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Abstract

A new particle simulation method for solving the Boltzmann equation is pre-
sented and tested. This method holds a significant computational efficiency ad-
vantage for low-signal flows compared to traditional particle methods such as the
Direct Simulation Monte Carlo (DSMC). More specifically, the proposed algorithin
can efficiently simulate arbitrarily small deviations from equilibrium (e.g. low speed
flows) at a computational cost that does not scale with the deviation from equilib-
rium, while maintaining the basic algorithmic structure of DSMC. This is achieved
by incorporating the variance reduction ideas presented in [L. L. Baker and N. G.
Hadjiconstantinou, Physics of Fluids, vol 17, art. no 051703, 2005] within a col-
lision integral formulation; the latter ensures that the deviation from equilibrium
remains finite and thus the calculation remains stable for collision dominated flows,
in contrast to previous attempts. The formulation, developed within this thesis, is
described in detail. The resulting scheme is validated for a wide range of Knud-
sen numbers (ratio of molecular mean free path to characteristic flow lengthscale)
-ranging from collision-dominated flow to collisionless flow— and a wide range of
deviations from equilibrium. Excellent agreement is found with DSMC solutions for
linear and weakly non-linear flows.
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Chapter 1

Introduction

1.1 The Boltzmann Equation

When the system characteristic lengthscale L becomes of the order of or smaller
than the molecular mean free path A, the Navier-Stokes description fails. This is due
to the fact that transport is no longer diffusive (collision dominated), but rather, bal-
listic effects become important. This situation is typically quantified by the Knudsen
number An, defined as kn = A/L. In general [1, 2, 3|, the Navier-Stokes description
is no longer reliable for kn > 0.1, a situation typically encoutered in flows in the
upper atmosphere [3], but more recently in nanoscale flow environments. In these

cases, a more general model valid for all Knudsen numbers must be used.

The Boltzmann equation [1, 2, 3] constitutes a possible approach. For a gas
composed of identical hard sphere molecules the Boltzmann equation is given by:

%]t—(—i—v-Vf://(f’f{—ff1)|v—'vl|ad2(2d3v1 (1.1)

Here, f(z,v,t) is the distribution function of the molecules in the phase space at
time ¢, where the position in physical space is € = (z,y, z) and the molecular ve-
locity vector is v = (vg,vy,v,). The quantity o = d2/4 is the differential collision
cross-section of the molecules of diameter d and mass m. 2 denotes the solid angle

of the scattering and is integrated over the unit sphere. In the above equation, the



following notation is also used: f; = f(x,vy.t). f' = f(z,v'. 1) and f] = f(x.v]. 1)

/

where v” and v} are the posteollision velocities resulting from the collision of the

pair v and vy with scattering angle €.

For a homogeneous gas at equilibriuim at a reference temperature Ty and with
a reference number density np, the distribution function is the Maxwellian fy(v) =
nom =205 exp[—(v/v9)?]. The most probable velocity is given by vy = \/2kgT, /m
where kg is the Boltzmann’s constant. For this equilibrium distribution, the mean

free path is equal to A = 1/(v2mned?), and the corresponding molecular collision

time is 7 = /7TA/(20p).

In engineering, the design process of devices is increasingly carried out through
the use of numerical simulation. The recent development of Micro-Electro-Mechanical
Systems and the need for simulating their behaviors has led to increased interest
in numerical solutions of the above Boltzmann equation. However, its nonlinear
integro-differential stucture and the high-dimensionality of the distribution function

make this equation very hard to simulate.

1.2 The DSMC method

One of the most popular methods for solving the Boltzinann equation is the Di-
rect Simulation Monte Carlo (DSMC) [3]. DSMC solves the Boltzmann equation
by simulating the motion of a representative set of particles, which can be thought
of as sample of the distribution function f. As is typical with particle simulation
methods, the intuitive formulation and easy implementation, the fact that it does
not. require velocity space discretization, and the low memory usage are the main

advantages that triggered the success of DSMC.

DSMC solves the Boltzmann equation by using an operator-splitting technicue,
which amounts to integrating the advection and collision terms separately. In other

words, the following equations are successively integrated over a period dt:



of

o = v VS (1.2)
% = //(f'f{*ffl)|’U—Ul|Ude’U1 (1.3)

The first equation is a free molecular advection. It is integrated by simply moving
the particles according to their velocities while their velocities remain constant. The
second equation is a spatially homnogeneous relaxation governed by the Boltzmann
collision operator. It can be solved by colliding a suitable number of pairs of parti-

cles, which will change their velocities while their positions remain constant.

The collision step of DSMC relies on the following form of the collision integral

[2):

[D_f

1
(:)t:| il = 5 / / / ((5,1 + 5.; — (51 - 62)f('vl)f(’02)l'l)2 - ’U]_lO'd2Qd3’U]_d3'02

where §; = 6*(v — v1), 8 = 03 (v — v2), 0] = 6*(v — v}) and 6} = &*(v — v}), §
being the dirac distribution. Here, v; and vs are the precollision velocities and v;
and v} are the corresponding postcollision velocities with scattering angle Q. This
form of the integral suggests that for a given pair of particles, processing the col-
lision consists of deleting those two particles (terms —d; and —d,), and creating a
pair of particles with the postcollision velocities (terms +4] and +d5); this is done
in practice by simply updating the velocities of the particles. In order to account
for the relative velocity factor |va — vy, collisions are processed with a probability

proportional to this relative velocity by means of an acceptance/rejection technique.

Although very efficient for high speed flows, the computational cost of DSMC
increases sharply [11] as the deviation from equilibrium decreases, making noise-free
simulation of low-speed —or more generally low-signal- flows very expensive and in

some cases intractable. In this latter case, most of the computational time is spent



in computing collisions whose net effect is zero. This observation gave rise to a first

improvement of DSMC. a variance-reduced DSMC or VRDSMC [5. 6. 7].

1.3 Variance-Reduced DSMC

In [4] Baker and Hadjiconstantinou presented a general variance reduction method
which allows Monte Carlo solutions of the Boltzinann equation for low-signal fows.
The basic idea amouts to splitting the distribution function into a Maxwellian dis-

tribution f,,, and a deviationnal distribution fy:

f = fmh + f([ (14)

The distribution function is then known through f;. In a particle method such as
VRDSMC, f; can be represented by a set of numerical particles, called deviational
particles. Therefore, one difference from DSMC is that now the particles can be
either positive or negative depending on whether f,,;, accounts for too many or too
few particles at a given location in phase space. The above authors showed that
due to the fact that the Maxwellian is an equilibrium function, meaning that the

collision integral is zero when f = f,,;, the collision operator reduces to:

[a_f

1 , , .
=5 (51 + 52 — 0, — 52)(2fmb1fd2 + fd1fd2)lvz - vl|0d2Qd‘3v1d3v2
ot coll 2

According to the above form of the collision integral |5, 6] two kinds of collisions
need to be considered: those between the underlying Maxwellian (f,,,) particles
and the deviational (f;) particles on the one hand, and those between deviational
particles one the other hand. The first ones are carried out by sampling an actual
deviational particle and drawing a velocity from the Maxwellian distribution, while
the second ones are carried out by sampling two actual deviational particles. Unfor-
tunately, contrary to standard DSMC, the factor ¢] + 05 — §; — 5 does not amount
to updating the velocities of the numerical particles but requires the creation of new

deviational particles. Let us illustrate this fact by an example of the first kind of

10



collision. We see that particle 1 drawn from f,,;, collides with particle 2 drawn from
fu and leads to the creation of 4 particles: sign(fn)of. sign(fu)os. —sign( fu)or

and —sign( fu2)02. Only the existing particle 2 (sign( fi2)da) is cancelled by the new

—sign( fu2)0s particle, thus leading to the net creation of 3 particles.

This sheme has been found [5. 6] to be very efficient for kn 2 1, where the flow
is not collision dominated, and deviational particles are mostly cancelled through
collisions with the system walls. For kn < 1, the high rate of intermolecular colli-
sions leads to high net rate of particle creation that results in a divergence in the
number of particles [5, 6], unless a particle cancellation scheme is introduced. Such a
scheme was shown [5. 6] to be capable of stabilizing the calculation. Unfortunately,
it has the disadvantage of requiring a velocity space discretization and leads to high

memory usage and high computational cost.

1.4 The Proposed Method

The purpose of the present thesis is to derive an alternative, rigorous method
for treating the collision operator which removes the necessity for a cancellation
routine by avoiding the creation of a large fraction of the deviational particles. We
thus keep the capability of simulating low-signal flows while recovering most of the
advantage of a standard particle method, namely the absence of velocity space dis-

cretization and a low memory usage. The proposed method relies on two basic ideas:

* The use of a mathematical formulation of the collision operator involving con-
volutions enables us to calculate the net aggregated effect of all collisions between
deviational particles and underlying Maxwellian particles and thus, in some sense,

analytically cancel the particles before creating them.

* This net action of the collision operator is not only supported by a change

of the deviational distribution f; through the creation of deviational particles as in

11



previous works. but also, and for a large part, is absorbed through a modification
of the local Maxwellian distribution. Instead of keeping this distribution constant
over time and space as it was the case in previous works, we can indeed make its
intrinsic parameters (number density rn,,,. mean velocity U.,p. and most probable

velocity vy,,) evolve.

Since the advection and collision parts are independent, we will derive and present
their corresponding algorithms in separate chapters. The major change from stan-
dard DSMC lies in the collision algorithim, since the method was designed to improve
this very part. The advection algorithm is an adaptation of the standard advec-
tion algorithm (moving the particles) which account for a nonconstant underlying

Maxwellian distribution [5, 6, 7].

12



Chapter 2

Proposed Treatment of the

Boltzmann Collision Operator

2.1 Preliminaries

Let C(f, g) refer to the following general collision operator:

C(f, 9)(v) = / / (f'dh - falv — valod®v; (2.1)

For hard sphere molecules, the cross-section is constant and equal to o = d2/4, d
being the diameter of the molecules. The collision term in the right hand side of the

Boltzmann equation is given by:

of B
[E] wll o)

When the distribution f is written as f = f,., + fa, where f,; is a Maxwellian, the

bilinearity of C' enables us to write:

C(fmb + fa, fmb + f0) = C(fmv, fms) + C(fmbs fa) + C(fay frns) + C(fa, fa)

It is known that the Maxwellian being an equilibrium distribution C(f.s, fms) = 0.
The collision operator is then made of a linear part C(fp, fa) + C(f4, fms), and a
nonlinear (quadratic) part C(fa, f4).

13



C'oming back to the definition of C' (Equation 2.1), the linear part of this operator

is:
(f,'(fm’“ j(l) + Cj(f([ fmb) B / / (frlnbf(/ll - fmbf(ll + f(llfr/nbl - .ftlflllbl)'v - ’UI}O'(ZQ(J:;'Ul

It can be split into three terms as follows:

(fmb» frl) + C( ds fmb // mbf(ll + fdfmbl ] ’Ull(Tde Uy —

/ / Foa fir 0 — w1]0dS2y

/ / fdfmbl "U — U1 |O'd§2d3’01

Those three terms can be written explicitly as a two convolutions and a product of
functions, when f,,,; is some Maxwellian with mean velocity w,,p, number density rn,,,
and most probable velocity v,,,. The detailed derivation can be found in Appendix

A. The result is:

/. / (f;nbf(/il + f(;fr,nbl)lv - ’U1|O'dQ(13’U1 = /[(1 (w7 wl)f(l(vl)d3v1
/ / Frofarlo — vrlodQdbo; = / Ko(w, w1) favy)dor
/ / Fafuinlv — 02|0dQ vy = — fu(v)(w)

where the kernels are given by K;(v,v1) = p K7 (2 - o), i = Lor 2, with:
2 (’U* . (’U* _ vl*))Q
K{(v"v") = ———— - 2.2
l(v » V1 ) |U* — 'Ul*i exp |: I'U* ___ v1*|2 ( )
Ki(v*,v1*) = |[v* —v*|exp[—v*Y (2.3)

and where the function v, which is the collision frequency of a deviational particle

with the entire Maxwellian versus its velocity v, is given by v(v) = pv ( ) where

14



r* is given by:
vi(v*) = ﬁ {Wl/gerf(lvﬂ) + 2|v*| exp(—|v*|*) + 7rl/"’2v*20.1'f(|v*|)} (2.4)
v*
The prefactors are:

2 2, .
d Nmb P 1)3 L d NmbhVUmb (2 5)
1= 7555 92 = 1= 7% .
H ﬂ_l/zvgnb ) mb rl/2

Here, we used the notation w = w(v) = v — Uy and v* = v*(v) = v/vw,
where .5 and v,,; are the mean velocity and the characteristic velocity of the local

Maxwellian.

Finally, the whole collision term can be written as:
0
[79%] = /K'l (w, wl)fd(v1)d3v1—/ Ks(w, wl)frl(vl)d3vl_f(l(v)y(w)+c(ﬁl, fa)
coll
(2.6)

2.2 Discussion

If we neglect the quadratic term C(fy, f4) (the collisions of the deviational part
with itself), we are left with a linear operator. In this case, K; can be interpreted
as the gain term of both the f,; and the f; parts of f, K5 as the loss term of
the fos part and fy(v)v(w) as the loss term of the f; part. In other words, these
operators correspond to the aggregated effect of all collisions of a given deviational
particle with the entire Maxwellian. More precisely, for a given velocity vy, the
function v — K;(w,w,) is the distribution of the gain rate, corresponding to the
postcollision velocities of the deviational and Maxwellian particles, v — Ky(w, w;)
is the distribution of the loss rate, corresponding to the precollision velocities of
the Maxwellian particles, and v(w;) is the collision (loss) rate of the deviational

particles at velocity v;.

From now on, K;, K, and 7 will refer to the operators corresponding to the

15



kernels of the same name. In short, K;f(v) = [ Ki(w.wy) f(v1)d*vy and v f(v) =

v(w)f(v)

The collision algorithm of the proposed method will be based on the above for-

mulation (Equation 2.6).

2.3 Proposed Treatment

In previous variance reduction algorithn [5, 6], the collision part was done by
changing only the deviational distribution, while the Maxwellian remained constant
through all the calculation. Now, we consider changing the local Maxwellian in order
to absorb part of the deviational particles generated by the action of the collision

operator. This means that,

of B

The effect of changing the parameters of the local Maxwellian will be investigated
in detail later. However, we can already formally write that if we change its total
number density 7,5 by 07, its mean velocity w,,, by du,,p and its characteristic

velocity v, by 0vpms, we are in effect changing the distribution function by

_ af mb af mb af mb
(Sf‘mb - <anmb> énmb + (a’l)mb) &Umb + (aumb : (5umb

The challenge will then consist of finding 6 f,.» so as to make 4 f; as small as possi-
ble. This is achieved by rewritting the collision operator [%]coll = [K 1= Kg] fa—vfa+C(fa, fa)

as:

16



Of [ S Ny P e
ot I:(/_/:l = ot |:[\1 - [\2] fr[ - ()fm,b + Ofmb - I/fd(’t + C(.f{[‘, j(()()t
coll N~ N~ N, e’

deletion of particles  collision of particles

seneration of particles .
geners pi changing of

the Maxwellian

As can be seen above, 0t [g—ﬂm” is the sum of four terms which can be treated
independently of each other in four distinct routines. Three of these terms act di-
rectly on the distribution function of the deviational particles. The fourth one acts

on the equilibrium distribution. We briefly outline their structure helow.

* The term ot {I\; = K. 2] fa— 0 fmp 18 a function of v, in other words, it is dis-
tribution. As a consequence, we can naturally generate some particles drawn from
this function. The only difficulty is that we do not know explicitly its functional
form. The evaluation of <5t[K L — [{’2} fa— 5fm;,> (v) will require some effort. The
essence of the algorithm lies in this very term, since we will try to find a 4 f,,, so
as to generate as few particles as possible. In addition, the particles that we will
generate will be "precancelled’, in the sense that we will not create a positive and a

negative particle at the same velocity and position which could then be cancelled.

* The term 0 f,,, corresponds to the shifting of the Maxwellian. In practice, it is
just a matter of calculating n,.p, Wmp and vy,,. The method for determining them

will be addressed below.

* Due to its structure, the term —2 f;0t can be implemented by a deletion of some
numerical particles with a probability proportional to 2. In addition, it contributes

to the efficiency of the algorithm since it reduces the number of numerical particles.

* The quadratic term C( fy, f4)0t can be implemented by colliding some numerical
particles, as in standard DSMC. The difference is that the deviational distribution

function f; may be negative, which means that we may have negative particles, as

17



explained in the Introduction. For computations near to equilibrium. the contribu-
tion from this term will be negligible. As a consequence, we will neglect it in the
linear version of the algorithm. In contrast, in highly nonlinear situation. this termn

will be immportant.

2.4 Determining 9 f,.;

The natural question that we now have to answer is what to choose for 4 f,,,;. As
stated above, we want to choose 0 f,,; in such a way that the term 5t[K —K. ol fa—0 fumb
be as small as possible, since it corresponds to generation of particles. If the function
[K; — Ko f4 could be written as a combination of the derivatives of a Maxwellian
with respect to 1., Ump and U,,p, we could make 5t[l€ 1= K’z] fa— 0 fms be zero and
avoid generating particles. But in general, the function [K' 1 — 162] fa is not in the
span of the derivatives of a Maxwellian. An obvious counterexample is that 8 f,,; is
always a continuous function wheras [K; — K,] f; can be discontinuous. The space of
functions accessible to 6 f,, is thus limited, but we will see that we can still reduce
significantly the number of particles that we need to generate, 5t[1(~' 1— Kg] fa—9fun

becoming just a small correction.

A first choice was to find 0n,,p, vy and du,mp that minimize the L2-norm of
St[K1 — Ks)fa — 8 fms. This solution leads to an intractable set of equations. An-
other solution is to choose them so as to make 6t[[f' — Kz] fa — 6 fmp have no net
mass, no net momentum and no net energy. In other words, those parameters are
chosen so that the first three moments of 5t[I€' 1= Xg] fa — 0 fmp be zero. The span
of 6 fmy through the choice of dnmp, Gy, and dums has indeed enough degrees of
freedom to allow us to choose them so that d f,,;, absorb the first three moments of

[%ti] oo TesUlting in 5t[K 1 —Kg] fa—0 fmp having its first three moments equal to zero.

The reasoning behind this choice is the following. Let us consider a homoge-

nious relaxation problem, described by Equation 1.3 . We know that if we start

18



from any distribution, the final distribution will be a Maxwellian, the equilibriuun
distribution. On the other hand, in the proposed algorithm. we see that we delete
particles through the termn v f,; and generate particles drawn from the "moment-free”
distribution {]{’ | — Kg} fa — 0 fine. This means that the moments of the deviational
part f,; will decrease and ultimately go to zero. The final distribution will then be
f = fin + fa where f; is a moment-free distribution and f the final equilibrium
Maxwellian. It is then easy to show that f; = f — f,.,, being a difference of two
Maxwellians and having no net mass, no net momentum and no net energy, it is
necessarily equal to zero and f,,, = f. In other words, we can hope that in a general
multidimensional problem, this method will make f,,;, go to a Maxwellian near to

the local one and make f; be small.

19



Chapter 3

Implementation of the New Collision

Operator Treatment

In the following sections, we will investigate in detail how we perform each of the
four stages described in the previous chapter. Let us introduce now a few notations
and concepts that we will use in these following four sections when deriving the

various algorithms.

First of all, performing the Boltzmann collision operator and also computing the
outputs requires a physical space discretization. In fact, two particles should ideally
be allowed to collide together only if their positions are identical. However, since
we have a finite nummber of particles and the position is a continuous paraineter,
this condition has a zero probability of occuring. DSMC handles this difficulty by
splitting the physical domain into cells and allowing particles to collide with each
other provided that they are in the same cell. The proposed method uses the same
technique. The volume of a cell will be refered to as Ve, and the corresponding

physical domain as C.

In compliance with the splitting of operator technique, the collision part can be
treated independently in each cell, as if we had an independent homogenious relax-
ation in each cell for a period of d¢. From now on, f.,; or “the local Maxwellian” will

refer to the f,,; of a given cell which will itself be refered to as the “current cell”.

20



In the current cell. the deviational distribution f; is respresented by a set of N,
particles with velocity v*, position &* and sign s' € {~1.+1}. The superscript i is
the index of the particles. The set of numerical deviational particles that reside in the

current cell will be refered to as C. In mathematical terms, we have C = {i,|ccz eC}.

The numerical deviational distribution in the current cell is then given by:

fu®,v) =Y Negps'd(v — v*)d(x — o) (3.1)

€C

where N.gy is the effective number of molecules that a numerical particle represents
and 0 is the dirac distribution. A particle with velocity v*, position z* and sign s’

acts like a distribution Nejps'd(v — v*)d(z — x¥).

Following these considerations and the results from the previous chapter, the

general outline of the collision algorithm is:
Do separately for all cells
* Change the Maxwellian by the appropriate amount to account for 4 f,,;
* Delete numerical particles with probability proportional to v(w)ét
* Generate particles drawn from 6t [ [ Ky fs — [ Kafa] — 0 fun
* Perform hard sphere collisions to account for the quadratic term C (fa, fa)

End Do
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3.1 Changing the Maxwellian

The purpose of this section is to derive the analytical expressions of 0n,,. 0t
and 0w, that make the function ()‘t[]\; = I{’"z}f,/ — & frp have no net mass, no net
momentum and no net energy, and propose an algorithm to compute them in prac-
tice. In essence, we first compute the moments of df,,;, as functions of §7,,,. dv,
and dUmp. then compute the moments of [K L — [%2] fa as a function of fy, and solve

for the values of 07, OV and du.,, that make the two sets of moments equal.

3.1.1 Changing a Maxwellian distribution

A Maxwellian is a function of v which depends on 3 parameters. namely the
mean velocity u.,.p, the number density n,,;, and the characteristic velocity v,,;. In

other words,

f'mb(vv Ttmby Umb, umb) -

LTI [—(U - Umb)2]

3/2,3 2

mb Ynb

A small change of n,,, by 07,6, Ump DY 0Usmp and v,,, by dv,,, results in changing

the distribution by:

a mi a T m
"“f;'ﬁdnmb + Lévmb + af ’

Gnmb 8vmb 8umb

5fmb = . 5umb (32)

where we have, by differentiating the above expression of the Maxwellian:

afmb _ fmb
O 33
afmb UV — Ump
au U?nb f’mb (3 4)
afmb 1 (’U - umb)2
— (ol Tmb) :
avmb Umb ( U?nb ’ fmb (3 5)

Each derivative is calculated while the two other parameters remain constant. So
for example, the derivative with respect to v, is done at constant number density.
This means that (0 fs/0nms) has the same mean velocity and standard deviation

as fmp: (O fms/OUmp) has no net mass and no net energy, and (0 f,,5/9v,) has no
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net mass and the same mean velocity as fo.

L i 1T e . . o —3/2, -3 21 0

Denoting w* = (v — Uynp)/Ump. recalling that fo(v) = 7= v v exp|—w*?|. and
inserting the expressions of the derivatives given by Fquations 3.3, 3.4 and 3.5 into
Equation 3.2 we get:

-1

. \ - 2 ovg 1, % —3_—3/2
()fmb(v,) == [()”'mb + nmbumh(zw - 3)()177"#7 + 2"’mbvmbw : 5umb] & /

T exp{—w
(3.6)

This is a polynomial times a Maxwellian. We can compute explicitly the first three

*2)

moments of this distribution as a function of dn,,,, 0vm, and w,,,. We make here
the arbitrary choice of computing all the moments in the frame moving at velocity
Upmp- This convention has no impact on the final expression provided that we do

not change it and remain consistent. The moments of 4 f,,; are:

/5fmb(v)dgv = 0N, (3.7)

/wafnzb(v)dgv - nmb(SUmb (38)
3
/ |w|25fmb(v)d3” = 5’03,“[)5”771}) + 3nmb7}7711)61)177b (39)

3.1.2 Moments of [K, — K] fy

The purpose of this section is to derive a general expression of the moments of

the distribution [K 11— K o] fa as a function of the distribution f,.
Let K; denote K; or Ky and M(w) be either 1, wy, or |wy?|. The moments of

K, fy are f M(w)K; f4(v)d*v, where we recall that K'ifd('u) = [ Ki(w, wy) fa(vy)dPvy.

Combining these two formulae leads to:

/M(w)&fd(w)d% = /M(w) (/Ki(w,wl)fd(vl)d%l) Bw

Performing the change of variable v — w, and switching the order of the integrals,
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Wwe can express it as:

/Z\[(w)[(’i J(w)dPw = /fd(vl) (/ j\f(w)lx’,;(w,wl)dgw> vy (3.10)

We see that if we can compute the moments of the kernels, meaning the functions
w; — f M (w)K;(w, w;)d*w the moments of the distribution K; fa will be obtained

by integrating the product of the function wy — [ M(w)K;(w,w,)d*w with f,.

Computing the first three moments of the kernels can be done explicitly. A

summary of the algebra is given in Appendix A. We obtain:

/ [Kl(’UJ, wl) - Kg(w, wl)]d3w = I/('U)l)
/w[KI(w,wl) — Ky(w,wy)|d*w = wyv(w;)
/|w|2[K1(w,w1) — Kao(w,w1)|d’w = |w1|*v(w1)

We could have expected these results since we know that the collision operator con-

serves mass, momentum and kinetic energy.

Inserting these latter expressions in the general formula for the moments of [X 1—

K] f4 given by Equation 3.10 leads finally to:

/[Klfd(’v)—féfd(v)]d&v = /V(wl)fd(vl)d3vl (3.11)
/w[Klfd(v) - K'zfd(v)]d% = /wlu(wl)fd(vl)d3v1 (312)
[ Wit - Bataols = [ hnPrtwseide (313

3.1.3 Expressions for 6n,;, v, and dum,g

To make the moments of §t [K’ —K. 9] fa—0 fmb be zero, we must make the moments

of 6t[K' 1— KQ] fa given by Equations 3.11, 3.12 and 3.13 equal to those of 4 f,,; given
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by Equations 3.7. 3.8 and 3.9. This leads to the following system in dn,,;, dv,,, and

(5'U,mb2

Sty — Ot / V(ws) falv1)d v,

N0t = Jt/wlz/(wl)fq(vl)(]"‘vl

Z

'.(g b ~ ¢ ~ o © g "'
;/l"',zy,,bonmb + 3N VOV, = Ot / |w1[21/(w1)‘]‘,l(v1)d‘v1

The solution is:

Sy = Ot | v(wy) fylvy)d* vy
‘ ot o
OUmp = - wyv(wy) fu(vi)d vy
'mb
ot ' 5 3. ;
(S'Um[, = S / leiz - 7'Uy2nb V(wl)f(l(vl)ddvl
37Ilmbvmb . 2

or more conveniently for implementation purposes:

e — (5tu2/y*(w;)fd(v1)d3v1 (3.14)
N (StNQUmb * % * 3
OUpmp = — wiv* (wy) fo(vy)d vy (3.15)
mb
- 6t U, * 3 * * !
Su = OtHaUm / P — 2 ) v (w?) fa(w1)dPoy (3.16)
Snmb 2

During the simulation we need to compute 67,5, 0Ump and dv,,; from the set of
nuinerical particles. To this effect, we will work with cumulative distribution in the
cell, that is to say with the distribution integrated over the current cell. From the

expression of fy(x,v) given by Equation 3.1, we get:

/ fd(m, 'U)d3CB = Z Neffsié(v — ’Ui) (317)
JxeC

i€C

and

/ 5fmb(v)d3m - ‘/celléfmb(v)
zeC

since the local Maxwellian is constant over the cell.
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By integrating over the cell Equations 3.14, 3.15 and 3.16 (the above expressions

of 01 i OUmp and v,y ). and replacing f fdd3m by its expression given in Equation

recC

3.17 (in terms of a sum of dirac distributions), we get:

OnpVeer = Neppotug /V*(’wl*)zsifs(‘h —vh)d’v,
: ieC

. dtpav - L
U Vel = Neff—’gw/wiu*(wi‘)zyd(vl —v)d*n,
b

m ieC

Ot g Umy * 3\ ox i i
SUmpVeet = Negy T / (lwll2 - 5) v (w?) Zs §(vy — vV,

i€C

After switching the sum and integral sign, we obtain:

N Veff
My = N L otuy Y s
" Lell ZGZC
Nesr 6tpsu o .
6umb — eff OLH2VUmb Z POPL (wz*)
I/ct»zll Nomb icC
< Veff 6tiu'2v7"b )2 3 "
OUmp = e ( - —) v (w )
i cell 3nmb 122 | 2 (

where we recall that w™ = (v* — U.np)/Ums and v* is the velocity and s* the sign of

the i** particle.

3.1.4 Sketch of algorithm for changing the local Maxwellian

From the above formulae, the algorithm for shifting the Maxwellian comes natu-
rally. In the scheme, we compute the values of dn,,p, dUpp and dvy,, for the current

cell and the current timestep, and change the Maxwellian of the current cell.
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Set 072 = 0, dvy = 0 and du,p = 0
For all particles in the cell:

get the particle velocity vy and sign s.

Compute: w] = (V1 — Ums)/VUms

Ne f
My = 0Nty + (5tu2ﬁsy*(w{)

— N‘-’ff YUmb * % *
5umb - 6umb + 6tu2 ‘/(.‘l.'” Tnb Swly (wl)

) Negy :
Vb = OUmp + 5tu2ﬁ%3% (lws*2 — ) v*(wy*)

End For

Nonb = b + 0N
Umb = Umb + FUmp

Urnb = Ump + OUpp,

The values of dnp, dUms and v, are also useful as a characterization of 4 fi.,

which we will need for the generation of particles.

3.2 Deletion of particles

In this part, we treat the term —v(w)fq(v)dt.

v(w)ét is the number of collisions of a particle at velocity v = w,p + w during
0t. If the timestep 6t is small enough, this number of collisions will be much smaller
than 1.

This enables us to consider deleting the particle with a probability v(w)ét.
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Among a large number of particles around the velocity w, we will have the ra-
tio v(w)dt of those particles that will be deleted which corresponds to changing the

distribution function by —v(w)fy(v)dt.

The particles need not, strictly speaking, be deleted at this stage. In our imple-
mentation, they are marked for deletion, and are actually deleted at the very end of
the collision routine. We indeed want to compute all the parts of the collision term

based on the same f; distribution.

In summary, the scheme for the deletion of particles is:

For all particles in the cell:

get its velocity v and its sign s.

compute: w* = (V — Umb)/VUmb

Compute paov*(w*)ét.

Draw a random number R between 0 and 1.

Mark the particle for deletion if pov*(w*)ét > R

End For

3.3 Generation of particles

In this part, we want to generate particles to account for the term

ot / (K1 (w, w1) — Ko(w, w1)] fa(v1)d* vy — 6 frmp(v)

To get the distribution of particles that we need to generate for the entire cell, we

can as previously integrate over the cell. Using the expression of [ cc fad3x, given
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in Fquation 3.17, and the fact that K;(w,w;) = pu K} (w*, w1*) we get:

(57.‘-,1_[11\'?(_,/] / [I\’f('w*. 'wl*) — K;(w*, 'wl*)] Z (5(’01 - vi)d“’vl — ,.(,"()‘f,,l,,(v)
' eC

which is equal to

SturNess > [K7(w',w™) = K3 (w*, w™)] = Vieud fu(v)
1€C

In summary, we want to generate a set of particles that will represent the distribution

- e U — Up,y vt —u e, VU vi—u -
v — bt Nes Y K ?, 2) — K3 (——, ———"2)]~Vieud frns(v)

icC Upnb Ump Umb Umb

The particles are then generated by an acceptance rejection technique. The dif-
ficulty lies in that we want to generate particles drawn from a distribution which
we do not know explicitly but need to compute on the fly. Since evaluating this
distribution function will have to be done a large number of times, we approximate
the sum by looping over N, randomly choosen particles instead of all Ny particles

in the cell. We thus need to premultiply the sum by N;/Ns.

The essence of the acceptance-rejection algorithm is then as follows. We choose
randomly N; velocities v, which will be the velocities of candidate particles to
be, possibly, created. These velocities are drawn from an arbitrary distribution
g{v), which has to be greater than |0t [f Kifs— fKQfd] — 0 fmp|- For a given v,
we loop over Ny numerical particles in order to compute 6t [ f K f,- f K, fd] as
discussed above. At the end of this loop, we create the particle of velocity v if
|6t [[ Kifs— [ Kafa] — 6 fms) > Rg(v), where R is a uniform random number be-

tween 0 and 1.

So, the scheme is:
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Do N; times:

Choose v from a distribution proportional to g(v).
Compute the velocity: w* = (v — Umb)/Vmb

set suun=0);

Do N, times:
Pick a numerical particle, and get its velocity vy and its sign s.
Compute the velocity: wq* = (v1 — u)/Vmp
su = sumn + s,ulét%fj [K}(w*, w}) — K3(w*, w})]

End Do N, times

suin = sum - 1%&;’?6 frmn(v)
pick a random number R between 0 and 1.

Create a particle of sign sign(sum) and velocity v if sum > Rg(v)

End Do N; times

We recall that N; denotes the total number of numerical particles in the current
cell, Ngss is the number of particles that a numerical particle stands for and V. is

the volume of the cell.

Some further comments on the implementation of this part of the algorithm are

given below.
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3.3.1 Parameters N; and N,

In order to generate the correct number of particles, we must have Ny = [ gd®v.

N, can be any number. However, if it is chosen too small, the results are likely
to be 1ore noisy, since we will generate particles from a more noisy distribution.
Ideally, we would like to choose Ny = N, but it makes the algorithin less efficient
and does not increase accuracy substantially. A recommended way to proceed is to

choose Ny as being a fraction of Ny, for example one fifth.

3.3.2 Importance sampling

The distribution g can simply be a uniforin distribution on a box. For inore effi-
ciency, we can take g to be a radial piecewise constant distribution centered on the
local mean velocity. Since it has to be greater than the distribution we are sampling,
we have to update g by increasing the concerned piece of g whenever we come across

an occurence of sum > g(v).

In an implementation, we use g(v) = 4r|w|%g,(Jw|), where the function g, is a

piecewise constant function:

g(lw)) =gi if ri < |w| < ripy

The r}s are chosen to be proportinal to the standard deviation of the local Maxwellian:
i = mp/V2, and g,(|Jw]) = 0 for |lw| > 7vmb/\/§. If we come accross sum > g,
then we update the function by doing g¢ = sum. Let’s note that the function g, is

different for each cell.
To initialize the function g, we carry out at the begining, and from time to time,

a voided run of the generation routine, that is to say of the exact same routine exept

that we do not create any particles but only update the function g.
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3.3.3 Cutoff of the Kernel K,

It has to be noted that the first kernel (K) is singular at the point v = vy and
diverges as 1/|v—wy| . This singularity raises a problem when it comes to generating
particles with an acceptance,/rejection procedure, since this method is designed for
bounded distributions. To deal with this difficulty, we set a cutoff relative velocity v,
and define a modified kernel. The modified kernel is defined such that it is constant
Vo for which |v — vq| < v, as sketched in Figure 3-1. The constant value is taken

to be the mean value of the kernel over the sphere centered on vy, and of radius v..

L

-
v}

The mean value of the kernel over this sphere is u; ﬁ%% . The derivation of

this mean can be found in Appendix A.

Figure 3-1:

3.4 The Nonlinear Collision Term

The nonlinear collision term C(fy4, f4) cannot be optimized and is treated exactly
in the same way as it was in VRDSMC [5, 6]. As emphasized in Introduction, the
proposed implementation requires an average creation of two particles per collision
leading to instability issues. This will affect the efficiency of the present algorithm for
nonlinear collision-dominated flows. Unstable behaviors were observed for strongly
nonlinear collision-dominated flows. In contrast, for low-signal flows, this term is
of second order and the number of particles that will be created will remain very
small. For linear to weakly nonlinear flows, the creation of particles is balanced by

the particle sink discussed in section 3.2.
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The method for computing C{fy. fq) was briefly outlined in introduction and is
explained in detail in [5, 6, 7]. The design of the scheme stems from the following

formn of the nonlinear collision termn:

C(fa, fa) = %///(5; + 0y — 81 — 0) far fualva — v1|0f129d30161302

As in standard DSMC, collisions are processed by sampling a number of pairs of
numerical particles. The operations to perform will then depend on the sign s' and
s? of the particles, as follows:

*1f s! = +1 and s = +1, update the velocities as in standard dsmc.

*If s' = +1 and s = —1, create +4;, —d] and update —d, into —d5.

*If s = —1 and s? = +1, create +d,, —d5 and update —d; into —4.

*1f s' = —1 and s® = —1, create —d;, —d,, +0; and +485.

In the above scheme, postcollision velocities are computed according to the hard

sphere scattering angle distribution (uniform over the unit sphere). The derivation

is explained in detail in [7]. The final result is:
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The number of collision candidate to process is = ——4r—  where v

1
(V10 + vay) + §|v1 — vg|sinfsin ¢

1
(1, + vay) + §[v1 — v sinf cos ¢

[l S il

1
(‘“1,: + 'U‘Z,z) + §|’01 — 'Ugl cosf

¢

(N

1 1

5(‘111,1 + Vo) — Elvl — vp|sinfsin g
1 1 ,

5(”1,11 +gy) — 5]1)1 — vg|sinfcos ¢

1 1
§(Ul,z + llg,z) - §|'vl — ’U2| cos

N,ffwd"’Jth'u;'.\“‘X MAX is
2Veeu T

the maximuin relative velocity usually set to a few times the most probable velocity.

Collisions are accepted with probability |v; — va|/vMAX. To generate scattering

angles # and ¢ uniformly on a unit sphere, we generate:

cosf = 2R; -1
sinf = V1 —cos26
¢ = 27ng

where R, and R, are two different random numbers sampled from the uniform

distribution in [0, 1].
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Chapter 4

The Free-Molecular Advection

Operator

According to the splitting of operators discussed before, the free-molecular ad-

vection is described by:

Of ot +v-Vf=0

Contrary to the collision routine, f,,;, will remain constant all over the advection
procedure. This means that we account for the change by modifying f; only, that
is to say by creating or moving deviational particles (df = dfy). Since f = fop + f4,

the term v - V f is made up of two parts: v-Vf=v-Vfi+v -V,
We thus need to solve 3f3/0t+v-Vfa=—v- -V
The general solution of an equation of the form 0f/0t + v - Vf = g(=,v,t) is
flx,v,t) = fotg(:c —vt',v,t —t')dt' + f(x — vt,v,0), where f(x,v,0) is the initial
state. (See the Proof in Appendix B).

For convenience and without loss of generality, we can set t = 0 at the begin-
ning of the current timestep. The state at ¢ = dt, which is what is required, is

then: fu(x,v,0t) = 0& g(x —vt',v,0t — t')dt' + fq(x — vdt,v,0), where in our case
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g(x,v.t) = ~-v-V .

falx.v,dt) is made of two parts which will be treated separatly. The first part,
results from the source term —v - V f,,,, and corresponds to the advection of f,.,
that is to say to the advection of some underlying particles not represented by nu-
merical particles. This advection will be done by creation of particles and is refered
to as the advection of the f,; part. The second part is a simple advection of the

numerical particles and is refered to as the advection of the f; part.

4.1 Advection of the f; part
In this part, we perform the following operation:
[, v,6t) = f(z — vot,v,0)

This is done by moving all particles according to their velocities, as in standard

DSMC. In other words, we perform:

For all particles in the domain
T — x + vot.

End For

4.2 Advection of the f,,;, part

In this part, we want to add the term fo& —v - V frp(x — vt', v, 0t — t')dt’ to the
distribution function. This is done by creating deviational particles. We first need
to compute —v - V f (2, v,t) in order to compute the integral which will provide

us with the distribution from which the particles have to be drawn.

For a fixed velocity v, the function & — f,;(x,v) is piecewise constant. As a
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consequence, the function € — V fp(x, v) is zero everywhere. except at the inter-

face of the cells. where it is a dirac (each component is a dirac).

Let S,, be the surface separing the two cells, and n be the unit normal vector of
this surface. Without loss of generality, we can assume that S, contains the origin
x = 0, so that n - is the distance between & and S,,. Let also f7,, and f, refer to

the local Maxwellian in the right and the left cell respectively.

The detailed derivation of the function V f,,; is located in the Appendix B. The
1

result is that the gradient is V frp(x,v) = (f7, — fb)0(n - ©)n, where J is the

dirac distribution. The integral § fy(x, v, t) = foat g(x — vt', v, 6t — ')dt’ computed
1

when g(z,v,t) = —v - V (2, v) = (f — frp)d(n - x)v -1 is:

at
S falz,v,0t) = (frp — f" )'vn/ dn-z—n-ot)dt
0

mb

The value of the integral is |n-v|~! when (n-x)/(n-v) € [0 6t] and zero otherwise.
This finally leads to:

dfu(x,v,6t) = [ rlnb('”) - f;b(v)] sign(v-m) ifz-n<v-ndt

ife-n>v- -nit
Let’s note that contrary to what we could think at first glance, this does correspond
to the difference of two fluxal Maxwellian distribution. Indeed, for a fixed velocity
v, the total mass that we need to create is S,[f!,(v) — f7,(v)]|v - n|dt, where we
recall that S, is the cross-sectional area of the cells, and n is the normal of the
surface separing two cells. We obtain this by just integrating over space the above

distribution.

In practice, we generate particles drawn from S,[f!,(v) — f&,(v)]v - ndét and

spread them out over a domain of length |v - n|dt, which does correspond to having

a density equal to [f,(v) — fr,(v)] sign(v - n).
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This gencration of particles has to be carried out wherever there is a discontinu-

ity of fi,,. that is to say at all interfaces between cells.

The generation of particles is done by acceptance rejection. The velocities are
first drawn uniformly from a cubic velocity domain [—v,,.,, '1,’,,,,,,_,.]"“ where v, i a
large velocity compared to the most probable velocity. The computational cost of
this part of the whole algorithm is not very high, so we can afford to do a simple
acceptance rejection, without resorting to an importance-sampling-type of approach

as in Section 3.3.

Finally, the scheme for the advection of the f,,, part of the distribution is as

follows:
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For all intefaces:

Do N times:

Choose v, from a uniform distribution over [—vmas, Vmaz|-
Choose v, from a uniform distribution over [—vmaz, Umaz)-
Choose v, from a uniform distribution over [—vmay, Vmaz)-
Compute f',(v) and f.,(v)

Draw random numbers R, and Rs between 0 and 1.

It |v6'7ﬁ»7[ 1 o(v) — fry()n v > RM

Create a particle:

* of velocity v

* of sign sign([frs(v) — fr(v)]m - v)

* at a position such that n-xz =dtn-v - Ry
End If

End Do

End For

In the above scheme, S,, is the cell cross-sectional area, v, is a parameter used

to specify the size of the velocity domain where the velocities are drawn from and

3
maz*

V, is the volume of this velocity box: V, = 8y The number of loops has to be
N = MYV, (that is to say the integral of the importance sampling function which is

a constant function over the box in this case).
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Chapter 5

Boundary Conditions

In most applications, the boundaries of the domain contain solid walls. Within
kinetic theory, walls are typically treated [1, 2, 3] as infinite reservoirs of an equi-
librium gas (homogeneous Maxwellian distribution) at the wall temperature and
velocity and whose number density is calculated so that the mass flux into the wall
is the same as the one going out from the wall. The boundary conditions are then
treated by simply carrying out a free molecular advection between the reservoir and

the actual physical domain [2, 3].

The approach outlined here mirrors the method developed in [5, 6]. Let N}

wal

, and

N,

wall

denote the number of respectively positive and negative deviational particles
that crossed the wall during the timestep, Nya = N, + N, the total number

of those particles and ANy = N, — N_, the net number. Let S, be the cross-
sectional area of the wall-cell interface and m the unit normal of this surface. For
convenience and without loss of generality, the following calculations will be carried
out for the particular case where n = e, = (1 0 0), and where the surface contains
the point ® = 0. In other words, the wall is chosen to be the yz-plane. Let us
denote the wall distribution fuu = Nwan fwau with:

- (’U - uwall)z]

2
Vipall

~ 1
Suwanr(v) = m €xXp [

Due to the free molecular advection, there are particles crossing the wall. The
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flux F of particles going out of the domain is the sum of the flux F; of outgo-
ing numerical deviational particles (f;), and the flux F,, of outgoing underlying
Maxwellian particles (fnp). The flux of particles entering the domain is denoted

Fa- By definition, we have:

]:mb = / v.'rfmb(v)dgv
v, <0

3 3
]:wull = / U.’tn'u.vullfwa”(v)d v
v, >0

and

5t5’nfd = 6tSn/ vmfd('v)dBv = NeffANw,,u (51)

v <0

The boundary condition must ensure conservation of mass or equivalently the
conservation of the number of molecules ( represented by deviational and underlying
Maxwellian particles) in the physical domain. This conservation of mass is equiv-
alent to having the incoming flux of particles equal to the outgoing one, or in our
notation: Fyau = Fmp + Fa. This latter relation is achieved by simply setting n,.;

to an appropriate value.

However, in order to keep the contributions of the Maxwellian and deviational

distribution separate, we write

Twatt fwatt = (Mg + M) fuat

such that

b d
Fuwat = Fopau + Fopan

with F7, being the flux associated with 7™, f,u and F2_, the one associated with
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n¢ i fwea- The condition of mass conservation Fyq = Fou, + Fy then becomes

b
F, Ll,"il’” = Fu
Fia = Fu

wall

We then observe that the situation is very similar to what we had in the pre-
vious chapter, where we dealt with the free molecular advection of the Maxwellian
contribution. From Chapter 4, we know that the solution amounts to generating

particles that sample the following distribution:

[nwullfwall(v) - fmb('v)] Sign(v : n) fx-n <wv- not

0 ife-n>v-nit

Using the fact that we are only interested in sampling particles entering the physical
domain (sign(v - n) > 0) and after inserting the splitting n.u fwau = "Zl(lfu fwa” +

d ~
]Lwallf‘wﬂ.lly we get

14 1 fwan(v) + [”Z;lfufwau(”) - fmb(v)] if z < vdt

0 if x > v,0t

The two parts, n?_, fuan(v) and [n:ﬁ('ju Fuwau(v) - fmb(v)] respectively, are treated in

separate routines which are explained in the following two sections.

5.1 The f; part

This section deals with the treatment of the deviational contribution n j; fuan(v).

As seen above, we have to generate particles to sample the following distribution:

nd oy fuau(v) i 2 < v, 6t

0 if x > v, 0t

As discussed above, the condition that determines n ; is F¢,, = F4. The net

wal
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number of numerical particles that we have to generate is then given by S,0tN ;[}.7:(‘,{”_” =
(StN(}lff‘l = AN. Note that AN can be negative. This means that the equivalent of
the net mass of the particles that hit the wall is sent back into the domain with the
wall velocity distribution. In pratice, we draw their velocities from fu,,,_u('v)l,{t with
v, > 0 and spread them out uniformly over a domain of length v,dt. To generate
the velocities, we use an acceptance,rejection algorithm. Howerver, when f,.; has
no wmean velocity along the normal of the wall (the wall is moving in its plane) there

exists more efficient methods for generating such velocities.

In summary, the scheme is:

Get the N, particles that hit the wall.
Delete min(N," ,, N~ ) of them

Send back the abs(AN) remaining particles:
* velocity drawn from fwal,(v)vx

* with the sign sign(AN)

* at position dtv, Ry

5.2 The f,; part

This section deals with the treatment of the Maxwellian contribution [n{;‘fu fwan(v) — fmb(v)] .

mb

The number density nj;,

. is determined by imposing F™, = F,.s. These fluxes can

w

be calculated analytically for any local and wall Maxwellian:

mb
7:mb . mb f 3., TopallVwall 1 *2 Lo ok *
wall  — / 0 nwallfwallvzd v = 2 (71_1/2 exp[_uwall,w] + uwall,zerf[u’wall,z] + U‘wall,z
Vg >
bV 1
3. . "tmbUmb *2 * * *

fmb = fmbvxd v = —_2_— (m exp[_—umb,:c] + umb,xerf[umb,x] - umb,z)

v, <0

43



mb

We choose then n.7, as follows:

—-1/2 _x2 * » * T %
,”mb = ( Umb ) ™ GXI)[ ulrll;,u.'] + “"nz(),J'CI f[u'mh,.nJ umb,w
wall — Ttmb | - ~1/2 ] Lk . * *
Vwall m / exp[—u’wall,.n] + u’u.va,ll,J:eIf[“’wul(,.rr] + “'mull,f

From this, we can generate particles at the boundary to account for the f,,,
particles that hit the wall. The scheme is alimost the same as the one used for the
convection of the f,,; distribution. The difference is that it is carried out only at
the interface between the domain and the wall (at the boundaries of the domain),
and we only need to create particles that go in the domain, that is to say such that
v-n > 0, where n is the inward normal of the wall. In the special case where

n = e,, the scheme is:
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Do N times:

Choose v, from a uniform distribution over [0, v,,].
Choose v, from a uniform distribution over [—vmuu, Umaz]|-
Choose v, from a uniform distribution over [— v, Vmaz]-
Compute frp(v) and fuan(v)

Draw random numbers R; and Ro between 0 and 1.
If |1vf,5.t',i—'if,, R, fuwatt (V) = frmp(0)]ve] > RIM

Create a particle:
* of velocity v
* of sign sign(n™, fuan(v) — frmp(®))

* at position x = dtv, - Ry

End If
End Do

Here again, v, 18 a parameter used to specify the size of the box where the
velocity are drawn from and V,, is the volume of this velocity box, which is now:

V, = 4v3

max*

The number of loops still has to be N = MV,. The distribution
"7'13211 fwau is the Maxwellian of the wall. Its mean velocity is the velocity of the wall
Uwall, its characteristic velocity vy is the one that correspond to the temperature
of the wall (vyen = \/W), and its number density is the one computed

above that ensure the equality of the incoming and outcoming mass flux.
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Chapter 6

Computing the Outputs

By output we mean macroscopic hydrodynamic quantities like the velocity of the
fluid, the stess, or the temperature. These outputs depend on the local Maxwellian
distribution (that is to say the mean velocity, the number density and the standard
deviation of the local Maxwellian) and on the deviational particles. They are com-
puted by a separate routine. Due to the splitting of the operator (convection and
collision), we get a higher order of accuracy if we compute the outputs twice per

step, that is to say before and after the collision routine.

In the following section, N* and N~ refer to the number of positive and negative
particles in the current cell, Ny = N* + N~ is the total number of particles and
AN = N* — N~ is the net number of particles. N.gs is the number of physical
molecules that a numerical particle represent. We will also refer to a component of
a vector through a subscript as follows: v = (g, Vy, V1), Umb = (Umb z, Umb,y> Umb,z)
and uy = (uf ., Upy, uys,). We also recall that the superscript ¢ refers to the index

of a particle.

6.1 The Flow Velocity

The velocity of the fluid uy is the average velocity of the particles within a control

volume. We will be using the cells as control volume. This velocity does not coincide
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with the mean velocity w.,,p of the local Maxwellian because the mean velocity of
deviational particles could be different from w,s. Even though the collision routine
generates deviational particles with a zero mean velocity in a frame moving at e,
the convection introduces a nonzero mean velocity. By definition. the velocity of the

fluid is: | o
.]Cx]R-‘* vf(x,v)Pzdv

e chlR:! flz,v)dBed3v

Using the fact that:

/ vfi(x,v)dPedy = Nefst“'vi
CxR3 ieC

/ ’Ufnlb(mr v)dgwdSIU = 7’)mb‘/m.'ll’u"r'rl,b
CxR3
/ fd(:z:,v)d‘?'a:d";v = N AN
CxR3
fnzb(wa 'U)d3xd3'v = nmb%ell

CxR3

we get: )
uy = Negsr Y iec 0 + b Voot Wms
Neps AN + Ve

where we recall that V,.; is the volume of the cell.

6.2 The Stress

By definition, the stress (averaged over a cell) is:

m
Pr =5 / (v — upp) (v — ug)) f(x, v)d*zd*v
cell JCxR3

where m is the mass of a molecule, and k and [ can be z, y or 2. As previously, we
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use the fact that f = fq+ fou:

/ (o — wpp) (0 — wpp) fale,v)dzd’v = mNgy Z s' (g — upp)(vf — ugy)
CxR? i€C

/ (’UL- - “j',k)(vl - u‘j‘.l)fmb(xw v)ddeSv = nlnmb‘/cell(umb.k - uf,k)(“‘mb,l - uf,l)
CxR3

We thus get:

P =mNegsVigi Y 8 (0h = wp) (0] = tg2) + My (b = 1) (st = 0,1)
i€C

6.3 The Kinetic Temperature

The kinetic temperature is the mean kinetic energy in a frame moving at the

local velocity of the fluid, divided by %kB. By definition, it is:

T _ﬂfcm'? (v — uyp)?f(z,v)dBzdv
*7 3kg Joxgs f (2, v)dPxd3v

Using the fact that f = f; + foue:

/C R3 (’U — u,f)2fd(a:, 'v)d3a:d3v — Neff Z si(vi _ uf)2
JCx

ieC

3
-/(7 RS ('U — ’U,_f)zfmb(:l:, ’U)d3azd3v = Enellnm“}rznb + nmbvvcell(umb _ uf)2
- X IR*

The kinetic temperature is then:

L Ness 3 iec S(0* — ug)? + Voeunmy ((3/2)v2, + (pmb — uy)?)
T 3k NegsAN + iy Veen
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6.4 The Fourth Moment along v,

In the homogenious relaxation testcase. we will be using this fourth moment of
the distribution as criterion to check the accuracy of the code.
The definition is:

_ Jougs Vaf (z,v)dPed

- fo]R3 flz,v)dBzd3v

4
T

<v,>

As previously, we have:

/ vfal@ v)dad'y = Nepyy_s'(0)!
CxR3

ieC

3

4 3. 13 4 2 9 4

Uwfmb(ma 'U)d zd'v = _n7nb‘/cellvm,b + 3nmb‘/cell Vb Wb = + nmb‘/(:ellumbx
CxEk3 4 : !

So, the total fourth moment is:

Neff ZiEC Si(,ui)4 + ‘/cellnmb (%Ufnb + 3v72nbu72'nb,a: + u:lnb,z)
NefsAN 4 1 Ve

<vi>=

Note that in homogenious relaxation cases, the total number of molecules Ness AN +
NmbVeen should be conserved in average but might fluctuate due to the noise. In

spacially dependent cases, it is not constant because of the advection.
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Chapter 7

A Linearized Version of the

Algorithm

Except from numerical discretizations involved in the implementation described
above, the algorithm presented so far relies on no assumption and solves the full
nonlinear Boltzmann equation. On the other hand, we discussed in the Introduction
that the present method holds an advantage over DSMC in cases where the devia-
tion from equilibriumn is small, and thus when a linearization is valid. A linearized
version of the algorithm has thus been developed from the previous nonlinear one.
Although it did not display any improvement in terms of computational efficiency,

it has the advantage of requiring a much easier implementation.

7.1 Linearization of the Collision Operator

We consider a homogeneous gas at rest at a reference temperature Ty and with a
reference number density ng, the distribution function being a reference Maxwellian
fo(v) = non3/2v53 exp[—(v/vy)?]. We recall that the most probable velocity is
vy = m where kp is the Boltzmann’s constant. We then consider small
perturbations from this equilibrium. The distribution function f — fo is thus defined
as being of order one. The distribution function f is still written as f = fy; + fms

where the local Maxwelian f,,; will deviate from the reference Maxwellian fy. Al-
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though it is not proven a priori. we can expect -and it will be observed in practice-
that the local Maxwellian f,,;, will deviate in a very small amount from the refer-
ence Maxwellian. The small deviation f — fo = fo + fow — fo is then the sun of
fa and fo, — fo, both small deviations of order one. We argued that this was not
guaranteed because it is mathematically possible that f — fo be small while f; and
S — fo are large but cancel out. However, as discussed previously, the algorithin
was designed in such a way that the local Maxwellian moves toward one that mmakes
fa small through the absorbtion of the first moments of f;. This ensures that if

f — fo is a small deviation of order one, so will be f; and f,.p — fo.

We recall that the complete nonlinear collision operator can be written as C'(f. f) =
2C(funbs fa) + C(fu, fa)- The part 2C(foub, fa) gave rise to the three terms involving
the two kernels and the collision frequency function, while the part C(fq, fs) was
left as is and treated as in VRDSMC. Using its billinearity, this collision operator

can be written as:

C(f; f) = 2C(f0,fd) + 2(j’(fmb - fU:fd) + C(fd7fd)

The distribution f,,;, — fo and f; being deviation of first order, the terms 2C( f,., —
fo, fa) and C(f4, fa) are second order. At first order, we are left with C(f, f) =
2C(fo, f4)- The derivation of the kernels detailed in Appendix A suggests that
2C (fo, fa) will lead to the same kernels but where we have to replace nm,p, Ump and
Ump by respectively ng, 0 and vg. The linearized collision operator will then have the
same structure as before exept that whenever we had w* = (v — Ump)/Vmp, We can
replace it by v /vy which does not depend on the local Maxwellian. In suminary, the

linearized collision integral is

[_]w“—m / K~ vl)fd('vl)d - / K3 3 3’l)ﬁ,l(vl)ol v1—fa(v )MzV*(U%)

where the function K7, K3 and v* are the same as before, given by Equations

2.2, 2.3 and 2.4. Note that the prefactors are now
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)
d*nyg

')
3 d“ngug
= — Ha = Uyl =
T2

12

and do no longer depend on the local Maxwellian, in contrast to their expressions

for the nonlinear case (Equation 2.5).

7.2 Linearization of the Change of the Local Maxwellian

As done in chapter 2, we can calculate the moments of the kernels involved in the
linearized collision operator and get the corresponding expressions for 07,5, 0Ump

and v, It is straighforward and leads to:

0Ny = 5t/1/(vl)fd(vl)d3v1
. ot 3
OUmp = - v1v(v1) fa(v1)d vy

ot 3 .
Oy = / (I"’1|2 - —2-113) v(v1) fa(vi)d*vy

3710 Vo

Note that these expressions also tell us that dn,,;, dUmp and dv,,, being in some
sense an integral of f,, are of order one with respect to “the small parameter” f.
This means that any expression such that (67mp/7ms)(fms — fo) is of order two and
can be neglected. Using this, we can show that the expression for 4 f,,, (Fquation

3.6) becomes in the linearized version:

O frp(v) = [no"lﬁnmb + 1)0'1(2110‘2112 — 3)dvg + 2u5 2w - 5umb] fo(v)

7.3 Linearization of the Algorithm

From the following considerations, we see that switching to a linearized version
is straighforward. It simply consists in replacing every variable with subscript “mb”
by its counterpart with subscript “0”. It makes the implementation much simpler

because a number of prefactors and expressions will not depend on the parameters
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of the local Maxwellian.

Note however that for the computation of the outputs we do need to use the
actual parameters of the local Maxwellian since they carry important information
(of order 1). Therefore, in the linearized version, the routine that computes the

outputs is not changed.

The linearization of the advection routine has not been investigated.
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Chapter 8

Spacially Homogeneous Relaxation

Testcase

The purpose of this part is to validate the algorithm for the collision operator only
and investigate the impact of the various parameters that need to be set by hand.
To isolate the collision operator, we consider the spacially homogeneous relaxation

version of the Boltzmann equation:

0 .
L= [ [usi=smlo - wlodadn

Simulations have been run for gaseous Argon at temperatures around Ty = 300K.

The initial distribution was:

1 ng v —veeg\’ 1 ng v+ v.e 2
= —_ | —— | 5
f(v’t—ﬂ)—mz/%ge"p[( T ”*2/"[( ”

ng is the number density corresponding to Argon at 300 K at 1 atm, vy is the cor-

responding most probable velocity (vo = 1/2kgTp/m), and v, is an arbitrary shift.

The following various data were all compared to the results of a standard DSMC

code run with the same numerical and physical properties.
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The validation was carried out through the comparison of three relevant quanti-

ties:

* the distribution functions themselves at various times,
* the evolution of the fourth moment < v} > versus time,

* the known final state.

The comparision of the distribution functions is not strictly speaking a compar-

ison of the whole functions but of the density per unit velocity along the x-axis:
00 400
|

Uy=—00

Uy oymo0 f(vz, vy, v;, t)dvydv,. In practice, the quantities plotted are

based on the following discretization of the v, axis:

(i+1/2)q +oc +00
1 — / / flog, vy, v, t)dvydu.do,
v, o0

v, =(i—1/2)q J vy =—00 J v, =—
q is the parameter that serves to discretize the v, axis, and was set to be equal to
30 m/s. This function of the integer ¢ can be calculated analyticaly for a Maxwellian,
whereas the code computes the deviational part by counting the number of particles

that satisty v, € [(1 — 1/2)q, (1 + 1/2)q].

The comparison of the distribution functions being essentially visual, it is rele-
vant to compare some moment of the distributions which are very sensitive not only
to subtle change of the shape of the distribution that one cannot perceive by eye,
but also to the tail of the distribution, meaning the behavior of the distribution at
infinity, where it is almost zero. However, because the collision operator conserves
mass, momentum of energy, the first moment with an interesting behavior in this
relaxation problem is the fourth order moment. In light of the initial distribution
function, it appears relevant to focus on the fourth moment along the v, -axis, whose

definition is [ v} f(v)d®v.

Regarding the final state, it can be computed using the fact that the collision

operator conserves mass, momentum and kinetic energy, and that the final distrib-
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ution is a Maxwellian. The total number density of the initial distribution is nq. its
momentum is zero and the density of kinetic energy is (3/ 2)71(,m'n3 + ngmv?. The
density of kinetic energy of the final Maxwellian is (3/2)ngmv? which means that
s = /U2 + (2/3)v2. Let us mention that a Taylor expansion of this expression
versus v,. show that the problem will be linear if v?/v3 << 1. In this case, the fol-
lowing property indeed hold: vy, = 9. The value of the asymptotic fourth moment

is < vl >= (3/4)v2,.

Various sets of simulations were carried out. The full non-linear algorithm was
tested on a highly non-linear case, obtained by setting v, to a value of the same order
of magnitude as vg. This version was also tested on a different initial condition,
namely a distribution with a nonzero mean velocity. The purpose of this latter test
is to check that the algorithin satisfies the condition that the relaxation does not
depend on the frame in which it takes place. The linear version of the algorithin was
also tested. To that effect, v, is set to a small value compared to vg. The purpose is

to validate the ability of the proposed method to capture low-signal flows.

8.1 Nonlinear Case Without Mean Velocity

In this section we test the algorithm on a highly nonlinear case. The parameter
v, is set to v, = 300 m/s which is about 0.85vy. The characteristic velocity of the
asymptotic Maxwellian is then v, = 1.2166vy = 430.05 m/s. The corresponding

asymptotic value of < v} > is < v} >o= 2.565 - 101° m*/s*.

As discussed before, the charactersitic parameters of the local Maxwellian n,,(t),
Ump(t), and w,p(t), enables us to construct the local Maxwellian and plot its evo-
lution. We also stored similar data for the deviational distribution. By summing
these two distributions, we obtain the total distribution that we can compare to
our reference, namely a DSMC solution. These three distributions are gathered in
Figure 8-1. The distribution function is very close to the reference at all times.

Moreover, we observe that the deviational distribution function is zero everywhere
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after a few relaxation times. This means that the rationale on which this algoritlun
was designed is valid. The local Maxwellian converges to the distribution that makes

the deviational part as siall as possible.

600 "0 20 o 20 ) 600
m/s

Distribution functions at various time:

Top left: frn, Top right:fy Bottom :f

continuous line: present method, dots: standard DSMC

Figure 8-1:

Figure 8-2 displays the evolution of < v >. Here again, the agreement with
DSMC is excellent. In addition, we can check that the asymptotic value (< v2 >,=
1.6541 - v3) matches the analytical prediction (< v} >,= 1.643-v¢). The gap is only
0.6%.

57



3.6 T — —

2.
<vd > /vh

2 r s 8 0 12
t/T
< v} > /v§ versus time

continuous line: present method, dots: standard DSMC

Figure 8-2:

We also may want to check that some basic quantities are conserved. In fact,
contrary to DSMC, we recall that the present algorithm does not guarantee the
conservation of mass, momentum and energy but is expected to conserve them on
avergage. As shown in Figure 8-3 n,,;(t) undergoes some significant variations, but
the total density made up of n,;(t) plus the net deviational density is constant.

There is a very small loss of mass of about 0.1%.

1.045 - — 1003 - —_ —
104} .
1.035 l
\ 1.002
1.03F g
L 1.0015
71,,”,/’",(?-025 1 H/TL()
1.001
1.02 1
1.0005H
1.015 1
1.01 1 ' T
1.005 : 0.9995
' . . . o . N R - L
] 2 4 6 8 10 12 o 2 4 [ 8 10 12
t/T t/T

Evolution of the number density of the Mazwellian (left), and of the total
distribution (right)

Figure 8-3:
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Finally, the evolution of the number of nunerical particles is plotted in Figure
8-4. We observe that it decreases quite fast and ultimatly goes to zero. Let us
emphasize that it is not a basic implication of the fact that the deviational part
ends up being zero. In previous variance reduction algorithi [5, 6], we could have
a distribution equal to zero while still having a lot of numerical particles whose net
effect cancelled out. Here, the use of the kernels enables us to create particles that

account only for the net effect of the collisions and which are therefore precancelled.

x 10°

o

e
2

: 6 é 1‘0 12
t/T
Evolution of the number of numerical particles (N;)

Figure 8-4:

8.2 Nonlinear Case With Mean Velocity

This testcase differs from the previous one only in the fact that the initial dis-
tribution function has a nonzero mean velocity while the initial Maxwellian is the
same as before, namely without mean velocity. We thus can validate the adaptation
of the local Maxwellian to changes in mean velocity. Physically, the evolution of the
distribution function is exactly the same as before exept that it happens in a frame
moving at the mean velocity. We can then compute the quantities of interest of the

final state analytically as before.

The distribution functions are plotted in Figure 8-5.
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Distribution functions at various time:
Top left: frp, Top right:fg  Bottom : f

continuous line: present method, dots: standard DSMC

Figure 8-5:

We observe that the local Maxwellian distribution moves toward a Maxwellian
distribution centered on the mean velocity of the system. As before, the deviational
distribution converges to zero, meaning that at the end, the local Maxwellian dis-
tribution is equal to the actual final distribution. Here again, the agreement with

results fromn a standard DSMC code are excellent.
Figure 8-6 shows the evolution of u,,;, versus time. We can thus check that the

mean velocity of the local Maxwellian converges quickly and acurately toward the

mean velocity of the system.

60



“mlu,r/““..r

I

0 L
0 2 4

t/6 é 1I0 12
-
Evolution of ump ., the mean velocity of the local Mazwellian along the z-azis

Figure 8-6:

8.3 Linear Case Without Mean Velocity

In this section we test the algorithm on a linear spacially homogeneous relaxation
case. The parameter v, is now set to vs = 30 m/s which is about 0.085v9. The most
probable velocity of the asymptotic Maxwellian is then v, = 1.0024vy = 354.32 m/s.
The final equilibrium will then be very close to the initial distribution. The corre-

sponding asymptotic value of < v} > is < v >,= 1.1821 - 10!° m*/s*.

The purpose of this test is two-fold:
* Demonstrate the ability of the code to calculate low-signal flows and compare its
efficiency with DSMC.

* Test the linear version of the algorithm.

The comparison of the evolution of < v > is plotted in Figure 8-7. We ob-
serve that the agrement with DSMC remains excellent with the linear version of
the algorithm in such situations where the linearization of the Boltzmann collision
operator is valid. The same behavior as in previous case is observed. The number

of numerical particles goes to zero, and the local Maxwellian moves toward the final
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one. In this case, the changes in the distribution function are very small and a visual

inspection of the evolution is not possible.

In this testcase, the proposed method appeared to be more than two orders of

magnitude faster than standard DSMC.

10251

102}
1 1
<wy > [vg

1.015}

1011

1.005

1 A L L L L L ' L L

5 6 7 8 ] 10
t/T
< v} > versus time

continuous line: present method, dots: standard DSMC

Figure 8-7:
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Chapter 9

Couette Flow Testcase

A number of validation tests for spatially dependent problems have been per-
formed. Here, we show the results for an impulsively started shear flow, in which
at time t = 0 the two (diffuse) walls bounding the systemn start moving in opposite
directions in their plane with velocity +U. The gas is Argon at an initial temper-
ature 75 = 300 K. The distance between the two walls L is choosen such that the

knudsen number varies between 0.1 and 10. Two sets of simulation were performed:

* One set of simulations was performed with U = 0.05v,. This represents a good
compromise between low speed flow (for testing the linear version and the ability
of the method to catch low-signal flow) and sufficient signal (such that a DSMC
solution is feasible). We performed simulations at kn = 10 (advection dominated

flow), kn =1 (intermediate) and kn = 0.1 (collision dominated flow).

* One set of simulations with U = vy and kn = 0.1, 1, 10 (the last one is not

shown here) to test the ability of the algorithm to deal with nonlinear flows.

9.1 Linear Shear Flow

The linear version of the algorithm was tested by simulating the shear flow de-
scribed above, with #yauy = U = 0.05vy. This value is sufficiently small to expect

a linear behavior and good agreement with DSMC. The outputs used to carry out
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the comparison are the transverse velocity profiles g, () and shear stress profiles
Pay() (defined in Chapter 6) at various times and for kn = 0.1, An = 1 and An = 10.

Results are given in Figures 9-1, 9-2 and 9-3.

ug., /U

Pay/ (/"’(2))

_12 L L i 1 1 L L L 1
0.1 0.2 0.3 04 0.5 0.6 0.7 08 09 1
z/L

Velocity profiles (top) and shear stress profiles (bottom) at various times, for
kn =0.1 and U = 0.05v.
Continuous line: present method, dots: standard DSMC

Figure 9-1:
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Velocity profiles (top) and shear stress profiles (bottom) at various times, for
kn =1 and U = 0.05v,.

Continuous line: present method, dots: standard DSMC

Figure 9-2:
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Figure 9-3:

We notice a very good agreement with DSMC for all Knudsen numbers and for
the transient regime as well as for the steady state. Here, the proposed method

appeared to be about 1 order of magnitude faster than standard DSMC.

9.2 Non-Linear Shear Flow

In this section, the algorithm is tested by simulating the same shear flow as before,

except that uyayy = U = vg. The validation is made through the comparison of the
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same outputs. Results are shown in Figures 9-4 and 9-5.
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Velocity profiles (top), shear stress profiles (middle) and temperature profiles

(bottom) at various times, for kn = 0.1 and U = v,.

Continuous line: present method, dots: standard DSMC

Figure 9-4:
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Flows with U/vy > 1 lead to a divergence in the number of particles.

Figure 9-5:
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Chapter 10

Conclusions

A new particle method for solving the Boltzinann equation has been developed.
This method can capture arbitrarily small deviations fromn equilibrium at a compu-
tational cost that does not scale with this deviation. This is achieved by simulating
only the deviation from equilibrium, as originally proposed by Baker and Hadjicon-
stantinou [4]. The proposed method is closely related to DSMC and differs only in
the ways necessary to consider the deviation from equilibrium. The most impor-
tant feature of this method, is that it requires no particle cancellation and thus no
discretization in velocity space. This is achieved by allowing the local equilibrium
distribution function to change as a result of the action of the collision integral and
thus enabling the generation of a minimal irreductible set of deviational particles

around an “optimal” local Maxwellian at each time step.

The resulting algorithm is significantly faster than DSMC in the limit of low-sigal
flow. For example, in the low-speed validation problems of Chapter 8, the proposed
method is at least one order of magnitude faster than a mature and optimized DSMC
code. Moreover, the proposed method can simulate flows with smaller characteristic
velocities at the same cost, while the cost of DSMC increases quadratically [11] as the
signal decreases. Our results also indicated that with the addition of the nonlinear
term C(fy, fa), nonlinear flows up to Mach number M, =~ 1 can be simulated, even
though the proposed method no longer holds an efficiency advantage over DSMC.

Beyond M, =~ 1, the number of deviational particles grows without bound.
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Possible future work may focus on number of improvements. First, various
parts of the algorithmn can be optimized: this is particularly true for the accep-
tance ‘rejection routines which can be made more efficient or replaced by Amore $0-
phisticated algorithms. Second, a serious investigation of the impact of the various
parameters introduced (e.g the cutoff v, for regularizing the singularity of kernel K)
vemains to be carried out. Finally, a better understanding of the stability limits of
the method for large deviations from equilibrium is also of interest, albeit mostly

academic.
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Appendix A

Collision Integral Kernels

A.1 Derivation of the Kernels for a centered Maxwellian
The collision term of the Boltzmann equation is:
C(f, f)(w) = / / ('f. = £ F)[w = valodDv,

We know [3] that it can be rewriten as:

(fa /// 5’ +5' _ 51 62 f1f2l’02 — ’UllUde'Uld'UZ

When f = fn + fa, it becomes:

C(f, f)lw) = / / / R

Due to its symmetry, the linear part is

1
5///(511 + 85 — 81 — 62)(fmpr faz + far frme2)|v2 — v1]0dQdvidvs =
///((51 + 5; bt 51 —_ 62)fd1fmb2|'v2 — ’U]_IO’de’Uld'Ug

For a given pair of precollision velocities v; and vz, the postcollision velocities v}

and v run on a sphere centered on the mean velocity (v; + vs)/2 and of radius
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the relative velocity |vg — vy|. This means that v] and v} can be switched without
changing the value of the integral. From this, the linear part of the collision integral

becomes:

///(25; — 61 — 02) fur fmpe|v2 — v1|odQdv,dvy

This integral can be split into 3 integrals which will give rise to the kernels K| and

K5 and to the collision frequency v.

A.1.1 Kernel K,

The second kernel comes from the term f f f 0o far frmpz2|v2 — v1|0dQdvidus. In
this expression, the scattering angle does not play any part since the postcollision
velocities do not appear. The integral over the scattering angle can be taken out and
simply give 47. Because of the dirac §(v—ws2), the integral over v will simply be the
value of the intregrant for v = vo. We are left with 4 f fa(v1) finp(v)|v — v1|odvy.

The kernel appears naturally and is:

d2 b

- Trdznmb
Ky(v,v1) = Vo
mb

TP exp(—v*?)|v* — v*]

v
exp(~ ) [v — 1] =

mb

since 0 = d?/4, where d is the diameter of the hard sphere molecules and because

fmp(0) = ,r—s%‘,%; exp(—v?/vZ,).
m

. . 2 .
For convenience, we introduce the prefactor pu; = ;’11,—’;11)'—'2"— The kernel is then
mb

Ks(v,v1) = py exp(—v*?)|v* — vy*|.

A.1.2 Kernel K,

The first kernel comes from the term [ [ [ 28] fu1 frupa|vz — v1|0dQdv dvs. In [§],

it is shown that this term is equal to:
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: ' Ao .
2/ f(l(’vl)_——— / .fmb(v‘Z)(l‘("'ldl'y‘Z
v €ER I'U - ’U]_I JvaeP
where P is the plane orthogonal to v — vy and that passes through v;. The second

integral is thus an integral of a 3 dimensional Maxwellian over a plane. By means of

appropriate change of variable, it is easy to show that it is simply 702, fnp [”IL‘::T)] .

2

The factor mu;,

comes from the integration of the Maxwellian over the plane and

v (v—v1)

the expression d = o] is nothing but the distance between the origin of the axis

0 and the plane, which we get by projecting v (a point that stands on the plane) on

v—v1
Jo—w1|”

the unit normal

Following this, the whole term is:

2 fd(vl)—i‘%—wvfnbfmb [Pl—(ll—’il—)-] d’U]

v1ER I’U ll

This integral is a convolution of f; against a kernel K; which is:

Ky (v,v1) = 2 _M]

40 v
mﬂvfnbfmb [

2
; vlv—v) | _nm, B i 9] — d2/4 f
where we have f,, [ ool | = wRy eXP " —o7] , 0 = d*/4 for hard

sphere molecules, and where 1/|v — vy| can be written as 1/(vns|v* — v|), which

finally leads to:

Ki(v,01) = —P_exp [— (3—(3———”—12)2]

* * * *
|v* — v [v* — v
2
where we recall that we denote py; = ﬁ/%:ﬁb_'
mb
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A.1.3 Collision frequency function

The collision frequency function comes from the term [ [ [ 8, fu1 finpe|ve — v1]odQ2dv, dus.
As previously, the integral over the scattering angle can be taken out and results in a
factor of d7. The dirac lies now on vq: d(v—wy). The integral over vy is equal to the

integrand taken in v; = v. The whole term reduces to 47o fa(v) f fmp(v2)|v2 — v|dUs.

It can be rewritten as:

. 4Tonmp Vo v
dmo fq(v) /fmb('UZ)lv2 —v|d*vy = —g;Tgm_fd(v) /eXP(—v22/Ufnb)’Umb|T — —|d*v,
; T /-’Umb . U Ump
AToNmp 4 9 3
= 7_[_3/2,072”’) ‘Umbf(l(lv) exp(—v; )]U; - ’U*Id U;

The term v(v*) = [exp(—v3?)|v — v*|d®v} is just a function of v*. It can be

calculated by the change of variables v = v — v* :

v(v*) = /exp(—vf)[’v; — v*|d3v; = /exp(—(v* +'E;)2)(f)2|d36§

We can then switch to spherical coordinates with v*/|v*| as z-axis. the integral

becomes:

v(v*) = /// exp(—(|v*|ex + re,)?)r*sinddrdfdg
= /// exp(—|v*|* — r? — 2|v*|r cos 8)r3sinfdrdfde

The integral versus ¢ results in a prefactor of 2. The integral versus 6 can be done

explicitely and leads to ;—"’g(exp(—w*lz—r2+2|v*|r)4exp(—|v*[2—r2—2|v*|r)) The
integral of this latter function versus r is carried out by parts. The integrand can
be written as E?Wﬁ(exp(-r? + 2|v*|r) — exp(—r% — 2|v*|r)) The integration

by parts leads to:
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21 exp(—|v*|*)

v(v*) = o]

<2 Vrexp(v*)erf([v*]) + fo*| + v*2ﬁexp(v*2)erf(lv*l))

After some cancellations, we get the final expression:

v(v*) = (Vmerf(jv*]) + 2Jv*| exp(—v*?) + 2v/mv**erf(jv*|))

2| *l

Coming back to the initial expression, the whole term is

AT O N Umb ANy Vi .
—— SO (V") = — = fa(0)r(07) = pafa(v)v(v7)
where we used the fact that ¢ = d?/4 and where we denote uy = v} ) = 'l?';lj';' ib

{42 has the dimension of a frequency. pov(v*) is the collision frequency of a particle

at velocity v with the entire Maxwellian.

In sumnmary, the collision term can be written as:

C(f, ) / Ky (v, v1) fu(wy)dos — / Ko(v,01) fal(v1)d*01— s fu(w)(0%)+C fa, i)

For this case where the local Maxwellian has no mean velocity, this expression was

proposed under a slighty different form in [2].

A.2 Kernels for a shifted Maxwellian (u,p # 0)

All the above derivations have been carried out while assuming that the maxwellian

was simply fump = nmp/ (7203 ,) exp(—v?/v2,). In this part, we will derive the

kernel when the local maxwellian is not centered on zero but is equal to fn; =

Np/ (T ¥ Q'Ufnb) exp(—(v — umb)z/ vr2nb)'

To deal with the fact that the Maxwellian is not centered on zero, we will be doing

the change of variables w = v — U,,p, Where w,,; is the mean velocity of the local
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Maxwellian. For a given pair of precollision velocities v, and ve. the corresponding

postcollision velocities can formally be expressed as:

vy = y%za +R(H.9) - y;;_m
v = mEm R, ) g
where R(6, ¢) is the matrix of a rotation with a scattering angle equal to 6. Replac-

ing v; and vs by respectively ., + wy and u,,p + wa, we see that the postcollision

velocities expressed in terms of the shifted velocities wy and wq are:

V] = Ump + BE2 L R(G,¢) BT =y, +w)
Uy = Ump+ PER —R(0,0) - B2 = Uy + W)

where w] and wj are the postcollision velocities corresponding to the precollision
velocities wy and wa, that is to say, the same operator applied to w; and ws. In
short, the postcollision velocities of the shifted velocities is equal to the shifted post-

collision velocity of the nonshifted velocities.

A.2.1 Kernel K,

As seen before, K, comes from the term [ [ [ 82 fu frpa|ve — vi|odQduidvs.

Now, the Maxwellian is fou(v) = nmbv;'zn—?’

/2 exp[—(v* — u’,)?], where we used
again the notation v* = wv/v,,;, with v,,; being the most probable velocity of the
Maxwellian. We can then rewrite this expression as

J I [ 6(v = v2) fa(v1)nmpvan 32 exp[—(vE — u*)?]|vg — v1|0dQdvidvs. Doing the

following change of variable:
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wy = V1 — Umb
Wz = V2~ Ump
{ w = UV—Ump
vy = Pun
\ Bvy = BPw,

the above integral can be turned into:

K> fi(v) = ///6(10 — wa) fa(Ump + 'wl)—@b—— exp(—w;2)|w2 — wy|odQdwidw,

"3 23/2
Vb /

-3/2

Note that nmpv,sn 2 exp(—w32) as a function of the dummy variable w, is the

nonshifted Maxwellian used in the previous section to derive the kernels. If we
rename the duminy variables w; and ws into vy and vy, we have the same expression
as the one that serves to derive the kernel, exept that it is applied to the function
v — fi(ump+v) instead of v — fz(v) and that the dirac bring into play the velocity
w instead of v. Following the results of the previous section, the whole integral is

then equal to:

Ko fa(v) = /K2(wvw1)fd(umb+w1)d3wl

We can apply again the change of variable, but in the other way. This leads to

Kafa(v) = /Kz(v — Ummb, V1 — Ump) fa(v1)d> vy
For convenience, we will use the notation:

K fa(v) = /Kz(W,wl)fd(vl)d3v1

A.2.2 Kernel K;

The derivation for K; is almost the same as the one for K. The only difference

is that it brings into play the postcollision velocities.
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The initial term is K\ fy = 2 [ [ [ (v — v}) fa(v1) fb(v2) |2 — v1|odQdvidos.
Here again, we have f,u(v) = npgv, im0 32 expl—(v* — u’,)?]. By doing the same
change of variable as previously, and using the fact that wj (wq, we) = v} (v, v2) —

Ump. We get:

K\ fi(v) = /// w — W) ) fa(WUmp + w1) — '"bw exp(—w3?)|wa — wq |odQdw, dwy

UpnpT

As before, we get the term used to defined the kernel K for a nonshifted Maxwellian
applied to the function v — fj(ump + v) instead of v — fy(v). Doing the same

operations as before, the final expression is:

Klfd /Kl w, 'wl)fd('vl)d (41

A.2.3 Collision frequency function (v)

The function v was derived from the term

vfa= [ [ [ (v —v1)fa(v1) fns(v2)|vz — v1|0dQdvidug
Writting f.» as a shifted Maxwellian, doing the same change of variables as

before, and identifying with the definition of the function v, we finally get:

Ufi(v) = /// w— wq fd(umb+w1) /exp( w;2)|w2—w1|od§2dw1dwz
v(w)fa(v

A.3 Computation of the moments of the Kernels

In this section, we will derive the expressions of the moments of the kernels used
to calculate the shifting of the Maxwellian. All those moments will be calculated
with resprect to the mean velocity of the Maxwellian. In other words, we choose the

frame moving at w,,,;, as reference.
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Let K; denote K; or Ky and M (w) be either 1, wq, or |w1?|. The moments of

Kifq are [ M(w)K; f(v)dPv, where K; fa(v) = [ K;(w, w) fa(v1)d*vy

In Chapter 3, it is shown that computing [ M (w)K; f4(v)d*v requires the com-
puation of the functions wy; — [ M(w)K;(w,w;)d*w. The moments of Kifq are

then obhtained by integrating the product of these functions with f;.

We can start by simplifying this expression. We know that K;(w, w1) = p K7 (3%, 24) =
m KF(w*, wy*). After the change of variable w* = w /v, Ew* = Bw/v3,, we can
write the moments of the kernel as pyvd, [ M(vppw*) K} (w*, wq*)dPw*. where the

K} are now nondimensionnal functions.

These integrals are then computed separately for K; and K. This is the object ot
the following two sections. The algebra is long and not very interesting. Therefore,

the derivations will be restricted to the salient points of the derivation.

A.3.1 Moments of the Kernel K>

The moments of Ky are pv3, [ M(v3,w*)|w* — w}|exp[-w*?*|d*w* By doing
the change of variable w* = w* — wy*, it can be rewritten as
w3y [ M(Umpw] + vmpw*)|w*| exp[—(w] + w*)?|d*w*. We now switch to spheri-
cal coordinates with an orientation choosen so that the main axis be w,*/|w,*|. We
then write w* = re, The expression of the moments becomes

vy [ M(vpwi* + vppre,) expl—|wi*|? — r? — 2r|wy*| cos 0]r® sin Odrdfde

A.3.2 Moments of the Kernel K;

The moments of K are 2u;v3,, [ M(vmbw*)m exp[—(w* - (w* — wy*)/|w* — wy*|)YBw*
By doing the same change of variable as previously and using the same spherical coor-

dinate system, we can rewrite it as u1v3, [ M(vnpw1* + vppre,) exp[—(r + cos 8)?|r sin 8drdfde
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A.3.3 Results

The above integrations can then be performed analytically (by integrating by
part). The algebra is not interesting and leads to complicated expressions which
happens to simplify when we substract them to get the moments of K| — Ky. We

will just provide the results, which were obtained with a formal calculus software.

/[Kl(w,wl)—Kg(w,wl)]d3w = v(wy)
/w[Kl(w,wl)— Ky(w,wy)|dw = wyv(w,)

/|w|2[Kl(w,w1)—K2(w7w1)]d3w = |wy[’v(w)

A.4 Mean value of the Kernel K; over a ball

We will derive in this part the mean value of the kernel K; over a ball centered

on v; and of radius v.. Let B denote this ball.

The nondimensional kernel is:

2 (’U* . (’U* _ vl*))'z
€xp l,v* — ,vl*IZ

Ki(v*,v") =

|v* — vy*|

Let’s note V* = v* — v1*. Let’s define the spherical coordinates with the z-axis
parallel to v1*. We then have v1* = |vy1*|le,. V™ run on the sphere centered on 0
and of radius v}. In the spherical coordinates, we then have V* = re,.. With these

notation, we have v* = vy* + re,.

We then have:
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2 27 .9 .
/ Ki(v*,n,")d*v* = /-; exp [—((vi* + rer) - e.)?]r? sin(8)drdfdo
JB .
= 2 / 7 exp [—(vl* -e,+ _,_)2] sin(6)drdfdeo
= 2/7‘ exp [—(|v1*| cos(d) + r)?] sin(8)drdfds
= 4rx / rexp [—(|Jv1*| cos(f) + r)?] sin(0)drdf
_ 3/2 T * N * .
= 27 /m [—erf(—|v1*| +7) + erf(|o*| + )] dr
1
Since v} will be much smaller than 1, we can proceed to a Taylor expansion of

—crf(—|vy*| 4+ r) +erf(Jvr*| +7) around |vy*|. The first order cancel out, and we are

left with 2erf(|v;*|). We then have:

3/2 * vy
/Kf(v*,vl*)d:’v* = iln___er_f(l'ﬂﬁ/ rdr
B 0

[v1*|
erf(|vi*]) 3/ .0
2—|1'T*l—77' / ’Uc*

To get the mean value, we divide by the volume of the sphere (4/3)mv** and get

erf(la’]) 12 1

2 vy v

The corresponding dimensional value is then

Bert(jor’]) L

27 o vE

where v1* = v1/vm.
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Appendix B

Derivations of Advection Formulae

B.1 Derivation of Vf,,;

In this section, we want to derive the expression of V f,.s, given that for a fixed
velocity v, the function @ — f,,(x, v) is piecewise constant. The function V f,,; will

then be zero everywhere, exept at some locations where it will be a dirac distribution.

‘fnib ('1 v)

.]rn;.b (.’ V)

[ S —

x=0

We can find this dirac by writing f,,; is terms of an heaviside function H whose
definition is:
1 ifz>0
H(z)=
0 otherwise

It is known that the derivative of this function is H'(z) = §(z), where ¢ is the dirac

distribution.
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On the other hand, for a fixed velocity v, the function f,;(-, v) over the two adjacent

cells under consideration can be written as
. el
.fmb(ma v) =. ,'n,,(’U)H(’n : :B) + fmb(v)H(—'n )

Simple differentiation rules tell us that VH(n-z) = V(n-z)H'(n-x) = ni(n - x).

Combining the last equations, we obtain that the gradient is

V.fmb(ma 'U) = ( r7r‘zb - ;nb)é(n : m)n

B.2 Solution of 0f/0t+v -V f = g(x,v,t)

In this equation, v does not show up in differentiations and can thus be considered

as a constant parameter. We then do the change of variable:

s(z,t) = x—vt z(s,u) = s+ovu
—=

u(z,t) = t t(s,u) = u

The corresponding derivatives are:

29_
ot
%
oz
Q_’zf
ot
(_93
oz

Here, %‘; denotes the gradient of the "vector field" s(z), I is the identity matrix,
and % is the gradient of the "scalar field" u(x).

In this new system of variable, we then have:
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of of 9s Of du of

ot - O_:S.gt”‘_aué)f - v (")s+0u
of _ 9f 9s 0fou _ of
dr  Os Oz Oudx s

The left hand side of the equation becomes df /0t + v -V f = 0f /Ou. The equation
is then 0f/0u = g(s,v,u). For convenience, we used the not rigorous notation
g9(s,v,u) = g(x(s,u),v,t(s,u)) and the equivalent one for f. Integrating versus u
at constant s leads to f(s,v,u) = [ g(s,v,u)du + h(s,v).

We now go back to the original variables. The constant value of s is s = & — vt.
Then, t' = v’ and ='(s,u’) = s + vu' = z — vt + vt’. This leads to

t
flz,v,t) = / g(x — vt + vt' v, t')dt’ + h(z — vt, v)
0

Doing the change of variable ¢ — t — ' in the integral, we get:

t
f(z,v,t) =/ g(x — vt vt — t')dt' + h(z — vt,v)
0

Using the initial condition, namely the distribution at ¢t = 0 f(«, v, 0), it becomes

t
f(z,v,t) =/ g(z —vt' v, t —t')dt' + f(x — vt,v,0)
0
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