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Introduction

Rank data are found in most areas of psychological sci-

ence. Any task that involves sequences of behavior, such

as recalling items from memory or solving a problem

through a series of decisions and actions, yields rank or-

der data (e.g., Hamada, Nakayama, & Saiki, 2020; Healey

& Kahana, 2014). Other common examples range from

psychophysics (Gordon, 1924) to consumer choice prefer-

ences (Adomavicius, Bockstedt, & Curley, 2015; Milosavlje-

vic, Navalpakkam, Koch, & Rangel, 2012).

An often-used statistical tool to analyze rank data is

a rank correlation, such as Kendall’s τ (Kendall, 1938) or
Spearman’s ρ (Spearman, 1904). The goal of these meth-
ods is to quantify the strength of a monotonic relation be-

tween two variables, without assuming this relation to be

linear. The rank correlation coefficient is then frequently

used to test hypotheses related to the presence or absence

of such a relation. However, such a procedure often over-

looks the wealth of information embedded in the value of

the rank correlation coefficient. In computer science, for

instance, rank correlations are a popular metric for aggre-

gating search engine results, fighting spam, and word as-

sociation (Beg & Ahmad, 2003). Whereas psychological sci-

ence predominantly uses the rank correlation to test for an
association between two variables, the field of computer

science focuses on the (non-standardized) rank distance to
quantify degrees of similarity between two or more ob-

served sequences of data points. In doing so, the distance

metric becomes a function of the data that can, in turn, be

used for further quantitative analysis.

In this article, we aim to bridge the gap between de-

velopments in computer science and psychological science

by underscoring the Kendall distance metric as a useful

tool for analyzing psychological data.
1
First, we outline

the basic distance metric, which has sometimes been used

in psychology (e.g., Lee, Steyvers, & Miller, 2014; Brandt,

Conitzer, Endriss, Lang, & Procaccia, 2016; Selker, Lee, &

Iyer, 2017). Second, we discuss three extensions intro-

duced by Kumar and Vassilvitskii (2010) that enable the

weighting of item importance, item position, and item sim-

ilarity, which are rarely used in psychology. Third, we illus-

trate how the Kendall distance can be modified to accom-

modate missingness in the data in the form of top-k lists, as
introduced by Fagin, Kumar, and Sivakumar (2003). Each

extension is first illustrated using a toy example, and then

1
We focus on the Kendall distance as a modeling tool, rather than a hypothesis testing framework.
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demonstrated more fully in practical applications to exist-

ing data sets in psychology previously collected to address

specific research questions. In order to increase the ease of

application of the discussed algorithms, we include a plug

and play R-script, available at https://osf.io/6k9t8/. The R-

script is demonstrated for each toy example application.

The Kendall Distance

Introduced by Kendall (1938), the Kendall distance metric,

often written as τ , is a popular rank-based coefficient for
comparing two vectors of data points. It is based on the

number of adjacent pairwise swaps required to transform

one vector into the other.

In order to present the notation
2
and computation

of the Kendall distance and its extensions, we use a

small toy example where two people are asked to rank

n = 4 sodas—Coke, Pepsi, Sprite, and Fanta—in terms
of tastiness. Let the ranking of person A be A =
(Coke, Pepsi, Fanta, Sprite), and the ranking of person
B be B = (Pepsi, Coke, Sprite, Fanta). We denote the
ith item of A with Ai, such that Ai = Coke when i = 1.
Next, we denote the ranking of item c with σA(c) for per-
son A, and σB(c) for person B. For instance, σA(c) = 1 and
σB(c) = 2 for c = Coke. Combining these two notations
allows us to denote the rank of the ith item inA, for person
B. For instance, σB(Ai) = 2 when i = 1, because the first
item in A (i.e., Coke) is ranked second by person B.
With these definitions in hand, we can compute the

Kendall distance between person A and B. In order to sort

B in such a way that it is identical to A, we need to swap
Coke and Pepsi, and then Fanta and Sprite. In this ex-
ample, the Kendall distance is therefore equal to 2. As a
consequence, the Kendall distance is often referred to as

the bubble sort distance (Shaw & Trimble, 1963).
3
Table 1

provides an illustration of this sorting procedure.

In order to obtain the correlation coefficient, the dis-

tance is then standardized to be in the interval [−1, 1],
however, we focus on the distance in this article. The min-

imum value for the distance is 0, indicating perfect cor-

respondence, and the maximum value for the distance is

equal to n(n− 1)/2, where n is the length of A andB.
Another way of calculating the Kendall distance is by

comparing the ranks of itemsAi andAj in the vectorB, for
i < j. If item σB(Ai) is greater than σB(Aj), this means
that person B ranked items Ai and Aj in the reverse order
compared to person A. We refer to this as an inversion. A
formal definition is given by the formula:

τ =

n∑
1≤i<j≤n

[σB(Ai) > σB(Aj)] , (1)

which counts the number of pairwise inversions.

We can compute the Kendall distance using the

calcTopTau function from https://osf.io/6k9t8/. The

function takes in two vectors of ranked objects, and com-

putes the Kendall distance. If the input is not numeric,

the function automatically assigns numeric values to the

ranked objects. To improve readability, the function is

demonstrated here with string input. The conversion to

numeric values is arbitrary, so we caution users to be

aware of the mapping from string to numeric values when

applying the function.

calcTopTau(
x = c("Coke", "Pepsi", "Fanta", "Sprite"),
y = c("Pepsi", "Coke", "Sprite", "Fanta"))

## [1] 2

Wenow discuss four extensions of the Kendall distance

that have the potential to be especially useful for analyzing

psychological data. The first three extensions were first in-

troduced by Kumar and Vassilvitskii (2010), and the fourth

extension by Fagin et al. (2003).

ItemWeights

As presented by Kumar and Vassilvitskii (2010) Item-

specific weights may be incorporated in the distance met-

ric. In the basic definition, the cost of swapping two items

is set to 1, such that swapping two items adds 1 to the met-

ric. However, it could be the case that some items con-

tribute more, or less, to the dissimilarity between the soda

preferences of person A and B. For instance, we could the-

orize that disagreement in taste is more important in the

ranking of Fanta than for other sodas. For instance, the

marketing team of Fanta may want two people who rank

Fanta differently to be recognized as beingmore dissimilar

than two people who rank Coke differently. In such cases,

we can use the item specific weights w, where wi denotes
the cost of performing a swap that contains item Ai. This
enables us to model different items as contributing more,

or less, to differences between the rankings represented by

the vectors A andB.
Formally, the extension to include item importance is

given by the formula:

τ =

n∑
1≤i<j≤n

wAi
wAj

[σB(Ai) > σB(Aj)] . (2)

In order to include item weights in the calcTopTau
function, a numeric vector can be supplied to the

itemWeights argument. The order of the weights

should correspond to the alphabetical order of the ranked

2
We follow the notation of Kumar and Vassilvitskii (2010).

3
See also https://www.youtube.com/watch?v=lyZQPjUT5B4 and https://www.geeksforgeeks.org/bubble-sort/ for accessible introductions.
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Table 1 The two vectors A and B, and the adjacent pairwise swaps needed to transform B into A: B1
denotes B after

one swap, andB2
denotesB after two swaps. Therefore, the Kendall distance between A andB equals 2.

A B B1 B2

Coke Pepsi Coke Coke

Pepsi Coke Pepsi Pepsi

Fanta Sprite Sprite Fanta

Sprite Fanta Fanta Sprite

items, if these are not numeric. Below is an example of

weighting Fanta as twice as important as the other items:

calcTopTau(
x = c("Coke", "Pepsi", "Fanta", "Sprite"),
y = c("Pepsi", "Coke", "Sprite", "Fanta"),
itemWeights = c(1, 2, 1, 1))

## [1] 3

Position Weights

Another extension focuses onweighting different positions

in a ranking, rather than different items. This can be

achieved by making the cost of performing a swap depen-

dent on the position i onwhich an inversion occurs (Kumar
& Vassilvitskii, 2010). We can imagine a situation in which

one’s favorite soda is more important in determining taste

preference than one’s least favorite soda: if an inversion

occurs early inB, this should lead to a greater value of the
Kendall distance than if an inversion occurs at the end of

B.
In order to assign these weights, we first define p:

pi = pi−1 + δi,

where p1 = 1. The weight δi denotes the cost of a pair-
wise swap of an item in the ith position. It therefore rep-
resents the importance of that position, relative to the first

position. This weight can either be assigned arbitrarily, or

through a specific algorithm. One popular method is called

discounted cumulative gain (DCG; Järvelin & Kekäläinen,

2002), where the weights are calculated as a logarithmic

function of the item positions:

δi =
1

log(i+ 1)
− 1

log(i+ 2)
.

The intuition behind the DCG weighting is that the item

at position i is about twice as important in determining the
dissimilarity between A and B than the item at position
i−1, so that when the item is sorted, its swaps have a lower
cost. For an illustration of this, see Table 2.

With δ and p defined, we can now calculate the aver-
age cost of moving item i in B to the position of that item

in A, remembering that this can involve multiple pairwise
swaps. This average cost is:

p̄i =
pi − pσB(Ai)

i− σB(Ai)
.

For instance, the cost of moving item Coke from position 2

to position 1 inB is calculated as

p̄1 =
p1 − pσB(Coke)

1 − σB(Coke)
=
p1 − p2
1 − 2

=
1 − 1.189

1 − 2
= 0.189.

The general incorporation of position weights is pro-

vided by the formula:

τ =

n∑
1≤i<j≤n

p̄ip̄j [σB(Ai) > σB(Aj)] . (3)

The calcTopTau function includes several possibil-
ities for weighting according to item position using the

posWeights argument. First, the discounted cumulative
gain, or its reverse, can be used. Since there are two swaps

in the example – one using the first two items, and one us-

ing the last two items – the DCG and reverse DCG give iden-

tical results. Second, the position weights can be specified

manually. These options can also be used in combination

with the nTOPK argument, which can be used to only con-
sider the first n observations.

# Using the Discounted Cumulative Gain
calcTopTau(

x = c("Coke", "Pepsi", "Fanta", "Sprite"),
y = c("Pepsi", "Coke", "Sprite", "Fanta"),
posWeights = "DCG")

## [1] 0.03967739

# Using the reverse Discounted Cumulative Gain
calcTopTau(

x = c("Coke", "Pepsi", "Fanta", "Sprite"),
y = c("Pepsi", "Coke", "Sprite", "Fanta"),
posWeights = "revDCG")

## [1] 0.03967739
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Table 2 Values of the position weights δ and pi for the soda example, with δ calculated using the DCG algorithm.

i A B δ p

1 Coke Pepsi - 1

2 Pepsi Coke 0.189 1.189

3 Fanta Sprite 0.1 1.289

4 Sprite Fanta 0.063 1.352

# Manual specification of position weights
calcTopTau(

x = c("Coke", "Pepsi", "Fanta", "Sprite"),
y = c("Pepsi", "Coke", "Sprite", "Fanta"),
posWeights = 4:1)

## [1] 10

# Only consider the first two observations
calcTopTau(

x = c("Coke", "Pepsi", "Fanta", "Sprite"),
y = c("Pepsi", "Coke", "Sprite", "Fanta"),
nTOPK = 2)

## [1] 1

Similarity Weights

The third extension of the Kendall distance takes into ac-

count the similarities and differences between items. This

means that, when two items are considered highly similar,

the cost of swapping these two items is lower than the cost

of swapping two items that are considered to be more dif-

ferent from one another. In our sodas example, this can be

used tomodel the high similarity between Coke and Pepsi.
4

As such, the inversion of Coke and Pepsi has a lower cost

than the inversion of Fanta and Sprite.

In order to incorporate item similarities, we define the

distance matrix D, where element Dij determines how

similar items Ai and Aj are. When this is set to 0, items
Ai and Aj are identical; as the values are set to the large
values, the item pairs become more different.

The distance matrix is incorporated as follows in the

formula for the Kendall distance:

τ =

n∑
1≤i<j≤n

Dij [σB(Ai) > σB(Aj)] . (4)

In order to include a distance matrix in the

calcTopTau function, a numeric matrix can be sup-
plied to the distMat argument. The order of the weights
should correspond to the alphabetical order of the ranked

items, if these are not numeric.
5
Below is an example of

incorporating the similarity between Coke and Pepsi:

distMat <- matrix(1, ncol = 4, nrow = 4)

distMat[1, 3] <- distMat[3, 1] <- 0.1
calcTopTau(

x = c("Coke", "Pepsi", "Fanta", "Sprite"),
y = c("Pepsi", "Coke", "Sprite", "Fanta"),
distMat = distMat)

## [1] 2

Top-k Lists

Lastly, we discuss comparing top-k lists. When comparing
two lists of k items, it may be the case that not all items
appear on both lists. It could be that there is no predeter-

mined set of items to rank. For example, instead of asking

person A and B to rank four sodas, they could have been

asked to list their top 4 favorite sodas. It could also be the

case that one ranking contains missing information. For

example, even if the same four sodas are being ranked, one

person might only list their top three. This sets the cur-

rent extension apart from the previous three extensions:

whereas the other extensions aremodeling choices, the top

k extension is driven by the nature of the data.
Suppose that we observe the responses

A = (Coke, Pepsi, Fanta, Sprite) and B =
(7up, Sprite,GingerAle, Pepsi). In such a case, we

cannot determine for all items if an inversion has oc-

curred due to some items only appearing in one of the

lists. A method introduced by Fagin et al. (2003) can be

used to model the missingness of items.

The approach identifies four cases of how two items

may appear in A and B, and outlines the cost of a swap
z. We present these four cases for the toy example:
1. Both items appear in A and B (e.g., Sprite and Pepsi).
Since person A prefers Pepsi and person B prefers

Sprite, this is the traditional case of an inversion and

therefore z = 1.
2. Both items appear in A, but only one item appears

in B (e.g., Pepsi and Fanta). Since person B only in-
cludes Pepsi, we can conclude that they prefer Pepsi

over Fanta. If person A shares this preference, z = 0.
Otherwise, this is an inversion and therefore z = 1.

4
The authors acknowledge that some readers might wildly disagree with this statement.

5
The code available on https://osf.io/4ej6s/ provides a method of specifying the similarity weights by name instead of index.
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3. One item appears only inA, and the other item appears
only inB (e.g., Coke and 7up). In a similar reasoning to
the previous case, we know that person A prefers Coke

over 7up and person B prefers 7up over Coke, because

at least those sodas appear in the list. This is an inver-

sion and we therefore set z = 1.
4. Both items appear in A, but neither appear in B (e.g.,
Coke and Fanta). Here there is no information on

whether person B prefers Coke or Fanta, since neither

appear in B. As a first option, Fagin et al. (2003) out-
line the optimistic approach, which is setting z = 0.
In other words, this gives person B the “benefit of the

doubt," and assumes that if they had included Coke

and Fanta, they would have expressed the same pref-

erence as person A. Alternatively, the pessimistic ap-

proach sets z = 1, and assumes person B would have
expressed the opposite ordering of the items. As such,

z can be conceptualized as the probability of person B
preferring Coke over Fanta. For instance, specifying

z = 1
2 corresponds to a neutral approach, in which

there is an equal probability for person B expressing

the same or reverse order for the items. This still takes

into account the missingness, while not making a state-

ment about how the items would be ranked if they

would be included inB.
Adding this extension to the Kendall distance formula

gives:

τ =

n∑
1≤i<j≤n

zij [σB(Ai) > σB(Aj)] , (5)

where zij depends on the specific pair of items (i, j), and
its value determined as outlined above.

The missingness parameter can be specified in the

calcTopTau function by setting the missingProb ar-
gument:

calcTopTau(
x = c("Coke", "Pepsi", "Fanta", "Sprite"),
y = c("7up", "Sprite", "Ginger Ale", "Pepsi"),
missingProb = 0) # optimistic

## [1] 11

calcTopTau(
x = c("Coke", "Pepsi", "Fanta", "Sprite"),
y = c("7up", "Sprite", "Ginger Ale", "Pepsi"),
missingProb = 1) # pessimistic

## [1] 13

All of the extensions presented above can be combined

to form the weighted partial Kendall distance:

τ =

n∑
1≤i<j≤n

wiwj p̄ip̄jDijzij [σB(Ai) > σB(Aj)] . (6)

Applications

Wehave now defined the full metric that is capable ofmod-

eling item importance, item position, and item similarity,

while also accommodating missingness in top-k lists. In
this section, we present a series of four applications of the

Kendall distance to previous psychological data, demon-

strating how the various extensions can improve data anal-

ysis to address the motivating research questions.

ItemWeights: Recall of Events on September 11

In order to study memory reconstruction, Altmann (2003)

considered six events that occurred on September 11, 2001.

The events, in their true temporal order, were (1) One

plane hits the World Trade Center, (2) A second plane hits

theWorld Trade Center, (3) One Plane crashes into the Pen-

tagon, (4) One tower at the World Trade Center collapses,

(5) One Plane crashes in Pennsylvania, and (6) A second

tower at the World Trade Center collapses.

The participant responses consist of individual’s re-

called temporal orderings of these events. The Kendall dis-

tance provides a natural single measure of response accu-

racy for each participant. However, as noted by Altmann

(2003), the correct ranking of some of these events need

not be driven by memory, but can be determined by logic.

For example, it can be deduced that the planes hitting the

World Trade Center occurs before the tower collapsing,

and that the first plane hits before the second plane. In

contrast, correctly recalling when the plane crash in Penn-

sylvania occurred needs to be memory driven. Thus, when

a participant incorrectly orders the two planes hitting the

towers, this can be due to poor memory or poor reasoning,

while incorrectly ranking the Pennsylvania crash is more

likely due to poor memory.

These considerations mean that if the research goal is

to study memory ability in recall, rather than logic rea-

soning skill, events (3) and (5) should be weighted more

heavily than items (1), (2), and (4). For example, if we con-

sider the responses from two specific participants in the

Altmann (2003) data, who recalled orders: (A) Plane 2, Pen-

tagon, Plane 1, Tower 1, Pennsylvania, Tower 2 (B) Plane 1,

Pentagon, Plane 2, Pennsylvania, Tower 1, Tower 2

Both of these participants have the same number of in-

versions relative to the ground truth, and therefore yield

an identical unweighted Kendall distance of 2. However,

participant A makes logical errors while participant B does

not. As a consequence, assigning a weight of 2 to the mem-

ory driven items, and a weight of 1/2 to the logic driven
items, changes the accuracy measures to 1.25 for partici-

pant A and 3 for participant B.

Figure 1 shows the change in the Kendall distance re-

sulting from including item weights for 158 participants
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Figure 1 Unweighted and item-weighted Kendall distance for 158 participants from the Altmann (2003) study of mem-
ory for the order of events on September 11. The distances are between the participants’ responses and the ground

truth. Each point in the unweighted column and item-weighted column corresponds to a participant, jittered around the

Kendall distance measure. The same participant for each measure is connected by a gray line. Participants A and B are

highlighted by black lines. As a result of the weighting, Participant A sees a decrease of the Kendall distance, whereas

Participant B sees an increase of the Kendall distance.
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from Altmann (2003). The standard unweighted measure

is shown on the left, and the item-weighted measure is

shown on the right, with lines connecting the same par-

ticipant under each measure. It is clear that the recall ac-

curacy of participants can increase, decrease, or stay the

same once item weights are incorporated. It is also clear

that the use of item weights also gives the Kendall dis-

tance greater resolution as ameasure of accuracy. Without

weighting, there theoretically are 15 possible outcomes for
the Kendall distance, 9 of which are observed in the Alt-

mann (2003) data. With item weighting there are 61 possi-

ble outcomes, including fractional counts, 21 of which are

observed.

Position Weights: Month Preference

In the previous example, the participant responses were

compared to a true ranking, in order to determine their ac-

curacy. However, participants’ responses can also be com-

pared to each other, in order to determine similar response

patterns. Accordingly, our second application involves

people’s preferences for the months of the year, as col-

lected by the crowd-source opinion web site ranker.com.

A total of 16 people ranked the 12 months from best worst.

A natural research question addressed by these data is

whether there are individual differences in people’s pref-

erence patterns. For instance, some people prefer the win-

termonths to the summermonths, while othersmay prefer

summer to winter. One exploratory approach to identify-

ing such patterns is through data visualization. We ap-

ply the multidimensional scaling MDS:, Borg and Groenen

(1997) algorithm to the pairwise Kendallâ€™s distances be-

tween people, using spaces of just two dimensions. This

allows for a simple visualization that may reveal clusters

of people based on the similarity of their preferences (i.e.,

groups of participants whose Kendall distance scores are

small with respect to each other).

There are two extensions of the Kendall distance that

are potentially useful here. First, we can model the adja-

cent months as being fairly similar to each other. We can

therefore reduce the cost of swapping, for instance, Jan-

uary and February from 1 to 0.5. Secondly, we can use po-

sition weights to capture assumptions about whether peo-
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Figure 2 MDS visualization based on the unweighted, top-position weighted, and bottom-positions weighted Kendall

distances between people’s preferences for the months of the year. Each square/letter indicates a different participant.

The distances between the squares/letters represent their similarities according to the Kendall distance.
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ple’s most or least favorite months are more indicative of

their preference. For example, consider the rankings pro-

vided two ranker.com users: (A) Dec, Jun, Oct, May, Jul,

Nov, Aug, Apr, Sep, Mar, Feb, Jan (B) May, Oct, Nov, Dec,

Sep, Jun, Jul, Apr, Aug, Mar, Feb, Jan Their favorite months

are rather different, but their least favorite months are

very similar. Whether these people are regarded as hav-

ing similar preferences depends on the weighting given to

their favorite months, as compared to their least favorite

months.

Figure 2 presents the MDS visualizations for all of the

ranker.com people, considering three scenarios. The top

panel shows theMDS visualization for the preference rank-

ings that are weighted by similarity but are unweighted by

position. The lower-left panel shows the MDS visualization

for the preference rankings where the DCG algorithm was

used to weight the best months more heavily. The bottom-

right panel shows the MDS visualization for the preference

rankings where the reverse DCG algorithm is applied, in

order to weigh the worst months more heavily.

In this way, the difference between the bottom-left and

bottom-right visualizations is based on whether the most

favored or least favored months are treated as the most

important in determining the similarity between people’s

preferences. Accordingly, in terms of the specific examples

presented earlier, person A and person B are further apart

in the top and bottom-left panels of Figure 2 than they are

when the weighting is changed to emphasize the least fa-

vorite months, as in the bottom-right panel.

It is striking that the MDS visualization based on

weighting the least favorite months, shown in the bottom-

right panel, reveals a clear cluster structure. There is a di-

The Quantitative Methods for Psychology 1602

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.2.p154
ranker.com
ranker.com


¦ 2021 Vol. 17 no. 2

vide between people who dislike the cold winter months,

in the left half of the plot, and people who dislike the hot

summer months, in the right half of the plot. The other

visualizations lack this clear cluster structure, suggesting

that focusing on the months people like the least is a good

way to understand the group structure of their prefer-

ences.

Similarity Weights: The Free Recall of Animals

Our third application involves measuring performance on

a free recall memory task in a clinical setting, and fo-

cuses on the use of similarity weights. The data were col-

lected using the Mild Cognitive Impairment Screen (MCIS:

Shankle, Mangrola, Chan, & Hara, 2009), one component

of a routine assessment of Alzheimer’s patients in a neu-

rodegenerative disorders clinic. As part of this assessment,

patients complete a triadic comparison task for nine ani-

mal names, where each of the animals is presented in a

triad with each of the other animals and the patient must

determine which of the three animal names is least like the

other two. After a delay, patients complete a surprise free

recall task of those nine animal names.

One important research goal is to identify and under-

stand the different free recall response patterns. There is

evidence that the semantic relationships between the an-

imals influences the order in which their names are re-

called (Bousfield & Sedgewick, 1944; Bousfield, 1953; Rom-

ney, Brewer, & Batchelder, 1993). In particular, it is com-

mon for the recalled list to be made up of sub-sequences of

semantically-related animal names. For example,“zebra",

“giraffe", “elephant", and “tiger" are likely to be recalled

consecutively, as a cluster of African zoo animals. In clin-

ical settings, the exact order in which a cluster like this is

recalled is less important than the fact it is recalled largely

as a cluster, since this suggests semantic memory is intact.

As a concrete example, consider the recall data for

three people: (A) Elephant, Giraffe, Sheep, Rat, Monkey,

Chimpanzee, Rabbit, Zebra, Tiger (B) Rat, Sheep, Giraffe,

Zebra, Elephant, Monkey, Chimpanzee, Tiger, Rabbit (C)

Rat, Chimpanzee, Zebra, Giraffe, Elephant, Tiger, Rabbit,

Sheep, Monkey

The unweighted Kendall distance between A and B is

11, between A and C is 18, and between B and C is 13, which

implies A and B behave most like one another. We imple-

mented a similarity-weighted measure using the pairwise

similarity between each pair of animals determined by an

independent triadic comparison task (Lee, Abramyan, &

Shankle., 2015; Westfall & Lee, 2020). Using this exten-

sion of the metric changes the distances between A and

B to 30.1, between A and C to 41.7, and between B and C

to 26.4, so that B and C become the most similar. Person

A breaks the recall of the African zoo animals across ex-

tremes of the list, with “elephant" and “giraffe" first and

“zebra" and “tiger" last. Persons B and C, in contrast, recall

these animals near each other, although not in the same

order as one another. The similarity weighting gives less

penalty to the transposition of semantically-related animal

names, which leads to B and C being measured as having

given the most similar responses.

We again use MDS visualizations to explore the overall

relationships between people’s free recall patterns, based

on the Kendall distance measures. The left-hand panels of

Figure 3 show the visualizations for the unweighted met-

ric, in the top panel for 15 labeled people, including A–C

above, and in the bottom panel for all 200 people. The

right-hand panels show the corresponding visualizations

for the similarity-weighted metric. It is clear that the in-

clusion of similarity information leads to more clustering

between the recall patterns, suggesting the presence of dif-

ferent recall patterns that can be understood in terms of

the semantic relationships between the stimuli being re-

called.

Top-k: Expert Sporting Predictions

Our last application involves predictions about player per-

formance for the 2017 American Football season by experts

from the fantasy football website fantasypros.com.
6
On

the website, experts provide rankings each week for each

playing position commonly used in fantasy football. These

rankings serve as advice for players as to which players

they should place in their fantasy teams each week. We fo-

cus on the rankings of all 85 experts, but just for week 10

of the season, and just for the “kicker" position. We chose

the kicker position because it is the one for which different

experts often rank different numbers of players. In week

10, experts ranked between 13 and 20 kickers, with a me-

dian of 19. Since a typical fantasy league has around ten

players, each of whom own one or two kickers, it is likely

that even the ranking of kickers near the end of the list is

relevant to some players in the league.

Table 3 shows the actual points earned by each kicker
7
,

as well as the ranking provided by two of the experts. The

Kendall distance provides a natural way of measuring the

performance of the experts, by quantifying how close their

predictions are to the truth. Some players scored the same

number of points, which leads to ties in the true ranking.

This can be accommodated using similarity weights, as-

signing a weight of 0 to any pair of kickers who are tied,

and 1 to any pair of players who are not tied.

In addition, because the experts ranked different num-

6
For those unfamiliar with fantasy football, we suggest the Wikipedia entry at https://en.wikipedia.org/wiki/Fantasy_football_(gridiron)

7
Players included in expert predictions but not listed did not score any points.
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Figure 3 MDS visualization of the similarities between recall patterns of animal names based on the unweighted Kendall

distance (left panels) and similarity-weighted Kendall distance (right panels). The top panels show 15 labeled people,

while the bottom panels show all 200 people. The distances between the squares/points represent their similarities ac-

cording to the Kendall distance.
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bers of players, their Kendall distance depends on the set-

ting of the missingness parameter. For the optimistic set-

ting (z = 0), expert A has accuracy 103 and expert B has
accuracy 133, so that expert A is measured as having made

better predictions. For the neutral setting (z = 1
2 ), expert A

has accuracy 153.5 and expert B has accuracy 149.5, so they

are very similar. For the pessimistic setting (z = 1), expert
A has accuracy 204 and expert B has accuracy 167, so now

expert B is measured as having made better predictions.

In this application, the optimistic setting seems inap-

propriate. Expert A included only 14 players in their rank-

ing, whereas Expert B included 20 players. Setting z = 0
means that whenever two players (e.g., Mason Crosby and

Blair Walsh) are not ranked by an expert, this expert is

given the benefit of the doubt and is not penalized. Expert

B does include these two players, but predicts their ranking

incorrectly, and is penalized for it. This property makes it

appealing for an expert to only include the few players that

they are very sure about, which is not what is sought from

a good prediction. Both the neutral and pessimistic settings

seem more appropriate, since they penalize experts who

fail to make predictions about players.

Figure 4 shows the change in the Kendall distance for

optimistic, neutral, and pessimistic top-k measures for all
of the experts. Experts are represented by jittered mark-

ers with lines connecting the same expert under each

measure. Increasing pessimism leads to the experts who

ranked fewer players being penalized more heavily for

these missing data. Thus, while the distance measure in-

creases for all of the experts as pessimism increases, it in-
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Table 3 The number of fantasy points scored by kickers in week 10 of the 2017 American National Football League

season, the true ranking of the players according to these point totals, and the ranked predictions of two experts from

fantasypros.com.

Points True ranking Expert A Expert B

15 Greg Zuerlein Greg Zuerlein Stephen Gostkowski

12 Nick Rose Matt Bryant Greg Zuerlein

11 Mason Crosby Stephen Gostkowski Matt Bryant

11 Stephen Gostkowski Matt Prater Matt Prater

11 Wil Lutz Josh Lambo Mike Nugent

10 Connor Barth Graham Gano Ryan Succop

10 Brandon McManus Chris Boswell Chris Boswell

9 Matt Bryant Kai Forbath Chandler Catanzaro

9 Graham Gano Blair Walsh Kai Forbath

9 Patrick Murray Ryan Succop Steven Hauschka

8 Kai Forbath Wil Lutz Wil Lutz

8 Matt Prater Steven Hauschka Brandon McManus

8 Blair Walsh Mike Nugent Josh Lambo

7 Robbie Gould Chandler Catanzaro Adam Vinatieri

7 Aldrick Rosas Graham Gano

6 Chris Boswell Blair Walsh

6 Zane Gonzalez Robbie Gould

6 Josh Lambo Mason Crosby

6 Ryan Succop Connor Barth

5 Nick Novak Nick Rose

creases more quickly for some experts.

Conclusion

In this article, we aimed to discuss three extensions of the

Kendall distance metric that are useful for analyzing rank-

ing data in psychological research, as well as demonstrat-

ing the ability of the metric to accommodate top-k lists.
Our applications gave worked examples of how the exten-

sions can help improve the measurement of key properties

of ranking data in the context of specific research goals.

Two of the applications focused on measuring people’s ac-

curacy, and two focused on measuring the extent and na-

ture of the individual differences between people. Measur-

ing performance and individual differences are among the

most common and basic goals of data analysis in psychol-

ogy.

While we mostly applied the extensions separately, the

second and fourth applications showed that multiple ex-

tensions can be used simultaneously. There is nothing pre-

venting Kendall distance measures being designed to be

sensitive to items, their positions, and their similarities in

top-k lists where different people have different k. This
underscores the flexibility and generality of the metric,

and its ability to be adapted to answer specific questions

in specific research contexts. While this flexibility should

help improve data analysis, it may be important to use pre-

registration to make a clear whether and how the exten-

sions to the metric are used in an exploratory way (Lee et

al., 2019). Future directions for the weighted Kendall dis-

tance can focus on developing a hypothesis testing frame-

work for the distance, and to apply the weighted metric

to Mallow’s φmodel (Mallows, 1957) for finding the modal
ranking (e.g., Chierichetti, Dasgupta, Haddadan, Kumar, &

Lattanzi, 2018).

Open Practices Statement

An OSF project page associated with this article is avail-

able at https://osf.io/6k9t8/ It includes the R script used for

calculating the weighted Kendall distance and example ap-

plications of the toy example described in this article. The

code is also available on https://github.com/JohnnyDoorn/

KendallWeightedDistance.
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