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Non-Hodgkin’s lymphoma (NHL) is a cancer that starts in the lymphatic system. In NHL,
the important part of the immune system, a type of white blood cells called lymphocytes
become cancerous. NHL subtypes include marginal zone lymphoma, small lymphocytic
lymphoma, follicular lymphoma (FL), and lymphoplasmacytic lymphoma. The disease can
emerge in either aggressive or indolent form. 5-year survival duration after diagnosis is
poor among patients with aggressive/relapsing form of NHL. Therefore, it is necessary to
understand the molecular mechanisms of pathogenesis involved in NHL establishment
and progression. In the next step, we can develop innovative therapies for NHL based on
our knowledge in signaling pathways, surface antigens, and tumor milieu of NHL. In the
recent few decades, several treatment solutions of NHL mainly based on targeted/
directed therapies have been evaluated. These approaches include B-cell receptor
(BCR) signaling inhibitors, immunomodulatory agents, monoclonal antibodies (mAbs),
epigenetic modulators, Bcl-2 inhibitors, checkpoint inhibitors, and T-cell therapy. In recent
years, methods based on T cell immunotherapy have been considered as a novel
promising anti-cancer strategy in the treatment of various types of cancers, and
particularly in blood cancers. These methods could significantly increase the capacity of
the immune system to induce durable anti-cancer responses in patients with
chemotherapy-resistant lymphoma. One of the promising therapy methods involved in
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the triumph of immunotherapy is the chimeric antigen receptor (CAR) T cells with
dramatically improved killing activity against tumor cells. The CAR-T cell-based anti-
cancer therapy targeting a pan–B-cell marker, CD19 is recently approved by the US Food
and Drug Administration (FDA) for the treatment of chemotherapy-resistant B-cell NHL. In
this review, we will discuss the structure, molecular mechanisms, results of clinical trials,
and the toxicity of CAR-T cell-based therapies. Also, we will criticize the clinical aspects,
the treatment considerations, and the challenges and possible drawbacks of the
application of CAR-T cells in the treatment of NHL.
Keywords: chimeric antigen receptor, non-Hodgkin’s lymphoma, CD-19, target therapy, CAR T cells
INTRODUCTION

Non-Hodgkin’s lymphoma (NHL) is the seventh common
malignancy in the United States, mostly regarded as a
malignancy with good prognoses and 5-year survival of
approximately 70%. The most common types of NHL are
diffuse large B cell lymphoma (DLBCL), follicular lymphoma
(FL), and mantle cell lymphoma (MCL) (1). The typical
therapeutic methods for lymphoma include radiation therapy,
chemotherapy, immunotherapy, and so on. However, in
approximately 20-30% of all patients with lymphoma,
especially those with DLBCL (the most common invasive
subtype), resistance to these treatment lines will develop (2, 3).
The hematopoietic stem cell transplant (HSCT) is one of the
standard care in patients with relapsed and refractory disease
who have survived chemotherapy (4). However, due to
underlying comorbidities and chemo-resistance disease, about
40% of patients may not be qualified for HSCT. Even about half
of the patients treated with HSCT tend to relapse (5). In other
words, the outcome of this treatment in patients with relapsed/
refractory (R/R) disease, especially in DLBCL patients, is not
entirely satisfactory. Accordingly, the presence of new therapies
that improve therapeutic outcomes in patients with recurrent or
refractory lymphoma is needed (6). Recently, T-cell
immunotherapies with the CARs have been widely applied and
have shown notable consequences in the treatment of B-cell
malignancies (7). Unlike normal T cells, CAR-T cells detect
unprocessed antigens. In other words, they recognize the tumor
cells independently of the human leukocyte antigen (HLA)
system and then eradicates them. This feature overcomes the
main mechanisms of tumor escape such as defective antigen
processing and decreased expression of class I HLA molecules,
which prevents the recognition of HLA-restricted T cells (8, 9).
The genetic sequence of the CAR molecule is transferred to T
cells after loading into viral or non-viral vectors and then used to
target tumor cells (10). The importance of this technology has
recently been fully understood following the dramatic effect of
CD19-specific CAR-T cells against the treatment-resistant B cell
malignancies illustrated in primary-phase clinical trials. CD19-
ptor; GvHD, graft-versus-host disease;
odgkin lymphomas; DLBCL, diffuse
homa; ALL, lymphoblastic leukemia;
al cell carcinoma.

org 2
specific CAR-T cells have been widely used to treat B-cell
lymphoma since most B-cell NHLs also highly express the
CD19 marker. However, the clinical effect of anti-CD19 CAR-
T cells in patients with ALL seems more significant than in
patients with lymphoma. In many patients with lymphoma in
whom standard care approaches have been ineffective, utilization
of CARs has yielded significant responses (6). In general, unlike
B-cell lymphomas, peripheral T-cell lymphomas are composed
of a heterogeneous set of diseases with a poor prognosis (11). At
present, due to limited antigen availability, the treatment of T cell
lymphomas is very challenging and there are few T cell therapies
against the antigen of T cell lymphoma (12, 13). However,
recurrent relapses and resistance to the therapeutic methods
lead to failure to achieve treatment in all patients (13). This study
aimed to evaluate CAR-T cell products in NHL patients and to
describe the unique aspects of their use for the treatment of
these patients.
CURRENT IMMUNOTHERAPEUTIC
APPROACHES FOR NHL’s

The identification of different oncogenic signaling pathways is
considered an attractive therapeutic mark in B cell malignancies.
Disorder of the BCR pathway is a common feature in the
pathogenesis of B-NHL. Besides, targeting BCR pathway enzymes
like phosphoinositol-3 kinase (PI3K), spleen tyrosine kinase (Syk)
and Bruton’s tyrosine kinase (Btk) has been largely successful in
treating B-NHL subtypes. Also, inhibition of the microenvironment
using immunomodulatory agents and checkpoint inhibitors, and
targeting the anti-apoptotic protein of B-cell lymphoma 2 (Bcl-2),
can be other attractive therapies (14) (Table 1).

Monoclonal Antibodies (mAbs)
One of the most prosperous therapeutic strategies for the
treatment of NHL is utilization of mAbs. The emergence of
Rituximab as an anti-CD20 antibody had a significant impact on
the treatment of this group of diseases. Despite the successes,
how to optimize the use, the optimal duration of treatment, and
the best times to administer mAbs, especially Rituximab in the
NHL have not yet been determined. It is also necessary to
identify the mechanisms that develop resistance to Rituximab
to increase the effectiveness of this and other similar drugs.
June 2021 | Volume 12 | Article 681984
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Rituximab
Rituximab [Rituxan], a chimeric anti-CD20 mAb, was the early
antibody approved by the FDA for the cure of R/R low-grade
NHL or FL. Approval was based on an experiment in which 166
patients with indolent NHL received Rituximab and ultimately
had a complete remission (CR) rate of 6% and an overall
response rate (ORR) of 48% (15). Also, Rituximab activity was
used as a second-line treatment in patients with invasive DLBCL
or MCL but showed relatively lower therapeutic effect (16).

Epratuzumab
Epratuzumab, the humanized IgG1 version of LL2 (anti-CD22
murine mAb), was designed to increase the half-life and effective
performance, and reduce immunogenicity potential (17). The
elementary clinical studies of this antibody labeled with 111In/90Y
and 131I have shown evidence of tumor localization, as well as the
therapeutic activity for radioimmunoconjugate (18). The exact
mechanism of action of Epratuzumab has not been elucidated,
but binding of human CD22 to mAbs may induce tyrosine
phosphorylation of the cytoplasmic tail of CD22, binding of
tyrosine phosphatase SHP-1, and ultimately inhibiting B cell
receptor signaling (19).

Galiximab
Galiximab is a cynomolgus macaque chimeric IgG1 mAb that is
designed to target CD80 and the treatment of B-cell lymphoma.
This antibody is not structurally distinct from human antibodies
Frontiers in Immunology | www.frontiersin.org 3
and therefore cannot produce significant immunogenicity in
humans. To date, several preclinical studies have demonstrated
the antitumor activity of Galiximab alone or in combination with
Rituximab against different B cell lymphoma cell lines in-vitro/
in-vivo (20, 21). The mechanism of activity of Galiximab is not
well understood but clinical studies with Galiximab have shown
increased apoptosis and antibody-dependent cell-mediated
cytotoxicity (ADCC), and decreased proliferation in various B
cell lymphoma cells (22).

Tafasitamab
Tafasitamab (MOR208, XmAb5574) is a humanized Fc-
engineered anti CD19 mAb that its preclinical activity has
been shown in patients with R/R NHL including MCL, FL, and
DLBCL (23). The Fc engineering, comprising the replacement of
S239D and I332E amino acids is advantageous by reducing
binding of FcgRIIa inhibitory receptor and increasing FcgRIIIa
binding affinity on effector cells, leading to the enhancement of
antigen-dependent cell-mediated phagocytosis and antigen-
dependent cell-mediated cytotoxicity compared to using
unmodified G1 CD19 antibodies. MOR208 potentially leads to
disruption of B cell antigen receptor signaling resulting in
cytotoxicity (24, 25).

Otlertuzumab
Otlertuzumab (TRU-016) is a protein therapeutic developed
using the Modular Protein Technology (ADAPTIRTM
TABLE 1 | Immunotherapeutic approaches for B-Cell Non-Hodgkin’s lymphomas.

Class Agent Target Histologic subtypes

Monoclonal antibodies Rituximab CD20 FL, DLBCL, and MCL
Epratuzumab CD22 FL, DLBCL, and
Galiximab CD80 B-cell lymphoma
Tafasitamab CD19 MCL, FL, and DLBCL
Otlertuzumab CD37 NHL and CLL
MEDI-551 CD19 FL and DLBCL

Antibody drug conjugates Polatuzumab Vedotin CD79b DLBCL
Brentuximab Vedotin CD30 DLBCL
Pinatuzumab Vedotin CD22 DLBCL and FL
Vorsetuzumab Mafodotin CD70 CD70-positive NHL, and metastatic renal cell carcinoma
Inotuzumab Ozogamicin CD22 NHL, HCL, CLL, and B-cell ALL
Coltuximab Ravtansine CD19 DLBCL
IMGN529 CD37 B-NHL

Btk inhibitors Ibrutinib Btk Marginal zone lymphoma, MCL, WM, and CLL
Acalabrutinib Btk Mantle cell lymphoma and CLL

PI3K inhibitors Copanlisib PI3Ka/PI3Kd B-cell lymphomas, FL, and CLL
Duvelisib PI3K FL and CLL/SLL
Idelalisib PI3Kd B-NHL, FL, and SLL

Syk inhibitors Entospletinib Syk MCL, DLBCL, CLL, and AML
Fostamatinib Syk Lymphoma, autoimmune thrombocytopenia, rheumatoid arthritis,

IgA nephropathy, and autoimmune hemolytic anemia
Bcl-2 inhibitors Navitoclax Bcl-xL, Bcl-2, Bcl-w, and Mcl-1/A1 NHL, ALL, and CLL

Venetoclax Bcl-2 NHL (MCL, FL, and DLBCL)
Checkpoint inhibitors Durvalumab PD-L1 Lymphoma

Nivolumab PD-1 FL
Pembrolizumab PD-1-PD-L1/PD-L2 PMBCL
Pidilizumab PD-1 DLBCL
Btk, Bruton’s tyrosine kinase; PI3K, phosphatidyl-inositol-3-kinase; Syk, spleen tyrosine kinase, Bcl-2, B-cell lymphoma; NHL, Non-Hodgkin’s lymphoma; DLBCL, diffuse large B-cell
lymphoma; FL, follicular lymphoma; PMBCL, mediastinal B cell lymphoma; CLL/SLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; HCL, hairy cell leukemia; WM,
Waldenstrom’s macroglobulinemia; AML, acute myeloid leukemia.
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platform) that targets the CD37 molecule. Otlertuzumab,
through binding to the CD37 receptor, leads to an increase in
BIM proapoptotic protein expression and apoptosis induction
(26). Preclinical studies show that Otlertuzumab mediates
apoptosis and FcDCC (Fc-dependent cytotoxicity) against
NHL cells and chronic lymphocytic leukemia (CLL) in vitro
and in-vivo (27). Besides, Otlertuzumab activity was shown to be
dependent on NK cell function in several B cell malignancy
xenograft models (27). Other studies have shown that blocking
CD20 on the surface of target B cells with Otlertuzumab may
have therapeutic benefits, especially in CLL (28, 29), because the
signal resulted from Otlertuzumab is provided by interacting
with CD37 separately from CD20.

MEDI-551
MEDI-551 is a fucosylated anti-CD19 mAb which has antitumor
activity against B cell malignancies alone or in combination with
Rituximab (30). In phase 1 studies, unprotected safety
characteristics and single-agent activity of MEDI-551 were
observed in R/R FL and DLBCL with an overall response rate
of 24% (31).

Antibody-Drug Conjugates (ADCs)
ADCs are a group of molecules made up of a mAb conjugated
with a potent cytotoxic agent using a chemical linker. The linkers
in these structures are cleaved by reduction, alterations in pH, or
by proteases, and the drug is preferentially released at the tumor
region (32). By choosing mAb against tumor-specific antigens,
ADCs enable the targeted delivery of cytotoxic agents to cancer
cells. In this section, the ADCs utilized to treat NHL will be
discussed. ADCs change the treatment patterns of these diseases
by increasing performance and improving tolerance to current
chemotherapy-based regimens (33).

Polatuzumab Vedotin
Polatuzumab vedotin is an ADC comprised of an anti-CD79b
mAb and an anti-mitotic agent called mono-methyl auristatin E
(MMAE) (34). This therapeutic agent detects the CD79b protein
from the B cell receptor complex and after binding to it, inhibits
tubulin polymerization by entering the cytotoxic payload of
MMAE drug into B-cell, leading to the death of the target cell.
Targeting the CD79b pan-B marker is ideal in patients who may
later need CD19-targeted CAR-T cell therapy because it will not
develop resistance to CD19 regimens (35).

Brentuximab Vedotin
Brentoximab vedotin (BV) consists of an anti-CD30 mAb that
binds to MMAE via a biodegradable ligand (36). After ADC
binding, MMAE cleaves and undergoes endocytosis, then
disrupts microtubules, arresting the cell cycle and inducing
apoptosis (37). Recently, in a phase II study in DLBCL, the
function of BV was investigated with an ORR of 44% (38).

Pinatuzumab Vedotin
Pinatuzumab Vedotin (DCDT2980S) is a humanized anti-CD22
IgG1 connected to the MMAE via the cathepsin-B-sensitive
dipeptide (valine-citrulline, VC) linker. Binding of MMAE to
Frontiers in Immunology | www.frontiersin.org 4
microtubules arrests cell cycle in the G2/M stage and induces
apoptosis (33). This ADC has been studied alone and in
combination with Rituximab in CLL and NHL in phase I and
II clinical trials. The results showed that (DCDT2980S) can be
used as a potential therapeutic option in patients with R/R
DLBCL and FL.

Vorsetuzumab Mafodotin
Vorsetuzumab mafodotin (SGN-75) is composed of a
humanized mAb targeting CD70 (h1F6) conjugated to the
monomethyl auristatin F (MMAF) via the noncleavable
maleimidocaproyl (MC) linker (39). MMAF is stronger than
MMAE but less permeable to cells (40). The lysosomal
degradation of this ADC causes the generation of cysteine-
MC-MMAF in cancer cells (41). SGN-75 was investigated in a
phase I clinical trial for CD70-positive R/R NHL and metastatic
renal cell carcinoma (RCC).

Inotuzumab Ozogamicin
Inotuzumab is an anti-CD22 humanized IgG4 mAb, while
ozogamicin is derived from calicheamicins, a group of potent
anticancer antibiotics that cause strand cleavage in the DNA
minor groove, cell cycle arrest, and eventually leading to
leukemic cell apoptosis (42). The CD22 receptor is a very ideal
therapeutic target because in most cases of B-cell hematologic
malignancies such as NHL, hairy cell leukemia, CLL, and B-cell
ALL, it is expressed in tumor tissues and not seen in normal
tissues such as B lymphocyte precursors and hematopoietic stem
cells (43).

Coltuximab Ravtansine (SAR3419)
SAR3419 (huB4/DM4) is a novel Ab–drug conjugate made from
a humanized IgG1 anti-CD19 mAb (huB4) bound to a potent
cytotoxic agent, a maytansine-derivative chemical agent (DM4).
Phase I trials based on preclinical studies have illustrated
optimistic antitumor activity of this drug with admissible
safety results in human B-lymphoma models (44).

IMGN529 (CD37 ADC)
IMGN529 is a novel ADC for the treatment of CLL and B-NHL
that consists of an anti-CD37 MAb bound to maytansinoid
(DM1) toxin, a potent anti-tubulin. Previously, the therapeutic
effects of 133I-labeled CD37 MAb in the B-NHL have been
investigated (45). The antitumor activity of IMGN529 has been
assessed in vitro and xenograft models (46). Furthermore, its
safety and tolerability in patients with R/R B-NHL in phase I, an
open-label trial (NCT01534715) were evaluated.

Btk Inhibitors
Disruption of the B cell receptor pathway is closely related to the
spread of B cell malignancies. This has made it possible to
develop component inhibitors and various important steps
along this pathway. Btk is a molecule present in the early BCR
signaling pathway that plays an important role in regulating
various cell functions including proliferation, differentiation, and
survival in this type of malignancy and has been considered as a
therapeutic target in this disease (47, 48).
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Ibrutinib
Ibrutinib, the irreversible Btk inhibitor, has been approved for
the treatment of a variety of B cell malignancies (49) including
marginal zone lymphoma, MCL, Waldenström macroglobulinemia
(WM), and CLL. It has also been shown that Ibrutinib also
suppresses Th2 cells and enhances Th1-mediated immunity by
inhibiting Interleukin-2 (IL-2) inducible T-cell kinase (ITK) (50).

Acalabrutinib
Acalabrutinib (ACP-196) is a second-generation inhibitor of Btk
with a selective kinase activity pattern that covalently binds to the
cysteine-481 residue at Btk and inhibits it more strongly than
Ibrutinib (51). Furthermore, Acalabrotinib has shown an
acceptable outcome in early clinical trials in patients with
relapsed and refractory CLL (52).

PI3K Inhibitors
PI3K has three distinct classes (I, II, and III). The class I of PI3K
pathway with 4 isoforms (a, b, g, and d) is most associated with
the expansion and survival of malignancies and is one of the
therapeutic targets of cancer (53). PI3K-a and-b are ubiquitously
expressed, while the expression of PI3K-g and -d is more limited
to leukocytes (54). Mutations and overexpression of PI3Ka are
oncogenic and have been identified in various subtypes of cancer
(55). Increased copy number and elevated PI3Ka protein
expression have also been recognized in different lymphomas,
indicating the basic role of PI3Ka in lymphomagenesis (56).
Simultaneous silencing of PI3Ka and -d is required for efficient
blockage of PI3K signaling in clinical trials (57). Studies have
shown that a combination of PI3Ka and d-isoform inhibitors is
required to suppress phospho-Akt and NFkB and PI3K pathways
(56, 58). Therefore, molecular evaluation of PI3Ka/d and the use
of its inhibitors can be a promising therapeutic approach to
eradicate lymphoma. Duvelisib, Copanlisib, and Idelalisib are
three FDA-approved agents for the targeting of PI3Kd in CLL/
SLL and FL neoplastic B cells.

Copanlisib
Copanlisib is a PI3Ka/PI3Kd inhibitor that has been approved as
the third line of treatment for R/R FL. Besides, the antitumor
activity of Copanlisib has been demonstrated in preclinical
models of CLL and B-cell lymphomas (59) These researches
eventually led to the first human study of Copanlisib in
NHL patients.

Duvelisib
Duvelisib (IPI-145) is a second-generation inhibitor of PI3K that
is used to treat relapsed FL and CLL/SLL after the failure of other
treatments. Duvelisib also impedes the expression of PI3Kg
isoform in myeloid cells, T cells, and so on whereas
Copanlisib, targets the PI3Ka isoform expressed in some types
of NHL along with PI3Kd (60). Treatment with Duvelisib by
inhibiting PI3K/AKT/mTOR signaling pathway the homing and
chemotaxis of CLL/SLL cells and leads to in vitro apoptosis (61).
Thus, pharmacologic targeting of PI3Kg reduces the migration
rate of CLL/SLL cells, but the effect of Duvelisib on migration
inhibition is greater than selective single isoform inhibitors (62).
Frontiers in Immunology | www.frontiersin.org 5
Idelalisib
Idelalisib (CAL-101, GS-1101) is a potent inhibitor of PI3Kd
isoform and significantly suppresses B-NHL progression. The
use of Idelalisib alone in patients with small lymphocytic
lymphoma and FL and combination with Rituximab in
patients with CLL has been approved (63).

Syk Inhibitors
Syk is a non-receptor cytoplasmic kinase that is primarily
expressed in hematopoietic cells and is one of the essential
components in BCR signaling (64). Syk activation leads to
BCR signal initiation through binding to adapter proteins and
phosphorylation signaling mediators including Btk, B-cell linker
protein (BLNK), and phospholipase Cg2 (PLC-g2), leading to
differentiation, cell proliferation, and survival (65). Aberrant Syk
signaling is involved in the pathogenesis of multiple B-cell
malignancies, such as constitutive Syk activation (66) and
overexpression of the protein and mRNA levels of Syk (67). As
a result, Syk is an attractive target for the treatment of B-
cell malignancies.

Entospletinib
Entospletinib (GS-9973) is a selective Syk inhibitor and its
impacts were evaluated in phase 2 of the study in patients with
MCL and R/R NHL (68). As a result, Entospletinib showed a
toxic profile and intermediate single-agent activity in NHL,
although its toxicity was controllable compared to other BCR
pathway inhibitors such as Ibrutinib and Idelalisib.

Fostamatinib
Fostamatinib is a prodrug of the active compound R406 and a
potent inhibitor of the enzyme Syk, which is administered in an
oral formulation (69). So far, the clinical trials of Fostamatinib
have been accomplished on autoimmune thrombocytopenia,
rheumatoid arthritis, IgA nephropathy, autoimmune hemolytic
anemia, and lymphoma (70, 71). The evidence from several
human clinical trials has revealed that daily administration of
this drug significantly reduces Syk activity without any adverse
effects on hemostasis or innate immunity (69).

Bcl-2 Inhibitors
BCL2 is a gene with unknown function that was discovered as the
anonymous partner of the heavy chain locus of immunoglobulin
in the typical translocation occurred in FL: t (14, 18, 72). In 60-
90% of NHL cases, mentioned translocation and the placement
of the Bcl-2 gene under the control of the enhancer region of IgH
is observed (73, 74), whereas upregulation of Bcl-2 in the NHL
without this translocation also with increasing relapse of the
disease and mortality rate are associated (75).

Navitoclax
Navitoclax (ABT-263) is used as an inhibitor of the anti-
apoptotic proteins of Bcl-xL, Bcl-2, Bcl-w, and Mcl-1/A1 in
hematological malignancies, alone or combination with other
apoptotic inhibitors. Navitoclax competitively averts Bcl-2 pro-
apoptotic family members from being interrupted by Bcl-xL or
Bcl-2 and thereby activating the intrinsic apoptotic pathway (76).
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In general, pre-clinical and clinical results have displayed strong
Navitoclax activity in acute and chronic lymphocytic leukemia
(77–79).

Venetoclax
Venetoclax (ABT-199, GDC-0199) is another selective Bcl-2
inhibitor that has safety and noteworthy activity in patients
with different subtypes of NHL (80). In previous studies,
Venetoclax showed notable activity in multiple subtypes of
NHL, such as MCL, FL, and DLBCL.

Checkpoint Inhibitors
Programmed death-1 (PD-1) is an inhibitory receptor expressed
by active T cells that upon binding to its corresponding ligands,
PD-L1/PD-L2 leads to suppression of T cell-induced immune
responses and restriction of autoimmunity (81). Tumors often
elude immune monitoring by up-regulating the PD-1 and/or
PD-L1 level on tumor cells and tumor-associated immune cells
(82). Recent studies have shown that PD-1 signaling, which is
currently considered as one of the prominent mechanisms of
immune escape, preferentially dephosphorylates and inhibits the
co-stimulatory molecule CD28 (83). Many tumors, through
overexpression of PDL-1, reduce the cytotoxic function of
tumor-infiltrating T lymphocytes and thus escape immune
surveillance. In some subset of patients with DLBCL, the PD-1
ligand gene amplification and PD-L1 overexpression have been
observed in tumor cells and tumor-associated macrophages (84)
so that after standard treatment, survival is attenuated
significantly (85). In addition, overexpression of PD-1 has been
observed in CD4+ tumor-infiltrating lymphocytes (TIL) in FL
(86). Therefore, PD-1 inhibitors have been developed to disrupt
this pathway and increase immune activity for the clinical
advantage (87).

Durvalumab
Durvalumab is an anti-PD-L1 mAb that enhances anti-tumor
immune responses by suppressing the interaction of PD-1 with
PD-L1 (88). Data from previous studies in murine lymphoma
models showed significant antitumor activity of Ibrutinib with
the anti-PD-L1 Ab (89).

Nivolumab
Nivolumab is an anti-PD-1 Ab (a fully human IgG4 mAb) which
activates T cell signaling through the PD-1 blockade, and thus
enhances the anti-tumor response. Some studies propose that
this drug may be beneficial for patients with relapsed FL after
discontinuation of previous treatments (90).

Pembrolizumab
Pembrolizumab (formerly lambrolizumab) is a humanized mAb
that targets the interaction between PD-1 and PD-L1/PD-L2
(91). The clinical effects of Pembrolizumab on Hodgkin’s
lymphoma (HL) are significant, whereas the results are
different in NHL. Subtypes of the NHL such as Primary
mediastinal B cell lymphoma (PMBCL), that share genetic
characteristics with HL, like chromosome 9p24.1 alterations
and increased expression of PD-L1, have shown favorable
Frontiers in Immunology | www.frontiersin.org 6
responses in early-phase experiments (92). Pembrolizumab has
been shown to potentiate the T lymphocytes’ immune responses
in cultured blood cells from cancer patients and healthy human
donors. Besides, it greatly modulates the levels of cytokines such
as TNF-a, IFN-g, and IL-2. Pembrolizumab does not induce cell-
dependent cytotoxicity (CDC) or ADCC, and nonspecific T cell
activation (93, 94).

Pidilizumab
Pidilizumab (CT-011) is a recombinant human IgG1 Kappa
mAb binding to PD-1. Pidilizumab treatment is safe and
tolerable, and its clinical activity has been recently
demonstrated in DLBCL. PD-1 is an inhibitory receptor
belonging to the B7 receptor family that is expressed on the
myeloid cells and lymphocytes (95, 96) and by binding to the
corresponding ligands (PD-L1 and PD-L2) adjust the immune
response (97). In inflammatory conditions such as malignancy,
continuous expression of PD-1 and its ligands by tumors leads to
inhibition of the antitumor activity of tumor-infiltrating
lymphocytes, T cell exhaustion, and immune escape (98). The
binding of Pidilizumab to PD-1 attenuates the apoptotic process
in this effector memory T cells. Pidilizumab upregulates the
expression level of Bcl-xL protein by inducing the P13K signaling
pathway, thus protecting effector/memory (CD45RO+)
lymphocytes from apoptosis (99). Also, Pidilizumab may
increase the antitumor activity of NK cells through the P13K
signaling pathway.
COMBINATION STUDIES

The therapeutic effect of Rituximab in combination with
Bendamustine was tested in vitro in primary CLL and CD20-
positive DLBCL (100) and in vivo in a model of Burkitt’s
lymphoma (BL) (101). Bendamustine is currently used to treat
some hematological tumors, including the Rituximab-resistant
and indolent NHL (102).

The Epratuzumab plus Rituximab can exert greater
therapeutic impacts than any of the drugs alone in low-grade
FL and DLBCL, which is characterized by a significant
improvement in CR rate (103).

In a phase II study, MOR208 with Lenalidomide was
evaluated in patients with R/R DLBCL (L-MIND study) (104).

Otlertuzumab in combination with Rituximab as well as
chemotherapeutic drugs increased apoptosis in human B cell
tumors. The use of TRU-016 and bendamustine also significantly
delayed tumor growth in vivo and improved survival in xenograft
lymphoma models compared with single agent therapy (105).

Inotuzumab ozogamicin (IO) has been tested in clinical trials
along with Rituximab (106, 107), as well as in combination with
Rituximab plus chemotherapy to treat NHL (108). The
combination therapy with IO and Rituximab provides non-
overlapping and distinct antitumor mechanisms including Ab-
dependent cytotoxicity, cytotoxic agent delivery by IO,
complement-dependent cytotoxicity, and induction of apitosis
by Rituximab.
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It has been shown that Ibrutinib together with ACY1215, a
selective histone deacetylase-6 inhibitor, synergistically resulted
in increased apoptosis in MCL cell lines compared to the
monotherapy (109). Moreover, Ibrutinib in combination with
Bortezomib raised cytotoxicity in DLBCL andMCL cells through
mitochondrial damage and apoptosis (110). Also, the
combination treatment of Ibrutinib and lenalidomide
synergistically resulted in the eradication of ABC-type DLBCL
cells (111). Ibrutinib along with Idelalisib synergistically disrupt
BCR-stimulated integrin-mediated adhesion and inhibit the
migration of CLL and MCL cells, supporting the justification
for combination therapy (112).

The evaluation of Navitoclax in combination with Rituximab
in patients with R/R CD20+ lymphoid malignancies and patients
with previously untreated B-cell CLL exhibited synergistic
antitumor activity and good tolerability (113, 114). In another
study, the effects of combining Bendamustine or Rituximab with
Navitoclax in the treatment of several NHL tumors were
investigated. The results showed that Navitoclax enhanced the
response of NHL tumors to Bendamustine in mouse xenografts
and the addition of Rituximab increased the effectiveness of
Bendamustine. In fact, treatment with Bendamustine increased
p53 levels in Granta-519 tumors, thereby increasing the cleavage
of caspase-3 and inducing apoptosis (115).

Previous studies have shown that Syk inhibitors (R406), Btk
inhibitors (Ibrutinib), PI3K inhibitors (Idelalisib, Copanlisib,
ACP-319, and KA2237), and other kinase inhibitors alone or
in combination with Venetoclax significantly reduce the
expression of BCL2 proteins in vitro and exerted synergistic
killing impacts on lymphoma cells (116, 117). Clinical studies
have confirmed that the combination of Ventoclax with
Rituximab and Bendamustine can illustrate synergistic effects
and significantly increase ORR and complete response (CR) rate
in patients with DLBCL, FL, and MZL. Preclinical studies have
also shown that Venetoclax along with Rituximab leads to
complete tumor regression (100%) in R/R FL xenograft models
(118). A phase II clinical trial investigated the combined
influence of Venetoclax and Ibrutinib in patients with
previously untreated or RR MCL. After completing the
treatment, approximately 70% of the patients were negative for
MRD (minimal residual disease) and indicated a CR of
67% (119).
MANUFACTURING AND DELIVERY OF
CAR‐T CELLS

The production processes of different CAR-T cell lines are
similar for the treatment of lymphoma. Peripheral blood
mononuclear cells (PBMCs) are collected from blood, through
the central or peripheral venous during outpatient leukapheresis.
In the next step, PMBCs are transported to the production site at
a temperature of 1-10°C and after being selected using density
gradient T‐ lymphocytes or magnetic beads, they are activated by
provoking their T cell receptor (TCR) (120). A viral transfer
vector (retrovirus or lentivirus) then transfects the CAR gene to
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the activated T cell genome, causing the modified T cell to
express the CAR molecule forever (121). Finally, after the T cells
have spread in the flask, culture bags, or bioreactor systems, the
CAR-T cell product is frozen and sent to the treatment site. The
manufacturing process of a CAR-T cell product takes an average
of 10-21 days, depending on the sort of CAR-T product. Before
injection, lymphodepleting chemotherapy such as cyclophosphamide
and fludarabine by depletion of regulatory T cells allow incoming T
cells to proliferate and expand (Figure 1) (122).
CAR STRUCTURE

A CAR molecule consists of three major domains: antigen
recognition, transmembrane, and intracellular domain. The
antigen detection domain consists of a single-chain variable
fragment (scFv) containing the variable regions of the light and
heavy chains of a monoclonal antibody against a certain antigen
(eg CD19) (123). scFv, which partially modulates the function
and safety of CAR-T cells, is attached to the membrane domain
by a spaced region derived from IgG4 or CD8 molecules (124).
Signal transduction due to antigen binding occurs via scFv to the
intracellular domain (s). Ultimately, the intracellular domain,
which usually includes the CD3z chain, acts as a signaling
domain. The existence of additional costimulatory domains in
CARs preserves T cell proliferation, activation, and survival
(125). The CARs design has developed dramatically over
the years.

The first-generation CAR-T is made of a CD3z chain as a
crucial transmitter of endogenous TCR signals. After successful
results in preclinical trials, the drug entered into phase 1 clinical
trials for lymphoma, leukemia, neuroblastoma, ovarian cancer,
etc (126). The variable regions of light and heavy chains of the B-
cell receptor are called scFv, which, after fusion with z chain of
the TCR or CD3 domain, form the activating receptor molecules
that are non-HLA-restricted. By specifically targeting tumor
cells, these molecules accelerate the detection of antigen by T
cells and increase cytotoxicity (127). The artificial signaling
receptors, CAR or chimeric receptors, and their synthesis
method are called the T body approach (128).

The second-generation CAR-T cell therapy was established
after the success of first-generation CARs in phase 1 clinical
trials. Initially, these CAR-T cells were utilized in patients with
recurrent B−cell ALL, and they created a more significant anti-
leukemic response with a full recovery rate of up to 90%. The
second-generation CARs contain a CD3z chain and an
intracellular signaling domain of various co-stimulatory
molecules, such as 4-1BB (CD137), CD28, OX40 (CD134), and
induction T cell stimulator (ICOS or CD278) (129). For example,
second-generation anti-CD19 CAR-T cells were constructed
from a 4−1BB or CD28 costimulatory domain bound to the
CD3 domain (130) which in patients with R/R B-cell
malignancies produces remarkable complete response (CR)
rates (131). While 4-1BB-based CARs accelerate the
accumulation of T cells, CD28-specific CAR-T cells
significantly increase effector T cells’ activity (132).
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Third-generation CARs consist of two signaling domains and
a CD3z chain such as the CD3z-CD28-OX40, which, compared
to second-generation CARs, have increased activation signals,
the length of the proliferation period, cytokine production, and
effective anti-tumor activity in these cells (133). For example, a
third-generation CAR consisting of a-CD19/CD3z/CD28/4−1BB
segments dramatically increased the rate of complete recovery in
patients with CLL by penetrating and lysing tumor cells (134).

Although all previous CARs have effectively contributed to T
cell anti-cancer responses, they also have limitations, including
degradation caused by antigen-negative cancer cells and the
absence of antitumor action against solid tumors due to
the broad phenotypic heterogeneity. These restrictions paved
the way for the emergence and development of a new generation
of CARs (135). Fourth-generation CARs, through the triggered
expression of transgenic immunomodulators, such as IL−12,
Frontiers in Immunology | www.frontiersin.org 8
activates innate immune cells and thus increases T cell
function, to lessen antigen-negative tumor cells in the
designated lesion (134).
ANTIGEN SELECTION

The constant expression of B cell markers CD19, CD20, and
CD22 in many B cell malignancies and previous reports of safety
and efficacy of mAb against a mentioned surface antigen in these
diseases have made them ideal targets for CAR-T cell therapy
(25, 136). CAR therapy partially eliminates normal B cells
because they also express most of the CAR-targeted lymphoma
antigens, although this state can be compensated by intravenous
immunoglobulin administration. Thus the use of more specific
FIGURE 1 | Characteristic of CAR-T cells and their isolation, engineering, transfection, and expansion in patients with NHL. The first stage of CAR-T cell engineering
is leukapheresis in which leukocytes are collected through central or peripheral venous (Stage 1). Then, PBMCs are purified among collected leukocytes (Stage 2).
Next, density gradient or magnetic beads are used to purify T cells among collected PBMCs. Also, T cells get activated by provoking their TCRs (Stage 3). Viral
transfection methods using viral vectors such as retrovirus or lentivirus are the next steps (Stage 4). The next step is done ex-vivo in which the cells are directed to be
expanded (stage 5). In the last stage, modified CAR-T cells are expanded by culturing or bioreactor system and were injected into the same patients (step 6). Various antigens
used as CAR-T cells’ targets in NHL have been shown. CAR, chimeric antigen receptor; PBMC, peripheral blood mononuclear cell; TCR, T-cell receptor.
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antigens that are limited to B cell malignancies as a target,
compared with ordinary antigens, CD19/CD20/CD22, has
fewer side effects. One of these alternative antigens is BCMA
(B cell maturation antigen), which is expressed by the mature B
cell subsets, plasma cells, and the light chain k/l of malignant B
cells. In T cell lymphoma, the expression of many target antigens
is common between malignant and normal T cells, so finding the
ideal target antigen is more challenging. This joint expression of
antigen can disrupt CAR-Ts function, prevent them from
proliferating and surviving, and lead to the extinction of
normal peripheral T cells (Figure 1) (137).
CAR-T CELLS FOR NHL

Most CAR-T clinical trials for the treatment of B-cell lymphoma
target the CD19 marker. Because the expression of this antigen is
seen in all stages of B cell differentiation and most B cell
lymphomas (138). Different types of scFv can be applied to
target the CD19 antigen. SJ25c or FMC63 are two of the most
widely used scFvs in clinical trials (139). In the primary clinical
trials for lymphoma therapy, a first-generation CAR-T (FMC63
19z CAR-T) without the costimulatory domain was used with
the targeting CD19 (140). In this trial, patients with R/R FL after
lymphodepletion with fludarabine and injection of IL-2
subcutaneously were treated using the first-generation anti-
CD19 CAR-Ts. Despite proving the safety and feasibility of
this new method, the first generation of anti-CD19 CAR-T
cells did not show significant antitumor effects (140). However,
the use of the second generation anti-CD19 CAR-T-cells with a
costimulatory domain (4-1BB, CD28, and ICOS) in preclinical
studies have shown considerable anti-tumor impacts in-vitro/
in-vivo (141). Recently, the use of second-generation CAR-Ts
targeting CD19 with stimulatory domains of CD28/4-1BB has
reported considerable outcomes in the treatment of B-cell
lymphomas, particularly PMBCL, DLBCL, splenic marginal
zone lymphoma (SMZL), FL, and MCL (142).

One of the most common forms of aggressive NHL is DLBCL,
which accounts for approximately 40% of cases (143). The
standard initial treatment is combination of a chemotherapy
regimen, usually R-CHOP (Rituximab, Cyclophosphamide,
Adriamycin, and prednisone) and immunotherapy for 6-8
courses (144). Treatment is usually poor in people with high-
risk characteristics such as early relapse in less than a year,
preliminary refractory disease, and single/double-hit lymphoma
(145). The preparatory examination of anti-CD19 CAR-T cells
provided promising therapeutic effects (146). Jensen et al. used
CD20-targeted CAR-T cells to treat two patients with recurrent
DLBCL who had previously undergone autologous
hematopoietic stem cell transplantation. They did not observe
any obvious toxicity or clinical complication in these patients
after treatment (140). In another experiment, anti-CD19 CAR-T
cells were used on several patients with advanced B cell
malignancies. After treatment, complete remission (CR) was
observed in 4 patients out of the total number of
Frontiers in Immunology | www.frontiersin.org 9
chemotherapy-refractory DLBCL patients (147). Besides,
Stirrups et al. injected anti-CD19 CAR-T cells into several
patients with large B cell lymphoma, including PMBCL and
DLBCL. After treatment, the analysis of patients showed that
28% of them had PR and 54% had CR (148).

Follicular lymphoma is the most common indolent
lymphoma that accounts for 10-20% of NHL. The genetic
characteristic of FL is the translocation of t (14; 18) (q32; q21),
which leads to overexpression of BCL-2 protein and disruption
of the apoptotic program of the germination center (149).
Besides, FLs show additional genetic changes such as
mutations, losses, or gains in genes such as EPHA7, MLL2,
CREBBP, CREBBP, TNFRSF14, EZH2, BCL6, and so on (150).
Many patients with FL remain asymptomatic despite the
widespread disease. About 10-15% of FLs are diagnosed in the
primary stages and the rest in advanced stages III and IV (150).
Advanced-stage III/IV follicular lymphoma becomes resistant to
chemotherapy and may convert into a more aggressive subtype
of the NHL, such as DLBCL (151). The biological nature of this
malignancy is such that eventually, most patients experience
relapsing stages of the disease or resistance to treatment.
Therefore, CAR-T cell therapy can be considered an attractive
treatment approach. Schuster et al. used CTL019 in a phase IIa
study in patients with FL and showed that disease progression in
these patients occurred 2 years after remedy with two or more
treatment lines (152). Furthermore, In another study, a patient
with R/R acute B cell lymphoblastic lymphoma and Li-Fraumeni
syndrome (LFS) received dual specific CD19/CD22-targeted
CAR-T cells. After that, several parameters showed complete
relief of the tumor and negative MRD (153). Also, a group of
researchers used KTEC19 consisting of FMC-63 (a single-chain
Ab in the extracellular region) that detect CD19 at the tumor cell
surface to treat aggressive and refractory B-NHL patients (154).

Mantle cell lymphoma is an uncommon form of NHL with
unique immunophenotypic and clinical features that accounts for
about 6% of NHL cases. In MCL cells, due to chromosomal
translocation t (11:14), the expression of cyclin D1 is greatly
increased (155). The standard therapy is induction chemotherapy
with or without autologous grafting to integrate into responsive
patients followed by maintenance therapy with anti-CD20 mAb
therapy. This method can lead to lasting improvement but does not
seem to be the mainstay of treatment, and the prognosis for patients
with early recurrence can be poor (156). One way to diagnose this
malignancy, like other forms of NHL, is to examine the CD19
expression. CAR-T cell therapy is an effective way to treat MCL and
to some extent makes the disease a treatable condition. In a clinical
trial, the effect of third-generation CD20-directed CAR-T cells on
several patients with MCL and relapsed indolent B cells was
evaluated. The results showed that this treatment was well
tolerated, although disease relapsed in one of the patients one
year after injection (129).

Burkitt’s lymphoma is one of the most common forms of
NHL in children, and about 10% of patients with a poor
prognosis, relapse even after vigorous chemotherapy. In a
recent study, an eight-year-old child was initially treated with
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CD19-specific CAR-T cell but showed progressive disease (PD)
and illustrated no clear response to cell therapy. CD22-specific
CAR-T cells were then injected into the child, but recurrence of
the disease was observed. Finally, CD20 CAR-T cell treatment
resulted in the achievement of CR (157). Besides, CAR-T cell
therapy targeting tyrosine kinase-like orphan receptor (ROR1)
and CD23 has yielded promising results in advancing R/R NHL
therapy (Figure 2) (158).
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CURRENT CAR T-CELL PRODUCTS

Anti-CD19 CAR-T Cell Therapy for
B-Cell NHL
Numerous studies have been actively conducted since 2010 when
the first case of anti-CD19 CAR-T cell treatment was reported,
until 2017 when the first approval for this product was received
by the US FDA (142, 152, 159). To date, several CD19-specific
FIGURE 2 | Generations of CAR-T cells along with allogenic, transgenic, bispecific, and armored CAR-T cells. In the upper quadrant, allogeneic and transgenic
CAR-T cells are seen. Allogeneic CAR-T cells are seen in patients that have allogeneic HSCT and can be either donor- or recipient-derived. On the other hand,
transgenic CAR-T cells are engineered CAR-T cells that have been made by transfection of a special gene to encode the surface receptor of CAR-T cells. In the
middle quadrant, three generations of CAR-T cells are shown. Besides, bispecific CAR-T cells are engineered to target two different targets simultaneously. In the
lower quadrant, armored CAR-T cells which have been potentiated by secreting cytokines and chemokines are seen. HSCT, hematopoietic stem-cell transplantation;
CCR2, chemokine receptor 2.
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CAR-T cell therapies have been tested in B cell malignancies.
Among these CAR-T products, tisagenlecleucel (tisa-cel),
axicabtagene-ciloleucel (axi-cel), and lisocabtagene-maraleucel
(liso-cel) in a relatively wide range on patients with aggressive
B cell lymphomas especially DLBCL are being tested (160). To
produce Axi-cel, a retroviral vector, and the co-stimulatory/
transmembrane domains of CD28 are used (161). Tisa-cel is
generated using a lentiviral vector, a CD8-a transmembrane
domain, and a 4-1BB co-stimulatory domain (162). Liso-cel is
made with a lentiviral vector, a CD28 transmembrane domain,
and a co-stimulatory domain of 4-1BB. The manufacturing and
time required to produce distinct products are different. For
example, liso-cel is made up of equal proportions of CD4+ and
CD8+ CAR-T cells, while both tisa-cel and axi-cel are produced
from bulk T cells in which the cell dose varies from patient to
patient. The turnaround time (from leukapheresis to product
accessibility) of both tisa-cel and Liso-cel is approximately 24
days, while in Axi-cel it is approximately 17 days (162, 163).

Axicabtagene-Ciloleucel
(KTE‐CD19, Axi-cel)
Axi-cel is a second-generation CAR-T with a CD28 domain
embedded in its structure and was first developed by the
National Cancer Institute (NCI) researchers. Kite Pharma,
Daiichi Sankyo, and Gilead Sciences conducted a fundamental
phase I/II study of axi-cel in patients with PMBCL, transformed
FL, and high grade and R/R DLBCL called the ZUMA-1 test
(NCT02348216) (164, 165).

Tisagenlecleucel (CTL019)
Tisa-cel was the second CAR-T cell product for invasive B cell
lymphoma that received FDA approval based on the JULIET
trial. In an international phase 2 JULIET study, patients with
DLBCL, HGBCL (double-hit lymphoma), and transformed FL
had received two or more treatment lines and were
chemotherapy or multiply refractory/relapsed or unqualified
for autologous stem cell transplantation (166). This product is
the first CAR-T cell to be approved by the FDA in 2017 for the
treatment of pediatric B-cell acute lymphoblastic leukemia
(B-ALL) (167). It should be noted that this research was first
conducted by researchers at the University of Pennsylvania
(UPenn) in assistance with Novartis.

Lisocabtagene Maraleucel
(JCAR017, Liso-cel)
Liso-cel is the third major CD19-specific CAR-T cell product and
is awaiting FDA approval based on TRANSCEND-NHL-001
data, a monolithic pivotal project that studied patients with
DLBCL NOS, HGBCL (double-hit lymphoma), transformed
indolent B-cell lymphomas, follicular lymphoma grade 3B, and
PMBCL (163). The researchers at the Memorial Sloan Kettering
Cancer Center, Fred Hutchinson Cancer Research Center
(FHCRC), and Seattle Children’s Research Institute founded a
venture, Juno Therapeutics, performed several clinical trials on
anti-CD19 CAR-T cell products including JCAR014/015/017/
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021, and so on. In the next phase clinical trial, JCAR017
(lisocabtagene-maraleucel, liso-cel) was evaluated in patients
with B-NHL. Liso-cel is a second-generation anti-CD19 CAR-
T cell with a costimulatory domain of 4-1BB and is made from an
isolated subset of CD4+ and CD8+ cells with a 1:1 CD4/8 ratio.
The results of researchers’ preclinical studies at the FHCRC
reported that CAR-T produced from different T cell subsets
showed distinct activity in-vivo (168). For example, the direct
anti-tumor activity of CD8+ central memory (CD8+ CM)-CAR-
T is much stronger than that of CD4+ CAR-T. CD4 + CAR-T
cells lead to a synergistic increase of proliferation after CD8+

CM-CAR-T injection by producing several inflammatory
cytokines (Table 2) (160).

Novel CAR-T Cells in NHL
Although the excitement of using CD19 CAR-T cells was initially
significant in patients with R/R NHL, the (progression-free
survival) PFS rate ranges between 30- 50%, and for those who
do not receive CAR-T treatment, the results were unpleasant.
According to studies, mechanisms such as lack of CAR-T
durability, loss of CD19 antigen, and the presence of immune
checkpoint molecules in tumor cells can cause recurrence of
malignancies (184, 185). Several new clinical structures are
currently being developed to remove these restrictions.

Bispecific CARs or Dual Targeted
CAR-T Cells
A bispecific receptor consists of two distinguished antigen
recognition domains that bind to two separate intracellular
domains and are expressed as tandem scFvs in one CAR, or as
two different CARs on T cell surface. At current, CD19/CD20-
bispecific CAR-T cells have been presented as a new synthetic
molecule that, after recognition and binding to target tumor
antigens on the surface of malignant cells, can establish a
synergistic cascade of executive molecules (186). If one of the
target molecules is not available to CAR T cells for reasons such
as removal or mutation of the target antigen on malignant cells, a
dual-function machine can largely prevent tumor escape. Thus,
the bispecific CAR retains the cytolytic property of T cells (184).
In addition to the mentioned CARs molecule, several other
bispecific CARs including CD20/CD19 and CD20/CD3 have
also been preclinically studied (187, 188).

Inhibitory CARs (I−CARs)
The interaction of PD-1 receptors with PD-L1 inhibits the
activity of T cells and is one of the mechanisms of escape from
the immune system that promotes the survival of malignant
diseases. This pathway is thought to play a key role in tumor
escape from CAR-T cells, so treatments combining PD-1
inhibition with CAR-T cell therapy are being studied. In
a recent study, Pembrolizumab was used as an immune
checkpoint inhibitor (anti-PD1) at various intervals after
CART19 treatment, including during early progressed or late
relapsed of NHL to inhibit T cell exhaustion (189). Besides,
Jacobson et al. showed that blockade of PD-L1 with the
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anti-PD-L1 antibody atezolizumab (atezo) significantly increased
the efficacy and safety of ZUMA-6 in refractory DLBCL patients
(190). It has already been shown that CTLA-4-/PD-1- based I-
CARs can significantly control cytokine secretion, cytotoxicity, and
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proliferation induced by activating chimeric receptor or
endogenous TCR (191). I-CARs control CAR T cell function by
inhibitory receptors. I-CARs differentiate between normal and
cancer cells by inhibiting the activator CAR response to antigens
TABLE 2 | The clinical trials of CD19-targeted CAR T cells.

No. of patients/age
(years)

Disease/No. of
patients

CAR
generation

Co-stimulatory
domain

Injected CAR T cell
dose

Result Ref

4 (n/a) FL:2 I None 1−2×109/m2 2 PD (140)
1 (n/a) FL II CD28 1−3×108 1 PR (142)
6 (46–59) NHL I+II None/ 2−20×107/m2 2 SD, 4 NR (169)

CD28
3 (64–77) CLL II 4-1BB 1.4×105/kg −1.6×107/kg 2 CR, 1 PR (170,

171)
8 (47–63) CLL: 4, II CD28 0.3–2.8×107/kg CLL: 1 CR, 2 PR, 1 SD (172)

FL: 3 SMZL:1 FL: 2 PR, 1 NE
SMZ: 1 PR

10 (44–66) CLL: 4 DLBCL: 2 II CD28 0.4–7.8×106/kg CLL: 1 CR, 1 SD, 2 PD; DLBCL: (173)
MCL: 4 2 SD;

MCL: 3 SD, 1 PR
8 (9–59) ALL: 4 II CD28 1.5−12×107/m2 3 CR, 1 PD (174)

CLL: 4 1 PR, 1 SD, 2 PD
14 (51–78) CLL II 4-1BB 0.14−11×108 4 CR, 4 PR, 6 NR (175)
21 (1–30) ALL: 20 II CD28 1−3×106/kg ALL: 14 CR, 3 SD, 3 PD (176)

DLBCL: 1 DLBCL: 1 PD
15 (30–68) CLL: 4 DLBCL: 5 II CD28 1–5×106/kg CLL: 3 CR, 1 PR; DLBCL: 2

CR, 2
(147)

SMZL: 1 PMBCL: 4 PR, 1 NE; SMZL: 1 PR;
PMBCL;

LG-NHL: 1 2 CR, 1 SD, 1 NE; LG-NHL: 1
CR

20 (25–68) CLL: 5 DLBCL: 5 II CD28 0.4–8.2×106/kg CLL: 1 CR, 1 PR, 1 SD, 2 (177)
MCL: 5 PD; DLBCL: 1 CR, 3 SD, 1
ALL: 5 PD; MCL: 1 PR, 4 SD

ALL: 4 CR, 1 PD
32 (36–70) NHL II 4-1BB 0.2−20×106/kg 11 CR, 9 PR, 10 NR, 2 NE (178)
16 (23–75) DLBCL: 11 MCL: 5 I+II None/ 2.5−20×107 DLBCL: 8 CR, 2 PR, 1 PD;

MCL:
(179)

CD28 5 CR
26 (23–61) ALL: 17 II CD28 Varying doses 9 CR, 2 SD, 6 PD (180)

FL: 3 DLBCL: 4 FL: 3, DLBCL: 4,
MCL: 1 MCL: 1, HL: 1
HL: 1 DLBCL: 2 CR, 1 SD, 1 PD; FL: 3

CR; MCL: 1 CR;
HL: 1 CR

7 (29–69) DLBCL II CD28 2×106/kg 4CR, 1 PR, 1 SD, 1n/A (165)
24 (40–73) CLL II 4-1BB 0.2−20×106/kg CR+PR: 17, 7 NR (181)
101 (23–76) DLBCL: 77 CD28 2×106/kg 38 CR, 25 PR, SD 9, PD 4; NE:

1
(178)

PBMCL or FL: 24 17 CR, 3 PR, 2 SD, 1 PD, 1 NE
14 (25–77) DLBCL II 4-1BB 1−5×106 6 CR, 1 PR, 7 NR (152)
14 (43–72) FL 10 CR, 1 PR, 3 NR
15 (24–71) ALL: 4 CLL: 2 III CD28+4–1BB 2−20×107/m2 ALL: 2 CR, 2 PD; (182)

DLBCL: 6 MCL: 2 CLL: 1 CR, 1 SD; DLBCL: 3 CR, 3
FL-Burkitt: 1 PD; MCL: 1 SD, 1 PD; FL-

Burkitt:
1 PD

16 (16–75) DLBCL: 11 ALL:2 II+III CD28/ 2−40×106/m2, 0.05– DLBCL: 6 CR, 2 PR, 2 SD, 1 (183)
BCLU: 1 LBL: 1 CD28+4–1BB 1.25×106/kg NR; ALL: 1 PR, 1 NR; CLL:
CLL: 1 1 NR; BCLU: 1 CR;

LBL: 1 CR
June 2021 | Volume 12 | Arti
ALL, acute lymphoblastic leukaemia; lymphoma unclassified; CLL, chronic lymphocytic leukaemia; CR, complete remission; DLBCL, diffuse large B-cell lymphoma; EP, electroporation; FL,
follicular lymphoma; Gen, CAR generation; HL, Hodgkin’s lymphoma; LBL, lymphoblastic lymphoma; LG, low grade; MCL, mantle cell lymphoma; n/a, not assessed; NE, not evaluable;
NHL, non-Hodgkin’s lymphoma; NR, no response; PD, progressive disease; PMBCL, primary mediastinal B cell lymphoma; PR, partial response; SD, stable disease; SB, Sleeping Beauty;
SMLZ, splenic marginal zone lymphoma.
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expressed only by normal cells (192). Therefore, the design of
I-CAR using PD-1 and CTLA-4 surface antigen detection domains
to regulate T cell response and prevent T cell inhibition physiology
in mouse models has been confirmed. However, the use of this
technique in mice lacking CTLA-4 and PD-1 receptors leads to
severe systemic autoimmune diseases such as glomerulonephritis
and arthritis (193, 194).
Armored CAR-T Cells
Inducing the expression of an extra transgene - along with CAR –
by effective T cells is one of the recent strategies to enhance CAR-
T cells effector functions and control the immunosuppression
caused by the tumor microenvironment. TRUCKs (T cells
redirected for universal cytokine killing) are examples of
armored CAR-T cells that transgenic cytokines (IL-12/-15/-18)
produced by them accumulate in malignant tissue and show
beneficial effects (195–197). Besides, some modifications allow
armored CAR-T cells to express a ligand for costimulation
molecules. Batlevi and colleagues used different doses of 19-
28z/4-1BB-L CAR-T cells in phase I clinical trial to treat patients
with CLL or NHL (198). Furthermore, in other studies, CAR-T
cells were modified to deal with immunosuppressive signals. For
example, CD19-targeted CAR-T cells with co-expressing of the
chimeric switch receptor of PD-1/CD28 were examined for the
treatment of patients with R/R DLBCL in phase I clinical trial
(199). Also, the direct embedding of anti-PD-1 or anti-PD-L1
blockers in CAR-T cells can clearly illustrate the combined anti-
tumor effects of CAR-T cells with checkpoint inhibitory
antibodies (200).
Allogeneic CAR-T Cells
To prevent the use of patient-derived inefficient T cells and
reduce the cost/time of producing products, healthy donors-
derived allogeneic CAR-T cells can be used. Because allogeneic
products can cause graft versus host disease (GVHD) as well as
CAR T cell rejection, strategies should be used to minimize
donor-derived T cells alloreactivity before using off-shelf
products. Recently, gene-editing technologies have been
utilized to forbid the endogenous TCR expression on modified
T cells. Several methods can be used to disrupt the TCR alpha
constant (TRAC) gene, such as the CRISPR/Cas9 system,
transcription activator-like effector nucleases (TALEN), and
zinc finger nucleases (ZFN) (201). The universal CD19-
targeted CAR-T cell product (UCART19) was produced
following the simultaneous introduction of CAR and TCR
knockout to prevent GVHD and CD52 suppression to induce
resistance to anti-CD52 Ab to reduce the likelihood of UCART19
rejection in allogeneic T cells (202). ALLO-501 is an anti-CD19
allogeneic CAR-T (AlloCAR T™) with the same structure as
UCART19, which has recently undergone clinical trials in the
ALPHA study for the treatment of FL and R/R DLBCL.
PBCAR0191 is another allogeneic CD19-directed CAR-T cells
produced by using a single-stage TCR knock-out and CAR
knock-in, and its antitumor effects have been demonstrated in
a phase 1 trial in patients with NHL (203).
Frontiers in Immunology | www.frontiersin.org 13
OTHER TARGETS AGAINST NHL

Sometimes mutations in the CD19 antigen or the
downregulation/disappearance of this antigen from the surface
of malignant lymphocytes lead to tumor escape and resistance/
refractory to CD19-targeted CAR-T treatment in patients (204).
According to recent studies, 40% of reported recurrences are due
to epitope loss (205, 206). Therefore, alternative markers such as
CD20, CD22, etc. with higher expression in B-NHL and B-ALL,
respectively, can be used as a target for T cell therapies (207, 208).
In the FHCRC phase-I experiment, third-generation anti-CD20
CAR-T cells containing CD28 and 4-1BB domains were used to
treat MCLs and intolerant B-cell lymphomas. In this section, new
studies of CAR-T cell therapy, which recognize different CAR-T
cells and intensifies tumor cell death, are reviewed.
CD20 CAR-T Cell Therapy
CD20 is a non-glycosylated membrane phosphoprotein that is
highly expressed not only in normal B cells but also on the
surface of malignant B cells (209). CD20 is expressed by CLL, all
NHL cases, and about 40% of precursor B-ALL (210). Recently,
Xu et al. evaluated the cytotoxicity effect of CD20-specific CAR-
T cells on B cell malignancy using in vitro/in vivo true lytic
abi l i ty , CD107a degranulat ion, and product ion of
proinflammatory cytokines. They also used histone deacetylase
inhibitors (HDACi) to increase CD20 marker expression on the
surface of B- malignant cells by inducing H3K9 acetylation at
the CD20 promoter region. The final results showed that the
cytotoxicity of CD20-specific CAR-T cells in malignant B cells
treated with HDACi was significantly increased compared to the
untreated state (211).
CD30 CAR-T Cell Therapy
CD30 (TNFRSF8), a cell membrane protein and tumor marker
belonging to the TNF receptor family, is found on the surface of
NHL cells including DLBCL, anaplastic large cell lymphoma
(ALCL), PMBCL (212), adult T-cell leukemia/lymphoma (213),
and peripheral T cell lymphoma (PTCL) (214), as well as in HL,
and rare solid tumors (215). So far, this antigen has been widely
used as a potential target for antibody-based therapy. One of the
most notable results was obtained after treatment of ALCL and
HL with an ADC-targeted CD30 (Brentuximab-vedotin/BV)
(216). Afterward, CAR-T cells were explored to overcome the
challenges posed by antibody-based therapy, such as low tumor
penetration and inadequate response durability (217). Recently,
the effect of immunotherapy with second CD30-targeted CAR-
T cells has been demonstrated in preclinical models and clinical
trials. However, after this treatment, no optimal response was
observed in the patients, as most of them showed stable disease
after multiple CAR-T cell injections. Besides, extra-nodal
lesions showed a weaker response than lymph nodes, and T
cells lasted only about two months after infusion (218–221).
Thus, Guercio et al. demonstrated that using a new third-
generation structure designed with the novel scFv, a
combination of OX40 and CD28 costimulatory molecules, as
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well as the addition of the production process of IL-7 and -15,
resulted in prolonged persistence and high proliferation of T
cells, and immunological memory to prevent lymphoma
recurrence (222).

CD37 CAR-T Cell Therapy
CD37 is a tetraspanin protein that is widely expressed in all types
of B-NHL (223). Its biological function is not completely
understood, but it may be associated with apoptotic signals
and survival as well as tumor suppression (224). Accordingly,
CD37 is a potential target for B cell malignancies
immunotherapy. So far, several anti-CD37 therapeutic agents
have been investigated in phase 1 and 2 trials including a
targeting peptide (Otlertuzumab), a mAb (BI836826), a
radioimmunoconjugate (Betalutin; 177 Lu-li lotomab-
satetraxetan), and antibodies-drug conjugate (AGS67E and
IMGN529) (225, 226). The preclinical development and
efficacy of anti-CD37 CAR-T cells have been recently
demonstrated in T- and B cell malignancies (227). The effect
and specificity of CD37 CAR-T cells against B-cell lymphoma
have already been demonstrated in the mouse lymphoma
xenograft models and in vitro. It has also been observed that
CD37-expressing tumor cells, do not resist CD37 CAR-T cells
(228). Koksal et al. developed a second-generation CD37-
targeted CAR structure and compared its performance on T
cell function in different B lymphoma cell lines with anti-CD19
CAR-T cells. They showed that in one xenograft model of
aggressive B-cell lymphoma, both CAR-T cells were equally
capable of controlling tumor growth, but in the second
xenograft model, using the U2932, a CD19- subpopulation of
lymphoma cells, CD37 CAR-T cells dramatically controlled the
survival and tumor growth, while CD19 CAR-T cells were much
less effective. Overall, the results of their studies showed that
CD37 CAR-T cells could be used to eradicate those B-cell
lymphoma tumors in which CD19 antigen expression has been
lost, and after further investigation for patients with R/R B-
NHL (229).

CD38 CAR-T Cell Therapy
CD38, like CD19 due to its wide distribution on B-NHL cells, is an
ideal molecular target for the treatment of this malignancy and, as
previously reported, so far, no side effects following treatment with
anti-CD38Ab inB cell lymphomapatients has been reported (230).
Furthermore, several types of Ab or Anti-CD38 Ab have been used
in the treatment of CD38+ malignancies (209, 231–233). Recently,
Mihara et al. demonstrated that anti-CD38-CAR-T cells have
potent cytotoxicity and eradicate B-NHL in vitro and in vivo
(Table 3) (234).
CAR-T CELLS TOXICITIES &MANAGEMENT

The observation of some life-menacing toxicities following the
activation of the immune system with CAR-T cell therapy limits
the widespread use of this therapeutic approach (235). It seems
Frontiers in Immunology | www.frontiersin.org 14
that the degree of toxicity created depends on various factors
such as the type of vector, scFv, co-stimulatory domain, CAR-T
cells’ dose, disease burden, and preconditioning regimen (7).
Studies show that in practice, the incidence and severity of
toxicity in CAR-T cell products with a CD28 costimulation
domain are higher than products containing a 4-1BB domain.
Because the CD28 domain leads to the fast and high expansion of
CAR-T cells, while the 4-1BB domain leads to gradual expansion
and long continuance (236). Cytokine release syndrome (CRS)
and neurotoxicity are among the most common toxicities caused
by CAR-T cell therapy (237). CRS is a systemic inflammatory
response that happens after the secretion of inflammatory
cytokines such as IL -1, 2, 6, 10, TNF-a, and IFN-g from the
immune cells and CAR-T cells (238). This toxicity can occur from a
few hours to several days after the CAR-T cell inoculation. CRS is
characterized by symptoms such as hypotension, high fever,
hypoxia, sinus tachycardia, and organ dysfunction (239) and
altered laboratory values include significant increases in ferritin,
increased CRP, and low fibrinogen (240). Early detection and
management are important because some reports indicate death
from severe CRS (239). CRS is graded based on the degree of
hypoxemia, hemodynamic instability, and organ injury (241, 242).
Treatment of CRS depends on the intensity of the signs as well as
the patient underlying diseases. Specialists recommend supportive
and precise surveillance with fluids for grade 1 CRS. However, for
higher-grade CRS, immunosuppressive agents are commonly
employed (243). Because IL-6 plays a crucial role in the
development of CRS, one of the IL-6 receptor blockers,
tocilizumab, is used in patients with higher CRS (244).
Corticosteroids are also applied in cases where tocilizumab is
incapable to control the symptoms of severe CRS (242).
Furthermore, CAR-T cells cause neurologic toxicity, which is
called CAR-T cell-related encephalopathy syndrome or CRES and
recently this term was replaced by “Immune effector cell-associated
neurotoxicity syndrome (ICANS)” (245, 246). Neurotoxicity
probably indicates the capability of CAR-T cells to infiltrate into
the blood-brain barrier (242). This toxicity can lead to ataxia, mild
cognitive defects, tremor, somnolence, dysphagia, obtundation,
snoring, and seizures, as well as death in severe cases. The
occurrence of neurotoxicity may be simultaneous or independent
of CRS (247). Dexamethasone appears to penetrate the blood-brain
barrier to some extent reversing neurological symptoms. However,
it is unlikely that the monoclonal antibody tocilizumab will
penetrate the blood-brain barrier (248). There have been no
reports of tocilizumab being effective in this type of toxicity.
According to previous studies, steroids are the mainstay of CRS
treatment. Other complications of CAR-T cell therapy include
infection and cytopenias. In addition, B cell aplasia leads to
hypogammaglobulinemia and subsequent recurrent infections due
to targeting CD19 present on B lymphocytes. Intravenous
immunoglobulin administration in these patients largely helps to
control the mentioned symptoms. Due to chemotherapy and
malignancy, patients’ immune systems are significantly
suppressed and they are prone to fungal, bacterial, and viral
infections. Prophylactic antibiotics, antiviral and antifungal drugs
are used to prevent the spread of infection in these patients (248).
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TABLE 3 | The clinical trials of CAR-T cell therapies in T-NHL.

NCT Study phase Type Disease

NCT03081910 1 CD5 CAR-T R/R lymphoma or leukemia
NCT02963038 I+II CD19 CAR T B-NHL+ B-ALL
NCT03068416 II CD19 CAR T B-NHL + B-ALL
NCT03146533 I+II CD19 CAR T B-NHL
NCT02132624 I CD19 CAR T B-NHL
NCT03105336 II CD19 CAR T R/R Indolent B‐NHL
NCT03676504 I+II CD19 CAR T B-NHL + B-ALL
NCT01853631 I CD19 CAR T B-NHL + B-ALL
NCT03277729 I+II CD20 CAR T R/R B‐NHL
NCT03019055 I CD19/20 CAR T R/R B‐NHL
NCT03448393 I CD19/22 CAR T R/R B‐NHL or ALL
NCT03233854 I CD19/22 CAR T R/R B‐NHL or ALL
NCT03330691 I+II CD19/22 CAR T R/R lymphoma
NCT02153580 I CD19/EGFR CAR T R/R B‐NHL
NCT03244306 I CD22/EGFR CAR T R/R lymphoma or leukemia
NCT02601313 (ZUMA-2) II Axi-cel MCL
NCT03105336 (ZUMA-5) II Axi-cel MZL, FL
NCT03624036 (ZUMA-8) I+II Axi-cel CLL
NCT04162756 (ZUMA-18) EA Axi-cel MCL
NCT02631044 (TRANSCEND-NHL-001) I Liso -cel FL G3b, MCL
NCT03483103 (PILOT) II Liso -cel FL G3b
NCT03744676 (OUTREACH) II Liso -cel FL G3b
NCT03568461 (ELARA) II Tisa-cel FL
NCT03331198 (TRANSCEND-CLL-004) I+II Liso-cel +/- ibrutinib CLL
NCT03575351 (TRANSFORM) III Liso-cel vs ASCT FL G3b
NCT03310619 (PLATFORM) I+II Liso-cel + CC-122 FL G3b

Liso-cel + durvalumab
NCT03049449 I CD30 CAR T R/R lymphoma
NCT02663297 I CD30 CAR T Lymphoma s/p auto SCT
NCT02917083 I CD30 CAR T R/R lymphoma
NCT02690545 I+II CD30 CAR T R/R lymphoma
NCT03602157 I CD30/CCR4 CAR T R/R lymphoma
NCT02917083 I CD30 CAR T R/R CD30+ HL and NHL
NCT03049449 I CD30 CAR T R/R CD30+ HL and NHL
NCT03383965 I CD30 CAR T R/R CD30+ HL and NHL
NCT02663297 I CD30 CAR T R/R CD30+ HL and NHL
NCT02690545 I+II CD30 CAR T R/R CD30+ HL and NHL
NCT02259556 I+II CD30 CAR T R/R CD30+ HL and NHL
NCT02958410 I+II CD30 CAR T R/R CD30+ HL and NHL

ALL, acute lymphoblastic leukemia; NHL, non-Hodgkin lymphoma; CAR, chimeric antigen receptor; HL, Hodgkin lymphoma; R/R, relapsed/refractory; EA, expanded access; G3b, grade 3b.
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Anaphylaxis, tumor lysis syndrome, and hemophagocytic
lymphohistiocytosis are among the less common complications
after treatment with CAR-T cells (238).
FUTURE DIRECTIONS

At present, anti-CD19 CAR-T cells created a sustainable
recovery in 40% of chemotherapy-resistant DLBCL, HGBCL,
and PMBCL patients who have not previously received any
treatment options. Also, these products are currently used in
patients with aggressive lymphoma who have relapsed after at
least 2 previous treatment lines. Besides, clinical trials of anti-
CD19 CAR-T cells in patients with DLBCL are being considered
as a treatment option in the first recurrence. Currently, high-
dose chemotherapy with ASCT has been considered as the
second line of treatment for DLBCL, and about 20% of
patients are treated with this method (249, 250). However, in
Frontiers in Immunology | www.frontiersin.org 15
many patients, due to resistance to chemotherapy, old age, and
the presence of comorbidities diseases, there will be no necessary
conditions for such treatment. Additional strategies are needed
to overcome mechanisms of resistance to CD19 CAR-T cells,
including T cell depletion, loss of target antigen, loss of
continuance, and immune escape. Approaches such as
combining CAR T cell products with immunomodulating
drugs (251), tyrosine kinase inhibitors (252, 253), and immune
checkpoint inhibitors (254) have shown promising results
in vitro. Besides, the novel CAR structures, known as third-
generation CARs, greatly enhance the activity of T cells (183).
These CAR-T cells include 1) CAR-T cells that target several
cancer antigens simultaneously, such as CD19 and CD22, which
prevents antigen loss (255), 2) CAR-T cells that directly suppress
immune checkpoints (254), 3) CAR-T cells that use gene editing
to insert the CAR gene in a position that enhances activation and
reduces T cell exhaustion (256), 4) CAR-T-cells secreting
cytokines such as IL-12 which may impair the suppressive
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function of the tumor microenvironment (257, 258). Finally, new
allogeneic products are likely to replace autologous CAR- T cells.
Autologous T cell products have limitations such as poor T cell
health derived from patients who have already received
lymphoma treatments, the time-consuming production process
in patients with R/R high-grade lymphoma, and costly process
apheresis, bridging, and construction. Allogeneic CAR-T cells
may overcome these barriers by using gene-editing technology
by removing the T cell receptor from the healthy donor T cell by
inserting the CAR gene against the target tumor antigen (259).
Allogeneic CAR-T cells are presently being studied in early-stage
clinical trials in lymphoma patients. Finally, the possibility of
using CAR-T cell technology in T cell lymphoma and solid
tumors is expanding. It is important to select a target antigen that
is tumor-specific enough because less specific markers increase
the destructive immunological attack on healthy tissues from
which the malignancy has developed.
CONCLUSION

The current advances in CAR-T cell therapy have presented us
with highly efficient solutions aimed at treating patients with
NHL. Although the efficacy of CAR-T cells has been proven in
previous studies, it is still possible to further improve the
effectiveness and speed up the response time. Besides,
Frontiers in Immunology | www.frontiersin.org 16
neurotoxicity and CRS induced by CAR-T treatment can cause
considerable morbidity in patients receiving this type of
treatment. Therefore, the use of new treatment strategies such
as T cell engagers, targeted molecular therapies, checkpoint
inhibitors, and antibody-drug compounds in the conjunction
with CAR-T cell treatment not only reduces side effects but also
generates positive changes in the treatment of hematologic
malignancies like the NHL creates.
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15. McLaughlin P, Grillo-López AJ, Link BK, Levy R, Czuczman MS, Williams
ME, et al. Rituximab Chimeric Anti-CD20 Monoclonal Antibody Therapy
for Relapsed Indolent Lymphoma: Half of Patients Respond to a Four-Dose
Treatment Program. J Clin Oncol (1998) 16(8):2825–33. doi: 10.1200/
JCO.1998.16.8.2825

16. Coiffier B, Haioun C, Ketterer N, Engert AA, Tilly H, Ma D, et al. Rituximab
(anti-CD20 Monoclonal Antibody) for the Treatment of Patients With
Relapsing or Refractory Aggressive Lymphoma: A Multicenter Phase II
Study. Blood J Am Soc Hematol (1998) 92(6):1927–32.

17. Leung S-O, Goldenberg DM, Dion AS, Pellegrini MC, Shevitz J, Shih LB,
et al. Construction and Characterization of a Humanized, Internalizing,
B-Cell (CD22)-Specific, Leukemia/Lymphoma Antibody, LL2.Mol Immunol
(1995) 32(17-18):1413–27. doi: 10.1016/0161-5890(95)00080-1

18. Juweid ME, Stadtmauer E, Hajjar G, Sharkey RM, Suleiman S, Luger S, et al.
Pharmacokinetics, Dosimetry, and Initial Therapeutic Results With 131I-
June 2021 | Volume 12 | Article 681984

https://doi.org/10.1016/j.jfma.2020.05.025
https://doi.org/10.1016/j.jfma.2020.05.025
https://doi.org/10.1200/JCO.2017.73.3402
https://doi.org/10.1200/JCO.2017.73.3402
https://doi.org/10.1182/blood-2017-03-769620
https://doi.org/10.1200/JCO.2010.28.1618
https://doi.org/10.1016/j.bbmt.2011.10.010
https://doi.org/10.6004/jnccn.2017.7045
https://doi.org/10.1016/j.it.2015.06.004
https://doi.org/10.1038/cr.2016.154
https://doi.org/10.1158/2159-8290.CD-12-0548
https://doi.org/10.1158/2159-8290.CD-12-0548
https://doi.org/10.1182/blood-2016-01-643569
https://doi.org/10.1182/blood-2016-01-643569
https://doi.org/10.1200/JCO.2008.16.4558
https://doi.org/10.1093/annonc/mdu443
https://doi.org/10.1080/17474086.2017.1303374
https://doi.org/10.1200/JCO.1998.16.8.2825
https://doi.org/10.1200/JCO.1998.16.8.2825
https://doi.org/10.1016/0161-5890(95)00080-1
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Marofi et al. CAR-T Cell Therapy in Non-Hodgkin Lymphoma
and 111In-90Y-Labeled Humanized Ll2 Anti-CD22 Monoclonal Antibody
in Patients With Relapsed, Refractory Non-Hodgkin’s Lymphoma. Clin
Cancer Res (1999) 5(10):3292s–303s.

19. Leonard JP, Coleman M, Ketas JC, Chadburn A, Furman R, Schuster MW,
et al. Epratuzumab, A Humanized Anti-CD22 Antibody, In Aggressive Non-
Hodgkin’s Lymphoma: Phase I/II Clinical Trial Results. Clin Cancer Res
(2004) 10(16):5327–34. doi: 10.1158/1078-0432.CCR-04-0294

20. Hariharan H, Berquist L, Murphy T, Hanna N, Braslawsky G, Leigh B.
Therapeutic Application of An Anti-CD80 Antibody (IDEC-114) in B-Cell
Lymphoma. J Immunother (2002) 25:S31. doi: 10.1158/1535-7163

21. Hariharan K, Berquist L, Murphy T, Braslawsky G, Hanna N, Leigh B. Anti-
CD80 ANTIBODY (Idec-114) THERAPY for Non-Hodgkin’s Lymphoma.
Ann Oncol (2002) 13:S31.

22. Vinjamaram S, Czuczman MS, Hernandez-Ilizaliturri FJ. The Use of
Galiximab in Non-Hodgkin Lymphoma. Clin Lymphoma Myeloma (2008)
8(5):277–82. doi: 10.3816/CLM.2008.n.038

23. Makita S, Tobinai K. Antibody Therapy Targeting CD19 for B-Cell Non-
Hodgkin’s Lymphoma. >Oxford, England>: Oxford University Press (2018).

24. Awan FT, Lapalombella R, Trotta R, Butchar JP, Yu B, Benson DM, et al.
CD19 Targeting of Chronic Lymphocytic Leukemia With a Novel Fc-
Domain–Engineered Monoclonal Antibody. Blood (2010) 115(6):1204–13.
doi: 10.1182/blood-2009-06-229039

25. Horton HM, Bernett MJ, Pong E, Peipp M, Karki S, Chu SY, et al. Potent
In Vitro and In Vivo Activity of An Fc-engineered Anti-CD19 Monoclonal
Antibody Against Lymphoma and Leukemia. Cancer Res (2008) 68
(19):8049–57. doi: 10.1158/0008-5472.CAN-08-2268

26. Lapalombella R, Yeh Y-Y, Wang L, Ramanunni A, Rafiq S, Jha S, et al.
Tetraspanin CD37 Directly Mediates Transduction of Survival and
Apoptotic Signals. Cancer Cell (2012) 21(5):694–708. doi: 10.1016/
j.ccr.2012.03.040

27. Zhao X, Lapalombella R, Joshi T, Cheney C, Gowda A, Hayden-Ledbetter
MS, et al. Targeting CD37-positive Lymphoid Malignancies With a Novel
Engineered Small Modular Immunopharmaceutical. Blood J Am Soc
Hematol (2007) 110(7):2569–77. doi: 10.1182/blood-2006-12-062927

28. Jilani I, O’Brien S, Manshuri T, Thomas DA, Thomazy VA, Imam M, et al.
Transient Down-Modulation of CD20 by Rituximab in Patients With
Chronic Lymphocytic Leukemia. Blood (2003) 102(10):3514–20. doi:
10.1182/blood-2003-01-0055

29. Kennedy AD, Solga MD, Schuman TA, Chi AW, Lindorfer MA, Sutherland
WM, et al. An anti-C3b (I) mAb Enhances Complement Activation, C3b (I)
Deposition, and Killing of CD20+ Cells by Rituximab. Blood J Am Soc
Hematol (2003) 101(3):1071–9. doi: 10.1182/blood-2002-03-0876

30. Ward E, Mittereder N, Kuta E, Sims GP, Bowen MA, Dall’Acqua W, et al. A
Glycoengineered anti-CD19 Antibody With Potent Antibody-Dependent
Cellular Cytotoxicity Activity In Vitro and Lymphoma Growth Inhibition
In Vivo. Br J Haematol (2011) 155(4):426–37. doi: 10.1111/j.1365-
2141.2011.08857.x

31. Forero-Torres A, Hamadani M, Fanale MA, Bello CM, Kipps TJ, Offner F,
et al. Safety Profile and Clinical Response to MEDI-551, A Humanized
Monoclonal Anti-CD19, in a Phase 1/2 Study in Adults With Relapsed or
Refractory Advanced B-Cell Malignancies. Am Soc Hematol Washington DC
(2013) 122. doi: 10.1182/blood.V120.21.3677.3677

32. Polson AG, Yu S-F, Elkins K, Zheng B, Clark S, Ingle GS, et al. Antibody-
Drug Conjugates Targeted to CD79 for the Treatment of Non-Hodgkin
Lymphoma. Blood (2007) 110(2):616–23. doi: 10.1182/blood-2007-01-
066704

33. Chu Y-W, Polson A. Antibody–Drug Conjugates for the Treatment of B-Cell
Non-Hodgkin’s Lymphoma and Leukemia. Future Oncol (2013) 9(3):355–
68. doi: 10.2217/fon.12.189

34. Lu T, Gibiansky L, Li X, Li C, Shi R, Agarwal P, et al. Exposure-Safety and
Exposure-Efficacy Analyses of Polatuzumab Vedotin in Patients With
Relapsed or Refractory Diffuse Large B-Cell Lymphoma. Leuk Lymphoma
(2020) 61(12):2905–14. doi: 10.1080/10428194.2020.1795154

35. Harris LJ, Patel K, Martin M. Novel Therapies for Relapsed or Refractory
Diffuse Large B-Cell Lymphoma. Int J Mol Sci (2020) 21(22):8553. doi:
10.3390/ijms21228553

36. Fanale MA, Forero-Torres A, Rosenblatt JD, Advani RH, Franklin AR,
Kennedy DA, et al. A Phase I Weekly Dosing Study of Brentuximab Vedotin
Frontiers in Immunology | www.frontiersin.org 17
in Patients With Relapsed/Refractory CD30-Positive Hematologic
Malignancies. Clin Cancer Res (2012) 18(1):248–55. doi: 10.1158/1078-
0432.CCR-11-1425

37. Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K, Chace DF,
et al. cAC10-vcMMAE, An Anti-CD30–Monomethyl Auristatin E
Conjugate With Potent and Selective Antitumor Activity. Blood (2003)
102(4):1458–65. doi: 10.1182/blood-2003-01-0039

38. Jacobsen ED, Sharman JP, Oki Y, Advani RH, Winter JN, Bello CM, et al.
Brentuximab Vedotin Demonstrates Objective Responses in a Phase 2
Study of Relapsed/Refractory DLBCL With Variable CD30 Expression.
Blood J Am Soc Hematol (2015) 125(9):1394–402. doi: 10.1182/blood-
2014-09-598763

39. Lens SM, Drillenburg P, Den Drijver BF, Van Schijndel G, Pals ST, Van Lier
RA, et al. Aberrant Expression and Reverse Signalling of CD70 on Malignant
B Cells. Br J Haematol (1999) 106(2):491–503. doi: 10.1046/j.1365-
2141.1999.01573.x

40. Doronina SO, Mendelsohn BA, Bovee TD, Cerveny CG, Alley SC, Meyer DL,
et al. Enhanced Activity of Monomethylauristatin F Through Monoclonal
Antibody Delivery: Effects of Linker Technology on Efficacy and Toxicity.
Bioconjugate Chem (2006) 17(1):114–24. doi: 10.1021/bc0502917

41. Alley SC, Benjamin DR, Jeffrey SC, Okeley NM, Meyer DL, Sanderson RJ,
et al. Contribution of Linker Stability to the Activities of Anticancer
Immunoconjugates. Bioconjugate Chem (2008) 19(3):759–65. doi: 10.1021/
bc7004329

42. Shor B, Gerber H-P, Sapra P. Preclinical and Clinical Development of
Inotuzumab-Ozogamicin in Hematological Malignancies. Mol Immunol
(2015) 67(2):107–16. doi: 10.1016/j.molimm.2014.09.014

43. Yurkiewicz IR, Muffly L, Liedtke M. Inotuzumab Ozogamicin: A CD22
mAb–Drug Conjugate for Adult Relapsed or Refractory B-Cell Precursor
Acute Lymphoblastic Leukemia. Drug Des Dev Ther (2018) 12:2293. doi:
10.2147/DDDT.S150317

44. Raufi A, Ebrahim AS, Al-Katib A. Targeting CD19 in B-Cell Lymphoma:
Emerging Role of SAR3419. Cancer Manage Res (2013) 5:225. doi: 10.2147/
CMAR.S45957

45. Press OW, Eary JF, Badger CC, Martin PJ, Appelbaum FR, Levy R, et al.
Treatment of Refractory Non-Hodgkin’s Lymphoma With Radiolabeled
MB-1 (Anti-CD37) Antibody. J Clin Oncol (1989) 7(8):1027–38. doi:
10.1200/JCO.1989.7.8.1027

46. Deckert J, Park PU, Chicklas S, Yi Y, Li M, Lai KC, et al. A Novel anti-CD37
Antibody-Drug Conjugate With Multiple Anti-Tumor Mechanisms for the
Treatment of B-Cell Malignancies. Blood (2013) 122(20):3500–10. The
Journal of the American Society of Hematology. doi: 10.1182/blood-2013-
05-505685

47. Alinari L, Quinion C, Blum KA. Bruton’s Tyrosine Kinase Inhibitors in
B-Cell Non-Hodgkin’s Lymphomas. Clin Pharmacol Ther (2015) 97(5):469–
77. doi: 10.1002/cpt.65

48. Aalipour A, Advani RH. Bruton’s Tyrosine Kinase Inhibitors and Their
Clinical Potential in the Treatment of B-Cell Malignancies: Focus on
Ibrutinib. Ther Adv Hematol (2014) 5(4):121–33. doi: 10.1177/
2040620714539906

49. Herrera AF, Goy A, Mehta A, Ramchandren R, Pagel JM, Svoboda J, et al.
Safety and Activity of Ibrutinib in Combination With Durvalumab in
Patients With Relapsed or Refractory Follicular Lymphoma or Diffuse
Large B-Cell Lymphoma. Am J Hematol (2020) 95(1):18–27. doi: 10.1002/
ajh.25659

50. Dubovsky JA, Beckwith KA, Natarajan G, Woyach JA, Jaglowski S, Zhong Y,
et al. Ibrutinib is an Irreversible Molecular Inhibitor of ITK Driving a Th1-
Selective Pressure in T Lymphocytes. Blood (2013) 122(15):2539–49. doi:
10.1182/blood-2013-06-507947

51. Covey T, Barf T, Gulrajani M, Krantz F, van Lith B, Bibikova E, et al. Acp-
196: A Novel Covalent Bruton’s Tyrosine Kinase (Btk) Inhibitor With
Improved Selectivity and In Vivo Target Coverage in Chronic
Lymphocytic Leukemia (CLL) Patients. AACR (2015). doi: 10.1158/1538-
7445.AM2015-2596

52. Byrd JC, Harrington B, O’Brien S, Jones JA, Schuh A, Devereux S,
et al. Acalabrutinib (ACP-196) in Relapsed Chronic Lymphocytic
Leukemia. New Engl J Med (2016) 374(4):323–32. doi: 10.1056/
NEJMoa1509981
June 2021 | Volume 12 | Article 681984

https://doi.org/10.1158/1078-0432.CCR-04-0294
https://doi.org/10.1158/1535-7163
https://doi.org/10.3816/CLM.2008.n.038
https://doi.org/10.1182/blood-2009-06-229039
https://doi.org/10.1158/0008-5472.CAN-08-2268
https://doi.org/10.1016/j.ccr.2012.03.040
https://doi.org/10.1016/j.ccr.2012.03.040
https://doi.org/10.1182/blood-2006-12-062927
https://doi.org/10.1182/blood-2003-01-0055
https://doi.org/10.1182/blood-2002-03-0876
https://doi.org/10.1111/j.1365-2141.2011.08857.x
https://doi.org/10.1111/j.1365-2141.2011.08857.x
https://doi.org/10.1182/blood.V120.21.3677.3677
https://doi.org/10.1182/blood-2007-01-066704
https://doi.org/10.1182/blood-2007-01-066704
https://doi.org/10.2217/fon.12.189
https://doi.org/10.1080/10428194.2020.1795154
https://doi.org/10.3390/ijms21228553
https://doi.org/10.1158/1078-0432.CCR-11-1425
https://doi.org/10.1158/1078-0432.CCR-11-1425
https://doi.org/10.1182/blood-2003-01-0039
https://doi.org/10.1182/blood-2014-09-598763
https://doi.org/10.1182/blood-2014-09-598763
https://doi.org/10.1046/j.1365-2141.1999.01573.x
https://doi.org/10.1046/j.1365-2141.1999.01573.x
https://doi.org/10.1021/bc0502917
https://doi.org/10.1021/bc7004329
https://doi.org/10.1021/bc7004329
https://doi.org/10.1016/j.molimm.2014.09.014
https://doi.org/10.2147/DDDT.S150317
https://doi.org/10.2147/CMAR.S45957
https://doi.org/10.2147/CMAR.S45957
https://doi.org/10.1200/JCO.1989.7.8.1027
https://doi.org/10.1182/blood-2013-05-505685
https://doi.org/10.1182/blood-2013-05-505685
https://doi.org/10.1002/cpt.65
https://doi.org/10.1177/2040620714539906
https://doi.org/10.1177/2040620714539906
https://doi.org/10.1002/ajh.25659
https://doi.org/10.1002/ajh.25659
https://doi.org/10.1182/blood-2013-06-507947
https://doi.org/10.1158/1538-7445.AM2015-2596
https://doi.org/10.1158/1538-7445.AM2015-2596
https://doi.org/10.1056/NEJMoa1509981
https://doi.org/10.1056/NEJMoa1509981
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Marofi et al. CAR-T Cell Therapy in Non-Hodgkin Lymphoma
53. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in Cancer: Divergent Roles of
Isoforms, Modes of Activation and Therapeutic Targeting. Nat Rev Cancer
(2015) 15(1):7–24. doi: 10.1038/nrc3860

54. Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH, Zvelebil MJ,
et al. P110d, A Novel Phosphoinositide 3-Kinase in Leukocytes. Proc Natl
Acad Sci (1997) 94(9):4330–5. doi: 10.1073/pnas.94.9.4330

55. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High
Frequency of Mutations of the PIK3CA Gene in Human Cancers. Science
(2004) 304:554. doi: 10.1126/science.1096502

56. Paul J, Soujon M, Wengner AM, Zitzmann-Kolbe S, Sturz A, Haike K, et al.
Simultaneous Inhibition of PI3Kd and PI3Ka Induces ABC-DLBCL
Regression by Blocking BCR-dependent and-Independent Activation of
NF-kb and AKT. Cancer Cell (2017) 31(1):64–78. doi: 10.1016/
j.ccell.2016.12.003

57. Iyengar S, Clear A, Bödör C, Maharaj L, Lee A, Calaminici M, et al. P110a-
Mediated Constitutive PI3K Signaling Limits the Efficacy of P110d-Selective
Inhibition in Mantle Cell Lymphoma, Particularly With Multiple Relapse.
Blood (2013) 121(12):2274–84. The Journal of the American Society of
Hematology. doi: 10.1182/blood-2012-10-460832

58. Erdmann T, Klener P, Lynch JT, Grau M, Vočková P, Molinsky J, et al.
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