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Background: There is a demand for additional alternative methods that can allow the
differentiation of the breast tumor into molecular subtypes precisely and conveniently.

Purpose: The present study aimed to determine suitable optimal classifiers and
investigate the general applicability of computer-aided diagnosis (CAD) to associate
between the breast cancer molecular subtype and the extracted MR imaging features.

Methods:We analyzed a total of 264 patients (mean age: 47.9 ± 9.7 years; range: 19–81
years) with 264 masses (mean size: 28.6 ± 15.86 mm; range: 5–91 mm) using a Unet
model and Gradient Tree Boosting for segmentation and classification.

Results: The tumors were segmented clearly by the Unet model automatically. All the
extracted features which including the shape features,the texture features of the tumors
and the clinical features were input into the classifiers for classification, and the results
showed that the GTB classifier is superior to other classifiers, which achieved F1-Score
0.72, AUC 0.81 and score 0.71. Analyzed the different features combinations, we founded
that the texture features associated with the clinical features are the optimal features to
different the breast cancer subtypes.

Conclusion: CAD is feasible to differentiate the breast cancer subtypes, automatical
segmentation were feasible by Unet model and the extracted texture features from breast
MR imaging with the clinical features can be used to help differentiating the molecular
subtype. Moreover, in the clinical features, BPE and age characteristics have the best
potential for subtype.

Keywords: breast cancer, molecular subtypes, magnetic resonance imaging, computer-aided diagnosis,
gradient tree boosting
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INTRODUCTION

Breast cancer is the most common cancer in females, and it is a
heterogeneous disease with different subtypes, varying clinical
presentations, and treatment responses (1, 2). In breast cancer, gene
expression profiling has revealed four main intrinsic molecular
subtypes that show apparent differences in the gene expression
patterns: luminal A, luminal B, triple-negative, and human
epidermal growth factor receptor 2(HER2)-enriched. The intrinsic
molecular subtypes have different treatment responses, prognosis,
phenotypic presentations, recurrence-free, and disease-specific
survival, leading to molecular subtype-based recommendations for
systemic therapy (3–5). The molecular subtypes follow either gene
expression profiling or immunohistochemical (IHC) surrogates from
invasive tissue sampling. There are some limitations to the methods.
First, needle biopsy is often used for the preoperative diagnosis. It may
capture only a snapshot of the tumor tissue that may be subject to the
selection bias andmay not be entirely representative of the epigenetic,
genetic, phenotypic alterations of the entire tumor. Second, the tumor
tissue may have changed over time due to the treatment, i.e., it may
change from a stem-like, a differentiated drug-sensitive phenotype, a
therapy-resistant to epithelial-mesenchymal transition. Besides, there
is a strong argument for the alternative of tumor features during the
treatment, i.e., receptor status and molecular subtypes may have
changed during the tumor treatment. Therefore, there is a demand
for additional alternative methods that can allow the differentiation of
the breast tumor into molecular subtypes precisely and conveniently.

Magnetic resonance imaging (MRI) is increasingly being used for
breast cancer because it has higher sensitivity than ultrasonography
and mammography (6–8). Many imaging tools based on computer-
aided diagnosis (CAD) technologies have been developed with
computer applications development to enhance diagnostic accuracy.
CAD also has the potential to improve observer reproducibility in
dynamic contrast material-enhanced MR imaging in differentiating
benign from malignant lesions (9–11). If breast molecular subtypes
could be identified from the MR image, it would be a valuable
additional diagnostic tool. It would provide complementary
information to the diagnosis of immunohistochemical surrogates
while bypassing the need for costly and difficult molecular subtyping.
Some pilot studies (12–14) showed the relationship between breast
cancer molecular subtyping andMR imaging features correlated with
different breast cancer molecular subtypes, but the generalization of
these results is limited due to the utilization of different MRI
protocol scanners.

The purpose of the present study was to determine suitable
optimal classifiers and investigate the general applicability of
CAD to associate between the breast cancer molecular subtype
and the extracted MR imaging features.
MATERIALS AND METHODS

Ethics and Consent
The study was a retrospective study, and the institutional ethics
committee approved the protocol of our university for human
research. Informed consent was obtained from all the patients.
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Breast MR Imaging Data Sets
Breast MR imaging studies were selected from the Picture
Archiving and Communication Systems (PACS), which links
clinical information with radiological and pathological reports to
MR images. From April 2015 to December 2018, a total of 269
patients were included in our study. Five patients were excluded
from the study group because the pathological results were
lacking or imprecise. The final study group therefore consisted
of 264 patients (mean age: 47.9 ± 9.7 years; range: 19–81 years)
with 264 breast cancers (mean size: 28.6 ± 15.86 mm; range: 5–91
mm) who underwent core-needle biopsy or surgery were
included in our study.

MRI Acquisition Protocol
MR images were obtained using a 3.0T MR scanner (Philips
Achieva 3.0T). The patients adopted a prone position and put
their breasts into the dedicated phased-array breast coil. Imaging
parameters for DCE-MRI were are as follows:

Axial T1-weighted imaging (repetition time (TR) = 495 ms;
echo time (TE) = 10 ms; slice thickness/gap = 3 mm/0 mm;
matrix = 512; number of signal averaged (NSA) = 1; field of view
(FOV) = 340 mm × 340 mm); axial T2-weighted imaging (TR =
4213 ms, TE = 120 ms, slice thickness/gap = 3 mm/0 mm,
matrix = 512, NSA = 1, FOV = 340 mm × 340 mm); T2-weighted
fat-saturated imaging using a spectral selection attenuated
inversion recovery (SPAIR) (TR = 4216 ms, TE = 60 ms,
inversion delay (IR) = 120 ms, slice thickness/gap = 3 mm/
0 mm, matrix = 352, NSA = 1, FOV = 340 mm × 340 mm); and
T1-weighted high-resolution isotropic volume examination
(THRIVE) (TR = 4.4 ms, TE = 2.2 ms, flip angle = 12°; matrix =
352; FOV = 340 mm × 340 mm; number of sections = 110;
acquisition time: 256 s). MR imaging data sets were acquired
once before gadolinium (Gd)-diethylenetriamine penta-acetic
acid (DTPA) (Bayer Scheming Pharma AG, Berlin, Germany)
injection and at 90-s intervals upon injection of 0.1 mmol/kg Gd-
DTPA (followed by an intravenous saline flush of 20 ml), for a
total imaging duration of 5 to 8 min.

Tumor Segmentation
We chose the first sequence of DCE-MRI for segmentation and
features extraction. The contrast of the image was enhanced by
normalizing the histogram of the original image.

Unet model was applied to the segmentation part of the breast
tumors because it is a network structure widely used in the field
of medical image segmentation. Unet is a fully convolutional
neural network, which can combine low-level information with
high-level information at the same time. The low-level
information retains the spatial features, while the high-level
information extracts the in-depth abstract features. The model
consists of two parts, namely the encoder and the decoder. The
encoder is composed of a convolution layer and a down-
sampling layer to extract in-depth abstract features. The
decoder part consists of a convolutional layer and
deconvolution layer, which upsamples in-depth features to the
original image’s size. The network structure of Unet is as follows,
the down-sample layer is the red arrow in the figure, which is
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realized by max-pooling and the up-sample layer is the green
arrow in the figure, which is realized by deconvolution. Skip
connection is represented by a gray arrow, which combines low-
level features and high-level semantic features to realize up-
sampling step by step. Finally, the feature map is converted into
the probability graph through softmax operation.

Tumor Feature Extraction and Selection
Features were extracted from the generated images which only
contained tumor regions, including shape features, texture
features and clinical features.

A series of quadratic statistical features could be calculated
based on the normalized Gray-Gradient Co-occurrence Matrix
(GGCM). Based on the normalized gray gradient co-occurrence
matrix (GGCM), a series of quadratic statistical features can be
calculated. In this experiment, the GLCM was used to extract the
48 grayscale features (entropy, homogeneity, correlation, and
energy with the step of 1, 2, and 3, respectively, and the direction
of 0, 45, 90, and 135, respectively). Clinical features were
extracted including whether the patient was menopausal, TIC
curve type, BPE classification type, patient age and tumor length.
The 13 shape features were composed of roundness, aspect ratio,
average normalized radial length, normalized radial length
standard deviation, average normalized entropy of radial
length, area ratio, boundary roughness, length-width ratio,
lobular number, degree of needling, direction angle,
normalized circumference, and normalized contour.

We extracted the features of the images, including the shape
features, the tumors’ texture features (Figure 3), and the clinical
features. All 51 images of luminal A were divided into five
dissecting subsets, and the luminal B, TN and Her2 data set
were also divided into five subsets. Each time, take one of the
luminal A, luminal B, Her2, and TN subsets as the test sets and
the other four subsets of luminal A, luminal B, TN, and Her2
training sets. We were then training the model or hypothesis
function according to the training sets. Put this model on the test
set and get the classification rate. Finally, we calculated the
average classification rate five times as the model’s real
classification rate or hypothesis function.

Tumor Classification
Different tumor subtypes (Luminal A, Luminal B, HER2-
enriched, TN) were tested using the extracted features. The
extracted features were input into the Gradient Tree Boosting
(GTB) classifier for experiments, and the results compared with
Random Forest (RF), Support Vector Machine (SVM), Logistic
Regression (LR), and Decision Tree (DT) classifiers.

The algorithm’s core of gradient boosting is that each tree
learns from all previous trees’ residuals. The negative gradient
value of the loss function in the current model was used.

rmi = −
∂ L(yi, f (xi))

∂ f (xi)

� �
f (x)=fm−1(x)

As an approximation of the residual in the lifting tree
algorithm, a classification tree is fitted. Gradient lift is one of
the Boost algorithms, or an improvement on the original Boost
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algorithm, which assigns equal weight to each sample at the
beginning of the algorithm, meaning that everyone is equally
important at the beginning. In every training model, we will
make an estimate of the data points, so at the end of each step, we
need to deal with the weight value. Moreover, the means of
processing is by increasing the wrong classification points’
weight and simultaneously reducing the correct classification
point. That is to say, if some points are always wrong, then they
will be “serious concern” and are assigned a very high weight.
After N iterations (20 in this paper), there will be an N simple
base classifier (basic learner). Finally, we put them together, and
they can be weighted (error rate, the greater the base classifier,
the smaller the weight value, the smaller the error rate of the base
classifier weight value is larger), or vote for a final model.

This Gradient Boost is quite different from a traditional Boost
in that it is calculated to reduce the last residual and reduce this
residual, and a new model can be built in the direction of the
Gradient reduction. In Gradient Boost, each new model was built
to reduce the residual from the previous model in the gradient
direction, and significantly different from the traditional Boost
algorithm that weights the correct and incorrect samples.

Evaluation Index
Three evaluation indexes, Accuracy (ACC), F1-score, and
SCORE, were used in the experiment.

Precision refers to the percentage of pixels whose predicted
result is an upbeat class, and the actual result is a positive class.
The higher the precision value is, the higher the model
segmentation results to the calibration results. The formula is
as Eq.5. The higher the value of precision is, the better the
performance of the model is.

Precision =
TP

TP + FP
(1)

F1-score combines the result of precision and TPR, and the
formula is as Eq.6. The higher the value of F1-score is, the better
the performance of model is.

F1 − score = 2 ∗
precision ∗TPR
precision + TPR

(2)

The closer the score is to 1, the better the performance of the
classifier is.

Pathological Diagnoses
All breast lesions were confirmed histologically via surgery or
biopsy. Lesions were divided into subgroups, as described in
Table 1. A pathologist made all diagnoses with many years of
experience in pathological breast examination.

Statistical Analysis
This study is interested in the association of imaging features and
clinicopathological features with different molecular subtypes.
The features were extracted from GGCM, and the classifier’s
performance was compared in terms of F1-score, ACC, and
score. The predictive performance combined with imaging
features extracting from optimal classifier and clinical features
June 2021 | Volume 11 | Article 693339
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was also evaluated with F1-score, ACC, and GTB classifier
scores. For the classification of the four molecular subtypes, a
classification matrix and the ROC curve using a one-vs-all
approach were generated. The area under the curve (AUC),
accuracy, sensitivity, and specificity were calculated. All data
were analyzed using version 19.0 SPSS software (IBM Corp.,
Armonk, NY, USA).
RESULTS

The patient demographic and cancer features are shown in
Table 1. There were 51 luminal A (19.3%), 124 luminal B
(47%), 43 triple-negative (16.3%), and 46 HER2-enriched
(17.4%) in the 264 breast cancers (mean size: 28.6 ± 15.86 mm;
range: 5–91 mm).

The segmentation process and results obtained by
preprocessing were compared with those obtained without
Frontiers in Oncology | www.frontiersin.org 4
preprocessing and are shown in Figure 1. The tumors were
segmented clearly by the Unet model automatically. The
representative gradient features, including energy, gradient,
correlation, and entropy, are shown in Figure 2A. The contrast
results for clinic features among the four types are shown in
Figure 2B. We extracted the images’ features, including the
shape features, the tumors’ texture features (Figure 3), and
the clinical features. All the extracted features were input into
the GTB classifier for experiments, and the results compared
with the RF, SVM, LR, and DT classifiers, and the results are
shown in Table 2. The results show that the GTB classifier is
superior to other classifiers, which achieved F1-Score 0.72, ACC
0.81, and score 0.71.

Then, we input the extracted features into the GTB classifier
according to different combinations and finally found that the
features associated with the clinical features are the optimal
features to different breast cancer subtypes, and the results are
shown in Table 3. Molecular subtypes can be predicted with the
FIGURE 1 | A case for the segmentation process. The Unet model was used for the segmentation of the breast tumors. The down-sample layer is the blue module
in the figure, which is realized by max-pooling. The up-sample layer is the red module in the figure, which is realized by deconvolution. Moreover, skip connection is
represented by a gray line, which combines low-level features and high-level semantic features to realize up-sampling step by step. Finally, the feature map is
converted into the probability graph through softmax operation.
TABLE 1 | Baseline Characteristics.

Characteristic All patients (n = 264) Luminal A (n = 51) Luminal B (n = 124) HER-2 (n = 46) TN (n = 43)

Age (y)* 47.9±9.70 (19-81) 48.0±9.23 (24-81) 47.2±9.98 (19-71) 49.7±8.26 (37-69) 48.9±10.69 (23-70)
Tumor diameter (mm)* 28.6±15.86 (5-84) 22.6±13.16 (5-68) 27.9±15.47 (4-84) 34.4±17.98 (11-91) 32.2±14.68 (5-62)
Menopausal status
Premenopausal 151 32 77 20 22
Postmenopausal 113 19 47 26 21
TIC
1 12 2 9 0 1
2 104 16 50 15 23
3 148 33 65 31 19

BPE
1 97 18 53 13 13
2 104 27 43 20 14
3 54 5 24 11 14
4 9 1 4 2 2
June 2021 | Volume
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GTB classifier. From the results of the classification (Figure 4),
the TN subtype reached the highest AUC of 0.933, while the
AUC of Luminal B reached 0.908, the AUC of Her-2 reached
0.899, the AUC of Luminal A 0.886. The sensitivity of Luminal
A, Luminal B, Her-2, TN are 80.4%, 88.7%, 84.8%, 90.7%, while
the specificity are 93.5%, 90.9%, 95.8%, 93.1% respectively.
DISCUSSION

The current model approach of replacing molecular subtyping
with computer extracted imaging features is continually being
developed and validated, a technique that can provide the best
prognostic benefit to patients without adding additional cost or
delaying treatment planning. Many studies (15–17) have led to
very considerable advances in detecting breast cancer molecular
subtypes. Nevertheless, the prediction accuracy of most studies,
as well as the reproducibility of the model, still needs
further investigation.

Although this is a preliminary study, we showed that
computer-assisted extraction of image features could be used
to help identify the breast cancer molecular subtypes. In this
work, we used Unet model and GTB for segmentation and
classification. One of our methodology’s key benefits was
automatically segmented and extracted features of the tumors.
The Unet model is a fully convolutional neural network, which
can combine the low-level information with the high-level
information at the same time. It has shown promising results
in many different applications. However, there have been few
studies in breast tumor segmentation (18, 19). After
segmentation, the tumors’ morphological features, such as the
shape and the margins, were shown more clearly. Our
experiment employed GGCM and GLCM methods to extract
51 grayscale features and 15 gradient features, and we collected
the clinical features, which contained whether patients were
menopausal, TIC curve types, BPE grade types, patient age,
and tumor length. The grayscale features, gradient features,
and shape features of the tumor were extracted and input into
Frontiers in Oncology | www.frontiersin.org 5
the GTB classifier to classify breast cancer’s four molecular
subtypes. We observed that the F1-Score, ACC, and GTB
classifier score was superior to other classifiers from the
classification results. From Table 3, we found that the
combination of texture features with clinical features had
the best performance for predicting genotyping with an ACC
value of 0.87, whereas the combination of texture features with
shape predicted the worst genotyping effect with an ACC value of
only 0.63. The results indicate that clinical features are crucial for
the genotyping of tumors. It is not essential for subtyping of the
tumor to add the shape features. Our result is so different from
the other studies. Leithner (20) extracted radiomic features to
assess breast cancer receptor status and molecular subtype’s
diagnostic value. Radiomics analysis of manually segmented
tumors was from the initial DCE-MRI and apparent diffusion
coefficient (ADC) maps. They used a multi-layer perceptron
feed-forward artificial neural network (MLP-ANN) for
separation, and the ACC was 0.86 for the separation of TN
from the other subtypes. However, their study used only the
imaging parameters, not adding the clinical features. Maciej A
(21) extracted 23 imaging features from breast tumors from MR
imagings. The features contained morphologic, textural, and
dynamic features but not any clinical features. They found that
the luminal B subtype of breast cancer is associated with MR
imaging features related to the tumor’s enhancement dynamics.

From classification results of texture features combined with
shape features and results of texture features, shape features, and
clinical features, we can see that ACC was increased by 18% with
the help of clinical features. In order to determine the
significance of clinical features for subtyping, we conducted
experiments with different clinical features. Furthermore, we
can conclude that BPE and age features have the best effects
for genotyping. By adding the BPE features, ACC was increased
by 16%, and by adding the age features, ACC increased by 7%.

CAD may be a valuable complementary method to
differentiate the breast cancer molecular subtypes. Our work
showed that the tumors can be segmented automatically by the
Unet model and the combination of the texture features
A B

FIGURE 2 | Results of features contrast of the different subtypes: (A) the representative gradient features including energy, gradient, correlation, and entropy; (B) the
contrast results for clinic features which contain menopausal, TIC curve type, BPE classification value, patient age, and tumor length among the four types.
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especially BPE and age features had the best performance for
predicting genotyping. We found that TN subtype reached the
highest AUC of 0.933 with GTB. Such finding may indicate that
TN breast cancer was more heterogeneous compared with other
Frontiers in Oncology | www.frontiersin.org 6
subtypes. One of the possible explanations for the findings may
be that the TN subtypes demonstrated more necrosis, so the
texture may be more features in the images. That results were
consistent with some studies (22, 23).
FIGURE 3 | A 62-year-old woman with Luminal A breast cancer (A, a), a 55-year-old woman with Luminal B breast cancer (B, b), a 59-year-old woman with triple-
negative breast cancer (C, c), a 43-year-old woman with human epidermal growth factor receptor 2 (HER2) breast cancer (D, d). The first DCE sequence (ABCD)
and the texture map with colors (abcd) were shown.
June 2021 | Volume 11 | Article 693339
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Our preliminary study had some limitations. First, our images
were obtained from a single site. The sample size of 264 tumors
and the different subtypes were numerically unbalanced; almost
half of the cases were Luminal B. However, although the sample
Frontiers in Oncology | www.frontiersin.org 7
size was not significant and balanced, we discovered the
association between the subtypes of breast cancers and the MR
imagings. Moreover, additional studies with a more excellent
sample of breast cancers are required to establish the clinical
value of CAD in the subtypes’ differential diagnosis. Second, no
formal training for the processed images was used in our study.
Although the processed images’ features were familiar to the
radiologists, a training set to allow radiologists to become
familiar with the CAD method might enhance their confidence
to use it.
CONCLUSIONS

Our clinical investigation of 264 breast lesions showed that
automatical segmentation were feasible by Unet model and the
extracted texture features from breast MR imaging with
the clinical features can be used to help differentiating the
molecular subtype. Moreover, in the clinical features, BPE
and age features have the best potential for subtype.
The ability of CAD to identify breast cancer molecular subtype
has enormous potential clinical benefits, so further large
prospective studies are required to fully determine the
potential role of CAD.
FIGURE 4 | Performance of the CAD in classifying different molecular subtypes with the four subtypes.
TABLE 2 | The classification results of the five classifiers.

Method\Result F1-Score ACC score

GTB 0.72 0.81 0.71
RF 0.51 0.67 0.51
SVM 0.54 0.69 0.64
LR 0.43 0.64 0.44
DT 0.45 0.65 0.45
TABLE 3 | The results of ablation studies.

Feature\Result F1-Score ACC score

Texture+clinical features 0.82 0.87 0.81
Clinical features 0.69 0.75 0.68
Shape+ clinical features 0.67 0.78 0.67
Texture+shape 0.43 0.63 0.44
Shape+texture+ clinical features 0.72 0.81 0.71
Texture+shape+BPE 0.69 0.79 0.68
Texture+shape+BPE+long axis 0.59 0.73 0.59
Texture+shape+BPE+long axis+age 0.70 0.80 0.69
Texture+shape+BPE+long axis+age+TIC 0.69 0.78 0.68
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