = sigma[action])
54

55 # Q-learning
56 Q[action] <- Q[action] + alpha[i] * (reward - Q[action])
57

58 # Save data
59 df <- data.frame(Trial = rep(t, 2), # trial number
60 Value = Q, # expected value
61 Pr = action_prob, # choice probability
62 Option = paste(1:2), # presented stimuli
63 Action = rep(action, 2), # chosen stimuli
64 Reward = rep(reward, 2)) # reward received
65

66 if (trials_unique == TRUE){
67 # only keep the trials where option was selected
68 df[which(df$Option == df$Action),]
69

70 } else {
71 # keep all trials for plotting purposes
72 df
73 }
74

75 } # end loop for trials
76

77 # store trial-by-trial data for each subject
78 twochoiceRL_data[[i]] <- simulate.trials

The Quantitative Methods for Psychology 1182

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

79

80 # load progress bar with loop index i
81 if (progress_bar == TRUE){
82 Sys.sleep(0.1)
83 setTxtProgressBar(pb, i)
84 }
85

86 } # End for loop for subjects
87

88 # close progress bar
89 if (progress_bar == TRUE){
90 close(pb)
91 }
92

93 # return list with the data, number of subjects, true x1/x2 values
94 MyList <- list("twochoiceRL" = twochoiceRL_data,
95 "subjects" = n_subj,
96 "x1" = x1,
97 "x2" = x2)
98 return(MyList)
99

100 } # end simulation

Listing 2. R code to visualize two-choice behavior.

Usage:

Saving simulated data for plotting purpose
data <- simulate_twochoiceRL(trials_unique = FALSE)

Function to plot two-choice data with default values
plot_twochoiceRL(data = data,

subj = 100,
colors = c("orange","purple"),
plot_type = "static")

Source code:

1 plot_twochoiceRL <- function(data = NULL,
2 subj = 100,
3 colors = c("orange", "purple"),
4 plot_type = "static") { # start plotting
5

6 if (plot_type == "static"){ # start static plot
7

8 # Plot expected value across trials
9 g1 <- ggplot(data$twochoiceRL[[subj]],
10 aes(x=data$twochoiceRL[[subj]]$Trial,
11 y=data$twochoiceRL[[subj]]$Value,
12 fill=data$twochoiceRL[[subj]]$Option)) +
13 geom_point() + geom_smooth() +
14 xlab("Trial number") + ylab("Expected value") +
15 scale_fill_manual(name = "Machine",
16 labels = c("A","B"),

The Quantitative Methods for Psychology 1192

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

17 values = c(colors[1],colors[2]))
18

19 # Plot choice probability across trials
20 g2 <- ggplot(data$twochoiceRL[[subj]],
21 aes(x=data$twochoiceRL[[subj]]$Trial,
22 y=data$twochoiceRL[[subj]]$Pr,
23 fill=data$twochoiceRL[[subj]]$Option)) +
24 geom_point() + geom_smooth() +
25 xlab("Trial number") + ylab("Choice probability") +
26 scale_fill_manual(name = "Machine",
27 labels = c("A","B"),
28 values = c(colors[1],colors[2]))
29

30 # arrange plots
31 plot <- ggarrange(g1,g2,
32 ncol=2,nrow=1,
33 common.legend = TRUE,
34 legend = ’bottom’)
35

36 return(plot)
37 } # end static plot
38

39 if (plot_type == "animate"){ # start animation plot
40 # Plot choice probability across trials
41 plot <- ggplot(data = data$twochoiceRL[[subj]],
42 aes(x = data$twochoiceRL[[subj]]$Trial,
43 y = data$twochoiceRL[[subj]]$Pr,
44 color = data$twochoiceRL[[subj]]$Option)) +
45 geom_point(aes(group = seq_along(data$twochoiceRL[[subj]]$Trial)),
46 size = 4,
47 alpha = 0.7) +
48 geom_line(aes(lty = data$twochoiceRL[[subj]]$Option),
49 alpha = 0.6) +
50 labs(y = "Choice probability",
51 x = "Trial",
52 title = "") +
53 scale_linetype_manual(name = "",
54 labels = c("A","B"),
55 values = c("solid","solid"),
56 guide = FALSE) +
57 scale_color_manual(name = "Machine",
58 labels = c("A","B"),
59 values = c(colors[1],colors[2]))
60

61 ## Animated Plot
62 animate.plot <- plot +
63 transition_reveal(along = data$twochoiceRL[[subj]]$Trial)
64

65 return(animate.plot)
66 } # end animation plot
67

68 } # end plotting

The Quantitative Methods for Psychology 1202

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

Listing 3. R code to estimate two-choice behavior.

Usage:

Saving simulated data for estimating purpose
data <- simulate_twochoiceRL(trials_unique = TRUE)

Function to estimate two-choice behavior with default values
estimate_twochoiceRL(seed_value = 528,

data = NULL,
method = "mle",
nRes = 5,

tr_rad = c(1,5),
prior_mean = c(NULL,NULL),
prior_sd = c(NULL,NULL),
plot = FALSE,
progress_bar = TRUE)

Source code:

1 estimate_twochoiceRL <- function(seed_value = 528,
2 data = NULL,
3 method = "mle",
4 nRes = 5,
5 tr_rad = c(1,5),
6 prior_mean = c(NULL,NULL),
7 prior_sd = c(NULL,NULL),
8 plot = FALSE,
9 progress_bar = TRUE) { # start estimation
10

11 # ensures replication of result - the rnorm() function
12 # used in the next few lines will result in the same
13 # sequence of random numbers for the specified seed
14 set.seed(seed_value)
15

16 # if specified estimation method is MLE, then run MLE
17 if (method == "mle") {
18

19 # randomly generate initial guesses for parameters
20 init_x1 <- rnorm(data$subjects,0,5)
21 init_x2 <- rnorm(data$subjects,0,5)
22

23 # perform MLE
24 mle_data <- mle_twochoiceRL(
25 data = data, # simulated task data
26 param = list(init_x1,init_x2), # initial guesses for parameters
27 fn = "mle.objectiveFunction", # likelihood function being minimized
28 opt = "TRM", # trust-region optimization method
29 radius = c(tr_rad[1],tr_rad[2]), # initial and max allowed radius
30 nRes = nRes, # random restarts
31 progress_bar = progress_bar) # track completion time of estimation
32

33 # save mle results
34 x1_hat <- mle_data[[2]] # estimates of x1

The Quantitative Methods for Psychology 1212

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

35 x2_hat <- mle_data[[3]] # estimates of x2
36

37 # store true and estimated parameters
38 x1 <- data$x1
39 x2 <- data$x2
40

41 df <- data.frame(x1,
42 x2,
43 x1_hat,
44 x2_hat)
45

46 # mle function output
47 results <- list(value = df,
48 bias_x1 = bias(x1,x1_hat),
49 bias_x2 = bias(x2,x2_hat),
50 rmse_x1 = rmse(x1,x1_hat),
51 rmse_x2 = rmse(x2,x2_hat),
52 corr_x1 = cor(x1,x1_hat),
53 corr_x2 = cor(x2,x2_hat))
54

55 # if user doesn’t want to see the plot, then only return results
56 if (plot == FALSE){
57 return(results)
58 }
59 else {
60

61 # generate plot 1
62 p1 <- ggplot(df,
63 aes(x=x1,y=x1_hat)) +
64 geom_point() +
65 geom_smooth(method = "lm", se = FALSE) +
66 coord_cartesian(xlim=c(min(x1,x1_hat),
67 max(x1,x1_hat)),
68 ylim=c(min(x1,x1_hat),
69 max(x1,x1_hat))) +
70 labs(x = expression("x"[1]),
71 y = expression(hat(x)[1])) +
72 theme(#axis.title.y = element_blank(),
73 #axis.title.x = element_blank(),
74 #axis.text = element_blank(),
75 panel.background = element_rect(),
76 panel.grid.major = element_line(size=1),
77 panel.grid.minor = element_line(size=1),
78 axis.ticks = element_line(colour="black",
79 size = 1.5),
80 panel.border = element_rect(colour = "black",
81 fill = NA,
82 size = 2.5),
83 legend.text = element_blank(),
84 legend.position = "none",
85 aspect.ratio = 1) +
86 annotate("label",

The Quantitative Methods for Psychology 1222

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

87 label = paste("bias =", round(bias(x1,x1_hat),3), "\n",
88 "rmse =", round(rmse(x1,x1_hat),3),"\n",
89 "r =", round(cor(x1,x1_hat,
90 method = "pearson"),3)),
91 x=max(x1), # adjust position based on plot
92 y=min(x1_hat)+1, # adjust position based on plot
93 size=4) +
94

95 # add reference line
96 geom_abline(intercept = 0, slope = 1,
97 linetype = "dashed",
98 size = 1,
99 color = "red")
100

101 # generate plot 2
102 p2 <- ggplot(df,
103 aes(x=x2,y=x2_hat)) +
104 geom_point() +
105 geom_smooth(method = "lm", se = FALSE) +
106 coord_cartesian(xlim=c(min(x2,x2_hat),
107 max(x2,x2_hat)),
108 ylim=c(min(x2,x2_hat),
109 max(x2,x2_hat))) +
110 labs(x = expression("x"[2]),
111 y = expression(hat(x)[2])) +
112 theme(#axis.title.y = element_blank(),
113 #axis.title.x = element_blank(),
114 #axis.text = element_blank(),
115 panel.background = element_rect(),
116 panel.grid.major = element_line(size=1),
117 panel.grid.minor = element_line(size=1),
118 axis.ticks = element_line(colour="black",
119 size = 1.5),
120 panel.border = element_rect(colour = "black",
121 fill = NA,
122 size = 2.5),
123 legend.text = element_blank(),
124 legend.position = "none",
125 aspect.ratio = 1) +
126 annotate("label",
127 label = paste("bias =", round(bias(x2, x2_hat),3),"\n",
128 "rmse =", round(rmse(x2, x2_hat),3),"\n",
129 "r =", round(cor(x2, x2_hat,
130 method = "pearson"),3)),
131 x=max(x2), # adjust position based on plot
132 y=min(x2_hat)+1, # adjust position based on plot
133 size=4) +
134

135 # add reference line
136 geom_abline(intercept = 0, slope = 1,
137 linetype = "dashed",
138 size = 1,

The Quantitative Methods for Psychology 1232

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

139 color = "red")
140

141 # combine plots
142 plot <- ggarrange(p1,p2,
143 ncol = 2, nrow = 1,
144 common.legend = TRUE,
145 legend = ’bottom’)
146

147 # return MLE estimation values and plot
148 return(list(results, p1, p2, plot))
149 }
150

151 } else if (method == "map"){ # if MAP specified, run MAP
152

153 # randomly generate initial guesses for parameters
154 init_x1 <- rnorm(data$subjects,0,5)
155 init_x2 <- rnorm(data$subjects,0,5)
156

157 # use default priors if no prior information is specified
158 if (is.null(prior_mean) == TRUE && is.null(prior_sd) == TRUE){
159 message("MAP requires specification of initial priors;
160 defaulting to prior_mean = c(0,0) and prior_sd = c(5,5)")
161

162 # initialize priors for parameters
163 m1 = 0
164 s1 = 5
165 m2 = 0
166 s2 = 5
167 } else {
168 # initialize priors for parameters
169 m1 = prior_mean[1]
170 s1 = prior_sd[1]
171 m2 = prior_mean[2]
172 s2 = prior_sd[2]
173 }
174

175 map_data <- map_twochoiceRL(
176 data = data, # simulated task data
177 param = list(init_x1,init_x2), # initial guesses for parameters
178 prior_mean = c(m1,m2), # initial prior means
179 prior_sd = c(s1,s2), # initial prior standard deviation
180 fn = "map.objectiveFunction", # likelihood function being minimized
181 opt = "TRM", # trust-region optimization method
182 radius = c(tr_rad[1],tr_rad[2]), # initial and max allowed radius
183 nRes = nRes, # random restarts
184 progress_bar = progress_bar) # track completion time of estimation
185

186 # save map results
187 x1_hat <- map_data[[2]] # estimates of x1
188 x2_hat <- map_data[[3]] # estimates of x2
189

190 # store true and estimated parameters

The Quantitative Methods for Psychology 1242

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

191 x1 <- data$x1
192 x2 <- data$x2
193

194 df <- data.frame(x1,
195 x2,
196 x1_hat,
197 x2_hat)
198

199 # map function output
200 results <- list(value = df,
201 bias_x1 = bias(x1,x1_hat),
202 bias_x2 = bias(x2,x2_hat),
203 rmse_x1 = rmse(x1,x1_hat),
204 rmse_x2 = rmse(x2,x2_hat),
205 corr_x1 = cor(x1,x1_hat),
206 corr_x2 = cor(x2,x2_hat)
207)
208

209 if (plot == FALSE){
210 return(results)
211 }
212 else {
213 # generate plot 1
214 p1 <- ggplot(df,
215 aes(x=x1,y=x1_hat)) +
216 geom_point() +
217 geom_smooth(method = "lm", se = FALSE) +
218 coord_cartesian(xlim=c(min(x1,x1_hat),
219 max(x1,x1_hat)),
220 ylim=c(min(x1,x1_hat),
221 max(x1,x1_hat))) +
222 labs(x = expression("x"[1]),
223 y = expression(hat(x)[1])) +
224 theme(#axis.title.y = element_blank(),
225 #axis.title.x = element_blank(),
226 #axis.text = element_blank(),
227 panel.background = element_rect(),
228 panel.grid.major = element_line(size=1),
229 panel.grid.minor = element_line(size=1),
230 axis.ticks = element_line(colour="black", size = 1.5),
231 panel.border = element_rect(colour = "black",
232 fill = NA,
233 size = 2.5),
234 legend.text = element_blank(),
235 legend.position = "none",
236 aspect.ratio = 1) +
237 annotate("label",
238 label = paste("bias =", round(bias(x1,x1_hat),3), "\n",
239 "rmse =", round(rmse(x1,x1_hat),3),"\n",
240 "r =", round(cor(x1, x1_hat,
241 method = "pearson"),3)),
242 x=max(x1), # adjust position based on plot

The Quantitative Methods for Psychology 1252

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

243 y=min(x1_hat)+1, # adjust position based on plot
244 size=4) +
245 # add reference line
246 geom_abline(intercept = 0, slope = 1,
247 linetype = "dashed",
248 size = 1,
249 color = "red")
250

251 # generate plot 2
252 p2 <- ggplot(df,
253 aes(x=x2,y=x2_hat)) +
254 geom_point() +
255 geom_smooth(method = "lm", se = FALSE) +
256 coord_cartesian(xlim=c(min(x2,x2_hat),
257 max(x2,x2_hat)),
258 ylim=c(min(x2,x2_hat),
259 max(x2,x2_hat))) +
260 labs(x = expression("x"[2]),
261 y = expression(hat(x)[2])) +
262 theme(#axis.title.y = element_blank(),
263 #axis.title.x = element_blank(),
264 #axis.text = element_blank(),
265 panel.background = element_rect(),
266 panel.grid.major = element_line(size=1),
267 panel.grid.minor = element_line(size=1),
268 axis.ticks = element_line(colour="black", size = 1.5),
269 panel.border = element_rect(colour = "black",
270 fill = NA,
271 size = 2.5),
272 legend.text = element_blank(),
273 legend.position = "none",
274 aspect.ratio = 1) +
275 annotate("label",
276 label = paste("bias =", round(bias(x2, x2_hat),3),"\n",
277 "rmse =", round(rmse(x2, x2_hat),3),"\n",
278 "r =", round(cor(x2, x2_hat,
279 method = "pearson"),3)),
280 x=max(x2),
281 y=min(x2_hat)+1,
282 size=4) +
283 # add reference line
284 geom_abline(intercept = 0, slope = 1,
285 linetype = "dashed",
286 size = 1,
287 color = "red")
288

289 # combine plots
290 plot <- ggarrange(p1,p2,
291 ncol = 2, nrow = 1,
292 common.legend = TRUE,
293 legend = ’bottom’)
294

The Quantitative Methods for Psychology 1262

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

295

296 # return MAP estimation values and plot
297 return(list(results, p1, p2, plot))
298 }
299

300 } else if (method == "eml") {
301 d <-numeric() # store difference of log-likelihood b/w iterations
302 diff = 10000 # set large likelihood value difference for convergence
303 prev = Inf # initialize previous log-likelihood value
304 iter = 1 # initial iteration of E-M step
305

306 # initialize variable to store posterior hyperparameters
307 posterior_hyperparameters <- list()
308

309 # Perform E-M step with Laplace Approximation
310 while(diff > 0.001){ # start E-M procedure
311

312 # generate initial guesses for iterations
313 if (iter == 1){ # first iteration, generate guesses randomly
314 init_x1 <- rnorm(data$subjects,0,5)
315 init_x2 <- rnorm(data$subjects,0,5)
316

317 # use default priors if no prior information is specified
318 if (is.null(prior_mean) == TRUE && is.null(prior_sd) == TRUE){
319

320 message("EML requires specification of initial prior;
321 defaulting to prior_mean = c(0,0) and prior_sd = c(5,5)")
322

323 # initialize priors for parameters
324 m1 = 0
325 s1 = 5
326 m2 = 0
327 s2 = 5
328 } else {
329 # initialize priors for parameters
330 m1 = prior_mean[1]
331 s1 = prior_sd[1]
332 m2 = prior_mean[2]
333 s2 = prior_sd[2]
334 }
335 } else { # successive iterations, use previous ’iterations MAP
336 init_x1 <- eml_data[[2]]
337 init_x2 <- eml_data[[3]]
338 m1 <- m1_laplace
339 s1 <- s1_laplace
340 m2 <- m2_laplace
341 s2 <- s2_laplace
342 }
343

344 # Run E-step
345 eml_data <- eml_twochoiceRL(
346 data = data, # simulated task data

The Quantitative Methods for Psychology 1272

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

347 param = list(init_x1,init_x2), # initial guesses for parameters
348 prior_mean = c(m1,m2), # initial prior means
349 prior_sd = c(s1,s2), # initial prior standard deviations
350 fn = "eml.objectiveFunction", # likelihood function being minimized
351 opt = "TRM", # trust-region optimization method
352 radius = c(tr_rad[1],tr_rad[2]), # initial and max allowed radius
353 nRes = nRes, # random restarts
354 iter = iter, # iteration number
355 eml_data = eml_data, # previous ’iterations output
356 progress_bar = progress_bar) # track completion time of estimation
357

358 # calculate difference in log-likelihood for convergence
359 diff <- abs(eml_data[[1]] - prev)
360 d[iter] <- diff
361 prev <- eml_data[[1]]
362

363 # print output in R console
364 print(paste("iter", iter, ":",
365 "LL =", round(eml_data[[1]],3),",",
366 "diff =", round(diff,3),",",
367 "(m1,m2,s1,s2) =", "(",round(m1,3),",",
368 round(m2,3),",",
369 round(s1,3),",",
370 round(s2,3),")"))
371 print("--")
372

373 # store posterior hyperparameters
374 posterior_hyperparameters[[iter]] <- c(iter,m1,m2,s1,s2)
375

376 # Run M-step with Laplace approximation: update hyperparameters
377 m1_laplace <- mean(eml_data[[2]])
378 s1_laplace <- sqrt(sum((eml_data[[2]]^(2))+
379 (eml_data[[4]])-(2*eml_data[[2]]*m1)+
380 (rep(m1^(2),data$subjects)))/(data$subjects-1))
381

382 m2_laplace <- mean(eml_data[[3]])
383 s2_laplace <- sqrt(sum((eml_data[[3]]^(2))+
384 (eml_data[[5]])-(2*eml_data[[3]]*m2)+
385 (rep(m2^(2),data$subjects)))/(data$subjects-1))
386

387 # iterate
388 iter = iter+1
389

390 } # end E-M procedure
391

392 # save eml results
393 x1_hat <- eml_data[[2]] # estimates of x1
394 x2_hat <- eml_data[[3]] # estimates of x2
395

396 # store true and estimated parameters
397 x1 <- data$x1
398 x2 <- data$x2

The Quantitative Methods for Psychology 1282

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

399

400 df <- data.frame(x1,
401 x2,
402 x1_hat,
403 x2_hat)
404

405 posterior_hyperparam_vals <- as.data.frame(
406 matrix(
407 unlist(posterior_hyperparameters),
408 length(posterior_hyperparameters),5,
409 byrow = TRUE
410))
411 colnames(posterior_hyperparam_vals) <- c("iter","m1","m2","s1","s2")
412

413 # eml function output
414 results <- list(value = df,
415 bias_x1 = bias(x1,x1_hat),
416 bias_x2 = bias(x2,x2_hat),
417 rmse_x1 = rmse(x1,x1_hat),
418 rmse_x2 = rmse(x2,x2_hat),
419 corr_x1 = cor(x1,x1_hat),
420 corr_x2 = cor(x2,x2_hat),
421 posterior_vals = posterior_hyperparam_vals)
422

423 # generate Gaussian density from posterior hyperparameters
424 post_hyper_param <- results$posterior_vals
425

426 # x1
427 post_hyper_param_x1 <- data.frame(
428 mean = post_hyper_param$m1,
429 stdev = post_hyper_param$s1,
430 iter = paste0("Iter_",sprintf("%02.0f",1:nrow(post_hyper_param))),
431 stringsAsFactors = F)
432 # x2
433 post_hyper_param_x2 <- data.frame(
434 mean = post_hyper_param$m2,
435 stdev = post_hyper_param$s2,
436 iter = paste0("Iter_",sprintf("%02.0f",1:nrow(post_hyper_param))),
437 stringsAsFactors = F)
438

439 # points at which to evaluate the Gaussian densities
440 x1_eval <- seq(-10,10, by = 0.01) # adjust to cover the range
441 x2_eval <- seq(-10,10, by = 0.01) # adjust to cover the range
442

443 # compute Gaussian densities based on means and standard deviations
444 pdf_x1 <- mapply(dnorm,
445 mean = post_hyper_param_x1$mean,
446 sd = post_hyper_param_x1$stdev,
447 MoreArgs = list(x = x1_eval),
448 SIMPLIFY = FALSE)
449

450 pdf_x2 <- mapply(dnorm,

The Quantitative Methods for Psychology 1292

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

451 mean = post_hyper_param_x2$mean,
452 sd = post_hyper_param_x2$stdev,
453 MoreArgs = list(x = x2_eval),
454 SIMPLIFY = FALSE)
455

456 # add group names
457 names(pdf_x1) <- post_hyper_param_x1$iter
458 names(pdf_x2) <- post_hyper_param_x2$iter
459

460 # convert list to dataframe
461 pdf_x1 <- do.call(cbind.data.frame, pdf_x1)
462 pdf_x1$x1_eval <- x1_eval
463

464 pdf_x2 <- do.call(cbind.data.frame, pdf_x2)
465 pdf_x2$x2_eval <- x2_eval
466

467 # convert dataframe to long format
468 x1_long <- gather(pdf_x1, iter, density, -x1_eval)
469 x2_long <- gather(pdf_x2, iter, density, -x2_eval)
470

471 if (plot == FALSE){
472 return(results)
473 }
474 else {
475

476 # generate plot 1
477 p1 <- ggplot(df,
478 aes(x=x1,y=x1_hat)) +
479 geom_point() +
480 geom_smooth(method = "lm", se = FALSE) +
481 coord_cartesian(xlim=c(min(x1,x1_hat),
482 max(x1,x1_hat)),
483 ylim=c(min(x1,x1_hat),
484 max(x1,x1_hat))) +
485 labs(x = expression("x"[1]),
486 y = expression(hat(x)[1])) +
487 theme(#axis.title.y = element_blank(),
488 #axis.title.x = element_blank(),
489 #axis.text = element_blank(),
490 panel.background = element_rect(),
491 panel.grid.major = element_line(size=1),
492 panel.grid.minor = element_line(size=1),
493 axis.ticks = element_line(colour="black", size = 1.5),
494 panel.border = element_rect(colour = "black",
495 fill = NA,
496 size = 2.5),
497 legend.text = element_blank(),
498 legend.position = "none",
499 aspect.ratio = 1) +
500 annotate("label",
501 label = paste("bias =", round(bias(x1,x1_hat),3), "\n",
502 "rmse =", round(rmse(x1,x1_hat),3),"\n",

The Quantitative Methods for Psychology 1302

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

503 "r =", round(cor(x1,x1_hat,
504 method = "pearson"),3)),
505 x=max(x1)-1,
506 y=min(x1_hat)+0.5,
507 size=4) +
508 # add reference line
509 geom_abline(intercept = 0, slope = 1,
510 linetype = "dashed",
511 size = 1,
512 color = "red")
513

514 # generate plot 2
515 p2 <- ggplot(df,
516 aes(x=x2,y=x2_hat)) +
517 geom_point() +
518 geom_smooth(method = "lm", se = FALSE) +
519 coord_cartesian(xlim=c(min(x2,x2_hat),
520 max(x2,x2_hat)),
521 ylim=c(min(x2,x2_hat),
522 max(x2,x2_hat))) +
523 labs(x = expression("x"[2]),
524 y = expression(hat(x)[2])) +
525 theme(#axis.title.y = element_blank(),
526 #axis.title.x = element_blank(),
527 #axis.text = element_blank(),
528 panel.background = element_rect(),
529 panel.grid.major = element_line(size=1),
530 panel.grid.minor = element_line(size=1),
531 axis.ticks = element_line(colour="black", size = 1.5),
532 panel.border = element_rect(colour = "black",
533 fill = NA,
534 size = 2.5),
535 legend.text = element_blank(),
536 legend.position = "none",
537 aspect.ratio = 1) +
538 annotate("label",
539 label = paste("bias =", round(bias(x2, x2_hat),3),"\n",
540 "rmse =", round(rmse(x2, x2_hat),3),"\n",
541 "r =", round(cor(x2, x2_hat,
542 method = "pearson"),3)),
543 x=max(x2)-1,
544 y=min(x2_hat)+0.5,
545 size=4) +
546 # add reference line
547 geom_abline(intercept = 0, slope = 1,
548 linetype = "dashed",
549 size = 1,
550 color = "red")
551

552 # combine plots
553 plot <- ggarrange(p1,p2,
554 ncol = 2, nrow = 1,

The Quantitative Methods for Psychology 1312

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

555 common.legend = TRUE,
556 legend = ’bottom’)
557

558 # posterior hyperparameter joy plot (x1)
559 ggjoy_x1 <- ggplot(x1_long,
560 aes(x = x1_eval, y = factor(iter),
561 height = density, fill = factor(iter))) +
562 geom_density_ridges(stat="identity",
563 alpha = 0.5, color = "white") +
564 theme(axis.title.y = element_blank(),
565 axis.title.x = element_blank(),
566 axis.text = element_blank(),
567 panel.background = element_rect(),
568 panel.grid.major = element_line(size=1),
569 panel.grid.minor = element_line(size=1),
570 axis.ticks = element_line(colour="black", size = 1.5),
571 panel.border = element_rect(colour = "black",
572 fill = NA, size = 1.5),
573 #legend.text = element_blank(),
574 legend.position = "none",
575 aspect.ratio = 1) +
576 labs(x = "x1", y = "Iteration")
577

578 # posterior hyperparameter joy plot (x2)
579 ggjoy_x2 <- ggplot(x2_long,
580 aes(x = x2_eval, y = factor(iter),
581 height = density, fill = factor(iter))) +
582 geom_density_ridges(stat="identity",
583 alpha = 0.5, color = "white") +
584 theme(axis.title.y = element_blank(),
585 axis.title.x = element_blank(),
586 axis.text = element_blank(),
587 panel.background = element_rect(),
588 panel.grid.major = element_line(size=1),
589 panel.grid.minor = element_line(size=1),
590 axis.ticks = element_line(colour="black", size = 1.5),
591 panel.border = element_rect(colour = "black",
592 fill = NA, size = 1.5),
593 #legend.text = element_blank(),
594 legend.position = "none",
595 aspect.ratio = 1) +
596 labs(x = "x2", y = "Iteration")
597

598 ggjoy_x1x2 <- ggarrange(ggjoy_x1,ggjoy_x2, ncol = 2, nrow = 1)
599

600 # animated joy plot (x1)
601 ggjoy_x1_anim <- ggjoy_x1 +
602 transition_states(factor(iter), transition_length = 1,
603 state_length = 1) + shadow_mark()
604

605 # animated joy plot (x2)
606 ggjoy_x2_anim <- ggjoy_x2 +

The Quantitative Methods for Psychology 1322

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

607 transition_states(factor(iter), transition_length = 1,
608 state_length = 1) + shadow_mark()
609

610 # return all results and plots
611 return(list(results,
612 p1, p2, plot,
613 ggjoy_x1, ggjoy_x2, ggjoy_x1x2,
614 ggjoy_x1_anim , ggjoy_x2_anim))
615 } # end else statement for plotting EML results
616

617 } # end else if statement for EML
618

619 } # end estimation

Appendix B: Laplace-approximated posterior hyperparameters
We provide a graphical illustration of the estimated posterior hyperparameters obtained on each EML-iteration. Two

possible results are shown in Figure 6: (a) where we simulate behavior using parameters sampled from a normal dis-
tribution with (µ1, σ1) = (1, 1) and (µ2, σ2) = (0, 1) for x1 and x2, respectively, and estimate our parameters – which
generated our simulated behavior – with priors sampled from a normal distribution with (m(1,2), s(1,2)) = (0, 5) for
both parameters, while (b) we simulate behavior using parameters sampled from the same normal distribution for each
parameter as in (a), but now estimate our parameters with relatively wide priors sampled from a normal distribution

with (m1, s1) = (10, 5) and (m2, s2) = (3.5, 1.5) for x1 and x2, respectively. In both cases, we see convergence of the
posterior hyperparameters to the distribution we had used to simulate behavior, highlighting the performance of the

EML method in closely recovering our behavioral parameters.

Simulate data
data_sim <- simulate_twochoiceRL(mean_x = c(µ1,µ2),

stdev_x = c(σ1,σ2))

Estimate data
estimate_twochoiceRL(data = data_sim, method = "eml",

prior_mean = c(m1,m2),
prior_sd = c(s1,s2),
plot = TRUE)

The Quantitative Methods for Psychology 1332

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

Figure 6 Laplace-approximated posterior hyperparameters per EML iteration.

(a) (b)

Appendix C: Softmax to turn numbers into probabilities
The softmax function is known formodeling an individual’s choice among a set of choices. In the classic two-armed bandit

task, we have some expectation (or evidence), ~Q = {QA, QB}, that an individual will choose a particular machine:
~M = {MA,MB} with some probability. Larger values for ~Q indicate higher expectation (or more evidence) that a
particular chosen machine will maximize reward. So, we need to convert these expectations into choice probabilities for

each machine.

In laymen terms, the softmax can simply be thought of as a way to convert numbers into probabilities. It divides each

element of ~Q by the sum of all its elements:

P (M) =
eβ

~Q∑
eβ ~Q

(C.1)

where ~Q represents a row vector,
[
QA, QB

]
, containing the expected values for machine A and machine B. Therefore,

β ~Q represents the scaled vector,
[
βQA, βQB

]
, where β acts to scale the impact of the choice probability of a machine,

P(M).

It may not be intuitive now, but if we code the softmax just as (C.1) we will run into issues of numerical instability.

We know that β ranges from [0,∞) so there is a possibility for β to be large and increasingly scale ~Qwhich would result
in a very large exponential value (e10000 =∞), and we want values between [0,1] as per the definition of probability.
Fortunately, the softmax identity trick (Goodfellow, Bengio & Courville, 2016) - subtract themaximum value from each

element - will avoid this numerical instability:

P (M) =
e~x∑
e~x

(let ~x = β ~Q)

=
e~x−max(~x)∑
e~x−max(~x)

(softmax identity)

=
e~x

emax(~x)∑
e~x

emax(~x)

(ea−b = ea

eb
)

=
e~x

emax(~x)
∗ e

max(~x)∑
e~x

(invert and multiply)

=
e~x∑
e~x

(simplify)

This demonstrates that we can preserve the original softmax function while overcoming numerical instability.

The Quantitative Methods for Psychology 1342

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105
http://www.deeplearningbook.org/contents/numerical.html

¦ 2021 Vol. 17 no. 2

Appendix D: Log-likelihood, Gradient and Hessian derivations
Introduction. Let us revisit our model with two parameters - inverse temperature, β, and learning rate α - that we aim
to estimate. We know that the domain of these model parameters are [0,∞] and [0,1], respectively. However, given an un-
constrained optimization approach (i.e., trust region), we need to perform our estimation on unconstrained parameters.

Thus, our motivation behind reparameterization of parameters using x1 and x2:

β = ex1 (D.1)

α =
1

1 + e−x2
(D.2)

This reparameterization allows our parameters - x1 and x2 - to have an unconstrained domain of [-∞, ∞] while
preserving the appropriate domains of β and α. We now introduce the softmax choice function and Q-learning rule
formula for choosing either arm A or arm B of a slot machine:

P (A) =
eQ1

eQ1 + eQ2
(D.3)

QAt
= QAt−1

+ α(rt−1 −QAt−1
) (D.4)

P (B) =
eQ2

eQ1 + eQ2
(D.5)

QBt
= QBt−1

+ α(rt−1 −QBt−1
) (D.6)

where β andα have been reparameterized andQ1 = βQA andQ2 = βQB . Equations (D.3) and (D.4) represent the softmax
choice function and Q-learning rule for a participants’ choice of arm A, respectively. Likewise, equations (D.5) and (D.6)

represent the choice of arm B. For the purpose of explaining the remaining derivations, we will perform the derivations

on the basis of a particular choice by a participant (i.e., the probability of choosing arm A). This means we will focus on

equations (D.3) and (D.4). Let’s begin by algebraically converting equation (D.4) into one indexed by 1 (for choosing arm

A):

QAt = QAt−1 + α(rt−1 −QAt−1) (from equation 4)

βQAt = βQAt−1 + α(βrt−1 − βQAt−1) (multiply by β)

Q1t = Q1t−1 + α(βrt−1 −Q1t−1) (Q1 = βQA)

Hence,

Q1t = Q1t−1 + α(βrt−1 −Q1t−1) (D.7)

Log-likelihood. Now that we have setup the general model we can begin performing our derivations. We will first start
with the derivation of the log-likelilhood (LL) of equation (D.3):

P (A) =
eQ1

eQ1 + eQ2
(from equation 3)

log(P (A)) = log(
eQ1

eQ1 + eQ2
) (log both sides)

= log(eQ1)− log(eQ1 + eQ2) (log quotient rule)

= Q1 − log(eQ1 + eQ2) (log(ex) = x)

Thus,

LL = log(P (A)) = Q1 − log(eQ1 + eQ2) (D.8)

The Quantitative Methods for Psychology 1352

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

Gradient. Given our log-likelihood, we are ready to compute the gradient of the LL with respect to each of our parame-
ters - x1 and x2 - as symbolized by

∂LL
∂x1

and
∂LL
∂x2
, respectively :

Starting with
∂LL
∂x1
:

LL = Q1 − log(eQ1 + eQ2) (from equation 8)

∂LL

∂x1
=
∂Q1

∂x1
−
[

1

eQ1 + eQ2

][
∂Q1

∂x1
eQ1 +

∂Q2

∂x1
eQ2

]
(partial derivative w.r.t x1)

=
∂Q1

∂x1
−
[
P (A)

∂Q1

∂x1
+ P (B)

∂Q2

∂x1

]
(from equation 3 and 5)

from which we get

∂LL

∂x1
=
∂Q1

∂x1
−
[
P (A)

∂Q1

∂x1
+ P (B)

∂Q2

∂x1

]
(D.9)

Second, we need to solve for
∂Q1

∂x1
in equation (D.9). To accomplish this wewill refer to equation (D.7) and differentiate

with respect to x1:

Solving
∂Q1

∂x1
:

Q1t = Q1t−1
+ α(βrt−1 −Q1t−1

) (from equation 7)

∂Q1t

∂x1
=
∂Q1t−1

∂x1
+ αrt−1

∂β

∂x1
− α

∂Q1t−1

∂x1
(partial derivative w.r.t x1)

= (1− α)
∂Q1t−1

∂x1
+ αrt−1

∂β

∂x1
(simplify using common factor)

Thus,

∂Q1t

∂x1
= (1− α)

∂Q1t−1

∂x1
+ αrt−1

∂β

∂x1
(D.10)

The last step needed to evaluate equation (D.9) is to evaluate the term,
∂β
∂x1
, from equation (D.10):

Getting
∂β
∂x1
:

β = ex1 (from equation 1)

∂β

∂x1
=
∂ex1

∂x1
(partial derivative w.r.t x1)

= ex1 (
∂
∂xe

x = ex)

= β (from equation 1)

Consequently,

∂β

∂x1
= β (D.11)

Finally, we expand equation (D.9) using equations (D.10) and (D.11) to obtain the gradient of the LL with respect to x1.
We now perform a similar derivation procedure for the gradient of the LL with respect to the other parameter, x2:

Starting with
∂LL
∂x2
:

LL = Q1 − log(eQ1 + eQ2) (from equation 8)

∂LL

∂x2
=
∂Q1

∂x2
−
[

1

eQ1 + eQ2

][
∂Q1

∂x2
eQ1 +

∂Q2

∂x2
eQ2

]
(partial derivative w.r.t x2)

=
∂Q1

∂x2
−
[
P (A)

∂Q1

∂x2
+ P (B)

∂Q2

∂x2

]
(from equation 3 and 5)

The Quantitative Methods for Psychology 1362

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

we get

∂LL

∂x2
=
∂Q1

∂x2
−
[
P (A)

∂Q1

∂x2
+ P (B)

∂Q2

∂x2

]
(D.12)

To solve for
∂Q1

∂x2
in equation (D.12), we will refer to equation (D.7) and differentiate with respect to x2:

Solving
∂Q1

∂x2
:

Q1t = Q1t−1 + α(βrt−1 −Q1t−1) (from equation 7)

∂Q1t

∂x2
=
∂Q1t−1

∂x2
+ α

[
−
∂Q1t−1

∂x2

]
+ (βrt−1 −Q1t−1

)

[
∂α

∂x2

]
(partial derivative w.r.t x2)

= (1− α)
∂Q1t−1

∂x2
+ (βrt−1 −Q1t−1)

∂α

∂x2
(simplify using common factor)

we obtain

∂Q1t

∂x2
= (1− α)

∂Q1t−1

∂x2
+ (βrt−1 −Q1t−1

)
∂α

∂x2
(D.13)

The last step needed to evaluate equation (D.12) is to evaluate the term,
∂α
∂x2
, from equation (D.13):

Finally,
∂α
∂x2
:

α =
1

1 + e−x2
(from equation 2)

= (1 + e−x2)−1
(rewritten form)

∂α

∂x2
= −(1 + e−x2)−2(−e−x2) (partial derivative w.r.t x2)

= (1 + e−x2)−2(e−x2) (divide by -1)

= (α)2(e−x2) (since α = (1 + e−x2)−1
)

= (α)2
[
1− α
α

]
(solve for e−x2 in equation 2)

= α(1− α) (simplify)

Consequently,

∂α

∂x2
= α(1− α) (D.14)

Finally, we expand equation (D.12) using equations (D.13) and (D.14) to obtain the gradient of the LL with respect to
x2.Hessian. Now that we have completed our gradient computation, we are ready to compute the Hessian of the LL with
respect to each of our parameters - x1 and x2 - as symbolized by ∂

2LL/∂x21, ∂
2LL/(∂x1∂x2), ∂

2LL/(∂x2∂x1) and
∂2LL/∂x22. Let us first look at our computed gradients where we replace P (A) and P (B) with eLL and 1-eLL, respec-
tively, from equations (D.9) and (D.12) given that we focus on particpants’ choice of choosing arm A:

∂LL

∂x1
=
∂Q1

∂x1
−
[
eLL

∂Q1

∂x1
+ (1− eLL)∂Q2

∂x1

]
(D.15)

∂LL

∂x2
=
∂Q1

∂x2
−
[
eLL

∂Q1

∂x2
+ (1− eLL)∂Q2

∂x2

]
(D.16)

Note that we can replace the probabilities with eLL because LL = log(P (A)) so if we take the exponential from both
sides we get P (A) = eLL and since P (B) = 1− P (A) we get P (B) = 1− eLL.
Using equations (D.15) and (D.16), we can compute the Hessians. Let us begin with the Hessian of LL w.r.t x1:

The Quantitative Methods for Psychology 1372

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

Solve for
∂2LL
∂x2

1
:

∂LL

∂x1
=
∂Q1

∂x1
−
[
eLL

∂Q1

∂x1
+ (1− eLL)∂Q2

∂x1

]
(from equation 15)

∂2LL

∂x21
=
∂2Q1

∂x21
−
[
eLL

∂2Q1

∂x21
+
∂Q1

∂x1

(
∂LL

∂x1
eLL

)]
−
[
(1− eLL)∂

2Q2

∂x21
+
∂Q2

∂x1

(
− ∂LL

∂x1
eLL

)]
(second partial derivative w.r.t x1)

=
∂2Q1

∂x21
−
[
eLL

∂2Q1

∂x21
+ (1− eLL)∂

2Q2

∂x21

]
− ∂LL

∂x1
eLL

(
∂Q1

∂x1
− ∂Q2

∂x1

)
(expand and simplify)

resulting in

∂2LL

∂x21
=
∂2Q1

∂x21
−
[
eLL

∂2Q1

∂x21
+ (1− eLL)∂

2Q2

∂x21

]
− ∂LL

∂x1
eLL

(
∂Q1

∂x1
− ∂Q2

∂x1

)
(D.17)

Now, we need to solve for
∂2Q1

∂x2
1
in equation (D.17). To accomplish this we will refer to equation (D.10) and differenti-

ate with respect to x1:

Solve for
∂2Q1

∂x2
1
:

∂Q1t

∂x1
= (1− α)

∂Q1t−1

∂x1
+ αrt−1

∂β

∂x1
(from equation 10)

∂2Q1t

∂x21
= (1− α)

∂2Q1t−1

∂x21
+ αrt−1β (second partial derivative w.r.t x1)

resuling in

∂2Q1t

∂x21
= (1− α)

∂2Q1t−1

∂x21
+ αrt−1β (D.18)

Finally, we expand equation (D.17) using equation (D.22) to obtain the Hessian of the LL with respect to x1.

We will now derive the remaining Hessian components -
∂2LL
∂x1∂x2

,
∂2LL
∂x2∂x1

and
∂2LL
∂x2

2
.

Solve for
∂2LL
∂x1∂x2

:

∂2LL

∂x1∂x2
=

∂2Q1

∂x1∂x2
−
[
eLL

∂2Q1

∂x1∂x2
+
∂Q1

∂x1

(
∂LL

∂x2
eLL

)]
−
[
(1− eLL) ∂2Q2

∂x1∂x2
+
∂Q2

∂x1

(
− ∂LL

∂x2
eLL

)]
(partial derivative of equation 15 w.r.t x2)

resulting in

∂2LL

∂x1∂x2
=

∂2Q1

∂x1∂x2
−
[
eLL

∂2Q1

∂x1∂x2
+ (1− eLL)

(
∂2Q2

∂x1∂x2

)]
− ∂LL

∂x2
eLL

(
∂Q1

∂x1
− ∂Q2

∂x1

)
(D.19)

Now, we need to solve for
∂2Q1

∂x1∂x2
in equation (D.19). To accomplish this we will refer to equation (D.10) and differen-

tiate with respect to x2:

The Quantitative Methods for Psychology 1382

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

Solve for
∂2Q1

∂x1∂x2
:

∂Q1t

∂x1
= (1− α)

∂Q1t−1

∂x1
+ αrt−1

∂β

∂x1
(from equation 10)

∂2Q1

∂x1∂x2
= (1− α) ∂2Q1

∂x1∂x2
− ∂α

∂x2

(
∂Q1t−1

∂x1

)
+

∂α

∂x2
rt−1β (second partial derivative w.r.t x2)

= (1− α) ∂2Q1

∂x1∂x2
− (α(1− α))

∂Q1t−1

∂x1
+ (α(1− α))rt−1β (

∂α
∂x2

= α(1-α))

resulting in

∂2Q1

∂x1∂x2
= (1− α) ∂2Q1

∂x1∂x2
− (α(1− α))

[
∂Q1t−1

∂x1
− rt−1β

]
(D.20)

Finally, we expand equation (D.19) using equation (D.20) to obtain the Hessian of the LL of x1 with respect to x2.

Solve for
∂2LL
∂x2

2
:

∂LL

∂x2
=
∂Q1

∂x2
−
[
eLL

∂Q1

∂x2
+ (1− eLL)∂Q2

∂x2

]
(from equation 16)

∂2LL

∂x22
=
∂2Q1

∂x22
−
[
eLL

∂2Q1

∂x22
+
∂Q1

∂x2

(
∂LL

∂x2
eLL

)]
−
[
(1− eLL)∂

2Q2

∂x22
+
∂Q2

∂x2

(
− ∂LL

∂x2
eLL

)]
(second partial derivative w.r.t x2)

=
∂2Q1

∂x22
−
[
eLL

∂2Q1

∂x22
+ (1− eLL)∂

2Q2

∂x22

]
− ∂LL

∂x2
eLL

(
∂Q1

∂x2
− ∂Q2

∂x2

)
(expand and simplify)

resulting in

∂2LL

∂x22
=
∂2Q1

∂x22
−
[
eLL

∂2Q1

∂x22
+ (1− eLL)∂

2Q2

∂x22

]
− ∂LL

∂x2
eLL

(
∂Q1

∂x2
− ∂Q2

∂x2

)
(D.21)

Now, we need to solve for
∂2Q1

∂x2
2
in equation (D.21). To accomplish this we will refer to equation (D.10) and differenti-

ate with respect to x2:

Solve for
∂2Q1

∂x2
2
:

∂Q1t

∂x2
= (1− α)

∂Q1t−1

∂x2
+ (βrt−1 −Q1t−1

)
∂α

∂x2
(from equation 13)

∂2Q1t

∂x22
= (1− α)

∂2Q1t−1

∂x22
+

(
− ∂α

∂x2

)
∂Q1t−1

∂x2

+ (βrt−1 −Q1t−1
)
∂2α

∂x22
+

(
−
∂Q1t−1

∂x2

)
∂α

∂x2
(second partial derivative w.r.t x2)

= (1− α)
∂2Q1t−1

∂x22
− 2(α(1− α))

∂Q1t−1

∂x2

+ (1− 2α)βrt−1 −Q1t−1
(expand and simplify)

resulting in

∂2Q1t

∂x22
= (1− α)

∂2Q1t−1

∂x22
− 2(α(1− α))

∂Q1t−1

∂x2
+ (1− 2α)βrt−1 −Q1t−1

(D.22)

The Quantitative Methods for Psychology 1392

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105

¦ 2021 Vol. 17 no. 2

Finally, we expand equation (D.21) using equation (D.22) to obtain the Hessian of the LL with respect to x2.

Solve for
∂2LL
∂x2∂x1

:

∂2LL

∂x2∂x1
=

∂2Q1

∂x2∂x1
−
[
eLL

∂2Q1

∂x2∂x1
+
∂Q1

∂x2

(
∂LL

∂x1
eLL

)]
−
[
(1− eLL) ∂2Q2

∂x2∂x1
+
∂Q2

∂x2

(
− ∂LL

∂x1
eLL

)]
(partial derivative of equation 15 w.r.t x1)

resutling in

∂2LL

∂x2∂x1
=

∂2Q1

∂x2∂x1
−
[
eLL

∂2Q1

∂x2∂x1
+ (1− eLL)

(
∂2Q2

∂x2∂x1

)]
− ∂LL

∂x1
eLL

(
∂Q1

∂x2
− ∂Q2

∂x2

)
(D.23)

To solve for
∂2Q1

∂x2∂x1
in equation (D.23), we will refer to equation (D.10) and differentiate with respect to x2:

Step
∂2Q1

∂x2∂x1
:

∂Q1t

∂x2
= (1− α)

∂Q1t−1

∂x2
+ (βrt−1 −Q1t−1

)
∂α

∂x2
(from equation 13)

∂2Q1t

∂x2∂x1
= (1− α)

∂2Q1t−1

∂x2∂x1
+ (βrt−1 −Q1t−1

)
∂2α

∂x2∂x1

+ (
∂β

∂x1
rt−1 −

∂Q1t−1

∂x1
)
∂α

∂x2
(second partial derivative w.r.t x1)

= (1− α)
∂2Q1t−1

∂x2∂x1
+ (α(1− α))

[
βrt−1 −

∂Q1t−1

∂x1

]
(expand and simplify)

resulting in

∂2Q1

∂x2∂x1
= (1− α)

∂2Q1t−1

∂x2∂x1
+ (α(1− α))

[
βrt−1 −

∂Q1t−1

∂x1

]
(D.24)

Finally, we expand equation (D.23) using equation (D.24) to obtain the Hessian of the LL of x2 with respect to x1.

Open practices
TheOpenMaterial badgewas earned because supplementarymaterial(s) are available on github.com/psuthaharan/twochoiceRL.

Citation
Suthaharan, P., Corlett, P. R., & Ang, Y.-S. (2021). Computational modeling of behavioral tasks: An illustration on a classic

reinforcement learning paradigm. The Quantitative Methods for Psychology, 17(2), 105–140. doi:10.20982/tqmp.17.2.

p105

Copyright © 2021, Suthaharan, Corlett, and Ang. This is an open-access article distributed under the terms of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Received: 24/06/2020∼ Accepted: 04/06/2021

The Quantitative Methods for Psychology 1402

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p105
https://osf.io/tvyxz/wiki/
https://github.com/psuthaharan/twochoiceRL
https://dx.doi.org/10.20982/tqmp.17.2.p105
https://dx.doi.org/10.20982/tqmp.17.2.p105

