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Abstract. A large part of the operational cost for a wind farm is due to the cost of equipment maintenance,
especially for offshore wind farms. How to reduce the maintenance cost, and hence increase profitability, is
this article’s focus. It presents a binary linear optimization model whose solution may inform the wind turbine
owners about which components, and when, should undergo the next preventive maintenance (PM) replacements.
The suggested short-term scheduling strategy takes into account eventual failure events of the multi-component
system – in that after the failed system is repaired, the previously scheduled PM plan should be updated, assuming
that the restored components are as good as new.

The optimization algorithm of this paper, NextPM, is tested through numerical case studies applied to a four-
component model of a wind turbine. The first study addresses the important case of a single component system,
used for parameter calibration purposes. The second study analyses the case of seasonal variations of mobiliza-
tion costs, as compared to the constant mobilization cost setting. Among other things, this analysis reveals a 35 %
cost reduction achieved by the NextPM model, as compared to the pure corrective maintenance (CM) strategy.
The third case study compares the NextPM model with another optimization model – the preventive maintenance
scheduling problem with interval costs (PMSPIC), which was the major source of inspiration for this article. This
comparison demonstrates that the NextPM model is accurate and much faster in terms of computational time.

1 Introduction

Wind energy is one of the lowest-priced renewable energy
technologies available today; see Lazard (2020). A large
part of the total cost associated with wind turbines is due
to operation and maintenance, amounting to 34 % for the
fixed-bottom offshore wind turbines, according to Stehly
and Beiter (2020). To reduce the maintenance cost, one
can improve the design of the components, making them
more reliable. One can also reduce the maintenance costs by
means of an improved scheduling of the maintenance activi-
ties for still-functioning components depending on their cur-
rent age. The latter task is the main concern of this paper,
which proposes an optimization model for preventive main-
tenance (PM) scheduling of a wind turbine or even a farm
of wind turbines. Notice that, in this paper, by PM activi-
ties we do not mean the practice of regular inspection of the

component’s condition. Our concern is the optimal planning
of preventive replacements of the components based on their
current age.

Typically, a maintenance model distinguishes between
a corrective maintenance (CM) event, when a component
should be attended after it breaks down, and a PM event,
when one or several older components are renewed before
they break down, see the recent survey (Lee and Cha, 2016).
An optimal PM scheduling is aimed at reducing the lost pro-
duction due to the downtime caused by CM events.

There is a multitude of papers devoted to the op-
timal PM scheduling for multi-component systems; see
Werbińska-Wojciechowska (2019). The article Jafari et al.
(2018) proposes a joint optimization of the maintenance pol-
icy and the inspection interval for a multi-unit series system
with economic dependence. It develops an algorithm aiming
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at a maintenance policy for a multi-component system mini-
mizing the maintenance cost, under the assumption that one
unit of the system is subject to condition monitoring, while
for the other units only the age information is available. Tian
et al. (2014) develop a method to quantify the uncertainty of
the remaining life length, resulting in an effective condition-
based maintenance approach to optimal scheduling.

The article Sarker and Faiz (2016) looks at opportunistic
maintenance (OM), which is a special kind of a PM activity
occurring at the time of a CM replacement: replacing still-
functioning components together with the broken one may
save some mobilization costs. OM activities are shown to be
extremely beneficial for the offshore wind farms, due to the
large mobilization costs.

In Moghaddam and Usher (2011), optimization models
are developed to determine the optimal PM schedules in re-
pairable and maintainable systems. They show that if mobi-
lization costs are the same irrespective of the number of com-
ponents to be attended, then multiple simultaneous PM ac-
tivities become cost-effective. However, their optimization
models are nonlinear and non-convex, which makes them
computationally hard to solve; see Sect. 1.3 in Andreasson
et al. (2020).

The preventive maintenance scheduling problem with in-
terval costs (PMSPIC) model from Gustavsson et al. (2014)
was the major inspiration for this work. The main feature of
the PMSPIC model is the idea of interval cost: given a time
interval between two consecutive PM activities, the expected
maintenance cost should take into account eventual break-
downs of components during this time interval. The PMSPIC
model has a long computational time, which motivated us to
build a new optimization model for PM scheduling of a wind
turbine.

In this paper, we build on the state of the art with a new
algorithm, NextPM. Given the current ages of the key com-
ponents of the system, NextPM computes the best time to
perform the next maintenance activity and determines which
components should be replaced at that time. The algorithm
can be solved in 1 s and thus has a potential for being used
as a key module in a maintenance scheduling app for wind
turbines.

The paper is organized as follows. Section 2 presents a
novel optimization model for maintenance scheduling of a
multi-component system. In the context of wind farm main-
tenance, each wind turbine is viewed here as a system com-
prising multiple components such as the gearbox, power gen-
erator, rotor, and main bearing. Whenever one of the compo-
nents is broken, the whole system stops functioning. After
the broken component is replaced by a new one, the system
resumes its function. It is assumed that at time 0 all com-
ponents of the system are new and that the total lifespan of
the system is T units of time. The model has a discrete time
setting t = 0, 1, . . . , T , where the unit of time can be either
a day, a month, or a year, depending on a concrete applica-
tion; see Browell et al. (2016) for a maintenance scheduling

with only 1 d ahead. In the same Sect. 2, the main result of
the paper is summarized as Algorithm 1, aiming at an opti-
mal PM schedule for the time period [s, T ] with an arbitrary
starting time s ∈ [0,T − 1]. Figure 1 gives a non-technical
description of the algorithm.

The key ingredient of Algorithm 1, the NextPM optimiza-
tion model, is carefully described in Sect. 3. Section 4 con-
tains several numerical studies that demonstrate the flexibil-
ity of our approach, its accuracy, and computational effec-
tiveness. Finally, Sect. 5 presents the main conclusions of the
paper.

2 Optimal rescheduling algorithm

Consider a system composed of n components characterized
by different life length distributions. For the component j , it
is assumed that its total life length Lj is a random variable
having a Weibull distribution with parameters (αj , βj ), so
that the corresponding survival function is

P
(
Lj > t

)
= e
−

(
t
αj

)βj
, t ≥ 0, j = 1, . . ., n; (1)

see Guo et al. (2009) concerning the use of the Weibull dis-
tribution for the modeling of multi-component systems. The
means and variances of the component life lengths are the
following functions of the Weibull parameters:

µj =αj0

(
1+

1
βj

)
, σ 2

j = α
2
j0

(
1+

2
βj

)
−µ2

j ,

j = 1, . . ., n. (2)

Besides the Weibull parameters (αj , βj ), j = 1, . . . , n, our
optimization model requires the following parameters as-
sociated with various maintenance costs: dt is the time-
dependent mobilization cost for either a PM or CM ac-
tivity, t = 0, . . . , T , bj is the CM cost of the compo-
nent j = 1, . . . , n, and cj is the PM cost of the com-
ponent j = 1, . . . , n. The full set of the model param-
eters {d1, . . . , dT , (α1,β1,b1,c1), . . ., (αn,βn,bn,cn),λ} in-
cludes an extra parameter λ introduced in Sect. 3.2 by
Eq. (11).

Suppose that the multi-component system is observed at
some time s ∈ [0,T − 1], and the latest maintenance times
of components j = 1, . . . , n are known to be tj ∈ [0, s], so
that at the time s, the n components have the effective ages
(s−t1, . . . , s−tn). The NextPM optimization model described
in Sect. 3 has the input (t1, . . . , tn, s, r), where r ∈ [s+1,T ] is
the end of the current planning period. The output of NextPM
is a PM plan specifying the optimal time τ ∈ [s+ 1, r + 1]
of the next PM event, as well as the set of components
P ⊂ {1, . . ., n} which should be maintained at the time τ .
In particular, the output τ = r + 1 means that no PM activ-
ity should be scheduled during the planning period [s+1, r],
implying that the set P is empty.
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Figure 1. Flow diagram of the optimization algorithm involving NextPM as a major step.

The NextPM model is the key module of the following
Algorithm 1 aiming at the long-term PM scheduling until
the end time T , at which the whole system is expected to be
dismantled; see Fig. 1 for a flow chart illustrating the major
steps of Algorithm 1.

Algorithm 1 relies on a rescheduling procedure, where
each NextPM step covering r − s units of the planning time
is accompanied by a NextOM module. The latter is a modi-
fication of the NextPM step (see Sect. 3.5), which addresses
the possibility of a component failure before the planned PM,
followed by an OM activity.

3 An optimal plan for the next preventive
maintenance

This section sets up the optimization model NextPM, which
is the key ingredient of Algorithm 1 summarized in Sect. 2.
The optimization model PMSPIC of Gustavsson et al. (2014)
was a major motivation for NextPM, and we start by compar-
ing these two approaches using Figs. 2 and 3, which illustrate
two different definitions of the objective functions for two
optimization models in question.

The main difference between PMSPIC and NextPM model
is that while PMSPIC generates a maintenance plan for the
whole lifetime of the wind turbine, the NextPM model pro-
duces an optimal schedule only for the next PM activity.
To this end, PMSPIC looks into the total maintenance cost,
while NextPM aims at minimizing the time average mainte-
nance cost.

3.1 NextPM model

The purpose of the NextPM model is to produce an optimal
PM plan for the period [s+ 1, r], where the planning time
span r − s is chosen so that it is reasonable to expect at most
one PM event during time r − s. For a given planning period
[s+1, r] ⊂ [0,T ], an (s,r) plan is defined as a collection (z,
x1, . . . , xn) of vectors

z= (zs+1, . . ., zr+1) , xj =
(
x
j

s+1, . . ., x
j

r+1

)
,

j = 1, . . ., n,

with binary coordinates zt , x
j
t ∈ {0,1}, which satisfy the fol-

lowing linear conditions:

r+1∑
t=s+1

x
j
t = 1, j = 1, . . ., n, (3)

x
j
t ≤ zt , t = s+ 1, . . ., r + 1, j = 1, . . ., n. (4)

For t = s+ 1, . . . r , the equality xjt = 1 means that accord-
ing to the (s, r) plan, component j should undergo a PM re-
placement at time t , provided no component failure during
the time period [s+ 1,t]. In contrast, the equality xjr+1 = 1
means that according to the (s, r) plan, no PM activity should
involve component j during the time period [s+1, r]. On the
whole system level, the equality zt = 1 means that according
to the (s, r) plan, at least one component should undergo a
PM replacement at time t , provided no component failure
during the time period [s+ 1, t], and the equality zr+1 = 1
means that according to the (s, r) plan, no PM activity is
scheduled for the time period [s+ 1, r].

The NextPM optimization model is built around the objec-
tive function:

f
(
z,x1, . . ., xn

)
=

r+1∑
t=s+1

1
t − s

(
dtzt + c

1
s,tx

1
t

+ . . . + cns,tx
n
t

)
, (5)

where dtzt stands for the mobilization cost and the terms cjs,t
are the so-called interval costs defined in Sect. 3.2. The ob-
jective function (Eq. 5) can be viewed as the time average
maintenance cost per time unit according to the (s, t) plan (z,
x1, . . . , xn).
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Figure 2. A flow diagram demonstrating how the PMSPIC calculates the objective function for a given feasible maintenance plan.

Figure 3. A flow diagram demonstrating how NextPM model calculates the objective function for a given feasible maintenance plan with
s = 0.

Let (z, x) be the solution to the linear optimization prob-
lem

minimize f
(
z,x1, . . ., xn

)
(6)

over all (s, t) plans subject to the linear constraints

D
j
s,tx

j
t ≥ 0, t = s+ 1, . . ., r, j = 1, . . ., n, (7)

where Djs,t is defined in Sect. 3.3 as the PM benefit for the
component j at time t . Then the NextPM algorithm (τ , N )
computes the optimal time of the next PM by

τ =minj
{

argmaxtx
j
t

}
and determines the set of the components that should un-
dergo the maintenance activities at time τ using

N =
{ {

j : x
j
τ = 1, j = 1, . . ., n

}
if τ ≤ r,

∅ if τ = r + 1.
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3.2 Definition of modified interval costs cjs,t

Here we deal with the term c
j
s,t appearing in the objective

function (Eq. 5) of the optimization model NextPM. The
main idea is to define cjs,t as the fixed PM cost cj plus the
expected additional costs due to eventual failures of the com-
ponent j occurring prior to the planned PM activity at time t .

To this end, consider n independent sequences of renewal
times with a delay by letting U js,0 = s,

U
j

s,1 = tj +L1j , L1j
d
=
{
Lj |Lj > s− tj

}
, (8)

where d
=means equality in distribution (conditional distribu-

tion in the above formula), and

U
j

s,i+1 = U
j
s,i +Lij , Lij

d
= Lj , for i = 2,3, . . ., (9)

assuming that the random variables (Lij ) are mutually inde-
pendent. Notice that in the important particular case s = 0,
this definition simplifies, so that for each j , the sequence
{U

j

0,i}i≥0 describes a renewal process without a delay.

TreatingU js,1,U js,2, . . . as the sequence of consecutive fail-
ure times of the component j , put

c
j
s,t := cj +E

(
∞∑
i=1

1{
U
j
s,i≤t

}Gj (U js,i−1,Lij , t − s
))
, (10)

where the cost functions

Gj (s,u,v)=bj + ds+u−
(u
v

)λ (
cj + ds+v

)
,

0≤ u≤ v, (11)

involve a new parameter λ > 0 assumed to be independent
of j = 1, . . . , n. The definition of the cost function (Eq. 11)
further develops the key idea of Sect. 5.1 in Gustavsson et al.
(2014). It describes the additional cost implied by an eventual
breakdown of component j before the planned PM activity.

The expression (Eq. 11) is suggested as a compromise be-
tween two extreme cases: a failure at the start of the planning
period, u= 0, and a failure just before the planned PM re-
placement, u= v = t − s. If u is close to 0, then the failure
at time s+ u will not change the PM plan, implying that the
much smaller additional cost

Gj (s,0, t)= bj + ds (12)

is the sum of the CM cost bj and the mobilization cost ds at
time s. On the other hand, if u is close to v = t − s, then the
additional cost

Gj (s, t, t − s)= bj − cj (13)

is simply the difference between the CM and PM costs. For
u ∈ (0,v), the expression on the right-hand side of Eq. (11)
produces an additional cost which lies between the extreme
values (Eqs. 12 and 13). The role of the parameter λ is to
control to what extent the proximity of the failure time to the
planned PM time influences the extra costs. For example, if
λ= 1 the intermediate cost is found by a linear extrapolation.

3.3 Definition of Dj
s,t

The constraint (Eq. 7) arises as a checkup step to ensure that a
suggested PM at time t brings some benefit, as compared to a
simple strategy when no PM is performed. With the PM-free
strategy, the total maintenance cost (including mobilization
costs) for the component j during the period [s, T ] would be

E

[
∞∑
i=1

1{
U
j
s,i≤T

}(bj + dU js,i
)]
.

Alternatively, if the plan is to perform a PM for the com-
ponent j at time t , and then to perform replacements of the
component j whenever it breaks down, then the total cost
would be

c
j
s,t +E

[
∞∑
i=1

1{
t+U

j
0,i≤T

}(bj + dt+U j0,i
)]
.

Taking into account the difference between these two total
costs,

D
j
s,t = E

[
∞∑
i=1

1{
U
j
s,i≤T

}(bj + dU js,i
)]
− c

j
s,t

−E

[
∞∑
i=1

1{
t+U

j
0,i≤T

}(bj + dt+U j0,i
)]
, (14)

we conclude that the planned PM of the component j at
time t is justified only if Djs,t ≥ 0.

3.4 Complete optimization model of NextPM

Here we put together the complete optimization model of the
NextPM step:

minimize f
(
z,x1, . . ., xn

)
:=

r+1∑
t=s+1

1
t − s

(
dtzt + c

1
s,tx

1
t

+ . . . + cns,tx
n
t

)
,

subject to
r+1∑
t=s+1

x
j
t = 1, j = 1, . . ., n,

zt ≥ x
j
t , t = s+ 1, . . ., r + 1, j = 1, . . ., n,

D
j
s,tx

j
t ≥ 0, t = s+ 1, . . ., r, j = 1, . . ., n,

zt ∈ {0,1}, t = s+ 1, . . ., r + 1,

x
j
t ∈ {0,1}, t = s+ 1, . . ., r + 1, j = 1, . . ., n.

3.5 NextOM model

The NextOM step of Algorithm 1 is a specialized version of
the NextPM step described above. The input vector of the
NextOM algorithm

(i, t1, . . ., ti−1, ti+1, . . ., tn, s)
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treats i as the label of the component whose failure at some
time during [s,s+1) has triggered the OM planning step. For
a pair {s, i}, an {s, i} plan is any set of vectors (z, x1, . . . , xn)
whose components are two-dimensional vectors

z= (zs+1,zs+2) , xj =
(
x
j

s+1,x
j

s+2

)
, j = 1, . . ., n, (15)

with binary coordinates zt , x
j
t ∈ {0,1} satisfying the follow-

ing linear conditions:

s+2∑
t=s+1

x
j
t = 1, j = 1, . . ., n, (16)

x
(i)
s+1 = 1, (17)

zt ≥ x
j
t , t = s+ 1, s+ 2, j = 1, . . ., n. (18)

Observe that, necessarily, zs+1 = 1.
The NextOM optimization model uses the following mod-

ified version of the objective function (Eq. 5):

fi

(
z,x1, . . ., xn

)
=

s+2∑
t=s+1

1
t − s

(
dtzt +

∑
j 6=i

c
j
s,tx

j
t

)
, (19)

where cjs,t is defined in Sect. 3.2. Let (z, x) be the solution to
the linear optimization problem

minimise fi
(
z,x1, . . ., xn

)
(20)

over all {s, i} plans subject to the linear constraints

D
j

s,s+1x
j

s+1 ≥ 0, j = 1, . . ., i− 1, i+ 1, . . ., n, (21)

whereDjs,t is defined in Sect. 3.3. The output of the NextOM
is given by the set

O =
{
j : xjτ = 1, j = 1, . . ., i− 1, i+ 1, . . ., n

}
,

consisting of the labels of the components which will be op-
portunistically maintained along with the component i un-
dergoing a CM activity.

4 Numerical studies

The three case studies analyzed in this section treat a wind
turbine as a system represented by four components. They
are all based on the parameter values taken from the pa-
per Tian et al. (2011) (see Table 1), where the cost unit is
USD 1000 and the time unit is 1 month. The lifetime of the
wind turbine is assumed to be 30 years. This implies the pa-
rameter value T = 360 months. As to other model parame-
ters, it is assumed that

s = 0, which implies that all four components initially are
as good as new;

r = 60 months – see Sect. 4.1 for motivation; and

λ= 3, based on Gustavsson et al. (2014).

Comparing the characteristics of four wind turbine com-
ponents shown in Table 1, it is important to observe a strict
ordering from the perspective of the associated PM costs.
For example, consider components 1 and 2. The rightmost
column says that the expected life length of the gearbox is
smaller by 18.5 months, which on its own suggests a higher
rate of replacements for the component 1. But even the other
two parameters, CM cost and PM cost, are ordered in a way
b1 > b2, c1 > c2, which is favorable for more frequent re-
placements of component 1 compared to component 2.

All computational tests are performed on an Intel
2.40 GHz dual-core Windows PC with 16 GB RAM. The
mathematical optimization models are implemented in
AMPL IDE (version 3.5); the model components (Eqs. 10
and 7) are calculated by MATLAB (version R2015b), and
then the optimization problems are solved using CPLEX
(version 12.8).

4.1 Study 1: focusing on a single component at a time

If n= 1, dt ≡ d, and s = 0, the objective function (Eq. 5)
takes the form

f (x)=
r+1∑
t=1

atxt , at =
d + ct

t
, (22)

where given a sequence of independent random variables

Li
d
= L with L having a Weibull (α, β) distribution,

ct = c+E

(
∞∑
i=1

1{L1+ ...+Li≤t}

[
b+ d −

(
Li

t

)λ
(c+ d)

])
. (23)

In the single component setting, coefficient at in Eq. (22)
describes the monthly maintenance cost if the next PM is
planned at time t (assuming that at time 0 the component
was as good as new). In this section, we analyze the behav-
ior of the function at under some realistic model parameters.
It turns out, in the current setting, that minimizing the ob-
jective function (Eq. 5) is equivalent to minimizing at over
t = 1, . . . , r + 1, and, moreover, the constraint (Eq. 7) can
effectively be disregarded. As a result of this analysis, we
propose r = 60 months as a practical length of the planning
period for our algorithm.

Figure 4 presents a typical profile for the monthly main-
tenance cost at as a function of the time t of the next PM
planned activity. The inset of Fig. 4 clearly shows that the
best time for next PM is at τ = 43 given the mobilization
cost of d = USD5000. The maintenance cost in this case is
a43 = USD1700 per month.

The same value τ = 43 can be also seen on the lowest
among four lines depicted on Fig. 5 if parameter d, shown
on the horizontal axis, takes a value of 5. The gearbox line

Wind Energ. Sci., 6, 949–959, 2021 https://doi.org/10.5194/wes-6-949-2021



Q. Yu et al.: Optimal scheduling of the next preventive maintenance activity for a wind farm 955

Table 1. Key parameters for a four-component system.

Component j CM cost PM cost βj αj µj
bj (USD 1000) cj (USD 1000) (months) (months)

Gearbox 1 202 46.75 3 80 71.4
Rotor 2 162 36.75 3 100 89.9
Generator 3 150 33.75 2 110 97.5
Main bearing 4 110 23.75 2 125 110.8

Figure 4. Monthly maintenance cost for the gearbox with the mo-
bilization cost d = 5000.

on Fig. 5 displays larger values of τ for higher mobilization
costs d . The same pattern is seen for the other three compo-
nents taken one at a time.

Now we are ready to explain how the results of our anal-
ysis justify the proposed value r = 60 months for the length
of the next PM planning period. The ideal choice of r must
satisfy two contradicting requirements. On the one hand,
r should not be very small to avoid too many NextPM steps
in Algorithm 1 advising for no PM activities during the next
planning period. On the other hand, a smaller value of the
parameter r would significantly reduce the computational
time of the NextPM model. As a compromise solution, we
choose r in such way that at least one PM activity is expected
to be scheduled during the planning horizon. Since gearbox is
expected to be replaced most often, referring to Figs. 4 and 5,
we take the value of r = 60 months for our case studies.

4.2 Study 2: seasonal effects

In this section, we study how different mobilization costs dt
result in different optimal PM schedules. Part A presents a
baseline study of a pure CM strategy with no PM activities.
Part B deals with seasonally changing dt around the average

Figure 5. The optimal next PM time τ as a function of the mobi-
lization cost d for different single-component systems.

value d = USD10000. Part C takes up a similar case with a
lower average mobilization cost d = USD5000.

4.2.1 Part A

Consider the simplest wind turbine maintenance strategy
when the PM option is ignored and a CM activity is per-
formed whenever a turbine component breaks down. This
baseline case study will help us to evaluate how much can
be saved by introducing PM planning.

The total cost associated with the pure CM strategy is esti-
mated based on the random number of failures over the time
interval [0, T ] for all n components

F (T )=
n∑
j=1

E

(
∞∑
i=1

1{
V
j
i ≤T

}(d
V
j
i

+ bj

))

=

n∑
j=1

T∫
0

(
du+ bj

)
dHj (u), (24)

where Hj are the corresponding renewal functions

Hj (t)= E

(
∞∑
i=1

1{
V
j
i ≤t

}) , t > 0, j = 1, . . ., n. (25)
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Table 2. Summary of the NextPM results for d = USS10000.

Component j 1 2 3 4 Corresponding Monthly
month maintenance

cost

Winter start 54 54 54 54 Jun USD 5010
Summer start 49 49 49 49 Jul USD 4979
Constant mobilization cost 52 52 52 52 – USD 5061

According to the standard renewal theory (see for example
Grimmett and Stirzaker, 2020), for large values of T ,

F (T )
T
≈

n∑
j=1

1
T µj

T∫
0

(
du+ bj

)
du=

n∑
j=1

d + bj

µj
, (26)

where

d =
d1+ . . . + dT

T
.

Applying this approximation to the four-component model
of the wind turbine, the monthly maintenance costs for the
pure CM strategy are computed to be USD 7396 for d =
USD5000 and USD 7618 for d = USD10000.

4.2.2 Part B

To address the seasonal effects of the mobilization costs dt ,
the following mobilization costs (in thousands of USD) for
different months in a year are used.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
15 13 11 9 7 5 5 7 9 11 13 15

It is assumed that the mobilization costs for different
months are different, but for the same month in different
years they are the same. In this case, the average mobiliza-
tion cost is d = USD10000. The given monthly costs are
based on a discussion with the experts affiliated with the
Swedish Wind Power Technology Centre (SWPTC). Table 2
summarizes the results produced by the NextPM algorithm
applied to the following three settings:

Winter start scenario. If the wind turbine starts function-
ing in January, then the mobilization costs dt (in thou-
sands of USD) follow the following periodical dynam-
ics over time t = 1, 2, . . . :

d1 = 15, d2 = 13, . . ., d12 = 15, d13 = 15, d14 = 13, . . .

Summer start scenario. If the wind turbine starts function-
ing in July, then the mobilization costs dt are taking the
values (in thousands of USD):

d1 = 5, d2 = 7, . . ., d12 = 5, d13 = 5, d14 = 7, . . .

Constant mobilization cost scenario. This scenario has no
seasonal effect in that for each month t , the mobilization
cost dt is the same: d1 = 10, d2 = 10, d3 = 10, . . . (in
thousands of USD).

Our results suggest (as a consequence of high mobiliza-
tion costs) performing PM to all four components at a cer-
tain time, irrespective of the scenario. With the summer start
setting, the average monthly maintenance cost is somewhat
lower. Notice that in all of the seasonal settings, the pro-
posed PM activities are scheduled for summer months (hav-
ing lower mobilization costs). Observe that all three monthly
averages (USD 5010, 4979, 5061) are much lower than the
baseline value USD 7618 obtained in Part A.

4.2.3 Part C

In this section, the mobilization costs are halved to contrast
the results of Part B, so that d = USD5000 and dt take the
following values (in thousands of USD) depending on which
month of the year lies behind the time parameter t .

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
7.5 6.5 5.5 4.5 3.5 2.5 2.5 3.5 4.5 5.5 6.5 7.5

The new results presented in Table 3 are drastically
different from the results of Part B.

According to Table 3, in the winter start setting, the opti-
mal next PM plan suggests a PM activity on month 43 only
for component 1, the gearbox. With the seasonal mobiliza-
tion cost, the next PM is always planned during the summer
since the mobilization cost is low then. Again, the most eco-
nomic among the three scenarios is to start in the summer-
time, with the optimal plan being to perform the next PM
activity on month 48 by replacing the components 1 and 2.

The optimal times for the next PM activity have landed in
the range between 43 and 50 months and seem to be quite
short. This is explained by the particular choice of the model
parameters presented in Table 1: under the assumption of in-
dependence between the lives of the four components, the av-
erage time until the first failure is slightly below 50 months.
(Notice that in this case study, the estimated parameters for
the components’ life lengths are based on the data collected
for wind turbines from year 1994 to 2004. For the modern
wind turbines, the mean survival times will be longer.) An-
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Table 3. Summary of the NextPM results for d = USD5000.

Component j 1 2 3 4 Corresponding Monthly
month maintenance

cost

Winter start 43 x x x Jul USD 4876
Summer start 48 48 x x Jun USD 4863
Constant mobilization cost 50 50 50 50 – USD 4964

Table 4. Outputs of the NextPM and PMSPIC models for d = USD1000.

d = USD1000 1 2 3 4 Monthly MATLAB AMPL
maintenance

cost

NextPM 43 x x x USD 4731 49 s 0.01 s
PMSPIC 49 x x x USD 4746 135 s 19.64 s

Table 5. Outputs of the NextPM and PMSPIC models for d = USD5000.

d = USD5000 1 2 3 4 Monthly MATLAB AMPL
maintenance

cost

NextPM 50 50 50 50 USD 4964 54 s 0.01 s
PMSPIC 51 51 51 51 USD 4881 132 s 51.56 s

Table 6. Outputs of the NextPM and PMSPIC models for d = $10000.

d = USD10000 1 2 3 4 Monthly MATLAB AMPL
maintenance

cost

NextPM 52 52 52 52 USD 5061 55 s 0.01 s
PMSPIC 50 50 50 50 USD 5037 134 s 87.57 s

other important contributing factor is the assumption of low
PM costs, with higher PM costs the optimal next PM activ-
ity would be scheduled at a later time. In the special case
with equal PM and CM costs, the optimal solution is to for-
get about PM planning and fully rely the pure CM strategy.

Comparison of the results of Part B and Part C with those
of Part A shows that implementation of the PM planning re-
duces maintenance costs by 35 %.

4.3 A performance comparison with PMSPIC

In this case study, we compare the outputs of the NextPM
model and the optimization model PMSPIC. A compari-
son of the NextPM model with the PMSPIC model is not
a straightforward exercise, since the latter produces a main-
tenance plan for the whole lifespan [0, T ] of the multi-
component system in question. To make a fair comparison,
we characterize both approaches in terms of the time average

maintenance costs. The following three tables summarize the
results for three values of the constant mobilization cost d:

Tables 4–6 reveal that the next PM schedules produced
by NextPM and PMSPIC are quite similar. The observed
small differences in the maintenance costs do not imply that
PMSPIC gives better solutions, since NextPM calculates the
maintenance costs within a different modeling framework.
The main advantage of NextPM compared to PMSPIC is in
the computational speed. The effectiveness of the algorithms
is reported in the two rightmost columns. The “MATLAB”
column gives the time it takes to generate the main parame-
ters of the model. For the NextPM the number of parameters
is much smaller, and they are cjs,t ,D

j
s,t . The “AMPL” column

gives the time it takes to solve the optimization model. For
example, if d = USD10000, the NextPM optimization runs
10 000 times faster than the PMSPIC optimization.

For d = USD5000, the NextPM calculations are per-
formed with the time unit being 3 d. The results are rather
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similar to those obtained for the time unit 1 month. Solving
this problem with AMPL has required a time increase from
0.01 to 0.08 s caused by a 10-fold increase of the number of
the time steps. The corresponding increase in the AMPL time
for the PMSPIC model was much more dramatic: it takes
more than 11 h to solve the full optimization problem.

5 Conclusions

This article introduces a new NextPM optimization model
aiming at PM scheduling for a wind turbine viewed as a
multi-component system. Which of the components should
undergo PM replacements first is decided based on the in-
formation on the component ages. Compared to the PMSPIC
model from Gustavsson et al. (2014) that generates a main-
tenance plan for the whole lifetime of the wind turbine, the
NextPM model produces an optimal schedule only for the
next PM activity. By focusing on a shorter planning horizon
and implementing a different model structure, we succeeded
in substantially reducing the computational time.

NextPM is tested with three case studies based on the data
for four components of the wind turbine taken from Tian
et al. (2011). Under the seasonal variation, our results show
that PM activities should be always scheduled in the sum-
mertime. This is due to the lower mobilization costs during
the summer months. When the NextPM model is compared
to the pure CM strategy, it is found that around 35 % of the
maintenance costs can be saved by applying the NextPM
model. The third case study compares the performances of
NextPM and PMSPIC algorithms, demonstrating the accu-
racy of the NextPM model despite being much less complex
than PMSPIC.

In this paper our NextPM model is applied to a system of
four components belonging to a single wind turbine. How-
ever, we claim that our approach can handle the case of, say,
10 turbines with 80 components in total (the computational
time required by our algorithm grows linearly with the in-
creased number of components, while PMSPIC’s computa-
tional time grows exponentially fast).

The notable limitation of our setting is that it neglects such
important maintenance activities as inspections and minor
and major repairs. By considering full replacements as the
only kind of CM and PM activities allowed in the model, we
were able to tame the mathematical challenge of the problem
in hand. Still, even within this simplified model framework,
our computational analysis may bring useful insights of more
efficient PM planning, depending on a few key parameters
of a concrete wind farm. Our results should be viewed as a
first promising step towards a much more sophisticated math-
ematical optimization model that would take into account
available condition monitoring data and even recognize the
difference in the failure rates for minor repairs, major repairs,
and component replacements.

Code and data availability. The code used to calculate the pa-
rameters is in MATLAB; the code is available on https://github.
com/QuanjiangYu/NextPM-model/tree/main/matlab (last access:
18 June 2021) (Yu, 2021a). To solve the model, AMPL is
used; the code is available on https://github.com/QuanjiangYu/
NextPM-model/tree/main/ampl (last access: 18 June 2021) (Yu,
2021b). The data used to solve the model are available on https:
//github.com/QuanjiangYu/NextPM-model/tree/main/data (last ac-
cess: 18 June 2021) (Yu, 2021c).

Author contributions. QY developed the theoretical formalism,
performed the analytic calculations, and performed the numerical
simulations. SS, QY, and MP contributed to the final version of the
manuscript.

Competing interests. The authors declare that they have no con-
flict of interest.

Acknowledgements. We acknowledge the financial support from
the Swedish Wind Power Technology Centre at Chalmers, from the
Gothenburg University Library, and from the Swedish Research
Council (grant no. 2014-5138). Special thanks to the director of
SWPTC, Ola Carlson, for his constructive recommendations. The
valuable comments of four reviewers helped considerably in im-
proving the quality of our manuscript.

Financial support. The article processing charges for this
open-access publication were covered by the Gothenburg
University Library.

Review statement. This paper was edited by Katherine Dykes
and reviewed by Jonas Kaczenski and Miriam Noonan.

References

Andreasson, N., Patriksson, M., and Evgrafov, A.: An introduction
to continuous optimization: foundations and fundamental algo-
rithms, Courier Dover Publications, Dover, 2020.

Browell, J., Dinwoodie, I., and McMillan, D.: Forecasting for day-
ahead offshore maintenance scheduling under uncertainty, in:
Proceedings of the European Safety and Reliability (ESREL)
Conference, September 2016, University of Strathclyde, Strath-
clyde, 2016.

Grimmett, G. and Stirzaker, D.: Probability and random processes,
Oxford University Press, Oxford, 2020.

Guo, H., Watson, S., Tavner, P., and Xiang, J.: Reliability analysis
for wind turbines with incomplete failure data collected from af-
ter the date of initial installation, Reliabil. Eng. Syst. Safe., 94,
1057–1063, 2009.

Gustavsson, E., Patriksson, M., Strömberg, A.-B., Wojciechowski,
A., and Önnheim, M.: Preventive maintenance scheduling of
multi-component systems with interval costs, Comput. Indust.
Eng., 76, 390–400, 2014.

Wind Energ. Sci., 6, 949–959, 2021 https://doi.org/10.5194/wes-6-949-2021

https://github.com/QuanjiangYu/NextPM-model/tree/main/matlab
https://github.com/QuanjiangYu/NextPM-model/tree/main/matlab
https://github.com/QuanjiangYu/NextPM-model/tree/main/ampl
https://github.com/QuanjiangYu/NextPM-model/tree/main/ampl
https://github.com/QuanjiangYu/NextPM-model/tree/main/data
https://github.com/QuanjiangYu/NextPM-model/tree/main/data


Q. Yu et al.: Optimal scheduling of the next preventive maintenance activity for a wind farm 959

Jafari, L., Naderkhani, F., and Makis, V.: Joint optimization of main-
tenance policy and inspection interval for a multi-unit series sys-
tem using proportional hazards model, J. Operat. Res. Soc., 69,
36–48, 2018.

Lazard: Lazard’s Levelized Cost of Energy Analysis – Ver-
sion 14.0, available at: https://www.lazard.com/media/451419/
lazards-levelized-cost-of-energy-version-140.pdf (last access:
18 June 2021), 2020.

Lee, H. and Cha, J. H.: New stochastic models for preventive main-
tenance and maintenance optimization, Eur. J. Oper. Res., 255,
80–90, 2016.

Moghaddam, K. S. and Usher, J. S.: Sensitivity analysis and com-
parison of algorithms in preventive maintenance and replacement
scheduling optimization models, Comput. Indust. Eng., 61, 64–
75, 2011.

Sarker, B. R. and Faiz, T. I.: Minimizing maintenance cost for off-
shore wind turbines following multi-level opportunistic preven-
tive strategy, Renew. Energ., 85, 104–113, 2016.

Stehly, T. J. and Beiter, P. C.: 2019 Cost of Wind Energy Review,
Tech. rep., NREL – National Renewable Energy Lab., Golden,
CO, USA, 2020.

Tian, Z., Jin, T., Wu, B., and Ding, F.: Condition based maintenance
optimization for wind power generation systems under continu-
ous monitoring, Renew. Energ., 36, 1502–1509, 2011.

Tian, Z., Wu, B., and Chen, M.: Condition-based maintenance op-
timization considering improving prediction accuracy, J. Oper.
Res. Soc., 65, 1412–1422, 2014.
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