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ABSTRACT

An important part of a routine clinical examination is the assessment of the arterial blood
pressure waveform. The variations in shape of the waveform indicate the presence of
disease.

In this work, a method is developed for the reconstruction of arterial blood pressure
waveform using the signals obtained from a noninvasive wearable
photoplethysmogtaphic Ring Sensor and hydrostatic pressure variations measured by an

Arm Accelerometer Sensor. A dynamic model with the Wiener model structure is used
to establish the relationship between transmural pressure and photoplethysmographic
signal. Tuned nonlinear dynamic model has been shown to be capable of estimating the
arterial blood pressure waveform. The algorithm has been applied to experimental blood
pressure measurements in a healthy subject and shown to provide accurate waveform
reconstruction. As a result, the use of a wearable photoplethysmographic Ring Sensor
can be extended to provide a finger arterial blood pressure waveform.

Thesis Supervisor: Haruhiko Harry Asada
Title: Ford Professor of Mechanical Engineering
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1 Introduction

1.1 Arterial Blood Pressure Measurements

It is a hard and challenging task to quantify arterial blood pressure (ABP) in the

human circulatory system. The branching network of blood vessels creates a structure

that exhibits both lumped and distributed dynamic behavior. The time varying attribute of

circulation additionally increases the system's complexity. As a result, the measurements

of blood pressure are not static but undergo natural variations from one heartbeat to

another, throughout the day (in a circadian rhythm), and in response to many factors such

as disease and stress [1].

Blood pressure is defined as the pressure exerted by the blood against blood

vessel's wall and comes from two forces: one is the force created by the heart as it pumps

blood into the vessels and through the circulatory system, and the other is the force of the

vessels as they resist the blood flow. Usually, blood pressure refers to systemic arterial

blood pressure, i.e., the pressure in the large arteries delivering blood to body parts other

than lungs. The peak pressure in the arteries during the cardiac cycle is defined as the

systolic pressure; the lowest pressure is the diastolic pressure. The mean arterial pressure

and pulse pressure are other important quantities. Typical values for a resting, healthy

adult human are approximately 120 mmHg systolic and 80 mmHg diastolic (written as

120/80 mmHg), with large individual variations.

The most accurate measurements of blood pressure are done invasively by placing

a flexible tube, cannula, into a blood vessel and connecting it to an electronic pressure

transducer. This technique is regularly employed in intensive care medicine and for
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research purposes. However, this invasive technique is unpleasant and painful for the

patient and it is associated with complications such as infection and bleeding. Therefore,

simpler and quicker noninvasive techniques are more commonly used for routine

examinations and for monitoring of ABP but at the cost of being less accurate.

Noninvasive blood pressure measurements utilize the auscultatory and the

oscillometric methods. With the auscultatory methods the blood pressure is manually

measured using a stethoscope and sphygmomanometer, an inflatable cuff placed around

the upper arm at the heart level attached to a manometer. The examiner inflates the cuff

until the artery is completely occluded and then slowly releases the pressure in the cuff.

When blood flow begins again in the brachial artery the first Korotkoff sound can be

heard with a stethoscope. The cuff pressure at that instant shows the systolic blood

pressure. The cuff pressure is further released until no sound can be heard. The pressure

in the cuff corresponding to the last, fifth, Korotkoff sound is equal to the diastolic blood

pressure.

The oscillometric methods are very similar to the auscultatory methods. The main

difference is that instead of using a stethoscope to detect blood flow there is an electronic

pressure sensor (transducer) fitted in the cuff. The cuff is placed on the upper arm and

automatically inflated by an electric pump. When pressure in the cuff measured with a

pressure transducer is gradually released, the small oscillations in cuff pressure caused by

the cyclic expansion of the brachial artery are recorded and used to calculate systolic and

diastolic pressures.

Oscillometric measurement requires less skill than the auscultatory measurement,

and may be suitable for use by non-trained staff and for automated patient monitoring.
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However, these noninvasive techniques are limited to discrete blood pressure

measurements; that is to say, they only estimate systolic and diastolic pressures, not the

entire blood pressure waveform.

1.2 Motivation

Nowadays, an important part of a routine clinical examination is the assessment of

the arterial pulse pressure. It is well known that changes in the character of blood

pressure waveform indicate the presence of disease. However, when the mercury

sphygmomanometer was developed clinicians began to concentrate exclusively on the

absolute values of systolic and diastolic blood pressure rather than on the shape of the

waveform, in that way, disregarding important qualitative information in favor of

information covering only the extremes of pressure.

Why is it important to know the shape of the waveform? The systolic upstroke or

anacrotic limb mainly reflects the pressure pulse produced by left ventricular contraction.

The pressure pulse is followed slightly later by the flow wave caused by the actual

displacement of blood volume. The anacrotic shoulder, that is, the rounded part at the top

of the waveform, reflects primarily volume displacement. The peak of the waveform is

assigned as systolic pressure. The dicrotic limb is demarcated by the dicrotic notch,

representing closure of the aortic valve and subsequent retrograde flow. The location of

the dicrotic notch varies according to the timing of aortic closure in the cardiac cycle.

For example, in some diseases such as hypovolemia aortic closure is delayed.

Consequently, the dicrotic notch occurs farther down on the dicrotic limb in hypovolemic

patients. Also, the dicrotic notch position on the dicrotic part of the waveform depends
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on the site in the arterial tree where the ABP is measured. The shape and proportion of

the diastolic runoff wave that follows the dicrotic notch change with arterial compliance

and heart rate. The bottom of the blood pressure waveform is known as the diastolic

pressure.

In some diseases such as in hypertension, which is due to age-related arterial

stiffening, atherosclerotic narrowing, or rennin related vasoconstriction, an increased

magnitude of reflected waves which fuse with the systolic upstroke results in a high pulse

pressure and late high systolic peak [2], often manifested as a narrow systolic peak in the

peripheral ABP waveform tracing [3].

The shape of the waveform contains much more information than the current

noninvasive blood pressure measurements. These measurements are limited to the simple

discrete assessments of systolic and diastolic blood pressures. Because of that, our goal

here is to develop a general methodology for estimating the ABP waveform using

measurement from a noninvasive device such as finger photoplethysmograph (PPG) and

measurement of hydrostatic pressure variations assessed from accelerometers.

1.3 Document Layout

This thesis is organized as follows: Chapter 2 describes the pressure-volume, or

more precisely the pressure-photoplethysmograph, relationship in arteries and how it can

be modeled as a combination of a linear dynamic model with a static nonlinearity on the

output, known as Wiener model structure. Chapter 3 presents a parameter identification

method with particular emphasis on the numerical procedure for identification of

parameters of a nonlinear model. Chapter 4 highlights biosensors, describing those used
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in our experiments. Chapter 5 describes the experimental setup and the protocol followed

to obtain validation data from human subjects. In Chapter 6, experimental data are

presented demonstrating the feasibility of Wiener model structure for the reconstruction

of arterial blood pressure waveform from the signals coming from a wearable Ring

Sensor. Finally, concluding remarks and suggestions for future work are given in

Chapter 7.
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2 Transmural Pressure-Volume Relationship in Arteries

To estimate the arterial blood pressure from noninvasive photoplethismographic

measurements a model relating the blood pressure to arterial volume changes is needed.

Before choosing the model, we will focus first on the arterial wall, presenting its

viscoelasticity based on structure, and then, we will introduce the nonlinearity of the

pressure-volume characteristics. Finally, transmural pressure (P, ) can be altered either

by changing internal or external pressure acting on the arterial wall. We have chosen to

change the internal pressure by altering the hydrostatic pressure.

2.1 Nonlinear Viscoelasticity of Arterial Wall

Blood vessels belong to the class of soft tissues [4]. They exhibit the nonlinearity

in stress-strain relationship and hysteresis when subjected to cyclic loading. They also

creep under constant stress and relax under constant strain. It is to be expected that these

mechanical properties have a molecular structural basis. However, the mechanical

properties depend not only on vessel's composition, structure, and ultrastructure, but also

how the different constitutive elements interplay. The complexity of composition and

structure is known through chemical and histological studies. On the contrary, how those

parts cooperate and synergize is much harder to understand.
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2.1.1 Viscoelasticity of Arterial Wall

In order to formulate a mechanical model of arterial wall we shall first describe

briefly its content and structure. Arteries are the blood vessels that carry blood from the

heart to the body. There are several types of arteries in the body and their structure

slightly differs along the arterial tree. In general, the arterial wall consists of three layers:

intima, media, and adventitia. These three layers are divided with elastic membranes.

The relative ratio of the layers and their structure depend on the site in the arterial tree

[5]. The intima consists of the endothelial cells, the basement membrane, and a layer

composed of an aggregation of collagen, elastin, smooth muscle and other cells. The

media consists of smooth muscle in concentric layers tied to a structure by elastin and

collagen fibers. In smaller arteries the elastin is less prominent in the media, and the

smooth muscle fibers increase in amount. Finally, the adventitia is a loosely organized

connective tissue.

The mechanical properties of each of the structural parts are very different [4].

Elastin by itself has a low elastic modulus, a very small hysteresis loop in cyclic loading

and little stress relaxation. Collagen has more than three orders of magnitude larger

elastic modulus than elastin, a moderate stress relaxation, a moderate hysteresis loop, and

a high stress response at small deformation. Finally, smooth muscle has the smallest

elastic modulus, an order of magnitude smaller than elastin, a very prominent hysteresis

loop in cyclic loading, but lower stress response comparing to elastin and collagen.

Unsurprisingly, the resulting behavior of a material consisting of components

having such diverse properties will not depend only on the composition, but also on the

structure. Subjected to a relaxation test the structure does not relax with a single
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relaxation time [6]. The segments of varying length contribute to the relaxation, with the

simpler and shorter segments relaxing much more quickly than the long ones. This will

result in a distribution of relaxation times, which in turn produces a relaxation spread

over a much longer time than can be modeled accurately with a single relaxation time.

From engineering prospective this can be approximated with spring-dashpot elements

combined into the Maxwell-Weichert model (Fig. 1).

0.

kk

Figure 1. Viscoelastic Maxwell-Weichert model

Under assumption that the spring-dashpot elements are linearly involved, the

stress-strain relationship obtained from a Maxwell-Weichert model can be written as

" kis
S={ k,+s 1  (2.1)

where a and C are Laplace transforms of the total stress and total strain, respectively,

k, and k, are the Young's moduli of different "spring" elements, and r, =' are the
k

time constants corresponding to each of the spring-dashpot pairs.
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For the purpose of this work we will use a Maxwell-Weichert model representing

the three major constituents of arterial wall; elastin, collagen, and smooth muscle. We

will assume that elastin can be represented as a spring-like element with modulus ke, and

collagen and smooth muscle as spring-dashpot combinations (Fig. 2).

01

Figure 2. Maxwell-Weichert lumped parameter model representing arterial wall

Stress-strain relationship of such a linear model can be written in complex domain

as:

-={ke+ k + S 1jm (2.2)

where r- = and rm = sm are the relaxation time constants corresponding to collagen
ka ks

and smooth muscle, respectively.
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2.1.2 Nonlinear Arterial Wall Dynamics

It has been shown in [7] that the pressure-volume relationship in human finger

artery is nonlinear and dynamic, and that relaxed artery collapses at near-zero transmural

pressure. In the same report it was obvious that hysteresis was present, which lead the

authors to reason that a precise unstressed artery diameter does not exist, but depends on

whether the artery is observed during the cuff inflation or deflation.

The dynamic unloading of the finger arterial walls is the basic principle of the

volume-clamp blood pressure measurement method [8, 9], by means of a servo system

keeping the arterial wall at zero transmural pressure, i.e. at the arterial unstressed volume.

Then, in order to provide an objective criteria for an adjustment algorithm used in an

instrument utilizing the method the pressure-volume (i.e. transmural pressure-

photoplethismograph) relationship of human finger artery is required [7]. This

relationship should be known both quasi-statically and dynamically, because the position

of the servo set point on the curve is of especial importance (Fig. 3).

Here, we propose that the transmural pressure-volume relationship can be

described as nonlinear dynamic viscoelastic.

Arterial Volume
(PPG Signal)

Hysteresis curve due to
viscoelastic properties

Transmural Pressure

Figure 3. Dynamical nature of arterial pressure-volume curve
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2.2 Varying Transmural Pressure by Altering Intravascular

Hydrostatic Pressure

As we mentioned previously, transmural pressure can be altered either changing

internal or external pressure acting on the arterial wall. We chose to change the internal

pressure by altering the hydrostatic pressure.

If one keeps the arm at the heart level and measures ABP, one gets Pheart * If then

one moves the arm below or above the heart and repeats the measurement, using Pascal's

principle, one gets a new ABP, PABP . The new PABP is related with the ABP measured

at the heart level by the hydrostatic pressure, Phyd .This can be written as:

PABP =hreart +P art - pgh (2.3)

where p is the density of the blood (1050 - 1060 kg/m 3), g is the acceleration due to

gravity, and h is the height relative to the heart level. In Eq. 2.3 we have chosen that the

value of h will be negative if the measurement site is below the heart level, and positive

if it is above the heart level.

By definition, the transmural pressure, P,, in a site at heart level can be stated as:

tm = heart external (2.4)

where pexternal is the pressure applied externally by a cuff.

Figure 4 schematically depicts previous relation, in addition to showing the stress balance

in arterial wall.
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Pexternal hoop stress (7,,(P,,,,,D)

Darteiy

Ptm) Pinternal(t) - Pexernal(O

Figure 4. Pressure balance in arterial wall: P,,(t) - transmural pressure, internal(t) - intra-

arterial pressure, Pxte,,,a,(t) - externally applied pressure; c-, (P,, YD) - stress in arterial

wall

Combining Eqs. 2.3 and 2.4 , the transmural pressure can be written as:

ptm = PABP + pgh - Pextena (2.5)

According to Eq. 2.5, it is logical to conclude that transmural pressure can be

changed by varying the height of the measurement site relative to the heart level. That

allows us to "scan" a region of transmural pressure values depending on ± pgh,,,, (h,, is

the maximum achievable height that depends on subject's arm length) and applied

external pressure. Because we are mostly interested in the transmural pressure values

around zero (the artery is then the most compliant), it is recommended to apply an

external pressure close to the mean arterial pressure at the heart level. This principle will

allow us to record the P;n, -PPG curve experimentally by changing the arm position. We

will show later how the hydrostatic pressure can be measured simply by reading the

outputs of two accelerometers and using a kinematic relationship.
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3 Nonlinear System Identification

After choosing a model describing a nonlinear P -PPG dynamic relationship in

finger arteries, the next step is to identify the parameters of the model. In this section, we

will explain our approach to address this problem.

In the past, modeling was mainly restricted to linear (or almost linear) systems for

which an analytical treatment is possible. In recent years, there has been a tremendous

progress in the methodology of system identification particularly in control engineering.

The availability of modem estimation theory and sophisticated computational algorithms

has contributed to the rapid growth of system identification technology. Now it is

possible to tackle, to some extent, nonlinear systems. After all, nonlinearity is at the

heart of most of the interesting dynamics. One of the major difficulties in dealing with

these systems is the lack of unified mathematical theory for representing nonlinear

system characteristics. Unless we impose a specific system representation in advance it

is not practical to talk about identification of nonlinear systems.

The pressure-volume relationship in human finger artery that is nonlinear and

dynamic can often be well described as a combination of a linear system and a static

nonlinearity. Here, we will focus on a particular class of nonlinear systems known as the

Wiener systems.

3.1 The Wiener Model

A number of nonbiological and biological examples can be found in literature of

systems with a nonlinear relationship between the input and output sequences [10].
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Often, that relationship can be well described by a combination of a linear system

followed by nonlinearity, known as nonlinear Wiener model.

A Wiener model is depicted in Figure 5. It consists of a linear dynamic system

H(q) followed by a static nonlinearity f . The input u and the output y are

measurable, possibly with noise, but we cannot measure the intermediate signal x.

U x y -0

Linear dynamics Nonlinearity

Figure 5. Wiener model structure

Our goal is to find a linear dynamic model relating u and x, and a nonlinear

static model relating x and y. Moreover, we will consider parametric models, where the

output can be described as a function of the input and some other parameters. Different

values of these parameters will describe different models. For the linear dynamic system

relating u(t) with x(t) in discrete time we can write:

x(t) = H(q,O)u(t) (3.1)

where q is the time-shift operator and 0 is a parameter vector describing linear system.

The nonlinear system relating x(t) with y(t) is described as:

y(t)= f(x(t), q) (3.2)

where f is nonlinear function of x(t) and the parameters q. Using measurements u(t)

and y(t) we want to estimate the parameters 0 and q.
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For given values of the parameters 0 and 77, and an input u we can calculate the

predicted output, f . This predicted output, f(t,0,77), will depend on the parameters, as

well as the time t.

The quality of the estimate is measured by mean squared error criterion:

N 2=

where y(t) is the measured output, and N is the number of data points. The resulting

optimization problem is solved when the values of 0 and 7 that minimize previous

criterion are found.

For a chosen model structure and the given measurements, VN (0, q may be

formed explicitly as a function of parameters 0 and q. If it is too complicated to

minimize the criterion analytically, numerical methods could be used. In that case, it is

necessary to provide an initial guess of the parameter values. We will suggest a way to

make an initial estimate.

3.2 Optimization Method

In general, the function given in Eq. 3.3 can be minimized numerically. The

extensive literature on such numerical problems exists[ 11-13].

Assuming that we have an initial estimate of 9 and q, to calculate better

estimates that lower the value of the prediction error criterion, Eq. 3.3, the following

iterative scheme can be used:

wv' = Gv') + aih(') (3.4)
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where ' = , h(') is a search direction and c, is a positive constant determined to

ensure that the value of VN (o,r,) is decreased in each iteration step (i is iteration

number). If the search direction is selected in a proper way we can guarantee

convergence to a local minimum of the criterion to be minimized. A typical

minimization method using values of the function VN (0, q) and its gradient is Gauss-

Newton method. This method uses the search direction given by:

h(') = [G(0(i)N (ii'VN(0(i)7(i)) (3.5)

with the Hessian given by:

N (3.6)

and the criterion gradient:

I N

V N 1
(3.7)

where T is the gradient matrix of 5 with respect to 0 and q, and e is the prediction

error.

If the prediction errors are independent the Gauss-Newton search direction is

given by:

± T (t, 0, q)e(t, O,,i) (3.8)

what is the least square solution of overdetermined system of equations:

TT (t,O,t7)h(') = c(t,0,r7), t = N (3.9)
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The problem of finding h(') in Eq. 3.9 can be solved using QR factorization [14].

The condition for using this method is that involved functions must be differentiable.

It is important to note that the local minima problem of the squared error criterion

can be handled by trying several different initial parameter estimates, or making the first

parameter estimate so accurate that the criterion converges to the global minimum. It has

been suggested [15] to start with a linear model and then augment it to a nonlinear

structure.

3.3 Consistency

If the system is given with Eq. 3.2 the goal of parameter estimation is to find true

parameter values 00 and io . That means, if we apply a parameter estimation method to

data {u(t), y(t)} coming from the system, we want the estimated values of 0 and q to be

equal to the true values 00 and )70. For such an estimate is said to be consistent.

Definition (Consistency): Assume that the true system is given by the parameters

00 and 7o. Let 0
N and qN denote the estimates obtained from a data set containing N

data pairs. The estimate is said to be consistent if N -> 00 and qN -+ when N -> oo.

The question of consistency of parameter estimates is not trivial [14]. Because

the prediction error criterion may have several local minima, the estimates obtained from

one of these minima will not be consistent in general. The parameter estimates are

consistent if the following theorem is satisfied. The proof of the theorem can be found in

[14].

Theorem: Suppose that the true system is described by:
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y(t)= f(H(q,00 )u(t),qO ) (3.10)

Assuming that the linear system H is stable, that the nonlinear function f(.,q) is

differentiable with a first derivative uniformly continuous on the set of real numbers R,

and that:

1. The linear model structure is globally identifiable [13]

2. The input data set is informative enough [13]

3. The input to the nonlinearity, {x(t)},, is dense on R when N tends to infinity

[14].

4. The number of parameters in the initial estimate, no and n,, as well as the

number of data points, N, tends to infinity in such a way that

1_ -> 0 and n' -> 0
N N

(3.11)

where no is the number of parameters in H, and n, is the number of parameters

in f.

Then, obtained parameter estimates 0 and ,^ minimizing VN(, q) in Eq. 3.3 are

consistent. The consistency here excludes a constant gain that can be arbitrarily

distributed between the linear and nonlinear subsystem.
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4 Wearable Biosensors

Minimally invasive and noninvasive biosensors have received growing medical

interest [16] because of their increasing reliability and richness of real-time information

that they provide. Several wearable sensors exist in the market to measure "vital signs",

such as heart rate, arterial blood pressure, oxygen saturation, temperature, and respiration

rate. In particular, in ambulatory blood pressure measurements the most standard devices

are portable oscillometric monitors. These devices have two main limitations: on the one

side, they provide, in most of the cases, just particular points on the blood pressure

waveform such as systolic and diastolic blood pressures, and on the other, they require

motionless state of the subject during measurement [17]. Attempts to overcome the first

limitation are made with devices such as Finapres, Portapres, or Finometer (Finapres

Medical Systems, The Nederlands) [18, 19], which are capable to continuously measure

ABP for over 60 hours. However, these devices are fairly big, certainly not wearable,

and too expensive for using outside laboratories or hospitals. Because of these

limitations, our goal has been to develop a methodology necessary for transforming the

signals from a wearable photoplethysmographic Ring Sensor and a wearable Arm

Accelerometer Sensor to a continuous ABP waveform. Here, we will first describe both

sensors. Then, we will explain briefly the Finapres sensor (Ohmeda 2300) against which

we compare our measurements.
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4.1 Wearable Photoplethysmographic Ring Sensor for Blood Pressure

Measurements

The plethysmograph, known in Italian as a "pletismografo", was invented by

Angelo Mosso of Turin around 1870 [20]. It was first described in Scientific American

in 1872, and used initially in scientific studies of emotions, as well as in criminal

interrogations. Today, a modem version of the plethysmograph sensor is the

photoplethysmograph, an optical device utilizing light absorption by the blood and tissue

components.

The change in blood volume caused by the pressure pulse in artery is registered

by illuminating the skin with light from a light emitting diode (LED), and then measuring

the amount of light reflected, or transmitted, to a photodiode [21]. The volume,

corresponding to the arterial diameter, is dynamically determined at any instant by the

balance between the physiological arterial smooth muscle load and the arterial wall stress

[22].

The basic concept of photoplethysmography has been incorporated into the Ring

Sensor [23], a finger based device that comprises recent advances in the fields of optics

and IC microelectronics. Figure 6 shows a conceptual diagram of an early Ring Sensor

design [24, 25]. This sensor consisted of several optoelectronic components

(photodiodes and LEDs), a central processing unit (CPU), a radio-frequency (RF)

transmitter, a battery, and a ring chassis. The photodiodes detect the light sent from a

LED that corresponds to the blood volume change in the patient's digital artery. The

CPU controls the LED lighting sequence as well as the data acquisition and transmission
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process. These signals are locally processed by an on-board CPU and transmitted to a

host computer for diagnosis of the patient's cardiovascular conditions.

Battery

RF Transmitter CPU

Photo Diode

LEDs

Figure 6. Conceptual diagram of Ring Sensor (from Rhee [231).

For the purpose of our experimentation we adapted and improved this early Ring

Sensor version. The power supply is now from an external power source, not from a

battery, giving the stable voltage level necessary for longer experimental procedure. The

CPU and RF transmitter are replaced by a 16-bit data acquisition card that is part of a

personal computer. This improvement adds the flexibility in applying algorithms for

different experimental protocols, the easiness in performing debugging procedures, and

the significant increase in data transmission bandwidth. Furthermore, a pressure sensor is

added into the Ring Sensor body to provide continuous information about the pressure

applied to the finger.

4.2 Accelerometer Sensors for Hydrostatic Pressure Measurements

The accelerometers can be used to measure the tilt of an object. Tilt is a static

measurement where gravity is the acceleration being measured. To achieve the highest

resolution degree of a tilt measurement, a low-g and high-sensitivity accelerometer is
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required. We used MEMSIC MXA2500G, ultra low noise ±1.7 g dual axis

accelerometers with absolute outputs. These devices provide a sensitivity of 500mV/g in

5V applications. Their operation is based on heat transfer by natural convection and

works like other accelerometers having a proof mass. The proof mass in the sensor is a

gas. A single heat source, centered in the silicon chip is suspended across a cavity.

Equally spaced aluminum/polysilicon thermopiles (groups of thermocouples) are located

equidistantly on all four sides of the heat source (dual axis). Under zero acceleration, a

temperature gradient is symmetrical about the heat source, so that the temperature is the

same at all four thermopiles, causing them to output the same voltage. Acceleration in

any direction will disturb the temperature profile, due to free convection heat transfer,

causing it to be asymmetrical. The temperature, and hence voltage output of the four

thermopiles will be different. The differential voltage at the thermopile outputs is

directly proportional to the acceleration. There are two identical acceleration signal paths

on the accelerometer, one to measure acceleration in the x-axis and the other to measure

acceleration in the y-axis (Fig. 7). The device will experience acceleration in the range of

+1 g to -l g as the device is tilted from -90 degrees to +90 degrees respectively (1 g = 9.8

m/s).

x
+ 9 0G

gravity

Y wi
Top View

Figure 7. Accelerometer's sensing directions: The MEMSIC logo's arrow indicates the +X
sensing direction of the device. The +Y sensing direction is rotated 90 away from the +X

direction following the right-hand rule.

29



An accelerometer is most sensitive to changes in tilt when the accelerometer's

sensitive axis is perpendicular to the force of gravity, or parallel to the Earth's surface.

Similarly, when the accelerometer's axis is parallel to the force of gravity (perpendicular

to the Earth's surface), it is least sensitive to changes in tilt. When one axis has a small

change in output per degree of tilt, then the second axis has a larger change in output per

degree of tilt. The complementary nature of two signals obtained from perpendicular

axes permits low cost accuracy in tilt sensing to be achieved.

In our application, it is necessary to know the height of the Ring Sensor relative to

the heart. To measure the height accurately we have to use two accelerometers, one

attached to the upper arm at the same height as the heart, and the other mounted on the

Ring Sensor at the finger base [26]. The direction of the X-axis in both accelerometers is

aligned with the longitudinal directions of the upper arm and the forearm, respectively

(see Fig. 8). To known the lengths l and 12, defined in Figure 8, the height of the Ring

Sensor from the heart is given by:

h=1 -sinO, +12 -sin02  (4.1)

--.... ACC 1

h

2
ACC 2

Figure 8. A height sensor using accelerometers
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The use of height sensor for estimating hydrostatic pressure variations is

straightforward. If the sensor position is below or above the heart level, the hydrostatic

pressure, Phy' , relative to the heart level can be written as:

Phyd =-pgh (4.2)

where p is the density of the blood, g the acceleration due to gravity, and h is the

sensor height obtained from Eq. 4.1. If we measure the angles 6, and 02 relative to the

horizontal arm position (X-axis reading from an accelerometer will be zero if the arm is

in horizontal position) the expression in Eq. 4.1 says that the value of h will be negative

if the sensor position is below the heart level, and positive if the sensor is placed above

the heart.

4.3 Standard Reference for Continuous Blood Pressure Measurements

Finapres (Ohmeda 2300) is a noninvasive continuous finger ABP monitor based

on the vascular unloading technique from Pet5z [8] and the physiological criteria from

Wesseling [22]. With the volume-clamp method of Pefia'z, although intra-arterial

pressure changes continuously, the finger arteries are held at a fixed diameter by applying

an external pulsating pressure via an inflatable finger cuff and a fast servo system. The

setpoint is determined by the criteria of Wesseling [22]. The diameter at which the finger

arteries are clamped is determined from an infrared plethysmograph mounted in the

finger cuff, such that transmural pressure is zero and intra-arterial and cuff pressures are

equal, both in shape and in level at all times.
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There are numerous studies demonstrating the reliability of Finapres blood

pressure measurements, mostly comparing them with the blood pressure measured in the

brachial artery, which is a widely accepted diagnostic reference. These studies cover a

wide variety of conditions such as surgical maneuvers [27-29], Valsalva straining [27],

and exercise to exhaustion [30], in both adults [31] and the elderly [32].

For the purpose of this work we will assume that the measurements of finger

arterial blood pressure obtained in ideal laboratory conditions using Finapres noninvasive

hemodynamic monitoring system are correct and that continuous noninvasive blood

pressure accurately tracks intra-arterial pressure over the short term as stated in [33].
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5 Experimental Data

The validation data from human subjects were obtained under an experimental

protocol approved by the Massachusetts Institute of Technology's Committee on the Use

of Humans as Experimental Subjects (COUHES Approval No. 0403000233) and

following Federal Regulations for the Protection of Human Subjects (45 CFR 46).

5.1 Experimental Setup

To obtain the experimental data necessary for our analysis we used a setup (Fig.

9) consisting of several components: an infrared photoplethysmographic Ring Sensor,

two accelerometers, and a laptop with data acquisition board. Photoplethysmographic

Ring Sensor is built of a GaAlAs high power LED emitter (PDI-E835, X = 940 nm,

Advanced Photonix Inc.), a Si PIN photodiode array (S8558, Hamamatsu), and a 5 PSI

pressure sensor (EPL-B0, Entran) for providing continuous information about the

circumferential pressure applied to the finger. The readings from two accelerometers

(MXA2500G, MEMSIC), were placed as shown in Figure 9, and the kinematic

relationship from Eq. 4.1 was used to calculate the hydrostatic pressure. The output of the

photoplethysmograph sensor is pre-amplified with a standard analog amplifier and band-

limited using 2nd order lowpass inverting Bessel filter (cutoff frequency 30 Hz). Finapres

noninvasive hemodynamic monitoring system is used to measure the arterial blood

pressure for the calibration and validation purposes. All signals are sampled at 200 Hz

using a 16-bit data acquisition card (NI-6036E, National Instruments), recorded, and
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displayed through the graphical user interface written in Visual Studio Programming

Environment (Microsoft).

Finapres

Laptop with
DAQ card

Accelerometer

Rhig sensor

Figure 9. Schematic representation of experimental setup

5.2 Graphical User Interface

Data acquisition was performed using the graphical user interface (Fig. 10) built

in Microsoft Visual Studio supported by National Instruments Measurement Studio.

Microsoft Visual Studio is Microsoft's integrated development environment which allows

programmers to create standalone applications running under Windows operating system.

National Instruments Measurement Studio is an integrated suite of measurement and

automation controls, tools, and class libraries for Visual Studio facilitating the

configuration and control of the plug-in data acquisition devices produced by National

Instruments.

The software is capable of selecting automatically the photodiode array channel

giving the best signal using the criteria of the largest amplitude and the biggest signal to
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noise ratio. This should ensure that the correct Ring Sensor placement is over a digital

artery. Additionally, the software offers the possibility to select the signals which will be

displayed and/or recorded guaranteeing uninterruptible data transfer, even when very

high sampling frequencies are chosen.

Plethysmograph
Waveform ~

The Best PPG
Channel Selection

Mean Blood
Pressure

Calibration Curve

Pressure Sensor
Reading

Arm Position Relative
to the Heart

Mean Blood
Pressure

0:00:00

Plethysmograph
rlTimer - Waveform

Pressure readings:
cuffhydrostatic, 20

and Finapres

00-

PPG Power
Spectrum

Mean Blood Pressure -
Calibration Curve CG1WSSO' PPG-Blood Pressure

Loops

Figure 10. Windows-based graphical user interface for the Ring Sensor, the
accelerometers, and the Finapres monitoring system
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5.3 Protocol

A standard experimental protocol consisted of attaching the Ring Sensor to a

fingerbase and the finger cuff of the Finapres blood pressure sensor to a different finger

on the same hand. The instrumented arm is then placed on a platform of adjustable

height and maintained at the heart level to equilibrate for ten minutes. Arm height relative

to the heart is recorded using the readings from two accelerometers as described

previously (Section 4.2). The micro-pressure sensor (EPL-B0, Entran) inside the Ring

Sensor cuff is positioned with the diaphragm firmly over the bone of the finger.

After a rest period of approximately ten minutes, the data were acquired using the

following protocol:

* The arm height was increased from 50 cm below the heart to 50 cm above the

heart in increments of 15 cm for approximately 20 seconds at each height

level (logically, the maximum achievable height depends on the subject's arm

length).

Once acquired with sampling frequency of 200 Hz, the waveforms (PPG, pressure

sensor, and sensor height signals) were recorded and processed offline as described in

following section of this document.
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6 Blood Pressure Waveform Reconstruction

As a proof-of-concept the experiments were performed to demonstrate the

proposed approach and verify the analysis method. Nonlinear system identification was

implemented to identify specify the model parameters using the experimental data

obtained following the protocol described in previous section (Section 5.3). The system

input was the measured transmural pressure and the output was the

photoplethysmographic signal measured with a Ring Sensor. The identification was

implemented in Matlab using the batch processing. Mean squared error, VN N )

performance was used to assess the identified Wiener model. An iterative Gauss-Newton

procedure was performed to minimize previous criterion. Usually, less then 30 iterations

were needed to achieve the minimum mean squared error.

6.1 Choosing the Model

As we discussed previously, the relationship between transmural pressure and

photoplethysmographic signal is nonlinear and dynamic. Therefore, we approach the

problem of choosing the model on the assumption that the system can be characterized by

a combination of linear dynamics and static nonlinearity at output. An experimentally

obtained P,, -PPG curve is shown in Figure 11.
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Figure 11. Experimental P,,,, - PPG curve

Linear dynamic part of a model described by Eq. 2.2 can be transformed to a

discrete equivalent in the following form:

x(t) 01 +0 2q +0 3q- 2  
(6.1)

Ptm,(t) 1+0 4q-' +0 5q 2

where 0,, 02, 03, 04 and 05 are the parameters to be identified.

Seeing that from Eq. 6.1, the linear dynamics is second order and was chosen to

keep the system's complexity as low as possible. However, it is likely to add some

additional first order terms such as taking into account the filtering in electrical circuitry.

Yet, we know that both input and output were subjected to low pass filtering. Hence, we

have assumed that the "real" process dynamics can be well described as second order.
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On the other side, the static nonlinearity has been chosen to be of sigmoid type.

The intuition coming from Figure 11 suggested it can be so, since the S-shaped trend is

noticeable. Also, sigmoid curve resembles trends in the life-cycle of many living things

and phenomena. There are a variety of sigmoid curves, but here we have used:

PPG(t) = , + 72 (6.2)
l+e-'Ex(t)

where q, , 72 and 173 are the parameters to be identified.

At this point, it should be noted that the model was chosen based on the

discussion given in Chapter 2 of this document. It is to say, of gray-box type. However,

with regards to the complexity of the system, the model can be augmented to involve

more parameters. This may lead to increased accuracy of the estimates.

6.2 Implementation and Model Tuning

Because the quadratic error criterion, Eq. 3.3, cannot be minimized by analytical

methods, we have done so numerically, by applying an iterative search scheme. The

Gauss-Newton method was chosen because of the available computational resources and

relative simplicity of implementation which was suitable for our purpose. Formulae

involved in the algorithm are presented in Chapter 3. Here, we will present a brief and

basic guideline of the implementation, but some detailed and explicit search schemes can

be found in [13].

In order to avoid the local minima, a key question is how to choose an initial

parameter estimate. Based on the chosen model we will suggest a way to select the initial
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parameter values. Apparently, the final result will show a good trend for estimating the

arterial blood pressure waveform from measured PPG signal.

Our approach to attain the desired parameters is summarized in the following

algorithm:

Algorithm

Input: Data set ZN = {p(t); PPG(t)},N = {u(t); Y(t)Ni

Output: Parameter estimates 0 and i giving H(q; 0), the linear dynamic system, and

f(., ), the static nonlinearity.

Initial parameter estimates:

Step 1: Parameterize the linear system by means of an ARX model,

x(t) = -0 4 x(t - 1)-0 5 x(t - 2)+ Out )+ 0 2u(t - 1)+ 03u(t -2)

with a parameter vector OT = [K, 02 03 04 05]

Step 2: Assume x(t)= y(t) and use linear regression to find initial estimate of

parameters 01,02,03, 04 and 05. Normalize an initial transfer function to be with unit DC

gain.

Step 3: Write static nonlinearity in form y(t) = q, + 7_2 (It is important that the
1 + ee hssx

function is invertible. Certainly, sigmoid function in this form is invertible.) The

parameter vector for the sigmoid is r7T = [r71 r72 773]

Step 4: Assuming x(t) = u(t) perform nonlinear fit to make an initial estimate of the

parameters r1i, r/2 and 773.
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Prediction error criterion and minimization:

Step 5: Formulate the quadratic error criterion

VN (Z ,0,ll = (PPG(t)- YPPG(t 2

Step 6: Solve the resulting optimization problem using Gauss-Newton minimization as

a way to numerically find the values of 0 and 7 that minimize the squared error

aN N VN (Z NJq)

Step 7: Now it is easy to write inverse model

u(t) = f-1 (y(t))

Step 8: Reconstruct the ABP waveform from PPG input and measured hydrostatic

pressure.

There is no general rule for choosing the initial parameter values. In our case the

results obtained using the Steps 2 and 4 of previous algorithm were satisfactory, leading

to a small number of iterations and a small final criterion value.

As noted in [14] the Wiener model is over-parameterized if the linear and

nonlinear subsystem are parameterized separately. Numerical problems will occur if the

over-parameterization is not addressed, because a constant gain can be distributed

arbitrarily between the subsystems. Therefore, a simple way to get a unique solution is

just to fix one of the parameters of the linear system, and allow it be constant during the

minimization. In our case, we fixed the parameter 0, to value 1 to ensure that the

denominator of the inverse linear system is monic.
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To test the validity of previous algorithm, we began our experiments and recorded

the signals from the PPG Ring Sensor, the accelerometers, the pressure sensor, and the

Finapres. Figure 12 shows the acquired waveforms (approximately 90 seconds). Upper

plot shows the PPG waveform. Down plot shows the hydrostatic pressure (dark green),

the pressure from pressure sensor (red), and from Finapres (light green), and calculated

transmural pressure (blue). The signals were low pass filtered using a 2 "d order digital

Butterworth filter with a cut-off frequency of 30 Hz. The PPG and transmural pressure

data vs. time presented in Figure 12 are the same ones shown in Figure 11.
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Figure 12. Experimental waveforms: PPG obtained from the Ring Sensor (up); Finapres

blood pressure, hydrostatic pressure calculated from accelerometers' readings, pressure

sensor signal, P, (down)
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The data set was formed and the identification algorithm was applied. Initial

parameter estimates for the linear dynamic part were:

oT =[0.0144 -0.0241 0.0097 -1.5548 0.5548]

and for the static nonlinearity:

7T =[2.9808 0.9632 0.0247]

obtained in the way suggested in steps 2 and 4 from the algorithm. Figure 13 shows the

system identification results. Upper plot shows a simulated PPG signal (blue) and

measured PPG signal (green) over approximately 90 seconds. Lower left plot illustrates

estimated sigmoid (red) and estimated output of the linear dynamic part (green). Finally,

lower right plot shows how the value of prediction error criterion changed through the

iterations. The prediction error criterion value was 0.001127, achieved after 19 iterations.

Identified parameter values were:

0 =[1.0000 -1.4525 0.4827 -0.4348 -0.5298]

and,

T =[2.8849 1.1055 0.0247]

Here, it is important to note the relevance of using a large number of decimals in

parameter value. This significantly increases the precision of the calculations and it is

one of the key characteristics of discrete systems. Because of the compactness of

parameter vector form, we have used just four decimal places.
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Final result after 19 iterations. Mean square fit: 0.0011269
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Figure 13. System identification results: up - measured PPG waveform (blue) and
estimated PPG waveform after a final iteration (green); down left - estimated sigmoid (red)

and estimated output of the linear dynamic part (green); down right - prediction error
criterion value vs. iteration number

The result of waveform estimation was satisfactory. Figure 14 shows a part of

measured PPG waveform (green) and the ability of the identified model to reproduce it

(blue). The mismatches in some portions of the waveform may be caused by a time-

varying nature of the signal and the disturbances to the system. Certainly, the motion

artifact, respiration and other physiological effects will contribute to the final result and

these factors should be taken into account, especially due to the change in arm position.

Also, as mentioned previously, the complexity of the system can be described more

precisely with additional parameters. However, that would increase the computational
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cost and limit the applicability. Overall, both signals show an excellent match which

validate our approach.

After 19 iterations. Mean square fit: 0.0011269
3.75

-- Simulated PPG - Measured PPG

3.7-

3.6 - -- - - - - - -

3.5
.25 1.275 1.3 1.325 1.35 1.375 1.4

Samples x10 4

Figure 14. Simulated PPG waveform

6.3 Estimation of Arterial Blood Pressure Waveform

Our final goal has been to reconstruct the arterial blood pressure waveform using

a model tuned from the procedure described in previous section and only the signals

obtained from the wearable Ring Sensor (including the accelerometers and the pressure

sensor). Having identified the parameters and by simply inverting the linear and

nonlinear subsystems of the Wiener model, the blood pressure waveform can be

estimated.

Figure 15 shows a representative section of experimentally obtained signals from

a human subject which are used to estimate the arterial blood pressure: PPG signal (blue),

hydrostatic pressure relative to the heart level (green), and applied external pressure (red).
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Figure 15. Input signals for arterial blood pressure waveform reconstruction: a part of
PPG waveform (up);the sections of hydrostatic pressure and pressure sensor signal (down)

The input to the model is the PPG signal, passing through an inverse of sigmoid

nonlinearity and giving an intermediate signal, x(t):

(6.3)

where qi , 7/2 and q3 are the parameters identified. The intermediate signal x(t) should

pass through the inverse linear dynamic model of that one given with Eq. 6.1 producing

an estimate of transmural pressure, Pm (t):

Pt' W= I mx(t +04x(t - 1)+05x(t-2)1-02 P m t -1)- - 2)]
01
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where 0,, 02, 03, 04 and 05 are the parameters identified earlier. Eq. 6.4 has been simply

implemented as a filter in Matlab. In our system we fixed the parameter 0, with value 1

in order to ensure that the denominator of inverse linear transfer function was monic.

Also, through the Gauss-Newton iterations, care was taken to ensure that the inverse

linear transfer function was stable, by mapping eventually unstable poles inside the unit

circle. Figure 16 shows a representative part of the estimated transmural pressure

waveform (blue) as a "byproduct" of ABP waveform reconstruction, and the measured

waveform (green).
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Figure 16. A reconstructed piece of transmural pressure waveform
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As mentioned before, the blood pressure in digital artery, PABP , is related to

transmural pressure as:

PABP P,, - pgh + Pte,,,, (6.5)

where all variables are defined in Chapter 2. Now, having all these variables measured, or

estimated, it is easy to calculate the arterial blood pressure from Eq. 6.5. The

reconstructed ABP waveform is shown in Figure 17 (blue), together with the waveform

measured with Finapres (green). Although the systolic and diastolic points were slightly

overestimated, the general trend in anacrotic and dicrotic limbs showed a remarkable

agreement with the ABP measured with Finapres.
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Figure 17. A reconstructed segment of finger arterial blood pressure waveform
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7 Conclusions

7.1 Summary of Contributions

A new system identification algorithm has been developed to reconstruct an

arterial blood pressure waveform using the signals obtained from a wearable

photoplethismographic Ring Sensor and an Arm Accelerometer Sensor.

Based on nonlinear dynamic viscoelastic properties of arterial wall a simple

nonlinear Wiener model structure has been used successfully to represent transmural

preesure-volume relationship in artery.

A novel iterative algorithm has been developed to directly identify the parameters

of chosen Wiener model, including the method to provide the initial parameter estimates,

which is a key to a successful system identification procedure. Also, it has been ensured

that the inverse linear dynamic part of the model was stable and its denominator was

monic.

Transmural pressure range has been scanned experimentally by inducing

hydrostatic pressure variations about a datum point at the heart level. Those variations

have been estimated using a kinematic relationship and measuring the tilt of the Arm

Accelerometer Sensor's axes.

The Wiener model structure identification was applied experimentally with data

obtained from a human subject. The resulting trend in estimated ABP waveform showed

an excellent agreement with the measurements acquired from the gold standard device.
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7.2 Future Work

There are several limitations that must be addressed prior to the application of this

methodology for a wearable sensing device used in arterial blood pressure measurement.

The model can be improved to capture the waveform features more accurately.

Because, the linear and nonlinear subsystem are parameterized separately the Wiener

model is over-parameterized. Numerical problems will occur if the over-

parameterization is not addressed and it is necessary to deal efficiently with distribution

of a constant gain between the subsystems.

The system identification procedure uses a Gauss-Newton method. This

algorithm has slow convergence close to the local minimum point. Thus, the

identification procedure can be speed up by implementing some numerical search scheme

other then Gauss-Newton algorithm. This is important, especially, if one thinks about

"real-time" parameter identification in a device for ABP measurement.

The performance of the identification algorithm should be further verified using

the data from a larger sampling pool. Moreover, the non bias selection of subjects should

cover a variety of characteristics, such as differences in height, differences in age, and

gender differences as well. Also, the variety of healthy conditions will be very useful to

validate further the methodology and also extend it to assess disease state.
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