
Efficient particle. methods for solving the Boltzmann

equation

by

Thomas Homolle

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January W207

@ Massachusetts Institute of Technology 2007. All rights reserved.

Author .......... .................... ....................
Department of Aeronautics and Astronautics

January 19, 2007

C ertified by ................. .................. . . ... ....

Nicolas . iconstantinou
Associate Professor of Mechanical Engineering

Thesis Supervisor

A c c e p t e d b y . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . ' s
AJaime eraire

Professor of Aeronautics and Astronautics,
Chair, Committee on Graduate Students

MASSACHU,•'T INST3'fE
OF TECHNOLOGY

MAR 2 8 2007

LIBRARIES

ARCHVES



Efficient particle methods for solving the Boltzmnann equation
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Abstract

A new particle simulation method for solving the Boltzmann equation is pre-
sented and tested. This method holds a significant computational efficiency ad-
vantage for low-signal flows compared to traditional particle methods such as the
Direct Simulation Monte Carlo (DSMC). More specifically, the proposed algorithmn
can efficiently simulate arbitrarily small deviations from equilibrium (e.g. low speed
flows) at a computational cost that does not scale with the deviation from equilib-
riumn, while maintaining the basic algorithmic structure of DSIMC. This is achieved
by incorporating the variance reduction ideas presented in [L. L. Baker and N. G.
Hadjiconstantinou, Physics of Fluids, vol 17, art. no 051703, 2005] within a col-
lision integral formulation; the latter ensures that the deviation fromi equilibrium
remains finite and thus the calculation remains stable for collision dominated flows,
in contrast to previous attempts. The formulation, developed within this thesis, is
described in detail. The resulting scheme is validated for a wide range of Knud-
sen numbers (ratio of molecular mean free path to characteristic flow lengthscale)
ranging from collision-dominated flow to collisionless flow- and a wide range of

deviations from equilibrium. Excellent agreement is found with DSMC solutions for
linear and weakly non-linear flows.

Thesis Supervisor: Nicolas G. Hadjiconstantinou
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Chapter 1

Introduction

1.1 The Boltzmann Equation

When the system characteristic lengthscale L becomes of the order of or smaller

than the molecular mean free path A, the Navier-Stokes description fails. This is due

to the fact that transport is no longer diffusive (collision dominated), but rather, bal-

listic effects become important. This situation is typically quantified by the Knudsen

number kn, defined as kn = A/L. In general [1, 2, 3], the Navier-Stokes description

is no longer reliable for kn > 0.1, a situation typically encoutered in flows in the

upper atmosphere [3], but more recently in nanoscale flow environments. In these

cases, a more general model valid for all Knudsen numbers must be used.

The Boltzmann equation [1, 2, 3] constitutes a possible approach. For a gas

composed of identical hard sphere molecules the Boltzmann equation is given by:

f + v .Vf = (f'fi' - ffl)lv - vud2 d3v1 (1.1)

Here, f(x, v, t) is the distribution function of the molecules in the phase space at

time t, where the position in physical space is x = (x, y, z) and the molecular ve-

locity vector is v = (v., vy, vz). The quantity a = d2/4 is the differential collision

cross-section of the molecules of diameter d and mass m. Q denotes the solid angle

of the scattering and is integrated over the unit sphere. In the above equation, the



followvingg notltion is also used: .f = f(X, v1 t), f = f (x, v', t) and f' = f (x, v" t)

where v' ýand v' are the postcollision velocities resulting from the collision of the

pair v anmd Vi with scattering angle Q.

For a homogeneous gas at equilibrium at a reference temperature To and with

a reference number density or0, the distribution function is the M1laxwellian fo(v) =

fl(oT r-:1' :  exp)[-H(v/o0) 2]. The miost probable velocity is given by vo = V/2kBfTo/m

where kB• is the Boltzmann's constant. For this equilibrium distribution, the mean

free path is equal to A = 1/(vv27nod 2), and the corresponding molecular collision

time is T = v/-A/(2vo).

In engineering, the design process of devices is increasingly carried out through

the use of numerical simulation. The recent development of M\icro-Electro-Meclanical

Systems and the need for simulating their behaviors has led to increased interest

in numerical solutions of the above Boltzmann equation. However, its nonlinear

integro-differential stucture and the high-diniensionality of the distribution function

make this equation very hard to simulate.

1.2 The DSMC method

One of the most popular methods for solving the Boltzmann equation is the Di-

rect Simulation Monte Carlo (DSMC) [3]. DSMC solves the Boltzmann equation

by simulating the motion of a representative set of particles, which can be thought

of as sample of the distribution function f. As is typical with particle simulation

methods, the intuitive formulation and easy implementation, the fact that it does

ilot require velocity space discretization, and the low memory usage are the main

advantages that triggered the success of DSMC.

DSMC solves the Boltzmann equation by using an operator-splitting technique,

which amounts to integrating the advection and collision terms separately. In other

words, the following equations are successively integrated over a period St:



of = -v Vf (1.2)

t = J(f'fý - f f )v - vi addvt (1.3)

The first equation is a free molecular advection. It is integrated by simply moving

the particles according to their velocities while their velocities remain constant. The

second equation is a spatially homogeneous relaxation governed by the Boltzmann

collision operator. It can be solved by colliding a suitable number of pairs of parti-

cles, which will change their velocities while their positions remain constant.

The collision step of DSMC relies on the following form of the collision integral

[2]:

col J + 62 - 61 - 62)f(v)f(v 2) [v 2 - v1ad2Qd"vid"v2

where 61 = 6-(v - v),( - 2 ), - v) and = (v - v) - ), 6

being the dirac distribution. Here, vI and v 2 are the precollision velocities and v'

and v' are the corresponding postcollision velocities with scattering angle Q. This

form of the integral suggests that for a given pair of particles, processing the col-

lision consists of deleting those two particles (terms -61 and -62), and creating a

pair of particles with the postcollision velocities (terms +6' and +6'); this is done

in practice by simply updating the velocities of the particles. In order to account

for the relative velocity factor Iv2 - V1 , collisions are processed with a probability

proportional to this relative velocity by means of an acceptance/rejection technique.

Although very efficient for high speed flows, the computational cost of DSMC

increases sharply [11] as the deviation from equilibrium decreases, making noise-free

simulation of low-speed -or more generally low-signal- flows very expensive and in

some cases intractable. In this latter case, most of the computational time is spent



in (om1p1[uting collisions whose not effect is zero. This observation gave rise to a first

improvement of DSMC, a variance-reduced DSMC or VRDSNIC 15, 6. 71.

1.3 Variance-Reduced DSMC

In [4] Baker and Hadjiconstantinou presented a general variance reduction method

which allows Monte Carlo solutions of the Boltzmann equation for low-signal flows.

The basic idea anmouts to splitting the distribution function into a Maxwellian dis-

tribution .frb and a deviationnal distribution fa:

.f = .f,,, + .f , (1.4)

The distribution function is then known through f,. In a particle method such as

VRDSIMC, f. can be represented by a set of numerical particles, called deviational

particles. Therefore, one difference from DSMC is that now the particles can be

either positive or negative depending on whether f,..b accounts for too many or too

few particles at a given location in phase space. The above authors showed that

due to the fact that the Maxwellian is an equilibrium function, meaning that the

collision integral is zero when f = fmb, the collision operator reduces to:

Ko1 / (1 2 J 61 - 62)(2fblfd2 + fdlfd2)V2 - lld2 3•3vdV 2at coll 2j f j (61 +6

According to the above form of the collision integral [5, 6] two kinds of collisions

need to be considered: those between the underlying Maxwellian (f,mb) particles

and the deviational (fd) particles on the one hand, and those between deviational

particles one the other hand. The first ones are carried out by sampling an actual

d(eviational particle and drawing a velocity from the Maxwellian distribution, while

the second ones are carried out by sampling two actual deviational particles. Unfor-

tunately, contrary to standard DSMC, the factor 6' + 6' - 61 - 62 does not amount

to updating the velocities of the numerical particles but requires the creation of new

deviational particles. Let us illustrate this fact by an example of the first kind of



collision. \VWe see that particle 1 drawn from .f,,,, collides with p1article 2 drawin from

fi and leads to the creation of 4 particles: si2qn (.f ) 2. sil(2) . -sigl(f,(1,)R 1

and -i011(.f/2 4 )S. Only the existing part icle 2 (siq (P1 )52) is ca ncelled by I the new

-sign(,12)62 ) particle, thus leading to the net creation of 3 particles.

This sheine has been found [5, 6] to be very efficient for kn > 1, where the flow

is not collision dominated, and deviational particles are mostly cancelled through

collisions with the system walls. For kn < 1, the high rate of intermnolecular colli-

sions leads to high net rate of particle creation that results in a divergence in the

imiunber of particles [5, 6], unless a particle cancellation scheme is introduced. Such a

s(cherne was shown [5. 6] to be capable of stabilizing the calculation. Unfortunately,

it has the disadvantage of requiring a velocity space discretization and leads to high

iumemory usage and high computational cost.

1.4 The Proposed Method

The purpose of the present thesis is to derive an alternative, rigoroums method

for treating the collision operator which removes the necessity for a cancellation

routine by avoiding the creation of a large fraction of the deviational particles. We

thus keep the capability of simulating low-signal flows while recovering most of the

advantage of a standard particle method, namely the absence of velocity space dis-

cretization and a low memory usage. The proposed method relies on two basic ideas:

* The use of a mathematical formulation of the collision operator involving con-

volutions enables us to calculate the net aggregated effect of all collisions between

deviational particles and underlying Maxwellian particles and thus, in some sense,

analytically cancel the particles before creating them.

* This net action of the collision operator is not only supported by a change

of the deviational distribution fd through the creation of deviational particles as in



previous works. but also, and for a large part, is absorbed through a mnodification

of the local nIaxwellian distribution. Instead of keeping this distribution constant

over tilme and space as it was the case in previous works, we can indeed inake its

intrinsic p)ar1ameters (numlber density ,,,t. 1niean velocity Uimb, and mnost probable

velocit m,,,b,) evolve.

Since the advection and collision parts are independent, we will derive and present

their corresponding algorithms in separate chapters. The major change from stan-

dard DSMC lies in the collision algorithm, since the method was designed to improve

this very part. The advection algorithmn is an adaptation of the standard advec-

tion algorithln (moving the particles) which account for a nonconstant underlying

Maxwellian distribution [5, 6, 7].



Chapter 2

Proposed Treatment of the

Boltzmann Collision Operator

2.1 Preliminaries

Let C(f, g) refer to the following general collision operator:

C(f, g)(v) = ( (f'g' - fg l ) v - vladQd3 vi (2.1)

For hard sphere molecules, the cross-section is constant and equal to a = d2/4, d

being the diameter of the molecules. The collision term in the right hand side of the

Boltzmann equation is given by:

af i C(f, f)-at coll

When the distribution f is written as f = fmb + fd, where fmb is a Maxwellian, the

bilinearity of C enables us to write:

C(fmb + fd, fmb + fd) = C(frnb, fmb) ± C(fmb, fd) + C(fd, frnb) + C(fd, fd)

It is known that the Maxwellian being an equilibrium distribution C(fmb, fmb) = 0.

The collision operator is then made of a linear part C(fmb, fd) + C(fd, fmb), and a

nonlinear (quadratic) part C(fd, fd).



Coming b)ack to the definition of C (Equation 2.1), the linear part of this operator

C(.f,; , r ) )+ C ( f;~ t. I b) riJ b.ll - f Jmb.dl ribl+ - dfm bl) I -V V1 (d(1 31

It can be split into three terms as follows:

C(fJ.. fTi) + C(fl, frnb) J b (fJf11 +: fbl) IV - v01|7dQIdv1 -

IfnbfIl IV - v,1 df•d31V -
f f .t!.bl V -vllVd1 d V

Those three terms can be written explicitly as a two convolutions and a product of

funlctions, when fKmb is some Maxwellian with mnean velocity Ub, number density r,,nb

and limost probable velocity utmb. The detailed derivation can be found in Appendix

A. The result is:

J ( +f'fd, - ffr'I,,bl) V - vl 1dQd 3V1 = KJ(w , wi)fd(vl)dvlI

J ffmbfd lV - vl Odid 3v =  K 2 (w Wl)fd(v l)d:3v

SfdfmblV - V UdQd 3v1  -fd (V)V(W)

where the kernels are given by Ki (v, vi) = tiK 1i (~ - , ), i = 1 or 2, with:

K?(v*, vi*)

K~ (v*, vl*)
2 (v* (v* - 1 *))2

I* - vW1 ex I* - Vl* 2

Iv* - vj*I exp[-v*2]

(2.2)

(2.3)

and where the function v, which is the collision frequency of a deviational particle

with the entire Maxwellian versus its velocity v, is given by v(v) = /2V*(7 ) where



v* is given by:

v*(v*) = 2I /erf(Iv*I) + 21v* exp(-|v*|) + T/22v*erf(|v*|) (2.4)

The prefactors are:

d2 71,rr > d27.1,rv.Ub
dl = l/2b ), 2 d= bll 71/ibV (2.5)

Here, we used the notation w = w(v) = V - Umb and v* = v*(v) = v/Umb,

where Umb and Vmrb are the mean velocity and the characteristic velocity of the local

Maxwellian.

Finally, the whole collision term can be written as:

oaf] = K(w, wl)fa(vl)d3vl , - Kz(W, w,) fd(vu)d 3vl- _ (u)V(W)+C(.flf, )

(2.6)

2.2 Discussion

If we neglect the quadratic term C(fd, fd) (the collisions of the deviational part

with itself), we are left with a linear operator. In this case, K, can be interpreted

as the gain term of both the frb and the fd parts of f, K2 as the loss term of

the fro, part and fd(v)v(w) as the loss term of the fd part. In other words, these

operators correspond to the aggregated effect of all collisions of a given deviational

particle with the entire Maxwellian. More precisely, for a given velocity vl, the

function v -+ Ki(w, wl) is the distribution of the gain rate, corresponding to the

postcollision velocities of the deviational and Maxwellian particles, v -* K2 (w, w 1 )

is the distribution of the loss rate, corresponding to the precollision velocities of

the Maxwellian particles, and v(wl) is the collision (loss) rate of the deviational

particles at velocity vl.

From now on, K1, /k2 and F will refer to the operators corresponding to the



kernels of the samine name. In short., K-;f(v) = J Ki(w, wl) f(vl)dl"vi and i f(v) =

v(w) U (v)

The collision algorithln of the proposed mIethod will be based on the above for-

mulation (Equation 2.6).

2.3 Proposed Treatment

In previous variance reduction algorithmn 15, 6], the collision part was done by

changing only the deviational distribution, while the Maxwellian remained constant

through all the calculation. Now, we consider changing the local Maxwellian in order

to absorb part of the deviational particles generated by the action of the collision

operator. This means that,

0t [ ol = 6fmb + 6 fd
t d tcoll

The effect of changing the parameters of the local Maxwellian will be investigated

in detail later. However, we can already formally write that if we change its total

number density nmb by 6nmb, its miean velocity Umb by 6 Umb and its characteristic

velocity v.,b by 6 Vmb, we are in effect changing the distribution function by

6 frnb = fm b ) 6
mb + 0fmb) 6 Vmb + 6Umb

(anmnb ) ( 09nmb ) ( allmb ) -

The challenge will then consist of finding 6 fmb so as to make 6 fd as small as possi-

ble. This is achieved by rewritting the collision operator [ ],coil = [K• - K 2]fd - fd + C(fd, fd)

as:



Of -coll I s*ý
e t of particles angng of deletion of particles collision of plarticles

generation of particles changing of

the Nlaxwellian

As can be seen above, 6t [] coi is the sunm of four ternis which can be treated

independently of each other in four distinct routines. Three of these termls act di-

rectly on the distribution function of the deviational particles. The fourth one acts

on the equilibrium distribution. We briefly outline their structure below.

* The term bt [ - 2] fK•2 6fnb is a function of v, in other words, it is dis-

tribution. As a consequence, we can naturally generate soine particles drawn from

this function. The only difficulty is that we do not know explicitly its functional

form. The evaluation of (St[Kl - k21fd -frhb) (v) will require some effort. The

essence of the algorithm lies in this very term, since we will try to find a 6f,,b so

as to generate as few particles as possible. In addition, the particles that we will

generalte will be 'precancelled', in the sense that we will not create a positive and a

negative particle at the same velocity and position which could then be cancelled.

* The term 6fmb corresponds to the shifting of the Maxwellian. In practice, it is

just a matter of calculating Tnmb, Umb and vmb. The method for determining them

will be addressed below.

* Due to its structure, the term -ifd~ t call be implemented by a deletion of some

numerical particles with a probability proportional to I. In addition, it contributes

to the efficiency of the algorithm since it reduces the number of numerical particles.

* The quadratic term C(fd, fd)6t can be implemented by colliding some numerical

particles, as in standard DSMC. The difference is that the deviational distribution

function fd may be negative, which means that we may have negative particles, as



explained in the Introduction. For computations near to equilibrium., the contribu-

tion fronm this term will be negligible. As a consequence, we will neglect it in the

linear version of the algorithm. In contrast, in highly nonlinear situation, this terln

will be important.

2.4 Determining 6fnb

The natural question that we now have to answer is what to choose for 6ffmb. As

stated above, we want to choose 6 fmb in such a way that the term 6t[K 1 -K2]fd--6fmb

be as small as possible, since it corresponds to generation of particles. If the fmnction

[K1 - K 2]fd could be written as a combination of the derivatives of a Maxwellian

with respect to nmb, 'vmb and Umb, we could make 6t[Kl - K 2]fl - 6 fmb be zero and

avoid generating particles. But in general, the function [K1 - !K2]fd is not in the

span of the derivatives of a Maxwellian. An obvious counterexample is that 6fmb is

always a continuous function wheras [KI - K 2]fd can be discontinuous. The space of

functions accessible to 6fmb is thus limited, but we will see that we can still reduce

significantly the number of particles that we need to generate, 6t[K1 - IK2]fd - 6 fmb

becoming just a small correction.

A first choice was to find 6nmb, 5Vmb and 6 Umb that minimize the L2-norrm of

6t[K• -- K 2 ]fd - 6 fmb. This solution leads to an intractable set of equations. An-

other solution is to choose them so as to make 6t[K• - K 2]fd - 6 fmb have no net

mass, no net momentum and no net energy. In other words, those parameters are

chosen so that the first three moments of 6t[K1 - K 2]fd - 6 fmb be zero. The span

of 6 fmib through the choice of 6 nmb, 6 Vmb and 6 Umb has indeed enough degrees of

freedom to allow us to choose them so that 6fmb absorb the first three moments of

[N]coll resulting in 6t[KI - K2]fd - 6 fmb having its first three moments equal to zero.

The reasoning behind this choice is the following. Let us consider a homoge-

nious relaxation problem, described by Equation 1.3 . We know that if we start



from any d(listribut ion, the final distribution will be a Maxwellian. the eqltili)rilmln

(listriblltion. On the other hand, in the proposed algorithm, we see that we delete

particles through the terin I.ftd and generate particles drawn frolll the "moment-free"

distribiltionll [I, - K2j -2 d..rb. This Imeans that the niomienit s of the dteviational

part f,; will decrease and ultimately go to zero. The final distribution will then be

.f = f,,,, + .f; where J(l is a Inoment-free distribution and f the final equilibriltm

NMaxwellian. It is then easy to show that fd = f - fr, being a difference of two

MIaxwellians and having no net inass, no net mnomentum and no net energy, it is

necessarily equal to zero and fb = f. In other words, we can hope that in a general

mnultidimensional problem, this method will make f,,b go to a Ilaxwellian near to

the local one and mmake fI be simall.



Chapter 3

Implementation of the New Collision

Operator Treatment

In the following sections, we will investigate in detail how we perform each of the

four stages described in the previous chapter. Let us introduce now a few notations

and concepts that we will use in these following four sections when deriving the

various algorithms.

First of all, performing the Boltzmann collision operator and also computing the

outputs requires a physical space discretization. In fact, two particles should ideally

be allowed to collide together only if their positions are identical. However, since

we have a finite number of particles and the position is a continuous parameter,

this condition has a zero probability of occuring. DSMC handles this difficulty by

splitting the physical domain into cells and allowing particles to collide with each

other provided that they are in the same cell. The proposed method uses the same

technique. The volume of a cell will be refered to as Vce,, and the corresponding

physical domain as C.

In compliance with the splitting of operator technique, the collision part can be

treated independently in each cell, as if we had an independent homogenious relax-

ation in each cell for a period of St. From now on, fmb or "the local Maxwellian" will

refer to the fmb of a given cell which will itself be refered to as the "current cell".



In the current cell, the deviational distribution ft is respresented by a set of N\

ptarticl- s with velocity v i , position x i and sign s' E {-1, +1}. The superscript i is

t lie index of the particles. The set of numerical deviational particles that reside in the

current cell will be refered to as C. In mathematical terms, we have C =-I {i i  C}.

The numerical deviational distribution in the current cell is then given by:

(, v) = Nef s'6(v - v')6(x - x') (3.1)
iEC

where .i,..f is the effective number of molecules that a numerical particle represents

and (5 is the (dirac distribution. A particle with velocity vi , position x i and sign s'

acts like a distribution NeffsiS(v - vi)(x - xi).

Following these considerations and the results from the previous chapter, the

general outline of the collision algorithm is:

Do separately for all cells

* Change the Maxwellian by the appropriate anmount to account for 65 fmb

* Delete numerical particles with probability proportional to v(w)St

* Generate particles drawn from bt [f Klfd - f K 2fd] - 6.f mb

* Perform hard sphere collisions to account for the quadratic ternm C(f(, fl)

End Do



3.1 Changing the Maxwellian

The )pulrp)ose of this section is to derive the analytical expressions of ,n2,,,, ,,,(

ian(d ;l Ub that 1make the function 5t[[Ki - K•A9 ].fr• .f,,,,, have no net mass, no net

molneltu11111 andll( no net energy, and propose an algorithmn to colmpllute them in prac-

tice. I1 essence, we first compute the molients of 5f,. as functions of Sn m,,,., (Um,,l)

and (5•b, then compute the inomnents of [KI - KL2]f,i as a funct ion of f,l, and solve

for the values of nSum,, Swmb and 6Umb that make the two sets of mnoments equal.

3.1.1 Changing a Maxwellian distribution

A Mlaxwellian is a function of v which depends on 3 parameters, namely the

imean velocity Umb, the number density 'r..b, and the characteristic velocity '0..b. In

other words,

fnb (V, rImb, •mb, Umb) - 7F3/2 U3 Xp 2emb mb)

A snmall change of nmb by 6trLrb, Umb by SUmb and ...b by 5
r,,b results ill changing

the distribution by:

Ofmb Ofmb Ofmb
6fmb = ~  6nmb + D Vrnb + Unb (3.2)

b n,b Urmb OUmb

where we have, by differentiating the above expression of the M\Iaxwellian:

Ofmb fmb

m (3.3)
O•mb n,,,mb

Sfmb V- Umb
= 2 fmb (3.4)Bu 2bOfb Vmb

Ofmb ,b -2( ( --- - 3 fmb (3.5)mb

Each derivative is calculated while the two other parameters remain constant. So

for example, the derivative with respect to Vmb is done at constant number density.

This nmeans that (dfmb/dnmb) has the same mean velocity and standard deviation

as fmb, (,dfmb/OUmb) has no net mass and no net energy, and (Dfmb//OVmb) has no



hnt miass and t111e sae 1mean velocity as fb-

Denoting w* = (v - Umb)/mb, recalling that mf,,(v) = T7-32 :' exp[- w*2 . and

inserting the expressions of the derivatives given by Equations 3.3, 3.4 and 3.5 into

Equatio'n 3.2 we get:

6 fub(V) [== rurb + fmbUrnb(2 w* -
3 )&jjb + 2nýmb1 JtIW* - 6Umb] 7T -:3/2 exp(-w*2)

(3.6)
This is a polynomial times a Maxwellian. We can compute explicitly the first three

inomenits of this distribution as a function of &n,,b, S•mb and U,mb. We make here

the arbitrary choice of computing all the nmoments in the frame moving at velocity

Ut
mb. This convention has no impact on the final expression provided that we do

not change it and remain consistent. The moments of 6Jf,,., are:

J Wf ),,(v)d(v = Umb (3.8)
2 fb 3V = 3mb(mb38)

w f2 fmb(v)d 3 v = v•IMbrb + 3 nmbmbU•mb b (3.9)

3.1.2 Moments of [K1 - K 2l]fd

The purpose of this section is to derive a general expression of the umoments of

the distribution [K1 - K 2]fd as a function of the distribution fd.

Let IK denote K 1 or K 2 and M(w) be either 1, wl, or w1
2 |. The moments of

PKfd are f M(w)Kfifd(v)d"v, where we recall that Kjfd(v) = fj K(w, wl)ff(vl)d 3Vl.

Combining these two fornmulae leads to:

SMI(w)I•rfd(w)d 3W = /M(w) ( Kii(w, wi)fd(vl)dvl) d3

Performing the change of variable v -- w, and switching the order of the integrals,



we can express it as:

SM(w)IKifj(w)d 3w = . ,(v1) (f M(w)Kj(w, Wl)d w) dVl (3.10)

We see that if we can compute the moments of the kernels, meaning the functions

W1 J M(w)Ki (w, wi)daw the moments of the distribution K•fl will be obtained

by integrating the product of the function wl -*+ M(w)Ki(w, wi)d3W with fJ.

Computing the first three moments of the kernels can be done explicitly. A

sununary of the algebra is given in Appendix A. We obtain:

J [Ki(w, w) - K2(w, wi)]d3w v(w)

I w[Ki(w, wl) - K 2(w, wi)]d 3W W1 (Wl)

Iw2 [Ki (w, wi) - K2(w, wl)jd3w I w1
2v(W1)

We could have expected these results since we know that the collision operator con-

serves mass, momentum and kinetic energy.

Inserting these latter expressions in the general formula for the moments of [K1 -

K2Ifd given by Equation 3.10 leads finally to:

J [Klfd(v) - 2 fd(v)]d 3  = v(wl)fd(vl)d 3vl (3.11)

Sw[Klfd(v) - K 2fd (v) d3v = /wlv(wl)fd(vl)dv (3.12)

J W12[Klfd(v) - k2 fd(v)l dv = Jw 1 2 (wl)fd(vl)d:3v1  (3.13)

3.1.3 Expressions for 6 nmb, 6 Vmb and 5Umb

To make the moments of 6t[K -K2]f d- 6fmb be zero, we must make the moments

of Jt[K1 - K2]fd given by Equations 3.11, 3.12 and 3.13 equal to those of 6 fmb given



by Equ.attions 3.7, 3.8 and 3.9. This leads to the following system in oro,,,h , ',,,b and

() Umb:

6W,,1, = t vl(Wl),fl(Vl)da Vl

n,,b•U = /t wl'(Wv) )f(vi)d'lvi

Io"b2  b + 3't2 ,l rrib+,rrR, =W t/ 1W 2 ( 1Wl).tl½(V1)d(3 V1

The solution is:

6rn,mb = t v(wl)fd,(vl)d 3Vl

1t 1' < U l )
6U'(b = 3r w1•b ,(• )fil )vfmnib J

1 U (mnv 0b m2

or more conveniently for implement ation purposes:

6lfrmb  - 6t1 2 j U*(Wl)f(Vl)d 3Vl (3.14)

Umb t 12Vrnb W 1 V *(W)f l)f l d3Vl (3.15)

(6vmib jS 2Vnb iW- 1-w2 d W)f )d3V1 (3.16)

During the simulation we need to compute 6n,b, 6Umb and 6vUb from the set of

numerical particles. To this effect, we will work with cumulative distribution in the

cell, that is to say with the distribution integrated over the current cell. From the

expression of f(1(x, v) given by Equation 3.1, we get:

fEC fd( x, v)d 3  
- E Neff S(v - v') (3.17)

.eC iEC

and

/ 6 fmb(v)d 3X= Vcell6fmb(V)

since the local 1\Maxwellian is constant over the cell.



By integrating over the cell Equations 3.14, 3.15 and 3.16 (the above expressions

of 51,,,1,. 6dUmb and 6t.1,,,,), and replacing fEc f • d: x by its expression given in Equation

3.17 (in termns of a sumi of dirac distributions), we get:

umrnbV:cell

6UmbVce11

6l,)znb,bXcII

Neff •4t2 * / *(W,*) id(vl - Vi)d1Vl

3 71,mb iEC

After switching the sum and integral sign, we obtain:

flrnb

UVmb

- Neff 2 E si V*( wi*
Vcell iEC

Vcellei7 b iEC

Vcell 3 nmb iEC

where we recall that wi*

the ith particle.

= (v i - Unb)/v m,, b and v' is the velocity and si the sign of

3.1.4 Sketch of algorithm for changing the local Maxwellian

From the above formulae, the algorithm for shifting the Maxwellian comes natu-

rally. In the scheme, we compute the values of 6nmb, SUmb and 6Vmb for the current

cell and the current timestep, and change the Maxwellian of the current cell.



Set, = 0, U, = 0 and Umb = 0

For all particles in the cell:

get the particle velocity vl and sign s.

Compute: w* = (v 1 - Umb)/Vn b

5uimb = u...b + 6tY4ýSV., ,w* (
6Umb = 6Umb + St t1 2  v•-H (LUiSW** a(W )

Ve,,,1 nb• -- 2) (• /
6 Vmb =Vnmb + tI2 LaVlbS! (wl*12  ) 1

End For

Ltmb ?,mb -+ 6
nrrb

Umb = Umb + (6Umb

Umnb = ) rnb + 6 'VLrb

The values of 6nmb, 65 mb and 6 Vmb, are also useful as a characterization of 6 fmb,

which we will need for the generation of particles.

3.2 Deletion of particles

In this part, we treat the term -v(w)fd(v)St.

v(w)bt is the number of collisions of a particle at velocity v = ub + w during

St. If the timestep 6t is small enough, this number of collisions will be much smaller

than 1.

This enables us to consider deleting the particle with a probability v(w)6t.



Among a large number of particles around the velocity w, we will have the ra-

tio v(w )t of those particles that will be deleted which corresponds to changing the

distribution function by -v(w) fi(v)6t.

The particles need not, strictly speaking, be deleted at this stage. In our imple-

mentation, they are marked for deletion, and are actually deleted at the very end of

the collision routine. We indeed want to compute all the parts of the collision term

based on the same fd distribution.

In summary, the scheme for the deletion of particles is:

For all particles in the cell:

get its velocity v and its sign s.

compute: w* = (v - Umb)/Vmb

Compute p2u* *(w*)St.

Draw a random number R between 0 and 1.

Mark the particle for deletion if [ 2v*(w*)6t > 1?

End For

3.3 Generation of particles

In this part, we want to generate particles to account for the term

t/ [Ki(w, w1 ) - K 2 (w, w)lfd(vl)d3vl - 6 fmb(V)

To get the distribution of particles that we need to generate for the entire cell, we

can as previously integrate over the cell. Using the expression of fAEC fdd3x, given



in Equation 3.17, and the fact that Ki(w, wl) pKfI2 (w*, wi*) we get:

•6tl, N ie(1 "" [K;(w*, wi*) - K(w*, wl*)] 6 ((v l - vi)dei( - ;(v)

iEC

which is equal to

tplllNef, 1 3[AK(w*, w*) - K (w*, Ei*)] - Ve6 f,,f711 b(V)
iEC

In sunmmary, we want to generate a set of particles that will represent the distribution

"- Umb VUmb - Ub - Umb
v1 - )tprN~ f -- V -- )]-VceII6fJnb(V)

iEC Vrnb 'UV nnbn IMb

The particles are then generated by an acceptance rejection technique. The dif-

ficulty lies in that we want to generate particles drawn from a distribution which

we do not know explicitly but need to compute on the fly. Since evaluating this

distribution function will have to be done a large number of times, we approximate

the sun by looping over N2 randomly choosen particles instead of all Nd particles

in the cell. We thus need to premultiply the sum by Nd/N 2.

The essence of the acceptance-rejection algorithm is then as follows. We choose

randonmly N1 velocities v, which will be the velocities of candidate particles to

be, possibly, created. These velocities are drawn from an arbitrary distribution

g(v), which has to be greater than 16t [f Klfd - f K 2fd] - Sfbl. For a given v,

we loop over N2 numerical particles in order to compute bt [f Klfd - f K 2f(i] as

discussed above. At the end of this loop, we create the particle of velocity v if

Jbt [f Klfd - f K 2fd] - 6fmbl > Rg(v), where R is a uniform random number be-

tween 0 and 1.

So, the scheme is:



Do N, times:

Choose v from a distribution proportional to g(v).

Compute the velocity: w* = (v - U•b)/vmb

set. sum=0;

Do N2 tlimes:

Pick a numerical particle, and get its velocity vl and its sign s.

Compute the velocity: wl* = (vl - u)/vmb

sum = sum + sp,6t- [K*(w*, w*) - K (w*, w*)]

End Do N2 times

S111 =- SUM- 6fmb (V)
pick a random number 1 between 0 and 1.

Create a particle of sign sign(sum) and velocity v if sum >2 g(v)

End Do N1 times

We recall that Nd denotes the total number of numerical particles in the current

cell, Neff is the number of particles that a numerical particle stands for and SeEl is

the volume of the cell.

Some further comments on the implementation of this part of the algorithm are

given below.



3.3.1 Parameters N1 and N2

In or(der to generate the correct number of particles, we imust have Nt = J gd3 v.

N 2 can be any number. However, if it is chosen too small, the results are likely

to be mnore noisy, since we will generate particles from a more noisy distribution.

Ideally, we would like to choose N 2 = Nj, but it makes the algorithm less efficient

and does not increase accuracy substantially. A recommended way to proceed is to

choose N, as being a fraction of Nd, for example one fifth.

3.3.2 Importance sampling

The distribution g can simply be a uniform distribution on a box. For more effi-

ciency, we can take g to be a radial piecewise constant distribution centered on the

local mean velocity. Since it has to be greater than the distribution we are sampling,

we have to update g by increasing the concerned piece of g whenever we come across

an occurence of sum > g(v).

In an implementation, we use g(v) = 41r w12 gr,(jw), where tile function g.,. is a

piecewise constant function:

g,(Iwl) = g, if r i 5 |wj :5 ri+1

The r's are chosen to be proportinal to the standard deviation of the local Maxwellian:
ri =• iVmb/./, and gr(lwl) = 0 for jwj > 7Vm b/v/. If we come accross sum > g,

then we update the function by doing gi = sum. Let's note that the function g, is

different for each cell.

To initialize the function g, we carry out at the begining, and from time to time,

a voided run of the generation routine, that is to say of the exact same routine exept

that we do not create any particles but only update the function g.



3.3.3 Cutoff of the Kernel KI

It has to be noted that the first kernel (KI) is singular at the point v = v1 and

diverges as 1 / v -vi . This singularity raises a problem when it. comes to generating

particles with an acceptance/rejection procedure, since this method is designed for

bounded distributions. To deal with this difficulty, we set a cutoff relative velocity tc

and define a modified kernel. The modified kernel is defined such that it is constant

Vv for which Iv - vll < vc, as sketched in Figure 3-1. The constant value is taken

to be the mean value of the kernel over the sphere centered on vl, and of radius vc.

The mean value of the kernel over this sphere is pIl V erf(vI*) The derivation of

this mean can be found in Appendix A.

F --·--- --------·I

Figure 3-1:

3.4 The Nonlinear Collision Term

The nonlinear collision term C(fd, fd) cannot be optimized and is treated exactly

in the same way as it was in VRDSMC [5, 6]. As emphasized in Introduction, the

proposed implementation requires an average creation of two particles per collision

leading to instability issues. This will affect the efficiency of the present algorithm for

nonlinear collision-dominated flows. Unstable behaviors were observed for strongly

nonlinear collision-dominated flows. In contrast, for low-signal flows, this term is

of second order and the number of particles that will be created will remain very

small. For linear to weakly nonlinear flows, the creation of particles is balanced by

the particle sink discussed in section 3.2.



The mnethod for computing C(fj, faf) was briefly outlined in introduction and is

explained in detail in [5, 6, 71. The design of the schenme stems from the following

form of the nonlinear collision term:

C( fd,(6 +) - 61 - 62) dl 2lU2 - vl d•rd2 Qd:3 ,d U

As in standard DSMC, collisions are processed by sampling a number of pairs of

numerical particles. The operations to perform will then depend on the sign sl and

s2 of the particles, as follows:

* If s' = +1 and s2 = +1, update the velocities as in standard dsmic.

* If s' = +1 and s 2 = -1, create +61, -6' and update -62 into -62-

* If s' = -1 and s 2 = +1, create +62, -6 and update -61 into -6.

* If s1 = -- 1 and s2 = -1, create -61, -62, +6' and +6'.

In the above scheme, postcollision velocities are computed according to the hard

sphere scattering angle distribution (uniform over the unit sphere). The derivation

is explained in detail in [7]. The final result is:
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1
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process is '" v,,,,I , where vuAX is

to a few times the most probable velocity.

Iv1 - v2 1/v AX. To generate scattering

angles 0 and 0 uniformly on a unit sphere, we generate:

cos9 = 27 1-1

sin0 = 1 - cos 2 0

0 = 27rZ 2

where R1• and )2 are two different random numbers sampled from the uniform

distribution in [0, 1].



Chapter 4

The Free-Molecular Advection

Operator

According to the splitting of operators discussed before, the free-molecular ad-

vection is described by:

Of/lt + v. Vf = 0

Contrary to the collision routine, fmb will remain constant all over the advection

procedure. This means that we account for the change by modifying fd only, that

is to say by creating or moving deviational particles (df = dfd). Since f = fnb + fd,

the term v - Vf is made up of two parts: v - Vf = v - Vfd + v • Vfmb.

We thus need to solve Ofda/t + v - Vfd =v -v V f,.b

The general solution of an equation of the form Of/Ot + v - Vf = g(x, v, t) is

fJ(x, v, t) = fo g(x - vt', v, t - t')dt' + f(x - vt, v, 0), where f(x, v, 0) is the initial

state. (See the Proof in Appendix B).

For convenience and without loss of generality, we can set t = 0 at the begin-

ning of the current timestep. The state at t = St, which is what is required, is

then: .f,.(x, v, 6t) = ft g(x - vt', v, st - t')dt' + fd(x - v6t, v, 0), where in our case



(x, v.t) = -V -Vffmb.

fil(x, v, 5t) is made of two parts which will be treated separatly. The first part

results from the source term -v -Vfmb and corresponds to the advection o f.f;,,.

that is to say to the advection of some underlying particles not represented by nu-

merical particles. This advection will be done by creation of particles and is refered

to as the advection of the fmh part. The second part is a simple advection of the

numerical particles and is refered to as the advection of the fd part.

4.1 Advection of the fd part

In this part, we perform the following operation:

fd(x v, 6t) = fd(x - v6t, v, 0)

This is done by moving all particles according to their velocities, as in standard

DSMC. In other words, we perform:

For all particles in the domain

x -•X + v6t.

End. For

4.2 Advection of the fmb part

In this part, we want to add the term fSt - - Vfmb(X - vt', v, 6t - t')dt' to the

distribution function. This is done by creating deviational particles. We first need

to compute -v - Vfmb(X, v, t) in order to compute the integral which will provide

us with the distribution from which the particles have to be drawn.

For a fixed velocity v, the function x --+ fmb(X, v) is piecewise constant. As a



consequence, the function x -- Vfmb(X, v) is zero everywhere. except at, the inter-

face of the cells, where it is a dirac (each component is a dirac).

Let S,, be the surface separing the two cells, and n be the unit normal vector of

this surface. Without loss of generality, we can assume that S,, contains the origin

x = 0, so that n -x is the distance between x and S,,. Let also fr,1 b and 1f.l,,b refer to

the local Maxwellian in the right and the left cell respectively.

The detailed derivation of the function V frb is located in the Appendix B. The

result is that the gradient is Vfmb(z, v) = (frTb - fab)6(n - x)n, where 6 is the

dirac distribution. The integral 6fd((x, v, Rt) = fot g(x - vt' , v6 t - t')dt' computed

when g(x, v, t) = -v V fmb(X, v) = (/f - frb) (n  x) v -n is:

6f,(x, v, 6t)= (fi b f rb)VU n j 6(n x - n vt')dt'

The value of the integral is In -v when (n -x)/(n . v) E [0 6t] and zero otherwise.

This finally leads to:

6f,(X, v, t) f [fmb(V) - f b(V)] sign(v, n) if x n < v n6t

0 if x n > v n6t

Let's note that contrary to what we could think at first glance, this does correspond

to the difference of two fluxal Maxwellian distribution. Indeed, for a fixed velocity

v, the total mass that we need to create is Sn[flrb(v) - fmb(v)iJ v" nl6t, where we

recall that S, is the cross-sectional area of the cells, and n is the normal of the

surface separing two cells. We obtain this by just integrating over space the above

distribution.

In practice, we generate particles drawn from Sn[frb(v) - frfb(v)]v n6t and

spread them out over a domain of length Iv nl6t, which does correspond to having

a density equal to [flb(v) - fb(v)] sign(v , n).



This generation of particles has to be carried out wherever there is a discontinu-

ity of f,,,f,, that is to say at all interfaces between cells.

The generation of particles is done by acceptance rejection. The velocities are

first drawn uniformly from a cubic velocity domain [-vn,,,,,, vn,,]", where vm0ax is a

large velocity compared to the most probable velocity. The computational cost of

this part of the whole algorithm is not very high, so we can afford to do a simple

acceptance rejection, without resorting to an importance-sampling-type of approach

as in Section 3.3.

Finally, the scheme for the advection of the .f,,,b part of the distribution is as

follows:



For all. intefaces:

Do N tfimes:

Choose 1., from a uniform distribution over [-vmrna, viVrx].

Choose yt, from a uniform distribution over [-Vmaxi, 'mnax,].

Choose tv, from a uniform distribution over [-vmax, vUmax].

Compute f;•b(v) and f,,,,b(v)

Draw random numbers R, and 72 between 0 and 1.

If N I I[fb(V) - ffnb(v)ln -v > R• •M

Create a particle:

* of velocity v

* of sign sign([fnb(V) - fmb(v)]n. v)

* at a position such that n -x = Rtn -v -R 2

End If

End Do

End For

In the above scheme, S,, is the cell cross-sectional area, Vmax is a parameter used

to specify the size of the velocity domain where the velocities are drawn from and

V, is the volume of this velocity box: V, = 8vmax. The number of loops has to be

N = MV, (that is to say the integral of the importance sampling function which is

a constant function over the box in this case).

~



Chapter 5

Boundary Conditions

In most applications, the boundaries of the domain contain solid walls. Within

kinetic theory, walls are typically treated [1, 2, 3] as infinite reservoirs of an equi-

libriuni gas (homogeneous Maxwellian distribution) at the wall temperature and

velocity and whose number density is calculated so that the mass flux into the wall

is the same as the one going out from the wall. The boundary conditions are then

treated by simply carrying out a free molecular advection between the reservoir and

the actual physical domain [2, 3].

The approach outlined here mirrors the method developed in [5, 6]. Let N+1s, and

N,,tl denote the number of respectively positive and negative deviational particles

that crossed the wall during the timestep, N,wil = N+atl + Na,, the total number

of those particles and ANwa,, = N:,ai - Njaii the net number. Let S, be the cross-

sectional area of the wall-cell interface and n the unit normal of this surface. For

convenience and without loss of generality, the following calculations will be carried

out for the particular case where n = e, = (1 0 0), and where the surface contains

the point x = 0. In other words, the wall is chosen to be the yz-plane. Let us

denote the wall distribution fwall = nawaifwa with:

1 -(v - uewallu) 2

fwall(V) =. 3 /2V
3  exp 2

wall I wall

Due to the free molecular advection, there are particles crossing the wall. The



flux YT of particles going out of the domain is the sum of the flux i,/ of outgo-

ing numerical deviational particles (fa), and the flux F,,,b of outgoing underlying

Maxwellian particles (fm,,r). The flux of particles entering the domain is denot.ed

FV,,,r. By definition, we have:

mb --

S'wall 1=

d = 6ts' f'J .,: <0

Vf rrb(V)d3 v

Srxnwall ivall U(V)d'3v

>0

vxfl(v)dv-= Nef~ ANwau

The boundary condition must ensure conservation of mass or equivalently the

conservation of the number of molecules ( represented by deviational and underlying

Maxwellian particles) in the physical domain. This conservation of mass is equiv-

alent to having the incoming flux of particles equal to the outgoing one, or in our

notation: Fwa,, = Fmb +- YF. This latter relation is achieved by simply setting nwaIu

to an appropriate value.

However, in order to keep the contributions of the Maxwellian and deviational

distribution separate, we write

wallafwa = (n ll " nwall)f wall

such that

.wvall wbll + w dali

with •llb being the flux associated with rwallb fwa and wdal the one associated with

and

6tSnJ (5.1)



dr<,,,,f(llu. The condition of mass conservation Fw,,, = -,,t, + Lt then becomes

'vaill

We then observe that the situation is very similar to what we had in the pre-

vious chapter, where we dealt with the free molecular advection of the Maxwellian

contribution. From Chapter 4, we know that the solution amounts to generating

particles that sample the following distribution:

[nI 7awal(v) - fmb()] sign(v n) if x. n < v. n6t

0 if x n > v • nSt

Using the fact that we are only interested in sampling particles entering the physical

domain (sign(v - n) > 0) and after inserting the splitting n7uwarllll = mrnbllfayII +

ldwal l wall , we get

n allfwalla(v) + nI afwau(v) - fmb(V) if X I vt

0 if x > uvt

The two parts, n) and mba ()Imb(V)] respectively, are treated in

separate routines which are explained in the following two sections.

5.1 The fd part

This section deals with the treatment of the deviational contribution ndll fwu(v).

As seen above, we have to generate particles to sample the following distribution:

{nralifwall(v) if x < vSt

0 if x > vASt

As discussed above, the condition that determines nal is a = Fd. The net



number of numerical particles that we have to generate is then given by S,6tN- ff Rl

ftN,.F' P =- AN. Note that AN can be negative. This means that the equivalent of

the net malss of the particles that hit the wall is sent, back into the domain with the

wall velocity distribution. In pratice, we draw their velocities from f,,,(v)U, with

v.,, > 0 and spread them out uniformly over a domain of length v,65t. To generate

the velocities, we use an acceptance/re.jection algorithm. Howerver, when f,,,•u has

no mean velocity along the normal of the wall (the wall is moving in its plane) there

exists more efficient methods for generating such velocities.

In summary, the scheme is:

Get the Nwaii particles that hit the wall.

Delete min(N+V a, N,-T,,) of them

Send back the abs(AN) remaining particles:

* velocity drawn from f1wul(v)vx

* with the sign sign(AN)

* at position 6tvR 1

5.2 The fmb part

mbThis section deals with the treatment of the Maxwellian contribution n[aryfdwu(v) - fmb(V) .

The number density nm b, is determined by imposing FbI = Fnmb. These fluxes can

be calculated analytically for any local and wall Maxwellian:

-- , 11 wa ll yzd = 2 exp[-u au,nz] + ' UWau,erf['uwau,x] + ul,x

1-3mb = n f *mb2dv = daxV - b bbV ( ~1+ b7mb . fmbvd< ( exp[-U bx] + U* berf[u b,'x]- U*mbx



We choose then n" -'" as follows:

wa(ull 7- 1
/

2 exp[- ] + u*,i. erf[ u,Ili.c] + 0
\. + w*'allx " IuIr x all,.X

From this, we can generate particles at the boundary to account for the frnb

particles that hit the wall. The scheme is ahnost the same as the one used for the

convection of the fr1 b distribution. The difference is that it is carried out only at

the interface between the domain and the wall (at the boundaries of the domain),

and we only need to create particles that go in the domain, that is to say such that

v - n :> 0, where n is the inward normal of the wall. In the special case where

n = e,,, the scheme is:



Do N times:

Choose v,. from a uniform distribution over [0, v,,i,,,X].

Choose v, from a uniform distribution over [-vLrn, vx,,ma].

Choose vz from a uniform distribution over [--vms,, Vn,,,,].

Comlpute fmb(V) and fwaiu(v)

Draw random numbers R 1 and R 2 between 0 and 1.

If f< [mballwaill() - fmb(V)]Vxl > •Z1M

Create a particle:

* of velocity v

* of sign sign(nmballall(v ) - fmb(V))

* at position x = 6tv• T R2

End If

End Do

Here again, vmax is a parameter used to specify the size of the box where the

velocity are drawn from and V, is the volume of this velocity box, which is now:

V,= 4vmax. The number of loops still has to be N = MV,. The distribution

"uJrntvwal1 is the Maxwellian of the wall. Its mean velocity is the velocity of the wall

Uwau, its characteristic velocity Vwall is the one that correspond to the temperature

of the wall (Vwall = /2kBTwall/m), and its number density is the one computed

above that ensure the equality of the incoming and outcoming mass flux.



Chapter 6

Computing the Outputs

By output we mean macroscopic hydrodynamic quantities like the velocity of the

fluid, the stess, or the temperature. These outputs depend on the local Maxwellian

distribution (that is to say the mean velocity, the number density and the standard

deviation of the local Maxwellian) and on the deviational particles. They are com-

puted by a separate routine. Due to the splitting of the operator (convection and

collision), we get a higher order of accuracy if we compute the outputs twice per

step, that is to say before and after the collision routine.

In the following section, N + and N- refer to the number of positive and negative

particles in the current cell, Nd = N+ + N- is the total number of particles and

AN = N + - N- is the net number of particles. Njff is the number of physical

molecules that a numerical particle represent. We will also refer to a component of

a vector through a subscript as follows: v = (vt, vy, Vz), Umb = ('Umb,, Umb,y, Umb,z)

and uf = (uLf,, uf,y,, u,z). We also recall that the superscript i refers to the index

of a particle.

6.1 The Flow Velocity

The velocity of the fluid uf is the average velocity of the particles within a control

volume. We will be using the cells as control volume. This velocity does not coincide



with the mean velocity Umb Of th1e local M1laxwellian because the mean velocity of

deviational particles could be different from umb. Even though the collision routine

generates deviat ional particles with a zero mean velocity in a frame moving at umb,

the convection introduces a nonzero mean velocity. By definition,. the velocity of the

fluid is:

.flcx3 f (x, v)d3xd(:v

Using the fact that:

vfd(x, v)d 3xd"v

v f,,b(X, v)d3 xd3 v

fd(x, v)d 3xd"3V

b

3

, 3

= Neff E siv

iEC

= nlmbVccllUmb

= N,,ffAN

= 7mb Vcell

we get:

Neff -iEC V i ±+ f- mbVcellUmb

Neff AN rnmbVcell

where we recall that Vc,,e is the volume of the cell.

6.2 The Stress

By definition, the stress (averaged over a cell) is:

m
Pk1 = Kell ]CxR3 (Vk - Uf,k)(Vl - Uf,l)f(x, v)d 3

xd
3 v

where mr is the mass of a molecule, and k and I can be x, y or z. As previously, we

JC xIR

,•C x RL
3

1CxR

. Cx I



use the fact that f = fi; + f.,,b:

S (v.'k -1lfk)( - I)fji)i(x, v)d:Jxd:v

.i (, : - a,)(,x - 'Ul)f,b(x, v)daxd3v
. CxIR

= lNef i( -(I fa,)(i - f 11.1)

dEC

= nIr,,bVI(u,,bA- - 11fk)(Urrb f

We thus get:

pl = nNecff:eI .s(vi - if,k)(V- - Ilf,)+ lmbmb,k - Uf,k)(lmb,l - 11f,!)
iEC

6.3 The Kinetic Temperature

The kinetic temperature is the mean kinetic energy in a frame moving at the

local velocity of the fluid, divided by •kB. By definition, it is:

Tk =
nz fcxR3 (v - uf) 2f(x, v)d 3xd3v

3kB fCxR3 f(x, v)d 3xd3 v

Using the fact that f = fd + fmb:

.J1 (v - uf) 2fd(x, v)d3 d3

/ (v - f )2fmb(X, v)d3xdv

= Neff ESi(i -Vuf)2
iEC

3 
/= Vcel•lmbVrnb + nlmbVcell(Umb -2 m

The kinetic temperature is then:

r. - rn Neff iC si(vi Uf) 2 + Vce•inmb ((3/2) vb + (U•mb - Uf) 2)
' 3B3kB Neff AN + nmbVcell

Uf) 2



6.4 The Fourth Moment along v,

In t he homogenious relaxation testcase, we will be using this fourth moment of

the distribution as criterion to check the accuracy of the code.

The definition is:

x .fC3 v4 f (x, v)d3 xd3 v
< V xd>=

x .fcx• f (x, v)d3xd v

As previously, we have:

J 0C vf'f(x, v)d 3xd 3v

I v; fmb(x, v)d 3xd3v
c xR.

SNeff s (v i)4
iEC

3
= -nbVcevll b + 3nrmbVcell•ir.b ,b, + nmbVcelllnb,x4

So, the total fourth moment is:

Neff iEC Si (v) 4 + Vceflnmb ( Vb +3V bU b, + UILb,z

< X 4 n,>=nbx mb1x
<ux >NeffAN + nmbVcell

Note that in homogenious relaxation cases, the total number of molecules Neff AN+

n mbVcell should be conserved in average but might fluctuate due to the noise. In

spacially dependent cases, it is not constant because of the advection.



Chapter 7

A Linearized Version of the

Algorithm

Except from numerical discretizations involved in the implementation described

above, the algorithm presented so far relies on no assumption and solves the full

nonlinear Boltzmann equation. On the other hand, we discussed in the Introduction

that the present method holds an advantage over DSMC in cases where the devia-

lion from equilibrium is small, and thus when a linearization is valid. A linearized

version of the algorithm has thus been developed from the previous nonlinear one.

Although it did not display any improvement in terms of computational efficiency,

it has the advantage of requiring a much easier implementation.

7.1 Linearization of the Collision Operator

We consider a homogeneous gas at rest at a reference temperature To and with a

reference number density no, the distribution function being a reference Maxwellian

fo(v) =:= nor- 3/2v0o3 exp[-(v/vo) 2]. We recall that the most probable velocity is

7o = v/2kBTo/m where kB is the Boltzmann's constant. We then consider small

perturbations from this equilibrium. The distribution function f - fo is thus defined

as being of order one. The distribution function f is still written as f = fd + frb

where the local Maxwelian fmb will deviate from the reference Maxwellian fo. Al-



though it, is not proven a priori. we can expect -and it, will be observed in practice-

that the local 1\laxwellian f,,,,, will deviate in a very smnall amount from the refer-

ence Maxwellian. The small deviation f - fo = f; + .fI,,, - ~f is then the sum of

f.l and. f,a, - Af, both small deviations of order one. We argued that this was not

guaranteed because it is mat.hematically possible that f - fo be small while fl and

fa, - fo are large but cancel out. However, as discussed previously, the algorithln

was designed in such a way that the local Maxwellian moves toward one that makes

.fl small through the absorbtion of the first moments of fd. This ensures that if

f - fo is a small deviation of order one, so will be fd and ffmb - .fo-

We recall that the complete nonlinear collision operator can be written as C(f. f) =

2C(f,,t,, fa) + C(fd, fd). The part 2C(f,,b, fd) gave rise to the three terms involving

the two kernels and the collision frequency function, while the part C(fd, fl) was

left as is and treated as in VRDSMC. Using its billinearity, this collision operator

can be written as:

C(f, f) = 2C(fo, fd) + 2C(fmb - f0, fd) + C(fd, fh)

The distribution fmb - fo and fd being deviation of first order, the terms 2C(f,,b -

fo, fd) and C(fd, fd) are second order. At first order, we are left with C(f, f) e

2C(fo, fd). The derivation of the kernels detailed in Appendix A suggests that

2C(fo, jfd) will lead to the same kernels but where we have to replace nmb, Umb and

'Unib by respectively no, 0 and vo. The linearized collision operator will then have the

same structure as before exept that whenever we had w* = (v - umb)/'vmb, we can

replace it; by v/vo which does not depend on the local Maxwellian. In summary, the

linearized collision integral is

LOf1 o1 U f *(V oo)fd(vV)d'va-J-dV*V
0

I= pl K(o )fdv )fd(v)ddlvi-fd(l)(2V vo

at I coll j O V00 V0 0

where the function KI, K2 and v* are the same as before, given by Equations

2.2, 2.3 and 2.4. Note that the prefactors are now



/ ( 2  /12 = L' 2 1o

. 1 l/212 0T1/2

and do no longer depend on the local Maxwellian, in contrast to their expressions

for the nonlinear case (Equation 2.5).

7.2 Linearization of the Change of the Local Maxwellian

As done in chapter 2, we can calculate the moments of the kernels involved in the

linearized collision operator and get the corresponding expressions for 6 n mb, SUmb

and (vn,,,b. It is straighforward and leads to:

6nmb 6= (i v(vl)fd(vl)d3Vl

6 Umb -- 62t 1v/l()fd(vl)d3Vl

6vmb 6t (V - V0) v(vl)fd(vl)d 3V1
3novo 2

Note that these expressions also tell us that 6nmb, SUmb and 6V,,m being in some

sense an integral of fd, are of order one with respect to "the small parameter" fd.

This means that any expression such that (6nm b)(fmb - fo) is of order two and

can be neglected. Using this, we can show that the expression for 6fmb (Equation

3.6) becomes in the linearized version:

6 fmnb(V) = [nl 16nmb + vo-1(2vo0-2 2 - 3)Svo + 2vo-2V V Umb] f0(V)

7.3 Linearization of the Algorithm

From the following considerations, we see that switching to a linearized version

is straighforward. It simply consists in replacing every variable with subscript "mb"

by its counterpart with subscript "0". It makes the implementation much simpler

because a number of prefactors and expressions will not depend on the parameters



of the local M1\axwellian.

Note however that for the computation of the outputs we do need to use the

actual paraneters of the local M\Iaxwellian since they carry important information

(of order 1). Therefore, in the linearized version, the routine that computes the

outputs is not changed.

The linearization of the advection routine has not been investigated.



Chapter 8

Spacially Homogeneous Relaxation

Testcase

The purpose of this part is to validate the algorithm for the collision operator only

and investigate the impact of the various parameters that need to be set by hand.

To isolate the collision operator, we consider the spacially homogeneous relaxation

version of the Boltzmann equation:

=fat / (f'ff - f fl) Iv - vijdQd:3vl

Simulations have been run for gaseous Argon at temperatures around To = 300K.

The initial distribution was:

1 no v - 2,e, 1 no [ +ve, 2]

f(v, t = 0) = 3• exp 1- ± + - exp 2-

2 23/23 0 2 3/2v vo

no is the number density corresponding to Argon at 300 K at 1 atm, vo is the cor-

responding most probable velocity (vo = /2kBTo/m), and v, is an arbitrary shift.

The following various data were all compared to the results of a standard DSMC

code run with the same numerical and physical properties.



The validation was carried out through the conmparison of t liree relevant quanti-

ties:

* the dlistribution functions themselves at various times,

* the evolution of the fourth moment < v'4 > versus time,

* the known final state.

The comparision of the distribution functions is not strictly speaking a compar-

ison of the whole functions but of the density per unit velocity along the x-axis:

VX - J=_o,,=-o0 , 0  f(v, vy, v,t)dvydvz. In practice, the quantities plotted are

based on the following discretization of the v,: axis:

/ (i+1/
2

)q C+oc +00

i-I f (vv, v,, vz, t)d~dvadvdv
v.,.=(i-1/2)q . v.=-oo v.=-oW

q is the parameter that serves to discretize the v, axis, and was set to be equal to

30 m/s. This function of the integer i can be calculated analyticaly for a Maxwellian,

whereas the code computes the deviational part by counting the number of particles

that satisfy vx E [(i - 1/2)q, (i + 1/2)q].

The comparison of the distribution functions being essentially visual, it is rele-

vant to compare some moment of the distributions which are very sensitive not only

to subtle change of the shape of the distribution that one cannot perceive by eye,

but also to the tail of the distribution, meaning the behavior of the distribution at

infinity, where it is almost zero. However, because the collision operator conserves

mass, momentum of energy, the first moment with an interesting behavior in this

relaxation problem is the fourth order moment. In light of the initial distribution

function, it appears relevant to focus on the fourth moment along the vt-axis, whose

definition is f v4 f(v)d3 v.

Regarding the final state, it can be computed using the fact that the collision

operator conserves mass, momentum and kinetic energy, and that the final distrib-



uition is a Maxwellian. The total number density of the initial distribution is no, its

mnoentum is zero and tie densitv of kinetic energy is (3/2),omvy + nom.ri. The

density of kinetic energy of the final l\laxwellian is (3/2)nomrn which means that

I,t = Vi' + (2/3)v2. Let us mention that a Taylor expansion of this expression

versus v., show that the problem will be linear if y /vi/,V << 1. In this case, the fol-

lowing property indeed hold: vo• tvo. The value of the asymptotic fourth moment

is < v1!. >'= (3/4)v.

Various sets of simulations were carried out. The full non-linear algorithm was

tested on a highly non-linear case, obtained by setting v, to a value of the same order

of mnagnlitude as v0 . This version was also tested oni a different initial condition,

namely a distribution with a nonzero mean velocity. The purpose of this latter test

is to check that the algorithm satisfies the condition that the relaxation does not

depend oni the frame in which it takes place. The linear version of the algorithlun was

also tested. To that effect, v,_ is set to a small value compared to vo. The purpose is

to validate the ability of the proposed method to capture low-signal flows.

8.1 Nonlinear Case Without Mean Velocity

In this section we test the algorithm on a highly nonlinear case. The parameter

vs is set to v, = 300 m/s which is about 0.85vo. The characteristic velocity of the

asymptotic Maxwellian is then vo = 1.2166vo = 430.05 m/s. The corresponding

asymptotic value of < v1 > is < v >oo= 2.565 - 1010 n4 /s 4 .

As discussed before, the charactersitic parameters of the local Maxwellian n7mb(t),

vrnb(t), and Umb(t), enables us to construct the local Maxwellian and plot its evo-

lution. We also stored similar data for the deviational distribution. By summing

these two distributions, we obtain the total distribution that we can compare to

our reference, namely a DSMC solution. These three distributions are gathered in

Figure 8-1. The distribution function is very close to the reference at all times.

Moreover, we observe that the deviational distribution function is zero everywhere



after a [few relaxation times. This means that the rationale on which this algorithmn

was designed is valid. The local Maxwellian converges to the distribution that makes

the deviational part as small as possible.

m-3

rn/s rn/s

m-3

r/s

Distribution functions at various time:

Top left:fmb, Top right:fd Bottom :f

continuous line: present method, dots: standard DSMC

Figure 8-1:

Figure 8-2 displays the evolution of < v4 >. Here again, the agreement with

DSMC is excellent. In addition, we can check that the asymptotic value (<v >oo=

1.6541. ?'v~) matches the analytical prediction (< v4 >,,= 1.643 v4). The gap is only

0.6%.

rtl 3
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0 2 4 6 8 10 12

tlr

4< v /v 4 versus time

continuous line: present method, dots: standard DSMC

Figure 8-2:

We also may want to check that some basic quantities are conserved. In fact,

contrary to DSMC, we recall that the present algorithm does not guarantee the

conservation of mass, momentum and energy but is expected to conserve them on

avergage. As shown in Figure 8-3 nmb(t) undergoes some significant variations, but

the total density made up of nmb(t) plus the net deviational density is constant.

There is a very small loss of mass of about 0.1%.

Evolution of the number density of the Maxwellian (left), and of the total

distribution (right)

Figure 8-3:

2 0 2 4 6 8 10 12



Finally, the evolution of the number of nunerical particles is plotted in Figure

8-4. We observe that it decreases quite fast and ultiimatly goes to zero. Let, us

elmplhasize that it is not a basic implication of the fact that the deviational part

ends up being zero. In previous variance reduction algorithlun 5, 6, we could have

a distribution equal to zero while still having a lot of numerical particles whose net

effect cancelled out. Here, the use of the kernels enables us to create particles that

account only for the net effect of the collisions and which are therefore precancelled.

t/l
Evolution of the number of numerical particles (Ndj)

Figure 8-4:

8.2 Nonlinear Case With Mean Velocity

This testcase differs from the previous one only in the fact that the initial dis-

tribution function has a nonzero mean velocity while the initial Maxwellian is the

same as before, namely without mean velocity. We thus can validate the adaptation

of the local Maxwellian to changes in mean velocity. Physically, the evolution of the

distribution function is exactly the same as before exept that it happens in a frame

moving at the mean velocity. We can then compute the quantities of interest of the

final state analytically as before.

The distribution functions are plotted in Figure 8-5.



•n-
:

_)

m/s inls

X1023
11

10

9

8

7

6

5

4

3

2

-6(

06

rn/s

Distribution functions at various time:
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Figure 8-5:

We observe that the local Maxwellian distribution moves toward a Maxwellian

distribution centered on the mean velocity of the system. As before, the deviational

distribution converges to zero, meaning that at the end, the local Maxwellian dis-

tribution is equal to the actual final distribution. Here again, the agreement with

results from a standard DSMC code are excellent.

Figu.re 8-6 shows the evolution of umb,x versus time. We can thus check that the

mean velocity of the local Maxwellian converges quickly and acurately toward the

mean velocity of the system.



0

0

0

0
O.

t/r

Evolution of U.mb,x, the mean velocity of the local Maxwellian along the x-axis

Figure 8-6:

8.3 Linear Case Without Mean Velocity

In this section we test the algorithm on a linear spacially homogeneous relaxation

case. The parameter v, is now set to v, = 30 m/s which is about 0.085vo. The most

probable velocity of the asymptotic Maxwellian is then v" = 1.0024vo = 354.32 m/s.

The final equilibrium will then be very close to the initial distribution. The corre-

sponding asymptotic value of < v. > is < vX >o= 1.1821 1010 m4/s 4.

The purpose of this test is two-fold:

* Demonstrate the ability of the code to calculate low-signal flows and compare its

efficiency with DSMC.

* Test the linear version of the algorithm.

The comparison of the evolution of < vX > is plotted in Figure 8-7. We ob-

serve that the agrement with DSMC remains excellent with the linear version of

the algorithm in such situations where the linearization of the Boltzmann collision

operator is valid. The same behavior as in previous case is observed. The number

of numerical particles goes to zero, and the local Maxwellian moves toward the final



one. In this case, the changes in the distribution function are very small and a visual

inspection of the evolution is not possible.

In this testcase, the proposed method

magnitude faster than standard DSMC.

< 7:)' >/V4

appeared to be more than two orders of

t/-r
< v 4 > versus time

continuous line: present method, dots: standard DSMC

Figure 8-7:



Chapter 9

Couette Flow Testcase

A iunmber of validation tests for spatially dependent problems have been per-

formed. Here, we show the results for an impulsively started shear flow, in which

at time t = 0 the two (diffuse) walls bounding the system start moving in opposite

directions in their plane with velocity +U. The gas is Argon at an initial temper-

ature To = 300 K. The distance between the two walls L is choosen such that the

knudsen number varies between 0.1 and 10. Two sets of simulation were performed:

* One set of simulations was performed with U = 0.05v0o. This represents a good

compromise between low speed flow (for testing the linear version and the ability

of the method to catch low-signal flow) and sufficient signal (such that a DSMC

solution is feasible). We performed simulations at kn = 10 (advection dominated

flow), kn = 1 (intermediate) and kn = 0.1 (collision dominated flow).

* One set of simulations with U = vo and kn = 0.1, 1, 10 (the last one is not

shown here) to test the ability of the algorithm to deal with nonlinear flows.

9.1 Linear Shear Flow

The linear version of the algorithm was tested by simulating the shear flow de-

scribed above, with ulau1,y = U = 0.05vo. This value is sufficiently small to expect

a linear behavior and good agreement with DSMC. The outputs used to carry out



the comparison are the transverse velocity profiles u.q.,(.r) and shear stress profiles

),.y(X) (defined in Chapter 6) at. various times and for kn = 0.1, kn = 1 and kA = 10.

Results are given in Figures 9-1. 9-2 and 9-3.

u.f,./U

p.,,,/(p o2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/L

Velocity profiles (top) and shear stress profiles (bottom) at various times, for

kn = 0.1 and U = 0.05vo.

Continuous line: present method, dots: standard DSMC

Figure 9-1:
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/L

Velocity profiles (top) and shear stress profile (bottom) at various times, for

kn = 10 and U = 0.05vo.

Continuous line: present method, dots: standard DSMC

Figure 9-3:

We notice a very good agreement with DSMC for all Knudsen numbers and for

the transient regime as well as for the steady state. Here, the proposed method

appeared to be about 1 order of magnitude faster than standard DSMC.

9.2 Non-Linear Shear Flow

In this section, the algorithm is tested by simulating the same shear flow as before,

except that ull,y = U = vo. The validation is made through the comparison of the



same outputs. Results are shown in Figures 9-4 and 9-5.
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Chapter 10

Conclusions

A new particle method for solving the Boltzmann equation has been developed.

This m.ethod can capture arbitrarily small deviations from equilibrium at a compu-

tational cost that does not scale with this deviation. This is achieved by simulating

only the deviation from equilibrium, as originally proposed by Baker and Hadjicon-

stantinou [4]. The proposed method is closely related to DSMC and differs only in

the ways necessary to consider the deviation from equilibrium. The most inipor-

tant feature of this method, is that it requires no particle cancellation and thus no

discretization in velocity space. This is achieved by allowing the local equilibrium

distribution function to change as a result of the action of the collision integral and

thus enabling the generation of a minimal irreductible set of deviational particles

around an "optimal" local Maxwellian at each time step.

The resulting algorithm is significantly faster than DSMC in the limit of low-sigal

flow. For example, in the low-speed validation problems of Chapter 8, the proposed

method is at least one order of magnitude faster than a mature and optimized DSMC

code. Moreover, the proposed method can simulate flows with smaller characteristic

velocities at the same cost, while the cost of DSMC increases quadratically [11] as the

signal decreases. Our results also indicated that with the addition of the nonlinear

term C(fd, fd), nonlinear flows up to Mach number MA ; 1 can be simulated, even

though the proposed method no longer holds an efficiency advantage over DSMC.

Beyond M,, 1, the number of deviational particles grows without bound.



Possible future work may focus on number of improvenments. First., various

parts of t he algoritlun can be optimized; this is particularly true for the accep-

tance reject ion routines which can be made more efficient or replaced by more so-

phisticated algorithmls. Second, a serious investigation of the impact of the various

parameters introduced (e.g the cutoff v, for regularizing the singularity of kernel K1 )

remains to be carried out. Finally, a better understanding of the stability limiits of

the method for large deviations from equilibrium is also of interest, albeit mostly

academic.



Appendix A

Collision Integral Kernels

A.1 Derivation of the Kernels for a centered Maxwellian

The collision term of the Boltzmann equation is:

C(f, f)(v) =J (f'fi' - ffi) v - vi afddv

We know [3] that it can be rewriten as:

1
C(f, f)(V) -2 (6 + 62 - 61 - 62)flf 2jv2 - vlladQdvldv 2

When f = fmb + fd, it becomes:

C(f, f)(v) = (6 2 + 6 1 - 6 2)(fdl fd2 + fmblfd2 + fdlfmb2) V2 - V1

Due to its symmetry, the linear part is

2 J I (5I + e2 - 61 - 6 2)(fmblfd2 + fdlfmb2)1V2 - v1judQdvaidv2 =, jj (6 +

I(6 + 6' - 61 62)fdlfmb21 V2 - v)l cdQdv dv 2

For a given pair of precollision velocities vl and v2, the postcollision velocities v'

and v' run on a sphere centered on the mean velocity (vi + v2)/2 and of radius

IudQdv dv2



the relative velocity |v2 - v 1. This means that v' and v' can be switched without

changing the value of the integral. From this, the linear part of the collision integral

beconmes:

J(261 - 6 - 62)fd1,b2IVu2 - Uljdidvjd2

This integral call be split into 3 integrals which will give rise to the kernels K1 and

K 2 and to the collision frequency v.

A.1.i Kernel K 2

The second kernel comes from the term f f f62 fdlfmb21V2 - vldodvQdv1 dv2.- In

this expression, the scattering angle does not play any part since the postcollision

velocities do not appear. The integral over the scattering angle can be taken out and

simply give 47. Because of the dirac 6(v - v 2), the integral over v 2 will simply be the

value of the intregrant for v = v2. We are left with 47r f d(vl)f,,b(v) I - vll dvt.

The kernel appears naturally and is:

7rd 2nb v2 d2nmbK2 (v, l) 
3/2 v3 exp(- -- )v - v1l = /2b exp(-v*2)* - Uv*I

rnmb "mb b1/2 2 mb

since a = d2/4, where d is the diameter of the hard sphere molecules and because

fmb(v) -= ,nb exp(-v 2/vUb).
7rib

For convenience, we introduce the prefactor pl = d . The kernel is then

KI2 (v, vl) [ /1 exp(-v*2)Iv* - vl*1.

A.1.2 Kernel K 1

The first kernel comes from the term f f f 26~fdlfmb2 Iv2 - , 1 udQdvl dv2. In 181,
it is shown that this term is equal to:



2 / f,(v,) *vb,----ivlpd2
JviER ) - • v2EP

where P is the plane orthogonal to v - v, andll that passes through v1 .The second

integral is thus an integral of a 3 dimensional I\Iaxwellian over a plane. By means of

appropriate change of variable, it is easy to show that it is simply mv)tr, ,.rb Vk--•vv)

The factor ,rvi,, comes from the integration of the Maxwellian over the plane and

the expression d = "'(Iv-v) is nothing but the distance between the origin of the axis

0 and the plane, which we get by projecting v (a point that stands on the plane) on

the unit normal "-'I,,-Vil"

Following this, the whole term is:

f 4 2 [ v - (v2 - vI) l
2 I fd(v") v -- V1 mbfmb IV- V 11iJ

This integral is a convolution of fd against a kernel K1 which is:

K, (v, v1) = 2 _ Tr4am7 bfmb - (V - V-i

where we have .fmb  -, = exp I*--, 2], a = d2/4 for hard

sphere molecules, and where 1/1v - vil can be written as 1/(vm,,,blv* - v), which

finally leads to:

K, (v, vi) = exp (v* v
IV* - vj* IV* - v*I

d
2
nrtbwhere we recall that we denote l/ = 72

73



A.1.3 Collision frequency function

The collision frequency function comes from the term f f f 65 fJ1frb,21V2 - Vl ITadQdvldv2.

As previously, the integral over the scattering angle can be taken out and results in a

factor of 47r. The dirac lies now on v1 : 6(v - vi). The integral over v- is equal to the

integralnd taken in vl = v. The whole term reduces to 4rrafd(v) f fmb(v2) v2 - vl dv2.

It can be rewritten as:

4 ufmb2/.02 V2 fV V 347ro f(v) fmb(V2) v2 - v Id3v2 - f/d(V) exp(-v2/v2 ,b)vrmb 1 1dv 2
47rO7n m ..b 3 2fIV* *•d 3V•

7r3/2r 2 bf da(v) *exp(-v*2 - d

The term v(v*) = fexp(-v 2 )lv* - v*jd 3v is just a function of v*. It can be

calculated by the change of variables v6 = v - v*:

v(v*) = exp(v*2)v* - v*dv = exp(-(v* + v-) 2 ) id 3

We caln then switch to spherical coordinates with v*/Iv*I as z-axis. the integral

becomes:

(v*) ff exp(-(Ov* ez + re,)2)r 3sinOdrdod

= exp(- v*2 _ r2 - 2v*lrcosO)r sinOdrd0dq

The integral versus 0 results in a prefactor of 2rr. The integral versus 0 can be done

explicitely and leads to 2& (exp(- (v* 2 r2 +2v* r)-exp(- v*12 r 2 - 2 v* r)) The

integral of this latter function versus r is carried out by parts. The integrand can

be written as 2"w2~xp-1*12) (exp(-r 2 + 21v*lr) - exp(-r 2 - 21v*lr)) The integration

by parts leads to:



v(v*) = 2rexp(- Iv* 2) v exp(v*2 )erf(lv*I) + v* + v*2 /exp(v*2 )erf(Iv* )21v*1 (-2

After some cancellations, we get the final expression:

v(v*) =21 (v/erf(lv*l) + 2lv*I exp(-v*2 ) + 2v/7v*2 erf(lv*I))

Coming back to the initial expression, the whole term is

47r'7Lhmbumb d2rLZmbVmb47fVmbVnb d(v)v(v*) .2fd(V)V(V*) = 1P2il(V)V(V*)
7 3/2  fdv)vv) 71/2 2

where we used the fact that a = d2 /4 and where we denote p12 = 1 = /2

l-2 has the dimension of a frequency. /12V(v*) is the collision frequency of a particle

at velocity v with the entire Maxwellian.

In summary, the collision term can be written as:

C(f, f)(v) = Ki(v, vl)fd(vl)d3vl- / K 2 (v, v1)fd(v1)d 3vl-P2fd(v)V(v*)±C(fd, d

For this case where the local Maxwellian has no mean velocity, this expression was

proposed under a slighty different form in [2].

A.2 Kernels for a shifted Maxwellian (Umb # 0)

All the above derivations have been carried out while assuming that the maxwellian

was simply fmb = nmb/(r 3 / 2Vmb) exp(-v 2/Umb). In this part, we will derive the

kernel when the local maxwellian is not centered on zero but is equal to fmb =

fLmflb/(;:mb/ ) exp(- (v - umb)2/VUb).

To deal with the fact that the Maxwellian is not centered on zero, we will be doing

the change of variables w = v - Umb, where Umb is the mean velocity of the local



MIaxwellian. For a given pair of precollision velocities vi and v2. the corresponding

postcollision velocities can formally be expressed as:

I{ v1V2 + ±R(0, 0) V1-V2

V1+V2 R(O,1) .V1-V2

where R7(0, 0) is the matrix of a rotation with a scattering angle equal to 0. Replac-

ing vl and v 2 by respectively U•b + wl and Umb + W2 , we see that the postcollision

velocities expressed in terms of the shifted velocities w 1 and w 2 are:

v• ub + W1+W2 ±R.(O,,). W1-"W2 = UIb+W
2 2 =

V2  U b + R(+w2 - R(0, ) - Ub + W2

where w' and w' are the postcollision velocities corresponding to the precollision

velocities wz and w 2 , that is to say, the same operator applied to wl and w 2 . In

short, the postcollision velocities of the shifted velocities is equal to the shifted post-

collision velocity of the nonshifted velocities.

v. ' V ,

A.2.1 Kernel K2

As seen before, K 2 comes from the term fff 6 2fd1fmb21V2 - vlladQdvidv2.

Now, the Maxwellian is fmb(V) -= mbVb -3/2 exp[l-(v* - u* b)2 ], where we used

again the notation v* = v/vmb With Vmb being the most probable velocity of the

Maxwellian. We can then rewrite this expression as

f f f 6(v - V2)fd(v)nfmbVa -lr-3/2 exp[-(v* - u*) 2 1v2 - vllOudQdvldv 2. Doing the

following change of variable:



W1 = Vl - Umb

W 2  = V 2 - Umb

<W = v - Urmb

d v3 = d
3 

wZ

d:v2 = daw2

the above integral can be turned into:

2i2.2fd1(v) = f - W2)fd(Ub + Wb1 ) rmb exp(-w*2)Iw2 - wllcrdfdwlidvw2

Note that nmbv,w-:3 -3/2 exp(-w*2) as a function of the dununy variable w2 is the

nonshifted Maxwellian used in the previous section to derive the kernels. If we

rename the dunmmy variables wl and w 2 into vi and v 2 , we have the same expression

as the one that serves to derive the kernel, exept that it is applied to the function

v --- fd(umb+v) instead of v -+ fd(v) and that the dirac bring into play the velocity

w instead of v. Following the results of the previous section, the whole integral is

then equal to:

K2fd(v) = K 2(w, wl)fd(ub+ w1 )d 3

We can apply again the change of variable, but in the other way. This leads to

K 2fd(v) - K 2(V - mb, V1 - Umb) fd(Vl)d3Vl

For convenience, we will use the notation:

K 2fd(V) = K 2 * ,wl )fd(vl)d3vl

A.2.2 Kernel K 1

The derivation for K 1 is almost the same as the one for K 2. The only difference

is that it brings into play the postcollision velocities.



The initial term is Kif, = 21 ff 6(v -Vl).fd(vl)f,,(v2) v 2 - VijudQ(dvidv.2.

Here again, we have f,.,b(v) = .,rnb,.,,, 7-3/_2 exp[-(v* - U .b)2 ]. By doing t.he same

change of variable as previously, and using the fact that wI (wl, w2) = v' (vi, v 2 ) -

Umb. We get:

6K(fd(v) = 6(w - W').fd(Umb + W1) r exp(-w 2 )w 2 - w dQid' 2

As before, we get, the term used to defined the kernel K1 for a nonshifted Maxwellian

applied to the fimunction v -+ fd(Umb + v) instead of v -+ fd(v). Doing the same

operations as before, the final expression is:

Ilfa(v) = K(w, wl)fd(v )d"vl

A.2.3 Collision frequency function (v)

The function v was derived from the term

rfda = J f f 6(v - vl)f (V1)fmb (v2) lv - via dQdvUdzv2

Writting fmb as a shifted Maxwellian, doing the same change of variables as

before, and identifying with the definition of the function v, we finally get:

fd(v) f J 6f(w - W) fd(mb 3n1 ) exp(-w*2 )W 2 -2 w1 udQdwldW02

= v(w) fd (v)

A.3 Computation of the moments of the Kernels

In this section, we will derive the expressions of the moments of the kernels used

to calculate the shifting of the Maxwellian. All those moments will be calculated

with resprect to the mean velocity of the Maxwellian. In other words, we choose the

frame moving at Umb as reference.



Let K; denote K 1 or K2 and M(w) be either 1, wl, or Iwi 2 . The moments of

Ki.;t are .f M(w)Kifjl(v)d3 v, where KIfl(v) = K Ii(w, Wl)•l(vl)(Vl

In Chapter 3, it is shown that computing f M(w)KIfid(v)d v requires the com-

pua)tion of the functions W1 - f MI(w)Ki(w, wl)dJw. The moments of Kfl,f are

then obtained by integrating the product of these functions with .fa.

We can start by simplifying this expression. We know that Ki(w, wi) = /iK* (•,, ,,) =

tIKi*(w*, wi*). After the change of variable w* = w/vmb, d3w* d3 w/vUb, we can

write the moments of the kernel as l,,b f A(Vbw*)K(w*, Wl*)dw* , where the

IC* are now nondimiensionnal functions.

These integrals are then computed separately for K1 and K 2. This is the object ot

the following two sections. The algebra is long and not very interesting. Therefore,

the derivations will be restricted to the salient points of the derivation.

A.3.1 Moments of the Kernel K2

The moments of K 2 are i1vbf M(?bw*)Iw* - w* exp[w*2 3 w* By doing

the change of variable fv* = w* - wl*, it can be rewritten as

[ AVmb fM(V,,rnbW + VmbW*)W*) exp[-(w* + w*)2 ]d3w*. We now switch to spheri-

cal coordinates with an orientation choosen so that the main axis be wl*/Iwl*l. We

then write w* = rer The expression of the moments becomes

I.tVmb .f M (VmbWl* Vmbrer) exp[- wi*12 - r2 - 2rlwli* cos 9]r sin OdrdOdO

A.3.2 Moments of the Kernel KI

The moments of K 1 are 21v mbf M(vmbw*)ilwI exp[-(w* (w* - wl*)/jw* - w**1)2 d 3W*

By doing the same change of variable as previously and using the same spherical coor-

dinate system, we can rewrite it as I•Ilvb f M(vmbWl* + vmbrer) exp[- (r + cos O) 2]r sin OdrdOd4



A.3.3 Results

The above integrations can then be performied analytically (by integrating by

part). The algebra is not interesting and leads to complicated expressions which

happens to simplify when we substract them to get the moments of KI - IK2 . We

will just provide the results, which were obtained with a formal calculus software.

I [KI(w, w) - K 2(w, wi)]d3w = v(w 1)

Sw[Kii(w, wi) - K2(w, wi)]d3 =3 WI (W1)

w2[Ki(w,w)-K(w, wi)]d - K2 i 3 I12(w)

A.4 Mean value of the Kernel K 1 over a ball

We will derive in this part the mean value of the kernel K 1 over a ball centered

on vl and of radius v,. Let B denote this ball.

The nondimensional kernel is:

2 [ (v* (V* - Vi*)) 2

K*(v*, vi*) = exp .
K*( * l v* - vI*II V* - V1*12

Let's note V* = v* - vl*. Let's define the spherical coordinates with the z-axis

parallel to vl*. We then have vl* = Ivl*lez. V* run on the sphere centered on 0

and of radius v*. In the spherical coordinates, we then have V* = re,. With these

notation, we have v* = vi* + re,.

We then have:



KIt(v*, vi*)d 3 v* •-exp [-((vl* + re,) -er)2 ] r si2n(O)drdOdI

= 2 f rexp [-(vi* e, + r) 2] sin(O)drd8Od:

= 2 r exp [-(Ilv* os(o() + r)2]sin(O)drdOdo

= 4 J/rexp [-(vl cos(0) + r)2] sin(O)drdO

= 27r3/ 2  [-erf(-Ivl*j + r) + erf(Iv1*I + r)1] d(

Since v* will be much smaller than 1, we can proceed to a Taylor expansion of

-erf(-lvi*l + r) + erf(Ivi*l + r) around vi*l. The first order cancel out, and we are

left with 2erf(Ivl* ). We then have:

K*(v*, vl*)d 3v*
47 3 /2 erf( v * I)

Ivl*I
r(r

0

erf( Iv* l) 3/2 *2=2 I1 I

To get the mean value, we divide by the volume of the sphere (4/3)rvc3 and get

3 erf(jvl * )r 1/21

2 (Ivi*I v*

The corresponding dimensional value is then

3 erf(Ivl*l) 1/21

2 Ivi*l -V

where vl* = V1/Vmb.



Appendix B

Derivations of Advection Formulae

B.1 Derivation of Vfmb

In this section, we want to derive the expression of Vfmb, given that for a fixed

velocity v, the function x - fmb(X, v) is piecewise constant. The function Vfmb will

then be zero everywhere, exept at some locations where it will be a dirac distribution.

.f,,i (b, v)
*1

Sn .

/1 /2
I I- l I

V -CrV
X=0

We can find this dirac by writing fmb is ternis of an heaviside function H whose

definition is:

H(x) =
0

if x > 0

otherwise

It is known that the derivative of this function is H'(x) = 6(x), where 6 is the dirac

distribution.

I

n



On the other hand, for a fixed velocity v, the function f,,at(', v) over the two adjacent

cells under consideration can be written as

.fmb(X, ) = .fb()H(n - x) + fb(v)H(-n -x)

Simple differentiation rules tell us that VH(n - x) = V(n - x)H'(n x) = n6(n x).

Combining the last equations, we obtain that the gradient is

Vfmb(X, V) = (f b - frrb)6(n " x)n

B.2 Solution of 8 f /t + v - Vf = g(x, v, t)

In this equation, v does not show up in differentiations and can thus be considered

as a constant parameter. We then do the change of variable:

8 (X,t)
u(x,t)

= x-vt

= t { t(s, u)
t= t(8,. ,)

= s+vu

= n'

The corresponding derivatives are:

as
08

Ou

at
au

ax

- -v

=I

- 1

-o

Here, !7 denotes the gradient of the "vector field" s(x), I is the identity matrix,

and IM is the gradient of the "scalar field" u(x).

In this new system of variable, we then have:



iOf Of O)s Of Ou O.f Of
+ -v. +

Ot Os Ot Ol Ot Os Ou

Of Of Os +Of Ou Of
kOx 0s D Oi Ox Os

The left hand side of the equation becomes Of/lt + v -Vf = Of/Ou. The equation

is then Of/O. = g(s, v, it). For convenience, we used the not rigorous notation

g(s, v, u) = g(x(s, u), v, t(s, u)) and the equivalent one for f. Integrating versus u

at constant s leads to f(s, v, u) = fo g(s, v, u')du' + h(s, v).

We now go back to the original variables. The constant value of s is s = x - vt.

Then, t' = u' and x'(s, u') = s + vu' = x - vt + vt'. This leads to

f(x, v, t) = g(x - vt + vt', v, t')dt' + h(x - vt, v)

Doing the change of variable t' -- t - t' in the integral, we get:

f(x,,t) = g(x - vt',V,t - t')dt'+ h(x - t,v)

Using the initial condition, namely the distribution at t = 0 f(x, v, 0), it becomes

f(x,v,t) = g( -vt',v,t - t')dt' + f(x -vt, v,0)
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