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Abstract 

This study aimed to assess landslide susceptibility in the Sahla watershed 

in northern Morocco. Landslides hazard is the most frequent 

phenomenon in this part of the state due to its mountainous precarious 

environment. The abundance of rainfall makes this area suffer mass 

movements led to a notable adverse impact on the nearby settlements and 

infrastructures. There were 93 identified landslide scars. Landslide 

inventories were collected from Google Earth image interpretations. 

They were prepared out of landslide events in the past, and future 

landslide occurrence was predicted by correlating landslide predisposing 

factors. In this paper, landslide inventories are divided into two groups, 

one for landslide training and the other for validation. The Landslide 

Susceptibility Map (LSM) is prepared by Logistic Regression (LR) 

Statistical Method. Lithology, stream density, land use, slope curvature, 

elevation, topographic wetness index, slope aspect, and slope angle were 

used as conditioning factors. The Area Under the Curve (AUC) of the 

Receiver Operating Characteristic (ROC) was employed to examine the 

performance of the model. In the analysis, the LR model results in 96% 

accuracy in the AUC. The LSM consists of the predicted landslide area. 

Hence it can be used to reduce the potential hazard linked with the 

landslides in the Sahla watershed area in Rif Mountains in northern 

Morocco. 
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INTRODUCTION 

 

 

Mass movements are the most frequent natural hazards 

that affect large areas of 

the Rif mountains region in Northern Morocco, mostly 

triggered by heavy rainfall. It is one of the most re-

occurring phenomena along with the Mountains chain 

threatening infrastructure and human properties. 

Within the context of mass wasting, landslides can 

affect communities and influence their activities. Thus, 

mapping and delineating susceptible zones to landslides 

is important for land use activities and management 

decision making.  

The method implemented in this paper has the 

overall objective of developing an understanding of 

slope instability processes and patterns at a regional 

scale. 

The main objective of this study is to assess 

landslide hazards in the Sahla watershed which is a 

subject that has not to gain much interest in scientific 

publications in the Rif area. It is expected that during 

the process, many conditioning factors affecting slope 

instability in the Rif mountains will be known, thus 

giving land-use planners working on landslides the 

ability to make appropriate decisions based on the 

quantify analyses of the the spatial probability 

(susceptibility) of landslide hazards in the Sahla 

watershed with the use of LR. Multivariate statistical 

model in order To build a consistent landslide inventory 

for the study area using aerial photographs, satellite 

images, literature review, and field survey cartography. 

 

 

STUDY AREA 

 

 

Sahla sub-catchment is located in the Central Rif 

mountains, is a part of Wadi (river) catchment named 

Ouerrha (Figure 1) limited from Northeast by Sra sub-

catchment Wadi, Southeast by Ouerrha Wadi, from the 

West by Aoulai Wadi, on the south part is the 

confluence with Ouerrha Wadi. Its boundaries were 

defined by a ridgeline in the total area of 175 Km2. This 

area was chosen for its geological and 

geomorphological characteristics. 

 

The study area belongs administratively to the 

region Fes Meknes, province of Taounate, 

municipality of Ghafsai, characterized by a high 

density of population (82.36 inhabitants per km2). 
(HCP, 2014) 

 

Environmental Data 

 

Landslide inventories can be developed from field 

surveys by interpretation of remotely sensed images 

based on either the spectral characteristics, shape, 

contrast, and the morphological expression  (Kanungo 

et al., 2006), or aerial photographs  (Ayalew and 

Yamagishi, 2005) and Google images interpretation  

(Xu et al., 2013). The largest number of Landslides 

were mapped from Google Earth images interpretation 

of Central Rif. A total of 93 landslide scars were 

mapped (Figure 2). To use the landslide Data from 

Google Earth in the GIS environment, it is required to 

digitize the Data from Google Earth images 

interpretation. Then, these items were saved to the 

computer as GIS compatible format, and the Data was 

again subsequently converted into shapefile format, 

then into a raster format. 

In susceptibility assessment, it is crucial to assume 

that future landslides will occur in the same condition 

that caused the past landslides (Varnes, 1984). There are 

no strict guidelines for causal factors selection to be 

used in landslides modeling, and as such, the selected 

predisposing factors vary widely between studies 

(Ayalew et al., 2005). Also, the determination of 

landslide predisposing factors was associated with the 

availability of Data. The entire landslide causal factors 

that this paper has used also fall in this category. 
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Figure 1- Geographical placement of the Sahla watershed in Rif mountains in northern Morocco 

 
Source: By the authors 

 

Landslide Data was used as a dependent variable of 

eight causal factors including slope, curvature, aspect, 

stream density, lithological facies, and land use pattern 

which were selected as independent variables for the 

landslide hazard mapping.  All of these data are 

commonly employed in landslide susceptibility 

analysis.  Budimir et al. (2015) mention that in a total 

of 37 variables commonlly used slope, aspect, and 

lithology, are significantly used especially on studies 

regarding rainfall-induced landslides. The relevance of 

the spatial Data combination used in the prediction 

became an important issue in mass movements 

susceptibility analysis (Dewitte et al., 2010). A high 

quality DEM provides a high quality of its derivatives. 

In order to to carry out detailed geomorphological 

analysis, a DEM with 5m pixel size of the study area 

was built, it is generated from two types of data: 

countours with 5m interval and quoted points, the 

altimetric data is derived from the Moroccan National 

Agency for Land Conservation, Cadastre and 

Cartography (ANCFCC) at 1:50000 scale. 

 

Slope Angles and Aspects 

 

The slope angle is known as the inclination between the 

horizontal plane and the slope topographic surface. For 

classification objectives, it was considered the 

parameters already adopted in different works of 
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literature and authors all around the world (Guillard-

Gonçalves, 2016). 

 

Figure 2- Training Data from literature, field surveying, and orthophoto. 

 
Source: By the authors 

 

The relationship between slope angle and landslide 

occurrence is very strong (Guzzetti et al., 2005). Thus, 

slope angles that have higher values, at least, up to a 

certain value range, tend to be related to an increase in 

landslide occurrence. Almost 70% of the watershed area 

is dominated by slope angles below or equal to 15° and 

that only 1.5% of the study area has slope angles above 

30° (Figure 3). 

Aspect is known as a plane tangent to a topographic 

surface. It identifies the downslope direction of the 

maximum rate of change in value from each cell to its 

neighbors. Thus, the aspect can be identified as the 

slope orientation in azimuth. Aspect is measured 

clockwise in degrees from 0 (North azimuth) to 360, 

coming full circle. The value of each cell in an aspect 

dataset indicates the direction of the cell’s slope faces. 
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Flat areas having no downslope direction are given a 

value of -1 (Burrough, 1986).  

The slope aspect is recognized as a crucial 

topographic factor. It affects the quantity and daily 

cycle of solar radiation received at different times of the 

year and has a big influence on the microclimate, 

especially air temperature, humidity, and soil moisture 

(Rosenberg et al., 1983). All these influences must be 

taken into consideration. Thus, incorporating the aspect 

as a predisposing factor for landslide susceptibility 

assessment through the statistically based model makes 

too much sense. The slopes, within the study area, are 

mostly exposed to Southwest and West (Figure 4). 

 

Figure 3- Slope angle in the Sahla watershed 

 
Source: By the authors 
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Figure 4- Slope aspects of the Sahla watershed 

 
Source: By the authors 

 
Inverse of the Wetness Index 

 

The Topographic Wetness Index (IWI) is generally 

used to simulate the soil moisture conditions 

quantitatively in a watershed, and it is commonly used 

as an indicator for static soil moisture content (

 

Figure 5). Thus, it is considered an important factor in 

the research of soil erosion and distributed hydrological 

models in watersheds (Sørensen et al., 2006). While 

concave areas can retain water (high IWI values), steep 

and convex areas are more prone to shed water (low IWI 

values). The IWI uses Flow Direction and Flow 

Accumulation raster’s as inputs. 

Flow direction is derived from the digital elevation 

model, and, from it, we can obtain the contributing area 

(Flow Accumulation). Typically, the IWI values range 

from less than 1 (dry cells) to greater than 20 (wet cells). 

Threshold values are applied to the output raster, via 

classification, based on the researcher’s knowledge of 

the field, field characteristics, and observations of the 

local terrain’s response to heavy precipitation and 

runoff. Specifically, the IWI relates drainage areas with 

slope variations within a watershed and it can be 

expressed by the Equation 1, defined by Beven and 

Kirkby (1993): 
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 WI = ln (
𝑎

tan⁡(β)
) (1) 

 

Where a is contributing upstream area (m2) from 

flow accumulation raster, and β is the local slope angle 

(degrees). It is important to mention that for its 

calculations it is important to convert degrees to 

radians. 

The Inverse Wetness Index application (Equation. 

2) avoids the errors arising 

where cell division matches with β = 0, since a, 

corresponding to the denominator 

value (Oliveira, 2012). 
 

 IWI =
𝛽

𝑎
 (2) 

 

There are a couple of algorithms to calculate flow 

direction: D8 and D∞. For this paper, the algorithm D∞ 

was selected. Such an algorithm enables the 

determination of multiple flow directions, providing 

thus, better results when compared to algorithms that 

only assume 8 possible directions of flow (Sørensen et 

al., 2006). The procedure was done under an application 

called TauDEM (Terrain Analysis Using Digital 

Elevation Models) for ArcGIS software, it requires the 

existence of a DEM free of sinks. Then, the flow 

direction model was derived from it. 
 

Figure 5- Topographic wetness index of the Sahla watershed 

 
Source: By the authors 

 

The TWI of the Sahla watershed was categorized 

into 7 classes to reveal better discrimination. For this 

reason, we applied a range of classes based on a 

logarithmic progression of base 10. The TWI of Sahla 

watershed demonstrates that the beginning class is the 

areas where β = 0. such areas are mostly located in the 

valley bottoms. The spatial distribution of potential 

water accumulation, it can be observed that generally 
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increases due to the proximity to the streams (TWI 

classes ]0-0.00001] and ]0.00001-0.0001]) being, the 

permanent or ephemeral streams, the locations where 

water accumulates. The steepest slope areas are 

associated with the TWI classes ]0.0001 - 0.001] and 

]0.001 0.01], and the interfluves areas are dominated by 

the TWI classes ]0.01 - 0.1] and > 0.1. 

 

Stream density 

 

Stream density or wetted index is a commonly used 

method to simulate the amount of water in the soil 

quantitatively (Beven and Kirkby, 1993). It was used to 

approximate the distribution of groundwater circulating 

in the study area. It is carried out by defining the number 

of line elements of fixed length in a fixed area (Süzen 

and Doyuran, 2004), it is calculated by dividing the total 

length of streams by the watershed area (Equation 3) 

Stream density creates a relationship between drainage 

areas and slope variations within a catchment area. 

 

 Stream⁡density =
∑ 𝑠𝑡𝑟𝑒𝑎𝑚⁡𝑙𝑒𝑛𝑔𝑡ℎ

𝑠𝑡𝑢𝑑𝑦⁡𝑎𝑟𝑒𝑎
 (3) 

 

The numbers of line elements were calculated per 

km. As expected, the concentration of streams and the 

wetted index diminish with distance length linear 

magnitude per unit area. In the classification of the 

stream density of underground water circulation, no 

preference was given to any zone (Figure 6), and the 

area was classified into seven classes of equal density. 

Around 43% of the study area has a stream density 

between 4.2-6.2 while the highest density class (12.6-

14.6) of the stream density map occupies just 1.56%. 

Concave slopes with low gradient, usually drain 

water into it, and it leads to high giving a high value of 

Wetted Index, while convex slopes allow water to flow 

away from it giving these areas a low wetted index 

value. Generally, the stream density index, range from 

less than one in very dry areas to more than twenty in 

very humid areas. This index increases with increasing 

proximity to the hydrographical network with 

permanent streams having a higher wetted index than 

seasonal watercourses. The map was classified 

permitting the area of each class to be calculated. 
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Figure 6- Stream density in the Sahla watershed 

 
Source: Source: By the authors 

 

Hypsometry 

 

The hypsometry of the study area has altitudes ranging 

from 250m to 1200m and the general relief can be 

divided into three main units (Figure 7).This includes 

the southern part, which is a relatively flat area, the 

middle part where the dam is located, and the northern 

area that constitutes of highest altitudes in the area. 

These unities were classified following their altitudes, 

shape, and depth which are important components in 

relief defining. The study area has altitudes ranging 

from 250 m to 1200 m. 

 

 

Lithological Facies 

 

Lithology is among the most important conditioning 

factor affecting the mechanisms of mass movements 

(Terzaghi, 1953) and plays a fundamental role in the 

formation of shallow materials. It has a key impact in 

monitoring the nature and rate of geomorphological 

processes happening on the slopes. Landslides being a 

geomorphological process partially depend on the 

lithology and weathering specifications of the 

underlying materials (Selby, 1993). The lithology factor 

of the Sahla watershed is developed from the geology 

map of the Taounate-Ain Aïcha region with a scale of 

1:50000 (Suter, 1964), (Figure 8). Detail lithological 

formations could not be determined at this scale. 

Therefore, small lithological facies areas could not be 

identified. 
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Slope curvature 

 

Slopes curvature is the inverse of the radius of a circle 

tangent to the soil surface and it can be measured in 

three ways; longitudinal profile, transversal profile, or a 

tangential profile (Clerici et al., 2010). It is difficult to 

compare the relationship between curvature and slope 

instability due to the unspecified curvature types 

employed. Generally, the concave slopes are most 

susceptible, because it is associated with the focus of 

surface and subsurface runoff (Zêzere et al., 2004). In 

this paper, the profile curvatures option was chosen 

because it gives the rate of change of gradient or it 

measures the downslope trend and identifies different 

breaks on the slope. 

The profile curvature map was classified into three 

classes and it expresses the variation between positive 

(concavities) and negative values (convexities) (Figure 

9). Thus, the class that corresponds to the rectilinear 

slopes and flat areas is defined by positive and negative 

values near zero. The other classes (representing 

concavities and convexities are defined by the limits -

0.05 and 0.05. 

 

Figure 7- Hypsometry in the Sahla watershed 

 
Source: By the authors 
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Figure 8- Geological settings in the Sahla watershed 

 
Source: By the authors 
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Figure 9-  Curvature (Cross Section Profile) of the study area 

 
Source: By the authors 
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Land Use 

 

The land use data was developed by direct cartography 

from existing map 1:50000 then updated from satellite 

images, and fieldwork (Figure 10). Land use types as 

small as 10 m2 were mapped as much as they were 

visible of the satellite images. The land use considers 

some characteristics that can have an impact on slope 

movements (Zêzere et al., 1999). The land use was 

classified into several classes as follows; bare rocky 

soil, croplands, croplands and shrublands, croplands 

and trees, dense croplands, dense reforestation, dense 

trees, high-density afforestation, mosaic 

forest/croplands, natural forests, open grassland with 

sparse shrubs, urban area, and low-density reforestation 

over shrubland. Since the area is Mountainous, it has 

vast empty land full of vegetation where cattle can feed 

on. Due to overgrazing and other anthropic activities, 

the grassland area is highly degraded and large areas are 

bear with very little vegetation and soils. Most of the 

area is rural with very few houses. 

 

Logistic Regression Model 

 
LR is a multivariate model (Chau and Chan, 2005), also 

called the logistic model or logit model, which has been 

widely used to estimate the probability of landslide 

occurrence usually by relating the dependent variable 

(landslides in our case) with a variety of geo-

environmental or independent variables (Guzzetti et al., 

2005). LR can be discrete, continuous, or both, and 

factors for multi-regression must be numerical while 

those for discriminant analysis must have a normal 

distribution. This model uses the forward method (Lee 

and Pradhan, 2007) to analyze a binary response from 

several predisposing factors and regresses a 

dichotomous dependent variable on a set of the 

independent variables that can be continuous, interval, 

or categorized. In this study, LR was used to analyze the 

relationship between multiple independent variables 

(X1, X2, . . . Xn) (predisposing factors) and the 

dependent variable (y) (landslides). The LR method is 

based on three main assumptions. 

 

- The dependent variable is dichotomous with 

landslides indicated as 1 when there is 

presence or 0 when they are absent. 

- The independent variables are continuous and 

should only be included for significant 

importance. 

- The probability Y is equal to 1 given distinct 

values of X. That is if X and Y has a positive 

linear correlation, the probability that 

landslide will have a score of Y = 1. This 

indicates that as X (factors that caused 

previous slides) increases, the likelihood that 

Y (landslides) will be equal to 1 will tend to 

increase. As X increases, the probability that Y 

= 1 increases. This is based on the presumption 

that landslides will always occur under the 

same conditions that caused past landslides. 
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Figure 10 - Land use in the Sahla watershed 

 
Source: By the authors 

 

The LR model used a dichotomous dependent 

variable (Y), and this requires areas without landslides 

to be represented (Figure 11). Since the independent 

variable (Y) is dichotomous and the first value (Y = 1) 

representing areas with landslides has been acquired 

through the inventory, the other value (Y = 0) 

representing areas with no slides had to be obtained. 

This was accomplished by randomly generating points 

called non-points (pixels) within the study area by 

developing random points in relatively safe areas which 

are the gentle slopes with a low gradient. 
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Figure 11- The used LR method 

 
Source: By the authors 

 

The binary variable employed in this study is limited 

to two outcomes, representing the occurrence or non-

occurrence of cases (coded as 1 or 0, respectively). The 

model predicts the probability of the event as a function 

of the independent variables (Youssef et al., 2015). 

Many authors have used it (Cox, 1958) to ascertain the 

probability of landslides occurring by associating slope 

movements motion to landslide conditioning factors 

and represent landslides as (1) when they are present or 

(0) when absent. The quantitative relationship between 

landslides occurrence and their dependency on pre-

condition variables was examined through the LR 

model which is expressed in its simplest form in 

Equation 4. 

 

 P =
1

1 + exp−z
 (4) 

Where: 

 

P = probability of landslide occurrence ranging 

between 0 and 1 

Z = a linear combination of conditioning variables 

ez = exponent of conditioning factors 

Z assumes a function as in Equation (4). 

 

 z = B0 + B1⁡X1 + B2⁡X2 +⋯⁡Bn⁡Xn (5) 

 

B0 here is the “intercept” or “constant term”. B1...n 

here are the coefficients of the LR curve and X is the 

independent variable. 

After elimination of highly correlated dependent 

variables, the sample datasets were then used to input to 

the LR algorithm within R language to compute the 

correlation of landslide to each predisposing factor. The 

ahead stepwise LR was carried out to include only the 

predictor variables with an essential contribution to the 

presence of landslides. 

The susceptibility index map was built by 

incorporating the coefficient (Table 1) of each factor 

and summing the list of factors. Among the seven 

predisposing factors employed in constructing the 

model, four of them had positive computed weights, 

which means that they are significant in causing 

landslides occurrence. Among these factors, slope angle 

stands out as the most important factor of landslides. 

(Selby, 1993). 
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Table 1. Variables and regression coefficients estimated by LR. 

Variable Coefficient  Intercept 

Aspect 0.0014400887  

Curvature -0.1938426176 

Elevation -0.0057429231 

Lithology -0.0000006806 

Slope angle 0.2364887615 

Stream density 0.1495128397 

TWI -0.1608782431 -4.4304492308 

Source: By the authors 

 

Shallow landslides were frequent on concave and 

rectilinear slopes while rockfalls were recorded on 

convex slopes, thus making curvature an important 

factor. The slope orientation and elevation had mild 

significance while elevation and lithology had minimal 

effect on slope instability. The spatial probability of the 

area to landslides was assessed using the success rate 

curve (Bai et al., 2008) (Figure 12). 

Landslide predisposing factors settled to be 

necessary by the correlation and association test were 

joined using LR (Equation. 6) to build the susceptibility 

map of the study area. The weighted thematic layers for 

shallow landslides were developed by multiplying the 

rasters for conditioning factors by their coefficient and 

the susceptibility index map was built by combining the 

weighted conditioning factor maps. This involved the 

incorporation of the weighted maps in the raster 

calculator and summing them (Equation. 6). The entire 

process can be mathematically expressed as: 

 
Y = (Twi × (-0.1608782431) + 

Streamdens × 0.1495128397 

+Geolsett × (-0.0000006806) + Aspect 

× 0.0014400887 

+Slope × 0.2364887615 +Elev×(-

0.0057429231) 

+Curvature × (-0.1938426176) - 

4.4304492308 

(6) 

 

Where TWI is topographic wetness index, 

Streamdens is stream density, Geolsett is lithology, 

Aspect is slope aspect, Slope is slope angle, and 

Curvature is slope curvature. whereas the numbers on 

the equation are conditioning factors coefficients 

excepting the last number which is the intercept. The 

combination of the spatial probability layers of 

conditioning variables (Equation. 5) gave the 

susceptibility map (Figure 10). 

The susceptibility map was built using prediction 

values calculated from probabilities of binary values 

and thematic maps. The colour ramp displays a 

maximum susceptibility index of 0.999999 and 

4.0027e-07 as the lowest. Negative spatial probabilities 

did not exist in any area of the map. However, great 

differences in susceptibility exist. The south around the 

outlet of the dam is more probable to be affected by 

landslides than the extreme north and extreme south 

regions.  
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Figure 10- Landslide Susceptibility applied the LR using equal interval classification. 

 
Source: By the authors 

 

RESULTS VALIDATION 

 

 

The model validation was carried out using 50% of 

recorded landslides randomly selected and were 

validated employing a complete set of landslides. 

Multivariate regression analyses were used in model 

validation and consisted of creating a relationship 

between the total affected terrain and the non-affected 

part using success rate curve. Here, the validation group 

of landslides, 50% (Figure 13), logistic regression 

susceptibility map obtained from the initial modeling 

and the ROC curve was developed by computing the 

background values (areas without landslides) with the 

susceptibility map as input. The crossing points 

determine the goodness of fit of the curve. The ROC 

curve is a plot that establishes the relationship between 

sensitivity (proportion of true positives) against 

specificity (proportion of false positives) of the model 

at  a series of thresholds for a positive outcome. 
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Figure 11- Validation procedure for the LR model 

 

Source: By the authors 

 

The predictive capability or the competence of the 

susceptibility maps was judged using the ROC curves 

(Zizioli et al., 2013). It is a plot that sets the relationship 

between sensitivity (proportion of true positives) 

against specificity (proportion of false positives) of the 

model at a series of thresholds for a positive outcome. 

The sensitivity which is plotted on the y-axis is the 

likelihood that the area with a landslide is correctly 

classified while specificity (false negative rate) is the 

probability that the area with no-landslide is correctly 

classified. The x-axis expressed as 1 – specificity 

represents the false positive rate (Jaiswal et al., 2010). 

The determination of the AUC enables the 

quantitative evaluation of the overall predictive 

capability of LR susceptibility model (Beguería, 2006),  

ranging between 0 and 1. A value closer to 1 indicates 

the good predictive ability of the model. A casual 

predictive power will be manifested for an AUC value 

of about 0.5, describing a diagonal straight line (Figure 

14). AUC value below 0.5 means models with a terrible 

predictive capacity and should not be taken into 

consideration (Bi and Bennett, 2003); . The 

mathematical expression of the AUC is given by 

Equation 7 (Garcia et al., 2007; (Pereira et al., 

2012). 

 

 AUC = ⁡∑ [(𝑥𝑖+1 − 𝑥𝑖) ×
𝑦𝑖+1 + 𝑦𝑖

2
]

𝑛

𝑖=1
 (7) 

 

Where x is the portion of the study area predicted as 

susceptible by descending order and y is the percentage 

of correctly classified landslide area belonging to the 

validation group. 

Guzzetti et al. (2005) indicates thur fineat AUC 

values between 0.75 and 0.8 correspond to an 

acceptable model, while AUC values ranging between 

0.8 and 0.9 indicates a good susceptibility model, and 

finally, AUC values > 0.9 typify excellent models. The 

success curve has an AUC of 0.96. The curve has a good 

prediction power with 96% of the landslides righty 

captured by the model (Figure 14). The performance of 

a model with such values is good and capable to predict 

future landslide events in the study area (Guzzetti et al., 

2005). 

 

 

 

 

 

 

Figure 12- ROC curve for LR Model. 
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Source: By the authors 

 

The LR ROC is the measurement of the correlation 

between unstable and stable areas. A greater number of 

landslides were captured by the prediction curve 

(Figure 12) with 95% of the area found under the Curve. 

The diagonal line indicates a 50% probability of 

occurrence. Prediction curves with landslide values 

below the diagonal line are considered to have a low 

predictive capability and should not be admissible 

(Guzzetti et al., 2005). With the curve largely above the 

diagonal line, the model is perfect and accepted 

following the proposal of Guzzetti et al. (2005). 

 

 

DISCUSSION 

 

 

The LR model makes a relationship between all the 

variables and slope movements at once. This looks 

more suitable since one factor alone may not be enough 

to explain the slope failure. The interaction between 

combinations of factors might give quite a different 

result than when examined independently. For example, 

a moderate slope with a big quantity of weathered 

material might fail due to a serious undercutting during 

road construction although the moderate slope or road 

factors by themselves are insignificant. In the study 

area, human action most often acts as a trigger rather 

than a prominent conditioning factor. This makes the 

LR model more fit to assess landslides in the area. 

The LR model gives the contribution of each factor 

(e.g., slope curvature and elevation) to landslides 

employing coefficient, where the other models provide 

them by sub-classes. This makes it easier for 

nongeographers or non-earth specialists to easily join 

the factors with high coefficients to delimit the 

anticipated hazard in an area. Land-use planners may 

even decide to take measures that scale back the effects 

of the variable and determine which level of risk they 

are ready to accept or to take action against. 

The witness of the LR model is that it assumes the 

independent variables are continuous and should only 

be included for practical relevance. In this case, we run 

the risk of creating a model unstable if two or more 

independent variables measure has the same effect. The 

major limitation is in the fact that the LR model 

considers landslides as points with equal values rather 

than polygons thereby neglecting the variations in 

landslide size which is an essential component in a 

landslide as viewed by  Aleotti and Chowdhury (1999) 

Guzzetti et al. (1999) who recognize landslide 

magnitude to be incorporated in Varnes (1984) 

definition of a landslide. 

 

 

FINAL CONSIDERATIONS 

 

 

LSM is a fundament of disaster risk evaluation. There 

are a large variety GIS-based qualitative and 

quantitative methods beneficial to examine the 

relationship between landslides and landslide 

predisposing factors. This study broadens the utilization 

of LR to make a susceptibility map index based on GIS 

and R.  

This study presents the performance of LR. The 

model displays satisfactory results although using an 

equal number of landslide and non-landslide pixels 

shows lightly accurate results in total. It can be 

concluded that the landslide causal factors (i.e., Slope, 

curvature, aspect) have a notable impact in causing 

landslides. This study also shows that predicting likely 

occur landslides by using LR can be the most suitable 

choice although the result can be more accurate on a 

larger scale. Susceptibility assessment is an 

indispensable means to outline areas prone to landslide, 

and it has become crucial information for decision-

makers and government. 
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