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Abstract

This thesis documents the design process for magnetic induction systems to harvest energy
from mechanical vibrations. Two styles of magnetic induction systems - magnet-through-
coil and magnet-across-coils - were analyzed. MATLAB models were created to serve as a
design aid and optimization tool for both styles of magnetic induction systems. Prototypes

were built to test the predictions of the MATLAB models. The experimental data was found
to be in good agreement with the model predictions.
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Chapter 1

Introduction

The global rise of energy consumption has highlighted the need to develop and implement

novel methods of harvesting, conserving, and optimally utilizing energy. Mechanical vibra-

tions are a commonly over-looked and sadly under-utilized source of renewable energy. The

unwanted vibrations produced by the operation of mechanical devices - lawn-mowers, cars,

air compressors - are just one example of the multitude of untapped energy sources in ev-

eryday life. Developing methods to harvest energy from these vibrations is a particularly

exciting challenge because of the large number of potential applications for these methods.

Furthermore, harvesting energy from undesirable vibrations would reduce noise in the vi-

brating systems. The goal of this thesis is to create models to serve as a design aid and

optimization tool for systems that harvest energy from mechanical vibrations.

Vibration in automobiles provides an excellent case-study to the explore the feasibility

of energy harvesting from vibrating surfaces. Power windows and locks on car doors in

present-day cars require connection to the main battery. Providing connections to the power

windows (and power locks) between the car battery and all the doors of the car requires an

elaborate wiring harness, increasing the complexity of the car design and adding significantly

to the car weight and cost. In addition, the wiring to the car doors often succumbs to the

stress imposed by opening and closing the car doors, leading to reliability concerns. The

centralized wiring system makes car repair difficult because the wires are hard to access.

A solution to these inconveniences would be 'wireless' car doors, where each door is

a separate module that snaps on to the main car frame to build a complete car. This

would greatly simplify the wiring harness and reduce its weight and cost. Malfunctioning or

damaged doors could be replaced in a matter of minutes by simply switching in a different

module.

15



The major challenge in this approach is providing power to the windows and the door

locks without connecting them to the car battery. One way of achieving this would be

to have a separate battery in every door, but current battery technology does not provide

options with suitable weight, cost and lifespan to make this feasible. An alternative would

be to design a system to harvest and store energy from car vibrations, and use this energy

to power the windows and locks. This would make every door completely self-sufficient and

enable the 'wireless door' concept to be implemented successfully.

The focus of this thesis is to prove the feasibility of such a system and document the

creation of a proof-of-concept prototype. Chapter 2 details the energy requirements for

car windows and defines the required energy harvesting system output. It also presents a

brief survey of possible energy harvesting techniques, and magnetic induction is selected as

the most promising candidate for further investigation. Following this, Chapter 3 covers

the theory of magnetic induction as applicable for two embodiments of the process. This

theory forms the basis of MATLAB models that predict the energy harvesting capability of

a magnetic induction systems as a function of the system geometry and the properties of

the magnets and coils used. Chapter 4 discusses the equations and design considerations of

a complete energy harvesting system. The predictions made by the MATLAB models are

presented in the next chapter. Chapter 6 documents the tests conducted to verify the model

predictions. The concluding chapter discusses the implications of the experimental results

and makes recommendations for future work to build on this thesis.

16



Chapter 2

Energy Harvesting

Energy harvesting can be implemented in many ways. Determining the energy requirements

of an application is essential for the selection of an appropriate energy harvesting stategy.

This chapter discusses the energy requirements of the car window system and the selection

of an energy harvesting strategy to meet these specifications.

2.1 Energy Requirements

Identifying the energy requirements of a system is the first step towards determining whether

energy harvesting is a feasible approach to satisfy them. The energy requirements of the

car windows are specified in terms of a power budget. The power budgets for current car

windows and new efficient windows are given in Tables 2.1 and 2.2 respectively.

The current window designs are mechanically inefficient and require approximately 510

joules per open-close cycle. The new efficient window design will bring down the energy

requirement per open-close cycle to approximately 160 joules. Assuming one window open-

close cycle every five minutes as a conservative estimate, the power requirement for current

car windows is 1.7 watts, and the requirement for new efficient windows is approximately

0.53 watts.

2.2 Energy Harvesting Strategies

There are many ways of harvesting energy from vibrations. Three of the most common

methods are : Variable Capacitance Systems, Piezoelectric Material Systems, and Magnetic

'Keith Durand, MIT SM Thesis, June 2007
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Description Value Units

Weight of moving components 27 N
Travel 0.5 m
Drag force 70 N
Counterbalance 15 N
Travel time (each way) 4.0 s

Motor efficiency 55 %
Gear efficiency 50 %
Mechanism efficiency 50 %
Current (raise) A 13.6 VDC 5.5 A
Current (lower) Q 13.6 VDC 3.9 A
Energy to raise 300 J
Energy to lower 210 J
Total Energy per cycle 510 J

Table 2.1: Power budget for current car window mechanisms

Description Value Units

Weight of moving components 32 N
Travel 0.5 m
Drag force 70 N
Counterbalance 50 N
Travel time (each way) 4.0 s
Motor efficiency 70 %
Gear efficiency 80 %
Mechanism efficiency 80 %
Current (raise) A 13.6 VDC 1.1 A
Current (lower) © 13.6 VDC 1.8 A
Energy to raise 60 J
Energy to lower 100 J

Total Energy per cycle 160 J

Table 2.2: Power budget for new efficient window mechanisms

18



Induction Systems. Each of these will be explained and their typical power outputs evaluated.

Table 2.3 shows a comparison table of the three options.

2.2.1 Variable Capacitance Systems

Variable capacitance systems employ parallel-plate capacitors with movable plates. The

plates are charged to a specified voltage. The plates are then mechanically moved apart by

the input vibrations. Increasing the distance between the plates causes energy to be stored

in the capacitor. This energy can be harvested when the plates are brought closer to each

other again. The magnitude of energy that can be harvested from such systems is generally

on the order of microwatts2 ,3 .

2.2.2 Piezoelectric Material Systems

Piezoelectric materials build up a voltage differential across their ends when they are sub-

jected to mechanical deformation. When energy from vibrations is harnessed to cause defor-

mation in such materials, the voltage difference generated can be used to charge a capacitor

or other energy-storage device. The magnitude of energy harvested from piezoelectric sys-

tems can vary from microwatts4 to watts 5 .

2.2.3 Magnetic Induction Systems

Magnetic induction systems generate power through relative motion between a coil of wire

and a magnet. This causes the magnetic flux through the coil to change, which leads the

generation of a voltage differential across the ends of the wire coil. This voltage difference

can be used to charge a capacitor or other energy-storage device. The magnitude of energy

harvested from magnetic induction systems can range up to kilowatts' depending on the size

of the system. The comparison table (Table 2.3) shows this to be the most cost-effective and

promising option for powering car windows.

2Bernard Chih-Hsun Yen, MIT SM Thesis, February 2005
3Jos Oscar Mur Miranda, MIT PhD Thesis, February 2004
4Rajendra K Sood, MIT SM Thesis, September 2003
'Onnik Yaglioglu, MIT SM Thesis, January 2002
6 Sivananda Kumjula Reddy, MIT SM Thesis, June 2005
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Variable Capacitance Piezo Material Magnetic Induction

Power generation [W pW-W mW-kW
Vibration amplitude pm pum mm-cm
Driving frequency Any range Tens of Hz Any range

Ease of system design Difficult Easy Easy
Cost High High Modest
Lifetime Low High High

Table 2.3: Comparison of energy harvesting strategies.

2.3 Summary

This chapter presented the power generation target of 0.5 watts for the energy harvesting

system. Magnetic induction systems were chosen for further investigation because of their

high energy density for low cost compared to piezoelectric material or variable capacitance

systems. The next chapter is devoted to the detailed analysis of two types of magnetic

induction systems, magnet-through-coil and magnet-across-coils, and the selection of the

magnet-across-coils system to implement the energy harvesting system.
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Chapter 3

Magnetic Induction System Design

The power that can be harvested by a magnetic induction system depends on many factors,

including the size and geometric configuration, the magnetic flux density of the magnets,

the number of turns of wire in the coil, and the excitation frequency. This chapter presents

the equations that govern two styles of magnetic induction systems - magnet-through-coil

and magnet-across-coils - in order to enable an understanding of how these systems can be

designed and optimized for specific applications.

The aim of analyzing these magnetic induction systems is to calculate their output voltage

and power, which are the parameters of interest for the design of an energy harvesting system.

The first step in the process is to calculate the magnetic field, H, in the system. The magnetic

field dictates the magnitude of magnetic flux density, B, and hence the magnetic flux, A,

through the coils. Once the flux through the coils is known, the open-circuit voltage across

them, V, can be calculated using Faraday's Law. Ohm's Law and Kirchhoff's Laws are

then used to determine the average power, P, dissipated through a load resistor attached to

the system. Figure 3-1 shows a flowchart of the steps involved in the analysis of magnetic

induction systems.

3.1 Magnet-through-coil Induction

This section describes the governing equations for voltage generation by a magnet translating

through a coil with no relative rotation. The advantage of this kind of magnetic induction

system is that it is easy to build; the disadvantage is that the coil never experiences a

complete flux reversal, and thus the voltage and power generated is low.

A common example of this type of system is a shaker flashlight. The flashlight is powered

21
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Figure 3-1: Flowchart of steps in magnetic induction system analysis.

not by batteries but by the motion of a magnet relative to a coil when the device is shaken.

3.1.1 Geometry

The magnet-through-coil induction system consists of a cylindrical coil that translates rel-

ative to a bar magnet of height im and radius rm. The longitudinal axis of the magnet is

set along the y-axis, with its midpoint at the origin. The coil, made of N turns of wire, has

height 1c, inner diameter dmin and outer diameter dma,. The average radius of the coil, T,, is

calculated as
dmin + dmax

C - 4

The average diameter of the coil, dc, is 2r,. The cross sectional area of the coil, Ac, is

calculated as

Ac = 7rr .

The magnet is fixed in place while the coil moves along the y-axis. The y-coordinate

of the lower end of the coil is defined as h. The coil is assumed to vibrate with a fixed

amplitude, a, at a single frequency, f, with the motion centered at the y-coordinate d,.

Figure 3-2 shows the labeled geometry of this system and Table 3.1 lists the variables used.

3.1.2 Magnetic flux Generated by the Bar Magnet

The bar magnet is modeled as two point magnetic charges situated at ±lm/2 on the y-

axis. The magnitude of the magnetic point charges, qm, is obtained by integrating the

magnetization, pioM, over the cross-sectional areas of the magnet ends. Thus,

qm = o Mw7rr 2. (3.1)

22
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Figure 3-2: A cross-sectional view of the magnet-through-coil induction system. The blue
arrows represent the magnetization of the magnet.
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Symbol Units Variable

a m Amplitude of coil vibration
dc m Average diameter of the coil
dmax m Outer diameter of the coil
dmin m Inner diameter of the coil
do m y-coordinate about which vibration is centered

f Hz Frequency of coil vibration
h m y-coordinate of the lower end of the coil

rn m Height of the coil
im m Height of the bar magnet

1W m Length of the coil wire

qm Wb Total magnetic flux emanating from a magnetic charge
qi Wb Magnetic charge representing the North Pole of the bar magnet
q2 Wb Magnetic charge representing the South Pole of the bar magnet
rc m Average radius of the coil

Tm m Radius of the bar magnet

rr M Radius of the coil wire

v m/s Velocity of the coil

Ac m2 Cross-sectional area of the coil
Acap m 2  Surface area of the cap (Figure 3-4)

Aw m2 Cross-sectional area of the coil wire
B T Magnetic flux density

H m Distance from the charge to the plane of the coil end

Hm A/m Magnetic field strength
I A Current flowing through the coil and load resistor

Lc Wb/A Inductance of the coil
M A/m Magnetization of the magnet

N - Number of turns of wire in the coil

R m Radius of the imaginary sphere around the magnetic charge

Rc Q Resistance of the coil

RL Q Load resistance across which power is dissipated
V V Open-circuit voltage generated across the ends of the coil

VC V Voltage across the coil when a load resistance is attached

VL V Voltage across the load resistor
P W Power dissipated through load resistor

[to Tm/A Magnetic permeability of air

p QM Resistivity of the coil wire material

total Wb Total magnetic flux due to the bar magnet

Om Wb Magnetic flux inside the bar magnet

01 Wb Magnetic flux due to the North Pole of the bar magnet

#2  Wb Magnetic flux due to the South Pole of the bar magnet

Table 3.1: Nomenclature for Magnet-through-coil Induction system
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Figure 3-3: Magnetic flux density from a bar magnet.

The magnetic flux density at a given point, B, depends on two terms: the magnetic field

strength Hm; and the local magnetization. The local magnetization is M inside the magnet

and 0 outside. Figure 3-3 shows how the contributions from these two terms add up to the

magnetic flux density:

B = po(Hm + M). (3.2)

As shown in Figure 3-3, a bar magnet has a uniform magnetic charge density on its ends

at x = ±lm/2. We make the simplifying assumption that the bar magnet can be modeled

as two point magnetic charges located on the y-axis at ±m/2. Thus, while the YOM term

we calculate is exact, the puOH term is an approximation because it comes from a point-

charge assumption. We will concentrate on the calculation of YOHm and then add it to the

simple YOM term towards the end to arrive at B inside the magnet. Outside the magnet the

B = YO H alone.

The total flux emanating from the magnetic charge is qm. The resultant flux through

any given turn of wire is the fraction of the total flux that passes through the area enclosed

by the wire turn; and this flux is numerically equal to the same fraction of q,. If a sphere is

imagined around the point charge, and a single wire turn intersects the sphere to delineate a

spherical cap (Figure 3-4), then it follows from Gauss' Law that the magnetic flux through
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Figure 3-4: Point charge and single wire turn geometry.

the wire turn is equal to the magnetic flux escaping through the cap. Thus, the magnetic

flux through the wire turn is proportional to the ratio of the surface area of the cap to the

surface area of the entire sphere. For a sphere of radius R, with a distance H from its center

to the plane of the coil, the surface area of the cap formed is

Acam = 27rR(R - H). (3.3)

Therefore, the magnetic flux through a single wire turn of radius r, at a height H above

a point charge qm is given by

2,rR(R - H) qm(R - H) qm( /rH 2 -H)
p 47rR2 ==2== (3.4)

41 22R 21/rc + H 2

The magnetic flux through a wire turn in the induction system depends on contributions

from the magnetic charges at both ends of the bar magnet. The labeled geometry of the

magnetic charges and a single wire turn is shown in Figure 3-5. The magnetic charges have

opposite signs to represent the North and South poles of the magnet, with qi positive and

q2 negative. In addition, the direction of the magnetic flux through the wire turn changes

when a magnetic charge passes from one side of the wire turn to the other. Sign functions

are added to Equation 3.4 to account for these changes in the magnetic flux directions. The
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Figure 3-5: Magnetic dipole and single wire turn geometry.

magnetic flux contributions #1 and #2 from the magnetic charges qi and q2 respectively are

l, -q r!+ (h - 1-)2 -|h - '-|1
sign(h - ) ( (3.5)

2 2 2
\I 21

1 qm( r2 +(h+)2 -|h+ j)
# 2 = sign(h + )

2 2 r+(h +%
(3.6)

#1 and #2 are the fluxes from the point charges at the ends of the bar magnet; when

they are divided by the area of the wire turn, they sum up to the PoHm component of

B. In addition, there is magnetic flux inside the bar magnet due to its magnetization; the

magnitude of this flux is puOMrrm, which from Equation 3.1 is equal to q,. Therefore the

flux due to p 0M term can be expressed as:

{m qm
-- m/2 < y < lm/2.

y < -1m/2 U lm/2 < y.
(3.7)

The total magnetic flux through a single wire turn at height h is the sum of #1, #2 and Om

from Equations 3.5, 3.6 and 3.7 respectively. This sum is multiplied by the number of turns
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of wire per unit height, N/lc, and a small incremental height, dy, to obtain the magnetic flux

through all the wires coiled at height h. The total magnetic flux through the coil of length

le is the integral of the magnetic flux over the height of the coil:

OtotaI /h+lc N(0 1 + # 2 + OM)#tt;=dy. (3.8)fh ic

3.1.3 Coil Inductance and Resistance

The inductance of the coil, LC, is a function of the number of turns, cross-sectional area, and

height of the coil. The inductance for a long thin coil, where 1, > sqrt(Ac), is given by:

L_ - uoN 2 A - purN2 rc (3.9)

The resistance of the coil, RC, depends on the resistivity of the wire material, p, the

length of the coiled wire, 1,,, and the cross-sectional area of the wire, A,. If the radius of

the wire is r., we have

W= JNVrde,

AW = 7r!,

p1w p(N2rre) 2Npr(
Rc~ irj (3.10)" AW (7rr2 ) r2

If Rc >> 27rfLc, the effects of the system inductance are negligible in comparison to those

of the system resistance. Since this relation often holds true in real systems, the subsequent

analysis assumes that the resistance effects dominate the system.

3.1.4 Voltage and Power Generation

Faraday's Law states that the open-circuit voltage induced across a turn of wire is the

negative integral of the time-change in magnetic flux over the cross-sectional area of the

turn. By the chain rule of differentiation, the time-change in magnetic flux can be separated

into two multiplicative terms - the change in magnetic flux over height, and the change in

coil height over time (in other words, the velocity of the coil). Thus,

v =Jd'jtotal dA= dctotai dhA (3.11)
S dt dh dt

28



The formula for dht otai can be calculated by differentiating Equation 3.8 to arrive at
dh

dototal d h+c N(0 1 + 02)dh - N(01 + 2) h+I (3.12)
dh dh ih 4C 4e h

Given the velocity of the coil, v, the open-circuit voltage induced across the coil can be

calculated:

V = f vN(# 1 + #2) h+lc

P is the power delivered by the system to a load, modeled here as a resistor R1 . Since the

system inductance is assumed to be negligible, the open-circuit voltage generated across the

ends of the coil is now applied across the resistances R, and RL in series. Then, Kirchoff's

Voltage Law implies that

V = V + VL, (3-14)

where V and VL are the voltages across the coil and load resistor respectively. I is the

resultant current flowing through the circuit. Ohm's Law states that the voltage across a

resistor is the product of the resistance and the current flowing through it; applying this to

Equation 3.14 allows us to solve for the value of I:

V=I(R +RL)-

V
>I = . (3.15)

(R + RL)

The instantaneous power dissipated across the load resistance is the product of the current

flowing through it and the voltage across it. This gives

P = VLI (RL 2),

and substituting the value for I from Equation 3.15,

P = .2 (3.16)
(Rc + RL2

Since RL is fixed, we differentiate P with respect to RL to find the maximum:

dP d RL V 2  0

dRL dRL (Rc+ RL) 2
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v 2
= 0. RLV (R + RL) - 2RL = 0-

(R+ RL)2 (R+ RL) 3

# RL = -. (3-17)

Hence, the load resistance should be matched to the coil resistance in order to extract

the maximum possible power from the system.

3.2 Magnet-across-coils Induction

This section describes the governing equations for voltage generation by a magnet moving

across coils. This kind of magnetic induction system is more complicated to build; however,
the coils experience complete flux reversals, and thus the voltage generated is high. The

frequency of flux reversals can be further increased by using multiple N-S magnet pairs.

3.2.1 Geometry

The magnets-across-coils induction system consists of a layer of magnets separated by an air

gap from a layer of coils. The magnets move across the coils, causing a change in magnetic

flux and generating a voltage across the coil ends. The system has three phases: A, B and C.

Figure 3-6 shows a schematic of the system to be analyzed and Table 3.2 lists the variables

in the system.

Since the permeability of a magnetic material like steel is typically orders of magnitude

higher than that of air, the magnetic backing for the coils and magnets is assumed to have

infinite permeability. The now simplified problem is to solve for the magnetic fields in the

gap between the two layers of magnetically permeable material, where magnetic fields are

generated by the magnets and by coil current.

As all the elements of the system are linear, the fields due to the magnets and coils can

each be calculated separately and then added by superposition. This breaks the problem into

three smaller tasks: (1) calculation of the magnetic field due to the magnets; (2) calculation

of the fields due to the flow of current in the coils; and (3) adding them by superposition

and finding the total voltage and power generated.

3.2.2 Magnetic Field Generated by the Magnets

Within the system with magnets, there are two regions: Region A, between x = 0 and

X = T A, with the magnets; and Region B, between x = 0 and x = -XB, with the air gap and
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Symbol I Units Variable
2d
2g

ZB

ic
1
n
t
w
XA

XB

AA
AB
Ac
Aw
Bx
Bz

HA:,
HBx
HA;2,
HBz
L
M
N

PA
PB

PC
R
RL

VA

VB

Vc
-A

-B

Ac
Yo
4 (coils)
4 A(magnets)

B(magnets)

LM

Table 3.2: Nomenclature for Magnet-across-coils Induction system

31

m
rn

A
A
A
rn

r-

rn2
mn2

mn2

mn2

Wb/m 2

Wb/M 2

A/m
A/m
A/m
A/m
Wb/A
Wb/A

W
W
W

Wb

Tm/A
A
A
A
T

rad/s

Gap between adjacent magnets

Length of a coil phase in the z direction

Current passing through phase A coil

Current passing through phase B coil

Current passing through phase C coil
Length of a magnet in the z direction
Number of magnetic poles in the system

Gap between adjacent coils
Width of a magnet
x-coordinate of the magnet-steel interface

x-coordinate of the coil-steel interface

Cross-sectional area bounded phase A coil

Cross-sectional area bounded phase B coil

Cross-sectional area bounded phase C coil

Cross-sectional area of the wire used for coils

Magnetic flux density in the x-direction

Magnetic flux density in the z-direction

Magnetic field in the x-direction in region A
Magnetic field in the x-direction in region B

Magnetic field in the z-direction in region A
Magnetic field in the z-direction in region B

Self-Inductance of a coil

Mutual Inductance between different phase coils

Number of turns of wire in a coil

Power dissipated through load resistor across phase A coil

Power dissipated through load resistor across phase B coil

Power dissipated through load resistor across phase C coil

Resistance of each coil phase

Load resistance on each phase for power dissipation

Voltage across phase A coil

Voltage across phase B coil

Voltage across phase C coil

Magnetic flux through phase A coil

Magnetic flux through phase B coil

Magnetic flux through phase C coil

Magnetic permeability of air; 47r x 10-7

Scalar Magnetic potential due to coils

Scalar Magnetic potential in Region A due to magnets

Scalar Magnetic potential in Region B due to magnets

Magnetic charge density at the interface between magnets and air

Operating frequency of the system



Air gap Region B: H1 .,#'

Magnetically permnoable material

Figure 3-6: Magnet-across-coils induction system.

coils. These regions have distinct magnetic fields, HA and HB respectively. The interface

between the magnetic region and the air gap provides the boundary conditions on the fields

in these two regions. The x-axis is defined such that x = 0 at the interface between the

magnets and air.

The magnetic charge is concentrated on the planes at the ends of the magnets at x = 0.

The magnetic charge density on the z-axis is represented by cTM(z). Figure 3-7 shows a

schematic of the magnet placement and the resulting graph of JM(Z) as a function of z.

The charge density function from Figure 3-7 can be represented by a Fourier series.

Then we can solve for the magnetic field caused by a sine wave charge distribution, and use

superposition to get the total field.

The charge density waveform can be represented by

2wrkz 2irkz
cYM = ao(o,.) ± Zak@Mu cos( Z ) + bkIu sin( -(.18

=1

where Z is the spatial period of the magnetic charge density function and the Fourier coeffi-

cients are:

ao(O.M) = 0. (3.19)

ak(UM) = 0. (3.20)

bk(_M) = cos ( for odd k. (3.21)
k0 fr

0 ~ ~ Air even k.in :H .t
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Figure 3-7:
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Schematic of the magnet placement and the resulting charge density on the

The details of the Fourier coefficient calculations can be found in Section 1 of Appendix C.
Since the magnetic charge density waveform is reducible to a sum of sines, we solve for

the magnetic fields resulting from a sinusoidal charge density (am, = bk(am) sin(2 )) on the
z-axis. For a system with current J, Maxwell's Equations state that:

V x H =J

V -B =0.

(3.22)

(3.23)

Since we are solving the part of the superposition that only considers the fields due to the
magnets, there is no current in the system and J in Equation 3.22 is zero. This means that
the curl of H is zero, which implies that H is the negative gradient of some scalar magnetic
potential function 0.

V x H = 0.

=- H = -VO. (3.24)

From Equations 3.2, 3.23 and 3.24, we get

V -p(-Vo + M) = 0. (3.25)

Because the magnetization M of a magnet is a constant, and M of air is zero, in both
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cases V - M vanishes. Thus we get the simplified equation

V 20 = 0. (3.26)

This equation must be solved for regions A and B to obtain the corresponding magnetic

potentials (V)A and 4'B) in those regions. To satisfy Equation 3.26, the solutions must be of

the form

2irkz 2irkz 2irkx 2wkx
OA [a 1 sin( + 2 COS( 2 )k X [3 sinh( Z ) + a4 cosh( Z

2',kz 2'rkz 2ikx 2irkx
B [01 sin( 2 ) + /2 cOS( 2 )] x [03 sinh( kx ) + 34 cosh( Z

The values of the constants in these equations are obtained by applying the boundary

conditions on the regions. The first two boundary conditions arise at the interfaces with the

magnetically permeable backings at x = XA and x = -XB. Given the absence of surface

currents at these interfaces, the tangential magnetic field, H, is conserved. We have assumed

that the materials have y = oo; therefore B = pH dictates that H = 0 in order for B to be

finite. Since H = 0, the tangential field H, must be zero at these interfaces. The interface

between the magnets and air at x = 0 is considered next. The conservation of the tangential

magnetic field, H2, (given the absence of surface currents at x = 0), and the conservation

of the normal magnetic flux, Bx, yield two more boundary conditions for the system. In

conclusion, the boundary conditions applicable are:

1. HA, = 0 at x = XA.

2. HBZ = 0 at X -XB-

3. HAZ = HBz at x 0.

4. pOHA , + bk(,M) sin( ) = IoHBx at x = 0.

Solving for the values of the constants is now a matter of algebraic manipulation. Bound-

ary conditions (1) and (2) state that HAz and HBz are zero-valued at XA and -XB respectively.

HA2 and HBz are the partial derivatives of -V)A and -B with respect to z, so for them

to be zero at XA and -XB respectively, the x-dependent components of 4'A and 4'B must be

zero. This means that the x-dependent components of the magnetic potentials must be sinh

functions, since cosh functions cannot be zero-valued at any points. This means that the
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constants a 2 , a 4 ,/32 and 34 are zero. Constants a1 and a 3 can be combined into a, and 01
and /33 into 0.

27r kz
OA = a sin( )z

27rk(x - XA)
sinh( Z

(3.27)

=- Hz IXA# x __

SHB XB

2ir ka 2irkz 2 kx-x
=- cos( kz) sinh( k(x )

Z Z Z x=xa

B /3sin( 27rkz )ih( 27rk(x+xB)
Bs Z

27rk,3
Z

2,rkz)
cos()

2rk(x+ XB))
sinh( X=-XB

= 0.

(3.28)

=0.

Now we have two equations (boundary conditions (3) and (4)) and two unknowns (the

values of the two constants a and 0); the following steps show the rearrangement of variables

to arrive at the answer.

HAL = HB, x=

27kz 27kxA
cos(Z ) sinh(- Z

2rk/3 
s(

- os

27kz

Z )

27rkxB
sinh( Zz

-2r kxA 2lr kxB
> asinh( Z ) = #3sinh( Z

pUo HA x= O + bk(am) sin( Zk = /OH B x=O

27rkz -27rkxA 2 kzSn Z s )+bk(M) sin(sin Z ) ohZ
= 2rk/3 sin( 27rkz

Z (Z)
2wkxB

cosh( Z

=> b =
2wka 2lrkxA

po Z7c csh( Z TXA
27k/3o 27rkxB

Z cs Z

bk(yM) sinh( 27xB

2 kt (sinh(2 Z^) cosh( 2 ZB) + sinh( 2 " Z) cosh( 2 xA))

-bk(,M) sinh( 2
7kXA)

2Z io (sinh( 2Z-) cosh(27rk ) + sinh( 2Zk) cosh( '
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Z

2rka
-[ -Z

/3=

(3.29)
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Figure 3-8: Schematic of the coil placement and the tangential magnetic field at -XB result-

ing from current i flowing through all three phases of coils.

From equations 3.18, 3.27 and 3.28, the total magnetic potential due to the magnets is

27rk(x - XA) 27rkz
/A(magnets) = a sinh( 2) sin( ) (3.31)

k=1 2(1 + 2d) 2(1 + 2d)

g)B(magnets) = r sinh( 2((+2d) 2(1 + 2d)). (3.32)
k=1 LL~L ±

3.2.3 Magnetic Field Generated by Coil Current

For the calculation of the fields due to current flowing through the coils, the magnets are

ignored. The current through the coils is approximated as a surface current at x = -XB.

This means that there is no difference between Region A and Region B for this calculation.

Thus we solve for the magnetic fields from the coils in the region bounded by XA and -XB.

Figure 3-8 shows a graph of the tangential magnetic field H, at -XB that would result from

a current i flowing through all three phases of coils.

The tangential magnetic field at the surface of the magnetic backing is the sum of the

contributions from the three phases A, B and C. The width of each phase is 2g, and the gap

between phases is t. Since the three phases are symmetric, we can solve for one phase and

then use superposition to add in the effects from the other two phases. In particular, we will

solve for the contribution from current i flowing through the phase A coils. The tangential
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magnetic field, H,, at plane x = --XB, due to the current i passing through the phase A

coils, can be expressed as

H - 0027kz k(z i(2-Fkz
ao(Hz) + Z ak(Hz) CoS(-) + b -(3.33)

k=1 Z

where Z, the spatial period of the tangential magnetic field function, is 6(2g + t), and the

Fourier coefficients are

ao(Hz) 0, (3.34)

ak(H,) sin ) for odd k. , (3.35)
0 for even k.

bk(H ) = 0. (3.36)

The details of the Fourier coefficient calculations can be found in Section 2 of Appendix C.

Since Hz can be expressed as a sum of cosines, we can solve for the contribution from a

single harmonic (Hz, = ak(Hz) cos(2rk)) and then use superposition to obtain the complete

solution. Similarly to the case of the magnets, the boundary conditions on the magnetic

field due to coil current are:

1. Hz = 0 atx = xA.

2. H, = ak(Hz) cOS( 6 (2,t)) at X = -XB-

Within the region, similar to the case with the magnets,

V x H = 0 * H = -Vp = V 2 0 = 0.

The solution of this equation is the magnetic potential (4') due to the current in the coils,
and must be of the form

i 2 xkZ) cs 27rkz [Dsn(2wkx 2wkx
'= [D 1 sin( Z ) + D2 COS( Z )] x [D3sinh( Z. ) + D4 cosh( Z

Since boundary condition (1) states that H, must be zero at XA, the x-dependent com-

ponent of the magnetic potential must be a sinh function.

= Dsin( 27rkz ) sinh( 2 Zrk(x-XA)

27rkD 2rkz 27rk(x- XA)
Hz = - cos( )sinh( X=XA 0.x~~xA Z Z Z x
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Figure 3-9: Three-phase coil arrangement geometry.

From boundary condition (2), H; is ak(Hz) cos( 2 ) at -XB.

27rkD 27rkz . 27rk(x - XA) 27rkz
Hz = os ) m() = ak(Hz) cos( ).

D = ak(Hz)Z (3.37)
27rk sinh(2

rk(xA+xB))

*2wk(x-xA) 2irkz
00cois = S D sinh( ) sin( ). (3.38)

k=1ls 6(2g + t) 6(2g + t) (.8k=1 62

3.2.4 Coil Self-Inductance, Mutual Inductance, and Resistance

Equation 3.38 allows us to calculate the magnetic potential created by the flow of current

through the coils; the magnetic flux density generated can be obtained from this magnetic

potential.

Bcosis = poHe=is - poVocoils.

The magnetic fluxes through the coils due to current through them are Ac(A), Ac(B) and

Ac(c) through phase A, B and C respectively, and can be calculated by multiplying the

magnetic flux density and the area of the coils. Figure 3-9 shows the geometry of the three

phases. For example, the magnetic flux through phase A coils is:

Ac(A) = Be.is - AA,

where AA is the area of the phase A coils. Since the coils lie in the x = -XB plane, only
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the x-component of the magnetic flux density will pass through them; hence Bcoils - AA =

Bx(cozis>AA.

The self-inductance, L, of a coil is defined as the magnetic flux generated through the

coil due to the flow of a unit current through it. The mutual inductance between a pair

of coils, M, is defined as the magnetic flux generated through one coil due to the flow of

a unit current through the other. The magnetic flux through each phase is influenced by

the current flowing through every phase. Since everything is symmetric across phases, the

self-inductance of each phase and the mutual inductance between each pair of phases is the

same. Equation 3.39 defines the dependence of the magnetic fluxes and the current through

the coils.

c(A) L -M -M iA

Ac(B) = -M L -M KB (3.39)
Ac(c) -M -M L ic

To calculate the value of L and M, we consider the flux linked by a phase A coil and a

phase B coil due to a current i flowing through the phase A coil (when 2 B and ic are 0):

1l/2
Ac(A) = B(coils)AA = nN f1oHxic(,i1)wdz = Li.

/(2g+t+1/2)
Ac(B) = Bx(coils)AB = nN I(29±t-1/2) I oHx(c0 i,)wdz = -Mi.

The integrals are the flux through one coil and one turn of wire; to get the total flux they

are multiplied by the number of coils (which should be the same as the number of magnetic

poles, n), and the number of turns of wire (N) in each coil. The turns of wire in the coil

are approximated into a pointwise lumped distribution; therefore we just multiply by the

number of wire turns instead of integrating over the physical width of the turns (2g for each

phase). Rearranging the terms, we get:

L = p 1 oHx(cois,)wdz. (3.40)
i f-1/2

M = pN J 1 oHx(coils)wdz. (3.41)
i -1/2

Since Hx(,Oils) as a function of i can be calculated from Equation 3.38, the values of L

and M can be found.

The resistance of all the coil phases should be the same since they are the same pattern
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displaced in space. The resistance of each phase depends on the resistivity of the wire

material, Pw, the cross-sectional area of the wire, Aw, and the total length of the wire, lw.

The length of wire used will depend on the number of turns of wire and on the pattern of

winding.

R = Pw 1w (3.42)
Aw

3.2.5 Voltage and Power Generation

The magnetic fields in the system are linear; therefore superposition can be used and the

total magnetic field is the sum of the magnetic fields from the magnets and the coils.

Htotai = V( A(magnets) + /(coils)) 0 < X < XA. (3.43)
-V()B(magnets) + 4)(coils)) 0 > X > -XB.

Btotal = POHtotal.

The magnetic fluxes through the coils due to the magnets, Am(A), Am(B) and Am(C) through

phases A, B and C respectively, are calculated by multiplying the magnetic flux density and

the area of the coils.
Am(A) Bx(magnets)AA

Am(B) Bx(magnets)AB

Am(c) L _ Bx(magnets)AC

By superposition, the total magnetic flux through the coils is the sum of the fluxes

generated by the magnets and by the flow of current through the coils.

AA Ac(A) 1 [m(A) L -M -M iA Bx(magnets)AA

LB ~ c(B) + AB) = L -M L IB + Bx(magnets)AB j344
AC Ac(C) Am(C) _-M -M L ZC Bx(magnets)AC_

In order for these equations to hold true, it is important that the magnetic backing of the

coils does not saturate due to the magnetic flux through it. Figure 3-10 shows the path of the

flux through the magnetically permeable backings. B - A should be calculated for the area

under half a magnet, and should be equated to Bnew- Anew, where Anew is the cross-sectional

area of the magnetic backing through which the flux will pass. A BH chart of the backing

material should be consulted to confirm that Bnew will not cause it to saturate. A similar
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Figure 3-10: Path of the magnetic flux in a magnet-across-coils system.

check should be conducted for the backing of the magnets.

Faraday's law is invoked again in order to calculate the voltage generated across the coils.

AA, AB and AC are known as a function of position, so L can be calculated for each phase.

These values, when multiplied by the velocity of the coil (d), give for each respective

phrase. Since the phases are identical except for a displacement in space, the voltage through

them will be identical except displaced in time.

d AA VA R 0 O iA1

dt AB VB - 0 R 0 iB (3.45)

LAc VC 0 0 R ic

Equations 3.44 and 3.45 give us a system of 9 equations and 9 variables: the variables

are the magnetic fluxes, currents, and voltages for the three phases; the resistance, self-

inductance, and mutual inductance of the coils are known.

Now that we can solve for the output voltage of the system, we consider the dissipation

of the power produced. Applying Ohm's law to the system connected to a load resistor RL

gives:

VA RL 0 0 1 A

VB =- 0 RL 0 ZB (3.46)

Vc 0 0 RL ic

If R > wL, where w is the operating frequency of the system in rad/s, the effect of

inductances L and M is negligible compared to that of the resistance R. An argument

similar to the one presented in Section 3.1.3 leads to the conclusion that RL should be equal
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to R in order to extract the maximum possible power from the system, the instantaneous

power dissipated through RL being:

PA RL [V 
(347)PB] (R+RL)2  VBj

Pc V2

3.3 Summary

The focus of this chapter was to develop equations to predict the open-circuit voltage and

power output of magnetic induction systems as a function of their geometry and material

properties. Two types of systems, magnet-through-coil and magnet-across-coils, were ana-

lyzed.

The open-circuit voltage and power output generated by a magnet-through-coil system,

from Equations 3.13 and 3.16 respectively, are:

v / vN(#i + #2) h+1cA.

P RLV
2

(R+ RL)2

The open-circuit voltage and power output of a three phase magnet-across-coils system,

from Equations 3.45 and 3.47 respectively, are:

VA RL 0 0 ZA

VB - 0 RL 0 ZB

VC 0 0 RL ic

PA] RL F
PB] (RR)2 /Bj

B R {+RL 2

These equations are for the instantaneous power dissipation through a load resistor.

When the input displacement is sinusoidal, the output voltage will also be a sinusoid of

the same frequency; then the average power dissipated over a cycle is half of the maximum

instantaneous power generated.

A magnet-across-coils system can generate higher voltage than a magnet-through coils
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system for the same stroke, because the former system can cause complete flux reversals

across the coils. Although harder to manufacture, a magnet-across coils system is more

suited for applications where space is limited, and hence it was selected for the prototype

of the system to harvest energy form car door vibrations. The next chapter discusses the

development of the other components of the energy harvesting system.
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Chapter 4

Energy Harvesting System Design

This chapter gives an overview of the theory behind all steps of the design process for a

magnet-across-coils style magnetic induction system that harvests energy from mechanical

vibrations. The chapter is divided into four sections. The first section presents the derivation

of an equation for the maximum power that can be extracted from a surface vibrating at a

given frequency and amplitude. This equation can be used to determine the feasibility of

using car door vibrations as an energy source for power window and lock operation. The

second section connects the magnetic induction system to the overall mass-spring-damper

system, and the third section describes the equations for the design of the cantilever beam

prototype that was built and tested. The last section discusses the equations for energy

storage in a capacitor.

4.1 Vibration Analysis

This section derives a formula for the power that can be harvested through the damper in a

mass-spring-damper system attached to a vibrating surface. The power dissipated through

the damping element when the parameters of the system are optimized is the upper bound

on the power that can be harvested from the system by extracting power through a damping

element. Figure 4-1 shows a schematic of the system being analyzed and Table 4.1 lists the

variables in the system.

The parameters of the system are the mass m with position coordinate x. The mass

is suspended by a spring with spring constant k and a damper with damping coefficient b

from a vibrating surface with position coordinate y. From the force balance for the mass,
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Figure 4-1: Schematic of a vibrating mass with a spring and damper.

Symbol Units Variable

b Ns/m Damping coefficient of the damper

k N/m Spring constant of the spring

m kg Vibrating mass

x m Position coordinate for the vibrating mass

y m Position coordinate for the vibrating surface

z m Position coordinate for relative motion between surface and mass

P W Average power dissipated through the damper

W rad/s Frequency of vibration

Table 4.1: Nomenclature for Vibration Analysis

we obtain Equation 4.1, which can be simplified to Equation 4.2.

m.+b +kx=b +ky.

mz + b(1 - y) + k(x - y) = 0.

(4.1)

(4.2)

Defining a new parameter z, which is the relative distance between the vibrating surface

and the mass, we obtain Equations 4.3 and 4.4.

z = x - y. (4.3)

(4.4)m2 + b + kz = -my.

In order to maximize the power output through the damper, we choose a spring constant

such that the mass and spring are in resonance. This gives us Equation 4.5, which when

combined with Equation 4.4 leads to Equation 4.6.

(4.5)mi + kz = 0.
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b = -my. (4.6)

Taking the Laplace transform of these equations and substituting s = jW to represent a

sinusoidal input of frequency w yields

ms2z + kz = 0 z= m(jW)2 z + kz = 0. (4.7)

bsz = -ms 2y # bjwz = -m(jW) 2y. (4.8)

Equating the magnitudes of both sides of Equation 4.8, we obtain Equation 4.9.

bwz = mw2 y. = b = mwy. (4.9)
z

The instantaneous power dissipated through a damper is the product of the damping

force on the mass, bwz, and the velocity of the mass, wz. The time-average of the power, P,

extracted for a sinusoidal input is half of the maximum instantaneous power. Substituting

Equation 4.9 in Equation 4.10 gives us Equation 4.11, which is a formula for the maximum

time-averaged power that can be extracted through a damper for a given mass, vibration

frequency, input amplitude, and output amplitude relative to the vibrating surface.

1 bw2 z2

P = -(bwz)(wz) = . (4.10)
2 2

P MW yz (4.11)
2

The upper bound on the power that can be harvested from a vibrating surface is a function

of the vibration frequency, input and output amplitude, and vibration mass. Equation 4.11

helps us understand how the system parameters impact the output power, and can be used

as a guide for the design and optimization of an energy harvesting system.

4.2 Magnetic Induction System as a Damping Element

The damping element in a vibration system can be effectively realized as a magnetic induction

system. This allows the energy dissipated in the damper to be harvested as electrical energy.

However, it is impossible to eliminate damping from other sources in a physical system.

Hence the damping term from Figure 4-1 is separated into two terms: internal (b1 ) and

external (bE). The external damping term is the contribution from the magnetic induction
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system and represents the conversion and harvesting of useful power. The internal damping

includes the damping from other factors which are all losses. Equation 4.6 can now be

extended as

(b1 + bE = -my.

For a given input vibration, since m and j are fixed, this means that

1
% c . (4.12)

b1 + bE

The average power dissipated through damper is half of the product of the damping force

and the velocity of the mass, so the average power dissipated through the external damper,

representing the useful harvested power, is

bE§2 bE
PbE b 2 bE 2  (4.13)

E2 (bE + bI)2

For a given b1, PbE is a function of bE. In order to find the maxima of PbE, we differentiate

it with respect to bE and obtain:

dPE _d bE
dbE dbE (bI + bE)2

1 2bE
1)2 - (b bE=)3  0. - (bI + bE) - 2bE = 0-

(b, + bE )2~(bI + bE p

== bE b N. (4.14)

Hence, once b, of a system is fixed, bE should be matched to it in order to maximize the

power dissipated through the external damping element.

Since b, is a function of the physical system used to implement the spring and damper,

it is partially controllable through the design of the physical system. Equation 4.13 implies

that it is desirable to build a system with a low b, to increase PbE; however, since is

inversely proportional to (b, + bE) from Equation 4.12, making the damping arbitrarily

small will cause a large increase in . A large increase in would lead to a proportional

increase in z, because 1 1 = zw and w is a constant. An arbitrarily large z will cause the

physical system will fail because of plastic deformation. Therefore, the reduction of bj is

not necessarily the limiting factor on the performance of a vibrating system; the maximum

allowable displacement should also be considered.
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Symbol Units Variable
c rm Maximum distance of the beam profile from the neutral axis
k N/m Spring constant of the cantilever beam
z m Maximum deflection of the cantilever beam
D m Diameter of the cantilever beam
E N/m 2  Young's Modulus of the beam material

ix m 4  Moment of Inertia of the beam profile about the x-axis

ly m 4 Moment of Inertia of the beam profile about the y-axis
L m Length of the cantilever beam
M Nm Moment on the cantilevered beam
R m Radius of the cantilever beam

7max N/m 2  Maximum stress in the cantilever beam when deflected
c-y MPa Yield stress of the cantilever beam
Oc rad Angle defining the beam profile (marked in Figure 4-2)

Table 4.2: Nomenclature for Cantilever Beam design

4.3 Cantilever Beam as a Spring Element

This section describes the implementation of the mass and spring components of the system.

The cantilever beam with a mass on the end is a simple design with a low part-count for easy

manufacture. The length, profile and material of the beam determine the spring constant,

and the magnetic induction system is mounted on the mass attached at the end of the beam

as the damping component. Table 4.2 lists the variables of the system.

4.3.1 Beam Profile

The cross-sectional profile of the beam is important because it affects the moment of inertia

and hence the spring constant of the beam. A round profile has the advantage of being

easy to press-fit into a hole, which results in excellent attachment stiffness at a low cost; the

disadvantage is that there is no directional selectivity.

A round beam with material shaved off to form the profile shown in Figure 4-2 provides

different moments of inertia in different directions and can still be press-fit into a hole. The

origin is the center of the round beam of radius R. Oc is the angle between the x-axis and the

line from the origin to the highest point of the flat surface created by shaving material off the

round beam. The directional selectivity provided by this profile ensures that the magnets

will move across the coils in the direction intended, thus maximizing the power output from

a given vibration.
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Figure 4-2: Profile of the cantilever beam.
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The moment of inertia about the x-axis is defined as:

I = Jy2 dA. (4.15)

Due to symmetry, the moment of inertia for the beam is four times the moment of inertia

of a quarter of the beam as shown in Figure 4-3(a). The moment of inertia for the quarter

beam is calculated by separating the profile into two regions and adding their moments of

inertia.

{ x = RcosOc

x = Rcos0, y = Rsin0

0 < 0 < 0C.
Oc < 0 < 7r/2.

SR sin CIx =4[ f
,r/2

y 2 R COScdy + J0C/ R 4 (sin 0) 2 (cos 0) 2 d0]

Ix 4 [ Rcos(Oc ) Y 1R sinc 0

Ix 4R 4 COS O 6(sin OC)3 +
3

+ R [40c - sin 40c]/2]+32 sin

R 4(2-r - 40c + sin 40c)

8
(4.16)

Similarly, the moment of inertia about the y-axis is defined as:

Iy = Jx2dA. (4.17)

Due to symmetry, the moment of inertia for the beam is four times the moment of inertia

of a quarter of the beam as shown in Figure 4-3(b).

x = Rcos0, y = Rsin0 for 0 0 <r/2 -Oc.

I j = 4[ R 4 (sin 0) 2 (cos 0) 2d}]

I, = 4[ R[40c - sin 40c] /2-OC

I - R 4 (27r - 40C + sin 40c) (4.18)
8

The ratio of the two moments of inertia is :

Ix = 1 + 32 cos Oc(sin 0C)3

Iy 3(27r - 40c + sin 40c)
(4.19)
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Figure 4-4 is the plot of I, and I for R=1 and Oc varying from 00 to 70'. Figure 4-5

shows the magnitude of the I,/Iy ratio for R=1 and Oc varying from 00 to 700. As can

be seen from the plots, an angle of Oc = 450 results in an II, ratio of almost 2. At the

same time, enough material is left on the circumference to ensure a good press-fit. For these

reasons, Oc = 450 was selected to define the beam profile shape.

0.7-

0.6-

0.5-

0.4-

0.3

0.2

0.11-

0
0 10 20 30 40

Angle Thetac in degrees

Figure 4-4: 1, (solid line) and I, (dashed line) for R=1I and Oc varying from 0' to 700.

4.3.2 Cantilever Beam Design

The cantilever beam must now be designed to function as the spring element in the energy

harvesting system. The input vibration frequency and amplitude are known. We know the

power output required, and the allowable amplitude, so from Equation 4.11 we can calculate

the mass we need to vibrate to extract the required power.

Now we consider a simple cantilevered beam with a mass at the end. The stiffness

equation for a simply supported beam is

k 3EIy
k=P

(4.20)

where k is the beam stiffness, E is the Young's modulus of the beam material, Iy is the

moment of inertia, and L is the length of the beam. From Equation 4.5, we know that k
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Figure 4-5: Ratio of I., to I, for R=1 and 0c varying from 00 to 700.

must equal mw2 . The moment of inertia for a profiled beam with parameters D and Oc is

D4 (27 - 40c + sin 40c)
128 (4.21)128'

It is important for the beam to withstand many cycles without failing due to fatigue, and

hence stresses greater than half of the yield stress (o-,) should not be imposed on the beam.

Thus, the length of the beam is also governed by the maximum stress allowable in the beam

material -max:

-ma = MC (4.22)

where M is the bending moment applied to the beam, and c is the maximum distance from

the neutral axis. For the profiled beam,

D cos Oc
c = ,(4.23)

2

M = kzL. (4.24)

Combining Equations 4.20 through 4.24, we get

6144EM2Z3(COS (4.25)D = [Is(.5
o7 3(27 - 40C + sin 40c)2 2
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Variable Numerical Value Units Description
m 1.2 kg Mass on the end of the cantilever beam
D 12.7 mm Diameter of the cantilever beam
E 207 GPa Young's Modulus of the beam material
L 210 mm Length of the cantilever beam
0C 45 Angle defining the beam profile (Figure 4-2)
cGr 0.7 GPa Yield stress of the cantilever beam

Table 4.3: Parameter values of the parts used for the cantilever beam component of the
energy harvesting prototype.

L max D 3 (2-r - 40c + sin 40c)
L = 4mco 0 w2 (4.26)

64mzCO cOCW2

For 0C = 450, the equations simplify to

1536V2EM2Z3W4
D4 0 3 2 (4.27)

max5

L450= 2max Deam (4.28)
64mw2 z

The equations above were used for the design of a prototype energy harvesting system.

The dimensions of the cantilever beam system are given in Table 4.3 and Figure 4-6 shows

a solid model assembly of the cantilever system parts. Drawings of the parts can be found

in Appendix B.

4.4 Energy Storage

The voltage generated by a magnetic induction system can be used to charge an energy-

storage device such as a capacitor. The characteristics of the system affect the capacitor

charging circuit. For a single phase output, the circuit model depends on whether the coil

resistance or coil inductance is dominant.

If the inductance of the coil is negligible compared to its resistance (R >> wL), the mag-

netic flux induced due to the flow of current through the coil can be considered insignificant

compared to the magnetic flux from the magnet. The charging of the capacitor can then be

modeled by a simple RC circuit with an ideal diode preventing the discharge of the capaci-

tor. The rectified voltage waveform is the input to the capacitor charging circuit. Figure 4-7

shows a schematic of the capacitor charging circuit.
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Figure 4-6: An isometric view of the cantilever beam subsystem of the energy harvesting
prototype. The magnets are attached to a mass on the end of the cantilever beam.

Coil Resistance Ideal diode

R

Rectified +
voltage V(t) C
from coil V Capacitor

Figure 4-7: Capacitor charging circuit schematic.

Every voltage cycle will add charge to the capacitor reservoir. The charge added to

the capacitor during the n'h cycle, q, can be calculated by integrating the current flowing

through the capacitor branch of the circuit, as shown by the shaded area in Figure 4-8. If

the magnitude of C is very large (as required to store large amounts of energy), the change

in voltage across the capacitor during a charging cycle can be assumed to be negligible, and

the voltage of the capacitor during the nth cycle can be represented by a constant, Vn. Then,

CVn = CVn + qn, (4.29)

qn= JVM .Vn (4.30)
R

55



lit)

Figure 4-8: Charge added to the capacitor over a charging cycle.

The amount of charge added to the capacitor during a charging cycle depends on the

voltage to which the capacitor has already been charged. Thus, each charging cycle adds

less and less charge to the capacitor.

Combining Equations 4.29 and 4.30 gives a difference equation that can be solved itera-

tively to calculate the number of charging cycles required to store a given amount of energy

in the capacitor, giving us

= + V(t) - Vndt

Assuming a sinusoidal form for the input voltage,

V(t) = Vo sin(wt),

0~n l =JV os sin(w t) - t.

Charge is accumulated only when the value of V(t) is greater than V (from t1 to t 2 as

marked in Figure 4-8). Including the appropriate limits of integration gives:

ft2 V sin(wt) -vn
CVn+1 = CVn + t R dt.

Now we express ti and t 2 in terms of V, Vn, and w:

1 V
At ti : V(ti) = Vo sin (wti) = V => t = -sin- 1 (-)

W V
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By symmetry, t 2 = T/2 - ti. Combining this with T = 27r/w, we get:

T 1 . 1 V 1 siV(
t2 =- - Is )sin t(

2 VO W VO

/l[-sin(V)] V sin(wt) - VndCVn+1 = CVn + dt.Snl Vn

Normalizing over a time period leads to substitution of variables:

t Wt

T 2ir

27r '[-sin-1(%) V sin(27ri) - Vnd~
CVn+1 = CVn + -f1 '(n ORdt.

W sin1() R

Define a new variable Xn, Vn/V.

RC RC j+(-sin ( Xn)) -- X)t
T Xn+1 = T Xn + (sin(2-ri) - X)di.
T T T- sin- (x,)

Xn+1 = Xn + 2r (J cos(sin-1(Xn)) - cos(7r - sin- 1 (Xn)) - Xn(7r - 2 sin- (Xn))]. (4.31)
T__( ETC)

Equation 4.31 represents a family of curves dependent on the value of !. Figure 4-9

shows the charging curves for some values of R.

The rate of energy harvesting can be calculated by dividing the energy stored after n

cycles by the time taken to complete n storage cycles.

4.5 Summary

The components of a mass-spring-damper energy harvesting system were discussed in this

chapter. The theory behind each component was presented and a prototype was designed

for testing. The next chapter discusses the MATLAB models that were used to predict the

voltage and power output of the prototype.
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Chapter 5

Simulation

MATLAB models were created to simulate the magnetic fields generated by the magnets and

coils in various configurations and to calculate the voltage generated by relative movement

of the magnets and coils. This chapter describes the MATLAB models created for magnet-

through-coil and magnet-across-coils systems and their predictions. The MATLAB code is

included in Appendix A.

5.1 Magnet-through-coil Simulation

This section describes the predictions made by the model created to predict the magnetic

fields and voltages produced by the motion of a magnet through a coil.

5.1.1 Single Turn of Wire

Figure 5-1 graphs the magnitude of the magnetic flux (as a function of y) which a monopole

of magnitude 1 Wb causes to flow through one turn of wire of diameter 1 cm placed at y.

Note the discontinuity at the monopole location due to the sudden change in the direction

of the flux through the coil. Equations 3.5 and3.6 were used to generate this plot.

The total magnetic flux through the turn of wire due to a bar magnet is obtained by

adding the contributions of the two monopoles and the magnetization of the magnet. The

magnetic flux through a wire turn of diameter 1 cm due to a bar magnet with monopoles of

magnitude 1 Wb each placed at +1 cm from the origin is shown in Figure 5-2, which graphs

Equation 3.8.

The derivative of the magnetic flux with respect to position is shown in Figure 5-3.
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Figure 5-1: Magnetic flux through 1 cm diameter turn of wire due to a magnetic monopole

of magnitude 1 Wb placed at the origin.

Variable Numerical Value Units Description

a 3 cm Vibration amplitude

dc 1 cm Average diameter of the coil

f 1 Hz Vibration frequency
4e 2 cm Height of the coil

Im 2 cm Height of the magnet

N 2500 - Number of turns of wire in a coil

POM 1.2 T Magnetization flux density of the magnet

Table 5.1: Numerical values for input variables used in the simulation of the magnet-through-

coils induction system. The descriptions of all the system variables are in Table 3.1.

The expected voltage across a turn of wire, from Equation 3.11, for a sinusoidal input

velocity is shown in Figure 5-4.

5.1.2 Coil of Wire

This subsection describes the predictions made by the model for the voltage across a coil

consisting of many turns of wire. Table 5.1 lists the numerical values used for the input

variables.

Figure 5-5 graphs the magnitude of the change in magnetic flux (as a function of y) which

a bar magnet of length 2 cm and magnetization flux density 1.2 T causes to flow through
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Figure 5-2: Magnetic flux through 1 cm diameter turn of wire due to a bar magnet with
poles of magnitude 1 Wb placed at ±1 cm.

a coil with 2500 turns of wire, length 2 cm, and average diameter 1 cm, when the lowest

edge of the coil is placed at y. The predicted voltage generation, from Equation 3.13, for a

sinusoidal velocity input is shown in Figure 5-6.

5.2 Magnet-across-coils Simulation

This section describes the model created to predict the magnetic fields and voltages produced

by the motion of magnets across coils. Table 5.2 lists the numerical values used for the input

variables of the system to produce the plots in this section. These values correspond to the

parameters of the prototype system.

A major assumption built into the MATLAB model is that the inductive effects are

negligible compared to the effects of the resistance (R >> wL). This assumption is checked

in the code once the values for L and R are calculated, and the code will issue a warning

that the results are not accurate if the condition is not satisfied.

5.2.1 Magnetic Field Generated by the Magnets

The magnetic fields due to the magnets depend on the charge density generated by the

magnets at the x = 0 plane. Figure 5-7 shows the sum of the first 100 terms of the Fourier
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Figure 5-3: The derivative with respect to position of the magnetic flux (proportional to the

voltage generated across the coil) through a 1 cm diameter turn of wire due to a bar magnet

with poles of magnitude 1 Wb placed at ±1 cm.

series from Equation 3.18. This sum was used to approximate the charge density waveform

at plane x = 0.

The magnetic potential generated by the magnets in Regions A and B, from Equa-

tions 3.31 and 3.32, are plotted in Figures 5-8 and 5-9 respectively. Figure 5-10 is a contour

plot of the magnetic potential in both regions.

5.2.2 Magnetic Field Generated by Coil Current

The magnetic fields generated by the flow of current through the coils must be calculated in

order to calculate the self and mutual inductances of the coils. Figure 5-11 plots the magnetic

potential created by the flow of a IA current through the phase A coils of the magnet-across-

coils induction system, as predicted by Equation 3.38. Note that the potential created is

three orders of magnitudes lower than that created by the magnets. Figure 5-12 shows a

contour plot of the magnetic potential generated by the IA current through the phase A

coils.
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Figure 5-4: Prediction of voltage generated when a bar magnet with poles of magnitude 1
Wb placed at ±1 cm moves through a turn of wire of diameter at a frequency of 1 Hz and
amplitude of ± 1 cm.

5.2.3 Voltage generation

The vibration input is a 30 Hz sinusoid with 3 mm amplitude. Figure 5-13 shows the

position and velocity of the magnets over half a vibration cycle.

The magnetic flux through phase A coils and the voltage generated across them, as

predicted by Equations 3.44 and 3.45, are plotted in Figures 5-14 and 5-15 respectively.

One of the advantages of the MATLAB model was that it enabled a sensitivity analysis of

the power and voltage to the variables in the system. Because the equations are complicated,

it is hard to develop intuition about the dependence of the output voltage and power on

different system parameters. The MATLAB model used Equations 3.45 and 3.47 to create

the plots in Figures 5-16 and 5-17, which are useful for sensitivity analysis and optimization.

5.3 Summary

This chapter presented some of the results from the MATLAB Simulations. The MATLAB

code can be found in Appendix A. The models were used to predict the open-circuit voltage

of specific magnet-through-coil and magnet-across-coils systems. The next chapter describes

the experiments that were conducted to test these predictions.
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Figure 5-5: The derivative of the magnetic flux through a coil with 2500 turns of wire, length
2 cm and average diameter 1 cm, due to a bar magnet with magnetization flux density of
1.2 T and length 2 cm.
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Figure 5-6: Prediction of voltage generated when a bar magnet with magnetization flux

density 1.2 T and length 2 cm moves through a turn of wire of diameter at a frequency of 1

Hz and amplitude of 3 cm.
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Variable Numerical Value Units Description
a 3 mm Vibration amplitude
d 0 mm Gap between adjacent magnets
f 30 Hz Vibration frequency
1 12.7 mm Length of a magnet in the z direction
n 4 - Number of magnetic poles in the system
rw 0.4 mm Radius of the wire used for coils
t 0.68 mm Gap between adjacent coils
w 76.2 mm Width of a magnet
XA 6.35 mm x-coordinate of magnet-steel interface
XB 4 mm x-coordinate of coil-steel interface
N 8 - Number of turns of wire in a coil
NF 100 - Number of Fourier series terms summed
Po 47r x 10' Tm/A Magnetic permeability of air
p 1.68-8 Qm Resistivity of wire material
Omax 1.31 T Magnetic charge density of the magnets

Table 5.2: Numerical values for input variables used in the simulation of the magnet-across-
coils induction system. The descriptions of all the system variables are in Table 3.2.
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Figure 5-7: Magnetic charge density in plane x = 0 due to magnets.

65

I I

1

KU

Z



Region A Magnetic potential due to magnets
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Figure 5-8: Magnetic potential in Region A due to magnets.
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Figure 5-9: Magnetic potential in Region B due to magnets.
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Contour plot of magnetic potential due to magnets
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Figure 5-10: Contour plot of magnetic potential due to magnets.
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Figure 5-11: Magnetic potential due to a 1A current through the phase A coil.
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Contour plot of magnetic potential due to current in phase A coils
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Figure 5-12: Contour plot of the magnetic potential due to a IA current through the phase

A coil.
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Figure 5-13: Position and velocity of the magnets over a half a vibration cycle.

68

0.05

0.045

0.04

0.035

K 0.03

0.025

0.02

0.015

0.01

0.005



Magnetic flux through phase A coils due to magnets
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Figure 5-14: Magnetic flux through phase A coils over

Voltage across phase A coils
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Figure 5-15: Voltage generated across phase A coils over a half a vibration cycle.
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Figure 5-16: Sensitivity of the output voltage to system parameters.
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Figure 5-17: Sensitivity of the output power to system parameters.
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Chapter 6

Experiments and Results

The power that can be extracted from a vibrating surface depends on the amplitude and

frequency of the surface vibration (as discussed in section 4.1). Therefore, the feasibility of

harvesting 0.53 W in a car door depends on the vibration profile of the car door surface.

The first section of this chapter describes the collection of car door vibration data in order

to determine the feasibility of harvesting the vibration energy to operate the windows.

The next two sections of the chapter respectively describe the magnet-through-coil and

magnet-across coils systems that were built to test the MATLAB model predictions. The

magnet-through-coil experiment involved dissecting a commercially available shaker flash-

light and using its components to test the model predictions. The magnet-across-coils ex-

periment involved building a prototype of a cantilever beam system for car-door energy

harvesting application and testing it on a shaker table. The results of the experiments are

also presented, and the discussions of the results follows in the next chapter.

6.1 Car Vibrations

Car vibration data under various driving conditions were collected to determine whether the

energy in the vibrations is sufficient to operate the car windows via an energy harvester.

6.1.1 Low Frequency Vibration

The spectrum of car vibrations varies greatly with car model and driving conditions. In order

to obtain an estimate of the order of magnitude of car vibrations, a single-axis accelerometer

was used to measure the y-axis (up-and-down) vibrations in a car. The accelerometer was
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Acceleration Data for rough roads Acceleration Data for smooth roads
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Figure 6- 1: Frequency content of up-and-down vibrations in a car driving over rough and
smooth roads in a city. The acceleration amplitude in ! is shown for a frequency range of
0 - 8 Hz.

taped to the window of the front passenger seat window and data was collected at a sampling

rate of 1000 samples/minute, which is roughly 17 Hz. Data was collected for a time period of

ten minutes each for two road conditions: rough roads and smooth roads. The acceleration

data for driving over rough and smooth roads are given in Figure 6-1.

Analysis of the energy in the lower frequency vibrations indicated insufficient energy

to provide power to car windows. Since the maximum power that can be extracted from

mechanical vibrations depends on the frequency cubed (from Equation 4.11), vibration data

were collected to analyze the feasibility of harvesting energy from higher frequency vibrations.

6.1.2 High Frequency Vibration

High frequency vibration data was collected by mounting a 3-axis accelerometer on the front

passenger door of a Nissan Altima car. The accelerometer was epoxied to the car door panel

so as to accurately measure the door vibrations. The accelerometer mounting is shown in

Figure 6-2.

Data were collected under city driving conditions (with stop-and-go traffic) and at speeds

of 55, 65 and 75 MPH. The data was collected in one-minute bursts at a sampling rate of

250 HZ. Figure 6-4 and 6-3 show the acceleration amplitude data for up-and-down and side-

to-side vibrations in the Nissan Altima respectively for city driving conditions and at speeds

of 55, 65 and 75 MPH.

The data show that side-to-side vibrations have more energy than up-and-down vibra-

tions. Additionally, there is an vibration peak at approximately 30 Hz. This peak has very

little correlation with driving conditions; the same peak is seen in the side-to-side vibration

data for an idling car, as shown in Figure 6-5.
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Figure 6-2: Placement of a three-axis accelerometer on a car door to collect vibration data.

Section 7.1 presents the data analysis and the discussion about the feasibility of car-door

energy harvesting.

6.2 Magnet-through-coil Experiments

A NightStar® flashlight (Figure 6-6) was disassembled and used for the magnet-through-coil

experiment. The magnet from the flashlight was attached to a rod driven by a Tamiya@

motor. The magnet was then inserted into its original housing tube, while a single turn of

wire was wrapped around the outer diameter of the housing tube. The motor was used to

control the amplitude and frequency of the magnet's motion through the coil. A picture of

the experimental setup is shown in Figure 6-7.

6.2.1 Single Turn of Wire

The voltage across the single turn of wire was measured first. The magnet was moved

through the coil with a frequency of 1.5 Hz and amplitude of 3 cm. The resulting voltage

waveform is shown in Figure 6-8. The data matched well with the model predictions, as

demonstrated by Figure 6-9.

6.2.2 Coil of Wire

The experiment described in the previous section was repeated with a coil of wire instead of

a single turn. The resulting voltage waveform is shown in Figure 6-10.
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Figure 6-3: Acceleration data for up-and-down vibrations of a Nissan Altima car under
various driving conditions.

Figure 6-11 shows an overlay of the predicted voltage and the real data for an offset of 1
cm between the magnet and coil. The waveforms are similar in frequency and peak voltage.

6.3 Magnet-across-coils Experiment

Four magnets were mounted on the end of a proof-mass on a cantilever beam. A single-

phase coil (2 passes, 4 turns of wire) was taped onto a steel backing plate and the plate was
attached to a block with a screw that allowed the distance between the magnets and coils to

be varied. The system parameters have been listed in Tables 4.3 and 5.2, and drawings of

the system parts are included in Appendix B. Figure 6-12 shows the cantilever beam with

the magnetic induction system assembled. The system was shaken at 30 Hz with an input

amplitude of 0.25 mm.

The distance between the magnets and the coils was varied and the peak output recorded

for each case. Figure 6-13 shows an overlay of the data points from the experiments on the

predicted curve from the MATLAB model.
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Acceleration Data for city driving
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Figure 6-4: Acceleration data for side-to-side vibrations
driving conditions.

of a Nissan Altima car under various

6.4 Summary

This chapter described the collection of car vibration data and the results of testing the

magnet-through-coil and magnet-across-coils systems. The next chapter discusses the impli-

cations of the results, the reasons for discrepancies from the predictions, and the scope for

future work to build on the lessons learnt.
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Figure 6-5: Acceleration data from side-to-side vibrations in a Nissan Altima car in idling
condition.

Figure 6-6: NightStar@Flashlight before dissection.
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Figure 6-7: Experimental setup for voltage generation across a single turn of wire due to the

movement of a magnet at a known frequency and amplitude.
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Figure 6-8: Voltage generated when a bar magnet with magnetic flux density
through a turn of wire of diameter at a frequency 1.5 Hz and amplitude 3 cm.
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Figure 6-9: Overlay of predicted waveform (dashed line) and actual data (solid line) of the
voltage generated when a bar magnet with magnetic flux density 1.2 T placed at ±1 cm
moves through a turn of wire of diameter at a frequency 1.5 Hz and amplitude 3 cm.
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Figure 6-10: Voltage generated when a bar magnet with
at a frequency 1 Hz and amplitude 3 cm through a coil
cm and average diameter 1 cm.
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Figure 6-11: Overlay of predicted waveform (dashed line) and actual data (solid line) of the
voltage generated when a bar magnet with poles of magnitude placed at ±1 cm moves at a
frequency 1 Hz and amplitude 3 cm through a coil with 2,500 turns of wire, length 2 cm,
and average diameter 1 cm.
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Figure 6-12: Experimental setup for voltage generation across a single phase coil (2 passes,
4 turns of wire) due to the movements at a fixed frequency and amplitude.
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Figure 6-13: Overlay of predicted waveform (solid line) and experimental data points of the
voltage generated across a single phase coil (2 passes, 4 turns of wire) as the air gap is varied
from 4 to 11 mm. Four magnet poles move across the coil at a frequency of 30 Hz with a
3mm stroke.
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Chapter 7

Discussion and Conclusions

The aim of this chapter is to summarize the lessons learnt through the work described in this

thesis. The first section analyses the car door vibration data and discusses the feasibility

of using energy harvesting to power car windows. The next section discusses the results

from the experiments to test the MATLAB models of the magnetic induction systems, and

attempts to explain discrepancies between the data and predictions. Each section includes

recommendations for further work and improvement.

7.1 Car Vibration

The collection of car-door vibration data was described in Section 6.1; this section describes

the data analysis and the conclusions about the feasibility of car-door energy harvesting to

power car windows.

7.1.1 Data Analysis

The high-frequency car-door vibration data collected is surprising in many ways. Aspects

that require explanation include:

1. Why do the side-to-side vibrations have the highest amplitude?

2. Why is the vibration peak frequency independent of driving conditions?

3. Why is the vibration amplitude not strongly correlated to car speed?

I believe that the answers to these questions lie in the car door geometry and accelerom-

eter placement. The accelerometer was rigidly attached to the middle of the outside door
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panel. This panel, made of sheet metal, is anchored to the other car door panels along its

edges. This means that the sheet forms a vibrating membrane with a certain resonance

frequency. The relatively high amplitude of the side-to-side vibrations is explained by the

fact that the vibrating sheet is most compliant in that direction, because of its low thickness.

Another important consequence of the panel geometry is that the vibrating sheet has

a fixed resonance frequency. In the Nissan Altima car, the resonance frequency is close to

30 Hz. This explains why the peak vibration is always around the same frequency. It also

accounts for the relative independence of the amplitude and car speed - all vibration input

excites the resonance frequency to some extent. In the case of the idling car, the vibrations

from the car engine cause the door panel to vibrate.

The presence of a fixed resonance frequency is very convenient from the energy harvesting

point of view because a harvesting system can be built and optimized to operate at the door

panel's resonance frequency.

The quantitative data analysis began with plotting the power in the vibrations as a

function of frequency, to determine which frequency has the highest energy content. Equa-

tion 4.11 implied that the power in vibrations is a function of the frequency as well as the

amplitude, and so we couldn't assume that the frequencies with highest amplitude had the

most power. The power vs. vibration plots showed that the highest power was at the 30 Hz

vibration peak.

The next step was to form an estimate of the energy that could be harvested from the

car vibrations. At any given frequency the power that can be extracted is known; however,

the energy harvesting system will not to be selective enough to only convert energy at one

frequency. Therefore, the energy from vibrations along a 1 Hz band centered at the peak

frequency were added, and the sum of the energy from all the frequencies was considered a

reasonable estimate of the energy that can be harvested from the car door vibrations.

7.1.2 Energy Harvesting Feasibility

The vibration data indicates that there is sufficient energy in car vibrations to support the

operation of a wireless window mechanism. For a vibrating mass of 1 kg, vibration frequency

of 30 Hz (approximately 190 rad/s), input vibration amplitude from the data and relative

vibration amplitude of 3 cm, the energy harvested over 5 minutes (300 seconds) will be:

City driving : P * t = 0.5mw3yzt = 0.5 * 1 * 1903 * 7.8 * 10-6 * 0.03 * 300 = 243 J.
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At 55 mph: P * t = 0.5mw3 yzt = 0.5 * 1 * 190 3 * 1.4 * 10-5 * 0.03 * 300 = 432 J.

At 65 mph: P * t = 0.5mw3 yzt = 0.5 * 1 * 190 3 * 9.0 * 10-6 * 0.03 * 300 = 282 J.

At 75 mph: P * t = 0.5mw y zt = 0.5 * 1 * 1903 * 1.7 * 10 5 * 0.03 * 300 = 534 J.

The efficient window design developed by Durand' requires approximately 160 joules per

open-close cycle. The calculations show that driving for 5 minutes under various driving

conditions will generate enough energy to power one window open-close cycle. These cal-

culations are for a device that harvests energy from a 1 Hz band centered around the peak

frequency; increasing this frequency range will enable even more energy to be harvested.

It is expected that there will be some losses from friction in the energy harvesting mech-

anism and from the electronics. Friction losses can be minimized by designing a flexure with

the desired resonant frequency and thus eliminating bearing surfaces from the device. Simi-

larly, careful design of the power electronics can minimize losses in that area. Even allowing

for up to 30% losses from these sources, the 160 joules energy requirement is still met.

In conclusion, the car vibrations provide enough energy to make energy harvesting a

feasible option for powering efficient window mechanisms.

We have proven that energy harvesting can be used in car doors; but should it be? The

considerations in terms of added weight and cost to the car are more difficult. A vibrating

mass of 1 kg, and approximately another 1 kg in coils, mounting parts and electronics will

need to be added to each car door. It will only be worthwhile if additional cost, 8 kg of added

weight, and the complexity of installing the energy harvesting system are compensated for

by the reduction in wiring harness cost, weight and complexity in a car with 'wireless doors';

this is a determination for car manufacturers to make.

7.1.3 Recommendations for Future Work

Future work should include an iteration of the prototype to create a system that can be

installed in a car door. The mounting parts of the prototype should be redesigned to meet

weight constraints. A finite-element model of the car door should be analyzed to understand

the dynamics of the door when the energy harvesting mechanism is mounted on it. This

analysis would also help to determine the best point to attach the harvesting system to the

car door.
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7.2 Magnetic Induction Systems

This section discusses the results from the magnet-through-coil and magnet-across-coils ex-

periments. While the peak voltage produced across the coils matched extremely well with

predictions in both cases, some discrepancies were observed in the detailed waveforms, and

these are addressed. The section also provides suggestions for improvements to the MATLAB

models as well as future experiments to help validate them.

7.2.1 Magnet-through-coil System

Figure 6-11 shows that the experimental data does not conform exactly to the prediction

waveform for the voltage across the ends of a coil. The reason for the difference between the

data and prediction waveform is probably due to the fact that the motor did not a produce

a perfect single-frequency sinusoid as a function of time. The close matching of open-circuit

voltage amplitude that the model is accurate for peak voltage predictions.

7.2.2 Magnet-across-coils System

The test setup for the magnet-across-coils system was less than optimal. It was clear that the

table was not shaking with a fixed amplitude and single frequency. The control system for

the shaker table was unreliable - for example, the command to increase the table vibration

amplitude from 0.25 mm to 0.5 mm resulted in a decrease in the table amplitude. It was

not clear whether this was because the control system was providing incorrect input to the

actuators or because the system had reached its operating capacity. There was also a lot of

noise in the voltage output signal. Some of the noise was reduced by low-pass-filtering the

output with a capacitor, but the signal was still fuzzy and the amplitude was not uniform.

Despite these issues, the maximum open-circuit voltage (occurring at the point of highest

amplitude) matched the model predictions. The data point for the gap = 4 mm (Figure 6-

13) was considerably lower than expected, but this was later explained by the magnet being

close enough to rub against the coils, adding unexpected friction to the system.

7.2.3 Recommendations for Future Work

The magnet-through-coil experiment should be repeated with a sinusoidal displacement in-

put to check for the source of discrepancy between the predictions and data waveform shapes.
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The magnet-across-coils experiment should be repeated on a shaker table with more deter-

ministic output. In addition, the position of the magnets should be mapped independently

to decouple the analysis of (1) the vibration of the magnets resulting from the vibration of

the table, and (2) the voltage across the coils due to the vibration of the magnets. Finally,
once the model has been completely validated for a one-phase coil, tests should be conducted

to test the predictions for a three-phase coil.

The MATLAB models for both systems can be extended to enable the prediction of

the response of the systems to a random waveform as opposed to a fixed-amplitude single

frequency sinusoidal input. This will increase their utility as design and analysis tools.
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Appendix A

MATLAB Code

A.1 Magnet-though-coil Code

clear all

%-------------- Inputs -----------

% Constants

mu0 = pi*4e-7; % N/(A^2)

% Magnet parameters

Br = 1.2; % T (N/(Am))

r_m = 6.35e-3; % m

1_m = 1.9e-2; % m

magnetization flux density

magnet radius

coil radius

% Coil parameters

N = 3500; % turns

d_max= 1.8e-2; % m

d_min= 1.3e-2; % m

1_c = 1.9e-2; % m

RO = 0.351; % ohm/m

maximum diameter

minimum diameter

length of coil

coil resistivity
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% Vibration parameters

f = 1.02;

a = 3e-2;

offset = -le-2;

% Hz

% m

% m

Vibration frequency

Vibration amplitude

Coil offset

%---------- End Inputs ----------

% Coil parameters

NO = N/l_c; % turns/m
d_c = (dmax+dmin)/2; % m coil average diameter

A_c = pi*(d-c^2)/4; % m^2 coil cross-sectional area

R = N*pi*d-c*RO; % ohms coil resistance

L = muO*N*N*Ac/l1c; % H (Nm/(A^2)) coil inductance

if (R/(2*pi*f*L)<50) % check that coil resistance dominates
disp('Warning: coil inductance not negligible')

end

h_min = offset-lc/2 -a; %m

h_max = offset-lc/2 +a; %m

lowest point of coil travel

highest point of coil travel

% magnetic flux through coil

dh = (h-max - hmin)/100;

h = [h-min-2*dh:dh:(hmax+lc)+2*dhl;

q-m = Br*pi*r-m*r-m;

r_c = d-c/2;

% calculation of H_m
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phil = -sign(-l-m/2.+h)*q-m.*(sqrt(r-c^2+((-lm/2.+h).*(-lm/2.+h)))

-abs(-l-m/2.+h))./(2*sgrt(r-c^2+(-l-m/2.+h).*(-l-m/2.+h)));

phi2 = sign(l-m/2.+h)*q-m.*(sqrt(r-c^2+((l-m/2.+h).*(lnm/2.+h)))

-abs(lm/2.+h))./(2*sqrt(r-c^2+(lm/2.+h).*(lm/2.+h)));

% total H_m

phi = phil + phi2;

y = 0.0075;

phi0 = [phi(2:length(phi)) 2*phi(length(phi))-phi(length(phi)-1)1;

dphidh (phiO-phi)/dh;

dphidhs = dphidh;

dphidhs(69) = 0.5*(dphidhs(68)+dphidhs(70));

dphidhs(101) = 0.5*(dphidhs(100)+dphidhs(102));

% sum flux through coil during travel

h_travel = [h_min:dh:h-max];

Phi = zeros(l,length(h-travel));

dPhidh = zeros(l,length(h-travel));

for x = 1:length(h-travel)

y x;

P = 0;

dP= 0;

while (h(y) < (h-travel(x)+1_c) )
P = P + NO*dh*phi(y);

dP= dP+ NO*dh*dphidhs(y);

y=y+l;

end

Phi(x) = P; % total Phi through the coil when lower end is at h(x)
dPhidhs(x) = dP;% total dPhidh through the coil when lower end is at h(x).

end

dPhidhms = [dPhidhs -dPhidhs dPhidhs -dPhidhs dPhidhs

-dPhidhs dPhidhs -dPhidhs dPhidhs -dPhidhs];
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dt = (5/f)/(length(dPhidhms)-1);

= [O:dt:10/(2*f)]; % s

= a*cos(2*pi*f.*t); % m

= a*2*pi*f*sin(2*pi*f.*t); % m/s

% VV_s = dPhidhms.*v; Voltage across coil!

A.2 Magnet-across-coils Code

clear all

%-------------- Inputs -----------

% Vibration parameters
f = 30; % in Hz, vibration frequency
a = 3e-3; % in m, vibration amplitude

% Geometry parameters
np = 4; % number of magnets (poles)
d = .Oe-3; % in m, half the gap between magnets
1 = 0.5*.0254; % in m, length of each magnet (pole)
w = 3*.0254; % in m, width (into the paper)
x_A = 0.25*.0254; % in m, height of magnets
x_B = 4e-3; % in m, height of air gap

% Magnet parameters
s_max = 1.31; % in T (Wb/m2), Maximum charge density; equal to Br

mu_0 pi*4e-7; % in Wb/(A.m), Magnetic permeability of vacuum

% Coil parameters
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i = 1; % in A, Current through coils

t = .08/3*.0254; % in m, spacing between coils

g = (((1+2*d)/3)-t)/2; % half a coil length

wd = 0.8128e-3; % in m, diameter of the wire

nc = 2; % number of coils (per phase)

nt = 4; A number of turns per coil

RO = 16.78e-9; % in ohm.m, resistivity of copper

A Fourier sum parameters

N = 50; A Number of terms added in the fourier sum

res = 200; A number of points per co-ordinate array

%-------------- End Inputs -----------

A Geometry

x_step = (xA+xB)/res;

z_step = (np*(2*d+))/res;

x = [-xB:xstep:xAl;

x = repmat(x,res+1,1);

z = [0:zstep:np*(2*d+l)];

z = repmat(z,res+1,1); z=z';

coil = floor(length(z)*(2*d+l)/(np*(2*d+l)));

A Loop to calculate fourier coefficients and magnetic potential constants

for p = 1:N

k = 2*p-1; A even coefficients are 0, only calculate for odd values

w-m = pi*k/(2*d+l);

w-c = pi*k/(3*(2*g+t));

b-m(p) = (4*s-max/k/pi)*cos((k*pi*d)/(1+2*d));

A in T, magnets charge density fourier coefficients

a-c(p) = (4*i/g/k/pi)*sin((k*pi*g)/(3*(2*g+t)));

A in A/m, coils tangential magnetic field fourier coefficients

A(p) = (b-m(p)*sinh(w-m*xB))/(w-m*mu 0*sinh(w-m*(xA+xB)));
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% in A, constants for psiA calculation
C(p) = (-b-m(p)*sinh(w-m*xA))/(w.m*mu_0*sinh(w-m*(xA+xB)));

% in A, constants for psiB calculation

D(p) = a-c(p)/(w-c*sinh(w-c*(xA+xB)));

% in A, constants for psi calculation
end

% magnets charge density
% coils tangential field at -x_B

zeros(length(x),length(z));

magnetic potential in region A due

zeros(length(x),length(z));

magnetic potential in region B due

= zeros(length(x),length(z));

% magnetic potential due to coils,

to magnets

to magnets

phase A

for i = 1

j =2

sigma =

psiA =

psi_B =

Hz = Hz

% in
psi_c_A

:N

*i-1;

% loop to sum the fourier series terms

sigma + bm(i).*sin(z.*(j*pi/(1+2*d)));

in T, magnets charge density

psiA + A(i)*sinh(pi*j.*(x-xA)/(1+2*d)).*sin(z.*(pi*j/(1+2*d)));

in A, magnetic potential in region A due to magnets

psiB + C(i)*sinh(pi*j.*(x+xB)/(1+2*d)).*sin(z.*(pi*j/(1+2*d)));

in A, magnetic potential in region B due to magnets

+ a-c(i).*cos(z.*(j*pi/(3*(2*g+t))));

A/m, coils tangential field at x_B

= psi-cA+D(i)*sinh(pi*j.*(x-xA)/(3*(2*g+t)))

.*sin(z.*(j*pi/(3*(2*g+t))));

% in A, magnetic potential due to coils
end

ml = ceil(length(x)*xB/(xA+xB));

m2 = floor(length(x)*xB/(xA+xB));

psiA(:,l:m2) = 0; % zeroing out Region B where psiA is invalid
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psiB(:,ml:length(z)) = 0; % zeroing out Region A where psiB is invalid

psi-m = psiA + psiB;

[Hm-x,Hm_zl = gradient(psi-m,x-step,z-step);

% in A/m, H in x and z due to magnets

[HcA_xHc_A-zl = gradient(psi-c_A,x-step,zstep);

% in A/m, H in x and z due to coils, phase A

if (a>l) m3 = ceil((a-l)/z-step);

else m3 = 0;

end

Hm_x_surf = Hm-x(:,1); %Values of Hmx at the coils surface

HcA_x_surf = HcA-x(:,1); HcA_x_surf = [HcA-x_surf' zeros(1,m3)1;

% Values of Hc_A_x at the coils surface

newres = 21; % number of points in position vector for given amplitude
time = [0:1/(2*f*(newres-1)):1/(2*f)]; % in s, time for a half-cycle
omega = 2*pi*f; % in rad/s, vibration frequency

pos = a*sin(omega*time); % in m, position
vel = a*omega*cos(omega*time); % in m/s, velocity

L = zeros(1,newres);

lambda = zeros(1,length(time));

for q = 1:length(time)

Lstep = zstep*cumsum(HcA-x-surf(q:q+coil));

% Sum of H_c_x over area of an A coil, for one magnet stroke
qi = 1+floor((pos(q)/z-step)); q2 = 1+ceil((pos(q)/z-step));

lamstepAl = z-step*cumsum(Hm-x-surf(q:q+coil));

% Sum of H_m_x over area of an A coil, for one magnet stroke

lamstepA2 = z-step*cumsum(Hm-x-surf(q2:q2+coil));

if ql==q2

lamstepA = lamstepAl;
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else

lamstepA = lamstepAl+(lamstepA2-lamstepAl)*(pos(q)-z(ql))/(z(q2)-z(ql));

end

L(q)= Lstep(coil); % Self-inductance of one phase of the coil

lambdaA(q) = nc*nt*muO*lamstepA(coil)*(np/2)*w;

% magnetic flux through phase A

end

L = max(L);

R = RO*(nc*nt*np*(w+l))/(pi*wd^2/4); % Resistance of the coil wire

if (R/(2*pi*f*L)<50) % check that coil resistance dominates

disp('Warning: coil inductance not negligible')

end

V_A = gradient(lambdaA,time); % Voltage across phase A!

VmaxA = max(VA); % Peak voltage

R_1 = R; % load resistance set equal to the coil resistance

powerA = VA.^2/(R-1); % in W, power dissipated in load resistance!
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Appendix B

Part Drawings
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All dimensions in inches

% titH

Figure B-i: Dimensions of the magnets used in the magnet-across-coils system.

All dimensions in inches

062 5 0

Figure B-2: Dimensions of the backing plate for the magnets used in the magnet-across-coils
system.
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All dimensions in inches
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Figure B-3: Dimensions of the centilever beam used in the magnet-across-coils system.
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C.,C

1L( S( 0

I I
SI I

CI 1.125
0.875

W)&

Iour ivi 6 learance noes

-~
- - I

-,~ "~-
-,

I.-

.5.-

G

a

Figure B-4: Dimensions of the mount for the cantilever beam used in the magnet-across-coils

system.
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Figure B-5: Dimensions of the backing plate for the magnet-across-coils system coils.
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Dimensions in inches; [mm in brackets]
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Figure B-6: Dimensions of the mount for the backing plate of the magnet-across-coils system

coils.
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Appendix C

Fourier Series Coefficient Calculations

A function f(z) that is periodic with period Z can be expressed as a Fourier series of general

form

00 27rkz 2w kz
f(z) = ao + [ak cos( ) + bk sin( 2Az

k=1

with Fourier coefficients a0 , ak and bk. The formulae for the calculation of Fourier coeffi-

cients are:

ao = f(z)dz.

2
ak - -

2
bk- Z

z

20 f
27Fkzd

cos( Z )dz.

j f(z) sin( 2 Z )dz.

C.1 Magnetic Charge Density at Plane x = 0

The magnetic charge density waveform, um, at plane x = 0, due to the magnets, can be

represented by
00 27rkz

JM = a0 + Z ak cOS( )
k=1

2wkz
+ bksin( >1kz

where Z, the spatial period of the magnetic charge density function, is 2(1 + 2d). Since the
charge density function is odd and unbiased, the cosine components of the Fourier sum will
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be zero (ao = ak =0). The detailed Fourier coefficient calculations are:

1 +d 21+3d
ao 2(+ 2d) ±maxdz + +±3 Cmaxdz].

21±2)IJ 13d ,4ma

2
ak 2(1 + 2d)

I+d

-z = 2(1 + 2d)

ao = 0.

Umax cos ( 2(r2d)dz +

[(I + d) - d - (21 + 3d) + (l + 3d)].

I 21+3dI +3d Umax cos ( 27rkz .w,12(1 +2d

Umax .sin kz 1l+d
[sin 1+2d d

.in ,kz I +3d

s1n + 2d 1l+3d

= Umax si . rk(l+d)
ak = k sin l+2d

max si (krd
k 7 1 1 + 2d)

,rkd
- sin (1 + 2d)

irkd
- sin (I + 2d)

-sin (,rk(21+3d) + sin
in +2d

sin + +2kr) +sin (

ak = 0.

2 j+d 2rkz
bk 2(1 + 2d) max sin (2(± 2d))dz + 21+3d . 2,rkz)l

+ " 3d m ax s 1 1 
.

,rkz I+d
- cos (1 + 2d) d

c kz 2+3d
+o CO I+ 2d) 11+3d I

bk= Umax - COSk(+d)
Co 12

,ckd
+ COs ( + COS (rk(21+ 3d)

+I C+ 2
C k( + 3d)

- Cos1 d)

bk = m - cos (kr -
'T kd

1 + 2d)
+ kd

+ o 1 + 2d) cos (7kd + 2kqr) - cos (1 + 2d

bk cos

0
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a =Umax [z 1+d
a -2(1 + 2d) d

,rk(l+ 3d)
( 1+2d)I

+kr)].

bk = Umax
by= I

+ kr)].

for odd k.

for even k.



C.2 Tangential Magnetic Field at Plane x= -XB

The tangential magnetic field, Hz, at plane x = -XB, due to the current i passing through

the phase A coils, can be expressed as

27rkz 27rkz
Hz = ao + Z [ak cos( Z ) + bk sin( Zk=1

where Z, the spatial period of the tangential magnetic field function, is 6(2g + t). Since the

H, waveform is even and unbiased, the contributions from sines will be zero. The Fourier

coefficient calculations are:

ao= -t) [ fdz + dz + -12g6t) dz
6(2g + t) 0 g 5g+3l g 1lg+6t g

ao Z - 7g±3t +Z12g±61 1  I -2 g 7+t 5+t
6g(2g + t) 0 z5+3t =lg±6t 6g(2g + t) g-(7g+3t)+(5g+3t)+(

ao = 0.

2 9
ak = 6(2g + t) If

i
- cos
g

ak = kI sin

27kz 79+3t -i

6(2g + t))dz+

'7rkz
(3(2g + t))

9
0

( 27rkz 12g+6t) i
co 6(2g + t)d+ 1+* cs(2+t)Zj Ig±6t g

- sin ( rkz 79+3t + sin
3(2g + t) 5g+3t

ak = sin
gkgr I i ( 7rkg3(2g + t))

- sin 7k(7g + 3t)
( 3(2g+t) +I

+ sin (7k(5g + 3t))
(3(2g + t) )

- sin (7rk(11g + 6t)
-sn(3(2g + t) )

ak= f [sin (3(2g t) sin (k7r+ 3 (2rk+ t))

ak = k sin ( for odd k.

0 for even k.

2
bk = 6(2g + t) Lj0 i.qg

27rkz 7g+3t -i
sin ( 6 (2 g +5 t) )dz+-I - sin

2'7rkz

(6(2g + t))dz+

12g+6t) i

11g+6tg 
sin

- Cos 7kz 9
(3(2g + t)) 0

+ Cos 7rkz 79+3t
(3(2g + ) 5g+3t

- cos () Ik 12) +6 1
(3(2g + t) I11g+6t
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6(2g + t))dzI

( 7rkz 129+6t
3(2g + t) llg+6t1

+sin kr 7k Sin (27rik (rkg )

bk gk7r[

27rkz

6(2g + t)

12g+6t)-(11g+6t) .



bk i[_Cos g )Ckg (7rk(7g + 3t) (rk(5g + 3t) ) T{ 7rk(llg + 6t)
b C) S s3(2g ± t) I +COs 3(2g + t)

bk Cgk I-Cos 7( t)+CoS (k7r 37rk ) -tCos (k7r - k COS (27rk- 7kg
33(2g t) 3(2g +

bk =0.
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