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Early screening is vital and helpful for implementing intensive intervention and

rehabilitation therapy for children with autism spectrum disorder (ASD). Research has

shown that electroencephalogram (EEG) signals can reflect abnormal brain function

of children with ASD, and screening with EEG signals has the characteristics of

good real-time performance and high sensitivity. However, the existing EEG screening

algorithms mostly focus on the data analysis in the resting state, and the extracted

EEG features have some disadvantages such as weak representation capacity and

information redundancy. In this study, we utilized the event-related potential (ERP)

technique to acquire the EEG data of the subjects under positive and negative emotional

stimulation and proposed an EEG Feature Selection Algorithm based on L1-norm

regularization to perform screening of autism. The proposed EEG Feature Selection

Algorithm includes the following steps: (1) extracting 20 EEG features from the raw data,

(2) classification with support vector machine, (3) selecting appropriate EEG feature with

L1-norm regularization according to the classification performance. The experimental

results show that the accuracy for screening of children with ASD can reach 93.8% and

87.5% under positive and negative emotional stimulation and the proposed algorithm

can effectively eliminate redundant features and improve screening accuracy.

Keywords: early screening, autism spectrum disorder, electroencephalogram signal, feature selection, event-

related potential

1. INTRODUCTION

Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disorder involving deficits in
interpersonal communication and social interactions, as well as restricted, repetitive mannerisms
and interests (American Psychiatric Association, 2013). The study by Bickel et al. (2015) and
Polyak et al. (2015) suggested that ASD often includes some other comorbidities, such as epilepsy,
attention deficit hyperactivity disorder (ADHD), dysthymia, sleep disorders, psychiatric disorders,
and gastrointestinal disorders. At present, autism has become a kind of disease with the highest
rate of disability in children, which seriously endangers the physical and mental health of patients.
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Barton et al. (2012) stated that early screening and early intensive
intervention can effectively improve the social interaction and
cognitive development of children with ASD. Therefore, it is of
vital realistic significance to explore the early screening methods
for children with ASD.

In recent years, the screening methods of autism based on
electroencephalogram (EEG) have drawn more attention. EEG
can be used for real-time tracking of the neural activity of
the brain in milliseconds and detecting subtle differences in
neural oscillations more sensitively (Chen et al., 2021), thus
quickly and accurately distinguishing children with ASD and
typically developing (TD) children with EEG signals. Shams
and Wahab (2013) collected EEG data among children with
ASD and TD children in the resting state of eyes open and
closed, extracted time-domain features of these EEG data, and
then classified them using a neural network with multi-layer
perception (MLP) technology. Esguerra et al. (2012) conducted
a non-linear analysis of EEG in children with ASD and explored
the differences among TD children, children with moderate ASD,
and children with deep ASD. Tierney et al. (2012) collected
EEG signals in the resting state of children with ASD and
TD children and performed the power spectrum analysis. The
experimental results obtained in the study by Tierney et al.
(2012) showed that the power spectrum of high-risk infants was
lower than that of low-risk infants. Acharya et al. (2015) utilized
multiple entropy methods to identify normal and interstitial
EEG signals and showed that spectral entropy, permutation
entropy (PE), and sample entropy are high-resolution features
to distinguish normal and epileptic EEG signals. Zhao et al.
(2019) collected EEG signals of 37 children with ASD and 38
TD children in resting state for 5min, and they computed EEG
features such as approximate entropy, sample entropy, wavelet
entropy, and sequencing entropy. The feature selection method
suggested by Zhao et al. (2019) combined the permutation test
with a support vector machine (SVM) classifier, and the highest
screening accuracy rate of children with ASD was 84.55%. Dong
et al. (2021) developed a subject sensitive EEG discrimination
for ASD evaluation with fast reconstructable CNN driven
by reinforcement learning. Lei et al. (2016) investigated the
brain activity characteristics of children with ASD during
virtual driving environment by analyzing EEG signals from the
perspective of neuroergonomics. The method of the shift average
sample entropy is proposed to deal with EEG signals in the
resting and the virtual driving environments. The results in the
study by Lei et al. (2016) showed that the sliding mean sample
entropy of children with ASD was generally lower than that of
TD children, especially in the prefrontal, temporal, parietal, and
occipital functional areas. Fan et al. (2017) developed the group-
level classification models capable of recognizing affective states
andmental workload of individuals with ASD during driving skill
training. The offline EEG-based group-level classification models
are feasible for recognizing binary low and high intensity of affect
and workload of individuals with ASD in the context of driving.
However, the applicability of the models in an online adaptive
driving task requires further development.

Given a brain stimulus, such as light, pictures, music, and
emotion, dynamic EEG signals of the brain can be collected

under these stimulations, which is called event-related potential
(ERP). ERP is considered as one of the most effective methods to
monitor cognitive processes. Relevant researchers believed that
ERP can be used to screen various pathological nerve disorders
and achieve higher screening accuracy, such as ADHD and
ASD (Castro-Cabrera et al., 2010). Meanwhile, some studies
have shown that individuals with ASD have a poor perception
of facial expression of others (Kiyoto et al., 2007). However,
fewer studies focus on the difference of perception of facial
emotion between children with ASD and TD children with ERP
methods. Furthermore, the experimental design of ERP for facial
emotional stimuli is also scanty in the existing literature. The
randomness and non-stationarity of EEG signal alsomake autism
screening based on ERPmore complicated. Therefore, it is of vital
significance to construct a screening method for children with
ASD based on EEG signals.

In general, whether screening methods for children with
ASD based on EEG signals can work effectively involves several
key factors such as suitable EEG characteristic parameters, high
robustness of the recognition algorithm, and low computation
complexity of recognition algorithm. Feature selection in EEG
signals is the key to the performance of screening algorithms
for children with ASD. In the existing work, however, only a
few kinds of features were examined, and why those robust
features contribute to cross-subject emotion recognition was
not studied. Therefore, the extracted features are not enough
to express the differentiated information in the EEG signal,
and the complementarity among features is weak. On the
other hand, in the EEG candidate feature set, the removal
of irrelevant redundant features can greatly improve the
classification performance. At present, the two typical automatic
feature selection techniques are the filter-based strategy and the
wrapper-based strategy (Guyon and Elisseeff, 2003). Most studies
on autism screening based on EEG signals adopt the filter-based
feature selection method. However, the filter-based method fails
to consider the complementarity between various EEG features
and cannot effectively remove the redundant EEG features.
When compared with the filter-basedmethod, the wrapper-based
method considers the interaction between EEG features and can
search the most suitable feature subset more effectively, with
higher accuracy and stronger generalization ability.

In this study, we proposed a linear SVMwith L1-norm feature
selection for screening children with ASD under positive and
negative emotional stimuli. First, the experimental paradigm
of ERP was constructed to stimulate the positive and negative
emotions of the subjects and to extract evoked EEG signals.
Then, we established the mapping relationship between EEG
signal and social and emotional behaviors and analyzed the
differences between TD children and children with ASD in
social affective cognition. On the other hand, in the existing
work, only a few kinds of EEG signal characteristics have been
studied, and the representation ability of extracted features is
weak for screening children with ASD. This study extracts a
wider range of 20 types of EEG features for utilization in autism
screening and analyzes their effectiveness in distinguishing
children with ASD and TD children under positive and negative
emotional stimuli. Taking account of the redundancy and
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complementarity of multiple features, the linear SVM of L1-
norm feature selection algorithm was employed in our study to
improve the screening accuracy of children with ASD. Provided
that utilizing the conventional linear SVM classification, the
highest screening accuracy for children with ASD was 81% and
78% under positive and negative emotional stimuli, respectively.
Our experiment shows that screening accuracy for children
with ASD can reach 93.75% and 87.5% under the positive and
negative emotional stimuli using the L1-norm feature selection
algorithm. The above-mentioned results verify that the L1-norm
can remove redundant features and select better characteristics,
which improve screening accuracy for children with ASD.

2. METHODOLOGY

2.1. Participants
A total of 80 children were recruited in this study. Written
informed consent from parents was obtained prior to
participation. The participants were divided into ASD group
and TD group. According to the experimental cooperation of
children recorded by the experimenters, children with high
coordination degree were selected as follows: The ASD group
consisted of 32 children aged 4–6 years (M = 4.98 years, SD =

14 months), and the TD group consisted of 32 children (M = 5.2
years, SD= 8 months).

Children with ASD were recruited from a special school.
The inclusion criteria for the ASD group included (1) diagnosis
in accordance with DSM-V (American Psychiatric Association,
2013; Lobar, 2016), (2) double-blind diagnosis by two directors
or deputy directors of developmental-behavioral pediatrics, (3)
aged 2–7 years, (4) no severe respiratory diseases, schizophrenia,
epilepsy, and other brain organic diseases, and (5) normal
development of the visual system.

The typically developing children were recruited from
standard kindergartens. The inclusion criteria for the TD group
included (1) matched age with the ASD group, (2) no suspected
or diagnosed psychiatric disorder and/or other developmental
delay or learning disabilities, and (3) normal development of the
visual system.

2.2. Device
In this study, EMOTIV EPOC+ (Emotiv Inc., San Francisco,
USA) (Badcock et al., 2013, 2015; Duvinage et al., 2013) was
used to record EEG signals of the participants, as shown in
Figure 1A. The EMOTIV EPOC+ is a portable high-resolution
EEG system with 14 data acquisition electrodes (i.e., AF3, F7,
F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4) and 2
reference electrodes (P3 and P4). As shown in Figure 1B, the
locations of electrodes follow the international 10–20 system,
which provides good coverage of the frontal and prefrontal lobes
and the temporal, parietal, and occipital lobes. The device is easy
to set up and wear, i.e., wet the sensors with saline and install
them on the headset, and then wear the headset and adjust the
position of the reference electrode until the electrode indicator
light reaches 100%. After wearing, EEG signals can be sent to a
PC or laptop over a Bluetooth wireless connection.

2.3. Materials
In order to elicit positive and negative emotions of children,
affection-evoked movie clips were prepared by five psychologists.
Themovie clips were initially screened according to the following
three criteria: (1) reasonable duration—the fatigue caused by
watching for a long time will affect the emotional subjective
experience, (2) easy to understand themeaning—the test requires
to obtain the emotional information of children in two groups
during a short time, and the unclear meaning of the movie clips
may affect the emotional response time of participants, and (3)
effective emotional elicitation—the movie clips can effectively
elicit the emotions of participants, that is, positive and negative
emotions (Rottenberg et al., 2002). Finally, 20 eligible movie
clips (average duration: 28.9 s) were allowed to enter the stage of
emotional elicitation effect evaluation.

A total of 10 volunteers were recruited to evaluate the
emotional elicitation effect of each movie clip by self-report
questionnaire. Our self-report questionnaire was designed
referring to that presented by Gross and Levenson (1995). The
questionnaire evaluated six categories of emotions elicited by
movie clips, including joy, happiness, interest, sadness, disgust,
and fear. Each category was scored according to the 9-point
Likert scoring method, from 0 (none) to 8 (extremely intense).
The higher the score, the higher the emotional intensity elicited
by movie clips. The movie clips with a high score were selected
and edited into AVI videos using the multimedia editing software
Adobe Premiere. The video resolution was 720× 576 pixels (i.e.,
25.0 FPS). The positive emotion elicitation video consists of six
movie clips (total duration: 94 s), including a baby playing with
his mother or pet or some funny embarrassing incidents. The
negative emotion elicitation video consists of two movie clips
(total duration: 120 s) about a baby being given an injection.

2.4. Procedure
Empathy refers to an individual’s understanding and speculation
of others’ inner state and behavior. The clinical manifestations of
empathy deficiency in autism are impaired emotional cognitive
ability and expression imitation ability. In view of the fact that
children with ASD may have abnormal empathy function, the
aim of our experiment was to analyze the difference in the
brain activity between the TD children and children with ASD
when watching positive/negative emotional elicitation materials
by EEG signals. The experiment was performed independently
for each child in a 102 isolation room. A concrete procedure
is as follows: (1) explain the experimental requirements and
procedures to parents and children, (2) help participant to wear
the device EMOTIV EPOC+, (3) seat the participant in a chair
50–60 cm away from the screen and ask them to look at the
star fixation point with both their eyes straight ahead, (4) play
a piece of light music to make participant relaxed and then
begin to record the EEG data, (5) play the positive/negative
emotional elicitation materials and continue to record the EEG
data. While playing the materials, the response of the participant
was observed and recorded. If the participant did not cooperate,
the recorded EEG data were excluded and retested, (6) After
watching an emotional elicitation material, the participant could
rest for a few minutes, and (7) repeat steps (1)–(6) to watch
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FIGURE 1 | (A) The device EMOTIV EPOC+ and (B) the locations of its electrodes.

FIGURE 2 | Flowchart of the data preprocessing.

the other materials. Before the data collection, a parent guides
his/her child to cooperate with the experimental procedures.
In the process of data collection, he/she sits beside the child
at a certain distance and monitors the behavior of the child
in order to evaluate if the child feels comfortable. When the
stimulus material is played, a parent stays quiet to ensure
that the attention of his/her child is focused on the stimulus
material. All the valid data were sent to a PC and saved in the
corresponding folder.

2.5. Data Preprocessing
To extract the effective features from the EEG data, preprocessing
to the raw EEG data is necessary to eliminate the noise
and trivial information. The data preprocessing includes four
steps, namely, direct current (DC) offset elimination, artifacts
removal, signal extraction of different rhythms, and windowing
of data. The flowchart of the data preprocessing is shown in
Figure 2.

(1) DC offset elimination: The method to remove the DC offset
that followed the instructions of the tool EMOTIV PRO was
to subtract the average value from the whole data channel,
and use a 0.16-Hz first-order high-pass filter to remove
the noise.

(2) Artifacts removal: In this study, the independent component
analysis (ICA) was used to remove the artifacts such as
electrooculogram, ECG, and electromyography (Jung et al.,
1998). Being one of the current most popular blind source
separation methods, ICA decomposes the observed data into
several independent components and estimates mix matrix

by the optimization algorithm. Each artifact was considered
as one of the independent components separated from the
EEG source data.

(3) Signal extraction of different rhythms: To explore the
difference of the EEG in different rhythms between ASD
group and TD group, a finite impulse response digital band-
pass filter based on Hanning window was used to extract
five rhythms of the EEG, namely, theta (4–8Hz), alpha
(8–12Hz), low beta (12–16Hz), high beta (16–25Hz), and
gamma (25–45 Hz).

(4) Windowing of data: After filtering, the data were split into
fixed 4s windows with an overlapping size of 2s.

2.6. Handcrafted Feature Extraction
The EEG signal is inherently complex, non-linear, non-
stationary, and random. To extract valuable information from
the EEG signals, various handcrafted features are presented
to describe the EEG signals. However, a single handcrafted
feature cannot represent the EEG signal comprehensively. To
this end, the study by Li et al. (2018) explores 18 handcrafted
features including those for cross-subject emotion recognition.
This study follows their work and adds two more features
(i.e., sample entropy and differential entropy) which are widely
used in the EEG-based emotional analysis to construct the
candidate feature set, including (1) peak–peak mean, (2) mean
square value, (3) variance, (4) power sum, (5) maximum power
spectral frequency, (6) maximum power spectral density, (7)
Hjorth parameter: activity, (8) Hjorth parameter: mobility, (9)
Hjorth parameter: complexity (Hjorth, 1970), (10) correlation
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dimension, (11) Kolmogorov entropy (Schuster, 1995), (12)
approximate entropy (Delgado-Bonal and Marshak, 2019), (13)
sample entropy (Delgado-Bonal and Marshak, 2019), (14)
Lyapunov exponent, (15) singular spectrum entropy, (16)
permutation entropy, (17) C0 complexity, (18) Shannon entropy,
(19) power spectral entropy, and (20) differential entropy (Duan
et al., 2013). All the features were normalized before further
analysis (Table 1).

2.7. Recognition Algorithm
In this study, we adopted SVM to learn a binary classifier with
extracted EEG features to distinguish TD group and ASD group.
SVM is one of the most robust machine learning methods, being
based on the statistical learning frameworks proposed by Cortes
and Vapnik (1995).

Given the training data
[{

xi, yi
}]n

i=1
, SVM attempts to find the

best hyperplanes with maximum margin to divide the training

TABLE 1 | Handcrafted features used for autism spectrum disorder/typically developing (ASD/TD) classification.

Features Formulation

1. Peak-Peak Mean (PPM) PPM = 1
H

∑H
i=1 (x (Pi) − x (Ti))

Where, Pi and Ti are the time indexes of peak and trough, respectively.

2. Mean Square Value (MSV) MSV = 1
N

∑N−1
n=0 x(n)

2

3. Variance (VAR) VAR = σ 2 = 1
N

∑N−1
n=0 [x (n) − x ]2,

x = 1
N

∑N−1
n=0 x (n)

DFT (Discrete Fourier Transform): X(k) =
∑N−1

n=0 x (n) e
−j2πnk

N k = 0, . . . , N− 1

4. Power Spectral Sum (PSS) PSS =
∑N−1

k=0
1
N
|X (k)|2

5. Maximum Power Spectral Frequency (MPSF) MPSF = argmax
k

1
N
|X (k)|2

6. Maximum Power Spectral Density (MPSD) MPSD = maxk
1
N
|X (k)|2

mn =
∫ ∞

−∞
ωnX (ω)dω

7. Hjorth Parameter: Activity Activity = m0

8. Hjorth Parameter: Mobility Mobility =
(

m2
m0

)1/2

9. Hjorth Parameter: Complexity Complexity =

(

m4
m2

)1/2

(

m2
m0

)1/2

Y = [ξi , . . . , ξN ]
T

ξi = (x (ti) , x (ti + τ) , . . . , x(ti + (m − 1)τ ))

10. Correlation Dimension (CD) CD = lim
r→0

logC(m,r)
log r

C (m, r) = 1
m2

∑m
i,j=1 θ

(

r −
∣

∣ξi − ξj
∣

∣

)

Where, θ is a Heaviside step function; r is threshold of similarity.

11. Kolmogorov Entropy (KE) KE = 1
τ
ln C(m,r)

C(m+1,r)

12. Approximate Entropy (AE) AE = 8m (r) − 8m+1 (r)

8m (r) = 1
N−m+1

∑N−m+ 1
i=1 InCm

i (r)

Cm
i (r) =

No. of ξj |max
j
|ξi−ξj|≤r

N−m+1

j ∈ [1,N −m+ 1]

13. Sample Entropy (SaE) SaE = −ln(9m+1 (r) /9m (r))

9m (r) = 1
N−m+1

∑N−m+ 1
i=1 Cm

i (r)

Cm
i (r) =

No. of ξj |max
j
|ξi−ξj|≤r

N−m

j ∈ [1,N −m+ 1] , j 6= i

14. Lyapunov Exponent (LE) LE(i) = lim
z→∞

1
z
log2

‖δξi (z)‖
‖δξi (0)‖

Where, | |δξi (z)| | is the distance of two neighboring points in the i-th direction at time z.

15. Singular Spectrum Entropy (SSE) SSE = −
∑

j pj (s) log(pj (s))

Where,
{

pj (s)
}

is the probability distribution of singular spectrum value sm
∑

m sm
; sm is the eigenvalue of Y.

16. Permutation Entropy (PE) PE = −
∑m!

i=1 pi (π) ln (pi (π))/ln(m!)

Where, π is the order pattern;
{

pi (π )
}

is the probability distribution of π .

17. C0 Complexity C0 =

∑N−1
n=0 |x(n)−y(n)|

2

∑N−1
n=0 |x(n)|

2 ,

y (n) = 1
N

∑N−1
k=0 Y (k) e

j2kπn
N Y (k)=







X(k), |X (k)|2 > PSS

0, |X (k)|2 ≤ PSS

18. Shannon Entropy (SE) SE = −
∑

i pi (x(n)) log(pi (x(n)))

Where,
{

pi (x(n))
}

is the probability distribution of x(n).

19. Power Spectral Entropy (PSE) PSE = −
∑

i pi (PS) log(pi (PSS))

Where,
{

pi (PSS)
}

is the probability distribution of power spectral sum.

20. Differential Entropy (DE) DE = 1
2 log(2πeσ 2)

Where, σ is the standard deviation of x(n).
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data into two groups according to the labels yi ∈ {+1,−1}. To
this end, SVM optimizes the model by minimizing a hinge loss,
which can be formulated as follows:

1

n

∑n

i=1
max

[

0, 1−yi

(

wTxi−b
)]

+λ ‖w‖P (1)

where w and b are the trainable parameters, w is the normal
vector to the hyperplane, and b is the bias. The parameter λ

controls the trade-off between the loss and penalty.
According to the structural risk minimization, larger margins

should lead to better generalization and prevent overfitting in the
high-dimensional feature spaces. The solution of SVM depends
only on the points located on the two supporting planes, which
are called support vectors. Hence, when compared with other
machine learning methods, SVM has better generalization ability
in dealing with small samples with high-dimensional features.
Considering small size of the available participants with ASD and
high-dimensional EEG features, SVM is more suitable for the
data analysis in this study.

The second terms in Formula (1) are regularization terms
with lp-norm penalty. When p = 1, l1-norm penalty forces
the normal vector to satisfy sparsity. L1-norm regularization
is a wrapper-based strategy for the automatic feature selection.
While minimizing the structural risk of model prediction, L1-
norm regularization makes unimportant features with weights
of zero value being eliminated from the candidate set. The
remaining features are useful for the autism screening under
positive/negative emotional stimulus. Hence, it is an effective
way to measure the importance and discrimination of features
through the corresponding weights and eliminate the redundant
and unimportant features.

3. RESULTS

The discrimination of different EEG handcrafted features from
different rhythms and brain regions is investigated. The selected
features with l1-regularized SVM for the classification of children
with ASD and TD children are evaluated. In order to make a fair
comparison, the leave-one-out method is adopted to evaluate the
performance of different features, i.e., each child should be used
once as test data to evaluate the model trained with the data set
composed of all rest children.

3.1. Discrimination of Different
Handcrafted Features
To explore the discrimination of different handcrafted features,
each kind of handcrafted feature is extracted from five rhythms,
all the electrodes are input into an SVM classifier, and the
classification accuracy of a single feature is compared. The
classification results are shown in Figure 3.

It is noted that under positive emotional stimulus, peak–peak
mean and differential entropy have the best discrimination, both
with 84.4% of classification accuracy, followed by mean square
value, variance, Hjorth parameter: activity, power sum, and
Shannon entropy, all with 81.3% of classification accuracy, while
under negative emotional stimulus, mean square value, variance,
Hjorth parameter: activity, maximum power spectral density,

and power sum have the best discrimination, all with 82.8%
of classification accuracy, followed by differential entropy, with
81.3% of classification accuracy. The features with above 80% of
classification accuracy under two emotional stimuli includemean
square value, variance, Hjorth parameter: activity, power sum,
and differential entropy.

3.2. Discrimination of Different Rhythms
To explore the discrimination of different rhythms, 20 kinds of
handcrafted features from a single rhythm are input into an SVM
classifier and the classification accuracy of features extracted
from different rhythms is compared. The classification results are
shown in Figure 4.

It is noted that under positive emotional stimulus, the features
extracted from low beta rhythm have the best discrimination,
with 78.1% of classification accuracy, followed by gamma
rhythm, alpha rhythm, high beta rhythm, and theta rhythm,
while under negative emotional stimulus, the features extracted
from theta rhythm have the best discrimination, with 84.4%
of classification accuracy, followed by alpha rhythm, gamma
rhythm, high beta rhythm, and low beta rhythm. On average,
the features extracted from gamma rhythm have the highest
classification accuracy under two emotional stimuli.

3.3. Discrimination of Different Brain
Regions
To explore the discrimination of different rhythms, 14 data
acquisition electrodes are divided into 5 groups, namely, (1) the
left frontal lobe (including AF3, F3, F7, and FC5), (2) the right
frontal lobe (including AF4, F4, F8, and FC6), (3) the temporal
lobe (including T7 and T8), (4) the parietal lobe (including P7
and P8), and (5) the occipital lobe (including O1 and O2). A
total of 20 kinds of handcrafted features from electrodes of the
same group are input into an SVM classifier, and the classification
accuracy of features extracted from different brain regions is
compared. The classification results are shown in Figure 5.

It is noted that under positive emotional stimulus, the features
extracted from the temporal lobe and occipital lobe have the
best discrimination, with 68.8% of classification accuracy, while
under negative emotional stimulus, the features extracted from
the occipital lobe have the best discrimination, with 73.4% of
classification accuracy. On average, the features extracted from
the occipital lobe have the highest classification accuracy under
two emotional stimuli.

3.4. Classification With l1-Regularized SVM
To evaluate the proposed method, 20 handcrafted features are
input into an ordinary linear SVM and an l1-regularized SVM,
respectively, which adaptively select good features to distinguish
ASD group and TD group. The λ is set between 0.1 and 1, and
step length is set to 0.01 to investigate the effect of parameter λ

on the classification accuracy. The results are shown in Table 2.
When compared with the ordinal linear SVM classification,

the highest screening accuracies of children with ASD under
positive and negative emotional stimuli are 81.3 and 78.1%,
respectively, where the proposed method achieved the highest
recognition accuracy of 93.8% when λ = 0.13 under positive
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FIGURE 3 | Performance comparison of different handcrafted features for typically developing (TD)/autism spectrum disorder (ASD) classification.

FIGURE 4 | Performance comparison of different rhythm features for typically developing (TD)/autism spectrum disorder (ASD) classification.

emotional stimulus, and 87.5% when λ = 0.24 under negative
emotional stimulus.

When λ = 0.13, 10 features with non-zero weights were
selected for ASD/TD classification under positive emotional
stimulus, which are listed in Table 3. It is noted that
eight kinds of handcrafted features were selected, of which
correlation dimension and maximum power spectral frequency
were selected twice. In terms of rhythms, five features from
gamma rhythm were selected, which showed that gamma
rhythm had better discrimination under positive emotional
stimulus. In terms of the brain region, three features from

the right frontal lobe were selected, which showed that the
right frontal lobe had better discrimination under positive
emotional stimulus.

When λ = 0.24, 21 features with non-zero weights
were selected for ASD/TD classification under negative
emotional stimulus, which are listed in Table 4. It is noted
that 14 kinds of handcrafted features were selected, of
which correlation dimension was selected 4 times. In
terms of rhythms, seven features from gamma rhythm
were selected, which showed that gamma rhythm also
had better discrimination under negative emotional
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FIGURE 5 | Performance comparison of different brain region features for typically developing (TD)/autism spectrum disorder (ASD) classification.

TABLE 2 | The highest classification accuracy using the ordinary linear support

vector machine (SVM) and the l1-regularized SVM, respectively.

Methods Stimulus λ No. of selected

features

Accuracy (%)

Ordinal linear SVM Positive – – 81.3

Negative – – 78.1

l1-regurarized SVM Positive 0.13 10 93.8

Negative 0.24 21 87.5

TABLE 3 | The features selected by the l1-regularized support vector machine

under positive emotional stimulus.

No. Features Rhythm Brain region

1 Differential entropy Alpha Left frontal lobe

2 C0 complexity Theta Left frontal lobe

3 Correlation dimension Gamma Temporal lobe

4 Hjorth parameter: mobility High Beta Parietal lobe

5 Maximum power spectral frequency Low Beta Occipital lobe

6 Correlation dimension Gamma Parietal lobe

7 Singular spectrum entropy Alpha Temporal lobe

8 Maximum power spectral frequency Gamma Right frontal lobe

9 Variance Gamma Right frontal lobe

10 Power spectral entropy Gamma Right frontal lobe

stimulus. In terms of brain region, eight features from
the occipital lobe were selected, which showed that the
occipital lobe had better discrimination under negative
emotional stimulus.

4. CONCLUSION

In order to aim for screening children with ASD, this study
proposes a linear SVM based on L1-norm regularization, which
readily handles the classification of children with autism, with
the selected EEG features collected under positive and negative
emotional stimuli. To evaluate the performance of the proposed

TABLE 4 | The features selected by the l1-regularized support vector machine

under negative emotional stimulus.

No. Features Rhythm Brain region

1 Approximate entropy High Beta Left frontal lobe

2 Power spectral entropy Theta Left frontal lobe

3 Approximate entropy Low Beta Left frontal lobe

4 Sample entropy Alpha Temporal lobe

5 Lyapunov exponent High Beta Occipital lobe

6 Correlation dimension Alpha Occipital lobe

7 Peak–peak mean Gamma Occipital lobe

8 Mean square value Gamma Occipital lobe

9 Variance Gamma Occipital lobe

10 Maximum power spectral density Gamma Occipital lobe

11 Hjorth parameter: mobility Alpha Occipital lobe

12 Correlation dimension Gamma Occipital lobe

13 Hjorth parameter: mobility Theta Parietal lobe

14 Correlation dimension Gamma Parietal lobe

15 Correlation dimension Gamma Temporal lobe

16 Kolmogorov entropy High Beta Right frontal lobe

17 Power sum Alpha Right frontal lobe

18 Maximum power spectral frequency Low Beta Right frontal lobe

19 Sample entropy High Beta Right frontal lobe

20 Hjorth parameter: activity High Beta Right frontal lobe

21 Sample entropy High Beta Right frontal lobe

algorithm, we designed an ERP experimental paradigm. We
stimulated the subjects with positive and negative emotions, and
in the meantime, the evoked EEG data sets were collected. We
also linked the EEG signal and social and emotional behaviors to
further analyze the pathogeny of children with ASD. Then, the
EEG features were obtained for the screening of autism. When
compared with the existing work that studied a limited number
of features and lacked adequately strong representation ability,
this study extracts a wider range of 20 types of the EEG features
for the screening of autism. However, increasing the number
of features resulted in the redundancy and complementarity of
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multiple features; to solve this problem, we proposed a linear
SVM based on the L1-norm feature selection algorithm to
improve the accuracy of screening for children with ASD. The
proposed algorithm displayed significant advantages over the
existing benchmark, i.e., in the real data set tests, compared with
the ordinal linear SVM classification, the accuracies of screening
children with autism under positive and negative emotional
stimuli were dramatically increased from 81.3 and 78.1% to
93.8 and 87.5%. Our experiments proved that the L1-norm
can remove redundant features, screen out better features, and
improve the accuracy of screening. In addition, the experimental
results suggested that differential entropy of the EEG collected
from positive and negative emotional stimuli was able to screen
autism, and the differences in emotion could be identified using
this feature.We also found that the highest averaged classification
accuracy appeared in the occipital lobe under both positive and
negative emotional stimuli, which could be the notification point
of the difference between TD children and children with ASD.
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