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ABSTRACT

This thesis investigates the merits of direct sequence spread spectrum multiple access
for wireless local area networks. The primary obstacles are multipath fading and multi-
access interference. These effect both bit error rate and code acquisition performance.

Since code acquisition is not a severe problem for matched filter receivers, conditions
under which matched filtering can be implemented are determined. These conditions
are the result of current technological limitations.

It is shown that if matched filtering can not be done then system-wide synchroniza-
tion is required to facilitate rapid code acquisition. Under these circumstances spread
spectrum may not be an attractive multiple access protocol.

Two methods are demonstrated to determine system performance in terms of bit error
rate and multipath outage. One method is easy to compute and uses a Gaussian
interference approximation. The other method, which must be computed numerically
by computer, uses a more realistic model but generates similar multipath outage results.

Performance is found to compare favorably with several other simple multiple access
protocols including fixed assignment FDMA and TDMA. However, it is shown that
spread spectrum can not compete with more sophisticated protocols such as CSMA/CD
or BRAM that allow cooperation between terminals.

Thesis Supervisors: Jerome B. Wiesner, Institute Professor Emeritus
Robert S. Kennedy, Professor of Electrical Engineering
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Chapter 1

Introduction

Recent years have seen a blossoming in the amount of computer hardware. Per-

sonal computers are now commonplace in the home. It is increasingly common to find

a terminal or PC on every desk not only in research labs but in business offices as well.

At the same time advances in technology and design have led to reductions in size.

weight, and cost of equipment. It is possible to imagine in the not-too-distant future

a battery-powered, notebook-sized terminal with capabilities similar to that of current

CRT terminals.

To get full use out of all this hardware, communications ability must be provided for

host connection, file transfer, electronic mail, database access, etc. Currently the bulk

of this local communication is carried over cables. Each piece of equipment has a cable

attaching it to the network. As a result, installing or moving a piece of equipment is

expensive and slow. Furthermore, lack of conduit space is a problem in many buildings.

To accomodate truly portable terminals an entirely different approach must be taken.

We would like to avoid cables altogether and communicate via radio frequency links.

Since we have chosen to use unguided radio communications, users will encounter

interference of various types. Signals travelling over different paths will arrive at the

receiver with different amplitudes, phases, and delays causing what is known as multi-

path interference. Signals intended for other receivers cause multi-access interference.

Finally there may be other systems in the vicinity generating what we will call cosite

interference.

The ability of spread spectrum signalling to reject interference is well-known so it is

natural to consider spread spectrum radio transceivers for wireless local area networks.

Another advantage of spread spectrum is that its low spectral density may allow it to



coexist with other systems in the same frequency band (see, for example, [1]). A special

reason for considering spread spectrum at this time is the regulatory environment. The

Federal Communications Commission (FCC) recently opened up three bands for spread

spectrum use [2], [3]. Since obtaining FCC approval can be a large part of a product

development project, these new regulations are likely to have a great impact on radio

technology [4]. This thesis discusses the use of spread spectrum radio for local digital

communication.

Some related work has been presented in the literature. There are several commer-

cially available digital radio networks. The Motorola product is typical [5]. It provides

communication between a large number of terminals over a metropolitan area by way

of strategically located base stations which are connected by land lines. It does not use

spread spectrum; multi-access is achieved by contention.

Many applications of spread spectrum radio have been studied. There is a vast

literature on military uses where the emphasis is on antijam and anti-intercept capa-

bility. Much of this material can be found in [6]. There has been much discussion of

using spread spectrum for land mobile radio though to my kn6wledge it h'as not been

implemented anywhere [1], [7]-[11]. Several researchers have considered the suitabil-

ity of spread spectrum for indoor cordless telephones [12], [13]. Finally a handful of

people have reported on spread spectrum for indoor wireless data communication. [14]

and [15] were primarily concerned with using spread spectrum to combat multipath.

[16]-[18] reported on the performance of star-configured spread spectrum systems both

with and without antenna diversity.

This paper assumes the following goals:

1) We want an easily reconfigurable network to accomodate portable users as well as

frequent entrances and withdrawals from the network. To accomplish this com-

municators will use RF transceivers.



2) We want to handle communications for terminals and small computers (large com-

puters are generally sufficiently stationary to justify cabling). This traffic is bursty

and has a low data rate. For most purposes 1200 baud is sufficient.

3) A network which serves a large office building or lab rhight encounter several

hundred active users (and perhaps many more subscribers who are inactive). On

the other hand a network which serves a house or a single room may need to serve

only ten or twenty users at most. It will be seen that technology may dictate

different strategies for these two environments.

4) The network must be able to deal with concurrent communication between various

independent pairs of users. Direct sequence spread spectrum modulation will be

used to allow operation in the presence of multi-access interference.

5) For simplicity and reliability we wish to avoid centralized control. This is particu-

larly important in a small network where the incremental cost of the controller may

be prohibitive. We also want to avoid system-wide synchronization. For one thing

asynchronous operation is intrinsically simpler. More importantly, differences in

prdpagation times inake perfect synchronization physically impossible.

6) Finally as in any system we want a solution which is inexpensive and reliable.

This paper will discuss how well the goals above can be fulfilled by a fully connected

radio network utilizing direct sequence spread spectrum and differential phase shift

keying (DPSK). Each receiver is assigned a spread spectrum code. For simplicity, it is

assumed that more than one transmitter never attempts to communicate with a single

receiver simultaneously. The spectral spreading provides multi-access capability as well

as rejecting interference from other systems. It should be pointed out that systems of

sufficient bandwidth to effectively combat multipath will not be considered.

Chapter 2 describes the pertinent characteristics of the channel and signal models.

The most important phenomena to be included in the mQdel are multipath fading and
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multi-access interference. Chapter 3 describes the features of various technologies avail-

able to implement the receiver. It will be shown that charge coupled devices (CCD's)

can be used to build matched filter receivers with sufficient process gain to accomodate

small to medium-sized systems. At the current state of technology large systems must

use correlation receivers which can be built using digital logic. Chapter 4 explains

methodologies for the crucial process of acquiring code synchronization. Synchroniza-

tion is not difficult for matched filter receivers, but the only way a correlation receiver

can achieve rapid acquisition is by restricting the initial timing uncertainty. The most

obvious way to do this is to use system-wide synchronization. Under these circum-

stances spead spectrum is not attractive. Chapter 5 gives analytical and numerical

results on system performance. The primary measure of performance is the probability

that a desired bit error rate will be achieved. It is shown that some form of diversity is

required and antenna diversity is recommended. Indeed even with several antennas it

may sometimes be necessary to adjust an antenna to improve a link. Chapter 6 com-

pares this system to several other possible multi-access protocols. Spread spectrum

is simple and requires no cabling. It can have a performance advantage over other

simple protocols such as ALOHA and fixed assignment FDMA and TDMA. It can not,

however, provide the performance of more sophisticated protocols such as BRAM or

cable-based protocols such as CSMA/CD. Finally Chapter 7 gives my conclusions.



Chapter 2

Channel and Signal Model

This chapter describes the relevant features of the indoor RF channel and the

received spread spectrum signal and ways of modeling these features.

The signal attenuates as it plropagates to greater distances from the transmitter.

Generally a power law model is used [19]:

s(dB) = -m log d, (2.1)

where s is the signal strength in dB, and d is the distance from the transmitter to

the receiver. The constant m depends on many factors including the floorplan and

materials used in the construction of the building. Measured values of m range from

1.2 in an open hangar which apparently acted as a waveguide up to.6.5 in a cinder

block laboratory with steel partitioning.

Some materials actually absorb certain frequencies causing attenuation. This phe-

nomenon is well-known in long-distance microwave propagation which suffers serious

attenuation during rainfall because of absorption by water. Such affects can be sig-

nificant even over the small distances encountered in indoor communications. It has

been reported [20] that signals at 60 GHz, which is absorbed by oxygen, will hardly

propagate outside a single room. One would expect such effects to obey an exponen-

tial attenuation law rather than a power law. Nonetheless the issue has received little

attention in the literature and the tendency has been to assume that a power law is

sufficient to model the attenuation. It may well be that the fading on the channel is

sufficiently complicated to mask any weaknesses in the attenuation model. It is also

possible that these effects are incorporated into the shadowing which is discussed next.
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A signal propagating over a single path from the transmitter to the receiver is at-

tenuated by the walls and floors through which it passes. This causes fading correlated

over entire rooms since the signal arriving anywhere in the room has encountered ap-

proximately the same walls and floors. Attenuation is multiplicative so the logarithm

of the attenuation is additive. Using central limit theorem arguments one is led to

Gaussian statistics for the logarithm of the attenuation. Thus the: signal level averaged

over the area of a room is modeled as having lognormal fading statistics with mean

given by the power law. The standard deviation is typically less than 10 dB [21], [221.

The sum of lognormal random variables is itself well-modeled by a lognormal variable

so this argument is not adversely affected by the existence of several paths.

Due to reflections there are generally multiple paths between the transmitter and

the receiver. The signal components from the various paths add noncoherently causing

fading which is correlated over distances on the order of a quarter wavelength [23].

If the antennas are stationary (within a quarter wavelength) the link is stable and a

constant fade is experienced.

Multipath' fadihg has been modeled in two distinct ways in the literature. if one

intends to resolve the various paths and use them as a basis for diversity one needs

statistics for the individual paths [24]-[27]. Alternatively one can try to characterize

the gross properties of the received signal. The quadrature components of the signal

are sums of components from various paths. Central limit arguments lead to Gaussian

quadrature components which in turn leads to a Rayleigh distributed signal ampli-

tude (or equivalently an exponentially distributed power). If there is a strong direct

path signal, a Rician distribution may be more appropriate. Signal phase is generally

modeled as uniformly distributed.

One other multipath effect that requires discussion is the delay spread (or the co-

herence bandwidth wh'ich is proportional to its reciprocal). Measurements have shown
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that this varies widely from building to building. RMS delay spread can range from as

low as 30 nsec [15] to as high as 250 nsec [28]. Spread depends on the structure of the

building. This leads to coherence bandwidths on the order of 1-10 MHz. If the system

bandwidth exceeds the coherence bandwidth, the fading will be frequency-selective.

Motion of the transmitter, receiver, or transmission medium causes a Doppler shift.

In a multipath environment different components may also have different shifts leading

to Doppler spread. Because of the slow speeds normally encountered in an indoor

environment, Doppler bandwidth is unlikely to exceed 100 Hz for a carrier around

1 GHz [7].

The channel described above is quite complicated. To account for all features it

is necessary to use complex computer simulations, so I will make some simplifying as-

sumptions to allow for tractable analysis. I assume a carrier frequency small enough

that vibration and unintentional antenna movement will not effect link stability but

large enough that antenna diversity can be conveniently implemented on a small termi-

nal. This dictates a carrier frequency in the range 500 MHz to 10 GHz. I also assume

that a frequency can be chosen such that absorption loss is insignificant. I assume sta-

tionary terminals and ignore Doppler shifts caused by moving reflectors (such as crowds

in the hall). Finally I consider only Rayleigh fading which I assume to be constant and

due to a single resolved path. This presupposes that the system bandwidth is less than

several megahertz (the coherence bandwidth).

The received signal is modeled as

K-1

s(t) = n(t) + P Akak(t - tk)bk(t - tk) COS(wt + 'Pk), (2.2)
k=O

where P is the mean signal power, K is the number of active users, Ak is the amplitude

of the signal intended for the kth receiver normalized by P, ak (t) is the code waveform,



bk(t) is the data waveform, tk is the delay of the kth signal due to propagation and

asynchronism, w, is the carrier frequency common to all signals, epk is the phase of the

kth signal, and n(t) is an additive white Gaussian noise process with spectral density

No/2. Ak, for k = 0,...,K - 1, are independent identically distributed Rayleigh

random variables with probability density

f(A) = 2Ae - A , A > 0. (2.3)

The code waveform is defined by

ak(t) = a, jT t < (j + 1)Tc, (2.4)

where a(k) is 1 or -1 for each j and forms an infinite sequence with period N,. Thus3

the code waveform is a sum of contiguous rectangular pulses called chips of duration

Tc. Similarly

bk(t) = b Ik), T < t < (I + 1)T, (2.5)

where T is the bit time. I will assume that T = NT,, although it is not alway§ nec-

essary and in some cases may be inadvisable [29]. Due to the difficulty of establishing

absolute phase over a fading channel, the data is differentially encoded. Signal phases

are independent and uniformly distributed between 0 and 27r. Delays are independent

and uniformly distributed between 0 and T,. In an asynchronous system T' = T. In a

synchronous system T, represents imperfect synchronization due to different propaga-

tion delays and timing error.



Chapter 3

Receiver Technology

This chapter describes several technologies applicable to spread spectrum receivers.

By seeing what available technology is capable of, we will get some guidance as to what

direction to proceed. We will be especially interested in ways of implementing filters

matched to the spread spectrum signal as this allows for a particularly simple receiver.

Such filters require large time bandwidth products and complicated impulse responses.

Currently three technologies compete for this application: surface acoustic wave (SAW)

devices, digital devices, and charge coupled devices (CCD's).

In all three cases the filter is implemented as a delay line with weighted taps con-

nected to a summing bus. In a SAW device an acoustic wave is launched at one end

of the device. Transducers are placed along the length of the device and serve as taps.

The typical propagation velocity for the wave is 3 x 103 m/sec [30]. Thus bandwidth is

determined by the density of lines that can be printed on the substrate. The device is

generally made of quartz or lithium niobate and is manufactured using the same tech-

niques and equipment used for making semiconductor chips. 200 MHz bandwidths are

easily achievable using inexpensive production techniques. With state of the art equip-

ment bandwidths of several gigahertz can be attained [31]. Since we anticipate chip

rates in the several megahertz range, SAW devices certainly have sufficient bandwidth.

Indeed there may be enough bandwidth to perform filtering at the carrier frequency.

Unfortunately SAW devices are in other ways totally inadequate for our applica-

tion. The impulse response of the filter must be at least one bit time long. At 1200 baud

we need an 833 isec impulse response resulting in a device 2.5 meters long. It is pos-

sible to use folded geometries but this makes it difficult to tap the delay line. Thus

13



the required device is much too bulky. In any case it is very difficult and expensive to

fabricate devices even one tenth this length.

Digital technology is more promising and is rapidly improving. To perform cor-

relation the waveform must be sampled and read in to the processor which must then

perform a multiplication and an accumulation. These operations must be performed at

least once each chip time and require several clock cycles depending on the processor

architecture. We therefore need a processor whose clock rate is several times the chip

rate. The popular TMS32020 signal processing chip from Texas Instruments runs at

5 MHz (a newer version is expected to run at 10 MHz) and requires four instruction

cycles for each chip [32]. Thus the new version will be able to perform correlation

on signals with a 2.5 MHz chip rate which is precisely in the range of interest. It is

certainly possible to produce more specialized hardware which can correlate somewhat

faster.

A correlator must be synchronized to the signal. In the next chapter we will see

that this is a problem in our environment. Thus we would like to do convolution

in order to implement a matched filter. We now need to perform Nc multiplies and

accumulates during each chip time for a total of RN 2operations each second where R is

the baud rate. As an example the TMS32020 operating at 10 MHz and using pipelining

to multiply and accumulate in a single clock cycle can achieve a maximum process gain

(Ne) of 91 at 1200 baud. This is not enough gain to support more than a handful of

users. While special purpose hardware could no doubt increase the achievable process

gain to several hundred, a large system (100 or more users) requires a process gain of

at least 1000. At 1200 baud this demands a processor clock rate of 1.2 GHz which is

well beyond current digital technology. VLSI parallel processing chips may someday

relieve this situation, but, for the time being, it is wise to seek a different solution.
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Charge coupled devices are made up of cells which store charge and a mechanism

for transferring charge from one cell to another. If we create a long line of these cells

and add voltage to charge conversion at the input, charge to voltage conversion at the

output, and a clock to regulate the transfer of charge, we have an analog delay line.

Since CCD's can be fabricated in silicon, all of this can be put on a single chip.

Indeed much more can be put on the chip. To build what is called an analog binary

correlator we add a digital shift register. Each stage of the register and each cell of the

delay line is tapped. The taps are fed into a multiplier. The multiplier may be a fairly

simple device containing only a few transistors which, according to the value from the

shift register, switches a current proportional to the charge on the delay line onto the

appropriate bus [33]-[35]. The currents, which sum on the bus, are fed into a summing

amplifier. If the shift register contains only positive and negative unit values then this

is just a differential amplifier. To use this device the chip sequence is fed into the shift

register and the received waveform (processed into the baseband) is fed into the delay

line. A full correlation is performed at each clock cycle. The result is a discrete time

matched filter. I

As an example of what CCD's can do I give some of the specifications of an analog

binary correlator currently being fabricated [36]. It is a dual device with two 1024-stage

delay lines. These can be used for in-phase and quadrature channels. It comes in a

small 68-pin package, dissipates 1 W, and uses a single 5 V power supply. It has been

tested at room temperature for clock rates up to 47.5 MHz and down to 10 kHz (total

time delay and thus minimum clock rate is limited by thermal leakage [37]) on both the

delay line and the shift register (allowing rapid programmability). The shift register

holds 3-bit weights. Zero weights allow the length to be changed. The dynamic range

is 8 or 9 bits. The device has been produced with 80 to 90% yield and is expected

ultimately to cost under $100.



All of these features are attractive except for the length. To compensate for syn-

chronization error it is desirable to sample at least twice per chip, in which case this

device can accomodate a process gain of 512 at most. This is enough to be of interest

for small systems with less than 50 users but is inadequate for larger systems. While it

may be possible to make devices somewhat longer, length is limited by charge transfer

inefficiency (CTI), the attenuation of the signal at each transfer of charge. While the

CTI of this device has been improved greatly, it is not anticipated that the device will be

lengthened. Naturally a longer device would also be physically larger and consequently

more expensive.

We see that all three devices have important limitations. SAW devices are limited

to a total delay of about 100 tsec. This can not be improved without building an

unreasonably large device. Thus SAW devices are not well adapted to data rates

below 10 kHz. Digital correlators are limited to chip rates of several megahertz. This

is sufficient for our application. On the other hand, for digital matched filters, the

product of the chip rate (in chips per second) and the process gain is limited to several

million which is adeqdate 6nly for very small systems. CCD's are limited to process

gains of around 1000. This is not a fundamental limit but no dramatic improvements

are expected soon. If we do not need process gains in excess of 1000, CCD matched

filtering is the way to go. Otherwise we must use a correlator.

A word about frequency hopping is in order here. None of the technologies dis-

cussed are well-suited to frequency hopping receivers. SAW devices are again unsuitable

because they cannot be made with sufficiently long impulse responses. Both the digital

devices and the charge coupled devices described above operate at baseband. This re-

quires removing the frequency hopping. To do this one can use a frequency synthesizer

synchronized to the signal to mix down to a common frequency or one can use a filter

bank with a bandpass filter centered at each hopping frequency. Both of these methods



are difficult. By contrast direct sequence chips differ only in amplitude so the signal

can be brought to baseband by a mixer with fixed frequency or by a single bandpass

filter. Thus we have technologies available to implement a correlation receiver (or, for

sufficiently small systems, a matched filter receiver) for direct sequence systems. Fre-

quency hopping systems are harder to implement. This is the primary reason why this

thesis focuses on direct sequence techniques.



Chapter 4

Code Acquisition

This chapter describes how to synchronize the receiver to the desired transmitter.

It is assumed that each receiver is assigned a unique code. Any transmitter wishing

to send a message modulates the signal using, the appropriate code for the intended

receiver. The receiver must acquire code timing (which we have previously assumed

is equivalent to bit timing) in order to demodulate the data. This is made especially

difficult by the bursty nature of the data. Acquisition must be done rapidly at the

beginning of each message so as not to lose part of the message.

Conceptually, the simplest way to acquire the signal is by use of a matched filter.

Indeed a matched filter receiver passively responds to the signal and does not neces-

sarily need an acquisition circuit. A matched filter has an impulse response which is a

time-reversed version of the desired signal possibly scaled in amplitude. The impulse

response is given explicitly by

h(t) = ak(T - t) cos(WIF (T - t)), 0 < t < T, (4.1)

where WIF is the intermediate frequency and, as in chapter 2, ak(t) is the spread

spectrum waveform, and T is the bit time. The output of the filter is given by the

familiar convolution integral

y(t) = h(r)s(t -r)dr, (4.2)

where s(t) is the signal as in equation (2.2) except that it too has been translated to the

intermediate frequency. I will assume, for the sake of simplicity, perfect phase tracking

for coherent detection.



If we sample the output at time T (recall that both the digital and the CCD filters

of chapter 3 naturally produce sampled outputs) we obtain, following the notation of

[38],

y = 77 + /P/2 T Aobi ) + A• [Ak+k,o b (),b k),tk, · k , (4.3)
k=1

where 7r has a Gaussian distribution with zero mean and variance NOT/4 and is due

to the additive white Gaussian noise. Recall from chapter 2 that .4k, b(k), tk, and pk

denote, respectively, the amplitude, Ith data bit, delay and phase of the kth signal.

The first term inside the brackets is the signal term. The sum is the interference term.

The function Ik,O represents the multi-access interference due to the kth user. We note

for use in the next chapter that the interference is given explicitly by

Ik,o (bk),IbtkPk) =) bkRko(tk) +bk)Rk,O(tk)] . (4.4)

The functions Rk,o and )k,o are partial correlation functions of the spread spectrum

waveform and are defined by

Rk,o(t) - Ck,o(l -,Nc)Rq(t - VTc) + Ck,o(l + 1 - Nc)Rq(t - ITc),,
(4.5)

ak,O(t) Ck,O(l)Aq(t - -Tc) + Ck,o(l 1)Rq(t - ),

where 1 is the integer part of tk/Tc, Ck,o is the aperiodic crosscorrelation function of

the chip sequence [39]

C,(I) N-- a(.k) a(0) if 0 < <N - 1,

Ck,0 (1) =- + k (4.6)
( Naol+a~1  )a 1 0) if 1- N, < I1 < 0.

and Rq and Rq are the partial autocorrelation functions for the chip waveform, q(t)

Aq(u) f_ q(t)q(t - u) dt,

(4.7)

Rq(u) - .q(t)q(To + t- u)dt = Rq(T- - u).



P( yI signal absent ,)
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Figure 4.1. Detection of signal in additive Gaussian noise

Generally we will use rectangular chips giving

^q (u) =Tc - u

Sq(U) = U1 0 _< U < T". (4.8)
Rq(u) =u

If we assume that the combined interference and noise is approximately Gaussian

with zero mean and variance V then the sample is Gaussian with variance V and mean

s = Ak -P72T. We establish a threshold h = es and declare signal presence if the

threshold is exceeded. Defining the signal to noise ratio as s 2/V, the probability of

missing the signal (see figure 4.1) is

Pm =Prob(y <hI signal present) = - Q ((1 - e)VSNR), (4.9)

where the Q function is given by

Q(z)e-z /2 dz. (4.10)

If the filter output is sampled at some other time, t, the expression for the sample

looks Very much like (4.3) except the signal term is replated by a self interference term



which has the same form as (4.4) with k = 0. Generally codes are chosen so that this

autocorrelation term is near zero as long as It - T I > T,. If we assume that this term is

dominated by the noise and the other interference terms then, as above, the sample will

be Gaussian with variance V but the mean will now be zero (see figure 4.1). Proceeding

as before the probability of false alarm (falsely detecting a signal when none is present)

is

Pya = Prob(y >_ h signal absent) = Q (e S ) . (4.11)

Fikare 4.2 plots PfP against Pm parameterized by SNR.

Although matched filtering is conceptually simple, we saw in the previous chapter

that building the necessary filter can be technologically difficult. Another choice is to

build a correlation receiver-which actively multiplies the incoming signal by a locally

generated copy of the desired signal. The output of the multiplier is integrated. The

integrator is sampled and subsequently zeroed each bit time. The output is exactly

equivalent to the output of a matched filter sampled at time T+td where td is the delay

between the received signal and the local reference. As mentioned before, a matched

filter produces a spike of width 2T, in response to the signal. The acquisition system

must make Itdl < Tc in order to take advantage of this correlation peak. A separate

tracking system, which will not be discussed further, generally takes over to bring td

near zero to maximize the signal strength.

The acquisition problem has been much studied and numerous techniques have

been proposed (for a summary see [29]). For example one simple method is to transmit

an unmodulated reference with the signal. This is impossible in a multi-access envi-

ronment since if the references share the same bandwidth there is no way of separating

them at the receiver.



Another method, known as sequential estimation, relies on codes which are gener-

ated by shift registers with feedback. There are many classes of such codes [39]. The

receiver attempts to demodulate correctly enough consecutive chips to fill a local shift

register. This too is inappropriate to a multi-access environment where the signal is

likely to be many dB below the interference at the receiver input making the error rate

very close to .5.

Another approach is to use a separate channel for synchronization. Prior to each

data message a synchronization message is sent to indicate exactly when (relative to

the synchronization message) the data message will arrive. While this may be useful in

some situations there is at least one very important case where the value of this scheme

is questionable. In many networks a large percentage of the traffic consists of data

being sent from ASCII terminals to their host computers. Frequently each character

is sent as a separate message. :In this case the synchronization messages would not

look much different from the data messages in terms of length and arrival rate. Thus

it would be foolish to have twQ different systemns (with the accompanying additional

hardware complexity) to do essentially similar tasks. Whichever system works better

should probably be used for both channels.

Probably the most common acquisition method is to use what is called a sliding

correlator. A preamble is added to the front of each message by the transmitter to

allow for synchronization. The preamble consists of the spread spectrum waveform

without any data modulation. It lasts long enough to acquire synchronization with

high probability. A local reference is generated and correlated for Te seconds with

the incoming signal. Te is calle the examination time or dwell time. If the result

exceeds a threshold then the local reference is assumed to be synchronized. Otherwise

the local reference is time-shifted T, seconds and correlation is restarted. This process
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is repeated until the threshold is crossed at which time control is handed over to the

tracking circuit.

How long must the preamble be? The statistics of the acquisition time depend on

the initial timing uncertainty (denoted T.), the time shift (T,), the dwell time (T,), the

probability of missing synchronization (P,), and the probability of false alarm (Pf a).

Pf and Pm depend in turn: upon the threshold and the signal statistics as well as T,.

An estimate of the mean acquisition time is given by [40]

TTe 1 + Pm
Tacq (4.12)Tacq 2T, (1 - Pfa) 1 - Pm (4.12)

Without prior timing information Tu = T, the bit time. In order to avoid missing

the correlation peak altogether we must have T, be no larger than the chip time, T,,

so T,/T, is at least N,. In order to get small Pf, and Pm we must have T on the

order of a bit time. If N, < 1000 we can use CCD's to build matched filters and avoid

correlation, so we see that the preamble is likely to be at least 500 bits long. This is

unacceptable.

To improve the situation it is necessary to drastically reduce either Te or T,.

While there are several methods for reducing the average dwell time, the only way to

effect the huge reduction (hundredfold in order to make the synchronization overhead

comparable to the data load in the short message case) is to have many correlators

working in parallel examining different time shifts. This is likely to be expensive and

to use a lot of space.

The remaining option is to reduce the initial timing uncertainty. This can be done

in a number of ways. We may consider two level systems in which an idle member of a

set of one or more correlators is triggered by a threshold crossing in a filter matched to

a short section of the code thereby reducing the uncertainty region to only those cells

,which cross the threshold [41]. The problem here is that the partial code has many
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fewer chips than the full code and so can reject less interference. Thus the number of

users will be limited by the length of this matched filter and not by the process gain.

In this case we may as well use shorter codes for which we can build matched filters.

For similar reasons we do not wish to use component code schemes where long codes

are generated by adding shorter codes with different periods which can be acquired

separately. I hasten to add that these methods may be- useful if, for other reasons, it

is desirable to have codes which are much longer than bits.

In a more promising approach, the transmitter sends a full preamble as described

above only at the beginning of a session. The terminals then use stable clocks to remain

synchronized between messages. Subsequent messages require only enough preamble to

account for the clock drift and, if one of the terminals has moved, change in propagation

time. To reduce the preamble to a few bits the clocks must remain synchronized within

several microseconds.

If the network traffic is not described well in terms of sessions between pairs of

transmitters and receivers then the entire network must be synchronized. There are

essentially two ways of doing this. The users may periodically exchange messages so as

to maintain synchronization at all times. The me. 3ages may have to be quite lengthy

or have a special form to allow new users to acquire.

Alternatively each terminal may synchronize to a common timing signal. This

signal may come from a master clock node or it may be an external signal such as

the synchronization signal from a public television broadcast or navigation satellite. In

the former case a spread spectrum signal can be used. Each receiver can periodically

synchronize to this signal when it is not receiving any other message. In the latter case

extra hardware is most likely needed to receive the signal but no master clock trans-

mitter is required. In either case, assuming negligible local clock instability, the timing

uncertainty has two components. The message must propagate from the transmitter
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to the receiver over an unknown range and there is a difference in the local clocks at

the transmitter and receiver due to the propagation delay of the clock signal. Thus the

timing uncertainty has been reduced to at most 2Tp, the maximum round trip propa-

gation delay. If no two terminals are more than 300 meters apart, as would be the case

in most buildings, the maximum round trip propagation delay would be 2 psec.

In order to determine exactly how long the preamble must be it is necessary to

compute the probability of acquisition. I make four assumptions. First I assume that

the signal delay is uniformly distributed over the uncertainty region. Second I assume

that, once acquired, synchronization is not lost. Third, in case of a false alarm the

clock is not shifted but no additional processing delay is incurred. Finally, I assume

that there is exactly one cell where the signal is and all other cells are statistically

identical. There are N, - T,/T, cells in all. If the preamble is of length LTe so that

L cells can be examined, then the probability of acquisition is given by

1 - Pm
Pacq= N

+N 1- PNM (k -2 (1 - P.i-1 Pk-i

i=2 k=i

+m PI- 1min -l -i
i=2 -j=2 k=-(min m

(4.13)

where Imin = (j - 1)N, + i. The cell in which the signal is present is indexed by i.

The number of times the ith cell is searched is indexed by j. The total number of cells

searched is indexed by k. The combinatorial term gives the number of ways of dividing

k - Imim false alarms into Imin - j strings each terminated by a correct rejection of the

cell.



Given a particular signal to noise ratio we can make a tradeoff between Pf and

P, by choice of the threshold. In figure 4.2 Pf, is plotted against Pm parameterized

by signal to noise ratio assuming coherent detection and Gaussian noise. Thus we can

optimize probability of acquisition over operating point. Given a specified allowable

probability of failure to acquire, tPf, we can then determine the required preamble

length. The length was found not to be very sensitive to operating point so optimization

was done by choosing the best of only three or four operating points. The results are

plotted in figures 4.3 and 4.4 for signal to noise ratios of 4 and 10 respectively. Such

low SNR's are of interest because if there are n examination cells per chip (n = T/ITs)

and the correlation peak is triangular with width 2Tc and height SNRmax then the

worst case (see figure 4.5 which depicts the case where n = 1) SNR is

2n- 1
SNR - 2n SNRmax. (4.14)

2n

Thus if n = 1 half the signal power may be lost to the acquisition system.

If T, = T then the y-axes of figures 4.3 and 4.4 are in terms of bit times. If we

expect a significant part of the network traffic to consist of short messages (such as

single 8-bit ASCII characters) we would want to limit preamble length to 10 or 20 bits.

From the figures it is apparent that to do wiis and have an acceptable probability of

failure it is necessary to limit the uncertainty region to a small number of cells (and

consequently a small number of chips). Since the uncertainty due to propagation delays

is on the order of a microsecond this is a reason for limiting the chip rate to several

megahertz. I caution that this argument applies only to a system using a single sliding

correlator. A matched filter, in effect, searches all the cells in a single bit time.

The implications for correlation receivers are dire. An asynchronous system using

correlation receivers will devote most of its bandwidth to code acquisition and is ineffi-

cient to the point of ridiculousness. To overcome this the systerni must be synchronized
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to within a few chip times. For data rates and network diameters of interest this limits

chip rates to several megahertz. The resulting process gain is in the low thousands.

This is not much gain over what can be attained with CCD matched filters while the

cost of synchronization is high. Furthermore, as we will see in chapter 6, there are far

more efficient protocols which rely on synchronization. If a spread spectrum system

must also be synchronized much of the system's advantage in simplicity is lost.



Chapter 5

System Performance

This chapter discusses system performance measured primarily in terms of two re-

lated parameters: multipath outage and maximum supportable number of simultaneous

users. While the meaning of the latter is obvious the former requires some explanation.

As mentioned in chapter 2, multiple paths between transmitter and receiver cause fad-

ing which will be modeled as having a Rayleigh distribution. A minimum bit error

rate (BER) is specified. If terminals are placed randomly, some links will not achieve

the required BER due to fading. The probability that a link between two randomly

chosen sites is nonoperational is called multipath outage. It may also be interpreted

as the percentage of volume in which an antenna will not pick up a satisfactory signal

from a given transmitter. I will also use.the word reliability to refer to the complement

of multipath outage: the percentage of volume in which a satisfactory signal can be

received.

Multipath outage is determined in two ways. First, by making some simplifying

assumptions, analytic results can be found. Secondly, to verify that the assumptions

do not significantly reduce the accuracy of the results, a numerical method can be

used with the aid of a digital computer. The primary assumptions that must be made

for the analytic approach concern the codes used and the nature of the interference.

The spread spectrum codes are assumed to be random. In other words the chips are

independent and take on the values ±1 with equal probability. The other assumption

is that the multi-access interference, I, can be modeled as a Gaussian process. This

is based on central limit theorem arguments. We are interested in systems with many

users. The interference terms from these users are independent (because of the first
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assumption) and add as in equation (4.3) so this assumption follows from the central

limit theorem.

At the receiver the signal is correlated with the receiver code. Interference is

caused by nonzero crosscorrelation of the receiver code and the unwanted signals. We

assume that this interference is Gaussian. Appendix 5A shows that the interference

has zero mean and variance given by:

K-1
E[ E] (5.1)E [IP] = 3N(
k=1

where Ebk is the bit energy of the kth signal. The mean interference power averaged

over the Rayleigh fading statistics is

Eb
Eb - Efade [Ebk , NI - K - 1, (5.2)3N/NI '

where Eb is is the average bit energy and N, is the number of interferers.

Let C be the ratio of (5.1) and (5.2).

K-1

C K-1 Eb. (5.3)
k=1 Nl Eb

C is a measure of excess interference. C is a sum of squares of Rayleigh random

variables. From any elementary probability text we can find that the square of a

Rayleigh random variable has an exponential distribution and the sum of exponentials

has a gamma distribution. The probability distribution function for C is given by

NF-1 (CNi)ie-CN
F(C) = 1- . (5.4)

j=oit

If the number of interferers exceeds 20 then C > 2 with probability less-than 10 - 4;



Any communications textbook (e.g., (42]) gives the BER of DPSK in additive

Gaussian noise

1PE E exp (-Eb,,/2V), (5.5)

where V is the variance of the noise. "in this case this variance is given by

No CNIEbV =No (5.6)
2 3Nc

In the interference dominated case (5.5) simplifies to

PE = -1exp c'c >> -b "3N (5.7)
2 2CN J' No 2CN(

If we specify a probability of error PE, we can solve for acceptable fade

2C 1

A2 > 2C In (5.8)
0- 3N/N NI 2 PE

The density function for the squared fade is exponential:

Prob [ A > z] = e-. (5.9)

Thus reliability is given by
2C

= (2PE) 3NI,. (5.10)

Figures 5.1 and 5.2 give reliability as a function of PE and Nc/IN for excess noise

factors of C = 1 and 2 respectively. NcINI can be interpreted as a system bandwidth

expansion factor. Figure 5.3 shows the required Eb/No in the absence of interference

and the required NICNI in the absence of thermal noise as a function of required

reliability and PE. Table 5.1 below shows the required Eb/No in dB as a function of

required reliability, PE, and C. No entry is given if the reliability can not be achieved

under the given conditions. It can be seen that in most cases either the requirements
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19.1

on Eb/No are modest or they are entirely unachievable. In other words the system

exhibits a threshold effect with respect to reliability.

We conclude from all this data that it is not possible to attain very high reliabilities.

Diversity methods to counteract this problem will be discussed later. If we can satisfy

ourselves with reliability of .6 or lower we will be able to achieve low error rates (10- 6)

with bandwidth expansion factors (No/NI) of 20 to 40 as long as the excess interference

does not exceed 2.

It is now time to dispense with the Gaussian approximation and the assumption of
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random codes. Without these assumptions analysis becomes much more difficult and

results must be obtained numerically with the help of a computer. In this section Gold

codes are used. Gold codes are formed from maximal length shift register sequences (m-

sequences). M-sequences can be generated using shift registers by appropriate choice

of feedback. An n-stage shift register produces a sequence of length 21 - 1. Gold

codes are formed by the modulo 2 addition (exclusive or) of two distinct m-sequences

of equal length. There are some other restrictions on how the two sequences are chosen.

For details on both m-sequences and Gold sequences see [39]. Since the addition can

be performed with arbitrary time shift between the two m-sequences, 2' + 1 Gold

sequences are formed including the two m-sequences.

T.he generation of Gold sequences requires only two n-stage tapped shift registers

and some exclusive or circuits for the addition and the feedback. To generate random

codes the entire sequence must be stored. Consequently, Gold codes are much more

practical and are commonly used today. They also have very desirable autocorrelation

properties so synchronization can be acquired. Their crosscorrelation properties allow

ifiterference to be kept low.

In the following paragraphs I will extend the characteristic function method of [38]

to include Rayleigh fading. We define the total interference, I, as

K-1

I= AkIk,o (b(k) ,kbtkk , (.11)
k=1

where the functions Ik,O are defined in (4.4). The probability of error at the distin-

guished receiver is

PE= -Prob y I5 0 1b() = 1 + Prob Y> b = -1]
2 2 -2

2 2

S11

2 Prob [-Ao 5 7' +I < Ao],2 2



where r/' = (PT 2 /2)-1/2rl is the normalized thermal noise with variance No/2Eb where

Eb = PT is the bit energy averaged over the fading.

The characteristic function of 77' is

0 2(u) = Ee I = exp [-(No/4 b)u2] . (5.13)

Similarly, we let 01(u) and O(u) denote the characteristic functions of I and r7' + I

respectively. These functions are all real-valued and symmetric and hence we can use

the inverse transform to write

PE= A oo 0(u) cos(ux) du dx. (5.14)

Performing the outer integration and using the fact,

O(u) = k2(U) - 02 (u)[1 - 1 (U)], (5.15)

gives

1 1 f sin(uAo) 1 + sin(uAo)
PE sin(uAo) 2(u) du + - 4 sin(uA) (u)(1 - (u)] du. . (5.16)

2 7r U 7r u

Solving the first integral gives

I1 " sin(uAo)
PE = Q Ao 2Eb/No) + - 0i2(o) 1- (1(u)] du. (5.17)

7r fo U

The multi-access interference is a sum of independent terms so its characteristic

function can be written as a product

K-1IiI) jf 27rf T foo

k=1 b ,b2

2Ak exp [-A2 + ,uAkIk,o (bk) bk),tk, k)] dAk dtk dk .

(5.18)



Some algebraic handiwork reduces this to

K--l 1

k=l1

Ne -- o

I=0 
o

2Ak-Ak [f (uAk; 1, OIk,0)+ f uAk;1, ok,o) dAk

(5.19)
where we define the function f(u; 1, g) by

- 2

7rrT, Jo 7r/ 2jTo
cos {u [g(l + 1)Rq,(t) + g(1)Rq (t)] cos}dt d,,

) T d

and 0 and 0 are periodic and odd crosscorrelation functions given by

Ok,O(l) = Ck,o(l) + Ck,o(1 - Nc),

Ok,0(t) = Ck,o(l) - Ck,o(l - N,).

Assuming rectangular chips we use (4.8) to compute the inner iritegral

f(u; l, g) = 2r
7r 1

sinc {u [g(l + 1) - g(l)]
cos g( + 1) + g)]

27rN, ICos f g (1+ 1) + g,(')]
cos p dp
2Ndc,

sinc(x) = --sin

It is also possible to compute the integral found in (5.19) by using (5.22).

the trigonometric identities

1
sin(axz)sin(bx) = I [sin(a + b)x + sin(a - b)z],

and reversing the order of integration gives

I 00
h(u; I, g) - 2Ae - A f(uA; l, g) dA

4Nc
7ru [g(+ 1) - g()
lr/2 co e-A sin Aug(l + 1) cos c

No - sin (Aug(1) cosp) dA d p.

(5.24)

(5.20)

(5.21)

(5.22)

Using

sin(-x) = -sin(z), (5.23)



Using (equation (7.4.7) from [43])

ec2  sin 2xt dt = e- ' 2 /c J/C

c Jo! et2 dt = -Di(x/c),o;SC>

where Di(x) is Dawson's integral, we write

4N ir/2 Di ug(11 cos p -)Di( ug(l)cos
h(u; 1, g)2N d+p.7ru (g(1 + 1) - g()] cos p

(5.25)

(5.26)

This allows us to write the characteristic function as

(5.27)

To evaluate this we need to compute Dawson's integral by [43]

Di(x) = -Di(-x) e-'= e
t dt = (-2)2+

,=o Ii=no 2i + 1
(5.28)

This can be evaluated to any desired accuracy by truncating the sum. We will also

encounter several indeterminate forms:

Di uQ(1+1) cos v Di(ug(1) cos)2N, 2N,
lim =

u[g(l + 1)- g(l)] cos c

2N, '

1 [1_ ug(1) cos soDi ug(l) cos )]2N, I Ne N,

(5.29)
u cos cp -- 0,

g(1+ 1) -+ g(1).

Probability of error is now determined by numerically computing the integral in

(5.17) which in turn requires numerical evaluation of (5.27) using (5.28) and (5.29).

The integral is truncated at LDr and evaluated by the composite Simpson's rule. Since

sin uA 1
u 41

41

u > L'r, (5.30) .

S00
J I

0 1 ( u) N , [h (u ; 11 OA:,o + h ; 21 k,k~l 2Nc 1=0)



the truncation error is bounded by

1 / sin(uA) 22 u[ u
0(U)[I-01(u)]'d2f<02(u) du

L16 ( Q 2 N) (5.31)
L273N /

Thus the truncation error can also be made arbitrarily small by choice of L. The

computational load grows linearly with the product of code length and number of

interferers. Most of the work is involved in the evaluation of (5.27) which does not

depend on Eb/No so the computation of error rate at different noise levels can be done

at little expense. It should be noted from (5.31), however, that the number of points

on the u-axis at which (5.27) must be evaluated depends very much on Eb/No. I was

unable to obtain results for Eb/No in excess of 17 dB.

The algorithm described above was implemented on a VAX 11/785 computer in

PASCAL. Figures 5.4-7 show some of the data obtained. In all cases randomly selected

255-chip Gold codes were used. Curves marked as theoretical come from an analysis

like that described earlier in the chapter. These curves show that the analytic approach,

which is much easier, is adequate in most cases. Figure 5.4 shows the effect of fading

of the desired signal on probability of error for various noise levels and interference

from 11 other users. Figure 5.5 shows the dramatic effect of increasing the number of

interferers. If the desired signal is faded 1 dB and Eb/No is 17 dB, the probability

of error increases by an order of magnitude each time the number of users is doubled.

Figure 5.6 shows the same effect in a different way as well as demonstrating a noise

floor when the thermal noise level is high. One would also find that if the interference

level were high compared to the thermal noise, an error rate floor would be reached

where reducing the noise woul'd have no effect. If we specify an allowable probability



of error we can determine from the data what fading level is allowable and hence the

probability of achieving this goal. This is depicted in Figure 5.7 with Eb/No = 17

dB. The horizontal axis in this plot i. NI/N, which can be interpreted as bandwidth

efficiency.

Figure 5.7 demonstrates that unless we are willing to live with low bandwidth

efficiency, low reliability, and high BER it is necessary to somehow counteract fading.

The easiest way to do this is to use antenna diversity. Recall from chapter 2 that

two antennas situated more than a quarter wavelength apart will receive signals with

independent fades. Thus if the carrier frequency is chosen appropriately antennas

placed at opposite corners of the terminal will receive independently faded signals.

The receiver chooses the stronger signal (A more sophisticated receiver would form a

weighted su :.-) thereby changing the effective fade distribution. If R1 is the reliability

achieved with a single antenna then RD, the reliability achieved with D antennas, is

given by

RD = 1 - (1 - R)D. (5.32)

Thus diversity greatly increases reliability. For example, if R1 is only .6837 (the last

column in Table 5.1), an additional antenna will increase the reliability to .9.

Is diversity sufficient to allow us to establish a fully connected network? To deter-

mine this we divide space up in to cells such that fading in different cells is independent.

Suppose we have a network of N, terminals (subscribers) each of which has D receiver

antennas giving a reliability RD as in (5.32). Further suppose that we will site the

terminals in sequence so as to establish an adequate link to all the previously fixed

stations. The procedure is to search up to J cells in combinations of D until a good

combination is found. No single cell will be tried more than once so at most J/D

combinations will be tried. Terminal n + 1 must establish links with n other terminals.
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A particular combination of cells will succeed with probability 1 - R~. This may be

retried J/D times giving the terminal a probability of success, Pn+1

P,+ = 1 - (1 - R)J/D. (5.33)

The probability that the entire system can be connected is thus

N, N, -1

Pss = Pn = 1- (1- Rn_ )J/D .  (5.34)
n=2 n=1

In the case D = 1, let us suppose that we determine what signal to interference

ratio (SIR NcEb/ ICNIEb) will give adequate performance. We accept a cell if the

signal received from each transmitter has bit energy at least yEb. How should y be

chosen? The received energies will have a truncated exponential distribution with mean

Eb(q+-1). In the worst case the desired signal will have erergy yEb and the interference

will have energy CNIEb (-Y + 1). After despreading we have

3Ne y
SIR > CN(+1)(5.35)CNI (-t + 1)'

In terms of - we have

SIRmin C-Y= . (5.36)
(3NI/NI) - SIRminC (5.36)

The probability that the energy of a signal exceeds the required 'yEb, that is the reliabil-

ity, is just e- . A reasonable tradeoff between bandwidth efficiency and synchronization

requirements suggests that NI/NI be in the range 20 to 40. To allow for a maximum

excess interference (C) of 2 and a minimum SIR of 10 dB leads to reliabilities, R1, in

the range .6 to .8.

Generously, the number of cells searched is unlikely to exceed 50 before the installer

becomes frustrated. Table 5.2 below gives the probability of finding fixed sites for all

terminals in order to establish a fully connected network. It is apparent that in a large



network it is simply impossible to maintain a fully connected network. While this is a

serious drawback in some situations, in many cases it is easily overcome. In a typical

local area network made up of ASCII terminals, personal computers, and larger host

computers, it is rare that one station needs to communicate with a large percentage of

the other station in any short period. We assumed at the outset that terminals were

portable so, if a required link has an unacceptable BER, all we need to do is move

the terminal (or, if they are exposed, just the antennas) several inches into the next

cell. This is essentially a primitive form of diversity. With error detection or power

monitoring, it is possible to have the terminal inform the user that the link needs

adjustment.

Table 5.2. Probability of Full Connection with 50-cell Search

NX 10 20 100 200

D R,
1 .6 4.0 x 10-2 1.3 x 10- 19  0.0 0.0

.8 0.996 4.7 x 10- 2  0.0 0.0
2 .6 0.988 8.5 x 10-2 0.0 0.0

.8 1.000 1.000 3.3 x 10-10 0.0
3 .6 1.000 0.985 0.0 0.0

.8 1.000 1.000 0.999 0.558

We covered a lot in this chapter, but really the conclusions are rather simple.

Using a Gaussian approximation we found that to achieve low error rates without

unreasonably low reliability we need a bandwidth expansion factor (N,/N 1) of at least

20. We also found that without antenna diversity it is nearly impossible to achieve

reliability near unity. Some complicated and time-consuming numerical work merely

served to confirm these observations. We also found that the use of two (or more)

antennas improves the situation greatly but still does not eliminate multipath outage.

It seems' that a certain amount of antenna tweaking comes with the territory.



Appendix 5A

In this appendix we compute the mean and variance of the interference, I. Since

the product of the data and the chips has the same statistics as the chips alone we can

ignore data modulation. Since all chips have identical statistics we may also assume,

without loss of generality, that the time delays (tk) are all in the rang6 [0, T,] by

considering the delays modulo T,. Using rectangular chip pulses, the interference (after

correlation) is given by

I K-1,21 N2T- [tk (k) a(0)

+ j ak)) cos(wIFt +) COS WIF t dt]TeN°

k=1 i=1ftk % % )( Cos ) ]pt dt
__________ (5A.1)

a-)i cos k tk + 1 sin 2wFt) sin- k sin2 WIFtk)](2 4WIF 2wjF

a(k) coS Pk TC - tk 1sin2wIFtk + sin 2 WFtk) ,
+a% 2 4 WIF 2 2WIF

where Ebk = aPT is the bit energy of the kth signal and, as in previous chapters,

WIF is the intermediate frequency, P is the mean signal power, and Ak, Pk and a k)

are the normalized amplitude, phase, and ith chip of the kth signal. Also recall that

K, No, T,, and T are the number of active users, the number of chips per bit, the chip

duration, and the bit duration respectively. The chips have zero mean so clearly the

mean interference is zero.

Since (5A.1) is a double sum of independent terms we can compute the variance as

a sum of variances for each term. The variance of a single term (denoted r 2 ) is found



by squaring and taking the expectation

{Cos22Pk
_k + sin 2 WIFtk + sin2 2 WIFtk

4 4wu- 16w,S

sin 2ok ( t
2 WF lF 2

+ 2aý) ak) (k

1
+ 4 WIF

4 .2,

sin2 k2 4
sin 2WFtk) sin 2 WIFtk sin• k 4 WIFtk

siwn 2k sin4 WIFtk
4WIF

+Cos 2Pk( tk(Tc - tk)4

sin 2 ok,. sin2 W i2tk
WIFtk

To - 2tk 1sin 2wFt -tk
8WIF 16wIF

- T) 1
-+ sin 2WIFtkI)

2 2 W1F

((Ta - tk)2

4 -
sin 2 pk
S2 WIF

T( - tk
\2

T1 - *k
T, -_____ sin 2 WIFt- k+ 2 sin .2wIFtk

4 wIF 16wF

1 sin 2wFtk)
sin 2 WIFtk ±

sin2 pk .4
4 w2 sin4
4WIF

WIFtA

(5A.2)

The phase variable is uniformly distributed on [0, 27r]. To take the expectation over the

phase variable and the chips we use

E [cos2 Pk] =

E [sin 2 kk] = 0,

[a 1k) iak) = 0.

E [sin 2 PAk] =

(5A.3)

Plugging these in gives

2= E 2Eb t
Te< Nc2 4

(T - tk) 2

2t - T 1 1
+ - Tsin 2WIFtk + sin2 2wlFt k

4 WIF , SWJ 2

r2 = E
4Ebk
TV2 N

sin2 2WIFtk

(5A.4)

si 4 WIF k
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Now to take the expectation over the delay variable, which is uniformly distributed

over [0, T], we use

E [t] =E[(Tc -tk)]=

1

3 (5A.5)

E [th sin 2WFt• --

E [sin 2wIFtk] = 0,

leading to

Ebkr =3N. (5A.6)3N2

There are N, terms in the inner sum in (5A.1) so the variance of the interference from

the kth user is

E [Io] - Eb (5A.7)
3Nj

Summing over the interferers gives the variance of the interference

K-1
E [Z1] Ebk (5A.8)

k=1

This is the desired result.



Chapter 6

Other Multi-access Protocols

This chapter compares the spread spectrum system discussed in the previous chap-

ters with other network strategies. Many multi-access networks have been proposed

and implemented. Some systems are appropriate'for wire-based networks while others

may be used in a radio environment. Some systems allocate bandwidth to users in a

fixed way while others allocate bandwidth randomly through contention or according

to demand. There are also other spread spectrum methods available. This chapter

briefly discusses the relative merits of a broad range of systems covering examples of

all the possibilities mentioned above.

The primary advantages of spread spectrum systems are freedom from cabling and

simplicity. I call spread spectrum simple because it requires no cooperation between

terminals. Of course I have not really specified a complete protocol. I have not specified

any procedure for recovering from (or even detecting) bit errors or for preventing two

terminals from transmitting to the same receiver simultaneously. Dealing with these

issues may add complexity to spread spectrum. If system-wide synchronization is

required to accomodate correlation receivers, then complexity is certainly increased.

While comparisons based on whether a system requires cabling are completely

straightforward, simplicity is difficult to quantify. Most of this chapter dwells upon

more traditional (and easily quantified) performance measures: bandwidth efficiency

and delay. These are used to compare systems in terms of the number of users that can

be supported with comparable delay. Spread spectrum does not use bandwidth in the

most efficient manner nor does it have dazzling delay performance. As a result, much

of this chapter may give a rather negative view of spread spectrum. The point is not
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that spread spectrum is bad. The point is that spread spectrum should be considered

only if freedom from cabling and simplicity are major priorities.

While copper or fiber-based networks have all the disadvantages mentioned in

chapter 1, it is worthwhile seeing what we lose by giving up cables. Cable-based

networks have an intrinsic performance advantage. They can use the cable to control

multi-access interference by spatially separating signals. They also eliminate multipath

fading. In some cable-based topologies it is also possible to synchronize the network

with arbitrary accuracy at all points.

To determine the capabilities of cable-based networks I will use Ethernet (Ethernet

is a registered trademark of the Xerox corporation) as an example. Ethernet operates at

10 Mbps. It has a maximum diameter of 2.5 km and can have as many as 1024 nodes

[44]. It uses a multi-access protocol called CSMA/CD (carrier sense multiple-access

with collision detection). A user wishing to send a message first breaks the message

up into packets of fixed maximum length. Before sending a packet the interface unit

monitors the cable to determine if it is already in use. If a signal is found the packet is

deferred for a later time; otherwise the packet is sent immediately. Due to propagation

delay a terminal may fail to detect that the channel is already in use. Hence packet

collisions may occur if two nodes begin transmitting within Tp seconds of each other

where Tp is the propagation delay. While sending the packet the receiver continues to

monitor the line and compares the received signal to the signal it is transmitting. If

they do not match, a collision has occurred and the packet is retried later. Collision

detection is not generally possible in a radio network since the locally generated signal

usually overwhelms the receiver.

Let us consider the common measures of network performance: bandwidth effi-

ciency (throughput) and mean packet delay. As I said before, these will be used to

determine how many users can be supported with comparable delay. In the spread



spectrum system, the bandwidth efficiency is just K/No where K is the number of si-

multaneous users and N, is the number of chips in the code sequence which is assumed

to be of the same duration as a bit. Since messages are sent as soon as they are ready,

the delay is just the packet transmission time (denoted Tt) given by the ratio of the

packet length in bits and the baud rate. For the purposes of comparison I will assume

a baud rate of 1.2 kbps and a chip rate around 2.5 MHz leading to NC around 2100

which may eventually be within the limits of CCD technology.

Simple approximate formulas exist [45] for the efficiency, S, and mean delay, Td,

of networks of the Ethernet type:

S Tt(6.1)

2eTK
Td =2eTK (6.2)

1-S'

where K is now the number of users waiting to send packets. If the load is heavy almost

all active users will have packets waiting at any time. Figure 6.1 shows the ,elationship

between efficiency and packet length assuming a 2.5 MHz data rate. If long packets

are used efficiencies approaching unity can be achieved. Even using the maximum

specified Ethernet round trip propagation delay of 45 psec (includes a long detection

circuit response time) packets need only be 64 bits long (only 8 ASCII characters) to

achieve 10% efficiency. From the previous chapter we know that this is about the best

that can be expected from a spread spectrum system if we desire low error rates. Thus

in n:o0st cases Ethernet is, as expected, much more efficient of bandwidth than spread

spectrum.

The spread spectrum packet delay is just L/1200 seconds where L is the packet

length in bits. Using the same length packets on an Ethernet system operating at
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2.5 MHz results in a delay

Td = (4 x 10-7L + 2eTý) K. (6.3)

The mean delay is less than the spread spectrum delay if

1 2083 ,
1200(4 x 10- 7 + 2e(Tp/L)) 1 + 13.6 x 106(T,/L)

This bound is plotted in figure 6.2 as a function of packet length with Tp as a parameter.

It is apparent that, if the load is heavy so that most of the active users have packets

waiting, and if the packets are very short, the spread spectrum system may be able

to support more users without excessive delay. However even if the packets are only

64 bits and the propagation delay is the maximum allowed an Ethernet system can

handle about 200 active users. Thus, in most cases, spread spectrum should only be

considered if avoiding wiring is a priority.

Now let us turn to radio networks. Perhaps the simplest strategy to provide a

high-capacity (In this context capacity is defined as the greatest obtainable efficiency.)

fair, multi-access radio channel is to allocate a fixed amount of bandwidth to each user.

This can be done using either static time division multiple access (TDMA) or frequency

division multiple access (FDMA). Static refers to the fixed allocation. Dynamic versions

of these protocols exist but I do not consider them here.

In FDMA the total bandwidth is divided up into N, subbands where N, is the

number of system subscribers. Each subscriber receives messages in its own subband

without interference. Clearly if there are messages for all subscribers simultaneously

then the efficiency will be 100%. In general (assuming that all messages are intended

for different users) the efficiency is K/N,, the fraction of subscribers who are active.

The bandwidth allocated to inactive users is wasted. Since users do not have to wait
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to gain access to the channel, the delay is just the packet transmission time. If R is the

data rate achievable by using the entire system bandwidth then the delay is given by

LN,
Td-= RN' (6.5)

which is exactly the same delay suffered by a spread spectrum system with process gain

N, = N,. Thus we see that FDMA has high efficiency and low delay if most of the

subscribers are active at any given time. If most (90% or more) of the subscribers are

inactive a spread spectrum system will provide more efficient channel usage and lower

delay. A similar argument applies to any protocol with a fixed allocation.

For TDMA there is an additional snag. A TDMA system must be synchronized.

Since perfect synchronization is not possible a guard band must be left between each

time slot reducing the bandwidth efficiency and increasing the delay. In all fairness

it should be said that many FDMA systems also require guard bands to reduce in-

terference caused by imperfect filtering, oscillator drift, Doppler shifts, and receiver

nonlinearities. Furthermore, TDMA does not have a problem when more than one

message is sent to the same receiver. Time slots can be allocated to transmitters be-

cause, in contrast to FDMA (or spread spectrum), it is not difficult for the receiver to

monitor all channels.

The simplest multi-access protocol that does not use fixed allocation is the ALOHA

scheme. In its simplest form no synchronization is needed. Any user with a message to

send simply sends it using the full system bandwidth. If no other user's transmission

overlaps, the message will arrive successfully barring corruption by noise. If a collision

occurs the transmitter waits a random amount of time and retransmits. Collisions may

be detected by failing to receive an acknowledgement in some specified amount of time.

This time must of course be at least equal to the round trip propagation delay, 2T,.



If G is the offered load (the total bit rate of the incoming packets divided by the

maximum system bit rate) and the packet arrival process is assumed to be Poisson,

then the bandwidth efficiency is given by [44]

S = Ge- 2 C . (6.6)

If G = .5 the capacity of 1/2e = .18 is reached. S/G = e- 2 c can be interpreted as the

probability of successful packet transmission. The probability that a packet requires J

transmissions before successful reception is given by

Prob(J = j) = e- 2 G (1 - e-2G)j - 1 , j = 1,2,3.... (6.7)

This is a geometric density with mean e2c. Let H be the average time a terminal

waits before retrying a transmission normalized by the packet transmission time. Ve

must have H > 1 to avoid the same packets colliding continuously. Mean delay is then

approximately

Td G - + H 1 (6!.8)

At capacity this is approximately H(e- 1)Tt. Thus an ALOHA system with G < .5 will

have less mean delay than a spread spectrum system with the same system bandwidth

as long as

No
H < N -. 582Nc. (6.9)

e-1

If N, is large, as would be necessary to support many users, (6.9) is not a very

stringent requirement. Thus ALOHA compares favorably with spread spectrum in

terms of mean delay. On the other hand, the delay for spread spectrum is constant while

some packets may have very long delays in an ALOHA system. Also, if packets have

varying length, H must be normalized by the maximum packet duration. Consequently
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short packets will be delayed nearly as much as long packets. In the spread spectrum

system delay is proportional to packet length.

ALOHA is also unstable. As the load is increased the efficiency is reduced by

increased probability of collision. A similar statement can be made of spread spectrum

systems: as the number of users and thus the load increases the error rate increases.

Ultimately the error rate becomes unacceptable. If retransmissions of erroneous pack-

ets were requested, the system would also be unstable. Nonetheless, by monitoring

error rate, the receiver knows that it has received a corrupted message and may send

a negative acknowledgement. ALOHA requires positive acknowledgement. If pack-

ets tend to be short, acknowledgements may form a significant part of the load. As

long as the packet error rate is less than .5 there is an advantage to using negative

acknowledgements.

Now let us consider what is lost by insisting on simplicity. If we are willing to

use a more sophisticated protocol, bandwidth can be allocated according to the needs

of the user. One such protocol is BRAM (broadcast recognizing access method). In

this protocol all subscribers are ordered. Each subscriber is given a time slot in round

robin fashion. If a subscriber has a message to transmit it begins transmission in its

time slot. All other users sense the transmission and suspend the round robin until it

is complete. The time slots must be 2Tp in length to allow for sensing the beginning

and end of messages. If q is the active fraction of users (K/N,) then the efficiency is

given by

S - T -- (6.10)T + 2T+(1-q)

Note the similarity in form to (6.1). Thus qualitatively the performance is similar to

Ethernet performance. However, because there are no collisions and hence no need for

collision detection, it can be implemented using radio links as long as the network is
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fully connected (i.e., all receivers can detect signals from all transmitters). In terms of

the offered load the response is nearly ideal as long as the propagation delay is small

compared to the packet length. The efficiency is given by [44]

S = 1 -G- 1+G 2 . (6.11)

When G is small this is approximately G. When G is large the channel saturates and

a capacity of 1 is reached.

To determine mean delay we consider two cases. Under light load a user waiting

to send a message must simply wait for its slot. On average it will have to wait N,/2

slots for a mean delay of N, T,. This is smaller than the spread spectrum delay as long

as N, < LT/Tp. As an example suppose the network diameter is 600 meters (a large

building) so Tp = 2psecs. Even if the packets are single characters (8 bits) a lightly

loaded BRAM system can handle 3300 subscribers with less delay than the spread

spectrum system. At the other extreme suppose every subscriber is waiting to send a

message. Then the average delay is NTt/2. This will be less than our systems delay

as long as N, < 2No. Of course our system could not handle such a heavy load at all.

We conclude our system will outperform BRAM only if N, is very large but the load

is very light.

There is a variation on BRAM that is insensitive to the fraction of active users.

To determine who accesses the channel next all users with messages begin broadcasting

there addresses using binary on-off keying with one bit in each time slot. As soon as a

user receives a 1 which it did not send, it determines that there is a user with higher

priority and it stops broadcasting. After log2 N, time slots the user with the highest

address acquires the channel and sends its message. For fairness this user goes into a

dormant state until the channel becomes idle either because no other user wishes to



use the channel or all other active users are also dormant. This approach is better if

there are a very large number of subscribers most of whom are inactive.

BRAM requires synchronization. However synchronization is relative to the end of

the most recent message so, while stable clocks are required, no external synchronization

signal or master clock node is required. A more important objection is that collisions

may occur if the signal from some transmitter is too weak to be detected at some

points in the network. In this situation two signals may be sent simultaneously and

while they will not interfere at either transmitter they may very well interfere at the

intended receivers. In the spread spectrum system the same situation has the effect of

reducing interference. Of course the two affected terminals can not communicate with

each other directly in either system.

Let us summarize what we have learned so far in this chapter. If freedom from

cables and simplicity are not important, performance can be improved greatly by using

protocols which take advantage of cabling (such as Ethernet) or cooperation between

terminals (such as BRAM). We should consider spread spectrum radio if it is important

to avoid wiring and complexity. It is not, however, the only option that should be

considered. If most of the subscribers are active most of the time, a fixed allocation

system is probably better. There are also conditions under which an ALOHA system

may be more appropriate.

There are other spread spectrum techniques and I would be remiss if I did not

say something about them. The rest of this chapter is devoted to frequency hopping.

Frequency hopping systems, rather than reducing interference, try to avoid interference.

There are Nf carrier frequencies. Signals are sent on one carrier frequency for T,

seconds and are then switched to a different carrier. Each receiver has two sequences of

frequencies associated with it: one for a mark and the other for a space. Frequently the

two sequences are identical except for a constant frequency shift. If, during a chip, no



other transmitter is using either of the possible carriers, then energy will be detected

only at the frequency corresponding to the data. If another transmitter is using this

frequency as well, no harm is done except in the unlikely event that the two signals

exactly cancel. If the other frequency is being used, a hit is said to have occurred and

the chip contains no information. Thus chips corrupted by interference are ignored.

To use frequency hopping for multiple access we need to find large sets of frequency

hopping patterns with good properties. Essentially what is required of sequence sets is

that they have low autocorrelation sidelobes and low crosscorrelation. The sequences

we consider are periodic with period NTc. On the interval [0, NoTc] the mth waveform

is given by
N,-1

sm(t) fn(m,t) (t - 1TC), (6.12)
1=0

where n(m, 1) is an integer between 0 and Nf - 1, and f,(t), for n = 0,1,...,Nf - 1,

is a pulse time-limited to [0, T1] that satisfies

Tfn (t) fp(t) dt = if a = p, (6.13)
S, 0,0 otherwise.

The periodic crosscorrelation; cij(t), is defined as

ci,,(t) = J si (r) s(r - t) dt. (6.14)

For the special case i = j this is called autocorrelation. For the time being we assume

chip synchronous operation. Thus we are only interested in the value of crosscorrelation

functions at multiples of T, where the value is just the number of matching chips. We

define m,ax as the value of c,id(t) maximized over all such t and i,j = 0,... ,M -1

excluding the cases where t = 0 and i = j.

Given No, Nf, and cmax we would like to have upper and lower bounds for the

maximum achievable number of sequences, M. This will give us some idea how many
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users a system can handle with some maximum level of interference. We begin by

deriving a simple upper bound. Suppose we have M sequences. Corresponding to each

of the N, chip positions in each of the M sequences there is a k-chip subsequence which

starts at that location. There are thus MN, such subsequences. If any two of these are

identical it follows that Cmax is greater than or equal to k. Consequently if k = cm,,ax +1

all MN, subsequences of length k must be different. Since each of the chips is chosen

from an alphabet of size Nf there are only Nk possible k-chip subsequences. We see

immediately that

NCmIAx +1

M < f (6.15)Nc
which is the desired upper bound.

To obtain a lower bound it is necessary to construct a set of sequences with the

required properties. What follows is an extension and clarification of work done by

Gustave Solomon [46]. Let the alphabet size, Nf, and the sequence length, N., be such

that Nf = p' where p is a prime number and Nc divides N1 - 1. In most cases it will

be possible to find such a pair fairly close to any given design goal. Label each member

of the alphabet in any convenient way with a different element of GF(pr), the Galois

field of order pr. Let b be a primitive element of GF(p"). Define Q -= (pr - 1)/Nc

and let a = bQ . Note that a has order N,. Define the sequences xq = (1Xq)), for

i = O,... , N , - 1, by

t-1

b) = P,(b'ai), P,(y) = yt + czkY, (6.16)
k=O

where q is an integer between 0 and Q -1 inclusive. Considering all possible coefficients

for the polynomials and choices of q the total number of sequences obtained is

M = NQ= N(Nf - 1) (6.17)



We would like to find the crosscorrelation and autocorrelation of these sequences.

First note that P, (ai d) = P. (bQ j id), where a is the vector of powers of a, generates

the same sequence as P, cyclicly shifted left by j chips. To compute correlation we

consider two sequences one of which is shifted by j chips. The correlation is the number

of positions in which these two sequences match. We are thus led to consider the roots

of the equation

t--1

P. (bO1y)-P,2 (a-b' 2y) = (bt - b(jiQ+2 )t) yt+ (bqkC 1 k - b(Q+ )kCy 2 k) k = 0.
k=O

(6.18)

If the two polynomials are the same this reduces to

t-1

Px, (bq y) _ P, (aibq2y) = ( bt - b(3Q+q2) y)t + (bk - b(jQ+q2)k) Cziyk = 0.

k=O

(6.19)

Both of these formulas are written as polynomials of degree t so if the coefficients are

not identically zero they can have no more than t roots and consequently t is an upper

bound on correlation (which may be lower than t if we do not evaluate the polynomial

at all roots or if the polynomial has irreducible factors). We would thus have the lower

bound

N•max (Nf - 1)
M > f(6.20)

which differs from our upper bound only by the factor (Nf - 1)/Nf. Unfortunately we

cannot guarantee in general that the coefficients are not identically zero in (6.18) and

(6.19), but there are four important special cases for which we can guarantee it.

If t = 1, (6.18) reduces to

(bq' - bi3 + q+ ) y +.c2r 0 - c20 = 0. (6.21)
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If the polynomials are different the constant term will be nonzero. Since b is primitive it

follows that the linear coefficient is zero if and only if qi = jQ + q2. This is only possible

if j = 0 (unshifted sequences) and ql = q2 (polynomials evaluated on the same coset of

the multiplicative subgroup generated by a). Since the constant term is nonzero we get

in this case an equation with no roots. In other words distinct sequences generated by

the same cosets are orthogonal. If the sequences are shifted or different cosets are used

the crosscorrelation may be 1 since a linear equation has one root. If a is primitive y

takes on all nonzero values including the root so the crosscorrelation is exactly 1.

If the polynomials are the same the equation is zero if and only if j = 0 and ql = q2

which is to say when we are considering the same sequence unshifted in which case we

get the obvious result that the peak autocorrelation is N,. Otherwise there will be no

roots. Thus if two sequences are generated by the:same polynomial and they are either

shifted or use different cosets the correlation is zero.

The second special case is when N, = Nf - 1 is prime. In this case Q = 1 so

q, = q2 = 0 so the high order coefficient of the polynomial reduces to

bqt _ b(jQ+q2 )t = 1 - bit. (6.22)

For cases of interest both j and t are less than N, and so relatively prime to N,. Con-

sequently jt is relatively prime to N, and in particular jt does not equal 0 (mod N,).

Since b is primitive we conclude that bit is not 1 so (6.18) cannot be identically zero

unless j = 0 (unshifted sequences). If j = 0 of course (6.19) is identically zero, but,

if the polynomials are different in (6.18), then this is clearly sufficient to insure that

(6.18) is not identically zero. Summarizing, the crosscorrelation between two unshifted

sequences is at most t - 1 while the crosscorrelation (or autocorrelation) between two

shifted sequences is at most t.



It should be noted that this situation is relatively rare. For N, = Nf - 1 to be

prime and Nf to be a power of a prime, Nf must be either 3 or a power of 2. There

are only seven such allowable values of Nf less than 100,000: 2, 3, 4, 8, 32, 128, and

8192.

The third special case is when we force j = 0 (i.e., we consider a bit synchronous

system). If ql and q2 are distinct in (6.18) the high order term will not vanish. The

result is that if we are using different cosets we will get a correlation of at most t.

If q, = q2 but the polynomials are different, the high order term will vanish but the

other terms will not leading to a correlation of at most t - 1. If N, = Nf - 1 then

we automatically have ql = q2 = 0 so cmax = t - 1. This was the case that Solomon

primarily considered and he claimed that in this case this set of sequences is of maximal

size.

The final special case is when t is relatively prime to Nf - 1. Using arguments

similar to those already seen in the second case it can be shown that the maximum

crosscorrelation is t unless j = 0 and q, = q2 in which case the maximum is t - 1.

Let us use the codes generated by the first case mentioned above. The number of

these codes is

N =(Nr -1)M= (N 1) (6.23)Nc
and each has length Nc. Each frequency is used once in exactly Nf - 1 codes and no

frequency is repeated in any code. Since, in the asynchronous case, two of the N, chips

from an interfering user overlap with any given chip, the probability that a particular

interferer will hit a specified chip is

2 Nf - 2 2
P IT= --. . (6.24)

NcM-1 Nf
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Since there are N, interferers the probability of a specified chip being hit is

PHI 1- 1- ) . (6.25)

If the signal level is high compared to the thermal noise a bit can be correctly

demodulated unless all N, chips are hit in which case an erasure occurs. The probability

of erasure is approximately

PE~ Ni N e-Ne -· N / I = e-NNe-2NfN /e , (6.26)

where GP is the process gain, NoNf, for the frequency hopping system. This can be

optimized over No. The optimum N, is Gp/2NI. The resulting optimized erasure

probability is plotted in figure 6.3. It can be seen that low error rates require an

inordinate amount of bandwidth.

The situation can be improved if the system operates chip synchronously so that

an' interferer has only one opportunity to hit a given chip. Since the hopping rate of a

frequency hopping system may be much lower than the chip rate of a direct sequence

system with the same process gain, it is much easier to synchronize to the required

accuracy for chip synchronous operation. The resulting erasure probability is

Nf1")PE •-Nc - ( - N•JN- /('  (6.27)

which is optimized at N, = Gp/N 1 . Plugging this in gives

p(OPT) = e-G,/NIe. (6.28)

This is also plotted on figure 6.3 and the results are much more satisfying.
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Comparing (6.28) to equation (5.14) we see that the direct sequence system will

have worse performance in terms of BER if

3A2C< e-1. (6.29)
2C

This occurs with approximately 22% probability if C = 1. The conclusion is that the

direct sequence system will usually have better performance but, if there is enough

system margin to keep the signal above the thermal noise, frequency hopping is in-

sensitive to either signal or interference power levels. Thus, with high signal level,

frequency hopping does not have a problem with multipath outage.

How high must the signal level be? In order for the statement to hold the minimum

signal level must be high enough that the chip error rate due to thermal noise is much

less than the expected erasure rate. It must be easy to obtain this minimum signal

level by antenna placement so that the probability of failing to receive this signal level

is also much less than the erasure rate. As an example if Gp/NI is set at 20 the erasure

rate (using the optimum N, = 20) is 6.4 x 10- 4 . We wish the probability of error in

any of the 20 chips to be an order of magnitude below this. This requires a chip error

rate of 3.2 x 10-6. Chip error rate is given by [42]

Pc = 1 e-Eb/2NoNc. (6.30)
2

Thus the minimum Eb/No must be about 27 dB. So that the probability of fading below

this level is less than 6.4 x 10- s an extra 42 dB of margin is required for a stupendous

69 dB Eb/No. If double antenna diversity is used the margin is approximately halved

leading to a 48 dB Eb/No. Even this may be difficult.

We conclude that if the signal level is very high (perhaps impractically high) then

frequency hopping is more robust then direct sequence. This is because it is sensitive

only to the number of interferers and not to their power levels. On the other hand, the



average probability of erasure is worse. If the signal levels are lower so that thermal

noise can not be ignored, then the analysis above gives no indication of what level of

performance can be expected.



Chapter 7

Conclusions

This thesis investigated the merits of direct sequence spread spectrum multiple

access for wireless local area networks. The primary obstacles are multipath fading

and multi-access interference. These effect both bit error rate. and code acquisition

performance.

Since code acquisition is not a severe problem for matched filter receivers, we con-

sidered the technologies available for implementing filters matched to the code wave-

form. Although several competing technologies exist, currently CCD technology is the

most promising for the data rates and process gains of interest. CCD's can attain pro-

cess gains of about 1000 over a range of chip rates covering several orders of magnitude.

The 1-10 MHz chip rates that we contemplate is right in the middle of this range.

For very large systems we need process gains exceeding the capabilities of even

CCD technology. In this case correlation receivers must be used and much effort must

be put into acquiring code synchronization. Messages must be" prefixed with a syn-

chronization preamble. If timing is completely unknown at the receiver the preamble

must be so long that the synchronization overhead is likely to dominate the system

bandwidth. Thus system-wide synchronizatioii is required to reduce the initial timing

uncertainty.

There are two reasons why I would not recommend system-wide synchronization

for a spread spectrum system of this type. The first is data rate dependent. In order

to keep synchronization overhead low, timing uncertainty must be kept to a small

multiple of the chip time. Uncertainty can not be reduced below the propagation time

of the network which is typically several microseconds. Thus the chip rate is limited to

,perhaps 5 MHz. We are interested in data rates from 1-10 kbps leading to process gains



of 500-5000 at most. This is little or no gain over what is achievable with matched

filters which do not require system synchronization.

The second reason is even more persuasive and does not depend on the desired data

rate at all. One of the prime motivations for considering spread spectrum was that it

needs very little control. Pairs of users can communicate without regard for other users

as long as some maximum load is not exceeded. Yet synchronization is a form of control

and if it is necessary for any reason it should be used to increase system capacity by

cooperation between system users. In other words synchronization adds considerable

complexity to a spread spectrum system making it attractive to consider protocols such

as BRAM which rely upon synchronization to improve bandwidth efficiency.

The process gain of 1000 attained by a CCD matched filter is sufficient to ac-

comodate fairly large networks (over 50 terminals) under some conditions. Since the

fade level at a particular location does not vary with time good performance can be

attained if sites are carefully chosen so that no signal is in a deep fade. This is only

practical for very small networks and is inconvenient for portable terminals. A more

useful mnethod of counteracting multipath fading is to use antenna diversity. Indeed

it would be unwise to build a system without some form of diversity, and antenna di-

versity is probably the simplest to implement. Even with antenna diversity we found

that, in order to communicate with all other system subscribers, it will be necessary to

occasionally adjust antenna positions to get out of a deep fade. At carrier frequencies

in the low gigahertz range adjustments of only a few inches are sufficient. While this

would not pose any problem for a handheld terminal, the need for adjustment should

be kept in mind when considering this type of network since it could be a problem for

some types of terminals.

There are several topics not covered in this thesis that may be promising for further

research. In chapter 2 it was mentioned that there is lognormal fading in addition to



the Rayleigh fading treated here. Lognormal fading is caused by the layout of the

building and has a much larger coherence distance so that it is not easily combatted by

antenna diversity. It would be worthwhile to determine the impact of this effect and,

if necessary, find means to avoid it.

A great deal more work could be done with frequency hopping. In this paper only

the interference dominated case was considered, but the powers needed to enter this

regime may be unrealistic. An analysis should be done which can account for all the

effects of thermal noise.

A couple of interesting topics which were not mentioned at all are uses for error

correction coding to improve reliability and mobile terminals which experience time-

varying fading. Networks with higher data rates may also be interesting. In this case

frequency-selective fading may be encountered. Finally the compatibility of spread

spectrum networks with neighboring systems should be considered.



Glossary of Notation

SYMBOL

Ak
a
a
ak(t)

(ak)a.
b
bk(t)

k '

EXPLANATION

Amplitude of the kth signal normalized by mean power
Element of GF(Nf) used to generate frequency hopping codes
Vector, (ao,..., aNI-1/Q), of powers of a
kth code waveform

jth chip of kth code sequence
Primitive element of GF(Nf)
kth data waveform

Ith bit of kth data sequence
Excess interference factor
Aperiodic crosscorrelation function of the jth and kth chip

sequences
Periodic crosscorrelation of jth and kth code waveforms
Maximum value of ci,k(t) excluding j = k and t = 0
Antenna diversity
Distance from the transmitter to the receiver.
Dawson's integral: e- fo e'2 dt
Mean bit energy averaged over fading
Bit energy of kth signal
Offered network load
Process gain (NcNf) for frequency hopping
Signal detection threshold
Filter impulse response
Total multi-access interference

,b 2 , t, sP)
Multi-access interference to the kth user due to the jth user
Used to indicate cyclic shift of frequency hopping code

Number of active users
Packet length in bits
Number of frequency hopping codes
Gradient of signal power with distance
Number of chips per bit; process gain for direct sequence
Number of available carrier frequencies for frequency hopping
Number of interferers (K - 1)
Number of system subscribers
Timing uncertainty in cells (T,/T,)
Spectral density of n(t)
Number of cells examined per chip (TI/T,)
Additive white Gaussian noise process
Mean signal power

C
Cj,k (1)

C 2,k (t)

Cmax

D
d
Di(x)

Eb
Ebk

G
Gp
h
h(t)
I -
Ii,k(bl

iJ.

K
L
M
m
Nc
Nf
NN,
N,

No/2
n
n(t)
P

PAGE

11
64
64
11
12
64
11
12
32
19

63
63
43
9

40
32
49
58
68
20
18
38

19
64
39
11
54
63
9

12
62
32
43
25
11
25
11
11



PE Probability of error for direct sequence; 32
probability of erasure for frequency hopping 67

PE Required probability of error or erasure 33
Pf Probability of failure to acquire 25
Pfa Probability of false alarm 20
Pm Probability of missing signal 20
Q (Nf - 1)/Ne; number of cosets of multiplicative subgroup of a in 64

GF(Nf)
Q (z) f: e- 2/2 dx 20
q Used to index cosets of multiplicative subgroup of a in GF(Nf) 64
q(t) Chip pulse waveform 19
R Data rate, baud rate 14

Reliability 33
R1 Reliability with one antenna 43
RD Reliability with D antennas 43

2  See equation (5A.2) 49
Rj,k(t), Rj,k(t)

Partial crosscorrelations between jth and kth code waveforms 19
Rq(t), Rq(t)

Partial autocorrelation functions of the chip pulse waveform 19
S Bandwidth efficiency 54
s Mean signal amplitude 20
s(t) Received signal 11
sm (t) mth frequency hopping code waveform 63
SIR Signal to interference ratio 47
SNR Signal to noise ratio 20
T Bit duration 12
Tacq Mean acquisition time 23
TC Chip duration 12
Td Mean packet delay 54
Te Examination or dwell time. 22
TP Propagation delay 24
TS Sliding correlator time shift 22
Tt Packet transmission time 53
TU Initial timing uncertainty 12
t Degree of polynomial used to produce frequency hopping codes 64
td Delay between the received signal and local reference 21
tk Delay of the kth signal 11
V Variance of received signal 20
y(t) Filtered signal 18
y Sample of y(t) 18
E Detection threshold as a fraction of the signal mean 20
r7 Sampled filtered Gaussian noise 19



Normalized thermal noise: (PT2 /2)-1/2r,

Periodic and odd crosscorrelations between jth and kth code
sequences

Pk Phase of the kth signal

(u) Characteristic function of 77' + I

01(u) Characteristic function of I
02(u) Characteristic function of t7'
Wc Carrier frequency
WIF Intermediate frequency
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