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Abstract

This thesis is concerned with the reflection and transmission properties of layered left-
handed materials (LHM). In particular, the reflection properties of (LHM) slabs are studied
for the Goos-Hiinchen (GH) lateral shift phenomenon. We demonstrate a unique GH lateral
shift phenomenon, which shows that both positive and negative shifts can be achieved
using the same LHM slab configuration. This phenomenon is different from previously
established cases where the GH lateral shift can be only negative or only positive when
different LHM slab configurations are used. We also show that there exist two distinct
cases with this unique phenomenon. One case has two regions of incident angles where the
GH lateral shift directions are different, while another case has three regions with alternated
GH shift directions. A generalized analytical formulation for analyzing the GH lateral shift
direction is provided, which reveals that this unique phenomenon is related to the relative
amplitudes of the growing and decaying evanescent waves inside the LHM slabs. The
energy flux patterns within LHM slabs are further studied to show the influence of the
evanescent waves on the GH shift direction change.

Furthermore, the transmission property of LHM slabs are studied on the finite slabs'
imaging capability. First, the development of the numerical simulation tool - the Finite-
Difference Time-Domain method (FDTD) - investigates the ability of the method to model
a perfect lens made of a slab of homogeneous LHM. It is shown that because of the fre-
quency dispersive nature of the medium and the time discretization, an inherent mismatch
in the constitutive parameters exists between the slab and its surrounding medium. This
mismatch in the real part of the permittivity and permeability is found to have the same
order of magnitude as the losses typically used in numerical simulations. Hence, when
the LHM slab is lossless, this mismatch is shown to be the main factor contributing to the
image resolution loss of the slab. In addition, finite-size LHM slabs are studied both analyt-
ically and numerically since they have practical importance in the actual experiments. The



analytical method is based on Huygens' principles using truncated current sheets that cover
only the apertures of the slabs. It is shown that the main effects on the images' spectra due
to the size of the slabs can be predicted by the proposed analytical method, which can,
therefore, be used as a fast alternative to numerical simulations. Furthermore, the property
of negative energy streams at the image plane is also investigated. This unique property
is found to be due to the interactions between propagating and evanescent waves and can
only occur with LHM slabs, of both finite-size and infinite size.

The last part of the thesis deals with multi-layered media for the application to antenna
isolations. The setup is with two horn antennas located beneath the ground plane with
10 A distance apart. In order to reduce the coupling between antennas, multi-layered media
placed on top of the ground plane need to be designed to suppress the fields. After the prob-
lem is simplified to the dipole antenna coupling in infinite slabs, the method to evaluate the
fields inside layered media is presented. This method obtains the spectral domain Green's
function first and then transforms the fields to the spatial domain using the Sommerfeld-
type integration. After the method is validated using right-handed materials (RHM) from
references, it is extended to include media like LHM as well as p. negative material and :
negative material . The validation with these materials are done by comparing the results
with CST microwave studio simulations. The first configuration for the antenna isolation
design if one layer slab backed by the grounded plane. Two different approaches are used
to find the optimum slab parameters for the isolation. One approach is to use Genetic Algo-
rithm (GA) to optimize the slab's constitutive parameters and the thickness for a minimum
coupling level. The other approach is to develop an analytic asymptotic expression for the
field, and then used the expression to design the slab parameters for the best isolation. We
conclude that both approaches yield the same design for the given configuration. The effec-
tiveness of the design is also validated on a grounded finite slab, which is the representation
of the actual application. Finally, multi-layered media for the antenna isolation is studied.
GA method is applied with an optimization scheme tailed for a five layered structure. We
show that GA converges very fast to the solution and the result yields satisfactory isolation
between the antennas.

Thesis Supervisor: Jin Au Kong
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Development of Left-Handed Materials

In the recent years, many of the new thrusts in electromagnetic research have been results

of breakthroughs in other seemly unrelated research areas. One good example of such is

the development of Left-handed materials.

The establishment of Maxwell's' equations connects the behaviors of electromagnetic

waves to the the material's properties such as permittivity (c) and permeability (y). For

media with positive constitutive parameters, which is abundant in nature, it is well-known

that the triad of wavevector k, electric field E and magnetic field H forms a right-handed

system. For the purpose of differentiation, we terms such media Right-Handed Materials

(RHM). What also exists in nature are c negative materials (ENG) and It negative materials

(MNG). An example for ENG is a plasma medium. The permittivity of a plasma medium

is frequency dispersive. In the frequency range below the plasma frequency, the permit-

tivity takes negative values. The MNGs are not as common as ENGs, but they can found

27



as ferromagnetic materials. Considering the quadrants of values of permittivity and per-

meability, the only material that is missing from nature's abundance is the material with

negative permittivity and negative permeability simultaneously. The idea of the existence

of such materials was first pondered by Vessalago in 1968 [1]. From the Maxwell's equa-

tions, Veselago postulated several unusual phenomena related to the materials with both

/l and ( being negative. He termed such materials "Left-handed materials" (LHM) due to

left-handed system formed by the wavevector 1, electric field vector E and magnetic field

vector (H). However this idea remained as an academic curiosity for nearly half the cen-

tury. With the rise of semiconductor process technology which enabled the fabrication of

meta-materials (made from deposited metals in micro scales), the breakthrough came in the

late 90's when Pendry proposed a theoretical design of meta-materials first with negative (

[2] then with negative p [3], and in 2001 experiments by R.A.Schelby and colleagues [4]

demonstrated a key phenomenon - Negative refraction - using materials with both negative

1u and e. The material constructed in the experiment used periodic structures with each ele-

ment consisted of two square split rings (with an opening on the opposite side of each ring),

and rods parallel to the plane of the rings. When the frequency of the incident magnetic

field is close to the resonant frequency of the split rings, the structure becomes a resonant

circuit. When losses are low, the induced magnetic energy can be very strong. As a result,

the induced magnetic field can overpower the incident fields and the materials' permeabil-

ity becomes negative. The permeability of the split rings LHM can be characterized by

a Lorentz model due to the nature of its resonance. On the other hand, the negative per-

mittivity was achieved by using periodic rods that resemble a plasma medium. When the

incident electric fields are parallel to the rods, moving charges (i.e. currents) are induced
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in the rods. The medium behaves as though there are free charges in space like in a plasma

medium. The negative & thus has a very wide frequency range. The lower limit of this range

is determined by the minimum frequency required for treating the constructed material as

a homogeneous medium, and upper limit is the plasma frequency of the rod structures.

Major drawbacks in the first LHM design with split rings are, firstly the high loss near

the resonance frequency and secondly the narrow frequency band in which materials have

LHM properties. In order to overcome these obstacles, many research efforts were devoted

to developing new LHM materials design with lower loss and wider range of negative

permeability. Notable achievements from these efforts were the designs with helicoil, Q

structure and "S" rings. Helicoil design [5] was used in the experiment and subwavelength

resolution was demonstrated using a slab made of such materials. The Q rings design was

proposed to improve the bandwidth of the LHMs. The "S" rings design [6] [7] was shown

to have lower loss and wider frequency band for LHM behavior. Generalization to 3-D

structures had also been attempted [8].

1.1.1 Properties of LHMs

There are many unique properties due to the constitutive parameters u and E both being

negative. First of all, the refractive index n of LHM is negative. From Maxwell's equations,

n = /ý-. It may be seen at first the sign of n is ambiguous since both positive and negative

sign can be the solution. However if we examine the plane wave propagation inside LHM

[9], we see that from k x E = wpuH, the wave vector inside LHM is opposite to the one
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in RHM. Therefore negative sign is the only allowed choice for n in LHM. This is the

negative refraction property of LHM. An extension of negative refraction is the backward

wave propagation inside the LHMs. This is due to the fact that the wavevector in LHM is

opposite to the direction of the Poynting power vector. Inside LHMs, Cerenkov radiation

has a backward propagating power due to the phase matching in the forward direction for

wave vectors. When both dispersion and dissipation are considered in LHMs [10], it is

found that both forward and backward power exist and the radiation angle is related to the

loss.

For a LHM half space, the negative refraction bends the transmitted wave to the same

side of the normal as the incident wave, while the bending indicating the RHM is to the

opposite side of the normal. The negative refraction in LHMs has been confirmed in ex-

periments in [11 ][ 12]. Due to the negative refraction, the propagating waves from a point

source in RHM half space can be re-focused to an image point in LHM. The LHM can also

restore the evanescent wave amplitudes at the image point. The Goos-Hiinchen (GH) shift

due to the total internal reflection is to the negative direction [13] instead of the positive

direction for the RHM half space.

The properties of LHM slabs are the most studied research topic since the structure

bears great importance in the practical applications. The seminal paper is the one by

Pendry[14] which proposed the idea of perfect lens made of LHM slabs. Building upon

the idea proposed by Veselago [1] that LHM slabs can focus the propagating waves into

an image, Pendry further postulated that the evanescent waves can also be reconstructed

to the same image. Therefore the entire spectrum of a source can be reproduced at the

image plane yielding the name of a lens with a "perfect resolution". The sensitivity of
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the image resolution to material properties was studied in [15], which showed that perfect

lens can never be realized due to the loss and mismatch in the LHMs. In order to under-

stand the imaging capability of practical LHM lens, many numerical simulation studies

[16] [17] [18] [19] [20] were carried out, which concluded that subwavelength resolution

instead of a perfect resolution can be achieved with LHM lens. Such a conclusion had been

confirmed by experiments [5][21]. Studies on silver flat lens, which is an approximated

version of LHM lens in the quasi-static limit, have also shown the image results with sub-

wavelength resolutions [22][23][23] [24]. The perfect lens concept was further generalized

to include anisotropic media [25] as well as with multifocal capability [26]. Besides sub-

wavelength resolution property of LHM slabs, interesting GH lateral shift phenomena were

also found for LHM slabs. The shifts with LHM slabs, depending on the material backing

the slab, can be either positive or negative [27]. It was further found that the GH lateral

shift can change directions as incident angle changes and the phenomena was explained by

the energy flux changes inside the LHM slabs [28]. Furthermore, the guidance conditions

with LHM slabs [29] have been investigated and showed that the imaginary wavevectors

modes can be excited inside the LHM slabs in addition to the conventional real wavevectors

modes. Furthermore, using the LHM slabs backed by a ground plane as antenna substrates,

[30] [31] [32] showed that the antenna isolation and the leaky wave radiation can be tai-

lored by the slab's properties. Lately, another interesting property with LHM slabs was

found [33] which showed that a lossless LHM slab can localize the electromagnetic en-

ergy completely by placing two sources at each other's image location. This is because the

image has the same amplitude as the source with an opposite phase therefore the radiated

power is canceled.



For multi-layered LHM structures, the excitation of guided waves inside the slabs was

studied in [34]. For general isotropic cases, the analytical formulation for the guided waves

inside the multi-layered structure was presented in [9] and for bianisotropic stratified media

in[35]. Beam shaping by a one-dimensional photonic crystal consisting of alternating slabs

of two materials with positive and negative refractive index was studied in [36].

1.2 Overview of Thesis Work

In the thesis, the reflection and transmission properties of layered LHMs are studied. Chap-

ter 2 deals with the reflection properties of LHM slabs, in particular the GH lateral shift

phenomenon. A unique GH lateral shift phenomenon is found, which shows that both

positive and negative shifts can be achieved using the same LHM slab configuration de-

pending on the incident angle. We also show that there exist two distinct cases with this

unique phenomenon. One case has two regions of incident angles where the GH lateral

shift directions are different, while another case has three regions with alternated GH shift

directions. A simplified analytical formulation is developed to study the dependence of the

GH lateral shift direction on the slab parameters, from which we show that the phenomenon

of both positive and negative GH shifts at different incident angles can be observed with

LHM slabs. The formulation also reveals that this unique phenomenon is related to the

relative amplitudes of the growing and decaying evanescent waves inside the LHM slabs.

The energy flux patterns with LHM slabs are further studied to show the influence of the

evanescent waves on the GH shift direction change.

Chapter 3 studies the transmission properties of LHM slabs with a focus on the imaging
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capability of the LHM slabs. First, the development of a numerical simulation method - the

Finite-Difference Time-Domain method (FDTD) - investigates the ability of the method

to model a perfect lens made of a slab of homogeneous left-handed material (LHM). It

is shown that because of the frequency dispersive nature of the medium and the time dis-

cretization, an inherent mismatch in the constitutive parameters exists between the slab and

its surrounding medium. This mismatch in the real part of the permittivity and permeabil-

ity is found to have the same order of magnitude as the losses typically used in numerical

simulations. Hence, when the LHM slab is lossless, this mismatch is shown to be the main

factor contributing to the image resolution loss of the slab. Furthermore, finite-size left-

handed material (LHM) slabs are studied both analytically and numerically. The analytical

method is based on Huygens' principles using truncated current sheets that cover only the

apertures of the slabs. It is shown that the main effects on the images' spectra due to the

size of the slabs can be predicted by the proposed analytical method, which can, therefore,

be used as a fast alternative to the numerical simulations. Furthermore, the property of neg-

ative energy streams at the image plane is also investigated. This unique property is found

to be due to the interactions between propagating and evanescent waves and can only occur

with LHM slabs, both finite-size and infinite.

Chapter 4 of the thesis investigate multi-layered media properties for the application of

antenna isolations. The antennas used in the setup are two horn antennas located under the

ground plane and facing upward. Layered slab materials are placed in between antennas

to suppress the coupling (i.e. to improve the isolation). After investigating the coupling

between the horn antennas, the problem is simplified to the study of dipole antennas cou-

pling in layered media. The method of spectral Green's functions is used to evaluate the

33



fields inside layered media from the transmission line analogy. Using Sommerfeld-type

integrations, the fields are transformed back to the spatial domain. The spectral Green's

function method is further extended to include LHM as well as p negative material (MNG)

and E negative material (ENG) and the method is validated with examples. For the antenna

isolation consideration, the configuration of a slab backed by a grounded plane is stud-

ied analytically for the guidance conditions for different materials. A design example is

provided with the z directed dipole antenna coupling. Two different approaches are used

to find the optimum slab parameters for the best isolation. One approach is to use Ge-

netic Algorithm (GA) to optimize the slab's constitutive parameters and the thickness for a

minimum coupling level. The other approach is to develop an analytic asymptotic expres-

sion for the field, which is then used to design the slab parameters for the best isolation.

We conclude that both approaches yield the same design for the given configuration. The

effectiveness of the design is also validated on a grounded finite slab, which is a closer

representation of the actual application. In addition, possibility of using multi-layered me-

dia in place of the slab for the antenna isolation is studied. GA method is applied with an

optimization scheme tailed for a five layered structure. We show that GA converges very

fast to the solution and the result yields satisfactory isolation for the antennas.



Chapter 2

Goos-Hanchen (GH) Lateral Shifts

2.1 Introduction

The Goos-Hinchen (GH) lateral shift effect, which refers to the spatial displacement of the

reflected beam along the interface between two media from an incident beam, has been

studied for many years [37] [38] [39]. Recently, due to the emergence of LHM, the interest

in the study of GH shifts has been renewed [13] [34] [40] . In this chapter, we consider

a three media configuration as illustrated in Fig. 2-1, in which a beam is incident from

medium #1 onto medium #2 (the slab) with the center of the beam at an angle 9i from the

normal. The spatial displacement S, or GH lateral shift, can be either positive or negative

depending on the constitutive parameters of the three media. A positive GH lateral shift

refers to a shift to the other side of the normal from the incident beam (which is the case

shown in Fig. 2-1), while a negative shift refers to a shift on the same side of the normal

as the incident beam. The GH lateral shift phenomenon can be explained by the fact that

a Gaussian beam is a summation of plane waves with a Gaussian-tapered amplitude dis-
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tribution around the incident angle 0I. At incident angles greater than the critical angle,

the plane waves undergo different phase changes due to total internal reflection and sum

to form a laterally shifted reflected beam. The condition k' > k' needs to be satisfied in

order for the critical angle to exist, where kj, k2 are the wave vectors of media #1 and #2,

respectively.

For slab configurations, as depicted in Fig. 2-1, it has been shown that a slab of RHM

embedded in free-space yields a positive GH shift, while a slab of LHM embedded in free-

space yields a negative GH shift [40] [41]. More recently, however, a positive GH shift has

been demonstrated with an LHM slab [27]. This phenomenon has been shown to occur

when the third medium is perfectly matched with the LHM slab, which refers to the situa-

tion where the respective permittivities and permeabilities of the slab and the third medium

are opposite of one another (i.e. E2 = -E3 and P2 = -/3 in Fig. 2-1). Furthermore, it has

been demonstrated that, for specific multi-layered LHM systems [34][36], both positive

and negative GH shifts at different incident angles (referred to as simultaneous positive and

negative GH shifts hereafter) can be obtained. In this chapter, we extend this study and

show that the phenomenon of simultaneous positive and negative GH shifts can be demon-

strated with a single slab of LHM and it is in fact a fundamental property of LHM slabs.

An analytical study is carried out and reveals the connection between the GH lateral shift

direction and the relative magnitudes of growing and decaying evanescent waves inside the

slab. The energy flux line patterns associated with different GH shifts are studied, and the

physical interpretation of the relation between GH shifts and evanescent waves is discussed.
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Figure 2-1: Configuration of a Gaussian beam incident upon a slab of thickness d and

constitutive parameters (A2, 62). A GH lateral shift can be observed when Oi > 0, (the

critical angle).

2.2 Positive and Negative Lateral Goos-Hainchen Shifts With

an Isotropic LHM Slab

The configuration of the problem under study is depicted in Fig. 2-1: a Gaussian beam

centered at 0i impinges onto a slab of material (which can be either RHM or LHM) backed

by a half-space. This configuration can be analyzed using the formulation presented in [9]

[42], where the fields as well as the reflection and transmission coefficients in multi-layer

isotropic RHM and LHM have been derived. Using the same notation, for a Gaussian beam

incident under a TE polarization, the incident electric field can be expressed as:

Ev(x, z) = dkxeikx+iklzz (kx) (2.1)

where V•(k1.) = (g/2/v/-)exp[-g 2(kx - kix)2/4] and k• = 2p61el = k2 + k 2. Eq. (2.1)

describes the electric field with a Gaussian-shaped footprint of width g centered at x = 0
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along the x axis. The incident beam is centered about ki = Xkix + ,kiz = .kl sin O9 +

,klcos0i. In all three regions, the total electric field can be expressed as:

Es(x, z)= jdkx [Ai(kx)eikizz+Bi(k )e- ik zz]

ik,,x (kx) (2.2)

where i denotes region 1, 2 or 3. It is clear that A1 = 1 and B3 = 0, while the other

coefficients can be obtained by letting dl = 0 and d2 = d in Eqns. 64-67 in [9] and

replacing R, T, A, B with B1, A3, A2, B2 respectively.

When the Gaussian beam's incident angle 0i is above the critical angle, each reflected

plane wave (after a total internal reflection) carries a Goos-Hiinchen phase shift D(kx)

which is a function of kx, and recombines to form a reflected beam with a center locally

shifted with respect to the incident beam. With the reflection coefficient R(kx) expressed

as: R(kx) = ei$(k.), under the linear approximation for the phase term tI(kx), the lateral

shift can be characterized by [38]:

S = (2.3)

where S is the spatial displacement from the focal center of the incident beam (as shown

in Fig. 2-1). For the slab, we have

'4(kx) = -2tan - P12( 3-  2  = -2 tan- 1 F (2.4)
1 + R23 e- 2 12z d
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where

F p12(1- R23 - 2a2zd)

1 + R 23 e - 2a2zd

and the Fresnel reflection coefficients R12 and R23 are defined as [42] :

1 - P12

R 12 1+ P12

R 1 - P23
23 P23

1 + P23

.[1a2z _20a3z

P12 L2klz P3 130 2z

We consider the cases when the incident angle 08 is above the critical angle for both

media 2 and 3 (i.e. k_ > k- and k- > k ), which dictates that both k2z and k3z are imaginary

wavenumbers. In medium #3, we choose k3z = ia3z where a3z is a positive real quantity so

that the waves decay as z increases. In addition, it is known that the choice of the sign for

k2z does not affect the values of the reflection coefficient [27], so that k2z = ia2z is chosen,

with a2z being real and positive. After some mathematical manipulations (see Appendix A

for details), the sign of the GH shift S can be expressed as follows :

(2.8)sign{S} = sign 2r [C - C[C - C21]
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(2.6)

where

(2.7)



where

C = B2/A2= R 23 e- 2 2z (2.9)

C, = 2UV + J4U 2V2 + I

C2 = 2UV - r4U 2V2 + I

and

U - e2zklz- 2-k2

V d- (k- 2-32)t2rar
V d - 2 (2.10)

a3z(/L3rTO2z - 1L2r •(•)

By introducing Eq. (2.8), we are able to analyze the GH shift direction change and

its dependence on the incident angles and the slab's thickness. Although Eq. (2.3) can

also be used for the parametric study of GH shifts, Eq. (2.8) has the advantage of directly

relating the GH shift directions to the slab's parameters and the electromagnetic waves

in the system. More importantly, the physical meaning of C is the ratio of the growing

and decaying evanescent wave amplitudes inside the slab. Hence Eq. (2.8) reveals the

connection between the GH lateral shift direction change and the variations of the ratio of

the evanescent wave amplitudes inside the slab, which is further illustrated in Section 2.4.

Note that Eq. (2.10) has a singularity point at Pc3rc2z + A2ra 3z = 0, which requires
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Eq. (2.8) to be modified as

sign {S} = sign -lrI2r[(k 2 - k2)

e-2a2zd- (k - k)k z] (2.11)

The above singularity condition can be re-arranged as i3r,/Q3z + 112r/a2z = 0, which

corresponds to the surface polariton condition for TE waves [34][43]. The surface polariton

condition can also be viewed as the condition in which only one evanescent wave exists. As

observed in [34], the excitation of forward (backward) surface waves can result in positive

(negative) GH shifts. This can also be seen from Eq. (2.11) by ignoring the exponentially

small term and observing that the GH shift direction is therefore determined by k 2  k2,

which can be further reduced to the forward and backward surface polariton condition

XY = (|(3r1/E2r)(lU 3r //i2r) ! 1. Hence Eq. (2.11) give a general relation between the

GH shift direction and surface wave modes.

As an application of Eq. (2.8) when ,/3r/a3z + 12r/c 2z - 0, we shall now show that

LHM slabs in general exhibit the simultaneous positive and negative GH shifts at certain

slab thicknesses. Note that C, C, and C2 are real numbers and C1 > 0 > C2. Considering

an electrically large thickness d, we can treat V as a positive variable increasing linearly as

d increases and U as a positive constant. Then C1 and C2 can be approximated as:

1 1
Cz 2UV + 2UV(1+ )  4UV (2.12)

2 4U2V2
1

C2 (2.13)
4UV



which says that 0C oc d and C2 oc d- 1 for a large thickness d. Since C decays faster than

C2 (C cx e-a2zd), it becomes clear that C, > C > C2. This means the GH shift direction is

negative (positive) if an LHM (RHM) slab is used (according to Eq. (2.8)). As d decreases,

C becomes greater than C1 and C2 in magnitude due to IR231 > 1 and the GH shift becomes

positive for an LHM slab. As an illustration, Fig. 2-2 shows a typical curve of C, C, and C2

as functions of the slab's thickness d. Applying Eq. (2.8), it can be seen that for LHM slabs

in general, the GH shift direction changes from positive to negative as d increases. Note

that this does not happen to an RHM slab since the value of C starts within [C2,C1] (for

positive GH shift at d close to zero) and stays within [C2,C1] as d increases. This explains

why the GH shift is always positive for an RHM slab. Furthermore if we take the slab

thickness which corresponds to the zero shift (intersect points of C and C1 or C2) and look

at the GH shifts with different incident angles, the phenomenon of simultaneous positive

and negative shifts can be observed. This is shown in Fig. 2-3 where the GH shift direction

changes at different incident angles. Therefore this phenomenon is general to LHM slabs

and it is associated with the fact that the GH shift direction can change from negative to

positive as the LHM slab thickness becomes smaller. To verify the above results, Fig. 2-2

and Fig. 2-3 also show the GH shift amplitude changes as functions of the slab thickness

and the incident angle with the help of Eq. (2.3). The phenomenon of simultaneous positive

and negative GH shift effect is clearly observable.

Furthermore, using Eq. (2.8), we can classify the GH shift effects with LHM slabs into

three cases. The first case is the unidirectional GH shift in which C is always in between C1

and C2 as the incident angle varies and the shift is always negative. An exception is when
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Figure 2-2: The values of C, C1 , C2 and the shift amplitude are plotted as the slab thickness
d varies. Slab's constitutive parameters are 1 = 6 1 = 1, Y2r - E2r = -0.5, /3r = C3r =
0.3. The Gaussian beam is incident at 50' with a frequency of 10 GHz. The curves in
legend are for C, C1, C2. The thin solid line is the shift amplitude curve.

the LHM is matched to region 3, C becomes infinite and the GH shift becomes positive.

This case has been reported in [27] [40] . The second case is the simultaneous positive

and negative GH shifts, where C changes from within [C2, C1] to outside this range. This

case has been illustrated above. The third case is the alternated positive and negative shifts,

where C becomes infinite at a specific incident angle yielding a positive shift. Away from

this angle, C(7 is within [C2, C1] and the shift becomes negative. This case is similar to the

configuration in [44] where a "giant" negative lateral GH shift is reported at this specific

incident angle.
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Figure 2-3: The values of C, C1, C2 and the shift amplitude are plotted as the incident
angle varies. It can be seen that positive and negative GH lateral shifts at different incident
angles occur at this configuration. Same constitutive parameters of the slab as in Fig. 2-2.
Slab thickness is set to 7.31mm and The Gaussian beam's frequency is 10 GHz. The thin
solid line is the shift amplitude curve.

2.2.1 Configurations with Unidirectional GH Lateral Shift Direction

In this section, we focus on the cases where the GH lateral shifts are unidirectional with the

incident angles. These cases have been established previously [13] [27], and our purpose is

to apply Eq. (2.8) in order to identify the connections between the GH lateral shift direc-

tion and the ratio of the evanescent waves inside the slab. Since Eq. (2.3) suggests that the

GH lateral shift direction can be predicted from the slope of the phase of the reflection co-

efficient R (opposite in sign), only the phases of R for these cases are plotted in this section.



i) When medium #2 is an RHM, the GH lateral shift is positive. An example is given in

case 1 of Fig. 2-4(a) where the phase of R is plotted and the negative slope indicates a pos-

itive shift (from Eq. (2.3)). This result can also be seen from Eq. (2.8) by observing that C

is always in between C1 and C2 (from Fig. 2-4(b)), and that piZr/P2r is positive. Fig. 2-4(b)

also shows that the magnitude of C is much smaller than one, which is due to R 23 being

smaller than one for a positive p23 (from Eq. (2.6) and Eq. (2.7)). Since C is the ratio of

evanescent wave amplitudes, a small value of C means that the decaying evanescent waves

dominate inside the slab.

ii) When medium #2 is an LHM, it is known that the GH lateral shift can be negative.

This is illustrated by the phase plot of R in case 2 of Fig. 2-4(a). This result can also be

seen by using Eq. (2.8): since C is smaller than C1 and greater than C2 from Fig. 2-4(c) and

since p1,r/1 2r is negative (medium 2 being LHM), the GH lateral shift is negative. Again

Fig. 2-4(c) shows that the value of C is much smaller than one, which means the decaying

evanescent waves dominate inside the slab, as in the previous case. From these two cases,

it can be seen that since the value of C is small (much less than one), the GH lateral shifts

are positive for RHM slabs and negative for LHM slabs. This has been the traditional ob-

servation of GH lateral shift with slabs established in [13] [41] [40].

iii) When medium #2 is an LHM that is matched to the RHM of medium #3 (i.e.

2 = -3, 62 = -03), unlike case (ii), the GH lateral shift is positive, as reported in [27].

This can be predicted from the phase plot of case 3 of Fig. 2-4(a). In this case, p23 = -1

from Eq. (2.7) so R 23 and C are both infinite for all incident angles above the critical angle.
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Applying Eq. (2.8), we see that the sign of S is determined by -(ALr/l 2r) which indicates

a positive shift. Compared with case (ii) where C is very small and decaying evanescent

waves dominate inside the slab, C is now infinite and growing evanescent waves dominate

inside the slab. In other words, when the GH lateral shift direction is changed, the value

of C varies from much less than one to infinity. Note that in the cases shown here, the two

different GH lateral shift directions happen with two different LHM slab configurations

(one non-matched and one matched). In the following sections, we show that different GH

lateral shift directions can be obtained with a single LHM slab.

2.2.2 Configuration With Two Regions of Different GH Lateral Shift

Directions

In the previous section, the GH lateral shift direction flips from negative to positive when

only medium #3 is changed, i.e. from mismatched to matched to medium #2 (the LHM

slab). Since the continuous variation of medium #3 from mismatched to matched to medium

#2 cannot result in the discontinuous change of GH lateral shift direction, there must be a

new phenomenon in this transition. In fact, it is found that when the LHM used for medium

#2 is slightly mismatched to the RHM of medium #3, namely A2  -/3 and E2 M -63,

simultaneous positive and negative shifts can be observed with a single LHM slab. For the

purpose of illustration, we use 1,r = Elr = 1 for medium #1, PL2r = E2r = -0.51 for

medium #2, and /r, = C3, = 0.5 for medium #3. The phase plot of R for this configu-

ration is shown in case (4) in Fig. 2-4(a), where it can be seen that the slope of the phase
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Figure 2-4: The phase of reflection coefficients and values of C, C1 and C2. In all cases,
the slab thickness is 3 cm and the plane wave frequency is 10 GHz. Other parameters
are as follows: case 1: (,lr, Clr) - (1, 1), (p2r, C2r) = (0.5, 0.5), (P3L , 63r) = (0.3,0.3),
case 2: ([I.r,Elr) = (1, 1), (/2r, 62r) = (-0.5, -0.5), (Y,3r, 3r) = (0.3, 0.3), case 3:
(Alir, c1r) = (1, 1), (1 2r, L2r) = (-0.5, -0.5), (/3,-, 3r) = (0.5, 0.5), case 4: (1,r, Cl,) =

(1, 1), (/ 2r, (2r) = (-0.51, -0.51), (P3,, •3r,) (0.5, 0.5).
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plot changes depending on the incident angle. Therefore, according to Eq. (2.3), it can be

predicted that the lateral GH shift changes from positive to negative as the incident angle

Oi changes from near critical angle to near grazing angle.

In order to confirm the above observation, the method described in [27] has been used

to calculate the reflected Gaussian beam magnitude pattern at the slab's first interface. In

the calculation, only the propagating components of the Gaussian beam have been consid-

ered in the spectrum. Since the phase plot (case 4 of Fig. 2-4(a)) indicates that the change

of the slope occurs around an incident angle of 430, we choose Oi = 350 and 60 = 700 for

the field calculations. The electric field magnitudes of the reflected Gaussian beams along

x = 0 at these two different incident angles are plotted in Fig. 2-5. The change of GH

lateral shift direction can be clearly observed from the figures, and the amount of shift can

be verified by evaluating Eq. (2.3) from the values plotted in Fig. 2-4.

Like in the previous cases, this shifting property can be related to the value of C, i.e.

to the ratio of amplitudes of the growing and decaying evanescent waves inside the slab.

As mentioned before, when the decaying evanescent waves dominate inside the slab, the

value of C is very small in magnitude and within the range [Ci, C2]. From Eq. (2.8), it is

clear that the GH shift is always unidirectional, namely RHM slabs give a positive shift and

LHM slabs give a negative shift. Therefore, we expect a change of GH shift direction to

be accompanied by a change of the value of C from within [C2, C1] to outside this range.

This is indeed the case as illustrated in Fig. 2-4(d): as the incident angle varies, the value of

C varies from within [C2, Cj] to (-oo, C2). When the incident angle Oi is close to grazing
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angle, the value of C is within [C2, C1] and the GH lateral shift is negative. As Oi gets closer

to the critical angle, C grows in magnitude and moves into (-oo, C2), and the GH lateral

shift direction becomes positive. Therefore when the GH lateral shift direction changes

with different incident angles, the values of C changes from one range to another, with the

Arange boundaries specified by C1 and C2.

2.2.3 Configurations With Three Regions of Alternated GH Lateral

Shift Directions

In the previous section, We have identified two regions of incident angles yielding different

directions of GH lateral shift. In this section, three regions of incident angles with different

GH lateral shift directions are identified.

The configuration used in this case is similar to the one reported in [44] where a "giant"

negative lateral GH shift has been predicted. In [44], only unidirectional lateral GH shifts

are discussed with medium #3 being LHM and media #1 and #2 being RHM. In our case,

instead, the LHM is located in medium #2 (i.e. the slab) and the RHMs are used for media

#1 and #3, to be consistent with the configurations we studied so far.

As mentioned in Section 2.2.1, when the LHM slab (or medium #2) is not matched

with medium #3, the GH lateral shift is negative in general. It has been shown that for such

cases, the value of C is small and in the range [C2, C1]. However by examining Eq. (A.6),
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x-axis [W]

(a) Positive shift of 3.6A observed at 350 incidence.

x-axis [X]

(b) Negative shift of -0.5A observed at 700 incidence.

Figure 2-5: Reflected beam amplitude along the interface (x axis) where both positive and
negative lateral shifts are observed with the same LHM slab at different incident angle. The
first medium is free-space, the second medium has A2r = E2r = -0.51 and a thickness of
3 cm, and the third medium has /3r = EC3 = 0.5. The incident is a TE polarized Gaussian
beam at 10 GHz.
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it is seen that C can still be infinite (i.e. p23=-1 ) for a single specific incident angle even

when the LHM slab is not matched to medium #3. In this scenario, the GH lateral shift

becomes positive in the region around this incident angle, while in the other regions of

incident angles the GH shifts remain negative. Therefore, this defines three regions with

alternated GH shift directions. In order to illustrate this phenomenon, we choose the con-

stitutive parameters as 11,r = 1, flr = 1, 1,2r = -1, (2r = -0.6, [13r = 0.6, ~-3r = 1.24.

The phase plot of the reflection coefficient R is shown in Fig. 2-6(a). The critical angle

of this setup is at 59.60 so the incident angle are swept from 60' up in order to remain

above the critical angle. It is clear from Fig. 2-6(a) that the slope of the phase is positive

except in the region between 640 and 670 where the slope becomes negative. Therefore it

can be predicted that the GH lateral shifts are negative from 600 to around 640 and from

around 670 to 850, and positive from 64' to 670. In order to validate the predictions of

this phenomenon, field calculations have been done using the method presented in [27] to

calculate the reflected beam's amplitude along the interface. From Fig. 2-7, it can be seen

that indeed, at 65.50 the GH lateral shift is positive, while at 620 and 750 incident the GH

shift is negative. Hence this defines three regions of alternated GH shift directions.

This phenomenon can also be explained by examining the change of C compared with

C1 and C2 at different incident angles. As plotted in Fig. 2-6(b), starting from 600 inci-

dent, C is within [C2 , C1] which predicts a negative shift. As the incident angle increases

to above 64', C moves into the region of (Ci, +oo), which suggests a positive shift. Note

that a discontinuity occurs at around 64.60 and C flips to a negative value and falls within

(-oo, C2) which again corresponds to a positive shift. As the incident angle extends be-
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yond 67', C moves back into [(02, C1] and the GH lateral shift becomes negative. This is

consistent with the observation from the phase plot of R in Fig. 2-6(a). The discontinuity

of C at 64.70 incident is due to the fact that C is infinite (as the result of p23 = -1) at this

specific incident angle so that only growing evanescent waves exist inside the slab. This is

also called the resonant excitation of surface polaritons in [43] [44].

2.3 Finite Difference Time Domain Simulation of GH Shifts

The numerical simulation tools can be valuable means for the concept study or experimen-

tal designs. Due to the recent rapid advancements in computer technology, unattainable

problems in the past are now solved routinely by computers. In the area of electromagnet-

ics, the popular numerical methods include the Method of Moments (MoM), Finite Element

methods (FEM) and Finite Difference Time Domain method (FDTD).

The Method of Moments is an Integral equation based method in which the unknowns

(usually current distributions or charges in each discritized area) are approximated by basis

functions (which are orthogonal functions). Green's functions (i.e. the kernel for the In-

tegral Equations) are used to calculate the fields from the source. With the incident fields

given, the boundary conditions are utilized to form a set of linear equations. The final step

that is still needed is to invert the matrix and obtain the unknown. Compared with other

methods, the Method of Moments provides better physical insight to the the problem at

hand since the current distribution of the setup will be revealed after solving. However,

the method also suffers from the requirement for the knowledge of the kernels (Green's
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(a) Phase of the reflection coefficient.
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(b) Calculated value of C.

Figure 2-6: Plot of the phase of R and the values of C for the LHM configuration with
the slab thickness of 3 cm and (IL, E•,) = (1, 1), (/12r, E2r) = (-1, -0.6), (/p3, C3r) =
(0.6, 1.24). The incident wave is TE polarized at 10 GHz.
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x-axis [X]

(a) Negative shifts of -1A and -2A at 620 and 750 respectively.

x-axis [X]

(b) Positive shift of 108A at 65.50.

Figure 2-7: Reflected beam amplitude along the interface (x axis) where different lateral
shift directions are observed for the configuration of Fig. 2-6.
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functions) of the problem, which is often impossible for a practical configuration. De-

spite this disadvantage, some commercial electromagnetic solver are based on MoM. The

popular one is Agilent's Momentum for Integrated Circuit simulations in layered media

environment.

Compared with MoM, the Finite Element method is more adapt to complex geome-

tries. The FEM is also a frequency domain based method, like MoM. Instead of using the

Integral Equations, FEM takes the differential form of the Maxwell's equations and applies

the numerical difference method at the discritized grids (usually tetrahedral). The problem

geometry can be of any arbitrary shape as long as the discretization scheme can be imple-

mented. The accuracy of the solution depends on the finiteness of the discretization and the

field changes. The popular commercial software based on FEM is HFSS from Ansoft.

The method we use for modeling the LHMs is FDTD. As the only time domain method,

FDTD is a direct numerical solver of Maxwell's equations, either in differential form or in-

tegral form. The method has been proved to be efficient in solving problems with complex

geometries.. Since the frequency dispersive models have to be used to implement LHM, the

readiness of converting these models into a differential form in time domain makes FDTD

the ideal candidate for the simulation.

The simulation is setup in TE mode so the fields to be solved are E,, H,, Hz. The

dispersive material is modeled by introducing polarization currents in the Maxwell's equa-

55



E(w) = Co (I-

P(w) = Yo (1

2
-Wpe

w(w+ ife))
2

wpm
W(W + irm)

The dispersive permittivity can be treated as the result of polarization current with the form

of

Wpe= o + P = €E(LW))E W( P = -o ire)
w(w + ire)

(2.15)

Converting the frequency domain expression to time domain, we have

+ re at- 0o W(e = 0 (2.16)

Let Je = P/lat, Eq. (2.16) can be inserted into Maxwell's equations so we have

Vx H = O=i --

E
o +aP

-at
=Co6+T

a7S+ reJe = oo LeE

A similar approach can be applied to jp(w). After the manipulation, we have a set of

tions [45].

(2.14)



update equations for FDTD for TE mode:

at 1 aE

at Po a J

aE, 1 aHi aHaty -- a - - Jey)8t 6o 8z 8z
Jz 2
at+ mImz PoWpImHz

Jinx

at + FmJmx IoWP mjX

Jey 2t + FeJey = Co eE

Note that the Jm are at the same location as Hz but get updated at the same time step

as E,. vis versa, Je are at the same location as E, but get updated at the same time step as

Hz.

The above update equations are implemented in the standard FDTD second order ac-

curate central difference scheme. To validate the simulation results, we consider first a

RHM slab in vacuum. The RHM has the property of [P, = 0.5, (, = 0.5]. In the FDTD

setup, PML is used for the absorbing boundary condition which truncates the computation

domain to a finite size. The RHM slab is modeled as a finite slab with a length of 20A. The

incident Gaussian beam is at 50' to the center of the slab. The beam width is chosen as 2Ao.

The fields calculated in FDTD are the total fields including both the incident beam and the

reflected beam, so an extraction method needs to be used to separate the reflected fields

from the incident ones. This is done by calculating the incident beam using analytical for-

mulations simultaneously while FDTD is updating the total field. Therefore, the values of
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incident field and the total fields are synchronized. Once the simulation reaches the steady

state, the total fields is subtracted from the incident field to obtain the reflected fields. The

resulting reflected fields are in the time domain , therefore the amplitude of the fields are

readily available.

The result for the RHM slab is shown in Fig. 2-8 Three curves are obtained from three

different meethods. Both results from Drude Model and non-dispersive model is from

FDTD simulation. The non-dispersive model use the values of ii, and C, directly without

any dispersive model. The analytical result is for the infinite slab. It can be seen that the

results from three methods agree very well, which means the implementation of Drude

Model is accurate and the size of the slab is long enough to be considered as infinite.

E

E

slab boundary (mm)

Figure 2-8: Reflected beam amplitude along the interface, the slab is with U, = E, = 0.5
and a thickness of 3cm. The TE incident beam is at 500. The frequency is 10 GHz.

The second example is to replace the RHM slab with LHM slab. The LHM slab is setup

to have the property of (p, = -0.5, c = -0.5). Only Drude Model can be used for LHM in
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FDTD and is compared with the analytical result, which is shown in Fig. 2-9 As predicted,

the shift is in the negative direction.

Refl. beam amplt. (air, [-0.5 -0.5],air,6cm,10GHz,50deg)

slab boundary (mm)
)0

Figure 2-9: Reflected beam amplitude along the interface. the slab is with z, = c, = -0.5
and a thickness of 3cm. The TE incident beam is at 500. The frequency is 10 GHz.

The third example is an interesting case in which the half space of vacuum is replace

by half space of material with (u, r= c, = 0.5). So the material is matched with slab. The

shift is now in the positive direction as shown in Fig. 2-10

Again the agreement between the simulation and the analytical result is excellent. These

results show that FDTD method can be a useful tool to model accurately the GH shift

phenomena.



Refl. beam amplt. (air, [-0.5 -0.5],[0.5,0.5],10OGHz,50deg)

EI&
-It

;0 0 50 100 150
slab boundary (mm)

Figure 2-10: Reflected beam amplitude along the interface. the slab is same as in Fig. 2-9,
and it backed with matched LHM with p, = er = 0.5. The TE incident beam is at 500. The
frequency is 10 GHz.

2.4 Energy Flux With LHM Slabs

It has been shown in the previous sections that the existence of a simultaneous positive

and negative GH shift at different angles is due to the fact that the GH shifts can change

directions as the LHM slab thickness becomes smaller. The changes of GH shift direc-

tions at different slab thicknesses can be understood intuitively. For a very thin LHM slab

(relative to the wavelength), the presence of the slab has little effect on the waves and the

total internal reflections are mainly due to the third medium resulting in positive GH shifts.

For an electrically thick LHM slab, however, the total internal reflections are mainly due

to the LHM slab, yielding a negative GH shift. In between these two extremes, there exist

simultaneous positive and negative GH shifts. In addition, a unique property of the LHM

slab is that depending on the constitutive parameters, a slab can be electrically thick but

60

- analytical
............ .....S* * simulated

.................. .............................

I.

Refl. beam amplt. (air, [-0.5 -0.5],[0.5,0.5],10GHz,50deg)

S. ............, i

............i

...............



still yield a positive GH shift as if the slab were electrically thin. As an extreme example,

when the LHM slab is exactly matched to the third medium, the GH shift is always positive

regardless of the slab thickness. The physical reason for this effect is related to the energy

flux pattern inside the slab, which is addressed subsequently.

With the total electric and magnetic fields in all three media calculated using the for-

mulas in [9], the time averaged Poynting vector < S > can be calculated by evaluating

< 3 >= - Re{E x H*} and the flux lines can be obtained using dz/dx = Sz/S,. For the
2

purpose of illustration, a slab configurations of (IL1, = f-r = 1), (/2r,2 = F2r -0.5) and

(3r, = e3r = 0.507) is used. This choice yields d=30 mm (one wavelength at the beam's

frequency of 10 GHz) for zero GH shift at 50' incident angle. In order to observe a nega-

tive GH shift at 50' incident, we choose the slab thickness to be 50 mm. The energy flux

lines in all three media are plotted in Fig. 2-11(a). It can be seen that vortex-like energy

flux line loops are formed at both RHM/LHM interfaces, which has also been confirmed in

LHM waveguides [46]. For a large slab thickness d, the coefficients A2 and B2 of E2y (the

electric field inside the slab) can be approximated as:

A 2  2 ea2zd = T 12 ea2zd
1+ P12

2R23 -2zd
1+ P12

Therefore around the first interface, E2y can be approximated using only the decaying

evanescent waves (associated with the coefficient A2) when the thickness d is very large.

At the second interface, which is between media #2 and #3, the ratio of the two evanescent
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wave magnitudes is

A 2ea2zd = R231 > 1 (2.17)

which is independent of the slab thickness d. Hence at the second interface, independent of

the slab thickness, the growing evanescent waves dominate the decaying evanescent waves.

To visualize this result, energy flux lines are plotted in Fig. 2-11 (b) for decaying evanescent

waves only (with the coefficient A) and in Fig. 2-11(c) for growing evanescent waves only

(with the coefficient B). It is obvious that decaying evanescent wave flux lines resemble the

total flux lines at the first interface while the growing evanescent wave flux lines resemble

the total flux lines at the second interface. Since the observation of the GH shift effect is

at the first interface, the flux lines at the first interface determine the shift direction. Fur-

thermore it can be seen that with only decaying evanescent waves, as in Fig. 2-11(b), the

flux line pattern is similar to the half space configuration as shown in [47]. These flux lines

are in the negative direction and therefore, give a negative GH shift. As the slab thickness

decreases, the flux line pattern at the second interface does not change, however, the pattern

at the first interface does. Fig. 2-12(a) shows the Poynting vectors and flux line pattern for

a zero GH shift (at d=30mm), while Fig. 2-12(b) shows the Poynting vectors and flux line

pattern for a positive GH shift with a thinner slab thickness. It can be observed that as the

second boundary moves closer to the first boundary (i.e. the slab becomes thinner), the

growing evanescent wave flux line pattern gradually becomes prominent at the first inter-

face. For positive GH shift, the growing evanescent wave pattern completely dominates the

first interface. Therefore, the GH shift direction change is due to the energy flux pattern

change inside the LHM slab, which is the consequence of the ratio change between the two



different evanescent wave amplitudes inside the slab. This relation is precisely expressed

mathematically as Eq. (2.8).

2.5 Conclusion

We have shown theoretically that the GH lateral shift of a Gaussian beam can be both posi-

tive and negative at different incident angles with a single LHM slab. This phenomenon can

be presented mathematically by the expression given in this chapter, and be explained phys-

ically by considering the energy flux line pattern changes inside the slabs. Furthermore, we

have also shown that the unique ability of LHM slabs to amplify evanescent waves, already

used for the design of a perfect lens, is responsible for the GH shift direction change.
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Figure 2-11: Energy flux patterns for a negative GH shift. The arrows represent the time-
averaged Poynting power's magnitudes and directions. The Gaussian beam is incident at
500 from -z with its center at the origin. The beam's frequency is 10 GHz. The slab of
thickness 50 mm is indicated by the dashed lines. The parameters of the three media are:

(Alrlr, ) = (1,1), (P2r, 62r) = (-0.51,-0.51), (/3r, 63r) = (0.507, 0.507). (a)Total
energy flux pattern. (b)Energy flux pattern with decaying evanescent waves only (inside
the slab). (c)Energy flux pattern with growing evanescent waves only (inside the slab).



·i

N

-200 0 200
X axis (mm)

(a) Zero GH shift with a slab of 30 mm thickness.

I

·Cu

N

-200 0 200
X axis (mm)

(b) Positive GH shift with a slab of 20 mm thick-
ness.

Figure 2-12: Energy flux patterns for different GH shifts with different slab thickness. The
incident beam and constitutive parameters are the same as in Fig. 2-11.





Chapter 3

Imaging Properties of LHM Slabs

3.1 Simulation of LHM Slab Imaging

3.1.1 Introduction

Since the conceptual introduction of the perfect lens imaging [14], the study of subwave-

length imaging via both numerical simulations and experiments has been an active research

topic. The illustration of the LHM lens can be seen from Fig.4 in [1]. As shown in Ref.

[14], a perfect lens can be theoretically achieved with a left-handed material (LHM) slab

perfectly matched to the surrounding right-handed material (RHM), e.g. an LHM slab with

its relative permittivity and permeability both equal to -1 located in vacuum. The theoret-

ical concept of a flat LHM slab lens was verified using the Finite-Different Time-Domain

(FDTD) method in Ref. [45]. Using a similar technique, the subwavelength resolution

imaging was demonstrated in Ref. [48] and the effect of finite size slab was studied in Ref.

[19]. Later, the Pseudospectral Time-Domain method (PSTD) was used for the subwave-
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length imaging study with one line source [16] and with two line sources [18]. In all these

numerical studies, the refractive index of the LHM slabs are assumed to have a real part

of exactly -1 while the imaginary part is considered to be the limiting factor for the image

resolution. However, it was observed in simulations that the image resolution cannot be

improved by reducing the material losses [48], which seems contradictory to the perfect

lens theory. Several possible reasons, including the perturbation of the refractive index of

the LHM, were mentioned in Ref. [48] without being studied in details.

The limitations of the FDTD to model a perfect LHM lens is studied, with a special

emphasis on the maximum resolution that can be simulated. In order to do so, we first

describe a different field averaging scheme implemented in our FDTD method. Second,

an analytical formula for the constitutive parameters of the LHM material is derived and

illustrates the mismatch due to the time discretization. Finally, we show that for lossless

LHM slabs, the image resolution limit is mainly determined by the mismatch in the real part

of the constitutive parameters, which is an inherent limiting factor in FDTD simulations.

3.1.2 FDTD Simulations

In our study, a 2D FDTD scheme is used in which we assume the non-zero fields to be

Ey, HF and FIz. The electric fields are setup at the grid centers while the magnetic fields

are setup at the grid edges. A sinusoidal line source E,(x, z, t) = 6(x)6(z) sin(wot)f(t),

where f(t) is a smooth ramp function with a rise time of 30 wave periods, is located at

(0,0) and the LHM slab is located at z=d/2 with a thickness of d in i and a length of L
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(from - L/2 to L/2) in ,. The grid size is chosen initially as A/100 where A is the free

space wavelength at the line source frequency wo. The size of the simulation domain is

1024 by 220 grids in 3 and f, respectively. In order to avoid the ambiguity of studying

subwavelength imaging from periodic line sources, a finite LHM slab is used instead of a

infinite slab which requires periodic boundary conditions. Hence PML are used at all the

boundaries to absorb the radiated fields. The length of the slab L is chosen to be 10A for all

the simulation results, and has been verified to be long enough to minimize edge effects.

The permeability p and permittivity c of the frequency dispersive LHM are both taken

to obey a Drude mode, which is implemented using the Auxiliary Differential Equation

(ADE) method [45] [49], where the electric and magnetic polarization currents are intro-

duced to achieve the dispersive constitutive parameters. However, instead of setting up

both discretized electric and magnetic polarization current densities at the center of grid

as in Ref. [45], we keep the current densities to be aligned with the corresponding field

quantities and implement a different field averaging scheme based on the integral form of

the Maxwell's equations. At the LHM and air boundary, the field averaging is done by

applying the integral equation:

ESdl= -B- d M (3.1)

where B and Al are the magnetic flux and the magnetic polarization current density at

the edges of the boundaries. For example, if the boundary is along ý, Eq. (3.1) is discretized
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in the finite-difference scheme as

En+1/2 (I, K) - En+1/2(I 1, K) = - A [H"+(I, K + 1/2)(At

-H7(I, K + 1/2)] - M+1/2(I, K) (3.2)

where I and K are the grid locations in i and Z, n is the time step, Ax is the grid size

in x and At is the time step size. Reorganizing the terms, it is straightforward to obtain the

update equation for Hz as

At At
H•~1 (I, K) = Hj(I, K) - - Mz+ 1/2(I,K )  (E+)/2(I, K)- _E-1/2(1, K))

21o AXzo

(3.3)

while the update equations for Ey and Hx are left unchanged, and the update equations

at other boundaries can be obtained similarly. The implementation of the above field av-

eraging technique avoids the averaging of the polarization current on every grid inside the

LHM slab and also clearly defines the material boundary.

3.1.3 LHM Material Implementation

As mentioned above, the ADE method introduces auxiliary polarization current densities to

describe the dispersive constitutive parameters of the LHM slab. Typically, the frequency

dispersive permittivity is implemented using the following partial differential equations:
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- a a -
V x H = oE + Je E -ocrE (3.4)at at

+o C = o E (3.5)
t+ eJ, W1e

where c,. is the relative permittivity, Je is the electric polarization current, we and F, are

the electron plasma frequency and collision frequency respectively. In this study, we choose

the electric plasma frequency to be the same as the magnetic one so the relative permittivity

and permeability have a same value. After discretizing Eq. (3.5) and substituting Je from

Eq. (3.5) into Eq. (3.4) (see Appendix B for details), we obtain the numerical (.r as:

2

ECr =1- pe (3.6)
4 sin(woAt/2)/(At)

2

It is clear that Eq. (3.6) approaches the Drude model c, = 1 - WPe/w2 in the limit of

At -- 0, which gives a value of -1 when wpe = v/2w,. However, for a finite At used in

an actual simulation, E, presents a slight deviation from exactly -1 at the same Wpe. As an

example, the value of Er from Eq. (3.6) is about -1.0003 for a typical grid size of A/100,

which is also the value of the refractive index since we choose here a magnetic plasma fre-

quency identical to the electric one. This small perturbation does not affect the propagating

waves significantly. However, the resolution of a subwavelength imaging system is criti-

cally dependent on the reconstruction of the evanescent waves, or part of the evanescent

wave spectrum, by the LHM slab. This reconstruction is in turn critically dependent on the

slab's constitutive parameters [15], and the slight mismatch of 0.03% in the real part has
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an important impact on the resolution of the image as we shall see hereafter. It is impor-

tant to note that this small perturbation in the real part of the constitutive parameters has

often been overlooked and the imaginary parts with a value in the same order are typically

considered to be the main contributor for limiting the image resolution.

3.1.4 Numerical Examples

To further illustrate the influence of the perturbed material properties on the image resolu-

tion in simulations, a lossless LHM slab with a thickness d = 0.2A is used to image a line

source located at d/2 away from its interface. The analytical calculation is carried out using

the method outlined in Ref. [50] for an infinite slab with y, and e, equal to -1.0003. The

calculated and simulated electric field magnitudes at the image plane (located at z = 2d)

are compared and the results are shown in Fig. 3-1. It can be seen that both results have a

similar peak profile, which indicates that the image resolution computed from the simula-

tion is in agreement with the one predicted analytically. The small differences between the

results away from the main peak can be attributed to the difference between the infinite slab

used in the analytical calculation and the finite slab used in the simulation. However, these

differences have a negligible effect on the image resolution. In addition, it is clear that

because of the introduced mismatch, both results differ from the electric field magnitude of

a perfect image, which has an infinitely small width of the peak.

The imaging ability of the LHM slab can also be quantified by looking at the spectrum

representation of the fields at the image plane. This is shown in Fig. 3-2 where the nor-

malized spectrum of the simulated electric field of Fig. 3-1 is compared with the spectrum
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Figure 3-1: Comparison of IEI at the image plane from the FDTD simulation and the
analytical calculation for an LHM slab with a thickness of 0.2A. The grid size used in
the simulation is A/100. The analytical calculation considers an LHM slab of e, = e, =
-1.0003 in vacuum.

obtained analytically (by plotting the transmission coefficient of the LHM slab from the

source plane to the image plane). The two spectra extend up to around 7ko before the cut-

off, which suggest that the resolution of the image is about Ao/7. In addition, it can be seen

that the two spectra agree well both qualitatively and quantitatively, which confirms that the

analytical calculations using the mismatched values predict the image resolution obtained

from the simulation. The sharp peak in the analytical spectrum due to the singularity of the

pole from the LHM slab's transmission coefficient [9], [42], [50] is well predicted in the

simulated spectrum.

It is known that the image resolution is determined by the maximum transverse wave

number (maximum k,) that can be restored at the image plane, and it was pointed out in

Ref. [50] that the image resolution is related to the location of the pole in the transverse
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Figure 3-2: Comparison of E, spectra at the image plane from the FDTD simulations and
the analytical calculations for two slab configurations: one with a thickness of 0.2A and the
other with a thickness of 0.1A. Both slabs are simulated with a same grid size of A/100.

wavenumber spectrum. From Fig. 3-2, it is shown that the maximum restored transverse

wave numbers are close to the location of the singularity, which again confirms the ob-

servation in Ref. [50]. In addition, Fig. 3-2 shows the same comparison study for a slab

thickness of d = 0.1A. Again, the analytical and simulated spectra are in good agreement

with the image spectrum which extends to about 14k o. The comparison between the results

from these two slab thicknesses show that the image resolution is approximately improved

by a factor two when the LHM slab thickness is reduced by one half, which is consistent

with the theoretical prediction [15][50].

The subwavelength resolution of the LHM slab can be directly visualized by consid-

ering the case of two line sources separated by 0.2A and located 0.1A away from the slab
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interface. The time-averaged Poynting power densities at the image plane from the simula-

tions and analytical calculations are compared in Fig. 3-3, where the two peaks are clearly

recognizable and the features agree well between simulation and the analytical calculation.

The results from the above study suggest that the simulated resolution in FDTD is limited

mainly by the mismatch between the real part of constitutive parameters of the LHM slabs

and the ones of the surrounding vacuum.

A

V

,5
x ()

Figure 3-3: Comparison of time averaged Poynting power densities < Sz > at the image
plane from the FDTD simulation and the analytical calculation for the two line source
imaging. The LHM slab is the same as in Fig. 3-1. The line sources are separated by 0.2A.

According to Eq. (3.6), the accuracy of Er is related to the time step size rather than

the grid size. To illustrate this, the LHM slab used in Fig. 3-1 is simulated again using a

different grid size while keeping the same time step size. The results are shown in Fig. 3-4

where two grid sizes are used, namely A/200 and A/100, but with an identical time step

size. The resolution limits from these two results are almost identical and both are improved

slightly (from 7ko to about 7.5ko) from the resolution shown in Fig. 3-2 due to the reduction
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of time step size.
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Figure 3-4: Comparison of E, spectrum at the image plane from the FDTD simulations
using different grid sizes. The time step size is calculated from Courant's criterion based
on the grid size of A/200 and is adopted for the simulation using the grid size of A/100 as
well. The LHM slab is the same as in Fig. 3-1.

3.1.5 Summary

A study of the LHM slab's constitutive parameters in the FDTD implementation is pre-

sented. It is shown that there exist a mismatch between the slab and its surrounding medium

due to the time discretization rather than space discretization. By comparing the simulation

results and analytical calculations, we demonstrate that the simulated image resolution of

an LHM perfect lens is mainly limited by this mismatch. In other applications such as the

simulation study of surface plaritons at LHM/RHM interfaces where the matching condi-

tion is required, the understanding of this limitation in FDTD can also be very important.



3.2 Imaging Properties of Finite LHM Slabs

3.2.1 Introduction

In practical systems [5] [21] the slab's size is finite. However, there have been only a few

studies, either theoretically, numerically or experimentally, on the effect of the finiteness of

the LHM slabs on the resolution power of the lens. Among the properties of the finite-size

slabs people have come to know, an interesting one is that the image quality is not sensitive

to the size of the finite slab [5], which is contrary to the properties of a conventional lens.

In addition, a peculiar property that negative energy streams can appear at the image plane

with finite-size slab was discovered [19]. Yet, no satisfactory explanations of these proper-

ties have been reported in the literature. We address this need by analyzing these properties

using analytical methods combined with numerical simulations, which allow us to pro-

vide a series of physical explanations to the imaging properties of finite-size LHM slabs.

First, The equivalent current sheet method from Huygens' principle is applied to study the

imaging capability of the finite-size slabs. The main features in the image spectrum due to

the slab's finite length are explained by considering the changes in fields at the LHM slab

boundary. Next, the energy stream at the image plane is investigated by decomposing a line

source into plane waves, i.e. propagating and evanescent waves, and evaluating the energy

contributions from the wave interactions. In doing so, we show that the negative energy

stream is a not only a property of finite-size LHM slabs but also a property of infinite LHM

slabs.



3.2.2 Image Spectrum In the Finite LHM Slab Imaging system

In order to evaluate an imaging system, the knowledge of image spectrum is important. For

an infinite LHM slab, the image spectrum can be obtained analytically, therefore the reso-

lution can be found readily by locating the maximum wavenumber in the spectrum. When

the LHM slabs become finite, it has been found that the image resolution is not affected

noticeably, although the image spectrum has changed [5]. In the first part, we analyze how

the image spectrum changes with the slab's length and how the maximum wavenumber

is affected, thus providing an explanation to the observation reported in [5]. Since a fi-

nite size slab does not have a geometry that can define a coordinate system in which the

Maxwell's equations can be easily expanded (e.g. like spheres, cylinders etc), we resort

to an approximation method which consists in studying the electric and magnetic fields at

the slab's second boundary (image side) instead. From Huygens' principle, the fields at

the slab's boundary can be converted into equivalent current sheets which can in turn be

used to find the fields at the image plane. By observing the fields at the slab boundary, the

changes in the image fields can be found, and subsequently the spectrum can be determined.

We shall first start with an infinite slab. The setup of the LHM slab imaging system is

shown in Fig. 3-5: a line source (infinite in ^) is placed at x = di in the x-z plane; a slab

along Z with thickness d. is located between the coordinates x = 0 and x = d2 = -ds.

For simplicity, we choose dl = -3d,/2 so that the image plane is at x = d3 = d,/2. The

length L depicted in Fig. 3-5 is infinite in this case.

The electric fields from a line source can be expressed in the plane wave representation
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Figure 3-5: Geometry of the LHM slab imaging system.

as

E--•LL) -L ik(x-dl)iH (3.7)

E-,(x z) = ~ H~ )(ko p - p') = dk (3.7)

After the transmission through the slab, the tangential fields at the slab's second bound-

ary are

E.(z) 47 dkz - i kxd l i kz  (3.8)

Hz(z) = j dkzT(kz)e-ikxdeikzz (3.9)

where T(kz) is the transmission coefficient of the slab, ko2 = k2 + k2 = c2 Po, is the

free space wave vector. The fields at the image plane are then obtained from those at the

slab boundary. Applying Stratton-Chu formula [42], the field beyond the slab's boundary
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(x > 0) can be written as:

= , dz' {iw•o[h x H(f')]g(7,V')

+[,h. E(')]V'g(,T) + [ x •()] x V'g(, ') }

where the usual surface integral has been replaced by a line integral along i because of the

invariance of the geometry along ^. E(F'), H(V') are the fields at the slab's second boundary

which are expressed in Eq. (3.8) and Eq. (3.9), A = X is the normal of the boundary. The

Green's function is g (T, V') = (i/4) Ho1) (ko- 'I) and the integration is along z. Plugging

in the expression of the fields, we find

E(x, z) = dz ' iw p J dkzT(kz)e-ikxd e ikzz'

-oo 47r f--o

H(o (ko (z - z') + x2 )

+ f dz' - ' [ dk T(k) e-ikedieikzz'

J 0 0W 4r - kxe

axH' )(ko (z - z') 2 4 2)I '=0

= ^E + yE2 (3.11)

where E1 and E2 are the two integrals respectively. It is straightforward to show that

El = E2, indicating that the fields generated from the electric current sheet are the same

as the ones from the magnetic current sheet. Finally, the spectrum of the image is obtained
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by applying the inverse Fourier transform of E(x = d3 , z), from which we get

E(kz) = dz 2El (x = d3, z)e - ikzz

- wu eikxd3
4= kT(kz)e-ikxdl (3.12)
47r k,,

-- , o e i ku
d 3

= T (kz) (3.13)
47r k,

where T1 (ks) = T(kz)exp(-ikxdl). It can be seen that the spectrum of the image can be in-

terpreted as the spectrum of the line source multiplied by the slab's transmission coefficient

with a phase propagation term.

With the procedure established for the infinite slab, we purse with the study of the finite

size slab. For the general discussion, we write the field equation at the finite slab boundary

as

E (z) = 4-u f (z)J dkz T(k) -ikdleikzz  (3.14)

where the function f(z) represents the change in the field due to the finite size when com-

pared to the infinite slab case. In what follows, we make the approximation f(z) = 0 for

z < -L/2 or z > L/2, which indicates that the current sheet can be viewed as from an

aperture of size equal to the size of the slab.

This assumption has been validated by observations from numerical simulations which

show that the fields at the slab's boundary are much stronger than the fields in free space.

As an example, we consider a slab of thickness d8 = 0.2 A and of length L = 2 A, which

yields an aspect ratio similar to those used in practical applications. In Fig. 3-6, we com-
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pare the fields at the image plane from the full wave numerical simulation and the fields

calculated using the equivalent currents from only the fields at the slab's boundary (i.e.

with the finite aperture effect). It is evident that the contributions from only the fields at the

slab's boundary is almost equivalent to the contribution of the total field. The difference in

the peak magnitudes does not affect the image resolution since the 3 dB width of the fields

from both results are very close.

IE I at image planey

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 3-6: E field at the image plane approximated by the current sheet compared with E
field from FDTD (without approximation). The current sheet is from only the aperture of
the finite slab. The slab has thickness d, = 0.2A and a length of L = 2A. The property
of the slab is pr = c, = -1.0003. It can be seen that the current sheet method is a valid
approximation method for estimating the fields at image plane.

Following the same procedure as those used to obtain Eq. (3.11), the electric field at the
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image plane (x = d3) is obtained as

A 00 0k / 0 ik"da
EI(z) = dkIT(k)e-ik dkll eikzF(kl - k") (3.15)

8ir 2 J J

where F(k,,) is the Fourier transform of f(z). The spectrum of the electric field at the

image plane can be evaluated as

E(kz) dkoT(k)e- J dk k: F(kk - k")276(k" - kz)

-= f {T(kz) 9 F(kz)} (3.16)
47r kx

where the 0 is the convolution operator. Detailed derivations of above equations can be

seen in Appendix C. Eq. (3.16) indicates that the image spectrum from a finite-size slab can

be approximated by the convolution of the transmission coefficient and the Fourier trans-

form of f(z) multiplied by the line source spectrum. Since the image resolution is closely

tied to the spectrum, Eq. (3.16) is also useful for the study of image resolution. The next

important step is to determine what function to be used for f(z).

Since f(z) relates to the field changes at the slab's boundary, we plot in Fig. 3-7 and

Fig. 3-8 the electric field's amplitude and phase at the boundary from the infinite slab

and the finite slab, respectively. The field from the infinite slab is obtained by evaluat-

ing Eq. (3.8) while the field from the finite slab is obtained by numerical simulation using

FDTD. Both slabs have a thickness d, = 0.2A and the finite slab has a length of L =2 A.
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In choosing the material properties for the infinite slab, we make use of our previous effort

[20] which points out the inherent mismatch in material due to the finite discretization in

FDTD for implementing a frequency dispersive model (e.g. Drude model). Hence we use

Ar = 6r = -1.0003 for the slab which is equivalent to the LHM slab implemented in

FDTD using A = A/100 and the corresponding time step.

Examining both amplitudes in Fig. 3-7 and Fig. 3-8, one can observe that in the case

of the finite slab, the fields taper off at the edge of the slab while in the case of infinite

slab the fields maintain a constant but small oscillation. Checking the phase of these two

cases, one can realize that the phases are almost identical within the slab's length. This is

not a coincidence. In the case of the infinite slab, studies [50] show that the field at the

slab's boundary is dominated by the contribution from the pole in the transmission coef-

ficient T(kz) as the result of the contour integration in the complex plane for Eq. (3.8).

The wavenumber where the pole occurs approximately corresponds to the resolution of the

slab . Since the pole contributes to a single dominating surface wave propagating at the

slab boundary, the phase of the field is determined by this surface wave mode. In the case

of the finite slab, the contribution from the pole is still significant at the boundary so that

the phase propagation remains almost the same. By taking the ratio of the fields, one can

find the exact function for f(z), which is shown in Fig. 3-9 for both the amplitude and the

phase. In the region of the slab's length, the tapering amplitude and near zero phase can be

readily seen. In addition, we can obtain the image spectra (normalized to the line source

spectrum) from both slabs, and the comparison is shown in Fig. 3-10. We see that the

position of the main peak (due to the pole) remains unchanged except for a smaller ampli-
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tude in the finite slab case. Furthermore, there are oscillations in the band for the finite slab.

In order to understand these changes in the spectrum, we shall now proceed with the

approximation of f(z). This is a necessary step to reveal the physical interpretation of the

finite slab's image spectrum. Based on the above discussion, we propose to approximate

f(z) as a real function with Gaussian tapered amplitude exp(-z 2/g 2) but truncated at the

slab boundary. The plot of the approximated f(z) is shown by the dash line in Fig. 3-9.

After the approximation, Eq. (3.16) can be used to evaluate the image spectrum without

the aid of numerical simulation. The proposed f(z) approximation has two features, i.e. a

Gaussian amplitude and a truncation at the slab's edge. We study the effect of these features

independently. Fig. 3-11 shows the image spectrum with f(z) as a Gaussian function

with and without the truncation. Compared with the spectrum from the infinite slab, the

Gaussian approximation produces the same shape with a lower peak amplitude and wider

peak width. This is well expected as the consequence of convolution operation with a

Gaussian function. Notice that no oscillations is introduced into the spectrum. With f(z)

approximated as truncated Gaussian function, the spectrum exhibits additional oscillations

in the spectrum as shown in the figure and the periodicity agrees with the one obtained from

the simulations (Fig. 3-8). It can therefore be concluded that the periodicity comes from the

length of the slab. The differences in amplitudes between the approximated spectrum and

the actual one are due to the simplification of the actual f(z). However these differences

do not prevent us from observing the main features in the image spectrum. By reducing

the length of the slab from infinite to finite, the image spectrum is changed with a lower

main peak amplitude and an oscillation within the band. But these changes do not reduce
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the maximum wavenumber in the image spectrum. Hence the size of the LHM slabs has

little effect on the image resolution. The experimental observation that subwavelength

imaging can be achieved by small size slabs and that increasing the slab's size does not

make significant improvements in the image resolution [21] is thus explained.

5
Z (4o)

Figure 3-7: Amplitude and phase of E field at the infinite slab boundary. The slab has a
thickness of d = 0.2A.

3.2.3 Negative Energy In the LHM Slab Imaging

In addition to the property of preserving the image resolution as discussed in the previous

section, another unique property reported with LHM slabs is the negative energy stream at

the image plane. This property has been emphasized in the case of finite slabs in [19]. For

a conventional lens imaging system, the energy at the image plane is always in the positive

direction, i.e. in the propagating direction of the waves emitted from the source. For LHM

flat lens imaging systems, however, there exist regions at the image plane where the energy
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Figure 3-8: Amplitude and phase of E field at the finite slab boundary. The slab has a
thickness of d8 = 0.2A and a length of L = 2A.

streams are in the negative direction, even though the energy is positive at the focal point.

We show here that not only this phenomenon is not peculiar but also it is still present in the

case of infinite slabs. In order to facilitate the discussion, we shall analyze the infinite slab

case first, then continue on discussing the case of the finite LHM slabs.

Eq. (3.7) shows that a line source consists of propagating waves as well as evanescent

waves. It is also known that each individual propagating wave carries power in the for-

ward direction after transmitting through the slab, while evanescent waves carry no power

in the forward direction. Therefore it is obvious that the negative energy stream cannot

be explained by just considering each individual wave component. Considering the inter-

actions between the waves, there exist three different cases of interaction (i) interaction

between propagating waves, (ii) between evanescent waves, (iii) between propagating and

evanescent waves.
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Figure 3-9: Amplitude and phase of function f(z). The exact f(z) is from FDTD simulation,
and the approximated f(z) is a truncated Gaussian function.

For the first case, taking two propagating waves (TE polarized) as EY = Eoexp{ikxx+

ikz,,z}, where r7 = a, b for the two waves and kV = kV, + k ,, = w2p 1p 1, the total time-

averaged Poynting power in -, which is the forward direction of the imaging system, can

be written as:

(Sx) = E 2 kxa + k~b ) (1+ os[(kxa -- kab)X +(kza - kzb)z]) (3.17)
2 w wi 1  w-ik

where (.) indicates the time average. It is clear that (Sx) > 0 which means that the

interactions between propagating waves always contribute to a positive power. For the

second case, taking two evanescent waves with Ey,, = exp{ikzrz - aj,,x}, we get

(SZ) = sin[(kza - kzb)Z]e -(za+(tzb)Z( axa - xb (3.18)
W1l1 w/ll
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Figure 3-10: Spectrum of the E field at the image plane from an infinite slab and a finite
slab. In both cases, slabs have a thickness of d, = 0.2A. The finite slab s has a length of
L = 2A. The spectrum is normalized to the line source spectrum.

In such case, the power density (Sx) decays exponentially in . but oscillates between posi-

tive and negative values along 2 due to the sinusoidal function. Although this might seem to

be the reason for the negative energy stream to appear at the image plane, this is still not the

case upon considering the contributions from all the evanescent waves from a line source,

we find that no negative power is generated at the image plane. In order to see this, we take

the field at the image plane (same as Eq. (3.8) and Eq. (3.9) with an extra exp(-i2kxdl)

term in the integrand), and consider only the evanescent waves. Taking advantage of k.

being an even function of kz, we write the fields produced by the evanescent waves only
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Figure 3-11: Spectrum of E field at the image plane from an infinite slab and the approxi-
mated spectrum from a finite slab. The slabs are the same as in Fig. 3-10. Approximation
method #1 is to use the Gaussian function for the current sheet. Method #2 is to used the
Gaussian function truncated to the slab aperture.

as:

Ey,evan(z) - dkz ei2k' (d2 -dl) cos kzz (3.19)

-1 "
IIz,evan(Z) -= dkT(kx)Ci2k, (d2- dl ) cos kz (3.20)2r kO

For km > ko, we have kx= (k2 - k)=iox. Therefore, the term T(kx)ei 2 kz(d2 - dl) COs kz z

is real. Hence, Ey,evan(z) is purely imaginary while Hz,evan(z) is purely real, yielding no

real power. A different way to see this is to examine Eq. (3.18) and to note that (Sx) is an

odd function of (kza - kzb). After integrating over the symmetric spectrum of a line source,

the integration of an odd function becomes zero.

The last case that remains to be considered is the interaction between evanescent waves
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and propagating waves. Again, starting from two waves with Eya as a propagating wave

and Eyb as an evanescent wave, the power along i is

(Sx) = (1/2) kxa+ k+ -exp -axubX COs[(kza - kzb)z + kxaX]
Will WIl

+ exp{-1 xbx} sin[(kza - kzb)z + kaX] (3.21)
W/zl I

which is no longer a simple odd function of (kza - kzb) as in Eq. (3.18). In addition,

it can be seen that (Sx) can have negative values if exp(-caxbX) is compensated by the

evanescent wave amplitude, which is made possible by LHM slabs. As a matter of fact,

one of the interesting properties of LHM is to precisely to amplify evanescent waves. For

the purpose of illustration, we setup an incident propagating wave and an evanescent wave

at the line source location (Fig. 3-12), both with unit amplitude, to observe the power at

the image plane. The wavevector in ý for the propagating wave is k-a = 0.5ko (where ko

is the free space wavenumber), while the one for the evanescent wave is kzb = 3k o. The

fields of the slab configuration are solved analytically, and the amplitude of Ey is shown in

Fig. 3-12(a). At the slab's second boundary, large E, amplitudes can be observed, which is

due to the evanescent wave amplification inside the LHM slab. The oscillation in the field

amplitude can be seen with a periodicity slightly greater than A/3 which is close to the

difference in the wavenumbers of the two incident waves. Fig. 3-12(b) shows a zoom-in

view of the field and the time-averaged Poynting vectors in one spatial period along the

z axis. Together with the field amplitude oscillations, the Poynting power is also oscillat-

ing between positive and negative value in ý. Therefore, Fig. 3-12 illustrates that negative

Poynting power can be obtained by the interactions between a propagating and an evanes-
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cent wave.
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Figure 3-12: Field and energy flux pattern of the interaction between a propagating wave
and an evanescent wave from a LHM slab. The slab with a thickness of 0.2A is between
the white lines . The incident wave front is at 0.1A in front of the slab. The plot shows that
the negative energy flux exist near the slab's second boundary after the evanescent wave is
amplified by the LHM slab.

Further validation can be done in the case of a line source. The time-averaged Poynting

power at the image plane from an infinite slab (ds = 0.2 A) is shown in Fig. 3-13(a). It can

be seen that away from the central peak, the power oscillates between positive and negative

values with a decaying amplitude. Decomposing the fields into propagating and evanescent

waves, the contributions due to wave interactions can be evaluated, as it is shown in Fig. 3-

13(b). As expected, the propagating waves only contribute to the power in the positive
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direction, while the negative energy stream comes from the interactions between propagat-

ing and evanescent waves. It also shows that the power due to the interaction of evanescent

waves is zero.

L kAIV

-1 -0.5 Z

-1 -0.5 zs) 0.5 1

0.5 1

Figure 3-13: Explanation of negative energy streams in the LHM slab imaging. (a) Energy
flux at the image plane from both an infinite slab and a finite slab. Negative energy stream
can be seen in both cases. (b) Contributions to energy flux from wave interactions for
the infinite slab. The fields are obtained analytically. (c) Contributions to energy flux from
wave interactions for the finite slab. The fields are calculated from FDTD simulation. In (b)
and (c), solid line: interactions between propagating waves and evanescent waves; dashed
line: propagating waves only; dot-dashed line: evanescent waves only.

Returning to the case of the finite-size slabs, we show that the same conclusion holds.
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The Poynting power at the image plane from the same finite-size slab used in the previous

section ( d,=0.2 A, L=2 A) is shown in Fig. 3-13(a). Similar to the results from the infi-

nite slab, negative time-averaged Poynting power can be observed. In order to study the

contributions from the wave interactions, the time domain field data at the image plane ob-

tained from FDTD simulations are first Fast-Fourier-transformed (FFT) into the frequency

domain to verify the convergence. The data at the source frequency are then FFT from the

spatial domain into the k space and a window function is applied to extract the propagating

and evanescent waves. After being transformed back to the spatial domain by inverse FFT

again, the wave interactions can be evaluated and the results are shown in Fig. 3-13(c). The

contribution to the Poynting power from the evanescent waves is not exactly zero in this

case, but it is much smaller compared to the contributions from other wave interactions.

Similarly, the propagating waves only contribute to positive energy while the interactions

between propagating and evanescent waves results in energy in the negative direction.

We emphasize again that the important reason for the negative energy stream to be

prominent at the image plane is the amplification of the evanescent waves inside the LHM

slabs which restores their amplitudes. Therefore, this phenomenon does not happen to

right-handed material (RHM) slabs since the negligible evanescent wave energy due to the

decay is overpowered by the energy from the propagating waves.

3.2.4 Summary

Imaging properties of finite-size LHM slabs are analyzed. In particular, we use an ap-

proximate analytical method to study the effect of the finite size by considering only the
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aperture. It is shown that the approximated current sheet with a Gaussian shape truncated

at the aperture reproduces the key features of the image spectrum. Hence the method can

be used as a fast alternative to numerical simulations, although the simulations are still

needed for a better accuracy. Furthermore, we explain that the negative energy stream at

the image plane come from the inherent spectrum of the source, and more precisely from

interactions between propagating waves and amplified evanescent waves from LHM slabs.

This phenomenon does not depend on the finite size of the slab. We show that once again

the capability of amplifying evanescent waves by LHM slabs make possible this unique

property.

3.3 Conclusion

In this chapter, the transmission property, in particular the imaging property of LHM slabs

are studied in detail. FDTD is used to simulate the LHM imaging capability. It is shown that

the inherent mismatch in material properties limits the maximum resolution of the image.

This mismatch is caused by the numerical implementation of the LHM slabs, therefore it

is the limitation of FDTD method. An analytical expression is derived for the LHM slab

properties, from which the limitation becomes clear. Numerical examples are also provided

for the validation. With the better understanding of the simulation, we can now simulate

the properties of LHM slab imaging. We show the unique property of the negative energy

stream at the image plane. This property is further explained as the interaction between the

waves from the point source after transmitting from the LHM slabs. Finally the property

of finite-size LHM slabs are studied. It is demonstrated that the image resolution is not
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sensitive to the slab size. Using the equivalent current sheets at the slab's boundary, we

explain this property in an analytical expression which agrees well with the simulation

results.



Chapter 4

Antenna Isolation Study Using Stratified

Media Including LHMs

4.1 Introduction

This chapter deals with multi-layered media properties, in particular for the application of

antenna isolations. The configuration is two horn antennas separated by a distance of 10 A

and with the antenna openings at the surface of the ground plane. In the past, RHM slabs

have been used to improve the isolation between the antennas. With the introduction of

LHM, MNG and ENG materials, it opens the door for new designs. Recent publications

[30] [51] have studied the surface wave modes in the grounded slab configuration with all

possible isotropic materials. However the actual field coupling level from different config-

urations, which are important for the estimation of the effectiveness of the isolation, are

not readily available in the literatures. In this chapter, we calculate the actual coupling

levels from dipole antennas which are then used as a figure of merit to compare different
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designs. We start with general considerations for a stratified media configuration. The for-

mulations for field evaluation in layered media including all isotropic material types are

first presented. Secondly the asymptotic formulations are derived to predict field values

at at the observation distance. The accuracy of the asymptotic formulation is compared

with the field values obtained from the rigorous spectral Green's function method. Thirdly,

the application setup for the antenna isolation is introduced, and the analogy to a dipole

source is drawn to simplify the analysis. The design using a grounded single layer for

isolation is carried out by two independent methods, with one using the asymptotic for-

mulation and the other using Genetic Algorithm method together with the spectral Green's

function approach. Both methods yield the same result. Finally, the GA method is used

for the 5-layered media design for antenna isolation. It is noted that photonic band gap

[52] materials use metallic structures [53] [54] have also been used for the antenna isola-

tion applications. The sizes of this type of the structures are usually comparable with the

wavelength [55] [56] therefore are usually large in size. In addition, the forbidden band

is narrow which is undesirable in applications. These limitations can be avoided by using

composited materials proposed in this chapter.

4.2 Field Evaluation In Layered Media

Since the isolation study is to find means to reduce the coupling level between dipole an-

tennas, the method to evaluate fields inside layered media needs to be devised. There are

two popular approaches to solve for fields due to dipoles in layered media. One approach

[42] is to expand fields from a dipole in plane wave presentations by using Sommerfeld's
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identity. The k vectors of these plane waves can be readily determined in each layer. The

unknowns are then the field amplitudes associated with forward and backward propagating

plane waves inside each layer. So each layer has only two unknowns to solve for either E

or H fields except the last layer on either end. After applying the phase matching at the

layered boundaries, the unknowns can be solved from a set of linear equations. As result,

the unknowns can be solved in iterative formulations suitable for computer programming.

Another approach is the spectral Green's function method. This method applies 2D

Fourier transformation to the Maxwell's equations and obtain the Green's functions due

to dipoles in the spectral domain. Therefore, the field values can be calculated in spectral

domain as well. The inverse Fourier transformation is applied to transform the fields back

to the space domain to complete the procedure. The details in the implementation of this

method is further illustrated in the following subsections.

4.2.1 Spectral Green's Functions

Spectral Green's function method is a well-established method [57] [58] for stratified me-

dia. The treatment in this section is similar to those in the published literatures [59] [60].

The slight difference is the simplification in obtaining the Green's functions which makes

use of longitudinal Green's function components and the duality.

It is more convenient to obtain the Green's functions in spectral domain due to their

simplicity. With the stratified media setup in 2 direction, the transformation between the

99



space and spectral domain can be established by the following Fourier transformation:

G(k~, k) = k j G(x, y)e-ik-xe-ikyydxdy (4.1)

1r

G(x. y) = G(kX, ky)e ik zxeiky' dkxdky (4.2)

Note that we don't use other symbols or notations for spectral domain values. The actual

representations of the symbols shall be clear from their corresponding independent vari-

ables. Applying the above transformation to Maxwell's equations and noting that:

a a

we have Maxwell's equations as

V x E = iwjH - M (4.3a)

V x H =-iwLpE + J (4.3b)

where

V = Vt + z - (ikxl + ikyý) + z

By separating the fields into longitudinal and transverse components, Eq. (4.3) can be
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rewritten as :

Vt x Et = (iwltHý - M,)ý (4.4a)

Vt x Ht = (-iwEEz + Jz)ý (4.4b)

- VtEz = (iwL-Et - Mt) x , (4.4c)
Oz

- VtHz = (-iwcEt + it) x i (4.4d)
8z

Further simplification due to Felsen and Marcuvitz [61] can be done to express tangential

components by longitudinal components as

2- Hz i ai
k2Ht == (-iwcEz + Jz)(Vt x ý) + V•t  + -Vt(Vt Mt) -+ Vt z (4.5a)8z W/pt WjL az

25Ez i J,
kEit = (iwILHiz - AMQ)(Vt x Z) + Vt + -- Vt(Vt Jt) + -V z (4.5b)

In general, the problem of stratified media can be solved by finding two scaler potentials.

In the example of Eq. (4.5), the two potentials are the longitudinal fields, i.e Ez and Hz.

The potentials from Lorentz gauge are also used in other methods. In the source free region,

Eq. (4.5) becomes

1 8E
Ex = (i kx ClukyHz) (4.6a)

1 i E
E, = I (iky + +wkxt 1z) (4.6b)

1 ( H
Hx = 1 (ik z + wekyEz) (4.6c)

1 ( H
Hu = i -- wIckxEz) (4.6d)

kp2 az
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This set of equations is very handy when solving for the Spectral Green's functions. What

we only need to find are just the longitudinal Green's functions. After that, Eq. (4.6) can

be used to solve for the remaining ones. Therefore the unknowns for all the possible exci-

tations are (both electric and magnetic excitations)

Electric Excitation TM case: GE, GzE, G•ZZ

Electric Excitation TE case: G!,, Gzj

Magnetic Excitation TM case: GM , GCE

Magnetic Excitation TE case: GM,, GzYH, GHM

where Green's function's subscript stands for field and excitation and the superscript is the

corresponding direction. For example, GzE is the Green's function for Electric field in z

due to an electric current source in fj. In the subscript, H is for magnetic field and M is for

magnetic current source. TE mode refers to setting Ez = 0 and TM mode setting Hz = 0.

Furthermore, using the duality theorem, we need only to find the Green's function due to

electric excitations, which will be shown in the later sections. The method to solve for these

fundamental Green's function is to utilize the transmission line analogy which is presented

in the next section.

4.2.2 Transmission Line Analogy

The connection between the transmission line's voltages and currents and the fields in strat-

ified media has been well-established [61] . Intuitively, the reasoning behind this analogy
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can be understood as that the fields in spectral domain are only z dependent after the trans-

formation, which resembles the voltage and currents in transmission line. So the undertaken

task is to solve for the expressions for the fundamentals Green's functions and represent

them in a form similar to the following transmission line equations:

V(z, ') -jk_ Zl(z, z') + 7v(z - z') (4.7a)

BI(z, z') 1az = -jkz- V(z, z') + ij(z - z') (4.7b)az C

The process will become clear from the following examples as we start to derive the

Green's functions from this analogy.

For each excitation direction, generally there are two resulting fundamental Green's

functions, except the case of longitudinal excitations. It is convenient to solve them one at

the time, therefore the equations for the total fields are separated into TE and TM mode -

two sets of equation. TE mode refers to setting Ez = 0 and TM mode setting Hz = 0. The

procedure used to obtain fundamental Green's functions follows closely the derivation in

[59]. This redundancy is necessary in order to give a complete picture of how the Green's

functions are obtained.

Gz, GYj From Transverse Electric Excitation (TE case)

For this case, we have Ez = 0, Al = 0 and J = Jt, where the subscript 't' means transverse

direction. From the source definition, we can write

103



which can be transformed to the spectral domain as

-1
Jt = 6(z - z')

2T -

Inserting the source condition into Eq. (4.5) and Eq. (4.4), the equations associated with

the unknown Green's functions can be easily obtained as

aHet

8z

k 2= - Vt Hz-

k 2 lit

(4.8)

(4.9)

Assuming Jt = JJJ = 27r 6(z - z'), Eq. (4.8) can be separated into two equations from

its components:

Pa
____ - -Uk·II,aH
az

= -- ZikHz
k2

kxky

J- ix
k2

(4.10a)

(4.10b)

Rearranging Eq. (4.10) as

a k2  kz W[I
Oz( kHx) = -jk-(k Hz) + dx

8z -kxky, up k
Swp 1 k;2( Hz) = -)jkz I " H1)

az ky kzlwk -kxk, )

(4.11)

(4.12)

Note that i is replace by -j in the expressions in order to be consistent with traditional

transmission line equations. Comparing these two equations with Eq. (4.27) and Eq. (4.28),
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it is easy to find

G~ = VTE (4.13)
WLi

1
By the same token, we can find the contribution from J = Jy == - 6(z - z') as

27r

Gz = k TE (4.14)
WI'

In addition, the physical insights of this analogy is illuminated from this example. We can

establish the one-to-one correspondence between the layer structure and the transmission

line as

(di, Eri, ,ri) -- (hi, Zcj, Kzi)

where the connections are

hi = di

zTE o WLoILri
kzi

GE9, GEY From Transverse Electric Excitation (TM case)

Inserting the source condition into Eq. (4.5) and Eq. (4.4), we can write out the equation

from the unitary source

z = t iksEz (4.15)az kP
OE 1 1

-ik z = k2Et + -- kiksikl (z - z') (4.16)az P iWE 2pi
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where the s' refers to the excitation direction. In order to match the form of transmission

line, we multiply Eq. (4.15) by -k1/ksks, and Eq. (4.16) by -iwcd/ksks,. Upon replacing i

by -j, we obtain

a k2

(- " E,)

dz k,,

= -jkz z (- Ez)
S k2

= -jkz-(- " Et) + 6(z - z')
kz ksk.3, 2

(4.17)

(4.18)

It becomes clear from the analogy that we have

zs ks, IT MEJ -- M
WA)E

(4.19)

From the TM cases, we can establish the one-to-one correspondence between the layer

structure and the transmission line as

(di., E , ii ) (hi, Z j, kzi)

where the connections are

Skzi

WE oEri
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E, From Longitudinal Electric Excitation (TM case)

In developing the equations for the transmission line analogy, one will notice that the term

a2Ez/8 2 z exists in the equations. Consequently, the second order derivative form of the

transmission line equation should be used which has the form of

V2  V- 6(z- z')
z2 + kV = z

8z2 dz
(4.20)

Following the similar procedure, we can get

GZZ TM = - __EJ P326f J (4.21)

Thus, the longitudinal Green's functions due to electric excitations are all determined.

GzY ,GY ,G• , Gzy ,GH From Duality
EMU EMU HM HM HM

To find the Green's function for magnetic current excitations, the simple way is to use

duality theorem. In addition to the standard substitutions for E and H, J and M, IL and e,

107



the duality needs to be applied to V and I as well. So the replacements for duality become

GEJ - GHM

GHJ -- -GEM

VTE TM

jTM __ VTE

Notice that there is no sign change for V and I replacement since the transmission line

equations Eq. (4.7) are symmetric. Applying above the replacement to Green's functions

from electric excitations, we immediately get [59]

GHM - -- V (4.22)WI'
Gzy ky v.TE
GHM = VE (4.23)

WIL

IkC2

GzM = k- VJE (4.24)

GEzX = IY TM (4.25)
kWL

GEM = ITM (4.26)WE

Complete Solution of Green's Functions

With the longitudinal Green's function components found, Eq. (4.6) can be used to quickly

solve for the rest components. The treatment of the a/Oz is to use the transmission line
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equation in. source free region so

OV(z)= -jkZcI(z) (4.27)
8z

8I(z) 1= -jkz- V(z) (4.28)
Dz ZC

Applying directly to the Eq. (4.6), we can write out the rest of Green's function components

for electric excitations [59]

_ 
2

vTE 2TM

GEJ = 2 (kyVJ+ kV ) (4.29a)
P

GE" _ =kxky (VTE -V TM ) (4.29b)

GkE = j(V - M) (4.29c)
p

G = 2(k VTE -,-V Mk) (4.29d)
P

GEJ = W-_ VTM (4.29e)

Gy - k-VTM (4.29f)
EJ WE

G - kxk TE -TM) (4.29g)k2I
P

yx 1 (k I2TE +k 2M) (4.29h)

Hy 2 Y TM

k.
Gx (k ITE +IkTM) (4.29i)

P

Gjz Y jTM (4.29k)
GHJ W_ _

yz kXITM (4.291)
GHj WC / J
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and for magnetic excitations [59]

Ek k (vTE kTM) (4.30a)
P

GEM = k2 (k EM + k2y M) (4.30b)
P

GM = 2 (kVE + M ) (4.30c)
Pkp

GEM = kxkY (VTE VTM) (4.30d)

GZ kY (VTE) (4.30e)
EM - / M (4.30e)

GYzE (vTE) (4.30f)EM -- Wil

I
GHM - k2 (kIEM + kyI ) (4.30g)

Gf = kxk (ITE _ ITM) (4.30h)
P

GMY kxk ( TE _ TM) (4.30i)
H1 (2 k2P

GYY 12 (kTE + k 1M) (4.30j)
k

Gxz - k T E  (4.30k)

GYZ -= kY ITE (4.301)

(4.30m)

For convenience, the Green's functions are summarized in Table 4.1 and Table 4.2.

4.2.3 Transformation to Space Domain

With the knowledge of spectral domain Green's function, the fields can be solved in the

spectral domain. It is necessary to transform the fields back to spatial domain. This trans-
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Table 4.1: Spectral Green's functions due to electric excitations [59]

- vi)

- IT
WE

k (I(VTE _ VTM)

= - (VyTE + k VTM)

k ITM

- kP ITM
We J

HJ k2(
= 12

kp

HJ - -(k 2

G = L VJTE

G7HJ = (IJTE

GHJ 0
wCk

=y ITM

HG~J = W

formation only applies to , and y and eventually reduces to one-dimentional due to the

symmetry along the longitudinal axis. Defining [59]

Sn [A] = Hn 2(kpp)kn+1A(kp)dkp

= J (kp)k +A(kp)dkp (4.31)

The transformation can be summarized in Table 4.3

4.2.4 Summary

The formulations to evaluate fields in layered media due to dipole excitations are com-

pleted. Green's function are first solved in spectral domain using the transmission line
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k2 JTM)

- IJT M )

GaJ

GY"EJ

GZYGEJ

Gx"EJGYYEJ
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Table 4.2: Spectral Green's functions due to magnetic excitations [59]

G xxEM -
Gyx

G " =GEM -
G"-
EM -

yz

EM

EM -

Magnetic Excitations

+ M21TM)

IM )

kX IM )

E - VM")
+ k T M )

- (V

P

k

WI

- k2ITE

k2• M

x VEE
W (IE

pE

+

WI'k,kx (vE)

0w'
0

G" =

GyxHMl

GZXHM =

GxyHM -
GYY

HM

G•YHM

G XZHM =

GYzHM

~ZZHM -
P _VTE

U 
2 AP/

analogy (the voltage and current in the expression for Greens' function). Once the spec-

tral domain fields are obtained, transformation to spatial domain can be done utilizing the

transformation in Table 4.3. This is typically done numerically for general layered media

cases. However the numerical integration is not a trivial task. This is addressed in detail in

the next section.

4.3 Sommerfeld Integrals

The previous section outlines the procedure to calculate the fields due to a source in layered

media. The final step is to evaluate the integration with the form of Eq. (4.32), which is
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Table 4.3: Formulations for Spectral to space domain transformation [59]

Spectral Domain Space Domain
G=A G = So[A]

G = -ikeA G = - cos(¢)S1[A]
G = -ikyA G = - sin(q)Sl[A]

G = ik.ik.A G = S( [A] - cos2(0)So[k A]

PG = ik ik A G = cos(2€) S1 [A] - sin2 (0)So[k mA]

sin(21) 1
G = ikýikA G = S1 [A] - - sin(20)So [kpA]

___ __p 2

also called Sommerfeld-type integration.

I = j G(z, z'; )J,(p)d( = j f(.)d (4.32)

The conventional way to evaluate such an integration in numerical means is the integration

and summation procedure, namely to divide the integration range in small intervals and

sum the integrand over the intervals for the total value. In the cases when the integration

range goes to infinity, the strategy is to assume the integrand will decay fast enough so that

only a small range is needed for the integration.

However, this approach cannot be directly applied to Sommerfeld-type integration. One

can see that immediately by examining the asymptotic form of the Bessel functions as its

integration variable becomes large. The Bessel function oscillates as function of cosine but

decays only as 1/ x(.

Jn() cos(ý - nmr/2 - -r/4) (4.33)
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Such a slowly convergent oscillatory behavior [62] can post serious burden on the computa-

tional effort. In other words, without optimizing the numerical method for the integration,

the convergence is very slow and the integration needs to be extended to an impractical

range for the variable [63]. Another feature of the integrand, typically associated with the

layered media problem [64] [65] is that there may exist singularities on the integration path.

The popular method to get around this problem is to separate the integration into two parts.

The first part is to deform the integration path in the third quadrant into a half elliptical

shape to avoid the guided wave poles and the branch points. The second part is to integrate

the tail till infinity.

A

x J-1=kb O 1 J2 ý3 ýn

Re(ý)

(a)

Figure 4-1: Illustration of Sommerfeld integration path. The "x" indicates pole locations.

For the second part of the integration, namely Sommerfeld tail integration, there are

many research work [66] [67] [68] published on this subject. An excellent review article

on this is [69]. We choose the weighted-averages method [69] due to its simplicity and

accuracy over a wide range of integrands. For the Sommerfeld integration tail. If we

assume that the integrand f(() can be written as

f () = g(O)P(O) (4.34)
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where g(ý) possesses a property of

g(5) = (4.35)

and p(ý) is a periodic function with a periodicity of 2q, that is

p(( + q) = -p(0) (4.36)

In order to use weighted-averages method, we first calculate the integration up to nth inter-

vals with the interval equal to half of the periodicity of the integrand. So we have

S=n ui (4.37)
i=O

where

Ui = f f()d (4.38)

where n is a finite number with a value between 10 to 15 usually. Once Sn is calculated, an

integrative procedure using weighted-averages method [70] [71] can be applied to obtain

the final integration result. The procedure can be expressed as

S(k+l) Sk) + 77n (4.39)
1 + )(4.39)

where k is the iteration number and (k) is the iteration coefficient. With a series of n+1

terms, the first iteration reduces the series to n terms, the second iteration to n-i terms and
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so forth. After n iterations, only one term is left which is So( ) . This is the extrapolated

result for the integration [72] [73]. The essence of weighted-averages method is in the

prediction of the iteration coefficient. Since the asymptotic form of the integration can be

obtained. it can be shown that a proper expression for i,4 ) can be found as

rk) = +1 )+pk (4.40)

4.3.1 Numerical Validation

The first example illustrates the importance of using accelerated numerical methods such

as weighted-averages method to evaluate slowly converging functions. Eq. (4.41) is a sum

of a series.

(4.41)

n=O

The exact value is 0.604898643421630, and the summation up to 107 terms is 0.605056. If

we define the figure of merit as

fca - fex.42)Number of Significant Digits = -logo 0 fc x (4.42)

where the fa,, is the calculated value through integration, fex is the exact value. Then

number of significant digits is only 3 after 107 terms. On the other hand, if weighted-

averages method is used (the result is shown in Fig. 4-2), the number of significant digits

can be improved to around 14 with only ten terms, and it is better than Iterated Aitken's

method [74]. It is obvious that the improvement is very significant from this example. The
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parameter used in the integration are p = 2, ( = 0, a = 0.5, q = 0 for Eq. (4.40).

10

C 10

P

z

0 2 4 6 8 10
Number of terms

Figure 4-2: Evaluation of Eq. (4.41) using weighted-averages method. Results from Iter-
ated Aitken's method is also included for comparison.

The second example is to evaluate Sommerfeld identity as

Se-jklzl e-jkor

jk- Jo((p)(dý = (4.43)

with kz = k 2. The slow convergence characteristics of the Bessel function justifies

the usage of weighted-averages method. The test is done at z=0, which is the worse case

since the decay of the integration is 1/(1/2. The only pole is at ( = ko. The wavevector

k0o = wVpfi- with I = po and e = (16+i0.1)eo. The integration can be done by two parts as

illustrated in Fig. 4-1. The first part is to integrate to kb using half-elliptical path. The value

of kb is chosen as ( real(c)/Co0 + 1)ko but with a maximum of 0.5k o, while the value for the

minor axis is ka = 0.5ko/(pko/(27r)), where ko is the free space wavenumber. The second

part is to integrate the tail using weighted-averages method. The interval is chosen as 7r/p.
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Total number of intervals are 20. While the integration of the first part is trivial, it is found

that Gaussian Quadrature method can improve the integration accuracy with only much

less points. The number of points used in Gaussian integration for this example is 1000.

The parameters for the weighted-averages method are p = 1, ( = zlI, a = 0.5, q = 7r/p.

The result is shown in Fig. 4-3. When p is less than 10Ao, (loglo(kpp) < 1), the number of

significant digits can be maintained above 6. However there is a visible trend which shows

that the accuracy decreases as p increases. This trend continues in Fig. 4-4 and starts to

become a problem when p is greater. The integration becomes invalid at Po = 50A. In

order to understand this result, we need to go back to the asymptotic form of the Bessel

function Eq. (4.33). It can be seen that as p increases, the integrand oscillates faster due

to cos(kp). However, the overall decay of the integrand is still as 1/ jVkp which is not

changed. Since the intervals are corresponding to the oscillation periodicity, keeping the

number of intervals the same means less and less coverage on the k, axis. The weighted-

averages method works the best when the series form the integration over the intervals

reflects the overall decay of the integrand. At large p, due to the small coverage on kP

axis, this information about the overall decay is lost and the method yields poor results as

consequence.

The third example is shown in Eq. (4.44), which is to evaluate the derivative of Som-

merfeld identity.

[ me-jklzl z| ekr (.
JA1 (p)- 2dC= (1+ jkr) (4.44)

A unique feature of this integral is that its integrand diverges as (1/2 as ( goes to oo00,

even though the integral itself converges. Although the development of weighted-averages
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Figure 4-3: Evaluation of Eq. (4.43) using weighted-averages method. The observation is
at z = 0 in the range of kop from 0.1 to 10.

method is based on the converging integrand, the result shown in Fig. 4-5 suggests that

the method can still produce accurate results in such case. The half-elliptical integration's

parameters are the same as the ones used in the previous example. The interval is chosen as

7r/p and the total number intervals is increased to 100. The number of points used in Gaus-

sian Quadrature is 1000. The parameters for weighted-averages method are p = 1, ( = I zl,

a = -0.5, q = 7r/p for Eq. (4.40). Again the same trend of losing accuracy as p increases

still exist. At p = 50Ao, the integration result is invalid. Note that the above integration

results are based on the parameters chosen for the integration. Certainly the accuracy can

be improved by increasing the number of intevals because the asymptotic behavior can be

better represented by using more terms.

The above examples show that Weighted-averages method is very efficient in evalu-

ating slowly converging integrations as along as the asymptotic behavior of the integrand

is known. A potential issue with the application to Sommerfeld integrals is the accuracy
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Figure 4-4: Evaluation of Eq. (4.43) using weighted-averages method. The observation is
at z = 0 in the range of kop from from 10 to 100.

degrades quickly as p increases beyond 50Ao,.

Finally, in order to valid the Green's function presented in the previous sections and

to use weighted-averages method to perform the integral transformation back to spatial

domain, an example [59] of the multi-layered media with dipole excitations is presented.

The multilayer structure is setup above a ground plane. The material of the first layer

(closest to the ground plane) is (1j, = 1, l1, = 5). Other materials are (2r = 1, 62r = 7),

(p3r = 1, (3r = 2), (P•4r 1, E4r = 4). The thickness of the layers are Imm, 2mm, 0.7mm,

and 1.3mm for layer one to four respectively. The five layer is half space with air. This setup

resembles a multi-layered structure in an integrated circuit design. The source is placed at

z=0.5mm. The observation is along z axis at three different locations at y direction. The

dipole is considered as horizontal dipole excitation. The result is shown in Fig. 4-7. The

results are in very good agreement with the referenced data [59].
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Figure 4-5: Evaluation of Eq. (4.44) using weighted-averages method. The observation is
at z = 0 in the range of kop from 0.1 to 10.

4.4 Antenna Isolation In Grounded Slabs

4.4.1 Position Of the Problem

In this section, we intend to use the available four different types of materials, i.e. RHM,

LHM, MNG, ENG, to design a grounded slab that offers the best isolation for the antennas.

The LHM materials used for isolation has been studied in the literatures [46] [75] [76] [77],

but the studies have mainly been focused on the guidance conditions only. The geometry

of the setup is shown in Fig. 4-8, where a finite slab is used in between two horn antennas

for the isolation. Fig. 4-8(b) shows the field coupling between the antennas in two direc-

tions (for both TE and TM modes). The coupling is mainly contributed by E3 field (in ^

direction) so the TM mode is dominant. To further validate the TM mode coupling, the

field propagation through the grounded slab with and without TM mode suppressions are

shown in Fig. 4-9. The effect of the suppression can clearly be seen.
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Figure 4-6: Evaluation of Eq. (4.44) using weighted-averages method. The observation is
at z = 0 in the range of kop from 10 to 100.

With this information, we approximate the configuration as dipole antenna coupling

in infinite grounded slabs. The dipole that best represents the actual configuration is a Z

directed dipole. Therefore the problem undertaken is to design slab parameters for the best

isolation between ý directed VEDs.

The first step is to study the guidance condition of the grounded slab so that the surface

wave propagation inside the slab can be eliminated by carefully choosing the material pa-

rameters. The Green's function approach is used to evaluate the fields in grounded slabs,

for which we extend the application to include LHM, MNG and ENG in addition to RHM.

We study the Vertical Eclectic Dipole (VED) since it resembles the setup we are consid-

ering. With the code that can evaluate the fields inside the grounded slab for any type of

isotropic materials. Genetic algorithm (GA) is used to optimize the design. To validate the

GA results, asymptotic formulations for the fields due to VED are also obtained. It is found

that both methods yield the same design for the problem at hand.
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0 1 2 3 4
Z (mrnm)

Figure 4-7: Fields due to dipole in a 5-layered media. r, = 1 for all the layers. The

permittivity' of all the layers are cl, - 5, E2r = 7, Egr = 2, E4r = 4 and 64r = 1. The data

with dots are taken from the reference, while the solid lines are calcualted from this work.

4.4.2 Guidance Conditions

There are mainly three methods [78] to find the guidance conditions for the grounded slab.

The simplest method is to use the transmission line analogy as mentioned in Section 4.2.2.

The layer of air, slab and ground plane forms a resonant circuit which is equivalent to the

guidance condition at resonance. The second method is to derive the expressions for the

fields inside the slab. Usually the expression of the fields can be turned into an integral

representation. The singularity of the integrand, if exists, corresponds to the surface wave

mode which can be used to obtain the guidance condition.The third method, which gives

the physical intuition, is to consider the guidance condition as the constructive interference

of the waves insider the slab. The mathematical expression of the third method can be
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(a) Setup of CST simulation

(b) Fields from the antenna

Figure 4-8: Antenna isolation study setup using finite slabs in CST. (a) the CST setup with
waveguide ports. (b) Ez field from the waveguide port which is used to simulate transmit-
ting antenna. Other two ports are for the measurement of isolation efficiency. (Courtesy of
Dr. Hongsheng Chen)
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(a) With surface wave modes

ii

(b) Without surface wave modes

Figure 4-9: Fields in finite grounded slab. (a) The slab
thickness of 4 mm. (b) The slab is ([e, = -0.1, r

(Courtesy of Dr. Hongsheng Chen)

Ar--- ~ -

is (p, = -0.1, , = -2) with a
-0.1) with a thickness of 4 mm.

do

d-1

(a)

Figure 4-10: Setup of grounded stub with 2 directed electric dipole. Genetic Algorithm is
used to optimize the slab parameters for the best antenna isolation.
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written as [42]

R+R_ = 1 (4.45)

where R+ and R_ are the reflection coefficients looking into each side of the slab from any

reference point inside the slab. For the grounded slab case, the convenient choice for the

reference point is at the ground plane interface. So we have

R+ = -ePloi2kzd R = -1 (4.46)
1 + Plo

First we consider the slab to be RHM. For TE wave modes, we have [42]

Poi = iO (4.47)
pokz

Plugging into Eq. (4.45), we can easily find the guidance condition as [42]

-1
v/A2 -  2 = -- xctan(x) (4.48)

where A2 = (kI - ko) 2d2, X2 = k 2d2 Similarly, for TM wave modes, we use

Poi = (4.49)cokz

And the guidance condition can be written as [42]:

1
A 2 --X2 = -xtan(x)
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We also call these guided surface wave modes real wavenumber modes since the longi-

tudinal wavenumber (kz) inside the slab is real. The solutions to these guidance conditions

reveal the surface wave modes that can exist inside the grounded slab for a given slab con-

figuration. Typically a graphic solution is used to show the solutions to these equations.

An example is shown in Fig. 4-11 for both TE and TM modes. For TM modes, the surface

waves always exist since there is at least one intersection points. For TE modes, the cutoff

for the surface wave modes happens at aod < r/2.

If LHM is used for the slab, the surface wave modes can have real wavenumbers as well

as imaginary wavenumbers. The expression for the TE modes with real wavenumbers is

[9]
-1

VA 2 - = -- xctan(x) (4.50)

where A2 == (ki - ko) 2d2, x 2 = k2d 2 . And for the TM modes is [9]

1
A2 2- X2 = -xtan(x) (4.51)

The graphic representation of these guidance conditions can be seen from Fig. 4-12. Due

to the negative constitutive parameters, the cutoff conditions for the surface wave modes

for LHM slabs are different from ones for RHM slabs. For TM modes, the cutoff exists

which depends on the tangential intersection between the solid lines and dashed lines. For

TE modes, however, there is no cutoff at zero frequency, but there exist a range in which

the surface wave modes cannot propagate.

For grounded LHM slabs, it is also known that imaginary wavenumber surface wave
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(a) TE surface wave modes

TM mode

0

tN

0.5 1k d/rI
z

(b) TM surface wave modes

Figure 4-11: Guidance Condition for grounded RHM slab. The Dashed curves are for the
right hand side of Eq. (4.48) and solid curves are the left hand side. The intersections
indicate the existence of the modes.
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(b) TM mode with real wavenumbers

Figure 4-12: Guidance Condition for grounded LHM slab. The intersections indicate the
existence of the modes. The modes are with real wave numbers.
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modes can exist. The expression for TE modes can be obtained from Eq. (4.48) by changing

k, to a_ and it is written as [29]

-d2+ -- 2 ctanh2( 2d) = (k - )d2  (4.52)

The expression for TM modes with imaginary wave numbers can be obtained in the similar

way and it is written as [29]

-a2d 2 + 2 tanh2 (a~ d) = (k - k )d2  (4.53)

The graphic representation of these guidance conditions can be seen from Fig. 4-13. In

the figure, solid curves become straight lines, and the values are associated with (k2 - kg).

Therefore by visual inspection, it can be seen that the surface wave modes can be eliminated

by either increasing the value of k2 or the slab thickness d. This is true for both TE and TM

evanescent wave modes.

If the slab material becomes MNG, the real wavenumbers modes can no longer exist.

So only the imaginary wavenumber modes need to be considered. A simple analysis can

show that MNG can not satisfy the guidance condition for the TM evanescent wave modes

therefore only TE evanescent wave modes can exist which is [29] [30]

c8ozd = ctanh(azd) (4.54)

The graphical solution of this equation is shown in Fig. 4-14(a). The conditions for the

cutoff are not straightforward.
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(b) TM mode with imaginary wave numbers

Figure 4-13: Guidance Condition for grounded LHM slab. The intersections indicate the
existence of the modes. The modes are with imaginary wave numbers.
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TE mode with imaginary wave numbers
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(a) TE modes in MNG slabs

TM mode with imaginary wave numbers

zz

(b) TM modes in ENG slabs

Figure 4-14: Guidance Condition for grounded MNG slabs and ENG slabs. The intersec-
tions indicate the existence of the modes. The modes are with imaginary wave numbers.
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The last case is ENG slab. With a similar analysis, it can be shown that the slab can

only have TM evanescent wave modes which can be expressed as [79]

aozd = -azdtanh(azd)
[Lr

(4.55)

The graphical solution of this equation is shown in Fig. 4-14(b).

In summary, the guidance conditions for the four different type of materials are tabu-

lated in Table 4.4 and Table 4.5.

Table 4.4: Guidance condition for real wavenumber surface wave modes

Real Wavenumber surface wave modes (propagating wave modes)
TE TM

RHM VA2 - X2 = -xctan(x) VA2 _ 2  1xtan(x)
LHM VA2 - 2 = -- xctan(x) iA 2 - 2  tan(x)

MNG None None
ENG None None

Table 4.5: Guidance condition for imaginary wavenumber surface wave modes

Imaginary Wavenumber surface wave modes (evanescent wave modes)
TE TM

RHM None None

LHM aozd = a dctanh2(Ozd) aozd = -zdtanh2 (azd)

-azMNG aoz= d ctanh 2(O~d) None
ENG None aozd = -adtanh2 (azd)
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4.4.3 Applications to LHM And Plasma Medium

In general, an isotropic medium can be one of the four types, namely RHM, LHM, E Neg-

ative Material (ENG) or y Negative Material (MNG). In the past, the formulations using

Green's functions to evaluate fields in layered media have been applied to RHMs only. In

this section, we will extend the application to include LHM, ENG and MNG. The formu-

lations developed in previous sections are generic to isotropic materials, since there is no

underline assumption in the derivations. However, the actual implementation of the formu-

lations will be different for different materials. The main difference is on how to determine

the extend of semi-elliptical integration range which needs to include all poles.

It is known that in layered media configuration, the singularities of the integrand corre-

spond physically to the surface wave modes inside the layer. For RHM materials, since only

the real wavenumber modes exist, the surface wave poles occurs in the range of [ko, kax],

where kmax is the maximum value of wave vectors in all the layers. ko is the free space

wave vector. Therefore the choice of the semi-elliptical integration range is very simple:

to choose kb to be greater than kmax. However this straightforward choice needs to be

modified for other materials since evanescent wave modes can now exist.

For single layer medium backed by a ground plane, the guidance condition for MNG

can be rewritten as [51]

tanh(Jk~/~~-2- k/•k•- 2tanh( k - kd) - (4.56)

The solution of this equation for k, determines the location for the pole. Since we only

need to know the maximum possible value for the solution, the approximation can be made
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to simplify the analysis. If we denote the left hand side of Eq. (4.56) as L HSMNG and the

right hand side as RHSMNG, the general shape of the function can be shown in Fig. 4-15

Since we also know the following relationship exists (for x > 0):

k (in units of ko)

Figure 4-15: Illustration to show that the approximated function can be used to estimate
the max kp for the solution of Eq. (4.56). The dashed lines are the approximated functions
for LHS of Eq. (4.56), while the solid lines are without the approximation.

e2x - 1 1+ 2x - 1 x
tanh(x) = 2x + 1 >

e2x+1 1+2x+1 1 + z
(4.57)

We can approximate Eq. (4.56) as

Vki - k d V+ P - kl
(4.58)

As shown in Fig. 4-15, the solution from the approximated Eq. (4.58) is greater than the

the solution from Eq. (4.56). Upon solving Eq. (4.58), we can obtain the value for the

estimated value for the pole kp. In the actual implementation, we use kb = kp + 1.2ko.
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Similar procedure can be applied to ENG material. Rewriting the guidance condition

2 -
tanhcjPy- kd)P 2 2O

(4.59)

we denote the left hand side of Eq. (4.59) as LHSENG and right hand side as RHSENG-

The general shape of these values can be plotted out as shown in Fig. 4-16. Note that the

k (in units of ko)

Figure 4-16: Illustration to show that the approximated function can be used to estimate
the pole kp for the solution of Eq. (4.59). The dashed lines are the approximated functions
for LHS of Eq. (4.59), while the solid lines are without the approximation.

RHSENG is monotonically increasing with kP which is different from the case of MNG. It

is easy to see that if we approximate the LHS as 1, solution will have a value greater than

the one from the original equation. Therefore the approximate equation becomes

1 = 
-k 2
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Upon solving, we get the approximate max kp as

k 2 1 (4.61)
c,)2 - 1

For LHM slab, both TE and TM evanescent surface wave modes can exist. For TE

mode we have the same equation as Eq. (4.56). THe left hand side and right hand side and

the approximation as Eq. (4.58) can be plotted in Fig. 4-17 Notice that RHS can take two

different shapes depending on the values of k . So both approximations need to be used

to find kp. The similar curves for TM evanescent modes are show in Fig. 4-18 The same

situation happens in TM mode. So the solution will be to consider both approximations

together in order to find the maximum kp.

Once the half-elliptical path integration is determined, the remaining work is to evaluate

the Sommerfeld tail integration. Referring to Fig. 4-1 for the illustration, the total number

of intervals (ji) is chosen as 10 with each interval equal to 7r/p. The number of integration

points used in Gaussian Quadrature method in each interval is 200 (Better results can be

obtained by using (kop + 1)70 as the number of points, which depends on the observation

point.). The weighted-averages method is then used to extrapolate the final integration

values. Referring to Eq. (4.40), the parameters values used are p = 1, ( = IZobs - Zsrcl,

a = 0.5, q = ir/p, where z0ob is the z axis value of the observation point and z... is the z

axis value of the source point.

In order to validate the above formulations, we calculate the fields due to HED on

ground LHM slabs and compare the results with Microwave Studio (CST) simulation re-

sults. For the CST simulation, the slab domain has to be truncated so the fields are effec-
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Figure 4-17: Illustration to show that the approximated solution of TE mode evanescent
wave guidance condition for grounded LHM slabs. The dashed lines indicates the approx-
imated solution, while the solid lines are for the actual solution.

138

LHSLHM
LHM

_ · · · ·

| I I | | 1

E



1.2

0.8

0.6

0n4

2 3 4 5 6 7 8
k (in units of k )

p o

(a) Cases with k2 > ko2

0 0.5 1 1.5 2 2.5 3
k (in units of ko)p

(b) Cases with k- < k

Figure 4-18: Illustration to show that the approximated solution of TM mode evanescent
wave guidance condition for grounded LHM slabs. The dashed lines indicates the approx-
imated solution, while the solid lines are for the actual solution.
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tively due to finite slabs. By choosing the size of the slabs to be sufficiently large, it may

be possible to obtain results close to the infinite slab's fields. As the first step, we compare

the CST results and the analytical results with grounded RHM slabs which is shown in

Fig. 4-19. Two cases are with and without TE surface wave modes since the TM modes

always exist. It can be seen that two results are in good agreements .

We test the LHM slabs with the results shown in Fig. 4-20. Two cases in the two figures

are one with TM surface wave modes and one with no surface wave modes. The effect of

the modes can be seen at the higher field values at the same distance. Good agreements in

the results validate the formulations we developed in this section.
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)0
Distance (mm)

(a) RHM slab is 3 mm thick

Distance (mm)
10

(b) RHM slab is 10 mm thick

Figure 4-19: Comparison between the Green's function method (analy) and the Microwave
studio (CST) simulation results. A HED is placed on a grounded slab with (p,=2, t,= 2 )
and the specified thickness. The source frequency is 10 GHz, and the fields are measured
along the slab surface.
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(a) LHM slab with (p,=-2, Er=-2)
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Y (mm)

(b) LHM slab with (Lp,=-0.4, c,=-0.4)

Figure 4-20: Comparison between the Green's function method (analy) and the Microwave
studio (CST) simulation results. A HED is placed on a grounded slab which is 3 mm thick
with specified parameters. The source frequency is 10 GHz. and the fields are measured
along the slab surface.
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(a) MNG material

y (mm)
)0

(b) ENG material

Figure 4-21: Comparison between the Green's function method (analy) and the Microwave
studio (CST) simulation results. A HED is placed on a grounded slab with (a) MNG (Ir=-
10, r,=l) of a thickness of 3 cm (b) ENG (/,t=1, r.,=-10) with a thickness of 4 cm. The
source frequency is 10 GHz, and the fields are measured along the slab surface.

143



4.4.4 Optimization Using Genetic Algorithm (GA)

Genetic Algorithm [80] is a global optimization technique based on the mechanism of

natural selection. It starts by defining the variables, the cost function and cost, and ends

by checking the convergence [81] . With the goal to minimize the cost function (a general

purpose of any optimization method), the process [82] is to select only a portion of the total

initial population (or initial guesses) which have a lower cost (or so called better fitness).

In order to maintain the size of population, the new population is generated as "offsprings"

of the selected population through the process of crossover and mutation. The process of

selection is the process of optimization since only the best result (lower cost) is remained

for the next generation. The process of crossover and mutation is the search process which

has an advantage over conventional minimum seeking methods. Since GA doesn't require

the knowledge of the gradient of the cost function, the method is very suited for a global

optimization problem.

Since we have developed formulations to evaluate the fields on the grounded slabs, GA

can be started by defining the cost function as

Min: f = 20logloEz(u, E, d)lp=10A (4.62)

The cost function defines the variables in the optimization process. The search range of

the variables are ir, E [-3, 1], cr C [-3, 10], d E [0.1, 5] mm. A binary GA code

is used with the bits of 5,7,6 for p,, E,, d respectively. We choose the population size

as 40. The probability of crossover as 0.8 and the probability of mutation as 0.03. For

the convergence, we set the maximum repeated cost as 10, which means if the cost is not
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changed for 10 generations, the search is stopped.

The optimization result is shown in Fig. 4-22

0

0

_=o

2 4 6 8 10 12 14
GA interation number

Figure 4-22: Plot of minimum cost of each generation in GA optimization for field isolation
using a grounded slab.

The result for the optimized variables are in Table 4.6. For the purpose of comparison,

the normalized values to air are shown in both the case of dipole in grounded slab and the

case of horn antenna with grounded finite slab (as shown in Fig. 4-8). In addition to the

GA optimized result, several slab parameters in each of the four material categories (i.e.

RHM, LHM, MNG, ENG) are also evaluated for the coupling level. It can be seen that

the GA optimized result gives the best isolation of all the materials presented. Due to the

numerical dynamic range in CST, lower than -34 dB isolation is not able to be observed.

The data also validate the choice of using dipole in infinite slabs as a simplified model for

horn antenna coupling in finite slabs.

4.4.5 Asymptotic Formulation

The fields inside stratified media due to dipole sources can also be found using the plane

wave expansion methods as presented in [42]. Using Sommerfeld identity, fields due to
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Table 4.6: GA result of isolation using grounded slabs compared with other configurations.
The data shown are values normalized to air case. The actual values for air case are in
brackets.

Pr Cr d(mm) Field coupling (dB) CST (dB) comments
-1.75 0.05 5 -42 - 34 GA result
1 1 4 0(46) 0 (-31) air
1 2 4 +8 +9 RHM
0.1 0.1 4 -34 -33
1 -0.1 4 -36 -34 ENG
1 -0.9 4 -20 -34
-0.1 1 4 -16 -20 MNG
-0.9 1 4 -19 -25
-0.1 -0.1 4 -34 -33 LHM
-0.1 -1 4 -36 -33
-1 -0.1 4 -34 -33
-10 -0.1 4 +3 -2

a dipole can be decomposed into plane waves along the longitudinal axis of the layered

media. For a single layer grounded slab, we set up the slab from z = d _l to z = do with

the ground plane at z = d-1 (see Fig. 4-10). For a z directed dipole above the surface of

the slab the electric field can be written as

Ez = o dtkHl)kp Ao+eikozz + Bo+e-ikozz

J- Ao_eikozz + Bo_e - i kozz do < z < 0

(4.63)

where the dipole is located at z = 0. The wavevector in air is ko and the wavevector in

the slab is kl = wVc. When the dipole is at the slab's boundary, do = 0. Therefore,

the second expression in Eq. (4.63) only has meaning at the limit when do -- 0. This is

important since the boundary condition at the slab surface will need to use this term to

satisfy the continuity of electric flux D.
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The unknowns in Eq. (4.63) can be written as

Ao+

Ao-

30+ = 0
(4.64)

where Eved is the field amplitude in free space due to a i dipole, which has the form of

Ilk3
Eved = -Iko8-F(A)(,kOz

Aved is the field amplitude due to the presence of the grounded slab.

Applying the reflection coefficient formula for layered media [42], we have the expres-

sion for RJY as

TM  Ao- e - i2kozd

- B30- RojM

Plugging the expression for A 1/B 1

A1

B1

+

= e-i
2 k(l)zdi

into Eq. (4.66), and realizing that [42]

Ao+ = (1 + R TM)Eved,
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= Aved + Eved,

= Aved, Bo+ = Eved

(4.65)

[1- (1/R M)2]e-i2(ko+k)zdo)
(1/Rol)e - i2k(1)zdo + (A1/B1)

(4.66)

(4.67)

(4.68)



we can then solve for the unknown Ao+ as

Ilk 2 1 + ei2klzd
Ao+ = - (4.69)47rw•o(coklz + cqkoz) 1 + RiMei2klzd

where d = d-1 - do is the thickness of the slab.

So the longitudinal electric field at the slab boundary is

f+00E =1 dkpAo+H:m)(kop) (4.70)

For fields far away from the source, the asymptotic formula for 10(l) (kpp) can be used

to simplify the integration so we have

Ez• dkAo+ _ ei(kpp- /4) (4.71)

The classic way to evaluate this integral is to transform the integrand from kp plane to

a plane using kp = k sin a, kZ = k cos a. As shown in [42], the multiple Riemann sheets

overlapping in kp plane become one sheet on a plane, which greatly simplifies the analysis.

Due to the rapid oscillatory behavior of the integrand, the saddle point method is use to

evaluate the integral and the result is

iIlk 3f 1 + ei2klzd 2 k• cikjr
E = d k cos 0 (4.72)4nw0o 1+ RoMIi2kled ECklz + lkoz kg kir

where kl, = k, cos 0, kg = k, sin 0 and koz = Vk -k.

When the observation point is at the slab boundary, 0 = 900 so Eq. (4.72) is zero which
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means the saddle point contribution to the integral is zero and the second order contribution,

the branch cut contribution (as shown in Fig. 4-23), needs to be considered.

(a)

Figure 4-23: Illustration of integration path for branch cuts

A careful analysis shows that only k0o is the real branch point.Ao+ is an even function

of kI so kI is not a branch point. The integrand summation along the two branch paths for

ko becomes

A0o+13 + Ao+ 14  = -Ao+(koz)l 13 + Ao+(-0koz)l 4

Ilk~1 l 1+ eli2klzd 2 2clkoz
=2kld)(Rol + ei2k, ) (4.73)47rwo [j oklz + clkoz (1 + Rold) + i2klzd) (4.73)
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Therefore, the integral of Eq. (4.70) can be obtained as

fc M 2 i ir/4

Ez i dq(Ao+13 + Ao+ 1 4) i·k -i

-Ilk2• 1 - ei2klzd 2eikop

21rwco0  ok•z(1 - ei2klzd) p2  (4.74)

where klz = V/- k2. More detailed derivation can be seen in Appendix D.

It can be concluded that the saddle point contribution gives rise to the dependence of

1/p while the contribution from the branch cuts gives rise to 1/p2. So the decay on the slab

boundary is much faster than the fields in the space. When the surface wave modes exist

the fields become (for the pole at k,)

2
E = 2i(k - k')Ao+(kp) ei(kppr/4) (4.75)

Hence the surface wave contributes the 1,/1p dependence.

Validation of the asymptotic expression has been carried out on all four types of materi-

als, namely RHM, LHM, MNG, ENG. The asymptotic results are compared with the fields

evaluated from the analytical code. For RHM, the results are shown in Fig. 4-24. It can be

seen that in the observation distance from 5A to 10A, the actual field (E,) value deviates

from the asymptotic value at 5 A, but the two values gradually approaches each other and

the agreement is excellent close to 10A. In terms of the level of field amplitudes, the slab

with smaller constitutive parameters has lower fields at the same distance. For LHM slabs,

the comparison is shown in Fig. 4-25, while for MNG and ENG slabs, the results are in

Fig. 4-26. Same observation can be made with these cases.
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Figure 4-24: Validation of asymptotic formula for i directed electric dipole on a grounded
RHM slab. The slab is with a 4 mm thickness. The dipole source is at y=O mm with a
frequency of 10 GHz. The measurement range is from 5A to 10A.

We are now able to use the Eq. (4.74) to design a slab for the best isolation. For the

purpose of the slab design, we can ignore the constant parameters and directly use

Ilr(1 + ei2 klzd) (1r (4.76)
Se(1  i2klzd) 2- ktanh( kP - k2d)

Therefore, in order to get lower Ez, we need to increase Ikz I and reduce lr. Since kl~ =

k - k., for RHM and LHM slabs, the maximum kl, can be achieved is ko. However

for MNG slabs, the maximum kiz can be greater than ko since k2 is a negative number. So

the slab offers the best isolation is to use MNG with maximum Ikl and minimum e1,. The

result from GA optimization agrees with this conclusion.

We shall also remark on the distance dependence aspect of the isolation study. It is

intuitive to see that as the antennas are positioned closer, the coupling level will increase

(i.e. poorer isolation). This increase of coupling level as a function of distance will depend

on the slab parameters. Observing from Fig. 4-19, Fig. 4-20 and Fig. 4-21, we note that

the sharp increase in the coupling level usually occurs in less than 1 A distance away from
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y (mm)

Figure 4-25: Validation of asymptotic formula for ý directed electric dipole on a grounded
LHM slab. The slab is with a 4 mm thickness. The dipole source is at y=O mm with a
frequency of 10 GHz. The measurement range is from 5A to 10A.

the source. Therefore, it is recommended that the antennas should be kept away from each

other for a minimum 1 A distance while the further away the separation, the better isolation

can be achieved.

o00 150 200
y (mm)

250 300

Figure 4-26: Validation of asymptotic formula for 2 directed electric dipole on a grounded
MNG and ENG slab. The slab is with a 4 mm thickness. The dipole source is at y=0 mm
with a frequency of 10 GHz. The measurement range is from 5A to 10A.
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4.5 Antenna Isolation In Layered Grounded Slabs

In this section, we investigate the isolation design using 5-layered slab structures. The

configuration is shown in Fig. 4-27. The parameters to design are each layer's constitutive

parameters and the thickness. Since the asymptotic expression for the field is very compli-

cated to derive, GA method is preferred. It is understood that a 5-layered structure may not

be necessary in practice. However for the purpose of testing the capability of the method, it

is a legitimate choice due to its sufficient complexity. The parameter range for the variables

are kept the same as the one in single layer case. Also the same cost function as Eq. (4.62)

is adopted. The convergence of GA method is shown in Fig. 4-28.

The final result of 5 layer slab configuration is shown in Table 4.7. The results from

two GA runs are slightly different, but the resulting field coupling level is almost the same.

As expected, GA optimization result shows that the best isolation can be achieved by using

MNG layers for all the 5 layers. Since the dipole is placed on the first layer surface, the

result for the first layer is very similar to the single layer case. We find large negative p,

close to zero e and large thickness d for the first layer. This example shows that GA method

is versatile and can be directly applied to multilayered media design when used with the

spectral domain Green's function method for the field evaluation.

Table 4.7: GA result of isolation using 5-layered slabs

layer /t, fr d(mm)
1 -2.8 0.5 4.4
2 -0.5 6.6 4.7
3 -1.7 6.1 3.3
4 -1.0 9.1 4.7
5 -2.9 6.4 2.8
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Figure 4-27: Setup of 5-layered slab with z directed electric dipole. Genetic Algorithm is
used to optimize the slab parameters for the best antenna isolation.
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Figure 4-28: Plot of minimum cost of each generation in GA optimization for field isolation
using a grounded 5-layered slab.

4.6 Conclusions

We demonstrate an antenna isolation design example is provided with a z directed dipole

antenna. Two different approaches are used to find the optimum slab parameters for the

isolation. One approach is to use Genetic Algorithm (GA) to optimize the slab's constitu-

tive parameters and the thickness for a minimum coupling level. The other approach is to

develop an analytic asymptotic expression for the field, and then uses the expression to de-

sign the slab parameters for the best isolation. Both results agree well. Finally, possibility

of using multi-layered media in place of the slab for the antenna isolation is studied. GA

method is used to search for the optimization design solution. We show that GA converges

very fast to the solution and the result yields satisfactory isolation for the antennas.
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Chapter 5

Conclusion

The reflection properties of the LHM slabs are studied on the GH lateral shift phenomena.

We show theoretically that the GH lateral shift of a Gaussian beam can be both positive and

negative at different incident angles with a single LHM slab. The relation between the slab

parameters and the GH shift directions is illustrated in an analytical expression. Applying

this expression, we further show that there are in general three different cases in which

GH lateral shift can change directions with the incident angle. In addition, methods are

developed to accurately simulate the GH lateral shifts using FDTD. Good agreements are

achieved comparing the simulation results and the analytical results. Furthermore, using

the derived expression for GH lateral shift direction, we explain the physical reason for

the phenomena. It turns out that it is due to the energy flux line pattern changes inside

the slabs. The relative amplitude of the growing and decaying evanescent waves changes

inside the slab as function of slab parameters and the incident angle of Gaussian beams.

The negative shifts are the results of decaying evanescent wave dominates inside the slab,

and the positive shifts are due to growing evanescent waves. It is concluded that the unique
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ability of LHM slabs to amplify evanescent waves, already used for the design of a perfect

lens, is responsible for the GH shift direction change.

The transmission properties of the LHM slabs are studied on the imaging effects. In

developing the numerical tool -FDTD- for simulating the imaging using LHM slabs, we

find that the imaging resolution can be limited by the numerical simulation due to the mis-

match between the slab and its surrounding media. By studying the constitutive parameters

in the FDTD implementation, it is found that the mismatch is due to the time discretiza-

tion rather than space discretization. By comparing the simulation results and analytical

calculations, we demonstrate that the simulated image resolution of an LHM perfect lens

is mainly limited by this mismatch. In other applications such as the simulation study of

surface plaritons at LHM/RHM interfaces where the matching condition is required, the

understanding of this limitation in FDTD can also be very important. Imaging properties

of finite-size LHM slabs are also analyzed. In particular, we use an approximate analytical

method to study the effect of the finite size by considering only the aperture. It is shown that

the approximated current sheet with a Gaussian shape truncated at the aperture reproduces

the key features of the image spectrum. Hence the method can be used as a fast alternative

to numerical simulations, although the simulations are still needed for a better accuracy.

Furthermore, we explain that the negative energy stream at the image plane come from the

inherent spectrum of the source, and more precisely from interactions between propagat-

ing waves and amplified evanescent waves from LHM slabs. This phenomenon does not

depend on the finite size of the slab. We show that once again the capability of amplifying

evanescent waves by LHM slabs make possible this unique property.

The properties of multi-layered media structure are studied for the application of an-
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tenna isolations. We extend the traditional spectral domain Green's function method to

include media like LHM, MNG and ENG materials. Comparison with results from CST

simulations are used to validate the method. For practical considerations, we demonstrate

a design example using grounded slabs for reducing the coupling from a z directed dipole

antenna. Two different approaches are used to find the optimum slab parameters for the

best isolation. One approach is to use Genetic Algorithm (GA) to optimize the slab's con-

stitutive parameters and the thickness for a minimum coupling level. The other approach is

to develop an analytic asymptotic expression for the field, and then used the expression to

design the slab parameters for the best isolation. Both results agree well. Finally, possibil-

ity of using multi-layered media in place of the slab for the antenna isolation is studied. GA

method is used to search for the optimization design solution. We show that GA converges

very fast to the solution and the result yields satisfactory isolation for the antennas.
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Appendix A

GH Lateral Shift Formulation

The incident Gaussian beam (TE polarization) in region #1 (refer to Fig. 2-1):

Ejy =J dkexp[i(kxx + kfiz)]+(k,)

where,

(kx) = exp[-g 2 (kx - kix)2/4]

In region 1, the reflected electric field can be expressed as:

Er = -j dkxReikxxe -
ik

l
zz (k)

- OO
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In region 2 and 3, the total electric field can be expressed as:

E2y dk.(Aeik2 + Be-k2zz)e ikx(kx)

E3y _= dkxTeik'* eik3;zz(kx)

The coefficients can be obtained by phase matching and boundary conditions:

R 12 + R 23 ei2k2zd

1 + R12 R 23 ei2k2l d '

2

(1 + pl2)(l + R12R 23ei2k2zd)

4ei(k2z-k3z)d

(1 + p12)(l + P23)(1 + R12R23 ei2zd)
2R 23ei2k2zd

(1 + p12)( + R12R 23ei2 k2zd)

1 - P12
12P12

1 + p12

1 - P23
23 +P231 923

1lk2z
P2 k z

I-2kle

P2k3z

2 3-k2z

With the incident angle above the critical angle for both media #2 and #3, we choose

k2z = (k - k )1/ 2 = ia2z, k3z = (ki - = )1/2 = 3

C = B/A = R23e - 2a2zd (A.6)

as the ratio of growing and decaying evanescent wave amplitudes inside the slab.

If the reflection coefficient R is expressed as: R = IRleib(kx. ), then the lateral shift can

be characterized by : S = lkxk=kix
akx

and
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(A.3)

(A.4)

where

and define

(A.5)



4 =-2 tan = (- R 2 
2zd) - -2 tan- F,

1 + R 23 e- 2a2zd

Taking advantage of

sign{S = sign{--
xkx

where F P12= ( - C)
(1+ C)

OFsignf{
Axk

we can write (when C # oc)

Up12  2 C
Ssignt (1 - C2 ) - 2p12}

sign•r [I- C 2 +-C C
/12r ki - k2

40C2z (k - k 23)P2r13r k2

03z (ii3r ciz - Irz) k2 - k C]}

If CI =: oc (when P,3rT2z + /1,2ra3z = 0),

sig{-,,u 2r [(k2 - k )aze-202zd -2(k - k)k }

r2zk 12U - d- (k~ - k 2 ) 2r / 3 r
ZV (id - p2ra)

O3z (3r 2z 2r 3z

= sign{I [1/12r
- C2 + 4UVC]}

[C - C1][C - C2]}

(A.7)

sig
signt{ }1kx

(A.8)

SFsign{k } =
Okx

If we lelt

Then

(A.9)

sign{ S}
OFsign•-{F}
s kg

= sign{-
[-2r

163



where

If V > 0 and U > 0

C1

C,

C2

C2

therefore 1 + 4UV

0

= 2UV + 4U 2V2 + 1 > 2UV + 1 - 2UVI >= 1

< 2UV+(1+2UV)= 1+4UV

= 2UV - /4U 2V2 + 1 > 2UV- (1+ 2UV) = -1

< 2UV-2UV = O

> C1>1

> C27,> -1

If V < 0 and U > 0

1 > C 1 >0

-1 > C2 -1+4UV

We conclude that (1) There exist three value ranges for C: C > C 1, C1 > C > C2 and

C2 > C, (2) When GH lateral shift direction is altered, the value of C will change from

one value range to another.
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Appendix B

FDTD Simulation of Evanescent Waves

For numerical methods, the primary concerns are usually the accuracy and stability, while

the computation expense of time and memory are of the secondary. In the presense of

LHM, the ability to model evanescent waves accurately becomes very important since many

unique phenomena are associated with evanescent waves. Therefore we present the study

of FDTD on evanescent wave simulations.

B.1 Stability Condition

The conventional way to derive the stability condition is to separate the update equations

into time domain and spatial domain, calculate the eigenvalues int these two domains sep-

arately and obtain the condition by letting the space domain eigenvalues to be within the

ones in time domain.

Here we take a different approach. The method we use is to treat FDTD as an initial

value problem and systemmetically derive the stability condition. With the time domain
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and spatial domain equation coupled together. Therefore this new approach provides a

better insight to the stability of the FDTD stability.

It is easy to show that 2D FDTD update equations can be rewritten in the matrix form

1

E4 2

H"n

[Inz

1

a2  b2

a
7-

b
-i-

1

E 2

H"-1

a
1-

1

0

b
-1-

0

1

a = 2 sin( )2 Az b = 2 sin( A2 Ax

Note that the field vectors on the left hand side are the fields at next time step which

can be updated from the fields at current time step through a multiplication of the matrix G.

The same matrix G can be mulitipled again for the continuous update. So in order for this

initial value problem to be stable, the eigenvalues of G must be less or equal to one which

means

A < 1
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Two of the eigenvalues are equal to one. The third eigenvalue is

IA3 1-

case(a) if + b> 4 then
ILE

a2 + b2

I1L

S(a2 + b)2
IE 2

2

which means A3 > 1. That is not allowed for the solution.

a2 + b2
case(b) if < 4 then

fore

a2 + b2  a2 + b2

(/ )2 - 4( ) is an imaginary number. There-

12- (aa + b2
= 2 - I(

S+ b2 a2(( + b2

Ile ILE

a2 + b2 a2 + b2 2 + b2

(2- ( ))2 )2 4( )
/1 /6 1

= 1 (B.2)

which means the requirement for stability condition is met. So the stability condition can

be satisfied by letting

a2 + b2

<<4
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a2 + b2

ILE
a2 + b)2

( ~2
a2 + b2

- 4( )

a2 + b2

- 4( )
/16

>2 (B.1)

I|A3

(B.3)

t



Using this condition, for plane waves, we get

kzAz At 2  k Ax At 2  10 < sin2( )( 2 + sin2( )2 < - (B.4)
2 Az 2 Ax c2

which is the same result as the one in standard FDTD references.

For evanescent waves, we have

0 • sin 2(kxA At 2  hs _2ZAz ) 2 < - (B.5)2 Ax) 2 z c•

B.2 Numerical Dispersion

Numerical dispersion concerns with the deviation of the dispersion relation in the numerical

domain. The expression for the plane wave can be directly adapted for evanescent waves

by letting kz = ic•, we the have the following dispersion relation:

I At 2 1 AZ)]2z  21 sin(wAt sin( - sinh( ) (B.6)

cAt 2 AX 2 Az 2

B.3 Material Implementation

The numerical implementation of the material is illustrated with effective c (the derivation

for u is similar). We start with the update equation

aJ
- + FeJ-,= E, (B.7)

dlH= - dcoEy + dsJe (B.8)
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Expanding Eq. (B.7) in finite difference form, we can obtain

-i2sin(wAt/2)
Je At + FeJe cos(wAt/2) = 0Cw eE,

If we assume r,=0 in the simulation, then the above equation becomes

Je = At2 0  E-i2 sin(wAt/2)

(B.9)

(B.10)

Pluging this equation to Eq. (B.8), we can get

A tw2 P2 o
E sin(t/) = l E-i2 sin(wAt/2) (B.11)

Eliminating E,, we have the following expression for the effective E in the numerical im-

plemention of Drude model

-4sin(woAt/2)/(At)2

which is same as Eq. (3.6).
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Appendix C

Derivation of Finite Slab Fields from

Huygen's Principle

Electric field from a line source can be written as:

(x z) -W /- )(kop) - P dkz 1eikxxCikzz
4 4t fl ~k

At the slabs boundary the fields are:

Hz(z)

-wO o j dkT(kz) eikxd2eikzz

1= -1 dkzT(kz)eikxd2eikzz
47 -oo z z

where the transmission coefficient T(kz) is

4T(kikxdl Ci2klx(d2 -dl)
T(kI) = (1 + pl2)(I + p•)(1 R 23i2k•l(d2-))
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The next step is to find the fields at the image plane. Referring to Fig. 3-5, we first find the

equivalent currents from the fields at the slab boundary and then use Stratton-Chu formula

to write the fields at the image region as:

E(x, z) = J dS' {iw1Po[A x H(')]g(, V')
JJS'

+[n. -E(')]V'g(T , 7') + [fi x E() x V'g(, ') }
= [0 dz ' iw 'o dkzT(kz)eikzd2eikz'

-oo 4 fr
i1[()(ko (z- z')2• 2)

+ 'f0 dz'" o4 dkz T(k~e iked2 ikzz'

Jo 1 J_0. kx

4 i )(ko/(z - z') 2 + (x- x) 2) =0

= E + 9E2 (C.1)

It is straightforward to see that E2 = El so that E(x, z) = 2E1 (x, z) By replacing the

Hankel function Ho1 )(ko (z - z') 2 + x2) with the integral representation, we can simplify
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Eq. (C. 1). Here are the detailed steps.

El(x, z)

-WL9o O~dz'Hz(z')Ho)(
167r J

S-W o dkzT(kz)eid
M16r dkzT(kf)eik0d216 Tr

2 lo eko

S-WLIO dkzT(kz)eikad2

16lr2 -

k0o (z- z')2 + 2)

Sdz'eikzz'/(1/r)

k 00
d eik ' dz'eikz'eik'(z-z')dk - d e

Jd0ke iz kx f (k0

dk 'eikz276(kz - kk)

= -Wuo dkzT(k-)eikd2 eik ikzz
87r -0 kx

For a finite size slab, we consider a general case:

E,,f,(z)

Hz,f,(z)

-WLf(z)P dk T(k) eiked2eikzz

-1 i

= -f(z) dkzT(kz)eikad2eikzz
47r

Once again, the equivalent currents can be found from the fields at the slab boundaries and

the fields in image region can be found as:

El(x, z)

= dz'Hzjf(z')H.1)(kov (z - z') 2 + x 2 )

;167r2  T dkzT(kz)eil kd2
-oo

-=16 dkzT(kz)eikd2

-= , dkzT(kz)eiked2M f-o00

jdk ek, x ikzz
-00 kx

0dz' f(z')ei(kz)zd'fz)i(kz-k'z)z
1 0-dofo Y~

i0k eikx Cdkz , - zF(kz - kI)
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The spectrum at the image location can be obtained by inverse Fourier transform:

E(kz) = dz 2El(xo, z)e - ikzz

d e-WI Lz k dk i k , 0 0 e d 2 e i k x xo
dz e- i z  dk T(kz)e ik'd2 dk" eik ZF(k - k0)

87 I 
0 0 fikeo

8 2  ': dkiT(ki)e: d2 C, ,
dkT(k) eik dk k" F(kl - k")21r(k11 - kz)

-•o f dT ik'd2 CikxoF -

= i dkT(kT)eik d2 F(k: - kz)
47r J .._ Z kk

4W k~ dku T(kz)e X F(k - kz)

-- o e i k x x o

4I k {Ti(kz) ® F(kz)}

where

T1(kz) = T(kz)eik-d2

Hence we have the spectrum of the image expressed as the convolution of the transmission

coefficient and the modulation from the slab's finite size:

E(kz) = -wL° eikxo {T 1(k-) ® F(kz)}
4r kX
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Appendix D

Asymptotic Formula For Ez Due to z

Dipole on Grounded Slabs

Referring to Fig. 4-23, Eq. (4.71) can be integrated along the branchcuts as

Ez = dkp(Ao+ 1 + Ao+ j2 + Ao+ 13+ Ao+ 14) e2i(kpp-7r/4) (D.1)

Along each brachcut, kI, and k0oz takes different values. By letting kP = ki + iq for the

path of I1 and I2, kp = ko + iq for the path of I3 and 14 (where q is a positive real number),
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we can write

ki = /(k1-kp)(k + k)

= /--qe - i3r/2 Vkl + kp

-= e-i/ 4/ '•Vkl + kp

kiz = ei37/4/' qVko kp

koz = e-ii/4 /4 k0 ±kp

koz = Ce3'7r' 4 V. j k- p

along II

along 12

along [3

along 14

It is staightforward to show that Ao+ I - Ao+112 = 0. Therefore, kl is not a branch

point. Plugging Eq. (4.73) into Eq. (D.1), we have

Ez i J dq(Ao+ li

Ilk 3(. 1 + Ci 2 k

41nrco , ok z

+ Ao+ 14)F 2 ei(kpp-p/ 4)

kV 'pir

4 c I - e i k p 00

-(1 - ei2kl~d) 2 10

Replacing q by s2 to facilitate the integration, it can be shown that

I dqql/2e-pq 1 ir

2p VP
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dqql/ 2 e-q (D.2)



Substituting above result into Eq. (D.2), we have

-Ik1c2F 1 + ei2 klz d 2 Cikop
Ez -2ro oklz(1 e- Ci2kzd) p2

which is Eq. (4.74).
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