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Abstract

This thesis presents a mathematical model for communication subject to both interfer-
ence and noise. We introduce a realistic framework where the interferers are spatially
scattered according to a Poisson field, and are operating asynchronously in a wireless
environment; subject to path loss, shadowing, and multipath fading. We consider both
cases of slow and fast-varying interferer positions. Under this scenario, we determine the
statistical distribution of the cumulative interference at the output of a linear receiver,
located anywhere in the two-dimensional plane. We characterize the error probability
and capacity of the link, when subject to both network interference and thermal noise.
We derive the power spectral density (PSD) of the cumulative interference at any loca-
tion in the plane. We put forth the concept of spectral outage probability (SOP), a new
characterization of the cumulative interference generated by communicating nodes in
a wireless network. Lastly, we quantify the cumulative interference distribution, error
probability, channel capacity, PSD, and SOP as a function of various important system
parameters, such as the signal-to-noise ratio (SNR), interference-to-noise ratio (INR),
path loss exponent of the channel, and spatial density of the interferers.
The proposed model is valid for any linear modulation scheme (e.g., M-ary phase shift
keying or M-ary quadrature amplitude modulation), and captures all the essential phys-
ical parameters that affect network interference. Nevertheless, it is simple enough to
enable a tractable analysis and provide fundamental insights that may be of value to
the network designer. Finally, this work generalizes the conventional analysis of linear
detection in the presence of additive white Gaussian noise (AWGN) and fast fading,
allowing the traditional results to be extended to include the effect of interference.
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Chapter 1

Introduction

1.1 Interference Modeling

In a wireless network composed of many spatially scattered nodes, there are two funda-

mental impairments that constrain the communication between nodes: thermal noise

and network self-interference. Thermal noise is introduced by the receiver electronics

and is usually modeled as AWGN, which constitutes a good approximation in most

cases. Self-interference, on the other hand, is due to other transmitter nodes, whose

radiated signals affect receiver nodes of the same network. For simplicity, interference

is typically approximated by AWGN with some given power [1, 2]. However, this ele-

mentary model does not capture the physical parameters that affect self-interference,

namely: 1) the spatial distribution of nodes in the network; 2) the transmission charac-

teristics of nodes, such as modulation, power, and synchronization; and 3) the propaga-

tion characteristics of the medium, such as path loss, shadowing, and multipath fading.

If, instead, we use a Poisson point process to model the user positions, then all these

parameters are easily accounted for, and appear explicitly in the resulting performance

expressions.

The application of the Poisson field model to cellular networks was first investigated

in [3] and later advanced in [4]. However, the authors either ignore random propaga-

tion effects (such as shadowing and multipath fading), or restrict the analysis to error



probability in non-coherent FSK modulations. In other related work [5], it is assumed

that the different interferers are synchronized at the symbol or slot level, which is typi-

cally unrealistic. In [6,71, the authors choose a different approach and restrict the node

locations to a disk or ring in the two-dimensional plane. Although this ensures the

number of interferers is finite, it complicates the analysis and does not provide useful

insights into the interference problem. Lastly, none of the mentioned studies attempts

a spectral characterization of the interference, focusing instead on other performance

metrics.

1.2 Thesis Objectives and Organization

The main research contributions of this thesis are as follows:

* We introduce a realistic framework where the interferers are spatially scattered

according to an infinite Poisson field, and are operating asynchronously in a wire-

less environment subject to path loss, log-normal shadowing, and fast fading.

Our analysis is valid for any linear modulation scheme, and easily accounts for all

the essential physical parameters that affect network interference, which appear

explicitly in the resulting performance expressions.

* We specifically address two different scenarios: one where the interfering nodes

are slow-moving, and another where they are fast-moving.

* We determine the statistical distribution of the cumulative interference at the

output of a linear receiver, located anywhere in the two-dimensional plane.

* We characterize the error performance of the link (in terms of average and outage

probabilities) when subject to both interference and thermal noise, for any linear

modulation scheme.

* We analyze and provide expressions for the capacity of the link, when subject to

both network self-interference and thermal noise.



* We derive the power spectral density (PSD) of the cumulative interference at any

location in the two-dimensional plane, for any linear modulation scheme.

* We put forth the concept of spectral outage probability (SOP), a new charac-

terization of the cumulative interference generated by communicating nodes in a

wireless network.

* We quantify the cumulative interference distribution, error performance, channel

capacity, PSD, and SOP as a function of various important system parameters,

such as the signal-to-noise ratio (SNR), interference-to-noise ratio (INR), path loss

exponent, and spatial density of the interferers. Our analysis clearly shows how

the system performance depends on these parameters, thereby providing insights

that may be of value to the network designer.

The thesis is organized as follows. Chapter 1 presents the scope and contributions of

the thesis, and briefly reviews stable distributions. Chapter 2 describes the system

model. Chapter 3 derives the baseband representation and distribution of the cumula-

tive interference. Chapter 4 analyzes the error performance of the system. Chapter 5

analyzes the channel capacity. Chapter 6 characterizes the spectrum of the cumula-

tive interference and introduces the concept of spectral outage probability. Chapter 7

concludes the thesis and suggests directions for future research.

1.3 Review of Stable Distributions

In the framework proposed in this thesis, stable distributions play an important role

in the modelling of interference. Stable laws are a direct generalization of Gaussian

distributions, and include other densities with heavier (algebraic) tails. They share

many properties with Gaussian distributions, namely the stability property and the

generalized central limit theorem [8, 9].

A r.v. X is defined to be stable distributed if its characteristic function x (w) =



E{ejwX} has the form [81

xexp [-wyJwj (1 - jp sign(w) tan 2) + jw~ ] , a 1,

exp [-yIwl (1 + j- sign(w) In w) + jw , a = 1.

A real stable distribution can therefore be characterized by four parameters:

a E (0, 2] Characteristic exponent, which controls the heaviness of the p.d.f. tail. If

a = 2, then X - Af(p, 2-y).

p E [-1, 1] Skewness parameter. The cases where 0 < 0, 0 = 0, 13 > 0 correspond to

a p.d.f. which is skewed to the left, symmetric around the center p, and

skewed to the right, respectively.

y E [0, oc) Dispersion parameter, which behaves like the variance.

p E I R Location parameter, which behaves like the mean.

We use X - S(a, 0l, 7, p) to denote that r.v. X has a real stable distribution with

parameters a, /3, , and p.l When 83 = it = 0, the r.v. X is said to be symmetric stable.

Figures 1.1 to 1.3 depict stable p.d.f.'s for various parameters a, 0, and y.

Some useful properties of stable r.v.'s which are used in this thesis are provided

below.

Property 1.1 (Scaling Property). Let X - S(a, /, -y) with a z 1, and let k be a non-

zero real constant. Then,

kX - S(a, sign(k)P, lklay).

Property 1.2 (Decomposition Property). Let X - S(a, 0, y). Then, X can be decom-

posed as

X = v/VG,
1Unless otherwise indicated, in this thesis we only deal with distributions where p = 0, and therefore

use the simplified notation X - S(a, 0, -y).
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Figure 1.1: Stable densities for varying characteristic exponents a (/3 = 0, y = 1, p = 0).
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Figure 1.3: Stable densities for varying dispersion parameters y (a = 1, = 0, p = 0).



where V S (, 1, cos !) and G '(0, 2-y2/o). In addition, V and G are indepen-

dent r.v.'s.

A more detailed treatment of stables distributions, including its definitions and

properties, can be found in [8-11].





Chapter 2

System Model

2.1 Spatial Distribution of the Nodes

In the proposed model, we account for the spatial distribution of users by assuming an

infinite number of nodes distributed according to a homogeneous Poisson point process

in the two-dimensional plane. Typically, the terminal positions are unknown to the

network designer a priori, so we may as well treat them as completely random and use

a Poisson point process.

A two-dimensional homogeneous Poisson point process is characterized by the fol-

lowing properties (121:

1. If N(17) denotes the number of nodes located inside a region R of the plane, then

the r.v.'s N(Ri) are independent if the regions Ri are non-overlapping.

2. Given that a node is inside region R, its position is uniformly distributed in that

region.

3. The probability P{k in R} of k nodes being inside region R depends only on the

area A.R of the region (not on its shape or location in the plane), and follows a

Poisson distribution given by

P{k in } = (AAR)k e-AA k >k! k



0 Probe transmitter node
0 Probe receiver node
* Interfering node

--------------------- I

Figure 2.1: Poisson field model for the spatial distribution of nodes.

where A is the (constant) spatial density of nodes, in nodes per unit area.

The Poisson point process can then be described by the single parameter A, which

we use to denote the spatial density of interfering nodes. We define the interfering

nodes to be all terminals which are transmitting within the frequency band of interest,

during the time interval of interest (e.g., a symbol or packet time), and hence are

effectively contributing to the interference. Then, irrespective of the network topology

(e.g., point-to-point or broadcast) or multiple-access technique (e.g., time or frequency

hopping), the proposed model depends only on the density A of interfering nodes.' In

what follows, we will use interchangeably the terms node, interferer, user and terminal

to mean interfering node.

The proposed spatial model is depicted in Fig. 2.1. For analytical purposes, we

assume there is a probe link composed of two probe nodes: one receiver node, located

at the origin, and one transmitter node (node i = 0), deterministically located at a

distance ro from the origin.2 All the other nodes (i = 1... oo) are interfering nodes,
1Time and frequency hopping can be easily accommodated in this model, using the splitting prop-

erty of Poisson processes to obtain the effective density of nodes that conitribute to the interference.
2 Lowercase letters are used to denote deterministic quantities, while uppercase letters are used for



whose random distances to the origin are denoted by {Ri}', where R 1 • R 2  ....

Our goal is then to determine the effect of the interfering nodes on the probe link.

2.2 Transmission Characteristics of the Nodes

To account for the transmission characteristics of users, we consider that all interfering

nodes employ the same linear modulation scheme, such as M-ary phase shift keying

(M-PSK) or FM-ary quadrature amplitude modulation (M-QAM). Furthermore, they

all transmit at the same power P - a plausible constraint when power control is too

complex to implement (e.g., decentralized ad-hoc networks). For generality, however,

we allow the probe transmitter to employ an arbitrary linear modulation and arbitrary

power P0, not necessarily equal to those used by the interfering nodes.

The case where the probe and interfering nodes use a different modulation and

power may c-orrespond to an heterogeneous scenario with a large number of identical

secondary users (e.g., cognitive-radio terminals) interfering on a primary link. The case

where the probe and interfering nodes use the same modulation and power, on the other

hand, may correspond to a sensor network scenario, where there is a large number of

indistinguishable, spatially scattered nodes, with similar transmission characteristics.

In terms of synchronization, we consider an asynchronous system where different

terminals are allowed to operate independently. As depicted in Fig. 2.2, node i trans-

mits with a random delay Di relative to node 0, where Di - AU(O, T). Thus, node 0

initiates symbol transmissions at times nT by convention, while node i initiates symbol

transmissions at times nT + Di. Note that to analyze the error probability and channel

capacity, we only need to consider one symbol interval, 0 < t < T; to characterize the

spectrum of interference, on the other hand, we need consider the waveforms over all

time, -oo < t < +oo.

Lastly, in terms of demodulation, the probe receiver 3 employs a conventional linear

detector. Typically, parameters such as the spatial density of interferers and the prop-

stochastic quantities.
3 The other receiver nodes are not relevant for the analysis, since they do not cause interference.
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Figure 2.2: Asynchronism between different transmitting nodes. In the observation
interval [0, T], a change in constellation symbol of node i occurs at random time t = Di,
from vE-e je i to V/Ee j oe . The distribution of Di is assumed to be 11(0, T).

agation characteristics of the medium (e.g., shadowing and path loss parameters) are

unknown to the receiver. This lack of information about the interference, together with

constraints on receiver complexity, justify the use of a simple linear detector, which is

optimal in the presence of AWGN.

2.3 Propagation Characteristics of the Medium

To account for the propagation characteristics of the environment, we assume a 1/rb

median signal amplitude decay with distance r. The parameter b is environment-

dependent, and can approximately range from 1 (e.g., hallways inside buildings) to

4 (e.g., dense urban environments). 4 Table 2.1 gives typical values of b for different

environments [13, 14]. The use of such decay law also ensures that interferers located

far away from the origin have a negligible contribution to the total interference observed

at that point, thus making the infinite-plane assumption reasonable.

'In this thesis, we will refer to b as the "amplitude loss exponent", which corresponds to a decay in
signal amplitude, not in signal power.

symbols:

node 0

symbols:

node i



Environment Range for b

Free space 1

Two-ray model 2

Urban macrocell 1.8 - 3.5

Urban microcell 1.3 - 1.7

Office building 1 - 3

Factory 0.8 - 1.6

Home 1.5

Table 2.1: Typical signal amplitude loss exponents b for various environments.

Experimental results show that the 1/rb deterministic propagation law is only the

median behavior of the signal. Typically, a signal transmitted through a wireless chan-

nel will experience random variation due to blockage from objects in the signal path

(shadowing), and constructive-destructive addition of different multipath components

(multipath fading). These two random effects are independent and multiplicative.

In this thesis, we use a log-normal model to capture the shadowing effect. Specifi-

cally, the corresponding received signal strength S is log-normal distributed with p.d.f.

given by
1 1 s

fs(s) = exp In2 ( S > 0 (2.1)

where Ip = K/rb is the median of S for some constant K, and a = as/ 2 . The parame-

ter as, is the standard deviation of the instantaneous power, whose typical values range

from 6 to 12 dB, depending on the environment [15, 161. In this model, the shadowing

is responsible for random fluctuations in the signal level around the deterministic path

loss K/rb. A useful fact is that a log-normal r.v. S with parameters y and a can be

expressed as S = jPe G, where G - Af(0, 1).

The multipath effect is modeled as frequency-flat Rayleigh fading, which is superim-

posed on the path-loss and shadowing of (2.1). Specifically, the Rayleigh fading affects

the received signal by introducing a random phase 0 - U(0, 27r), as well as an amplitude



factor a which is Rayleigh distributed with p.d.f. given by

f·(a) = ( exp , a > 0. (2.2)

For normalization purposes, the parameter 3 is chosen such that the fading has unit

power gain, i.e., E{a 2} = 1.

We have thus a combined model for the path-loss, log-normal shadowing, and

Rayleigh fading, where the overall effect of the channel propagation is captured by

an amplitude factor rKb and a uniform phase q. The variations in the signal level

due to shadowing are usually slow, since they occur over distances that are proportional

to the length of the obstruction object (typically, 10 - 100 m). On the other hand, the

variations due to multipath fading are usually fast, occurring over distances on the

order of the signal wavelength.

In the following chapters, we assume the shadowing and multipath fading are inde-

pendent for different nodes i, and approximately constant during at least one symbol

interval. Additionally, the probe receiver can perfectly estimate the shadowing and

fading affecting its own link, hence ensuring that coherent demodulation of the desired

signal is possible.



Chapter 3

Representation and Distribution of the

Interference

In this chapter, we characterize the cumulative interference measured at the origin

of the two-dimensional plane, in terms of its probability distribution. Two distinct

scenarios are considered: one where the interfering nodes are immobile or slow-moving,

and the other where their positions change quickly with time. The resulting probability

distributions will be used in later chapters to analyze the error probability and capacity

of the probe link.

3.1 Complex Baseband Representation of the Inter-

ference

Under the system model described in Chapter 2, the cumulative signal Z(t) received

by the probe node at the origin can be written as

Z(t) - a= e° \/2Eo cos(2rfct + Oo) + Y(t) + W(t), O < t < T, (3.1)0 b T



where the first right-hand term is the desired signal from the transmitter probe node,

Y(t) is the cumulative interference with

Rii+ aieGi cos(2ft + O + )u(t - Di)) , 0 t < T, (3.2)

and W(t) is the AWGN with two-sided power spectral density No/2, and independent

of Y(t).

The overall effect of the path loss, log-normal shadowing, and Rayleigh fading on

node i is captured by the amplitude factor aie'Gi/Rb, where Gi -•- (0, 1), and by the

uniform phase O5.1 The meaning of the remaining parameters is apparent from Fig. 2.2.

We assume that r.v.'s ai, 0i, Gi, Di, E,, E', Oi, and 0' are statistically independent for

different nodes i. In addition, each node transmits a sequence of i.i.d. symbols.

The probe node located at the origin receives and demodulates the cumulative

signal Z(t), using a simple linear detector. This can be achieved by projecting Z(t) onto

the orthonormal set { 1 (t) = - cos(2xft), 'fc(t)2(t)= - sin(2rft)}. By defining

Z = foT Z(t)4•j(t)dt, j = 1, 2, we can write

Zg a- eGO- =-Eo cos 80 + Yl + W1 (3.3)

2 = Eosino+Y + Y2 + W 2, (3.4)r-

where W1 and W2 are A/(0, No/2) and mutually independent. After some algebra

(Appendix A), Y, and Y2 can be expressed as

fT 0 eiX (3.5)
Y, = Y(t)Oj(t)dt = (35)

Y2 TY( 2(t)dt = (3.6)

1Since we assume the probe receiver perfectly estimates the phase o0 of the multipath fading
affecting its own link, we can set ¢o = 0 without loss of generality.



where

Xil= ac [-v§i cos(9, + 0) + E (1 - ) cos(O' + Oi)]

Xi2= ai [V 11 sin(6-i +i O) + / (1 - D) sin(0( + O)] .

By defining the following complex quantities2

Z = ZI + jZ 2

Y = Y + jY2

W = W1 +jW 2

Xi = Xil + jXi2,

we can rewrite (3.3)-(3.8) in complex baseband notation as

7Go

Z = te V- oeij o + Y + W
Z rob

SeaGi X
Y =b
i= 1 R

eT
Di+ E e3oj- --'e (3.11)

and the distribution of W is given by

W ~ c (0, No). (3.12)

Since different interferers i transmit asynchronously and independently, the r.v.'s {X }i%=1

are also independent.

In what follows, we derive the distribution of Y for two important cases: the

P-conditioned and unconditional cases. We will use P as a shorthand for "a partic-

ular realization of the location {Ri })° and shadowing {Gij})j of the interferers", or

2Boldface letters are used to denote complex quantities.

(3.7)

(3.8)

where

(3.9)

(3.10)

X, = eO
j o i



more succinctly, the "position of the interferers". The P-conditioned characterization

of Y is useful in scenarios where the interfering nodes are immobile or slow-moving.

The unconditional characterization, on the other hand, is relevant when the interferer

positions change quickly in time.

3.2 P-conditioned Interference Distribution

Consider, for example, a congested urban scenario where the interfering nodes are

spatially scattered. These nodes are subject to shadowing due to blockage from the

surrounding buildings and trees. Typically, the movement of the nodes during the

interval of interest (e.g., a symbol or packet time) is negligible. This has two implica-

tions: 1) the distances {Ri}l= 1 of the interferers to the origin vary slowly; and 2) the

shadowing {Gi}Gl affecting those nodes also varies slowly, since the shadowing is it-

self associated with the movement of the nodes near large blocking objects. In this

quasi-static scenario, it is insightful to condition the interference analysis on a given

realization P of the distances {Ri}'=l and shadowing { Gi• 1, of the interferers. This

will enable the derivation of the error outage probability of the probe link - a more

meaningful metric than the average error probability, in the case of slow-varying P (17].

Because of its fast nature, the Rayleigh fading is averaged out in the analysis, no matter

whether we condition on P or not.

We now derive the P-conditioned distribution of the cumulative interference Y given

in (3.10)-(3.11). The work in [181 shows that Xi in (3.11) can be well approximated by

a CS complex Gaussian r.v., such that

Xi - NVc(O, 2Vx), Vx = V{Xij}, i > 1. (3.13)

Then, conditioned on P, the interference Y = =becomes a sum of indepen-

dent CS Gaussian r.v.'s and is therefore a CS Gaussian r.v. given by

Y IN r(0, 2AVx), (3.14)



where A is defined as
0 2aG i

A = b2 . (3.15)
i=-1 i

Furthermore, after some algebra (Appendix B), Vx can be expressed as

= E{Ei} E{ jE cos(i - )} (3.16)Vx = + Z 6 I 1. (3.16)

Because the r.v.'s {Xi}ý_ 1 are i.i.d., Vx does not depend on i and is only a function

of the interferers' signal constellation. For the case of equiprobable symbols and a

constellation that is symmetric with respect to the origin of the IQ-plane3 (e.g., M-PSK

and M-QAM), the second right-hand term in (3.16) vanishes and Vx = E/3, where

E = E{Ei}, i > 1 is the average symbol energy transmitted by each interfering node.

3.3 Unconditional Interference Distribution

The P-conditioned characterization of Y given in the previous section is useful when

the interfering nodes are immobile or slow-moving. However, it is sometimes more use-

ful to compute the distribution of the interference averaged over the user positions P.

Consider, for example, a sensor network (or any packet network) composed of many

scattered nodes with a short session life, i.e., each node periodically becomes active,

transmits a burst of symbols, and then turns off. Then, the set of interfering nodes

(i.e., the set of nodes that are transmitting and contributing to the interference) changes

often, and so do their distances {Rj}j__ and shadowing {Gj})j . In this dynamic sce-

nario, it is insightful to average the interference analysis over all possible realizations

of user positions P.

We now derive the unconditional distribution of the cumulative interference Y given

in (3.10)-(3.11). It is known that sums of the form of (3.10), where the r.v.'s {Ri}

correspond to distances in a Poisson point-process and the {Xij have a CS distribution,

belong to the class of stable distributions [8, 10], whose definition and properties were
3 A constellation is said to be symmetric with respect to the origin if for every constellation

point (x, y), the point (-x, -y) also belongs to the constellation.



briefly reviewed in Section 1.3. The complex r.v. Xi defined in (3.11) has in fact a CS

distribution, since the phase q5 introduced by the Rayleigh fading is uniform in the

interval [0,27r]. Then, Appendix C shows that the cumulative interference Y at the

origin has a CS complex stable distribution given by

Y ,-c (,S = , y = 0, yy = A7C- e2 2/b2E X,,2/b (3.17)

where 0 < ay < 2 (or equivalently, b > 1), and Cx is given by

1--x

C = x 1,(3.1)
cx - F(2-x cos(nx/2)' (3.18)

Both real and imaginary components of r.v. Y have real, symmetric, stable p.d.f.'s,

similar to those shown in Figs. 1.1 and 1.3. Using (3.7)-(3.8), we can further express

E Xiyj 2/b in (3.17) as

EjXiyj2/b - EaOi 2/bE -cs(0i +D i) (- Di) (9 + 2/b

T T,

=x(b)

= (1i . x(b), (3.19)

where we have used the moment relation for the Rayleigh r.v.'s ai [191. Since different

interferers i transmit asynchronously and independently, the parameter X(b) does not

depend on i and is only a function of the amplitude loss exponent b and the interferers'

signal constellation. Table 3.1 provides some numerical values for EIXijl2/b

3.4 Discussion

The results of this chapter have to be interpreted with care, because of the different

types of conditioning involved. In the unconditional case, we let P be random (i.e., we

let {R••, be the random outcomes of an underlying Poisson point process, and {Gi•}__



pl/b

b BPSK I QPSK

1.5 0.374 0.385

2 0.423 0.441

3 0.509 0.531

4 0.576 0.599

Table 3.1: EIXijl 2/b for various amplitude loss exponents b and modulations. Note that
for M-PSK modulations, this quantity is proportional to /b, where E is the average
symbol energy transmitted by each interfering node.

be the random shadowing affecting each interferer). Then, the unconditional interfer-

ence Y is exactly stable-distributed and given by (3.17).

In the P-conditioned case, however, the positions of the interferers are fixed. Then,

A in (3.15) is also a fixed number, and the interference Y is approximately CS Gaussian

with total variance 2AVx, as given in (3.14). Note that since A in (3.15) depends on

the user positions P (i.e., {Ri)}z and {Gil"I), it can be seen as a r.v. whose value is

different for each realization of P. Furthermore, Appendix D shows that r.v. A has a

skewed stable distribution given by

(A 20,
• - l b2)  (3.20)

A S a = b, PA = 1, A = 1/b ,(3.20)

where 0 < aA < 1 (or equivalently, b > 1) and C, is defined in (3.18). This distribution

is plotted in Fig. 3.1 for different b and A.
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Figure 3.1: P.d.f. of A for different amplitude loss exponents b and interferer densities A.



Chapter 4

Error Probability

In Chapter 3, we analyzed the distribution of the cumulative interference Y measured

at the origin. In this chapter, we build on those results and characterize the error

performance of the probe link, when subject to both interference and thermal noise.

We analyze both cases of slow and fast-varying interferer positions.

4.1 Slow-varying Interferer Positions P

As with the interference distribution, in the quasi-static scenario of slow-moving nodes

it is insightful to analyze the error probability conditioned on a given realization P of

the distances {Ril}, and shadowing {Gi •I, of the interferers, as well as on the shad-

owing Go of the probe transmitter node. We denote this conditional error probability

by Pe(Go, P).' Again, the fast Rayleigh fading is averaged out in the analysis.

To derive the error probability, we use the results of Section 3.2 for the P-conditioned

distribution of the cumulative interference Y. Specifically, using (3.12) and (3.14), the

cumulative received signal Z in (3.9) can be rewritten as

Z = V~eoaej• ° + W/', (4.1)
(X, Y) is used as a shorthand for

'The notation Pe(X, Y) is used as a shorthand for P{errorjX, Y}.



where

W' = Y + W N A(O, 2AVx + No), (4.2)

and A was defined in (3.15) as
00 2aGi

A = e R2 b (4.3)
i=- -1 "

We have thus reduced the analysis to a Gaussian problem, where the combined noise W'

is (approximately) Gaussian when conditioned on the location of the interferers. The

corresponding error probability Pe(Go, 7) can be found by taking the well-known error

probability expressions for detection of linear modulations in the presence of AWGN

and fast fading [20-22], but using 2AVx + No instead of No for the total noise variance.

Note that this substitution is valid for any linear modulation, allowing the traditional

results to be extended to include the effect of interference.

In the general case where the probe transmitter employs an arbitrary signal constel-

lation in the IQ-plane, the resulting symbol error probability conditioned on Go and P

is given by

M 1 t
Pe(Go, 7) = Z-Pk 2~ k + 4 sin2(0k ,l A dO (4.4)

k=1 lEBk(

where
e2cGoEo

77A = (4.5)
A = rb(2AVx + No)

is the received signal-to-interference-plus-noise ratio (SINR), averaged over the fast

fading; M is the constellation size; {PkI}Fl are the symbol probabilities; Bk, k,1, Wk,1,

and /k,l are the parameters that describe the geometry of the constellation (see Fig. 4.1);

Eo = E{Eo} is the average symbol energy transmitted by probe node 0; A and Vx are

given in (3.15) and (3.16), respectively. When the probe transmitter employs M-PSK

and M-QAM modulations with equiprobable symbols, (4.4) reduces to2

Pe(PSK(Go,-P) = A( 1ir, sin2 (i)) (4.6)

2For M-QAM, we implicitly assume a square signal constellation with M = 2n points (n even).



Figure 4.1: Typical decision region associated with symbol sl. In general, for a con-
stellation with signal points sk = Sk leJkk and (k =  I 2, k = 1... M, four parameters
are required to compute the error probability: Ck,l and V'k,l are the angles that describe
the decision region corresponding to sk (as depicted); Bk is the set consisting of the
indices for the signal points that share a decision boundary with sk (in the example,
B1 = {2, 3, 4}); and Wk,l = (k + ( --2 vkCcos(C k -- 1)•

pMQAMI(Go1P) = 4 1( 1 A(, ) (7-4 1( - ) 2A( (4.7)

where A(x, g) is given by

A(x, g) = + dO. (4.8)

In the general expression given in (4.4)-(4.5), the network interference is accounted

for by the term 2AVx, where A depends on the interferer spatial distribution and

medium propagation characteristics, while Vx depends on the interferer transmission

characteristics. Since 2AVx simply adds to No, we conclude that the effect of the in-

terference on the error probability is simply to increase the noise level, a fact which is

intuitively satisfying. Furthermore, note that the modulation of the interfering nodes

affects the term Vx only, while the (possibly different) modulation of the probe trans-

mitter affects the type of error probability expression, leading to forms such as (4.6) or

(4.7).



In our quasi-static model, the conditional error probability in (4.4) is seen to be a

function of the slow-varying user positions and shadowing (i.e., Go and 7). Since these

quantities are random, the error probability itself is a r.v. Then, with some probability,

Go and P are such that the error probability of the probe link is above some threshold

probability p*. The system is said to be in outage, and the error outage probability is

Pout = PGo,p(Pe(Go, P) > p*), (4.9)

In the case of slow-varying user positions, the error outage probability is a more mean-

ingful metric than the error probability averaged over Go and P.

4.2 Fast-varying Interferer Positions P

The P-conditioned error probability given in the previous section is useful when the

interfering nodes are immobile or slow-moving. However, there are cases (e.g., packet

networks with short session life) where the set of interfering nodes changes often, and

thus their distances {Ri} 1l and shadowing {Gj}= 1 also change quickly with time. In

this dynamic scenario, it is insightful to average the error probability over all possi-

ble realizations of interferer positions 7P. We denote this average error probability by

Pe(Go). Note that we choose not to average out the shadowing Go of the probe trans-

mitter, since we have assumed the probe transmitter node is immobile at a deterministic

distance ro from the origin, and thus Go is slow-varying.

To derive the error probability, we use the results of Section 3.3 for the unconditional

distribution of the cumulative interference Y. Specifically, using the fact that any stable

r.v. is conditionally Gaussian (i.e., Property 1.2), the cumulative interference Y in (3.17)

can expressed as

Y = VK G, (4.10)

where

B S( S B = , PB = 1, YB = COS (4.11)



G -AN (0,2VG), VG = 2e2 2 /b (ArO2EIXiI12/b)b, i > 1, (4.12)

with EIX lI,/b given in (3.19). Conditioning on r.v. B, we then use (3.12) and (4.10) to

rewrite the cumulative received signal Z in (3.9) as

Z oe= a EGoejO-o + W',

where

W' =VBG + W AKe (0, 2BVG + No). (4.13)

We have again reduced the analysis to a Gaussian problem, where the combined noise W'

is a Gaussian r.v. Note that this result was derived without recurring to any approxi-

mations - in particular, the Gaussian approximation of (3.13) was not needed here. We

merely used the decomposition property of stable r.v.'s.

The corresponding error probability Pe(Go) can be found by taking the well-known

error probability expressions for detection of linear modulations in the presence of

AWGN and fast fading 120-22], using BVG + No/2 instead of No for the total noise

variance, and then averaging over the r.v. B. Note that this procedure is valid for any

linear modulation, allowing the traditional results to be extended to include the effect

of interference.

In the general case where the probe transmitter employs an arbitrary signal con-

stellation in the IQ-plane, the resulting symbol error probability conditioned on Go is

given by

Pe(Go) = k E EB 1 + 4 sin2( 0 + k,) B dO (4.14)
k=1 IEBk

where
e2aoGo0

71B = r2b(2BV + No) (4.15)

M is the constellation size; {Pk}k=1 are the symbol probabilities; Bk, 7k,1, Wk,1, and

Ck,l are the parameters that describe the geometry of the constellation (see Fig. 4.1);



Eo = E{Eo} is the average symbol energy transmitted by probe node 0; B and VG are

given in (4.11) and (4.12), respectively. When the probe transmitter employs M-PSK

and M-QAM modulations with equiprobable symbols, (4.4) reduces to3

PePSK (Go) = A(A17r, sin 2 (i)) (4.16)

pMQAM(Go) = 4 1 - A - 41 - A - ) (4.17)"e A 2-2(-1)o 4 ,2(M-1) 4 -,2 l

where A(x, g) is given by

A = 1  EB 1 + % ) dO. (4.18)A Xog) sin2 =

In our dynamic model, the error probability in (4.14) is seen to be a function of the

random shadowing Go of the probe link, and is therefore random. Then, with some

probability, the slow-varying Go is such that the error probability of the probe link is

above some threshold probability p*, leading to an outage. The corresponding outage

probability can thus be defined as

pet = PGo(Pe(Go0 ) > p*), (4.19)

In the case of fast-varying user positions, both Pe(Go) and Poet are useful and insightful

performance metrics.

4.3 Discussion

In this chapter, we have analyzed the error probability of the probe link when subject

to both network self-interference and thermal noise, and considered two distinct cases

which differ only in the mobility of the interferers: the static and the dynamic scenario.

The results of Section 4.1 for the static case are approximate, because they rely on

approximation of Xi by a Gaussian distribution, as shown in (3.13). On the other

hand, the results of Section 4.2 for the dynamic case are exact, since were derived

3 For M-QAM, we implicitly assume a square signal constellation with M = 2n points (n even).



without recurring to the Gaussian approximation.

In addition, note that an approximation to error probability Pe(Go) in (4.14) can be

obtained by averaging Pe(Go, P) in (4.4) over the interferer positions 7, i.e., Pe(Go)

Ep {Pe(Go, :P)}. Again, this is not exact because the expression for Pe(Go, P) relies on

the Gaussian approximation, while that for Pe(Go) does not.

We now analyze the dependence of the error performance on the density A of inter-

fering nodes, and the average symbol energy E transmitted by each interfering node.

For that purpose, we use (4.4), although (4.14) would lead to similar conclusions. In

(4.4), the error probability Pe(Go, P) implicitly depends on parameters A and E through

the product AVx in the denominator. This is because the dispersion parameter /YA of

the stable r.v. A depends on A according to (3.20), and Vx is proportional to E as

in (3.16). The dependence on A can be made evident by using Property 1.1 to write

AVx = bA Vx, where A is a normalized version of A, independent of A. We thus

conclude that the interference term AVx is proportional to AbE, where b > 1 in the

proposed model. Clearly, the error performance degrades faster with an increase in the

density of interferers than with an increase in their transmitted power.

The relation between E and A is illustrated in Fig. 4.2, which plots the pairs (A, INR =

E/No) that lead to a constant Poeut. Clearly, for a fixed error outage probability, there

is a tradeoff between the density and energy of the interferers: if E (or, equivalently,

the INR) increases, A must decrease, and vice-versa.

4.4 Plots

We now quantify the outage and error probabilities derived in this chapter for several

scenarios, and illustrate the dependence of these probabilities on the various parame-

ters involved, such as the signal-to-noise ratio SNR = Eo/No, the interference-to-noise

ratio INR = E/No, amplitude loss exponent b, interferer density A, and link length ro0.

Figures 4.3 to 4.4 illustrate the scenario of slow-varying interferer positions P, where

the adequate performance metric is the outage probability Peut given in (4.9). Two

subcases are analyzed:



INR (dB

interferer density k (m- 2

Figure 4.2: INR - A curves of constant Peut (BPSK, SNR = 40 dB, b = 2, ro = 1 m,
as = 10 dB, p* = 10-2).

1. Heterogeneous network: The probe transmitter is allowed to use an arbitrary

power Po, different from the common power of the interfering nodes P, and hence

SNR Z INR in general. This scenario is useful when the goal is to evaluate the

impact of a large number of identical secondary users (e.g., cognitive-radio termi-

nals) on the performance of a primary link.

2. Homogeneous network: The probe transmitter and interfering nodes all use the

same power, and thus SNR = INR. This may correspond to a sensor network

scenario, where there is a large number of indistinguishable, spatially scattered

nodes, with similar transmission characteristics. In such a case, the goal is to

evaluate the impact of the cumulative network self-interference on the performance

of each sensor node.

Figures 4.5 to 4.6 illustrate the scenario of fast-varying interferer positions P, where

the insightful performance metrics are the error probability Pe(Go) given in (4.14), or

the outage probability Plut given in (4.19). For simplicity, we choose to plot the former,

with Go = 1 (no shadowing on the main link). As in the case of slow-varying P, we



also analyze the subcases of heterogeneous and homogeneous networks.

For simplicity, the plots assume that all terminals (i.e., the probe transmitter and

interfering nodes) use BPSK modulation. To evaluate the corresponding PFut and

Pe(Go), we resort to a hybrid approach where we employ the analytical results given

in (4.4)-(4.9) and (4.14)-(4.18), but perform a Monte Carlo simulation of all the stable

r.v.'s involved (i.e., A and B) according to [23]. As an alternative, numerical inte-

gration of those equations is also possible, although computationally more involved.

We emphasize that the error probability expressions derived in this chapter completely

replace the need for bit-level simulation of the system in order to compute the error

performance.

For the heterogeneous case depicted in Figs. 4.3 and 4.5, we conclude that Peut and

Pe(Go) deteriorate as A or INR increase, for a fixed SNR. This is expected because as the

interferers' density or transmitted energy increase, the cumulative interference at the

probe receiver becomes stronger. Note, however, that in the homogeneous case where

SNR = INR, the error performance improves as we increase the common transmitted

power P of the nodes (or equivalently, the SNR), although the gains become marginally

small as P -- oc (see Figs. 4.4(b) and 4.6(b)). This happens because in the interference-

limited regime where SNR = INR > 1, the noise term No in (4.4) and (4.14) becomes

irrelevant, and so the SNR in the numerator cancels with the INR in the denominator,

making the performance independent of the transmitted power P.

The effect of the amplitude loss exponent b on the error performance, on the other

hand, cannot be easily described. As illustrated in Figs. 4.4(a) and 4.6(a), an increase

in b may degrade or improve the performance, depending on the value of the link

length ro and other parameters. This is because b affects both the received signal of

interest and the cumulative interference in a non-trivial way - in the former through

the term 1/rg; and in the latter through oA and yA in (3.20), or through aB, YB, and

VG in (4.11)-(4.12).
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(a) Pot versus the SNR of the probe link, for various interference-
to-noise ratios INR (BPSK, b =2, A = 0.01in- 2, ro= i,
as = 10dB, p* = 10-2).
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(b) Poet versus the SNR of the probe link, for various interferer
spatial densities A in in - 2 (BPSK, INR = 10 dB, b = 2, ro = 1 in,
a = 10 dB, p* = 10-2).

Figure 4.3: Error outage probability plots for a heterogeneous network
INR in general) and slow-varying interferer positions P.
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P t

probe link length ro (m)

(a) P,ut versus the length ro of the probe
link, for various signal loss exponents b (BPSK,
SNR = INR = 20dB, A = 0.01 n - 2, as = 10dB,

p* = 10-2).

P-

SNR = INR (dB)

(b) Poet versus the SNR, for various threshold
probabilities p* (BPSK, b = 2, A = 10- n1- 2,
as = 10dB).

interferer density X (m
-2

)

(c) Po•,, versus the interferer spatial density
for various SNRs of the probe link (BPSK, b =
ro = 1 im, as = 10 dB, p* = 10-2).

Figure 4.4: Error outage probability plots for a homogeneous network (where SNR =
INR) and slow-varying interferer positions P.

pot

5



Pe(Go)

0 5 10 15 20 25 30

SNR (dB)

(a) Pe(Go) versus the SNR of the probe link, for various interferer-
to-noise ratios INR (BPSK, Go = 0, b = 3, A = 0.01 m - 2 ro = 1 In,
as 10 dB).
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(b) Pe (Go) versus the SNR of the probe link, for various interferer
spatial densities A in m - 2 (BPSK, Go = 0, INR = 10dB, b = 3,
ro = 1 mn, as = 10 dB).

Figure 4.5: Average error probability plots for a heterogeneous network (where SNR $
INR in general) and fast-varying interferer positions P.
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(c) Pe(Go) versus the interferer spatial den-
sity A, for various SNRs of the probe link
(BPSK, Go = 0, b = 3, ro = 1 m, as = 10 dB).

Figure 4.6: Average error probability plots for a homogeneous network (where SNR =
INR) and fast-varying interferer positions P.
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Chapter 5

Channel Capacity

The channel capacity, a notion introduced by Shannon in the late 1940s, is an important

and useful characterization of a communication system. It corresponds to the maximum

rate that can be transmitted over a given channel, with asymptotically small error

probability. The capacity is thus a fundamental limit on the performance achievable

on a channel. Its definition is based on the notion of mutual information between the

input and output of a channel. More precisely, the capacity of a memoryless channel

is the maximum mutual information I(X; Y) between channel input X and output Y,

where the maximization is over all possible input probability distributions that satisfy

a given energy constraint. More details on mutual information, channel capacity, and

related coding theorems can be found in [24].

In this chapter, we build on the previous results and analyze the capacity of the

link between the probe transmitter and probe receiver, when subject to both network

self-interference and AWGN thermal noise. We will refer to this link as the probe

channel. Unlike the simple AWGN channel, here the capacity is not given by a single

formula, but depends on the assumptions we make about the shadowing, multipath

fading, and interferer mobility. In what follows, we perform the analysis assuming

that the location {Ri}J', and shadowing {Ga}~ 1 of the interferers remain constant for

all time (i.e., the P-conditioned case), as well as the shadowing Go affecting the probe

transmitter node. This models a quasi-static scenario where the movement of the nodes



during the interval of interest is negligible.' The Rayleigh fading, on the other hand, is

averaged out in the analysis, due to its fast nature. As we will see, these assumptions

naturally lead to a characterization of the channel capacity in terms of a capacity outage

probability.

The channel capacity depends also on what is known about the channel at the

probe transmitter and receiver. For consistency with previous chapters, we assume the

probe receiver can perfectly estimate the Rayleigh fading (ao and 0o) affecting its own

link. The probe transmitter, on the other hand, only has access to the probabilistic

description of the channel. This corresponds to the receiver channel side information

(CSI) scenario.

5.1 Capacity Outage Probability

We start with the complex baseband characterization of the probe channel, which can

be written as
e0oeaGoZ = S + W', (5.1)

where S is the (complex) channel input, Z is the (complex) channel output, and the

distribution of W' is given by

W' A ~Q(O, 2AVx + No),

with
00 2aG

iA= eRz2b. (5.2)

These are essentially the same baseband equations as those given in (4.1)-(4.3), but

where the transmitted constellation symbol vodejeo• has been replaced by a general

input symbol S, with an arbitrary distribution fs(s). This is emphasizes the fact that we

need to maximize the mutual information over all possible input distributions fs(s), and

thus cannot restrict S to belong to M-PSK or M-QAM constellations. In addition, we

1Unless otherwise indicated, we implicitly assume conditioning on P in the following.
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Figure 5.1: Channel model for capacity analysis.

impose an average energy constraint on the input symbol by requiring that EISI2 < Es.

Note that because of the conditioning on Go and P, equations (5.1)-(5.2) describe

a simple Gaussian channel depicted schematically in Fig. 5.1. The capacity of this

energy-constrained, fast fading channel with receiver CSI can be written as [25]

C = max I(S; ZIao).
fs: EISI2 PEs

The optimal input distribution that maximizes the mutual information is therefore

.N'(0, Es). With this input distribution,

I(S; Zjao = do) = 2 x
1

log2
2 ( +

do2 e2aGoEIW'- Es
EIW, 2

+ do2
2 aG oEs P

rob(2AVx + No)
bits/complex symbol.

Using the fact that I(S; Zlao) = Edo {I(S; ZIao = do)}, we obtain the capacity of the

channel as

C(Go, P) = Ea
log 2 ( 1+

02e2 aG + No)s
rib(2AVx + No)J

Go, A bits/complex symbol, (5.3)

where we have explicitly indicated the conditioning of C on the random user positions

and shadowing. Using the fact that a 2 _ Exp(/V),2 we can further express (5.3) in

2 The parameter A = vi ensures that the fading has unit power gain, i.e., E{( 2 } = 1.

= log 2 (1



terms of the exponential integral function [26] as

exp(-) 2_
C(Go, P) = ln(2) Ei - bits/complex symbol, (5.4)In(2) 7

where
e2aGofS

e 2=G T S ( 5 .5 )Srb (2AVx + N) (5.5)

is the received signal-to-interference-plus-noise ratio (SINR), averaged over the fast

fading.

In our quasi-static model, the maximum rate of reliable communication for a given

realization of Go and P is given by (5.4)-(5.5). This quantity is a function of the random

user positions and shadowing, and is therefore random. Then, with some probability,

Go and P are such that the capacity is below the transmission rate R, thus making the

channel unusable for communication with arbitrarily low error probability. The system

is said to be in outage, and the capacity outage probability is

PoCut = IGo, {C(Go,P) < R}, (5.6)

or, substituting (5.4)-(5.5) into (5.6),

Pc ~pt P71 n Ei< R . (5.7)
ou ln(2) 7

5.2 Plots

Figures 5.2 and 5.3 quantify the capacity error probability derived in this chapter, and

illustrate its dependence on the various parameters involved, such as the signal-to-noise

ratio SNR = Es/No, the interference-to-noise ratio INR = E/No, and spatial density A

of the interferers. For simplicity, the plots assume that all interfering nodes transmit

equiprobable symbols, belonging to a constellation that is symmetric with respect to the

origin of the IQ-plane (e.g., M-PSK and M-QAM). In this particular case, Vx = E/3
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Figure 5.2: Capacity outage probability PoCut versus the SNR of the probe link, for
various interferer-to-noise ratios INR (R = 1 bit/complex symbol, A = 0.01 m- 2 , b = 2,
ro = Im, a, = 10dB).

and (5.5) reduces to
e2 cGo SNR

= r2 ( 2AINR + 1)" (5.8)

To evaluate the corresponding PCut, we proceed as in Section 4.4. Specifically, we resort

to a hybrid approach where we employ the analytical result given in (5.7)-(5.8), but

perform a Monte Carlo simulation of the stable r.v. A according to [23]. As an alter-

native, numerical integration of (5.7)-(5.8) is also possible, although computationally

more involved. Again, the expressions derived in this chapter completely replace the

need for bit-level simulation of the system in order to compute the capacity metrics.
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Figure 5.3: Capacity outage probability P ut versus the transmission rate R, for various
interferer spatial densities A in m- 2 (SNR = INR = 20 dB, b = 2, ro = I m, as = 10 dB).
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Chapter 6

Spectral Characterization of the

Interference

The spectral occupancy and composition of the cumulative interference in a network

is an important consideration in the design of wireless networks. In sensor or mobile

networks, it is often desirable to know the spectral properties of the cumulative in-

terference generated by all the spatially scattered nodes. Due to the scarcity of the

electromagnetic spectrum, the communications designer has to ensure that the net-

work's spectral emission does not cause interference to other networks operating in the

same frequency band. In many commercial applications, the networks have to operate

under the restrictions imposed by a regulatory agency (e.g. the FCC), which often as-

sume the form of spectral masks. In military applications, on the other hand, the goal

is ensure that the presence of deployed networks is not detected by the enemy. If, for

example, a sensor network is to be deployed in enemy territory, then the knowledge

of the cumulative network emission measured any location in space is essential for the

design of a covert system.

In this chapter, we analyze the power spectral density (PSD) of the cumulative

interference process Y(t), measured at the origin of the two-dimensional plane. The

spectral characteristics of Y(t) can be inferred from the knowledge of its PSD. We

perform the analysis assuming that the location {Rj }_ 1' and shadowing {G }l" 1 of the



interferers remain constant for all time, i.e., the P-conditioned case.' This models a

quasi-static scenario where the movement of the nodes during the interval of interest is

negligible. Furthermore, it will enable the derivation of a spectral outage probability -

a more meaningful metric than the PSD averaged over 7, in the case of slow-varying P.

Because of its fast nature, the Rayleigh fading is averaged out in the analysis.

6.1 Power Spectral Density of the Interference

The cumulative interference at the origin can be characterized by the complex baseband

random process Y(t), defined as

Y(t) = Yi(t), (6.1)
i=1

where Yi(t) is the received process associated with interferer i,

00O ,n e j i n
eGi

Y%(t) = E r ai,np(t - nT - Di), -oo < t < +oo. (6.2)
n=-oo00

This is essentially the same model employed in the previous chapters, but with the

inclusion of a generic shaping pulse p(t), which is normalized to have unit energy, i.e.,

Ilp(t)1J2 = 1. In Chapters 3-5, we implicitly assumed p(t) was rectangular, since the

spectral characteristics of the interference were not of concern. Here, however, our

goal is to analyze the spectral properties of Y(t), so we incorporate in the model a

generic, real, baseband pulse p(t), defined over all time oo00 < t < +oo. Also, since in

this chapter we are only interested in the cumulative effect of the interferers, we can

ignore the existence of the probe link introduced in Chapter 2.

The sequence {ai,+}n=_oo in (6.2) represents the stream of complex symbols trans-

mitted by interferer i, assumed i.i.d. in n and zero-mean, for simplicity. The type

of constellation employed by the interferers (e.g., M-PSK or M-QAM) is captured

by the statistics of the symbols {ai,n}. 2 Each interferer i is also affected by a se-

'Unless otherwise indicated, we implicitly assume conditioning on P in the following.
2Note that each symbol ai,, can be represented in the IQ-plane as the constellation



quence f ai,ne ± ) =_-oo with arbitrary autocorrelation in n, which models the fast

Rayleigh fading assumed in previous chapters. Furthermore, in what follows we carry

the analysis in complex baseband, although it can be trivially extended to passband

frequencies.

The random processes Yi(t) and Y(t) can be shown to be WSS: first, if we deter-

ministically set Di to zero in (6.2), the resulting process Yi(t) is WSCS 127]; then, since

Yi(t) = Y (t - D2 ), where Di - U (0, T) and independent everything else, it follows that

Yi(t) is WSS and thus the cumulative process Y(t) is also WSS.

We now wish to compute the PSD of the process Y(t), defined as

Sy(f) = = {Ry(T)},

where Ry(7) = E{Y(t)Y*(t + -7)} is the autocorrelation function of Y(t). Because the

processes Yi(t) associated with different interferers i are statistically independent, we

can write
00

Sy(f) = ZSy,(f). (6.3)
i=1

We then define ~,= aai,ne inin',ngeGiI/R b and rewrite (6.2) as Yi(t) = =+ ,

nT - D1), whose PSD is equal to [28,29] IP(f)I 2 E(ai,j2/T, since the sequence {~.,n}

is i.i.d. zero-mean. Conditioned on P, both RP and Gi are constant, so Eliii,n2 =

Elai,n2e2 Gi ,/R2b and thus

Sy,(f) = P(f) 12 Ea,2 e2Gi (6.4)T R6b

Combining (6.1) and (6.4), we finally obtain the desired PSD of the conditional cumu-

lative interference Y(t),
Sy(f, 7P) - IP(f)12

SY(f, P= T Ela 2 A, (6.5)

point e/e,-e



where A was defined in (3.15) to be

2aGi

A = . (6.6)
i= 1 i

Note in (6.5) that we have explicitly indicated the conditioning of Sy on the random

user positions and shadowing, P. Since A depends on P (i.e., {RI}j 1 and {Gj}'jI),

for each realization of P we obtain a realization of the cumulative spectrum Sy(f, P).

Then, for a fixed f, Sy(f, 7) can be seen as r.v. whose value is different for each

realization of user positions and shadowing.3 Finally, we recall that A, when seen as a

r.v., has a skewed stable distribution given by (3.20), and repeated here for convenience:

A - S ( 1A - I, 1A A rCAe2l2/b2). (6.7)

6.2 Spectral Outage Probability

In our quasi-static scenario, the PSD of the cumulative interference, Sy(f, 7), is a

function of the random user positions and shadowing, P. Then, with some probability,

P is such that the interference spectrum is too high in some frequency band of interest,

thus making that band unusable for communications. This leads to the concept of

spectral outage probability (SOP), which we denote by P.ut(f) and generally define as

pSut(f) = Pp{Sy(f, P) > m(f)}, (6.8)

where Sy(f, P) is the (random) PSD of the cumulative interference process Y(t), and

m(f) is some spectral mask determining the outage threshold at the receiver. The SOP

is a frequency-dependent quantity and, in the case of slow-varying user positions P, is

a more meaningful metric than the PSD averaged over P. Note that this definition is

applicable in general to any interference model: the spectral outage probability Pout (f)

3Sy(f,P) is in fact a random process whose sample paths evolve in fr.equency instead of time.
For each realization P = Po, we obtain a sample path Sy(f, Po) that is a function of f; for a fixed
frequency f = fo, Sy(fo,P) is a r.v.



represents the probability that the PSD of the cumulative interference, measured at an

arbitrary location in the plane and at a particular frequency, exceeds some predeter-

mined mask.

The function m(f) may correspond to a frequency-dependent mask imposed by

regulatory agencies, with the purpose of limiting the cumulative interference generated

by a network, and protecting other services that operate in dedicated bands (e.g., GPS,

public safety, and cellular systems). Current regulations and standards (e.g., FCC

Part 15 or IEEE 802.11) impose a spectral mask on the transmitted PSD, and the

type of mask often depends on the environment in which the devices are operated

(e.g., indoor or outdoor). However, the transmitted PSD is usually not representative

of the cumulative PSD at the receiver, due to random propagation effects (shadowing

and multipath fading), and accumulation of signals from randomly located interfering

nodes. In this chapter, we propose a radically different approach: the mask m(f) in (6.8)

represents the outage threshold with respect to the interference PSD accumulated at

the receiver, not the PSD at the transmitter (this follows from the fact that Sy(f, 7P) is

measured at an arbitrary position in the plane, where a probe receiver could be located).

The received interference spectrum Sy(f, P) and the corresponding PSut (f) can be used

to control the network interference more effectively, since they consider the cumulative

effect of all interfering nodes at an arbitrary receiver location, and incorporate both

random propagation effects and random interferer positions. Furthermore, the use

of different masks for indoor or outdoor environments is now unnecessary, since the

environment is already accounted for in our model by parameters such as the amplitude

loss exponent b, the interferer density A, or the shadowing coefficient as.

For the interference model we have assumed in (6.1)-(6.2), PSut (f) can be computed

by substituting (6.5) into (6.8), which leads to

P'(f) = ]P A > Tm(f) }
= (1-Tm(f FA) (6.9)

where FA(.) is the c.d.f. of the stable r.v. A, whose p.d.f. is given in (6.7). Since



FA(.) cannot be expressed in closed form except in the case where b = 2, (6.9) must be

computed numerically for each frequency f. In the case of slow-varying user positions,

the spectral outage probability is a more meaningful metric than the PSD averaged

over P.

6.3 Discussion

Up until Chapter 6, we considered the case where the modulation of the interfering

nodes and the (possibly different) modulation of the probe transmitter are all linear,

and analyzed the error performance and capacity of the probe link, when subject to

interference and noise. In many cases, however, it is desirable to consider the general

case where the interfering nodes and probe link employ different types of modulation,

symbol rates, and carrier frequencies. For example, we may be interested in evaluating

the impact of the interference generated by a scattered sensor network on a primary link,

where the sensor nodes transmit at carrier frequency fo using low data rate BPSK, while

the primary nodes transmit in the same frequency band at carrier frequency fi, using

high data rate 16-FSK. Because the error and capacity analysis is highly dependent

on the characteristics of the primary link affected by the interference, the results in

the previous chapters do not hold directly. However, all the spectral characterization

results in this chapter apply without change, since they depend on the interfering nodes,

not on the particularities of link subject to the interference. This reasoning justifies

why interference control can be better accomplished through spectral restrictions (e.g. a

maximum spectral outage probability), rather than restrictions in the error or capacity

performance (e.g. a maximum error or capacity outage probability).

6.4 Plots

We now quantify the spectral densities and outage probabilities derived in previous

sections, and illustrate their dependence on the various parameters involved, such as

the pulse shape p(t), spectral mask m(f), transmitted power P = El, and density A



of the interfering nodes.

From Figs. 6.1 and 6.2, we see that the outage probability PoSut(f) is a frequency-

dependent quantity which resembles the spectrum JP(f)J of the transmitted pulse. In

fact, Put(f) is a nonlinear function of IP(f)l, where the nonlinearity is determined

by the c.d.f. FA(-) of the stable r.v. A, as shown in (6.9). Since Pout (f) incorporates

both P(f) and m(f), it quantifies how well the shape of the transmitted pulse in a

network is matched to the spectral regulations in the area, as imposed by regulatory

agencies. The spectral outage can also be used for pulse shape design, i.e., the baseband

pulse p(t) and transmitted power P should be such that maxf POut (f) : p*, where p*

is some target outage probability which should be satisfied at all frequencies (e.g., in

commercial applications, to ensure that the restrictions imposed by a regulatory agency

are met; or in military applications, to guarantee that the presence of a surveillance

network deployed in enemy territory is not detected).

Figures 6.3 and 6.4 illustrate the dependence of the outage probability Pout(f) on

the interferers' transmitted power P and spatial density A. Specifically, as P or A

increase, the cumulative interference becomes stronger, and thus Put(f) deteriorates

at all frequencies, approaching the maximum value of 1.

6.5 Generalizations

The results derived in this chapter hold without change if the following generalizations

are made: 1) the sequence {ai,n}n-oo, of symbols transmitted by interferer i is uncor-

related in n and zero-mean; and 2) the fading sequence {a1,neJ"}+'ý_•_, , which models

the fast fading affecting interferer i, can have an arbitrary joint distribution in n - in

particular, it needs not be Rayleigh distributed. These generalizations arise from the

fact that to derive the PSD, only the first and second-order statistics of {ai,n}, {ai,,},

and {•i,)} are required, not their full characterization.
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(a) PSD of the trainsmitted interfering signal versus frequency (bot-
tom), for various pulse shapes p(t). The square and Hanning
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(b) Spectral outage probability PSut(f) versus frequency, for the
piecewise-constant mask m(f) shown in (a).

Figure 6.1: Effect of the transmitted baseband pulse shape p(t) on the PSD and the
outage probability Pout(f) (P = 10dBm, T = 10-6s, A = 0.1m - 2 , b = 2, as = 10dB).
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Figure 6.2: Effect of the spectral mask shape m(f) on the outage probability Pot (f)
(square p(t), P = 10dBm, T = 10-6s, A = 0.1 m - 2 , b = 2, ao = 10dB).
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Figure 6.3: Spectral outage probability PSt (f) versus frequency,
mitted powers P (square p(t), T = 10-6 s, A = 0.1 m - 2 , b = 2, as
-60 dBm/Hz).
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Chapter 7

Conclusions and Future Research

This thesis investigates a mathematical model for communication subject to both inter-

ference and AWGN, where the spatial distribution of the nodes is captured by a Poisson

field in the two-dimensional plane. We consider both the scenarios of quasi-static and

dynamic nodes in a realistic wireless environment subject to path loss, log-normal shad-

owing, and fast Rayleigh fading. We then determine the statistical distribution of the

cumulative interference at the output of a simple linear receiver, which leads directly

to the characterization of the error probability and channel capacity.

We put forth the concept of spectral outage probability (SOP), which is can be used

to quantify and limit the impact of the network interference on any receiver operat-

ing in the same frequency band. We determine the power spectral density (PSD) of

the cumulative interference at any location in the plane, and then define and provide

expressions for the corresponding SOP.

Finally, we quantify the cumulative interference distribution, error performance,

channel capacity, PSD, and SOP as a function of various important system parameters,

such as the signal-to-noise ratio, interference-to-noise ratio, amplitude loss exponent,

and spatial density of the interferers. Our analysis clearly shows how the system per-

formance depends on these parameters, thereby providing insights that may be of value

to the network designer.

The proposed model is valid for any linear modulation scheme (e.g. M-PSK and

M-QAM), and captures all the essential physical parameters that affect network in-



terference. Nevertheless, it is simple enough to allow a tractable analysis and provide

fundamental insights. Finally, our work generalizes the conventional analysis of linear

detection in the presence of AWGN and fast fading, allowing the traditional results to

be extended to include the effect of interference.

Possible topics for future work include: 1) the extension of the proposed theory to

both multi-antenna systems and ultrawideband systems; and 2) the application of the

proposed theory to analyze the coexistence of ultrawideband and narrowband systems.



Appendix A

Derivation of the Interference

Representation in (3.9)-(3.12)

In this appendix, we derive the complex baseband representation of the interference

process Y(t), as given in (3.9)-(3.12). The real passband signal Y(t) can be projected

onto the basis function 01(t) = T cos(27rfet) in the following way:

i=1

i= 1

Y(t)j1 (t)dt

0T [

(A.1)

OieaGi -2Ei
IV - cos(2•rfct + Oi + ±O)u(Di - t)R' TT

+ ieRb •-i -+---V- cos(27rfct + 0' + i)u(t - Di)

2 Oie aGi

T Ri
E EK I Di

2 cos(27rfet)dt

cos(2ift + Oi + ~i) cos(2rfet)dt

+\E cos(27fat + 0 + Oi) cos(2,rft)dtj
Di

0£ 2 aie'Gi [EG Di=Z2 fo cos(0i + q5)dt + 2 cos(47rfct + Oi + Oi)dt

zO if fcT>1

00oo

i=1

(A.2)

(A.3)



+ 2 cos(6$ + Oi)dt + V
2J 2

zO if fcT>1

2 a e'Gi V[E-fDiz
T R 2 o cos(Oi + Oi)dt + cos(6O

ea(Gi, [ Di cos(O + Oi) + VE-(T - D) cos(O + qi)]

eaG i X'i

R b

DEi-D cos(0• + 4 i) +T E(1 - )cos(O
To obtain (A.4), we used the relation cos(a) cos(b) = 1 cos(a+b) cos(a-b). To obtain

(A.5), we used the fact that both fODt cos(47rfct+Oi+ i)dt and f cosn(47r ft+ ++i)dt

are close to zero with high probability, if .fT > 1.

The signal Y(t) can be projected onto the basis function 4'2 (t) = • sin(27rfct) in

an entirely analogous way, leading to

0 e.Gi Xi
2Y2 Ri b

i= t i

where

Xi2 = Ei V-D sin(Oi + ¢i) + EJl I
D )sin(o: + 0)] •

Then, Xil and Xi 2 can be combined in the complex r.v. Xi as

Xi =Xil + jXj2

VI- cos(OiT + ) + VE (1

+ jai [Ei-iT sin(Oi + Oi)

ai [ /s' Di d(+) +
(1 Di

D) cos(9~ + i)

1 - sin(O +

Tsa+

(A.4)

oO

i=1

i=1

where

(A.5)

(A.6)

(A.7)

Xi 1 = - i [ + i)]

=C [

+ ¢i)dt]

L..

=--



=O1J [Di l+ ( i - e+) oEi

which completes the derivation.





Appendix B

Derivation of Vx in (3.16)

The expression for Vx given in (3.16) can be derived as follows, for i > 1:

Ax =[V{Xij }
=V {T [V EDj cos(O + Oi) + E(T - Di) cos(O 0)]

E{Ei} E{Df}/ E ={cs2(6, + 0)

=T2/3 =1/2

+ E{2D(T - Dj)} E{ jE cos(6O + Oj) cos(69 + ¢j)}

=T2/3

+E±I{E} E{(T - Di) 2} E{cos 2(06 + 0,)}
=T2/3 =1/2

_E{E} + 1
3 6

E{EJ} E

E{ cýEE cos(O9 - 6)} + E{ EE-} I E{cos(6O + 0' + 20))}1
=0

{ VEEcos(0% - 90)}
3

We have used the fact that Di ~-• 1(0, T) and Oi - ,(0, 2rr), and that the r.v.'s ai, 0i,

Di, VEeie jsi, and V/Ee j °0 are mutually independent for a given i.' This completes the

derivation.

'Note, however, that Ei and Oi are not independent for a given i.

:=1

= 2 -

=





Appendix C

Derivation of the Distribution of Y in

(3.17)

To derive the distribution of Y given in (3.17), we start with the following theorem.

Theorem C.1 (LePage Series Representation). Let {-}i='1 denote the arrival times of

a one-dimensional Poisson process with rate A; let {Zi }gl be a sequence of symmetric1

i.i.d. r.v.'s, independent of the sequence {-r} and satisfying EIZil" < oo. If 0 < c < 2,

then

S a.s. S ( 0, -= O, A = ,,-CIEI Wi a )

i=1 7i

where

r(2-a)cos(ra/2), a 1,

7r =1.

Proof. See [8]. For an alternative proof based on the influence function method, see

[3,111. O

If an homogeneous Poisson point process in the plane has rate A, and Ri denotes the

distance of node i to the origin, then the sequence {Ri} = represents Poisson arrival

times on the line with the constant arrival rate AXr. This can be easily shown by mapping

the Poisson point process from Cartesian into polar coordinates, and then applying the

'A r.v. X is said to be symmetric if X and -X have the same p.d.f.



mapping theorem [12]. Using this fact, we can then apply the above theorem to (3.5)

and write

symmetric

Y1 = = ._ S_- /3= = 0, -Y = ArC •EleaGiXi 12/b
Z Rb 2)b/2 2/b

Ti

(C.1)

where 0 < a < 2 (or equivalently, b > 1). Note that Xil, whose expression is given in

(3.7), is symmetric due to the uniform phase /i. As a result, eGiXil is also symmetric.

Using the moment property of log-normal r.v.'s, i.e., E{ekG} = ek2/2 with G M•A(0, 1),

(C.1) simplifies to

s.( 2 =0 = -1 2 2 /b2  2/b

In an entirely analogous way, we can show that

Y ( 2= -P =0<YA7rC-1 e2a2/b2 2/b)Y2 S •• a = 2, = 0, e0 = ,ý2 /b bE A Xi2 2/b

and thus write the distribution of Y = Y1 + jY 2 as

Y c a= = 0, ~7= AEl e2/b 2/E X, 12/b

where b > 1. This is the result in (3.17), and the derivation is complete.



Appendix D

Derivation of the Distribution of A in

(3.20)

To derive the distribution of A given in (3.20), we start with the following theorem.

Theorem D.1. Let {J-i}i=1 denote the arrival times of a one-dimensional Poisson pro-

cess with rate A; let {Wi}•l, be a sequence of nonnegative i.i.d. r.v. 's, independent of

the sequence {i} and satisfying EIWil• < oo. If 0 < a < 1, then

S /a. (a, 1 = 1, 7 = AC-IEIwi ) ,
i=1 7i

where

r(2-a)cos(ra/2), a 1,
C , a

,r2 a=1.

Proof. See 18].

Using the Poisson mapping theorem as in Appendix C (i.e., the sequence {Ri}=1

represents Poisson arrival times on the line with arrival rate Air), we can then apply



the above theorem to (3.15) and write

00 e2aG i
A 2b 2

i= 1 !•

00 2eaG

=( J )b

1= - 1, /3 = 1, =AOrC-'ETaj 11b
-.7

where 0 < a < 1 (or equivalently, b > 1). Using the moment property of log-normal

r.v.'s, i.e., E{ekG} = ek2/2 for G - )(0, 1), (D.1) simplifies to

1 /,3= 1 A,7 C-1 e2a2/b2
1b= /b

where b > 1. This is the result in (3.20), and the derivation is complete.

80

(D.1)

A a.. a =



Bibliography

[1] A. J. Viterbi and I. M. Jacobs, "Advances in coding and modulation for noncoherent
channels affected by fading, partial band, and multiple-access interference," in
Advances in Communication Systems: Theory and Applications, vol. 4. New
York: Academic Press Inc., 1975, pp. 279-308.

[2] N. Beaulieu and A. Abu-Dayya, "Bandwidth efficient QPSK in cochannel interfer-
ence and fading," IEEE Trans. Commun., vol. 43, no. 9, pp. 2464-2474, 1995.

[31 E. Sousa, "Performance of a spread spectrum packet radio network link in a Poisson
field of interferers," IEEE Trans. Inform. Theory, vol. 38, no. 6, pp. 1743-1754,
1992.

[4] J. Ilow, D. Hatzinakos, and A. Venetsanopoulos, "Performance of FH SS radio net-
works with interference modeled as a mixture of gaussian and alpha-stable noise,"
IEEE Trans. Commun., vol. 46, no. 4, pp. 509-520, 1998.

[5] X. Yang and A. Petropulu, "Co-channel interference modeling and analysis in a
Poisson field of interferers in wireless communications," IEEE Trans. Signal Pro-
cessing, vol. 51, no. 1, pp. 64-76, 2003.

[6] S. Govindasamy, F. Antic, D. Bliss, and D. Staelin, "The performance of linear
multiple-antenna receivers with interferers distributed on a plane," in Proc. IEEE
Workshop on Signal Proc. Advances in Wireless Commun., 2005, pp. 880-884.

[7] M. Weisenhorn and W. Hirt, "Uncoordinated rate-division multiple-access scheme
for pulsed UWB signals," IEEE Trans. Veh. Technol., vol. 54, no. 5, pp. 1646-1662,
2005.

[8] G. Samoradnitsky and M. Taqqu, Stable Non-Gaussian Random Processes. Chap-
man and Hall, 1994.

[9] W. Feller, An Introduction to Probability Theory and Its Applications. Wiley,
1971, vol. 2.

[10] C. L. Nikias and M. Shao, Signal Processing with Alpha-Stable Distributions and
Applications. Wiley-Interscience, 1995.

[111 V. M. Zolotarev, One-Dimensional Stable Distributions. American Mathematical
Society, 1986.



[12] J. Kingman, Poisson Processes. Oxford University Press, 1993.

[131 A. Goldsmith, Wireless Communications. Cambridge University Press, 2005.

[14] J. Andersen, T. Rappaport, and S. Yoshida, "Propagation measurements and mod-
els for wireless communications channels," IEEE Commun. Mag., vol. 33, no. 1,
pp. 42-49, 1995.

[151 J.-P. Linnartz, Narrowband Land-Mobile Radio Networks. Artech House Publish-
ers, 1993.

[16] G. L. Stiiber, Principles of Mobile Communication. Springer, 2000.

117] O. Andrisano, V. Tralli, and R. Verdone, "Millimeter waves for short-range multi-
media communication systems," Proc. IEEE, vol. 86, no. 7, pp. 1383-1401, 1998.

[18] A. Giorgetti and M. Chiani, "Influence of fading on the gaussian approximation
for BPSK and QPSK with asynchronous cochannel interference," IEEE Trans.
Wireless Commun., vol. 4, no. 2, pp. 384-389, 2005.

[191 J. Proakis, Digital Communications. McGraw-Hill, 2000.

[20] M. Z. Win and J. H. Winters, "Virtual branch analysis of symbol error probability
for hybrid selection/maximal-ratio combining in Rayleigh fading," IEEE Trans.
Commun., vol. 49, no. 11, pp. 1926-1934, Nov. 2001.

[21] M. K. Simon and M.-S. Alouini, Digital Communication over Fading Channels.
Wiley-IEEE Press, 2004.

[22] J. Craig, "A new, simple and exact result for calculating the probability of error
for two-dimensional signal constellations," in Proc. IEEE Military Commun. Conf.,
1991, pp. 571-575.

123] J. Chambers, C. Mallows, and B. Stuck, "A method for simulating stable random
variables," J. Amer. Statist. Assoc., vol. 71, pp. 340-344, 1976.

[24] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-
Interscience, 1991.

[25] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge
University Press, 2005.

[26] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. Dover
Publications, 1965.

127] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Pro-
cesses. McGraw-Hill, 2001.

[281 M. K. Simon, S. M. Hinedi, and W. C. Lindsey, Digital Communication Techniques:
Signal Design and Detection. Prentice Hall, 1994.



[291 M. Z. Win, "A unified spectral analysis of generalized time-hopping spread-
spectrum signals in the presence of timing jitter," IEEE J. Select. Areas Commun.,
vol. 20, no. 9, pp. 1664-1676, Dec. 2002.


