
--A

Towards Adaptive and Directable Control of

Simulated Creatures

by

Yeuhi Abe

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2007

© Massachusetts Institute of Technology 2007. All rights reserved.

Author
Departmet of Electrical Engineering and Computer Science

Febri- '. 2007

Certified by
Jovan Popovid

Associate Professor
or

Accepted by...........
Arthur C.Smith

Chairman, Department Committee on Graduate Students
MASSACHUSETTS INSTInfrE

OF TECHNOLOGY

APR 3 0 2007

LIBRARIES

AKER

Towards Adaptive and Directable Control of Simulated

Creatures

by

Yeuhi Abe

Submitted to the Department of Electrical Engineering and Computer Science
on February 2, 2007, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Interactive animation is used ubiquitously for entertainment and for the communi-
cation of ideas. Active creatures, such as humans, robots, and animals, are often at
the heart of such animation and are required to interact in compelling and lifelike
ways with their virtual environment. Physical simulation handles such interaction
correctly, with a principled approach that adapts easily to different circumstances,
changing environments, and unexpected disturbances. However, developing robust
control strategies that result in natural motion of active creatures within physical
simulation has proved to be a difficult problem. To address this issue, a new and ver-
satile algorithm for the low-level control of animated characters has been developed
and tested. It simplifies the process of creating control strategies by automatically ac-
counting for many parameters of the simulation, including the physical properties of
the creature and the contact forces between the creature and the virtual environment.
This thesis describes two versions of the algorithm (one fast and one feature-rich) and
the experiments conducted to evaluate its performance. The results include interac-
tive animations of active creatures manipulating objects and balancing in response
to significant disturbances from their virtual environment. The algorithm is shown
to be directable, adaptive, and fast and to hold promise for a new generation of in-
teractive simulations that feature lifelike creatures acting with the same fluidity and
grace exhibited by natural beings.

Thesis Supervisor: Jovan Popovi6
Title: Associate Professor

3

4

Acknowledgments

I would like to thank my advisor, friends and family. Also special thanks to Eugene

Hsu, Daniel Vlasic, and Tom Buehler for motion capture and multimedia assistance

and to the following people for their valuable comments and proofreads: Jiawen Chen,

Marco da Silva, Fredo Durand, Russ Tedrake, and Robert Wang.

5

6

Contents

1 Introduction 15

2 Background 19

2.1 Articulated Body Dynamics . 19

2.1.1 Contact Mechanics . 19

2.1.2 Active Articulated Body Dynamics 21

2.2 Articulated Body Control . 21

2.3 Character Animation . 23

3 Prioritized Control 25

3.1 Algorithm . 26

3.1.1 Unconstrained Dynamics . 27

3.1.2 Constrained Dynamics . 31

3.1.3 Unactuated Joints . 32

3.2 Task Description . 33

3.2.1 Manipulation . 34

3.2.2 Force Limits . 35

3.2.3 Posture . 36

3.3 Results . 38

3.3.1 Chain Interaction. 38

3.3.2 Lift. 39

3.3.3 Box Interaction. 40

3.3.4 Catch. 40

7

3.3.5 Catch and Toss. 41

3.4 Discussion . 42

4 Multiobjective Control 43

4.1 Algorithm . 44

4.1.1 Optimization . 45

4.1.2 Quadratic Program . 46

4.2 Practical Control Strategies . 49

4.2.1 Stabilizing Contacts . 49

4.2.2 M aintaining Controllability 50

4.3 Results . 52

4.3.1 Direction . 53

4.3.2 Adaptation . 54

4.3.3 Speed . 55

4.4 Discussion . 55

5 Conclusion 59

A Equations of Motion 63

A.1 Character Model . 63

A.2 Spatial Quantities . 64

A.3 Derivation from Virtual W ork . 67

8

List of Figures

2-1 Contact dynamics expresses the relationship between the motion (q, i, a)

of an AAB, its internal torques, and external forces. We model the con-

tact between two surfaces with a set of point contacts pc ... p) and

the matching contact forces f 1) ... f r). Each contact force is restricted

by a convex cone K(') according to the well established model of friction. 20

3-1 Prioritized control algorithm incorporates recorded motion data to ac-

complish multiple tasks such as lifting, reaching, and throwing within

interactive physical simulations. 26

3-2 In the unconstrained, open-loop configuration (a) the shape is fully

described by independent coordinates q, whereas in the constrained,

closed-loop configuration (b) no set of independent coordinates can

describe the shape, so constraints must be handled in the dynamics. . 27

3-3 Task-space forces guide the hand toward desired position Pd using sta-

bilization control (a), or move the hand along a specified trajectory

td, optionally grasping an object (b). For every force f in task-space,

there is an equivalent force u in joint-space that will cause the same

motion of the hand and visa-versa. 36

9

3-4 Prioritized control directs a real-time simulation of a character to ac-

complish manipulations, such as displacing a box (top row). Manip-

ulations are compactly described. In the above example, only four

Cartesian goal positions are used to describe the motion of the hands

and the box. The missing details are filled in with a secondary posture

task that incorporates recorded motion postures from a similar perfor-

mance. The control adapts naturally to changes in the environment.

As expected, increasing the weight of the box (second row) produces a

slower lift. The performance of the task can also be changed by using

a different recorded motion in the posture task (third row). 39

4-1 Previous control systems demonstrate that many human actions can

be simulated. Fundamentally, these actions require careful exploita-

tion of external contact forces during periods of sustained contact. We

refer to these periods as "standing". Multiobjective control ensures ro-

bust execution of actions while standing. Given a control strategy and

physical properties of the body and the environment, our control sys-

tem uses the current state of the active body (q, 4) to solve a quadratic

program that computes the necessary control torques u. This allows

us to take a fundamental behavior such as standing and expand its

range of application to many different scenarios. 44

4-2 Multiobjective control is directable, adaptive, and fast. These images

are snapshots taken from interactive simulations driven by our control

algorithm. The articulated human body tracks motion capture data

and end-effector objectives while maintaining balance. Importantly,

our control system automatically adjusts to physical properties of the

body, arbitrary frictional contact configurations, and external distur-

bances......... 45

10

4-3 The multiobjective formulation allows for explicit control over the

trade-offs between different conflicting motion objectives. This figure

demonstrates three different trade-offs between the objective of reach-

ing and the objective of remaining upright and balanced. As the weight

of the reaching objective is gradually increased, the character assumes

a more precarious stance. In the accompanying video, the reaching ob-

jective's weight is increased to the point where it outweighs the balance

objective, and the character falls over. 48

4-4 This illustration underscores the importance of incorporating ground

contact constraints into any control formulation. Ignoring contact dy-

namics, a character can reach for the object as if his feet were pinned to

the ground. With proper contact dynamics and multiobjective control,

the character strikes a compromise between reaching and not falling as

seen in Figure 4-3. 56

11

12

List of Tables

4.1 The number of variables, average optimization time, and average num-

ber of iterations for the multiobjective QP per simulation. 55

13

14

Chapter 1

Introduction

Interactive computer animation is a powerful medium for entertainment and for the

communication of ideas. It is used ubiquitously in education, scientific visualiza-

tion, computer games, and for training purposes. Despite this, the primary methods

for synthesizing animation content are offline and slow and require a high level of

specialized skill that few individuals possess. In the case of massive-scale, interac-

tive environments, the demand for content can greatly exceed the availability. This

has resulted in a large body of animation research focused on solving, exactly, this

problem: how to automatically and quickly synthesize animation from only compact,

high-level descriptions.

Dynamic simulation has provided a partial solution to this problem for animation of

passive phenomena such as cloth, fluids, and rigid bodies. The motion of these ob-

jects can be synthesized automatically by numerically integrating simple differential

equations that govern their state in time. This has enabled animation of increasingly

complex environments while simultaneously reducing demands on talented, human

animators. It is already utilized broadly in games and training systems, where dy-

namic, truly interactive objects are rapidly displacing static, precomputed motion.

The simulation of active articulated bodies (AABs) such as humans, robots, and

animals, however, has lagged behind, preventing automated animation of creatures

15

that act in concert with their simulated surroundings. Most existing interactive sys-

tems tackle this problem in one of two ways. Either they ignore dynamics altogether

and blindly replay recorded trajectories, or they switch to passive dynamics and an-

imate creatures as lifeless rag dolls. Unfortunately many actions a character might

perform cannot be handled by either approach. Consider, for example, a human

character holding one end of a chain while attempting to counteract forces applied at

the other end by steadying its hands. The motion of the character should not ignore

the dynamics of the chain nor should the motion of the character by that of a lifeless

ragdoll. A promising solution to this problem (the one explored in this thesis) is to

integrate AABs into their dynamic surroundings by executing control strategies that

accomplish given actions.

Previous work has already demonstrated control strategies for AABs performing many

actions, including walking, running, diving and swimming. However, wide-spread

adoption of these techniques is hindered by the problem of overspecialization: control

parameters are tuned to specific motion trajectories, AAB dimensions, and simula-

tion properties. For example, control parameters tuned to balance an upright creature

need not succeed on uneven ground, for a creature in a crouched posture, nor for one

holding a heavy object, even though the objective of balancing is conceptually similar

in all cases. As a result, these techniques typically only work when interacting with a

static environment (e.g., flat ground) and cannot adapt to variations in manipulated

objects (e.g., objects of different size or dimension) nor to a dynamic environment

(e.g., uneven or moving ground). Directing AABs using such techniques is also quite

difficult because the only way to command motion is through tuning control param-

eters, which, as a method for describing motion, is neither compact, high-level, nor

easy to understand.

This thesis begins to address these issues by presenting two different algorithms for

the interactive control of AABs: prioritized control (Chapter 3) and multiobjective

control (Chapter 4). Both algorithms share much in common. They both reduce

overspecialization in control by decoupling the description of control strategies from

16

the computation of control parameters required to accomplish them. This is done

by (1) automatically adapting to the pose, size and weight of AABs and (2) auto-

matically accounting for the variation in constraints imposed by contact with objects

and the environment. Both algorithms strike a compromise between several motion

objectives at once. These objectives may include balancing, tracking, and reaching

with end-effectors. Ultimately, directing AABs is easier than with previous methods

because modular motion objectives can be easily developed, adapted, and composed

to create many variations of each control strategy, with little additional effort. For

example, a control strategy designed for balancing an adult human character can

almost automatically adapt to balancing a character with a child's dimensions.

Prioritized control is a special case of multiobjective control which is faster in some

case. On the other hand, multiobjective control is the more sophisticated of the two

algorithms and it has two key advantages: (1) it handles unilateral frictional contacts

with the environment and (2) it allows for soft trade-offs between conflicting motion

objectives that are simultaneously active, rather than enforcing strict priority levels.

In the remainder of this thesis, an overview of relevant background material comes

first. This includes a theoretical treatment of AAB dynamics when in contact with

the environment, a discussion of prior work on control of AABs, and a comparison

with other approaches to interactive character animation. Next, both prioritized

control and multiobjective control are described in detail along with the results from

experiments performed with both algorithms. For prioritized control, the experiments

are focused on the animation of human characters performing object manipulation

tasks, such as lifting, catching, and throwing objects of various mass and dimensions.

For multiobjective control, the experiments involve dynamic balancing while tracking

desired motions despite significant disturbances from the surrounding environment.

Lastly, the final chapter summarizes findings and contributions, and suggests possible

future directions of exploration.

17

18

Chapter 2

Background

2.1 Articulated Body Dynamics

For the purposes of animation, active articulated bodies (AABs) are in constant con-

tact with the surrounding environment. Contact occurs, for example, whenever a

humanoid character places a foot on the ground or holds an object in its hands. The

motion of an AAB in contact with the environment is significantly more complex

than its unencumbered motion in free space. This is due to the presence of reaction

forces that push on the body at each contact point. For the common case of sustained

contact, however, control can exploit the linear relationship between joint torques,

reaction forces, and joint accelerations. This relationship can be computed at inter-

active rates and used to control AABs. In this section we establish our notation by

reviewing contact mechanics and the equations of motion for AABs [6, 47].

2.1.1 Contact Mechanics

Contacts with the environment, as shown in Figure 2-1, restrict the relative velocity

of each contact point pc E R3, for i = 1.. . m. In the case of a non-slipping contact,

the relative velocity is zero: P = 0. This condition can also be expressed in terms

19

f~i)

tL

PC

(q.9 4.9j)

center of
pressure

Figure 2-1: Contact dynamics expresses the relationship between the motion (q, 4, 4)

of an AAB, its internal torques, and external forces. We model the contact between

two surfaces with a set of point contacts p ... po"c and the matching contact forces

f) ... f". Each contact force is restricted by a convex cone KO according to the

well established model of friction.

of joint velocities q c Rn by using the Jacobian matrix LW E R3
xn to compute the

body velocity at the point of contact:

L -= p(O = 0. (2.1)

A point contact yields a frictional contact force f) E R' that prevents geometric

overlap by pushing back on the body. Unlike the forces in a joint linkage (bilateral

contact), a contact force does not pull the body in case of separation (unilateral

contact) implying that its normal component must be positive: f,() > 0. Coulomb's

model of friction limits the tangential component of the contact force: |IfII| < /fV

where /p > 0 is a coefficient of friction at the contact point. We collect these limits

into a friction cone KO that restricts the direction and magnitude of the contact

force:

f -E {x 11 xtII : pxn}. (2.2)

By the principle of virtual work, a linear map LTf determines the total joint torque

by aggregating all contact forces and all Jacobian matrices into one vector f E R3

20

and one matrix L E R 3mxn

2.1.2 Active Articulated Body Dynamics

Conservation of momentum dictates that the total sum of contact forces equals the

total change in linear and angular momentum. In other words, in the absence of

contact forces, it is impossible for an active body to control the location of its center

of mass (COM). An active body propels itself using joint torques u E Rn-6. These

torques affect only internal joints q, E Rn- 6 leaving the global position and orientation

of the body q2 E R6 as unactuated degrees of freedom. Using this same separation on

the equations of motion produces two sets of equations, with and without actuation:

M1 (q)4+ n1 (q, q) + L'(q) f = u (2.3)

M2(q)4+ n2(q, 4) + L2(q)f = 0. (2.4)

The first two terms in both equations combine the inertial and gravitational forces

on the body. The two equations summarize the main challenge of active body control

with frictional contacts: the dimension of the quantity we need to control q exceeds

the dimension of torques u at our disposal. Careful manipulation of contact forces f
is the only way to accomplish a specific objective, and yet they are restricted by the

friction cone: f E K = K(1) x - x K (m).

2.2 Articulated Body Control

In recent years, AAB control has found its way into commerical animation systems

(e.g., www.naturalmotion.com) that come packaged with pre-tuned, proprietary con-

trol strategies. Many of these systems are probably akin to the earier work of Raibert

and Hodgins [38], which relied on spring-damper mechanisms to compute torques for

online control. This approach led to some of the most dramatic simulations of active

21

bodies [19, 52, 8]. However, it required significant tuning of individual rest lengths

and spring constants.

Manual tuning can be reduced to some extent with dynamic scaling laws and auto-

mated search, but this reaches its limits when adapting to new environments, mass

distributions, and other variations [18]. The control algorithms described in this the-

sis enable modular specification of general control policies for the case of sustained

contact. Instead of designing and tuning spring-based dampers for each joint, the

specification of control policies is divorced from the computation of required control

torques. Hence, the algorithms adjust more easily to new situations and different

environments.

Another successful approach to controlling AABs is limit-cycle control. It tracks peri-

odic motions by computing control perturbations needed to return the present motion

back to the desired limit cycle (i.e., limit-cycle control strategy or periodic motion

data) [29]. Instead of relying on explicit models of contact dynamics, limit-cycle con-

trol approximates the Poincare return map. The advantage of such an approach is

that it also incorporates the effects of general frictional contacts (e.g., breaking, slip-

ping, and colliding) into the execution of control policies: a difficult problem that we

do not address in this thesis. One major drawback, however, is that it only works for

periodic motions such as walking. Almost all the motions we consider in this thesis

are non-periodic and, thus, limit-cycle control does not apply to them.

Other tracking alternatives have also been proposed to create dynamically responsive

motions from kinematic or preplanned trajectories [56, 55, 57]. These approaches

scale spring constants by inertial parameters or feed-forward torques magnitudes to

reduce the difficulty of tuning parameters, but none explicitly account for contact

dynamics. Some techniques have pursued a hybrid alternative instead, accounting for

some dynamic parameters with the goal of generating dynamically feasible motions

instead of control torques [13, 54, 28]. Theses approaches suffer from the drawback

that they do not easily integrate with general purpose simulators of rigid bodies. In

contrast, the algorithms we describe easily animate AABs in complex interactions

22

with many moving objects using any rigid-body simulator.

At the early stages of development, the prioritized control algorithm presented in this

thesis was inspired by different prioritized control of articulated bodies developed

by Khatib and colleagues [221. Similar to our approach, the so called "operational

space" formulation simplifies control of complex humanoid robots with many degrees

of freedom by decoupling the control needed to accomplish a task from the control

of task-redundant degrees of freedom. However, the approach taken in this thesis

is easier to implement and better at handling closed-loop constraints and frictional

contacts, both necessary for animation purposes.

2.3 Character Animation

There are many approaches to animating characters besides dynamic simulation. But

regardless of the approach, it must account for both the dynamics and the kinematics

of moving characters because static considerations alone will not generate lifelike

motion [30]. For example, if dynamic considerations are ignored, lifting heavy objects

will look identical to lifting light objects despite the fact that the heavier object should

require increased effort and a different motion.

Motion learning approaches resolve this problem with data sets that explore variation

in task performance [39, 35, 26]. Although this is effective when tasks can be restricted

to small, well-sampled behaviors, more general tasks require solutions to increasingly

difficult or ill-posed machine-learning problems. To extend the range of a limited data

set, current interactive applications rely on motion-editing tools that approximate

dynamics considerations with temporal smoothness objectives [3, 51, 14, 5] This is

because dynamically consistent editing tools have not yet been designed for interactive

use [37, 32, 45]. Ultimately, temporal smoothness is a poor substitute for the true

dynamics exhibited by properly controlled AABs within a physical simulation.

Other approaches execute preplanned motions in simulation using joint-space PD

23

control, which tracks joint trajectories [56, 55]. Joint-space control has also been

successful in animation of lifelike locomotion and other activities [46, 38, 19, 16, 29, 8].

However, joint-space control techniques do not allow for precise control of the motion

or forces applied to manipulated objects. Our control algorithms eases the animation

of dynamic manipulation by explicitly accounting for object dynamics and supporting

intuitive descriptions of motion and force limits directly in the Cartesian space of the

objects being manipulated. We call this Cartesian-space control.

Cartesian-space control of end-effectors allows for compact motion description because

it commands only the precise details of important points on the body such as feet

and hands. In general, compact task descriptions are preferred in both manual [30]

and automatic [25] task planning because they suppress irrelevant aspects of task

execution. For example, inverse kinematics is often used, to infer full postures from a

compact description of the motion of hands, making it easier to reuse performances by

different (e.g., shorter or longer-armed) characters [53]. Achieving lifelike postures,

however, requires that such algorithms either incorporate recorded motion data or

leverage prior results from neurophysiology or other studies of natural motion [25,

40, 15, 53]. The control algorithms described in this thesis address this problem by

supporting multiple motion objectives in a strictly prioritized or a weighted fashion.

This has been explored before in the kinematic setting [4], however, this thesis is the

first to explore its potential for the control of AABs, for animation purposes.

24

Chapter 3

Prioritized Control

Prioritized control computes the joint torques that cause animated characters to ac-

complish desired manipulations (Figure 3-1). The algorithm can be used within phys-

ical simulation to author new motions or to execute flexible motion control strategies

interactively. It is particularly suitable for interactive use because it supports com-

pact task descriptions and the prioritization of conflicting tasks, both of which can

simplify the way that motion is commanded. For example, the control algorithm

can be used to compactly describe the motion of the character's hands, by specify-

ing a couple goal positions in Cartesian space, while automatically favoring natural

postures (infered from recorded motion data) for the rest of the body.

Due to an analytic solution, prioritized control can be executed quite fast, but it

suffers from an inability to model unilateral contacts (a flaw which is remedied by

multiobjective control in the next chapter). Points of contact with objects and the

environment must be fixed in place. For example, hands must firmly grasp manipu-

lated objects and the contact between the feet and the ground must act as if the feet

are held to the ground with glue. This can lead to unnatural motion if postures are

not monitored to prevent it. Nonetheless, we have found that such bilateral contact

can serve as a suitable approximation to unilateral contact in some cases. For ex-

ample, in the results section, we demonstrate how prioritized control can incorporate

25

Task Descripti 1

Task Description 2

Task Description N

Object
Model

Character
Model

External
Constraint -+

0

E

C)C9
-N.-

0

E

L_)U
L..

Posture ControlRecorded Control Algorithm
Motion

Figure 3-1: Prioritized control algorithm incorporates recorded motion data to accom-
plish multiple tasks such as lifting, reaching, and throwing within interactive physical
simulations.

high-quality motion data to guide complex characters, with many degrees of freedom,

through lifelike portrayals of common manipulation tasks. Despite the unrealistic

fixed footing, in practice the animations are compelling and lifelike.

3.1 Algorithm

Here we derive the basic control algorithm for unconstrained, open-loop structures

before extending it to the most practical case: constrained dynamics with unactuated

degrees of freedom. The end result is a procedure that transforms the complex non-

linear dynamics of AABs in contact with the environment into simple second-order

linear systems whose intuitive control is explained in Section 3.2.

26

Open-Loop Configuration

q o

(a) qroo

Closed-Loop Configuration

qroot

q0 q2

Unactuated Root

q1 q 3

External Constraints

(b)
Figure 3-2: In the unconstrained, open-loop configuration (a) the shape is fully de-
scribed by independent coordinates q, whereas in the constrained, closed-loop config-
uration (b) no set of independent coordinates can describe the shape, so constraints
must be handled in the dynamics.

3.1.1 Unconstrained Dynamics

The dynamics of animated characters is modeled as a set of rigid body limbs con-

strained by a set of joints that link the limbs into a core body structure. When

this structure forms a tree graph, also called an open-loop configuration, the pose

of the character can be described by a set of independent joint variables (see Figure

3-2). These independent coordinates q allow for the dynamics of the character to be

expressed in a standard numerical form:

u = M(q)4 + n(q, 4), (3.1)

where M is the joint-space inertia matrix and n is a nonlinear function of all acceleration-

independent terms that computes the gravitational, centrifugal and Coriolis forces

[10]. (A derivation of 3.1 can by found in appendix A.) Physical simulations can

evaluate and integrate these equations with one of several efficient algorithms, but

to animate active characters a control algorithm is still required to supply the joint

torques u needed to accomplish desired tasks.

27

Exact Linearization

Inverse dynamics simplifies design of control algorithms by compensating for complex

nonlinear dynamics. The key idea is to transform the nonlinear equations of motion

into a linear, second-order system. For example, by choosing joint torques of the

form u = Mu* + n, the nonlinear Equation (3.1) is transformed into a set of linear,

uncoupled second-order equations, 4 = u*. This transformation drastically simplifies

systematic computation of command torques u* needed to accomplish joint-space

tasks such as tracking procedurally generated trajectories [24] or recorded motion

data [55]. Manipulation tasks, however, are not easily described in joint space.

Cartesian coordinates, relative to the needed body part, can be used to intuitively

describe manipulation tasks. It is possible to support such descriptions using inverse

kinematics, but this approach ignores the dynamics of the task. Instead, our approach

applies inverse dynamics in the Cartesian space to directly and intuitively control the

task-space dynamics of manipulation tasks. We refer to this as task-space control.

Given a differentiable expression x1 (q) for the position (or orientation) of some body

part, we can compute its velocity 51 = J1 4 and its acceleration K1 = J 14+ 14 as a

function of the Jacobian J, = Dqxi. Combining the expression for task acceleration

with Equation (3.1) allows us to express the dynamics in the Cartesian task space:

iu = K1 + Qin - J1 , (3.2)

where Q, = J1 M- 1 can be thought of as the pseudoinverse of a task-space inertia

matrix.

As before, we compensate for nonlinearities by using inverse dynamics to transform

task-space dynamics into a set of linear uncoupled equations. Unlike the joint-space

control, however, the systems of equations in task-space control is underdetermined

requiring that we choose one of many possible torques. For example, the well known

operational space formulation uses the pseudoinverse that minimizes the instanta-

neous kinetic energy [21]. In contrast, our formulation will compute the complement

28

joint torque ;u- to incorporate motion data into control of dynamic manipulations:

U = Qj(f* + Qin - j 14) + PilL, (3.3)

where Q+ is any generalized pseudoinverse of Q, and P 1 = (1 - Q+ 1) is the projec-

tion matrix onto the null space of Q1. Applying this joint torque to Equation (3.2),

transforms the nonlinear task dynamics into a simple, second-order linear system,

R = f*, which eases description and control of manipulation tasks. The projection

matrix ensures that the complement torque does not interfere with the primary ma-

nipulation task. Multi-task control, as described next, directs the remaining degrees

of freedom to incorporate other tasks that control the posture of the character, for

example.

Multi-Task Control

Multi-task control compensates for the nonlinear dynamics in both high priority and

low priority tasks, allowing for precise and intuitive control of manipulations and the

style with which they are performed. We again use inverse dynamics to linearize

the dynamics of secondary tasks, but we cannot use Equations (3.1-3.3) because

secondary tasks are affected by the joint torque u1 = Q'(f* + i n - i 14) needed

to accomplish the primary manipulation task and, also, by the projection matrix P 1

that prevents secondary-task torque ft from interfering with the higher priority tasks:

ui + Pif = M4+ n. (3.4)

Depending on the type of secondary task, we can compensate for nonlinear dynam-

ics by applying inverse dynamics in joint space or in task-space. If the task is to

track joint values in the motion data, the joint torques are easiest to compute from

command torque u* in joint coordinates:

Pli = Mue + n - ui. (3.5)

29

Whereas, if the task is more easily expressed in terms of Cartesian coordinates x 2 (q),

the joint torques are computed from the Cartesian command vector f2*:

Q2Pi = f2* + Q 2n - Q 2 u - J2q, (3.6)

where J2 = DqX2 and Q2 = J2 M- 1, analogous to expressions in the primary-task

control.

The derivation of both equations is analogous to the exact linearization of primary-

task dynamics. This clarifies that the joint-space control is a special case of task-space

control, as seen by using the identity matrix for the task Jacobian in Equation (3.6).

In both formulations, the singular projection matrix restricts the computed torque

it to the set that does not interfere with the control of the primary task. In our

implementation, we compute such torques with the singularity-robust pseudoinverse

[36, 34], which inverts the singular value decomposition of Q, (or Q2P 1) after elim-

inating singular vectors with small singular values (e.g. less than 0.001 threshold

in our implementation). This prevents large torques in singular directions that can

result in an unstable simulation.

Recursive application of the same idea extends this control algorithm to multiple

tasks. For example, additional tasks might limit the range of joint variables [31] or

maintain balance [56]. Given a set of Cartesian coordinates {xl(q), ... , x(q)} and a

set of associated command vectors {f*,. . . , f,*}, the multi-task control computes the

joint torque 74 that executes the i-th task at a lower priority than the previous (i - 1)

tasks:

14 =4-1 + (RiPi_1)+(fi* + Qin - Riu,- - ji4),

U= + Qn -)

where Pi = (1 - (QiPi_1)+(QiPi_ 1)) and P 1 = (1 - i i). This iterative algorithm

naturally resolves task conflicts by executing lower priority tasks with torques that

do not interfere with the higher priority tasks.

30

Our formulation of multi-task control offers an alternative to the formulation proposed

in the robotics literature [22, 42]. The two approaches differ in the formulation of

secondary-task dynamics in Eq. (3.6). Unlike the robotics formulation, which requires

differentiating the quantity called the task-consistent posture Jacobian J211 = J2Pi

our approach differentiates only the regular posture Jacobian J2, as seen in the last

term of Eq. (3.6). This difference has a profound impact on the ease of implementation

and practical application of multi-task control to animation of dynamic manipulation.

Unlike the expression J21 1 with the task-consistent posture Jacobian, our expression

J can be computed simply and efficiently without differentiating the complex pro-

jection matrix P 1 . Furthermore, it can be shown that both formulations do not

interfere with high-priority tasks even as they track secondary tasks as accurately as

possible. The difference between the two approaches becomes more pronounced in

control of constrained dynamics because the analytic expression for the projection

matrix, P 1 , becomes more complex, making it harder to compute the time derivative

J21i, while our formulation eliminates this step entirely.

3.1.2 Constrained Dynamics

Constrained dynamics emerge whenever a character applies more than one limb to

a fixed object in the environment. For example, standing with both feet on the

ground establishes contact constraints that relate joint variables of one limb to those

of the other. These dependencies make it impossible to describe characters with an

independent set of joint variables, as was assumed throughout the previous subsection.

Instead, we reformulate our control algorithm to use a set of dependent joint variables

along with a set of constraint torques uc that enforce relationships imposed by contact

constraints:

u+ uc = M4+ n, (3.7)

where all expressions retain the meaning from the standard formulation of uncon-

strained dynamics. The derivation of our control algorithm proceeds by computing

31

the constraint torques prior to exact linearization of constrained dynamics.

The constraint torques are determined by a set of algebraic equations O(q) = 0, which

may, for example, model non-slipping contact by attaching limbs to objects in the

environment. The entire set of constraints determines the structure of the constraint

torques by prescribing the valid subspace u, = LTA as a function of the constraint

Jacobian matrix L = Dq#. This expression allows for computation of the constraint

torques by solving for the coefficients A in the subspace [10]:

LM-lLTA = LM 1n - L - LM- 1 u. (3.8)

Given the expression for constraint torques, the derivation of our control algorithm

proceeds as before by applying inverse dynamics to compensate for nonlinear dynam-

ics in joint-space or task-space. For example, the control torques for the primary

task xi(q) are computed from the Cartesian command vector f* using the following

relationship:

-1lu= f* + Qin+ i1F(Le - LM-n) - j14 (3.9)

where F = LT(LM-lLT)- 1 and 4 = (1 - FLM- 1). This expression highlights the

practical benefits of our control formulation (cf. Section 3.1.1). Instead of differ-

entiating the new projection matrix (1 - (as proposed in prior work

[22, 42], our multi-task control is just as easily applied to both unconstrained and

constrained dynamics.

3.1.3 Unactuated Joints

The joint structure of many animated characters includes passive, unactuated joints.

The most common example is the six degree of freedom root joint that determines the

global translation and orientation of the character. Unlike an active joint that propels

limbs with its torques, the root joint does not apply torques or forces to propel the

character directly: instead the global motion arises as a consequence of interaction

32

with the ground and the environment.

We adjust our control algorithm by defining a selection matrix S that extracts actu-

ated joints qa from the full set of joint variables qa = Sq. For example, the (n -6) x n

matrix S = [0 1 1,_6] extracts all but the first six joint variables. Its transpose

maps the joint torques into a vector that agrees with the dimension of joint variables,

allowing us to rewrite constrained dynamics for characters with unactuated joints:

STU+ Uc = Mq+ n. (3.10)

The remaining steps in the derivation of our control algorithm are analogous to Sec-

tion 3.1.2.

3.2 Task Description

Compact descriptions, which command only essential details such as hand position

or applied force, accelerate animation of manipulation tasks and allow for easy, au-

tomated motion specification in interactive applications. Instead of setting and read-

justing many keyframes, animators can describe just the required task, adjust a few

intuitive parameters, and run a simulation to generate a new motion. Lifelike ani-

mations emerge automatically, much like in passive physical simulations, and adapt

immediately to changes in the environment (e.g., different object motion or weight)

or limitations of the character (e.g., locked joints or muscle strength).

Our control algorithm supports compact task descriptions by decoupling complex

non-linear dynamics to allow for simplified motion commands in both joint-space and

Cartesian task-space. As in keyframe animation systems, joint-space coordinates ease

the description of tasks that require specific joint configurations such as poses from

recorded motion data and Cartesian task-space coordinates allow for direct control

of body parts needed to manipulate objects. The exact linearization of dynamics ex-

plained in the last section transforms the nonlinear problem into a simple second-order

33

linear system. In this section we rely on this reduction to systematize descriptions of

common manipulation tasks.

3.2.1 Manipulation

Our descriptions of manipulation tasks rely on two fundamental control primitives:

stabilization, which directs characters towards prescribed values such as desired ob-

ject locations; and tracking, which follows prescribed trajectories, such as those that

describe the desired motion of manipulated objects. Both stabilization and tracking

provide a way of choosing the command vector f* (c.f. Section 3.1) that will ac-

complish various manipulation goals. Many other choices of the f* are possible, but

we have deliberately used simple choices to highlight the functionality of our control

formulation, rather than confuse the details with complex motion planning strategies.

Since spatial configurations of manipulated objects are described relative to the global

Cartesian coordinate frame, their manipulation is easiest to describe in Cartesian co-

ordinates. We express manipulation tasks in Cartesian (or task-space) coordinates by

using forward kinematics to compute the position (or orientation), x(q), of relevant

body parts. If a character needs to reach for an object or to carry it to another

location, we use stabilization to direct its hands to their desired location Xd. Stabi-

lization creates a motion that progressively eliminates the error between the current

and desired configurations, x(q) - Xd, by utilizing the command vector

f* = k (xd - x(q)) - 2Vx(q). (3.11)

Substituting this command vector into the second-order linear system, described in

the last section, reveals a critically damped system whose speed of convergence is

controlled by the gain coefficient k. Animators can increase the gain to create stiffer

motions that accomplish tasks quickly or decrease it to create more relaxed motions.

In our animations, we selected gains manually to showcase relaxed, more reactive

animations, but in the future gains could also be set automatically according to

34

measured human responses.

Tracking is used when more precise execution is required. For example, a charac-

ter tossing an object must release the object at a prescribed location with a precise

velocity. In such a case, we use tracking to direct the character's hands along the

trajectory Xd(t) required to generate the required toss velocity. As in stabilization,

tracking eliminates the error between the current and desired trajectories by comput-

ing the command force f* needed for a critically damped system:

f* = k(xd(t) - x(q)) + 2V/i(3 d(t) -(q)) + Xd. (3.12)

3.2.2 Force Limits

Force limits restrict the magnitude of applied manipulation forces. This ensures

that commands are not accomplished with unrealistic joint torques. For example,

a heavy object is lifted slower than a light object because of the limits imposed

on the application of the upward force. In nature, force limits are a function of

muscle strength, but, in animation, force limits are more intuitively specified in the

Cartesian task space. Our control algorithm can be extended to impose such limits

by thresholding the task-space forces needed to perform each command.

Given a command vector f*, we can compute the required task-space force f using

the expression for task-space dynamics in Equation (3.2):

f = (JMJT) 1 (f* + On - Jq). (3.13)

The task-space force f should be thought of as the external force that must act,

in the absence of internal joint torques, to create the motion commanded by the

vector f* (Figure 3-3). The task-space force is measured in the usual units of force

and its maximum magnitude can be adjusted intuitively to control the strength of

manipulations. When the task-space force exceeds a preset value, its thresholded

value f can be used in place of the original command vector. If thresholding occurs,

35

2+2 i+2

f

4+1 ?+1 d

S9 f
(a) (b)

Figure 3-3: Task-space forces guide the hand toward desired position Pd using sta-
bilization control (a), or move the hand along a specified trajectory td, optionally
grasping an object (b). For every force f in task-space, there is an equivalent force u
in joint-space that will cause the same motion of the hand and visa-versa.

the Equation (3.13) is inverted to solve for the command vector f* that corresponds

to the thresholded task-space force f.

The method we have proposed so far only accounts for force limits in the Cartesian

space of the primary task. But in nature force limits are a byproduct of limited

muscle strength. Thus, more accurate models should limit forces in the joint-space

of characters. Despite this fact, the method we propose has two advantages. First,

the animation process is greatly simplified by allowing Cartesian space force limits;

It is more intuitive to describe a character's strength by how much the character can

lift than by the maximum torque each joint can exert. Second, it is unclear how the

motion of the primary task should gracefully degrade when force limits in joint space

are reached. Simply clamping the torques will produce unstable motion. Our method

always provides modified command vectors that produce manipulation compromise

similar to those observed in nature.

3.2.3 Posture

Most manipulation tasks can be accomplished in a number of ways, particularly by

complex characters with many degrees of freedom. Although task descriptions com-

mand the motion of hands and other body parts, redundancies in body construction

allow for variations that are evident in natural motion. The multi-level control for-

36

mulation allows for systematic description of such variation with posture tasks. As a

lower priority task, posture control parameterizes variations without interfering with

higher priority manipulation tasks.

Variations depend on many factors including strength, personal preferences, and style.

We model these variations by incorporating motion data into a posture task that

favors recorded poses. This is implemented as a stabilization task in joint-space,

where momentary goal configurations are computed with a nearest-neighbor search

through a few seconds of similar motion capture data. The similarity between poses

is computed using the horizontal translation- and vertical rotation-invariant distance

between synthetic markers affixed to each body part, as first proposed by Kovar and

colleagues [27].

Other descriptions of the posture task are also possible. They could be derived from

physiological measurements of muscular effort [23, 7] or learned automatically from

recorded motion data [15, 35]. Our posture task is a simple variant of the latter

choice, aiming to ease evaluation of our control technique rather than to improve

upon existing posture models.

It should be noted that for realistic motions, posture activity cannot be treated com-

pletely independent of the primary task. For example, when lifting a heavy box, a

person might choose to do so "with the knees" rather than "with the back" to reduce

strain on the muscles. Despite this fact, decoupled motion control has proven a use-

ful abstraction in animation, as demonstrated by the prevalence of inverse kinematic

techniques for motion synthesis. As with inverse kinematics, our method depends

upon intelligent choices for the posture that compliment the primary task. We leave

to future work the development of more sophisticated posture tasks that actively

adapt to the goals of the primary task.

37

3.3 Results

The performance of our control algorithm was evaluated within the Open Dynamics

Engine (www.ode.org), an open source, high performance library for simulating rigid

multibody dynamics. In each experiment, a compact description commands the task

for a complex character with 44 degrees of freedom. The control algorithm incorpo-

rates postures from supplied motion data to complete the missing details and directs

the character in accomplishing each tasks. Collisions and contacts are detected and

resolved in the simulation. In particular, grasping and ground contacts are approx-

imated with clamping constraints that affix points on one body to the other. All

simulations, including the control computation, run at interactive rates on a 2.8 GHz

Pentium 4, with 60 or more updates per second, depending on the task complexity.

All animations are available in an accompanying live video.

3.3.1 Chain Interaction.

The chain interaction simulation is a simple demonstration of the immediate benefits

gained by incorporating physical effects into animation of manipulation tasks. In

this simulation the character attempts to steady its hands while holding onto a serial

linkage approximating a chain. Task-space stabilization (c.f. Section 3.2.1) is used to

maintain a fixed hand motion as the other end of the chain is tugged and pulled by

forces controlled interactively by a mouse-based interface. The secondary posture task

keeps the character close to the initial posture. The strength with which the character

resists the motion of the chain can be adjusted easily with control of the single gain

parameter of the task-space stabilization. Unlike with kinematic techniques, the

character reacts to the motion of the chain. In particular, the motion of the legs,

while subtle, contributes to a convincing portrayal of this manipulation task.

38

Figure 3-4: Prioritized control directs a real-time simulation of a character to accom-
plish manipulations, such as displacing a box (top row). Manipulations are compactly
described. In the above example, only four Cartesian goal positions are used to de-
scribe the motion of the hands and the box. The missing details are filled in with

a secondary posture task that incorporates recorded motion postures from a similar
performance. The control adapts naturally to changes in the environment. As ex-
pected, increasing the weight of the box (second row) produces a slower lift. The
performance of the task can also be changed by using a different recorded motion in
the posture task (third row).

3.3.2 Lift.

The box lifting simulation demonstrates our algorithm automatically adapting to

the weight of objects and incorporating motion data (see Figure 3-4). Stabilization

control is used to direct the motion of the hands by specifying keyframes that the

hands should pass through. The hands are clamped to the box using simulation

constraints between the rigid bodies. Although the control is aware of the box mass

(and takes it into account), force limits prevent the character from lifting heavy boxes

quickly or even at all. A secondary posture task favors postures from recorded motion

data of a similar lifting motion. When we use different recorded data, the performance

of the same task description adapts automatically. Instead of lifting "with the back",

the character lifts the object "with the knees". This confirms that prioritized control

decouples primary and secondary tasks and accomplishes each to the greatest extent

possible.

39

3.3.3 Box Interaction.

The box interaction simulation demonstrates the necessity of dynamic interaction

between the character and manipulated objects. The right hand of the character

is replaced with a heavy pendulum mass and the desired position of the hand is

controlled interactively with a mouse-based interface. The dynamics of the pendulum

mass are modeled as that of a body part connected to the arm with an unactuated

joint. Stabilization control in task-space is used to bring the arm to the desired

position. A secondary posture control references motion capture of a similar motion.

This causes the character's posture to vary naturally with the action of the primary

control task; the character crouches when the hand is low, stands when the hand

is high, and appears balanced even though no explicit balance control is utilized.

When the momentum of the pendulum is large, a force limit prevents the character

from achieving the desired arm position. However, when the pendulum slows, the

force required to achieve the desired position falls below the specified limit and the

character can achieve the desired position flawlessly. Note that such precise control is

not possible without accounting for the dynamics of the object in the manipulation

control. But if, in addition, realistic force limits are not imposed, the character will

always achieve the desired hand position perfectly without realistically reacting to

the momentum of the pendulum mass. Both force limits and correct dynamics are

required to produce believable manipulation.

3.3.4 Catch.

In the ball catching simulation, the character catches balls of different weights, sizes

and velocities. Stabilization control is used to position the character's hand approxi-

mately where the ball should be caught. When the ball is close to the hand, tracking

control is used to match the hand velocity to that of the ball. If contact is detected,

the ball is clamped to the hand with a simulation constraint. Finally, stabilization

is used to bring the ball back to where the catch was made. The arm configuration

40

varies naturally with the hand position because the posture task incorporates a short

10-second sequence of arm placement in various catch locations. As the weight of the

ball increases, the character reacts naturally. Again, force limits prevent the use of

extreme joint torques that might be capable of too quickly stabilizing the position of

the hand, regardless of the object weight. Instead, the arm motion slows down the

ball before returning to its commanded location.

3.3.5 Catch and Toss.

The catch and toss simulation demonstrate a performance of a more complex manip-

ulation task. The character catches an object before tossing it along the prescribed

trajectory. The simulation requires three inputs: the plane in which the character

attempts to catch the object, the position and velocity at the point of release, and

a motion capture sequence of a similar catch-and-throw motion. The commands in

this animation are similar to those in the lifting and catching animations except for

the trajectory tracking used to toss the object. The trajectory is a Hermite curve

that is fully specified by the initial and final positions and velocities. This parame-

terization of the curve was chosen for simplicity and looks reasonable for this motion,

but it should be noted that the realism of the resulting motion does depend upon

the tracking trajectory and, thus, other choice would generate less believable motion.

The controller is robust to changes in the velocity and angle of the caught object,

the weight, size and shape of the object, and the specified direction and velocity that

the object should be thrown. All reasonable settings of these parameters create a

plausible motion with different, nonlinear dynamic effects. For instance, if the weight

of the object is large, the character will not be able to control the object as accu-

rately, causing collisions between the object and the character, but still tracking the

trajectory as closely as possible.

41

3.4 Discussion

Prioritized control cannot guarantee successful performance of all manipulation tasks.

Temporary underactuation (loss of control over some degrees of freedom) will impede

manipulation even when it could be accomplished with the remaining degrees of

freedom. For example, although a character could jump to reach an object, our

control algorithm cannot look ahead to pre-plan the torques needed for such a jump.

Although a general solution to underactuated control problems for complex characters

is still an open problem, offline optimization has enjoyed some success particularly

after simplifying the space of motions [32, 41]. Underactuated control is less critical

in authoring applications where animators could be relied upon to provide feasible

task descriptions.

The choice of Cartesian-space control eases the description of many manipulation

tasks but it also introduces the possibility of artificial algorithmic underactuation.

Whenever a jointed structure approaches a singular configuration, the task-space con-

trol temporarily loses actuation over some degrees of freedom. This underactuation is

artificial because it is strictly a function of the chosen joint-angle parameterization; it

never appears in the joint space. In authoring applications, these situations could be

avoided with intelligent task descriptions, but a more general solution would impose

joint limits in the highest priority task to avoid kinematic singularities [31]. In our

work, the posture task serves as a partial substitute to joint limits by keeping the

character out of unnatural configurations, but this approach would ultimately fail for

extreme postures.

The control algorithm assumes that all contacts are maintained regardless of the

applied joint torques. This control strategy is successful for the simulation of some

tasks but the control algorithm will need to maintain these contacts explicitly before

it can generate animations with realistic locomotion or balance. This is one of the

key advantages of the multiobjective control described in the next chapter.

42

Chapter 4

Multiobjective Control

Like prioritized control, multiobjective control computes the joint torques that cause

animated characters to accomplish desired manipulations. However, it has two key

advantages over prioritized control. First, it computes a solution to an optimization

problem which accommodates unilateral constraints. Such constraints allow for ex-

plicit handling of sustained frictional contact with the environment and for limits on

the joint torques. Second, the optimization allows for soft trade-offs between simulta-

neous, conflicting motion objectives, as opposed to the strict priority levels required

by prioritized control.

The ability to model unilateral frictional contact is especially important because it

occur whenever a creature pushes against the environment and uses the resulting force

to control its motion. We refer to this fundamental behavior as standing, noting that

it is a precursor to locomotion and other complex behaviors (Figure 4-1). Standing

is used more broadly than in its normal connotation. For example, a character per-

forming a handstand or a character bracing itself against a wall with its shoulder is

considered to be accomplishing an act of standing.

A key component of multiobjective control is a quadratic program (QP) that maxi-

mizes instantaneous performance metrics subject to limits on actuation and contact

forces. This theoretical approach is better known in literature on robotic manipu-

43

lation where frictional contact constrain all interaction between the robot and the

object (§2.1). Previous work has applied the QP to motion tracking, but no one has

highlighted its promise for control in interactive animation systems or shown how to

control active bodies in environments with significant external disturbances.

Actions System Overview

.W alk Run [. M d Pam s t

Jup Mudri Forward outout
.- - Objectives (PHara z) Dynamics Anination

Reach eFall Dq q
-Friction Cones

*Swim -

Figure 4-1: Previous control systems demonstrate that many human actions can
be simulated. Fundamentally, these actions require careful exploitation of external
contact forces during periods of sustained contact. We refer to these periods as
"standing". Multiobjective control ensures robust execution of actions while standing.
Given a control strategy and physical properties of the body and the environment, our
control system uses the current state of the active body (q, 4) to solve a quadratic
program that computes the necessary control torques u. This allows us to take a
fundamental behavior such as standing and expand its range of application to many
different scenarios.

Multiobjective control addresses both issues. In the following sections we discuss prac-

tical strategies needed to accomplish common control objectives in spite of contact

variations caused by significant disturbances (§4.2). In the results section we present

lifelike animations of standing characters in challenging physical environments (§4.3).

All of which were simulated at interactive rates using a standard rigid-body simulator.

These results suggest that multiobjective control may be combined with previously

proposed control policies for locomotion and other more complex behaviors and used

in the design of a new generation of modular and adaptive control systems (§5).

4.1 Algorithm

The multiobjective control algorithm computes the joint torques that drive the motion

of an AAB in simulation. It does so by considering several objectives at once. Each

44

Figure 4-2: Multiobjective control is directable, adaptive, and fast. These images
are snapshots taken from interactive simulations driven by our control algorithm.
The articulated human body tracks motion capture data and end-effector objectives
while maintaining balance. Importantly, our control system automatically adjusts
to physical properties of the body, arbitrary frictional contact configurations, and
external disturbances.

objective describes a different facet of the desired motion: one objective may insist

upon tracking motion data, another may command the location of the center of mass,

and yet a third may force the hands to a specific destination. At each instance in

time, the conflicts and trade-offs between different objectives are managed by a fast

optimization that respects the dynamics of the current contacts and automatically

accounts for the physical properties of the AAB. Since speed is a primary requirement

of online control, all constraints and objectives are expressed in the form of a quadratic

program that can be quickly solved.

In the following subsections, the general form of the optimization problem is described

first. Then the details of the QP formulation are discussed, including the exact

method for performing control trade-offs between conflicting objectives.

4.1.1 Optimization

Given the current pose q and velocity q for the body, the optimization computes joint

torques u, joint accelerations 4 E Rn, and contact forces f that maximize performance

45

-4

of several objectives g(l) ... gf:

min {(g1,.., I

subject to M 4+ n + L'f H u (4.1a)
0

fEK, uEL (4.1b)

LL+ i,4= 0 (4.1c)

In the above, Equation (4.1a) restricts the solution to be consistent with the instan-

taneous contact dynamics of active articulated bodies. This is a linear constraint on

the vector unknowns because the remaining quantities M, n, and L are constant for

the current pose and velocity. Equation (4.1b) limits the contact forces and control

torques according to current friction cones, K, and constant-bound torque limits, L.

Lastly, Equation (4. 1c) ensures that accelerations remain compatible with the no-slip

contact condition in Equation (2.1).

The last constraint is perhaps the least intuitive of the three. It follows from the linear

complementarity condition, which is derived by differentiating the no-slip condition

[1]. Its function, however, is best understood by thinking through the contradictory

outcome without such a constraint. In that case, joint accelerations are allowed

to produce non-zero accelerations at the contact point, which in turn changes the

contact forces, even for contact-separating accelerations. We know, however, that

contact forces disappear with the separation of contact. Hence, the last constraint

ensures that computed torques are consistent with the assumed presence of contact

and its contact forces.

4.1.2 Quadratic Program

In practice the implementation approximates the general multiobjective formulation

with quadratic programming. This requires choosing quadratic objectives whose

46

trade-offs are determined by either a strict prioritization or a weighted-sum objective

function. Also, nonlinear friction cone constraint are modeled with a conservative

polygonal approximation, noting that, if needed, interior point methods could also

manage the conical convex constraint in its original form [2].

Quadratic Objectives

In the multiobjective formulation, control strategies are defined by specifying sev-

eral, possibly conflicting, objectives. For example, different objectives can be used

simultaneously to track full body movements and to command positions of hands and

feet. The quadratic objectives regulate the values of such kinematic quantities x(q)

by choosing their accelerations i(q) at each moment in time.

The value of each objective 9 () measures the difference between the current j(and

desired d(') acceleration:

(i = I - " J - , (4.2)

where the Jacobian matrix J) describes the linear relationship between joint veloci-

ties and velocities of regulated kinematic quantities: = = J().

Objectives can be used to reach a desired pose or to track a particular motion tra-

jectory. This feature is particularly useful in animation as it provides a mechanism

for incorporating high-quality motion data. If we choose to track motion data m(t),

we compute the desired accelerations to encourage a critically damped tracking tra-

jectory:

d = k.(m(t) - x) + 2 /k (in(t) - x) + ih(t), (4.3)

where t is the current simulation time and k. is the tracking stiffness. A high stiffness

value produces animations that blindly follow motion data despite external distur-

bances. We obtain more realistic animations by choosing small stiffness values. Note

that such low-stiffness behavior was more difficult to achieve with previous techniques

47

[56, 55, 54]. The same tracking mechanism can be used to guide the motion of any

point on the body, as is needed, to reach for an object and maintain balance.

Control Trade-Offs

Multiobjective control seeks a compromise among various, often conflicting, objec-

tives. One approach to conflict resolution is to identify strict priority levels. A se-

quence of quadratic programs can then recursively optimize each objective. First, we

optimize the most important objective. Next, we constrain its value to the computed

optimum and proceed with the optimization of the second most important objective.

Strict priority levels ensure that some objectives (e.g., balance) are minimized before

others (e.g., reaching). However, we have found that realistic animation requires a

more delicate compromise between different objectives.

Figure 4-3: The multiobjective formulation allows for explicit control over the trade-

offs between different conflicting motion objectives. This figure demonstrates three

different trade-offs between the objective of reaching and the objective of remaining

upright and balanced. As the weight of the reaching objective is gradually increased,
the character assumes a more precarious stance. In the accompanying video, the

reaching objective's weight is increased to the point where it outweighs the balance

objective, and the character falls over.

We use the weighted-sum objective g to strike a compromise between different control

objectives:

9 -- W1+) + ... + Wg() (4.4)

We show the effect of different compromises in Figure 4-3. At first, the reaching ob-

48

jective is given zero weight. Naturally, the arm does not move, but as the importance

of the reach increases, the body progressively departs from its balanced stance until

the importance of balance is outweighed by the emphasis on reaching and the body

falls over. This example clarifies that weighting different objectives is not so much a

burden, but an integral and necessary component of a control strategy. Balance, for

example, may be a top priority for athletes until they have the opportunity to dive

for the ball. Of course, they could also take a step or extend their reach by lifting

one leg while balancing on the other. At present, these high-level planning tasks

are manually encoded in control objectives, and their weights determine the precise

manner in which they are accomplished.

4.2 Practical Control Strategies

In simulation, contact between two objects is neither perfectly detected nor perfectly

maintained. Numerical errors due to integration can create variations in detected

contact points at almost every time step. External disturbances are even more dis-

ruptive. Applying multiobjective control in such an environment requires addressing

two major challenges. First, the general theoretical treatment must be complemented

with practical strategies that account for frequent contact variation. Second, strate-

gies must be devised that guide the body to positions from which it is capable of

accomplishing control objectives such as standing upright to avoid falling.

4.2.1 Stabilizing Contacts

Our theoretical model of contact forces assumes that contacts are maintained. When

contacts break, the control must adapt or it will fail. Numerical errors and imprecise

object geometry will often create unintended, incidental contact changes. The first

step to stabilizing such contacts is to restrict the center of pressure for each contact

region to its interior. In our implementation, we restrict the centers of pressure to

49

scaled versions of the true contact regions (70% of their original size). We also require

that contact forces have strictly positive normal components, which is controlled by

a weight-dependent threshold. This constraint directs the QP solution to compute

torques that push on each contact region and hence discourage incidental changes in

contact points, or, in case of small separation, re-establish the contacts in just a few

simulation steps.

External disturbances are more disruptive. For larger contact disruptions, we collapse

the friction cone K(to disallow tangential contact force and encourage immediate

recovery. However, if contact is still not re-established, we remove it from the QP

formulation and set its contact force to zero. In that case, we add a new motion objec-

tive in a last-ditch attempt to re-establish the contact by guiding the former contact

point toward its projection on the external contact surface. In our experiments, these

strategies were used to stabilize contacts at each region. More complex behaviors will

need to rely on similar strategies to change contact regions intentionally, for example,

by taking a step or by reaching for a handle.

4.2.2 Maintaining Controllability

Although humans have an amazing ability to remain standing under many difficult

conditions, sometimes we still fall. Equation (2.4) highlights a fundamental physical

limitation that makes balancing difficult: the global position and orientation of a

body are not directly controlled by joint torques. Humans adapt to this limitation

with anticipatory movements just as they brace for the motion of a bus by leaning

in the direction of its motion. Our multiobjective control needs a similar mechanism

to maintain controllability by guiding the body to configurations from which it is

capable of accomplishing several control objectives.

Contact dynamics gives us precise conditions for ensuring controllability (§2.1). The

motion of a body q(t) is controllable if and only if there are contact forces f E K that

50

satisfy Equation (2.4):

M2(q) + n2(q, 4) + L(q) f = 0.

This condition is a generalization of two often used alternatives for planar contacts:

(1) the center of mass (COM) should project inside the support polygon and (2) the

zero-moment point should remain within the support polygon [47]. The condition

also incorporates friction and applies to any three-dimensional contact configuration.

Unfortunately, direct application of this condition to maximize controllability for a

given disturbance is beyond the computational budget of online control systems. The

equations are no longer linear because the state of a body changes over time. The

most efficient implementation developed by my colleagues (and based on the optimal

control framework [50]) required several seconds of computation time, at least an

order of magnitude too slow for online control.

A heuristic solution to this problem is to incorporate an objective that guides the

COM toward more controllable configurations for most disturbances. The COM

for a human standing on flat ground, for example, is usually above the mid-point

between the two footprints. In general, this is a controllable configuration for many

disturbances because the COM is far from the edges of the contact support. We refer

to this objective as the controllability objective because maintaining controllability

is its purpose. An even safer strategy might lower the COM (as is the goal of many

sumo wrestlers), but this becomes more a cognitive choice than a reflexive maneuver,

so we choose to leave this aspect free to be controlled by other objectives.

The key to understanding controllability is to observe that this objective does not

prevent falling on its own: the COM can fall to the ground and still be above the mid-

point. Instead, falls are prevented with a combination of this and others objectives

that prescribe standing motions or postures. When conditions of controllability are

violated (typically when the COM wanders significantly outside the support poly-

gon) the body falls because it can no longer accomplish the objective of standing.

However, we found that our simple strategies worked well even for many significant

51

disturbances. If need be, more complex strategies for controlling the COM can easily

be incorporated using inultiobjective control.

4.3 Results

Games and training simulations pose a difficult set of challenges for any animation

system: animation must be fast, applicable in many conditions, responsive to distur-

bances, and easy to direct. Multiobjective control addresses these challenges with a

general purpose control system for bodies in sustained frictional contact with their

environment. Our experiments show that it meets the demands of interactive systems

for the fundamental behavior of standing and suggest that it may provide a strong

foundation for the design of even more complex behaviors.

In our testing, we explored a range of different interactive simulations driven by

our control system. The supplemental video includes a few typical runs from these

experiments:

Sobriety. A human-like character accomplishes a standing upright posture while in

uneven contact with a moving platform. It also reaches for its nose as com-

manded by intuitive objectives describing the desired position of its hands.

Both standing and reaching are accomplished despite the significant motion of

the platform.

Pelted. The same character can also track motion data. Collisions with other sim-

ulated objects generate life-like responses while the motion trajectory remains

similar to the data.

Alien. A shorter character accomplishes a standing upright posture on a moving

platform, as well as, a new adaptation of the "Pelted" simulation. Although

its geometry, weight, and proportions differ from those of the human character,

only minor modifications of weight-dependent thresholds are needed to modify

the control strategy.

52

Wall. As directed, our human character places its hand on a nearby wall for ad-

ditional support on the moving platform. The control system adapts to the

non-planar contact configuration and uses its additional leverage to maintain

balance despite severe tipping of the platform.

Mishap. The character stands with one leg perched on a flimsy table. When the ta-

ble suddenly collapses, the character regains its balance in a controlled manner,

which we intuitively direct by guiding its foot to a desired location.

We manually modeled the geometry of both characters in our simulations. Their

inertial properties were computed automatically using the volume of each limb and

standard mass distributions [49]. The motions tracked by our control system were

recorded with an optical motion capture system. Forward dynamics with frictional

contacts were computed with the Open Dynamics Engine (www.ode.org), a general

purpose rigid body simulator. The QP problems were solved by the MOSEK software

system (www.mosek.com), which employs the interior point method to solve convex

optimization problems [2].

4.3.1 Direction

Our experiments demonstrate that multiobjective control enables artistic control of

active bodies with two familiar animation mechanisms: direct control of poses and

end effector positions.

A posture tracking objective allows the user to direct motions via recorded motion-

capture sequences. In most of our experiments, we tracked a single recorded posture,

but tracking motions is just as easy. Importantly, tracking fast motions, such as

dodging incoming objects, is accomplished accurately, but is still "loose" enough to

respond interestingly to collisions with other objects (Pelted). Control need not insist

on the perfect match between the body and recorded postures. A shorter character,

for example, can easily track the recorded trajectory of a full-size human (Alien).

Tracking objectives can also control individual limbs: arms, hands, feet, and so on.

53

Our experiments include two simple examples. One directs hands to touch the nose

(Sobriety) and the other controls the swing leg to direct the look of a balancing

maneuver (Mishap). In addition, our control system always relies on direct control

of the horizontal location of the center of mass to maintain controllability (§4.2.2).

4.3.2 Adaptation

Multiobjective control also provides a general formulation for mixing several control

strategies while automatically adapting to general contact configurations, external

disturbances, and physical properties of the character and the environment.

Many control systems assume planar contact with flat ground, which limits possible

applications. Multiobjective control manages this special case (Pelted, Alien) but it

also handles more general contact configurations such as one foot resting on an object

(Sobriety, Mishap) or a hand contact with the wall (Wall).

Many of our experiments feature a character on a moving platform. Under such

conditions, our control system maintains controllability by coaxing the center of mass

back toward a conservatively chosen position. The corrective motions required to

accomplish this, weighted against other active objectives, contribute to the life-like

quality of our animations. Although our simple strategies can be improved with

further work, our general control formulation can accommodate new strategies once

they are available.

A moving platform is only one example of many possible disturbances. The allure of

physically based animation is clearly demonstrated by a rich diversity of interactions

characters can have with their environment. However, this is only possible if charac-

ters can react naturally to arbitrary disturbances. We present a couple of examples

(Pelted, Mishap) that, even if not as natural looking as recorded motions, suggest

definite progress in this direction. Complex motions, including natural but counter-

intuitive balance recoveries, such as lunging in the direction of the fall (Mishap),

emerge without explicit modeling.

54

Simulation Vars. Opt. Time (Avg.) Iterations (Avg.)

Platform 140 13ms 14.5

Pelted 140 13ms 14.5

Sobriety 146 16ms 13.8
Mishap 143 14ms 15.8
Wall 172 29ms 17.7

Table 4.1: The number of variables, average optimization time, and average number

of iterations for the multiobjective QP per simulation.

Multiobjective control can even accomplish strategies on bodies with different inertial

parameters (Alien). Our shorter character is capable of withstanding significant dis-

turbances by accomplishing general control strategies initially tuned for a taller and

heavier character. We only changed the internal weight-dependent threshold for the

normal component of contact forces. This highlights a key advantage of our control

system: it decouples the description of control strategies from the computation of

required torques. Hence, the objectives are independent of mass distribution, model

geometry, and contact dynamics.

4.3.3 Speed

The QP control problem is solved 30 times per second of simulation, while we use

many more simulation steps in the same interval, between 1000 and 5000. Each

solution required around 15 iterations to converge for an average running time of 17

milliseconds. The "Wall" simulation took slightly longer than the others (see Table

4.1) because of the additional hand contact. All simulations were fast enough to allow

the entire system (simulation and control) to run at 30 frames per second, or better,

on a 2.8 GHz Intel Pentium 4.

4.4 Discussion

The multiobjective approach was inspired by prioritized control of articulated bodies

[22]. The principal advantage of such an approach is that it automatically coordinates

55

multiple objectives, which makes it easy to combine compact task descriptions with

the less specific postural objectives gleaned from motion data, as demonstrated by

the results. However, prioritized control without unilateral contact constraints assume

the existence of contact forces that maintain contact in spite of external motions, as

if the bodies were pinned at the contact points. As illustrated in Figure 4-4, pinned

contacts produce unrealistic control strategies.

Figure 4-4: This illustration underscores the importance of
incorporating ground contact constraints into any control
formulation. Ignoring contact dynamics, a character can
reach for the object as if his feet were pinned to the ground.
With proper contact dynamics and multiobjective control,
the character strikes a compromise between reaching and
not falling as seen in Figure 4-3.

Ground reference points such as the ZMP provide an alternative to pinning the contact

points. The ZMP is a criterion of physical feasibility for bodies in contact with the

ground plane [43]. For example, its position outside the contact polygon indicates

a physically infeasible motion. The ZMP criterion is sometimes incorrectly defined

as a measure of dynamic stability in both graphics and robotics literature. Instead,

the ZMP criterion enables successful tracking of controllable trajectories by ensuring

physically realizable control policies [17]. Hofmann and colleagues, for example, use

quadratic programming to restrict the ZMP to remain within the contact polygon

[20]. This approach works well for planar contact configurations with infinite friction

but not for general three-dimensional contacts with friction [47]. In contrast, our

formulation handles arbitrary, non-planar contact configurations with friction.

The theoretical treatment of contacts used by the multiobjective formulation is con-

ceptually similar to the explicit model of contact dynamics used in simulation of rigid

bodies [33, 1]. Instead of solving for contact forces that prevent geometric overlap,

control torques that are consistent with such forces are computed. According to a

56

....... ...

survey by Srinivasa [44], the first control system with an explicit model of contact

dynamics appeared in the robotics literature as a solution to multi-fingered manip-

ulation of two-dimensional objects [6]. The control systems proposed in graphics

literature, however, did not employ explicit formulations of contact dynamics until

Fang and Pollard [9] demonstrated their value to offline optimal control. Multiob-

jective control demonstrates the feasibility and importance of this model for online

control in interactive animations of active bodies.

Other methods in robotics literature have relied on similar QP formulations for con-

trol of walking bipeds [12, 48] without addressing contact variations and significant

disturbances. Our work examines its role in the animation of standing AABs. But

we specifically emphasize the resilient treatment of disturbances, reasoning that lo-

comotion and more complex behaviors can be robust only after standing is more

robust.

57

58

Chapter 5

Conclusion

This thesis introduces two control algorithms, prioritized control and multiobjective

control, that facilitate the control of complex characters performing lifelike motions

within a physical simulation. They support intuitive motion direction through either

control of joint angles or end-effector positions and through the ability to execute mul-

tiple motion objectives simultaneously. They automatically adjusts to parameters of

the character model and of the simulation making it easier to create reusable control

strategies that are not overspecialized. Importantly, they are robust to dynamic dis-

turbances in the environment that require significant deviation from specified motion

trajectories.

Whereas prioritized control is the faster of the two algorithms, multiobjective con-

trol has all the same functionality and two additional advantages. First, it handles

unilateral frictional contacts with the environment. This is critical, for example,

for realistic motion of characters standing while balancing. Second, it allows for soft

trade-offs between conflicting motion objectives that are simultaneously active, rather

than enforcing strict priority levels. Although strict priority levels work well for filling

in posture details as a secondary objective, my colleagues and I find that trade-offs

between objectives such as balancing and reaching are often soft and, thus, should

depend upon the intent of the animator.

59

There are a couple weaknesses to the approach that should be addressed in the future.

One weakness is that multiobjective control only models unilateral frictional contacts

when they are sustained. The more general case of slipping or breaking frictional

contacts also occur in lifelike motion. For example, whenever a baseball player slides

into first bases the feet are in slipping frictional contact with the ground. Another

weakness is that multiobjective control cannot account for the presence stiff passive

elements in a AAB. These include stiffly held joints (e.g., a stiffly held wrist when

making a fist) and soft joint limits, as commonly occur in nature. If a character's

motion is severely limited such joint limits, the approach in this thesis fails. In many

of the simulations from the results section, we automatically detect such situations

and revert to passive ragdoll dynamics, but, ultimately, this is a poor substitute for

an active control strategy. A third weakness is that multiobjective control is not

restricted to smooth joint torques. In some cases, joint torques change rapidly in a

manner that could not occur in nature due to the necessary recovery time of muscles.

In practice, this can result in strange behaviors, such as non-smooth or jumpy motion,

if not carefully avoided.

Although our approach provides a low-level control framework for physically based

animation, it does not create motion trajectories from scratch. Rather, it incorporates

lifelike trajectories from recorded motion data. As such, it complements kinematic

methods that ignore physics but learn from data and other studies of natural motion

[25, 40, 15, 53]. By combining the two we can begin to create animation tools that

create lifelike motions even in arbitrary, dynamically interactive environments.

In the future, we would like to use multiobjective control to create libraries of modular

and reusable control strategies. For example, the simple controllability objective that

is employed in the this thesis will not work in all situations. But multiobjective control

allows for different objectives to be combined with ease, so as soon as new solutions

are devised, they can be easily adapted to different characters and incorporated into

existing simulations. Multiobjective control shows great promise for enabling such a

modular and adaptive design.

60

Multiobjective control has potential to enable many applications. In conjunction

with high-level action planning and fast rendering techniques, it will eventually allow

characters in interactive video games to act in concert with a constantly evolving and

dynamic virtual world. In the movie industry, it could potentially allow for automatic

animation of massive crowd scene that appear physically realistic even when examined

at the level of individual character interactions. It may also serve as an integral part

of an animation authoring tool for laymen, since it allows for automatic synthesis of

lifelike motion without much manual input. Any or all of these applications are likely

candidates for future work.

61

62

Appendix A

Equations of Motion

The equations of motion for constrained rigid bodies in an open-loop configuration

are:

u = M(q)4 + n(q, 4l). (A. 1)

These equations express the differential relationship between the generalized coordi-

nates, q, and joint torques, u. This appendix explains the structure of the articulated

character model used in our implementation and our approach to the derivation of

the equations of motion through applying the principle of virtual work.

A.1 Character Model

The character model is composed of rigid mass segments constrained by joints. The

kinematic frame for each rigid segment is described by the composition of homoge-

neous transformations in a tree-like, hierarchal structure. The structure is rooted

at the characters hips. The variable transformations, which allow for the motion of

the character, are all rotational transformations (i.e., joints), except for one variable

translational transformation describing the global position of the character model.

Rotational transformations can have from one to three degrees of freedom (DOFs)

depending upon the type of joint they model. 1-DOF rotations are represented in-

63

ternally by a scalar value representing a rotation about a fixed axis, 2-DOF rotations

are represented by the concatenation of 1-DOF transformations, and 3-DOF rotations

are represented by normalized quaternions. The root transformation of the hierarchy

has 6 spatial degrees of freedom represented by the concatenation of a translation,

To(qto), and a 3-DOF rotation, Ro(qO), (7 variables total, 3 translation + 4 quater-

nion). The transformation of child frame ri w.r.t. its parent frame ri_1, is given by a

static translational transformation, Ti, followed by variable joint rotational transfor-

mation, Ri(q). In the above, q= [qfo qTO ... qi ...]T.

A.2 Spatial Quantities

Associated with each variable transformation is a subspace, Si, of R' describing the

mapping betweem joint velocities and spatial velocity. (See Featherstone [11] for more

details.) Si can be interpreted as a mapping from generalized forces to spatial forces.

In other words, Sicii = 9, where qi is the joint velocity and -r is the spatial velocity

of frame ri w.r.t. its parent frame. Alternatively, Si can be viewed as the subspace in

which the joints are unconstrainted and actuated. In other words, S-i = f, where -yi

is the generalized joint force and f' is an equivalent spatial force applied at the origin

of the frame ri.

Examples of Si are:

y-axis rotation:

0

0

0

0

1

0

64

SO(3) rotation:

3 DOF translation :

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

In each frame of the hierarchy, we specify the orientation of rigid body bi with ho-

mogeneous transformation matrix, Mi. We can express the orientation of bi in any

frame fj (j < i) as Tj = TRjTj+,Rj+1 ... TiRiMi. We can also kinematically relate

the spatial velocity, Vb, of bi in its local frame to the joint velocity, cj, by

b - Sjki

where

for j < i:

(R)T -(R J)Td.x
3 0 (R) T

for j > i: X = [0]

65

d]R

oT

0

d' x = -z

dy

dz

0

-dx

-dy

d0

0

XI is the adjoint matrix which transforms spatial quantities (i.e. velocity) from frame

j to i.

Using the defined quantities above,

{bi10 < i ;> n}, is given by:

Jb -
Sto

$0" St 0

the aggregate Jacobian of the articulate bodies,

0Sr0

$0 Sro

$0Sr0

[0]S 1

k 11 S,

[0]Sn

[0]Sn

XnSn

The aggregate Jacobian relates the instantanious velocity of the generalized coor-

dinate, q, to the instantanious motion of the rigid bodies. Since each Si will have

between 1 and 3 dimensions depending upon the joint types, Jb, has dimension 6n x 14 1.

For each rigid body bi there is an associated 6 x 6 spatial inertial tensor

diag(mb2) [0]1
I I'

[[0] IbJ

where diag(mi) is a 3 x 3 diagonal matrix with the mass of the body on the diagonal

and 1b, is 3 x 3 rotational inertial tensor, in the frame of the body. The 6n x 6n

aggregate inertial tensor of the articulated body is,

66

Ibo

0

0

0 0

.0

0 '

We also define the spatial transformation matrix Rb that transforms the spatial ve-

locities of the bodies from their local orientation to the orientation of the inertial

frame:

[0]

[0]

[0] ... [0]

. 0]

where
S R [0]

[[0] R 3 J

A.3 Derivation from Virtual Work

Using the above, the kinetic energy, ek, of the system can be written,

ek= (1/2)V0 OVO

where to is the vector of spatial velocities in the inertial frame.

Observing that ek is a positive definite function of ro and differentiating w.r.t. v0 ,

we obtain the spatial momentum of the bodies,

67

10 = 97 T0o i

= (bRb(RbbR)

- b Rb,

where =b r']T is the vector of spatial velocities in the reference

frames of the bodies.

Using u to denoting the vector of joint torques we observe from the principle of virtual

work that

d1o

= q(-,tfIR T) .-'6t t
dt

= d (RT Jo f R) . _O&
dtb

=[4TbjbRI +T 4 TjTjRT + 4 Tjblft] -
8 t

= [4TT To + 4T jb Tn +4T JbT 'o I]- l C){~TbfbRb ± T bRb + A JbT ~* (Rb Jbq) 6t,

thus,

U= JbJb + [Jb' RbIbJb + Jb fJ]q. (A.2)

This set of linear equations is in the desired form of A.1, which is used throughout

this work. More precisely, we have show that M = bJb and n = JbT RI PbJb +

Jbb jb.

We can also add an extra term, UeXt, to accounts for external forces that depend only

upon the configuration of the articulated body (e.g., gravity). In general, Uext can be

computed in term of the potential energy, kp, of the system as,

68

d k
uext(q) - y - gravity * fb * Jb * [0, 1, 0, 0, 0, 0]J.

dq

The resulting equations of motion are then modified to be:

U= JbI J + [J' RbI b fbJ + Jb Ibjb]q + uext (q). (A.3)

69

70

Bibliography

[1] David Baraff. Analytical methods for dynamic simulation of non-penetrating

rigid bodies. In Computer Graphics (Proceedings of SIGGRAPH 89), Annual

Conference Series, pages 223-232. ACM SIGGRAPH, July 1989.

[2] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge

University Press, 2004.

[3] A. Bruderlin and L. Williams. Motion signal processing. In Computer Graphics

(Proceedings of SIGGRAPH 95), Annual Conference Series, pages 97-104. ACM

SIGGRAPH, August 1995.

[4] Benoit Le Callennec and Ronan Boulic. Interactive motion deformation with

prioritized constraints. In Symposium on Computer Animation (SCA), pages

163-171, July 2004.

[5] Kwang-Jin Choi and Hyeong-Seok Ko. Online motion retargetting. Journal of

Visualization and Computer Animation, 11(5):223-235, December 2000.

[6] A. Cole, J. Hauser, and S. Sastry. Kinematics and control of multifingered hands

with rolling contact. In International Conference on Robotics and Automation

(ICRA), volume 1, pages 228-233. IEEE, 1988.

[7] Vincent De Sapio, James Warren, Oussama Khatib, and Scott Delp. Simulat-

ing the task-level control of human motion: a methodology and framework for

implementation. The Visual Computer, 21(5):289-302, 2005.

71

[8] Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos. Compos-

able controllers for physics-based character animation. In Proceedings of ACM

SIGGRAPH 2001, Annual Conference Series, pages 251-260, August 2001.

[9] Anthony C. Fang and Nancy S. Pollard. Efficient synthesis of physically valid

human motion. ACM Transactions on Graphics, 22(3):417-426, July 2003.

[10] R. Featherstone and D. E. Orin. Robot dynamics: Equations and algorithms. In

International Conference on Robotics and Automation (ICRA), pages 826-834,

2000.

[11] Roy Featherstone. Robot Dynamics Algorithm. Kluwer Academic Publishers,

Norwell, MA, USA, 1987. Manufactured By-Kluwer Academic Publishers.

[12] Y. Fujimoto, S. Obata, and A. Kawamura. Robust biped walking with active

interaction control between foot and ground. In International Conference on

Robotics and Automation (ICRA), pages 2030-2035. IEEE, 1998.

[13] Michael Girard and Anthony A. Maciejewski. Computational modeling for the

computer animation of legged figures. In Computer Graphics (Proceedings of

SIGGRAPH 85), volume 19, pages 263--270, July 1985.

[14] Michael Gleicher. Motion editing with spacetime constraints. In 1997 Symposium,

on Interactive 3D Graphics, pages 139-148, April 1997.

[15] Keith Grochow, Steven L. Martin, Aaron Hertzmann, and Zoran Popovi6. Style-

based inverse kinematics. ACM Transactions on Graphics, 23(3):522-531, Au-

gust 2004.

[16] Radek Grzeszczuk and Demetri Terzopoulos. Automated learning of muscle-

actuated locomotion through control abstraction. In Proceedings of SIGGRAPH

95, Annual Conference Series, pages 63-70, August 1995.

[17] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka. The development of honda hu-

manoid robot. In International Conference on Robotics and Automation (ICRA),

pages 1321-1326. IEEE, 1998.

72

[18] Jessica K. Hodgins and Nancy S. Pollard. Adapting simulated behaviors for new

characters. In Proceedings of SIGGRAPH 97, Computer Graphics Proceedings,

Annual Conference Series, pages 153-162, August 1997.

[19 Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and James F. O'Brien.

Animating human athletics. In Proceedings of ACM SIGGRAPH 95, Annual

Conference Series, pages 71-78, August 1995.

[20] A. Hofmann, S. Massaquoi, M. Popovic, and H. Herr. A sliding controller for

bipedal balancing using integrated movement of contact and non-contact limbs.

In International Conference on Intelligent Robots and Systems (IR OS), volume 2,

pages 1952-1959. IEEE/RSJ, 2004.

[21] 0. Khatib. A unified approach to motion and force control of robot manipulators:

the operational space formulation. International Journal of Robotics Research,

3(1):43-53, 1987.

[22] Oussama Khatib, Luis Sentis, Jae-Heung Park, and James Warren. Whole body

dynamic behavior and control of human-like robots. International Journal of

Humanoid Robotics, 1(1):29-43, 2004.

[23] Oussama Khatib, James Warren, Vincent De Sapio, and Luis Sentis. Human-

Like Motion From Physiologically-Based Potential Enerqies, volume XII of On

Advances in Robot Kinematics, chapter Humanoids and Biomedical Applications.

Springer, New York, 2004.

[24] Hyeong-Seok Ko and Norman I. Badler. Animating human locomotion with

inverse dynamics. IEEE Computer Graphics and Applications, 16(2):50-59, 1996.

[25] Yoshihito Koga, Koichi Kondo, James Kuffner, and Jean-Claude Latombe. Plan-

ning motions with intentions. In Proceedings of SIGGRAPH 94, Computer

Graphics Proceedings, Annual Conference Series, pages 395-408, July 1994.

[26] Lucas Kovar and Michael Gleicher. Automated extraction and parameterization

of motions in large data sets. ACM Transactions on Graphics, 23(3):559-568,

73

August 2004. In Press.

[27] Lucas Kovar, Michael Gleicher, and Fred6ric Pighin. Motion graphs. ACM

Transactions on Graphics, 21(3):473-482, July 2002.

[28] Paul G. Kry and Dinesh K. Pai. Interaction capture and synthesis. ACM Trans-

actions on Graphics, 25(3):872-880, July 2006.

[29] Joseph F. Laszlo, Michiel van de Panne, and Eugene L. Fiume. Limit cycle con-

trol and its application to the animation of balancing and walking. In Proceedings

of SIGGRAPH 96, Annual Conference Series, pages 155-162, August 1996.

[30] Philip Lee, Susanna Wei, Jianmin Zhao, and Norman I. Badler. Strength guided

motion. In Computer Graphics (Proceedings of SIGGRAPH 90), volume 24,

pages 253--262, August 1990.

[31] A. Lidgeois. Automatic supervisor control of the configuration and behavior of

multibody mechanisms. IEEE Transactions on Systems, Man, and Cybernetics,

7(12):868 871, 1977.

[32] C. Karen Liu and Zoran Popovi6. Synthesis of complex dynamic character motion

from simple animations. ACM Transactions on Graphics, 21(3):408-416, July

2002.

[33] Per Lbtstedt. Numerical simulation of time-dependent contact and friction

problems in rigid body mechanics. Journal of Scientific Statistical Computing,

5(2):370-393, 1984.

[34] A. A. Maciejewski. Dealing with the ill-conditioned equations of motion for

articulated figures. IEEE Computer Graphics and Applications, 10(3):63-71,

1990.

[35] Tomohiko Mukai and Shigeru Kuriyama. Geostatistical motion interpolation.

ACM Transactions on Graphics, 24(3):1062-1070, August 2005.

74

[36] Y. Nakamura and H. Hanafusa. Inverse kinematics solutions with singularity

robustness for robot manipulator control. Journal of Dynamic Systems, Mea-

surement, and Control, 108:163-171, 1986.

[37] Zoran Popovi6 and Andrew P. Witkin. Physically based motion transformation.

In Computer Graphics (Proceedings of SIGGRAPH 99), Annual Conference Se-

ries, pages 11-20. ACM SIGGRAPH, August 1999.

[38] Marc H. Raibert and Jessica K. Hodgins. Animation of dynamic legged locomo-

tion. In Computer Graphics (Proceedings of SIGGRAPH 91), Annual Conference

Series, pages 349-358. ACM SIGGRAPH, July 1991.

[39] Charles Rose, Michael F. Cohen, and Bobby Bodenheimer. Verbs and adverbs:

Multidimensional motion interpolation. IEEE Computer Graphics and Applica-

tions, 18(5):32-40, 1998.

[40] Charles F. Rose, Peter-Pike J. Sloan, and Michael F. Cohen. Artist-directed

inverse-kinematics using radial basis function interpolation. Computer Graphics

Forum, 20(3):239-250, 2001.

[41] Alla Safonova, Jessica Hodgins, and Nancy Pollard. Synthesizing physically re-

alistic human motion in low-dimensional, behavior-specific spaces. ACM Trans-

actions on Graphics, 23(3):514-521, August 2004.

[42] Luis Sentis and Oussama Khatib. Synthesis of whole-body behaviors through

hierarchical control of behavioral primitives. International Journal of Humanoid

Robotics, 2(4):505-518, 2005.

[43] Hyun Joon Shin, Lucas Kovar, and Michael Gleicher. Physical touchup of human

motions. In Proceedings 11th Pacific Conference on Computer Graphics and

Applications, pages 194-203, 2003.

[44] Siddhartha Srinivasa. Control synthesis for dynamic contact manipulation. PhD

thesis, Carnegie Mellon University, 2005.

75

[45] Adnan Sulejmanpasid and Jovan Popovid. Adaptation of performed ballistic

motion. ACM Transactions on Graphics, 24(1):165-179, January 2005.

[46] Michiel van de Panne, Eugene Fiume, and Zvonko Vranesic. Reusable motion

synthesis using state-space controllers. In Computer Graphics (Proceedings of

SIGGRAPH 90), Annual Conference Series, pages 225-234. ACM SIGGRAPH,

August 1990.

[47] P. B. Wieber. On the stability of walking systems. In International Workshop

on Humanoid and Human Friendly Robotics, 2002.

[48] Pierre-Brice Wieber and Christine Chevallereau. Online adaptation of reference

trajectories for the control of walking systems. Robotics and Autonomous Sys-

tems, 54(7):559-566, July 2006.

[49] David A. Winter. Biomechanics and Motor Control of Human Movement. John

Wiley and Sons, Inc., New York, 2nd edition, 1990.

[50] Andrew Witkin and Michael Kass. Spacetime constraints. In Computer Graphics

(Proceedings of SIGGRAPH 88), volume 22, pages 159--168, August 1988.

[51] Andrew Witkin and Zoran Popovi6. Motion warping. In Computer Graphics

(Proceedings of SIGGRAPH 95), Annual Conference Series, pages 105-108. ACM

SIGGRAPH, August 1995.

[52] Wayne Wooten. Simulation of Leaping, Tumbling, Landing, and Balancing Hu-

mans. PhD thesis, Georgia Institute of Technology, 1998.

[53] Katsu Yamane, James J. Kuffner, and Jessica K. Hodgins. Synthesizing anima-

tions of human manipulation tasks. ACM Transactions on Graphics, 23(3):532-

539, August 2004.

[54] Katsu Yamane and Yoshihiko Nakamura. Dynamics filter-concept and imple-

mentation of online motion generator for human figures. IEEE Transactions of

Robotics and Automation, 19(3):421-432, 2003.

76

[55] K. Yin, M. Cline, and D. K. Pai. Motion perturbation based on simple neuro-

motor control models. In Pacific Conference on Computer Graphics and Appli-

cations (PG), pages 445-449, 2003.

[56] Victor B. Zordan and Jessica K. Hodgins. Motion capture-driven simulations

that hit and react. In Symposium on Computer Animation (SCA), pages 89-96,

July 2002.

[57] Victor Brian Zordan, Anna Majkowska, Bill Chiu, and Matthew Fast. Dy-

namic response for motion capture animation. ACM Transactions on Graphics,

24(3):697-701, August 2005.

77

