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Abstract

This thesis presents several trajectory optimization algorithms for a team of cooper-
ating unmanned vehicles operating in an uncertain and dynamic environment. The
first, designed for a single vehicle, is the Robust Safe But Knowledgeable (RSBK)
algorithm, which combines several previously published approaches to recover the
main advantages of each. This includes a sophisticated cost-to-go function that pro-
vides a good estimate of the path beyond the planning horizon, which is extended in
this thesis to account for three dimensional motion; constraint tightening to ensure
robustness to disturbances, which is extended to a more general class of disturbance
rejection controllers compared to the previous work, with a new off-line design pro-
cedure; and a robust invariant set which ensures the safety of the vehicle in the event
of environmental changes beyond the planning horizon. The system controlled by
RSBK is proven to robustly satisfy all vehicle and environmental constraint under
the action of bounded external disturbances.

Multi-vehicle teams could also be controlled using centralized RSBK, but to re-
duce computational effort, several distributed algorithms are presented in this thesis.
The main challenge in distributing the planning is to capture the complex couplings
between vehicles. A decentralized form of RSBK algorithm is developed by having
each vehicle optimize over its own decision variables and then locally communicate
the solutions to its neighbors. By integrating a grouping algorithm, this approach
enables simultaneous computation by vehicles in the team while guaranteeing the ro-
bust feasibility of the entire fleet. The use of a short planning horizon within RSBK
enables the use of a very simple initialization algorithm when compared to previ-
ous work, which is essential if the technique is to be used in dynamic and uncertain
environments. Improving the level of cooperation between the vehicles is another
challenge for decentralized planning, but this thesis presents a unique strategy by
enabling each vehicle to optimize its own decision as well as a feasible perturbation
of its neighboring vehicles' plans. The resulting cooperative form of the distributed
RSBK is shown to result in solutions that sacrifice local performance if it benefits the
overall team performance. This desirable performance improvement is achieved with



only a small increase in the computation and communication requirements.
These algorithms are tested and demonstrated in simulation and on two multi-

vehicle testbeds using rovers and quadrotors. The experimental results demonstrate
that the proposed algorithms successfully overcome the implementation challenges,
such as limited onboard computation and communication resources, as well as the
various sources of real-world uncertainties arising from modeling error of the vehicle
dynamics, tracking error of the low-level controller, external disturbance, and sensing
noise.

Thesis Supervisor: Jonathan P. How
Title: Associate Professor
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Chapter 1

Introduction

1.1 Background

The role of the Unmanned Aerial Vehicle (UAV) has changed over the past five to ten

years as the level of autonomy onboard the vehicle increases. The primary advantage

of UAVs is that they can perform missions in dangerous environments, such as battle

fields and devastated areas, without risking the life of the human pilots. The variety

of application areas include war zones, surveillance, forest fire monitoring, disaster

relief, and weather forecast.

The environment in which UAVs are deployed is becoming complex, where the

vehicles are required to account for no-fly zones, adversarial forces, and many com-

peting objectives. What makes the problem even harder is the dynamically changing

situational awareness (SA): the environment is typically poorly known when the ve-

hicles enter the region of operation; and new information becomes available as the

mission progresses. Therefore, the plans must be generated online while adaptively

accounting for the changes in the SA.

Current UAVs, such as Predator or Global Hawk, typically require several oper-

ators per aircraft, even when performing simple tasks [1, 2]. In the future, a less

costly approach is envisaged, which allows a single operator to control multiple semi-

autonomous vehicles [3, 4]. This requires a development of distributed onboard plan-

ning capabilities that can reduce the communication with the ground station and



enhance the autonomy of the UAV team. In order for the UAVs to further expand

the capabilities and perform more complex tasks, recent research has focused on de-

veloping new planning and control architecture for unmanned systems [5].

This effort spans many aspects of planning problems including task assignment,

path planning, and vehicle health management. However, dealing with all the aspects

simultaneously is very complex, especially since the planning system must handle var-

ious types of uncertainties in the problem such as navigation error, unknown motion

of a moving target, discovery of a new threat, and malfunction of a vehicle. As

a result, hierarchical approaches have been widely used to decompose this complex

problem into several layers of tractable problems [6-9], leading to a task allocation

layer [10-13], a trajectory planning/guidance layer [14, 15], and a low-level/inner-loop

control layer [16, 17], where each layer generates plans/controls that are robust to the

uncertainties in the environment and in the vehicle system. Among these, the focus

of this thesis is on the trajectory generation layer of this architecture. The goal of

the research is to develop an algorithm that enables a fleet of vehicles to make tacti-

cal decisions autonomously and cooperatively in a distributed manner and generate

trajectories to execute missions while accounting for the uncertainties in the problem.

1.1.1 Model Predictive Control/Receding Horizon Control

Trajectory planning for autonomous vehicles has been studied in many fields including

robotics, aerial vehicles, undersea vehicles, and spacecraft [18-21]. The problem of

recent interest is characterized as constrained optimization problem in which the

vehicle has dynamic constraints such as speed bounds, input saturation, and limited

flight envelope, and the environment has obstacles and no-fly zones to avoid. This can

be formulated as an optimal control problem [22, 23], and numerical approaches, such

as pseudospectral methods [24, 25] and nonlinear trajectory generator (NTG) [26, 27],

have been proposed.

Model Predictive Control (MPC) or Receding Horizon Control (RHC) has re-

cently drawn attention from a variety of fields because it can systematically handle

constraints and multivariable systems [28-31]. The basic approach is to use a model of
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Figure 1-1: Trajectory planning using MPC/RHC. The vehicle is augmented with a
low-level controller. The knowledge on the environment is handled at the planning
layer.

the system to predict its future behavior and generate control inputs that satisfy the

constraints and optimize the performance objectives. The optimization is repeated

online as the vehicle maneuvers and new measurements about the vehicle states and

the environment are obtained. Each online optimization uses the current SA, which is

constantly updated based on the latest measurements and inputs from other vehicles,

so the algorithm using MPC is explicitly adaptive.

Traditionally, MPC has been successfully applied to the field of process con-

trol [29, 30] where the time constants of the dynamics system are typically on the

order of minutes or hours. Recent advances in the computational power has enabled

the application of MPC to systems with faster dynamics, such as cars and aircraft.

Because of their ability to handle the constraints, MPC/RHC are natural techniques

for trajectory optimization problems [27, 32-34]. A key advantage of these optimiza-

tion based controllers is that they can operate close to the constraint boundaries and

obtain better performance than traditional approaches [29, 31, 35].

One challenge in applying MPC to the trajectory generation problem is to en-

sure that the online computations are tractable in real-time. To reduce the com-

putational burden, RHC truncates the optimization at a finite horizon and uses a

terminal penalty, also known as cost-to-go, which represents the rest of the trajec-

tory [36]. Building on the roadmap method in the robotics field, our approach uses

multi-resolution planning, where the trajectory planner optimizes detailed local plans

over the horizon and connects it to approximate plans beyond the short planning hori-

zon [32]. Several types of approximations have been developed to form a cost-to-go



function depending on the amount of far-field information available [8, 32, 37, 38],

providing a good estimate of the remainder of the path to reach the target, even in a

complicated environment. Compared to the full horizon MPC, which generates a long

trajectory up to the target, these approaches avoid wasting computational resources

to generate a plan in the far future, where little information is typically available and

significant updates in the SA can be expected. Throughout the thesis, the planning

algorithm uses this multi-resolution receding horizon strategy.

1.1.2 Robust Model Predictive Control

As stated above, the optimization based MPC/RHC controllers can operate close to

the constraint boundaries [35] for a better performance. However, as a result, small

disturbances could drive the system into an infeasible region, so it is important to

systematically handle the uncertainties in the system. Recent research has focused

on robust MPC, which is robust to external disturbances or inherent discrepancies

between the model and the real process, and numerous techniques have been proposed

in the past decade [30, 39-47].

Min-max based approaches [40, 46, 47] minimize a performance index while guar-

anteeing constraint satisfaction under the worst-case disturbance. The main disad-

vantage of this approach is that it is computationally intense, and it is not suitable

for online optimization. Computationally tractable (i.e., solvable in polynomial time)

approaches have been proposed using linear matrix inequalities (LMIs) [42, 45, 48].

The stability and the robustness of these LMI-based controllers have been proven us-

ing convex optimization techniques. Robust optimization [49] is also used to ensure

that the solution is robust to any uncertain data realization.

The Constraint Tightening approaches proposed in [41, 50] are based on the idea of

increasing the robustness of the controller by systematically tightening the constraints

of the predicted states. The margin retained in the constraints becomes available to

the MPC optimization as time progresses [51]. This margin is calculated offline to en-

sure room for future feedback correction in response to the disturbance. The amount

of tightening has a large effect on the performance and the conservatism of the MPC



controller, and Chapter 3 presents a new offline procedure to determine the feedback

policy that can tolerate much stronger disturbances and achieves much better per-

formance in the high disturbance regime, compared to the previous work [52]. An

important advantage of the constraint tightening method is that the number of de-

cision variables and constraints in the online optimization are unchanged from the

corresponding nominal MPC problem, so it is well-suited for real-time applications.

1.1.3 Multi-vehicle Control

With an increase in the mission complexity of UAVs, a tighter coordination among

the vehicle fleet is becoming essential in the mission success [53, 54]. The coordination

and control of multiple vehicles have many applications in the aerospace field, such as

formation flying spacecraft, cooperative search and track (CSAT) mission of UAVs,

and UAV rendezvous problems [8, 53-56]. To enable fleet-level cooperation, the

controller must properly capture the complex interactions between the vehicles and

tasks. One approach is to solve this problem globally, but centralized algorithms

typically scale very poorly with the fleet size because of the computational effort

involved. A natural approach to decompose the centralized problem is to let each

vehicle optimize its own decision variables. The vehicles then need to communicate

the solutions with each other, so that the fleet as a whole executes consistent plans.

A key challenge of decentralized control is to ensure that the distributed de-

cision making leads to actions that are consistent with the actions of others and

satisfy the coupling constraints [57, 58]. Various approaches have been investigated

to address this problem, including treating the influence of other subsystems as an

unknown disturbance [59], coupling penalty functions [33, 34, 60], partial group-

ing of computations [61], loitering options for safety guarantees [62], and dynamic

programming [63, 64]. Some approaches involve iterative negotiations between sub-

systems [60, 65] and apply game theory to study convergence. Decentralization is

further complicated when disturbances act on the subsystems, making the prediction

of future behavior uncertain. The thesis uses robust MPC to tackle this problem so

that the distributed planner is robust to environmental uncertainties and uncertainty
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Figure 1-2: Dependency of each chapter in the thesis

in other vehicles' decisions.

1.2 Outline and Summary of Contributions

This thesis discusses both single vehicle control and multi-vehicle control using MPC.

The algorithms are tested in simulation and are also demonstrated with hardware

experiments. The logical dependency among the chapters are shown in Figure 1-2,

and the contributions of each chapter in this thesis are summarized below.

The first three chapters deal with the control of a single vehicle.

* Chapter 2 briefly goes over the receding horizon trajectory planning strategy and

the Mixed-integer Linear Programming (MILP) implementation (RH-MILP).

The main contribution of this chapter is the extension of RH-MILP to three

dimensions [66]. A new form of the objective function is developed that enables

the vehicle to stay close to the ground but fly over the obstacles if necessary. The

objective function captures the maximum rate of climb of the vehicle, and by

combining it with the detailed dynamics used in MILP, the algorithm generates

a kinodynamically feasible trajectory in three dimensions. Several approxima-

tions are also developed to encode the new objective function in MILP. The



overall formulation is shown to be tractable for the online planning use.

* Chapter 3 presents a robust MPC using constraint tightening. The first con-

tribution of this chapter is the generalization of the feedback correction policy.

Through the reparameterization of the feedback gain, the new algorithm is

shown to represent a strictly larger class of feedback policies when compared to

previous algorithms [41, 52]. The approach ensures that if the first optimization

is feasible, then all future online optimization will be feasible and the system

meets all the constraints under the action of disturbances.

The second contribution of this chapter is the development of a new offline con-

vex optimization procedure, which enables us to design a disturbance rejection

controller that can tolerate much stronger disturbances. As a critical element

of this procedure, the chapter derives necessary and sufficient conditions for the

existence of a nonempty output constraint set, and a sufficient condition for the

existence of a nonempty robust invariant set. Simulation examples show the

significant performance improvements over previous approaches at high distur-

bance levels.

* Chapter 4 develops Robust Safe But Knowledgeable (RSBK) algorithm for

trajectory optimization [67], by combining the advantages of the previous ap-

proaches [32, 68-70]. The algorithm uses the information available beyond the

planning horizon to obtain a good performance with a short planning hori-

zon; constraints are tightened in the prediction steps to save margins for future

disturbance correction and robustly satisfy the constraints under the action

of disturbance; and an invariant set is embedded in the online optimization,

ensuring that the online optimization is always feasible even in the event of

environmental changes beyond the planning horizon. The robust stability of

the controller is proven by showing that the cost is monotonically decreasing.

This chapter presents the advantages of RSBK algorithm through numerous

simulation as well as hardware experiments. The algorithm is implemented

on the quadrotor testbed flying in three dimensions, and its online planning



capability and the robust constraint satisfaction are demonstrated.

The last three chapters deal with multi-vehicle control using decentralized opti-

mization.

* Chapter 5 first extends RSBK algorithm developed in Chapter 4 to the multi-

vehicle scenario that includes both local and coupling constraints. The sec-

ond contribution of this chapter is a distributed form of the RSBK algorithm

(DRSBK) [71]. In DRSBK, each vehicle only optimizes for its own decisions

by sequentially solving a subproblem of reduced size and communicating the

solution to its neighbors. This results in shorter computation time compared

to the centralized approach and is more suitable for real-time execution. Fur-

thermore, DRSBK enables much simpler initialization of the algorithm than the

previous work on the distributed control [52] and is well-suited for online plan-

ning. The main theoretical result in this section is that with the local planning

and local communication, the algorithm is shown to guarantee the robust fea-

sibility of the entire fleet. By integrating a grouping algorithm, the algorithm

enables some vehicles to simultaneously optimize their trajectories without any

conflicts, which further reduces the fleet computation time.

Following several numerical simulations, this chapter presents results of multi-

vehicle experiments, which require overcoming many implementation challenges.

The onboard laptop on each rover solves the DRSBK subproblem and commu-

nicates the plan over the wireless network. The results show successful collision

avoidance and obstacle avoidance using the real vehicles subject to disturbances

and modeling errors, and demonstrate the distributed onboard computation ca-

pability of the DRSBK algorithm.

* Chapter 6 presents a new cooperative decentralized optimization algorithm [72].

The main contribution of this chapter is the development of the decentralized

algorithm that minimizes the global performance by solving a series of "small"

subproblems among the distributed vehicles, without reproducing the global



optimization problem for each vehicle. The chapter shows that the global ob-

jective is proven to monotonically decrease over iteration, and the feasibility

of the entire team is maintained. Numerical simulation results show that this

approach produces much better performance than the non-cooperative decen-

tralized algorithm and is more scalable than the centralized approach.

Chapter 7 presents a cooperative form of DRSBK algorithm for the multi-vehicle

trajectory optimization, by extending the technique introduced in Chapter 6 to

the MPC framework. The algorithm presented in this chapter achieves coop-

erative behaviors by enabling vehicles to sacrifice the local cost if it leads to

the improvement of the global cost. The global cost is shown to monotonically

decrease even under the action of disturbances. Finally, the hardware exper-

iment on the multi-vehicle quadrotor testbed demonstrates the advantages of

the algorithm.





Chapter 2

Three Dimensional Receding

Horizon Control for UAVs

This chapter presents a receding horizon controller (RHC) that can be used to de-

sign trajectories for an aerial vehicle flying through a three dimensional terrain with

obstacles and no-fly zones. To avoid exposure to threats, the paths are chosen to

stay as close to the terrain as possible, but the vehicle can choose to pop-up over

the obstacles if necessary. The approach is similar to the previous two-dimensional

algorithms in [32, 68], which first construct a coarse cost map to provide approxi-

mate paths from a sparse set of nodes to the goal and then use Mixed-integer Linear

Programming (MILP) optimization to design a detailed trajectory. The main con-

tribution of this chapter is to extend this approach to 3D, in particular providing a

new algorithm for connecting the cost map and the detailed path in the MILP. An

initial guess for MILP RHC is constructed from the previous solution and is shown

to reduce the solution time. Several simulation results are presented to show that

the path planning algorithm yields good overall performance and is computationally

tractable in a complex environment.



2.1 Introduction

With the enhancing capability of UAVs, their operation areas are being expanded to

very complicated environments (e.g. urban) that have complex terrain [3]. In these

environments, the vehicles can go over or go around the obstacles or no-fly zones, so

path planning in three dimensions (3D) is a key technology to achieve the mission

goals. In the past, vehicle guidance algorithms that avoid obstacles or other vehicles

have been well studied in the areas of air traffic control, ground vehicles, and even

UAVs. However, they typically assume the vehicle remains in a horizontal plane so

that the path planning is two dimensional [73-75]. This chapter presents a new guid-

ance method for vehicles flying in 3D environments to reach the target in minimum

time. This method builds on the extensive literature in the fields of computational

geometry and robotics on shortest path problems on 2D polygons, 3D surfaces, and

3D spaces [76-78]. Similar to previous results in [32, 68], the approach combines these

shortest path algorithms with path planning techniques that use the vehicle dynamics

to produce kinodynamically feasible trajectories that guide the vehicle to the goal.

The detailed trajectory optimization is conducted using Mixed-integer Linear Pro-

gramming (MILP) [39, 79], which is well-suited for trajectory planning because it can

directly incorporate logical constraints such as obstacle avoidance and waypoint se-

lection and because it provides an optimization framework that can account for basic

dynamic constraints such as turn limitations and maximum rate of climb. The re-

ceding horizon approach (RH-MILP) enables us to exploit the power of this MILP

formulation in a computationally tractable algorithm [32, 68]. It solves a MILP for a

detailed trajectory that only extends part of the way towards the goal. The remainder

of the maneuver is represented by a cost-to-go function using path approximations.

Previous work on RH-MILP presented heuristics that used straight line paths to es-

timate the cost-to-go from the plan's end point to the goal [32], but was limited to

2D environment. Some extensions are presented [68, 80] to compensate for the differ-

ences between the straight-line approximations in the cost-to-go calculation and the

dynamically feasible paths that would be followed by the aircraft. Further extensions



are required if the vehicles are to fly close to the surface of a 3D terrain in order

to avoid threats such as radars [81]. In these cases, the vertical vehicle maneuvers

(e.g., descend, climb up) have a significant effect on the overall trajectory, and a new

cost-to-go function is needed to better estimate the future vehicle maneuvers.

This chapter extends this approach to 3D, in particular providing a new algorithm

for connecting the cost map and the detailed path in the MILP. This connection is

achieved by introducing a new cost-to-go function that includes an altitude penalty

and accounts for the vehicle dynamics. Several simulation results are presented to

show that the path planning algorithm yields good overall performance in a complex

environment. Also, an algorithm to provide starting values with MILP is presented

in Section 2.5, and is shown to reduce the solution time.

2.2 Algorithm Overview

The problem statement in this chapter is to design a trajectory from the current

vehicle states xo to the target location Xgoal while minimizing some performance

metric J. The vehicle dynamics are assumed to be LTI

Xk+1 = AXk + BUk, Vk > 0

and the vehicle must satisfy constraints on the states, inputs, and/or the combination

of both

Czk + Duk Y.

Figure 2-1 shows the three resolution levels used in the RH-MILP approach. In

the near term, the MILP optimization solves for a detailed trajectory that extends

from the current position towards the goal, but does not necessarily reach it. The

line with bullets in Figure 2-1 shows this segment, which is called a planning horizon.

In the far term, approximate trajectories from a set of points on the obstacles (called

cost points) to the goal are solved by a graph search. The resulting information is
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Figure 2-1: Schematic showing the three different resolution levels used in the RH-

MILP approach to trajectory optimization.

stored in the cost map. The cost map is used to account for decisions beyond the

planning horizon because it gives an estimate of the time to fly from each cost point to

the goal. These two trajectories are then connected through the cost-to-go function

in the RHC. The detailed trajectory is re-optimized online by the RHC while the

vehicle executes the previous plan. The approximate trajectories are also updated

online as the knowledge of the environment changes. Splitting the problem into these

different levels of resolution significantly reduces the computational effort to solve for

the detailed vehicle trajectory while ensuring that the future decisions are (at least

approximately) taken into account.

The proposed algorithm consists of two phases: the cost map construction (Sec-

tion 2.3) and the detailed trajectory optimization (Section 2.4). In the cost map

construction phase, the environment is first mapped to a visibility graph consisting of

nodes and arcs (Section 2.3.1). The nodes represent candidate trajectory points that

the vehicle could fly through, and each arc connecting two nodes represents an approx-

imate trajectory between them. The visibility between each pair of nodes needs to

be ensured so that the arc connecting them is collision free and flyable. Section 2.3.1

presents a Linear Program (LP) that can be used to check the visibility. This new LP

formulation is very flexible and can be used online for complex environments. The



next step is to compute the shortest paths from the coarse grid of nodes to the goal

using Dijkstra's algorithm. The results are then stored as a cost map (Section 2.3.3).

The accuracy of the path approximation depends on the node location. However,

finding the exact shortest path in 3D environments is shown to be computationally

intractable [82], even without the vehicle dynamics, and Section 2.3 approximates the

shortest paths by introducing nodes on obstacle edges.

In the detailed trajectory optimization phase, MILP is used to formulate the

overall problem. First, Section 2.4.1 presents a simple vehicle model used in the 3D

trajectory planning. Section 2.4.2 presents a new cost-to-go function that is required

to connect the detailed trajectory provided by MILP and the cost map produced by

the graph search. Note that the limited set of nodes in the visibility graph allows

the MILP to select an approximate routes from a coarse set of choices, which can

significantly reduce the computation load.

2.3 Coarse Cost Map

This section presents a cost map that can be used to find approximate paths from

a set of nodes to the goal. The formulation below assumes that each obstacle has a

convex shape. Non-convex obstacles can be easily formed by having multiple convex

obstacles intersect with each other. In 2D cases, the corners of the obstacles together

with the start and the goal points form a set of nodes in the visibility graph. In the

three-dimensional case, however, shortest paths rarely visit obstacle corners [77]. This

chapter approximates the candidate nodes of shortest paths with obstacle corners on

the ground (z = 0) and a middle point of each edge above ground-level. More vertices

can be introduced on each obstacle edge, but the computation load both in the cost

map construction phase and in the detailed trajectory design phase grows rapidly

with small improvements in the accuracy [77].
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Figure 2-2: Thick line shows the arc connecting a pair of nodes xi and xj. The

visibility between this pair is blocked by the obstacle 7k. The intersection point r is

inside the polygon.

2.3.1 Visibility Graph in n-dimension

This section presents the visibility graph construction in an LP form. The previous

RH-MILP approaches assumed that the obstacles are 2D rectangles [32, 68]. The

new formulation presented in this section extends to n dimension and can handle

any convex obstacles. The implementation is very simple, allowing fast computation

using a commercially available LP solver such as CPLEX.

Since any obstacle can be described as a collection of convex polygons, let 7k

denote the kt;h polygon

k Akr + bk < 0 (2.1)

where r E RI, and the row vectors of the matrix [Ak I bk] are linearly independent of

each other. Polygon 7Fk blocks the visibility of two nodes xi and xj if there exists a

point r that satisfies (2.1) and the following conditions.

r = X +1 (Xj - xz) (2.2)

0 < 1 < 1 (2.3)

I



As shown in Figure 2-2, the combination of (2.2) and (2.3) ensures that the point r

is on the line connecting the two nodes xi and xj, and (2.1) ensures that the point

r is on or inside the polygon irk. Given this definition, the visibility between all the

nodes for all the obstacles can be determined by solving the following LP.

min ijk (2.4)
rijk'cijk'ijk \ij,k (i<j)

subject to

Akrijk + bk • (Cijk - E) 1 (2.5)

cijk > 0 (2.6)

rijk = Xi + lijk (xj - xi) (2.7)

0 < lijk < 1 (2.8)

V i,j,k (i < j)

where the subscripts i and j represent the nodes in the visibility graph, and the

subscript k represents an obstacle. If the visibility between a node pair (i, j) is

obstructed by the kth obstacle, there exists a point rijk inside the obstacle such that

Akrijk + bk < 0. This strict inequality is implemented as

Akrijk + bk < -El

using a small positive scalar e. In such a case, (2.5) does not constrain cijk, and

therefore (2.4) and (2.6) make cijk = 0. If the visibility is not obstructed, then (2.5)

forces cijk to be positive.

Based on this discussion, the solution of the LP, c *k, can be used to determine

the visibility between each pair of nodes (i, j). The nodes (i, j) are mutually visible

if and only if

c;,j > 0, V k. (2.9)

If (2.9) is not satisfied, then at least one obstacle obstructs the visibility, as shown



in Figure 2-2. Note that the LP solution includes the visibility information on all

pairs of nodes for all the obstacles, which allows for a fast incremental update of the

visibility graph when the environment changes [83, 84].

2.3.2 Arc Lengths

Given the visibility between the two nodes xi and xj, the next step is to calculate

the arc cost Dij between the two nodes, which represents the length and the threat

exposure of the path connecting them. In the 3D environment, to avoid threats

and radar detection, it is assumed that the vehicle would like to stay as low as

possible. This objective is captured by penalizing the altitude of the path with a

weight a. The focus of the cost map is to provide candidate trajectories in the far

term. Thus, simple straight line trajectories are used to obtain the distance and

identify the approximate threat level associated with it. The arc cost Dij includes

the Euclidean distance between the nodes and the path integral of the altitude along

the straight line connecting the nodes.

Dij = Ix - x j2 2 (2.10)

where xi = [xi, Yi, zi].

2.3.3 Cost Map

Once the visibility graph is constructed, Dijkstra's algorithm is used to find the

shortest path from each node to the goal in the visibility graph [32]. Note that

the "shortest" path here is determined based on the arc cost and not necessarily

the Euclidean distance. Figure 2-3 illustrates the effect of the altitude penalty a

on the shortest path. The dashed lines show the visibility graph, and the thick

lines show the shortest path from each node to the goal. With a small penalty on

the altitude (Fig. (a)), direct connections from the goal to nodes are always shortest

paths. However, with a large penalty on the altitude (Fig. (b)), the shortest paths

tend to consist of arcs on the ground level.
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Figure 2-3: Shortest path from each node (.) to the goal in the left.

The output of the Dijkstra's algorithm contains the cost Ci from each node i to

the goal and the successors of each node on the way to the goal. This output is

stored as a cost map and provides an approximate cost-to-go at each node in the

MILP optimization, as discussed in the next section. Note that when MILP designs

a path that extends towards the goal, it simply uses the nodes as a guide, and the

final trajectory does not necessarily pass through these nodes.



2.4 Detailed Plan

2.4.1 Vehicle Model

The vehicle model presented in this section captures the key characteristics of the air-

craft dynamics in the MILP framework [85, 86]. This is done by imposing constraints

on the maximum and minimum speed, maximum turn rate, the maximum rate of

climb, and the maximum rate of descent. The vehicle is assumed to have a waypoint

tracking controller, and therefore its dynamics is described using a double integrator.

Other vehicle models can be used in this framework to better capture more detailed

vehicle dynamics such as an actuation lag [37, 87]. The linearized vehicle dynamics

in discretized form can be written as

= A +Bak (2.11)
V v

Ak+1 k

x vX ax

= y , Vy, a - ay

A = , B=
03 13 AtI 3

where the subscript k represents the discrete time step, 13 represents an identity

matrix of size 3 x 3, and 03 is a zero matrix of size 3 x 3. Vectors x, v, and a

respectively represent position, velocity, and acceleration input in the inertia frame.

The following constraints limit the magnitude of the acceleration and velocity vectors,

which in turn limits the maximum turning rate and the maximum pitching rate

L 2 (a) < amax (2.12)

L2(v) 11max (2.13)



where L 2 (r) gives an upper bound of the 2-norm of a vector r. This approximation

uses n unit vectors that are distributed in the 3D space

L2(r) >r im, m= 1,... ,n (2.14)

r [ri, r,.Z]T

im= sin 0m cos 0m, sin m sin 0m, cos 4 T

Non-convex constraints on the minimum speed

vX cos Om + Vy sin Om 2 Vmin - 2vmxbspeed,m m = 1,..., n, (2.15)

E bspeed, m > 1 (2.16)
m=1

prevent the vehicle from stalling. Constraints on the maximum rate of climb and

descent are implemented as

Vz,min < Vz <5 Vz,max. (2.17)

2.4.2 Cost-To-Go Function

The RHC represents the plan beyond the planning horizon by evaluating a cost-to-go

function at the terminal states. The cost-to-go function in the previous work used

straight lines from the terminal states to the selected cost point because it gave a good

approximation of the optimal trajectory [32]. However, the terminal penalty needs to

be revised to account for the change in the altitude in 3D environments. In the cost

map construction phase, a line integral of the altitude along the straight line is used

in (2.10) to approximate the altitude penalty in the future trajectory. In the detailed

trajectory phase, the detailed altitude profile of the vehicle is obtained over the short

horizon. The new cost-to-go function presented here allows us to connect these two

trajectories while accounting for the altitude penalty and the vehicle dynamics.

In order to simplify the presentation, the analysis in this subsection only examines

the motion in the x-z plane. The final result in Section 2.4.3 accounts for the full 3D
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Figure 2-4: Contour maps of the cost-to-go function in x-z plane. Solid line represents
the contour around the visible point P. Dashed lines show the steepest descent lines
from four points (A, B, C, D) to the visible point. In this example, Xvis = [0, 0 ]T .

motion. Let xvis = [zvis, zvis] denote a "visible" point that the vehicle is aiming for.

Then, the cost-to-go function used in this chapter can be written as

F(x, z) = V/(x - xvis)2 + (z zvis) 2 + Z - (is - x) (2.18)

a~>0, /3>0

where the first term represents the Euclidean distance between the point [z, z] and

the visible point xvis, the second and the third term separately penalize vertical and

horizontal motion. In order to illustrate the effect of this cost-to-go function, Figure 2-

4 shows a contour map of the cost-to-go function around the visible point P(Xvis, Zvis),

which is marked with El. The dashed lines in Figure 2-4 show the steepest descent

lines from four arbitrary points (A, B, C, D) to the visible point. By minimizing the

cost-to-go function, the vehicle lowers its altitude to reduce the altitude penalty when

E
N

N



the vehicle is far from the visible point and its altitude is high. As it moves closer to

the visible point, the trajectory converges to the limiting line PQ.

The second and the third term az - /3(vis - x) in (2.18) determine the elevation

angle of this line PQ. It can be shown geometrically that the major axis of the ellipse

in (2.18) forms an angle 7max with x axis, where

tanymax = -. (2.19)

This angle ymax represents the maximum path angle of the vehicle that must be

embedded in the cost map. If the vehicle crosses the line PQ, it cannot avoid colliding

with the gray obstacle on the right. However, by minimizing the cost-to-go function

in (2.18), the vehicle trajectory will not cross the line PQ, as the plots of the steepest

descent lines show.

In order for the cost-to-go function to navigate the vehicle to the visible point P,

it is required that

p - Ca2 +/32 < 1 (2.20)

otherwise, (2.18) becomes a parabola or hyperbola that has no minimum. Finally,

the coefficients a and 3 in (2.18) can be obtained from the following equations, given

the maximum path angle ymax and a parameter p.

7max /a= (2.21)
VYmax 2  1

)3= (2.22)
•7max 2  1

Choosing a larger p produces a flatter ellipse, and hence tighter trajectories. Figures 2-

4(a) and (b) compare two contours with the same 7yma but different p. The dashed

lines in the Figure 2-4(b) have tighter descent trajectories.

Note that although the cost-to-go function includes the ascending vehicle dynamics

only, the vehicle dynamics over the planning horizon capture the descending dynamics.

Therefore, the combination of the vehicle model in Section 2.4.1 and the cost-to-go



function produces a dynamically feasible trajectory over the planning horizon and

kinodynamically feasible rate-of-climb commands beyond it.

2.4.3 RH-MILP

In the detailed trajectory optimization phase, MILP uses a binary variable bvis to

select one visible point xvis from a list of cost points from which the cost-to-go is

known. Let xzp,l denote the ith cost point and i = 1,..., ncp where ncp is a number

of cost points. Then, the selection of the visible point is written as

flcp

Xvis = bvis,i Xcp,i (2.23)

i=1

nTcp

S= bvis,i (2.24)
i=1

In order to connect the detailed 3D trajectory to the selected cost point, (2.18) is

extended here to 3D

Fi(x, y, z) = (X - Xep 2i + (y - yci + (z - Z 2••2

+ az - cp ' (i= 1 ....[,ncp) (2.25)

Ycp,i - Y 2

RHC optimizes the vehicle trajectory over a short planning horizon of N steps, exe-

cutes only the first step of the control input, and starts the next optimization from

the state that the vehicle will reach. Each optimization produces a detailed, but

short, trajectory, which allows us to assume that the trajectory point x lies close to

a vertical plane passing through a cost point Xzp,l and the initial position Xk in the

plan made at time k. In this case, the last term of (2.25) is approximated as

[ ; P' -- Xcp, i - 1k X- (2.26)
ycpi - Y 2 Ycp,i - Yk 12 - Yk 2
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Figure 2-5: 'Dashed lines show path approximation by the
three dimensional environment. Each plane is formed with
ellipsoid.

If x lies on the vertical plane passing through XcP,i and Xk,

[X - yXk
Y - Yk 2

cost-to-go function in a
two axes of the contour

= ( - k) CoS Oi + (y - k) sin Oi (2.27)

(2.28)tan Oi = Ycp,i - Yk

Xcp,i - Xk

where 0i represents the direction of a vector from the initial position to the ith cost

point, projected onto the x-y plane. Note that this Oi's are calculated prior to MILP,

and are given as parameters to MILP. Let di denote the Euclidean distance between



xk and Zxp,i. Then, (2.25) is

Fi(z, y, z) V (x - Pi )2 + (y- yc+p,i (z- zcp,i)2

x - Zk Xcp,i - Xk
+az+ p

y - Yk 2 Ycp,i - Yk 2

(X- p,i )2 + (y -ycp,i) 2 + (Z - ZCP )2

+ az + P(z-Xk)cosOi+(y- k) SinBi- di}. (2.29)

The third term /3{ } in (2.29) is equivalent to the third term in (2.18); it evaluates

the horizontal distance from the point x to the selected cost point. For each cost

point, the contour of (2.29) is ellipsoid, and its major axis makes an angle 'Ymax with

the ground surface z = 0, as shown in Figure 2-5. Note that this axis is equivalent to

the line PQ in Figure 2-4.

This cost-to-go function Fi must be expressed in a MILP form. The first term in

(2.29) represents the two-norm of a vector, which can be approximated using a set of

distributed unit vectors, as shown in (2.14). The third term P3{ } can be obtained

by minimizing OJh, where

ncp ncp

Jh(, y) =E i - E bvis,i di (2.30)
i=1 i=1

with

li > (x - Xk) cos Oi + (y - yk) sin Oi - NvmaxAt (1 - bvis,i) (2.31)

li > 0 (2.32)

(i = 1,..., ncp)

If the ith cost point is not selected, bvis,i = 0, and (2.31) is relaxed. This is because

the sum of the first two terms expresses the distance traveled in the direction of the

ith cost point, which is always smaller than the planning horizon length NvmaxAt.

Minimizing Jh forces all the l4's to equal zero except for the one associated with the



selected cost point (bvis,i = 1). In particular, if the ith cost point is selected, then

min Jh = {(x- k) COS Oi + (Y- yk)sin Oi - di

as required.

Each cost-to-go function (2.25) has the global minimum at the cost point Xcp,i.

This can be interpreted as a potential function surrounding each cost point. The

decision variable bvis then makes an in-flight selection of the potential field. Path

planning techniques using a potential function typically have difficulty handling local

minima, but the dynamic mode switching by bvis overcomes this issue.

Kinematic constraints including obstacle avoidance and the ground plane can be

expressed in MILP using a binary variable bobst [75]. The constraints are applied to

each trajectory point over the planning horizon. To ensure that the selected cost point

xvis is "visible" from the terminal point Xk+N, several sample points are placed on the

line connecting these two points, and kinematic constraints are applied also to them.

For each point x = [x, y, z]T and each rectangular column shaped obstacle defined by

two corners [Xiow, Ylow, zlow]T and [Xhigh, Yhigh, Zhigh] T , the avoidance constraints can be

expressed as

x 5 xlow + M bobst, 1

Y < Ylow + M bobst, 2

z • Zlow + M bobst, 3

X Ž Xhigh - M bobst, 4

Y Ž Yhigh - M bobst,5

Z Ž Zhigh - M bobst,6

(2.33)

z > 0 (2.34)
6

Sbobst,i _ 5 (2.35)
i=-1

where M is a large number to relax the constraints in (2.33). The logical constraint

(2.35) requires at least one constraint in (2.33) be active.



The RHC minimizes the sum of the state penalty over the planning horizon and

the terminal penalty evaluated at the final state Xk+N. The overall objective function

J is then the sum of four terms

min J = min ( x,,is - Xk+j 2 + OZk+j + 1Jh(Xk+j, Yk+j)) + bvis,i Ci
j=1 i=-

(2.36)

The first three terms generate a cost-to-go function to the selected cost point, as

discussed in Section 2.4.2. The last term represents the cost-to-go from the selected

cost point to the goal, and the values Ci's are given by the cost map, as discussed in

Section 2.3.

The formulation presented in this chapter used several approximations to signifi-

cantly reduce the problem size of the complex trajectory optimization. The simulation

results in Section 2.6 demonstrate the validity of the approximations and show the

overall MILP RHC has a good performance.

2.5 Initial Guess for MILP

In order to shorten the solution time of the MILP, an initial feasible solution can

be provided with the solver. The integer feasible solution gives an upper bound on

the optimal cost, which enables faster pruning of the search tree in the branch-and-

bound algorithm, shortening the computation time [80]. This chapter examines 3D

environments where only vertical obstacles exist. In such environments, one feasible

solution is simply to fly up with its maximum acceleration.

RHC executes only the first step of the N step plan and re-optimizes from the

states that will be reached. When constructing an initial guess, the decisions (e.g.

visible point selection, obstacle avoidance) made in the previous solution could be

used. An algorithm that constructs an initial guess from the previous solution is

summarized below.

* Cost point selection

Choose the same visible point as the one in the previous solution.



4

N
2

0

15

- -20 X

Y

Figure 2-6: Trajectory generated by the RHC in a three dimensional environment.

The vehicle starts at o, and the goal is marked with ,.

* Input command

For the first (N- 1) steps, reuse the last (N- 1) steps of the previous solution.

For the rest, append a = [0, 0, az]T where az is the maximum acceleration

command that satisfies the constraints on the vehicle dynamics (2.11)-(2.17).

This produces the vehicle states over the planning horizon and the path that connects

the detailed plan to the cost map. Based on this trajectory, finding binary variables for

obstacle avoidance, target arrival, and minimum speed constraints are deterministic

operations and follow easily. The impact of the initial guess on the computation time

is presented in the next section.

2.6 Simulation Results

First, a simple problem has been solved using commercially available software CPLEX

9.0 [88] on a PC (2GHz Pentium IV CPU, with 1GB RAM). Figure 2-6 shows the

resulting trajectory. The following parameters are used in the simulation.

SN=4

* 'max = 30deg, p = 0.6

* Number of nodes per obstacle = 12

The start point on the right is marked with the o, and the goal is on the left. To

minimize the altitude, the vehicle descends from the start point, until it reaches

45 r
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Figure 2-7: Computation time history.

ground level. Then as it approaches the obstacle, it starts a climb-up maneuver

which is triggered by the cost-to-go function (see Figure 2-4). Note that the planning

horizon is only four steps in this example, and the RHC made different decisions

(e.g., descend, ascend) while approaching the obstacle depending on the distance to

the obstacle. Figure 2-7 shows the computation time for each MILP optimization.

Figure 2-8 shows trajectories in a more complicated environment. Each figure

corresponds to a different penalty on the altitude. If there is only a small penalty

(Fig. (a)), the vehicle flies over all of the obstacles, even including the tall ones.

If projected onto the ground, the resultant trajectory is effectively a straight line

connecting the start and the goal. With a larger altitude penalty (see Fig. (b)) a

very different trajectory is obtained. In this case the vehicle flies around most of the

obstacles at a very low altitude. However, the two-story obstacle near the start of the

trajectory (lower right of the figure) is directly in the way. The vehicle decides to fly

over the first-story, skirting the outside of the second story. As the altitude penalty

is increased further, the vehicle goes around all the obstacles, as shown in Fig. (c).

The difference between Fig. (b) and (c) is emphasized with arrows in the figures.

The true optimal solution is computationally intractable to obtain, but in the so-

lutions presented here, the vehicle mostly keeps the maximum speed with the smooth

trajectories, which indicates they are close to the optimal trajectory. Note that for

this example the average computation time increases to -1 second because there are

many choices to make in this complex and constrained environment.
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Figure 2-8: Trajectories generated by the RHC in a complex three dimensional envi-
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Table 2.1: Comparison of computation time (seconds)
W/O Initial Guess With Optimal Solution With Initial Guess

peak ave. peak ave. peak ave.

Figure (a) 1.50 0.74 1.08 0.57 1.13 0.62
Figure (b) 2.55 0.82 1.34 0.59 1.30 0.67
Figure (c) 1.83 0.88 1.64 0.70 1.59 0.76

Table 2.2: Reduction of the computation time (%)
With Optimal Solution With Initial Guess

peak ave. peak ave.

Figure (a) 28.1 23.4 25.0 16.3
Figure (b) 47.2 28.3 49.1 18.7
Figure (c) 10.3 20.3 12.9 14.3

Table 2.1 shows the CPLEX computation time in seconds for the scenarios pre-

sented in Figure 2-8. The first two columns respectively show the peak and average

computation times without initial guess. The next two columns show the computa-

tion times when CPLEX is given the optimal solution as the MILP starting values.

In this case, the optimal solution is first obtained and then re-used as an initial guess,

which is a post-processing done only for a comparison purpose. The last two columns

show the computation times when the initial guess discussed in Section 2.5 is used.

Table 2.2 shows the reduction of the computation time in percentage when initial

guess values are used.

There is an overall reduction of 20-28% on average if the optimal solution is pro-

vided as the MILP starting values. The initial guess in Section 2.5 produced a slightly

smaller improvement in the average computation time, but can still significantly re-

duce the worst case computation time.

2.7 Summary

This chapter presented a trajectory planning algorithm for the vehicle flying in 3D

environments with obstacles and no-fly zones. The vehicle is required to fly close to

the 3D surface to avoid exposure to threats while minimizing the time of arrival at



the target. The proposed algorithm has two phases: the cost map construction and

the detailed trajectory optimization. In the construction of a coarse cost map, linear

programming has been applied to find the visibility graph, and the Dijkstra's algo-

rithm is used to find the approximate shortest paths from each node to the goal. RHC

designs a short but detailed trajectory using MILP while approximating the future

maneuver by connecting the detailed trajectory to the coarse cost map. This is done

by a new cost-to-go function which accounts for the vehicle dynamics and the altitude

penalty beyond the planning horizon. The initial guess for the MILP optimization is

constructed from the previous solution, which further reduces the computation load.

The simulation results showed that the overall approach is computationally tractable

in complex 3D environments.





Chapter 3

Robust Receding Horizon Control

using Generalized Constraint

Tightening

This chapter considers receding horizon control for a system that is subject to un-

known but bounded disturbances. To ensure the robust constraint satisfaction of the

controller, this chapter develops a new form of robust MPC using constraint tighten-

ing, where the degree of tightening is a convex function of the feedback parameters.

The proposed approach is shown to be able to represent a strictly larger class of

feedback policies when compared to previous algorithms. Further analytical results

provide (a) necessary and sufficient conditions on the choice of feedback parameters

for the existence of a nonempty output constraint set; and (b) a sufficient condition

for the existence of a nonempty robust invariant set. Combined with the convex

parameterization, this enables an offline linear optimization to determine the feed-

back policy that can tolerate much stronger disturbances while robustly satisfying

the constraints. Simulation results are presented to highlight the advantages of the

new control algorithm.



3.1 Introduction

When the system is subject to the external disturbances, the uncertainty in the system

evolution grows quickly with the prediction time if there is no feedback correction,

as shown in Figure 3-1(a). This so-called open-loop prediction is very conservative,

and with a long planning horizon, it is often infeasible to ensure all possible state

evolution will meet the constraints.

A better approach is to introduce a feedback correction controller around the

nominal trajectory when predicting the future state evolution, which is called closed-

loop prediction [31, 89]. If the disturbance is bounded, a feedback correction policy

can be designed so that the closed-loop system will lie inside a bounded "reachable

set" centered around the nominal trajectory. Then, in order to guarantee the robust

constraint satisfaction, one needs to ensure that all trajectories of the closed-loop

system satisfy the constraints, as shown in Figure 3-1(b).

The constraint tightening approach subtracts this bounded set from the con-

straints offline, as shown in Figure 3-1(c), so that the online optimization only needs

to consider the nominal trajectory with the modified constraints. This approach is

less computationally intensive than optimizing a feedback policy online [46, 47, 90],

but less conservative than open-loop prediction [91, 92]. The recent extensions of

constraint tightening include the use of the maximal robust control invariant admis-

sible set as a terminal set [52], and the use of a nonlinear terminal control law and

time-varying feedback correction [93], which further reduces the conservatism of the

controller.

The key question for constraint tightening approaches is how to compute offline

the candidate feedback policy, which in turn determines how the constraints are tight-

ened. Recent work on MPC that optimizes the control policy online has shown that

the set of feasible policies is convex if it is parameterized as disturbance feedback in-

stead of state feedback [46, 90, 94]. The new method in this chapter exploits this

observation to extend the constraint tightening algorithms, with the result that the of-

fline determination of the tightened constraints can be written as an optimization over
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a convex set of disturbance feedback policies. A theorem is presented that shows all

state feedback policies can be expressed as disturbance feedback, so the new method

strictly subsumes existing constraint tightening work [93]. Furthermore, the determi-

nation of a robustly invariant terminal set is included in the offline optimization, by

first deriving sufficient conditions for the existence of nonempty constraint sets.

This chapter is organized as follows. Following a problem statement in Section 3.3,

Section 3.4 presents a generalized constraint tightening algorithm that uses a convex

feedback correction controller. Section 3.5 formulates an offline optimization to ob-

tain a controller that can handle strong disturbances and give better performance.

Section 3.6 demonstrates the advantages of the proposed approach through simula-

tions.

3.2 Notation

The Minkowski sum "D" and the Pontryagin difference "-" of two sets X and y are

defined as follows [95].

X Y = {zz I z = x + y, x E X, y c y}

X 3y= {z z + y X, Vy E Y}

The operation (t]o Xz = DX D1 ..-. Xn denotes the Minkowski summation

of multiple sets. An n-dimensional p-norm ball I (E) with radius c is defined by

Bn() - {x I Ixllp 6E}. Unless otherwise noted, Vj implies Vj = 0,..., N- 1 where

N is a planning horizon, Vj- implies Vj = 0,..., N--2, and Vj + implies Vj = 0,..., N.

A matrix In is an identity matrix of size n. 1 is a column vector of appropriate size

whose elements are all l's.



3.3 Problem Formulation

The LTI system dynamics subject to bounded disturbance and state/input constraints

are

Xk+1 = Axk + Buk + Wk (3.1)

Yk = Cxk + Duk E Y (3.2)

wk E W (3.3)

The system (A, B) is assumed to be stabilizable and the full states are assumed to

be accurately measured, although this assumption can be removed [96]. Equation

(3.2) captures the constraints on the states, the inputs, or combinations of both by

using the general output vector Yk. The disturbance Wk is uncertain but lies in the

bounded set W, which is assumed to be known. The set W is also assumed to include

the origin.

The overall goal is to keep the system in a feasible region using an admissible con-

trol (3.2), under the action of disturbances (3.3), while minimizing some performance

criteria.

3.4 Constraint Tightening Algorithm

This section generalizes the constraint tightening robust MPC [93] using a formulation

similar to the convex control parameterization in [46, 90, 94].

3.4.1 Online Optimization

At time k, the MPC controller generates a N-step control input sequence uk+jlk, j =

0,..., N- 1. The index j is used for the prediction steps. The conditional notation

Uk+j(kA denotes a vector u for time step k + j calculated at time k. The constraint

tightening algorithm uses a nominal prediction with the output constraint sets Yj



that is different from the original constraint set Y in (3.2)

Vj k+j+llk = Axk+jlk + BUk+jlk

Yk+jjk = Cxk+jlk + Duk+jlk E Yj.

The constraints on the initial states and the terminal states are

Xklk = Xk

Xk+NIk E XF

where XF is a terminal set that is defined as

XF = RCT - LN-11W.

The set RCT is a robust control invariant set that has the following property.

VX E RCT =
Ax + Ba(x) + LN-lW E RZCT, VW E W)

Cx + DK(x) E YN-1

This states that once the system enters RCT, then there exists an admissible control

that keeps the system in RCT under the action of bounded disturbance w, while

satisfying all the constraints. When the control law k(x) is fixed, the invariant set is

called Robust Positively Invariant (RPI).

The matrices Lo, -. . , LN- and the output constraint sets Yo, ... , YN-1 are defined

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)



Algorithm 3.1 MPC with Generalized Constraint Tightening
1: Assume a stabilizing terminal controller iK(x) is given
2: Design the disturbance feedback controller Pj and Lj
3: Calculate the output constraint sets Yj's and the terminal set XF
4: for k= 0 to k= 00 do
5: Take a measurement of the current states Xk
6: Solve optimization subject to (3.4)-(3.7) and obtain the control inputs Uk+jlk
7: Apply the first step of the control to the system (3.1): Uk = UkIk
8: Go to the next time step
9: end for

by the parameters P 1,..., PN-1 using the following recursion

Lo = I (3.10)

Lj+1 = AL, + BPj+I (3.11)

yo= y (3.12)

Yj+I = y, - (CL, + DPj+1)W. (3.13)

The parameters PI,..., PN-1 are the direct feedback on the disturbances, as shown

later in (3.14a), and are designed offline. Note that Lj's and Yj's in (3.11) and

(3.13) are linear in these parameters Pj's, which enables us to formulate an offline

optimization procedure in a convex form, as presented in Section 3.5. Algorithm 3.1

shows the proposed constraint tightening MPC algorithm.

3.4.2 Robust Feasibility

Theorem 3.1. The system (3.1) controlled by Algorithm 3.1 satisfies the output

constraint (3.2) under the action of the bounded disturbance (3.3) for all positive k,

if the optimization (3.4)-(3.7) at initial step k = 0 is feasible.

Proof. The proof is based on a recursion which shows that for any feasible solution

of the optimization at time k and disturbance realization wk C W, a feasible solution

for the optimization at time k + 1 can be constructed.



Candidate Solution at Time k + 1

First, assume the form of the candidate solution at time k + 1 as

U^k+j+llk+l = Uk+j+llk + Pj+lWk, Vj- (3.14a)

Xk+j+llk+1 - Xk+j+llk + Ljwk, Vj (3.14b)

itk+NIk+ 1 = KG(k+Nik+l) (3.14c)

Xk+N+llk+1 = Abk+NIk+1 + Bik+NIk+l (3.14d)

which is constructed from the solution obtained at time k. Note that the disturbance

realization wk at time k is available at time k + 1 through wk = Xk+l- (Axk + Buk).

Initial Condition

By setting j = 0 in (3.14b),

ik+llk+l = Xk+llk + Wk

= AXklk + Buklk + Wk

= Axk + Buk + wk = Xk+1.

Thus, the candidate solution satisfies the initial condition (3.6) at time k.

State Equation

Check if the candidate solution satisfies the state evolution (3.4) in the optimization

at time k + 1. The state equation for the last prediction step j = N- 1 is obviously

satisfied by the definition of 4k+N+1k+1 in (3.14d). For j = 0,..., N- 2, from the

definition of Lj's (3.11),

Lj+lwk = ALjwk + BP3 +lwk



which holds for any wk. By adding this to the following state equation at time k

Xk+j+21k = Axk+j+llk + BUk+j +llk

and using (3.14a) and (3.14b), we have

Xk+j+21k+l = A~ik+j+1lk+1 + Bik+j+llk+1, Vj.

Output Constraints

For prediction steps j = 0, ... , N- 2,

Yk+j+llk+l = CSik+j+1 k+1 + DiLk+j+llk+l

= CXk+j+llk + Duk+j+llk + CLjwk + DPj+lwk

= Yk+j+llk + (CLi + DP 3 +1)wk-

Note that the feasible solution at time k satisfies Yk+j+llk G Yj+1 , and the bounded

disturbance is (CLj+ DP3+l)Wk E (CLj+ DPj+I)W. Using the relation (3.13) and

the following property of the Pontryagin difference

aE(A,4B), bEB = a+beA

we have Vwk,

Yk+j+llk+1 E Yj, Vj-

Terminal Constraints

Check if the terminal step of the candidate solution actually satisfies the terminal

constraint ik+N+llk+1 E XF. From (3.14b), we know

iXk+Nlk+1 = Xk+Nlk + LN-lwk



and since

Xk+NIk E XF = -- CT - LN- W

LN- Wk E LN-I V

we obtain the following using the property of the Pontryagin difference.

Xk+NIk+N Ck+ CT

Applying to this the invariance property (3.9) gives{ Aik+Nlk+l + BK(Xk+Nik+1) + LN-1w E RZCT, VW E W

Cik+Njk+1 + DK(Xk+Nlk+1) YN-1

Xik+N+1lk+l + LN-1Wk ( lCT, VWk E W

C-k+Njk+1 + Ditk+NIk+1 E YN-1

J Xk+N+llk+l CE •CT , LN-1W = XF

C k+Nlk+l + DiLk+NJk+l E YN-1

Thus, the candidate solution also satisfies the terminal constraint (3.7). The last line

shows that the output constraint at j = N- 1 is satisfied.

Recursion

Assume the optimization at time k is feasible and hence the output constraint is

satisfied

Cxklk + Duklk E YO = Y.



Since the measured states and the control input to be implemented are written as

Xkjk = Xk

Uk = Uklk

we have (3.2) and the real system satisfies the original output constraints y.

At time k + 1, a candidate solution (3.14) can be constructed from the latest

state measurement and the solution from the previous step k. As shown above, this

satisfies all the constraints of the optimization at time k + 1. Therefore, by recursion,

if the optimization at initial step k = 0 is feasible, then the optimization at all future

time steps (Vk > 0) remain feasible and the system satisfies the constraints. O

3.4.3 Comparison with State Feedback Parameters

This section shows that the proposed approach strictly subsumes existing constraint

tightening algorithms [41, 93]. The primary difference to the previous constraint

tightening formulation is the structure of the candidate solution (3.14)

u'k+j+llk+l = Uk+j+llk + KjLjwk Vj- (3.15a)

Xk+j+llk+1 = Xk+j+l1k + L3wk Vj (3.15b)

iLk+NIk+1 = K( xk+NIk+1) (3.15c)

5bk+N+l k+1 = Aik+Nlk+l + BiLk+NIk+1. (3.15d)

This form of the candidate solution leads to a nonlinear relation between the feedback

Kj and Lj

Lj+I = (A + BKj)Lj (3.16)

as opposed to the linear relation between Pj's and Lj's in (3.11). The next theorem

states that the previous formulation using Kj is a strict subset of the new convex

parameterization using Pj.



Theorem 3.2. The set of feedback policies that can be expressed as (3.14) by choice

of P.; 's strictly includes the set of policies that can be expressed as (3.15) using Kj 's.

Prvof. First, we show (3.15) is a subset of (3.14). Comparing equations (3.11) and

(3.16), it can be shown that for each controller Kj, there exists an equivalent controller

parameterized using Pj's, by letting

Pj+1 = KjLj. (3.17)

In order to show the strictness, we only need to find a counterexample where some

policy represented by Pj's cannot be expressed using any Kj's. Let k = 0 and j = 1, 2

in the candidate solution (3.14a), then the first two control inputs are written using

Pj's as

it111 = U110 + PiW0, (3.18)

22 = U210 + P2  + P1 W1. (3.19)

Using Kj's,

6,11 = ulo + KoLowo, (3.20)

L212 = U 210 + K 1Llwo + KoLow 1

= U21o + K 1 (A + BKo)wo + Kowl. (3.21)

In order to ensure that the same candidate control inputs i 111 , i 212 are realizable, it

is necessary to find Ko and K, such that

Ko = P1

K 1(A + BKo) = P2.



The first condition requires K0o = P1 , so the second condition requires

K1 (A + BPI) = P2 . (3.22)

Suppose P1 is chosen so that (A + BP1 ) is rank deficient. If a row of P2 is chosen

not to lie within the span of the rows of (A + BPI), then the equation (3.22) cannot

be solved with any choice of K 1. Hence, the policy represented by Pj's cannot be

generally expressed as a corresponding Kj. O

The significance of this result is that if the disturbance feedback policy Pj is

optimized offline, the resulting controller must be at least as good as the best choice

of state feedback policy Kj for the same objective. Furthermore, Section 3.5 shows

the constraints (3.5) and (3.7) are linear function of Pj's, leading to an offline design

procedure using convex optimization.

This result is different from [90], in which they showed a one-to-one mapping

between the state feedback parameterization and the disturbance feedback parame-

terization. This difference comes from the structure in the constraint tightening

algorithm, where the time varying correction laws Kj's and Pj's do not change from

one optimization at time k to the next at time k + 1.

3.4.4 Remarks

Remark 3.1 (Online vs Offline). It is possible to simultaneously optimize the feed-

back gain P and the control input u.1k online [90], at the expense of significant extra

complexity of the online computation. The main advantage of the constraint tighten-

ing algorithms (both new and old) is that the decision space of the online optimization

is the same as that of the corresponding nominal MPC. This is possible because the

constraints are tightened offline using a pre-calculated feedback gain P or K. Sec-

tion 3.5 discusses how to choose the feedback gain P offline.

Remark 3.2 (Control without online re-optimization). It is interesting to note that

adopting the candidate policy, without re-optimizing, would implement a policy of



the same form as [46] for the first N execution steps, but there are differences after

time step N. In particular, the control inputs at time step i = N + 1, (1 > 0)

rejects the previous disturbances in two ways: the first I + 1 disturbance inputs

(wo, .- , wI) are rejected using K(-) and LN- ; and the last N - 1 disturbance inputs

(w1+1,....+ ,W+-1) are rejected using Pj. This introduces extra degrees of freedom

into the constraint tightening algorithm over the approach in [46]. More details are

given in Appendix 3.B.

3.5 Offline Choice of Feedback Gain

With the correction policy formulated in terms of disturbance feedback P, instead

of state feedback K, one can optimize the policy using convex optimization. This

section develops conditions on the feedback policy P to ensure the existence of a

nonempty feasible set. Note that the conditions on the terminal set (3.9) depend on

LN-1 which in turn depends upon the choice of P. Therefore, the choice of terminal

constraint set is coupled to the choice of policy P and much of this section is devoted

to identifying conditions on P for a suitable RCT to exist.

The section begins by developing conditions for a nonempty output set YN-1,

which from (3.9) is necessary for the existence of a nonempty terminal set, which in

turn implies a nonempty feasible set. Then, two sufficient conditions are shown to

ensure the existence of a nonempty terminal set XF satisfying (3.8) and (3.9).

In this section, the disturbance is assumed to be described as a polyhedron that

contains the origin

W= { w I H,,w K,,}

where the elements of the vector K,, are all non-negative. Let g, represent the v-th

vertex of this set VW and v EE V= {1,... ,nv}. The output constraints (3.2) are also



assumed to be described by polyhedral constraints of the following form

Czk + DUk _ Ymax (3.23)

where the elements of ymax are all assumed to be non-negative. The set of polyhe-

dral constraints can express the 1-norm, the approximate 2-norm, and the oo-norm

constraints. This is also written as a combination of linear constraints

CrXk + DrUk • Ymaxr, Vr (3.24)

where the subscript r is a row index of the polyhedral constraint (3.23).

3.5.1 Necessary Conditions - Nonempty Output Set

This subsection converts the condition for a nonempty output set YN-1 into inequality

constraints that are linear in Pj's and a set of slack variables t.

The parameter P must be designed to ensure the output constraint set YN-1 is

nonempty through (3.13). This requires

Walln (CLo+DPI)W -... E (CLN-2+DPN-1)W

Y Wan l# 0 (3.25)

From the recursive equation (3.10) and (3.11), matrices Lj's are given by

j-1

Lj = Aj + E Aj-1-'BP+1 . (3.26)
1=0

Using slack variables t and using (3.26), the constraint (3.25) is written as

CrA + CrA 1 BP l + Dr+Pj+l gv, trj, Vv, Vr, Vj- (3.27)

N-2

3I, •u: (rx + DrU) + E tr < Ymaxr, Vr. (3.28)
j=0



When r,(x) is stabilizing, the invariant set has to include the origin as an admissible

state. This requires (3.28) to be modified as

N-2

Str _< Ymax,, Vr. (3.29)
j=0

Note that (3.27) and (3.29) represent a combination of linear constraints on the Pj's

and hence a convex set of Pj's.

3.5.2 Sufficient Conditions

This section presents two alternative, sufficient conditions for the existence of a non-

empty feasible set. Both retain the convexity of the optimization to choose P.

Sufficient Conditions based on Nilpotent P

The first condition uses a nilpotent policy. The RPI set RCT can be made nominally

invariant if a nilpotent policy LN-1 = 0 is used. It is sometimes not tractable to

compute an RPI set for complex systems, whereas a nominal control invariant set is

computationally much simpler to obtain. If nilpotency is desirable, one can impose

the following linear constraint

N-1

LN-1 = AN-- + AN-1-BPI = 0. (3.30)
1=1

Then, the property (3.9) of the invariant set RCT becomes

VX E RcT i AAx + Bn(x) E RCT (3.31)
Cx + Dr(x) E YN-1

The set RCT always exists when (3.27) and (3.29) ensure that the output constraint

set YN-1 is nonempty and includes the origin. In this case one could simply choose

RCT to be the origin. In summary, the sufficient conditions for the existence of a

nonempty feasible set are (3.27), (3.29), and (3.30).



Sufficient Conditions based on mRPI set

Although the condition shown above consists of simple constraints, the nilpotency

requirement could limit the class of possible controllers to be considered. In this

section, an alternative set of conditions is developed that does not assume nilpotency

of policy P. In this subsection, the terminal controller i(x) is assumed to be linear

r(x) = Kf x, where the gain Kf is stabilizing and is assumed to be given. The

approach uses the minimal robust positively invariant (mRPI) set, which is contained

in any RPI set [95, 97]. The mRPI set F• for RCT is written as

00

.Fo = 0(A + BKr)'LN_1W.
i=O

To simplify the presentation, define a set XN-1 such that

XN-1 = {x (C + DKf)x YN1

Then, the following theorem gives the necessary and sufficient condition for the exis-

tence of a nonempty RCT.

Theorem 3.3. If YN-1 includes the origin, then a necessary and sufficient condi-

tion for the existence of a nonempty XF using the class of sets RZCT that are robust

positively invariant under control Kf is

-Foo 0  XN-1. (3.32)

Proof. (Necessity) Assume there exists nonempty XF. Then, there exists a nonempty

RPI set RcT that has the property

VX E RCT -> (A + BKf)x + LN-lW E RCT, Vw E W

(C + DKf)x E YN-1.



Vx E RCT ->
(A + BKf)x E RCT - LN-1W

x E cXN-I.

The last equation indicates

RCT 9 XN-1. (3.34)

By the definition of the mRPI set, YF is contained in all RPI sets. Therefore,

Yoo C RCT 9 XN-1. (3.35)

(Sufficiency) Assume F, C XjN-1. By the definition of $,, we have

(A + BKf)F E LN-1 W = FT.

Consider an arbitrary element x E F~. If F C XN-1, then

(A + BKf)x + LN-lw E .o, Vw E W

x E XN-1

Therefore, YFo is a nonempty RPI set that has the property of RCT. Then, one can

set RCT = Fo and the terminal set

X, = oTo - LN- 1 V

00

= ®(A + BKf)iLNl-W
i=1

is nonempty. O

Generally, one cannot explicitly obtain the infinite summation of Minkowski addi-

tions. The following theorem gives a tractable formulation that serves as a sufficient

(3.33)



condition for (3.32) to hold.

Theorem 3.4. If the following conditions hold

(A + BKf)"8 F, C H'(C),

1-a

S:= II(A + BKf)Sll, < 1

for some choice of c > 0 and an integer s, where

s-1

FS1 = (A + BKf)'LNlW,
i=O

then ho C XN-1.

Proof. Pre-multiply (3.36) by (A + BKf)(m- 1)s to give

(A + BKf)mss_ 1 C (A + BKf)(m-l1)sB(e).

Using the property of the norm,

(A + BKf)(m- 1)s p < (( a + BKf)s lp)

Using the definition of the matrix norm

IA = max IAxHly ,lIXII,_<1

it can be shown that

(A + BKf)(m -1)sIpn() C (A 4+ BKf)(m - 1)s pip(n)

C a B11I7B(c),

(3.36)

(3.37)

(3.38)

= om-1



so that

(A + BKf)m SFs_-1 9 am-IB(•p ).

Taking the Minkowski summation over all positive m gives

00 00

1

Thus, (3.36) implies

s-1F0 = ( (A + BKf) iLN -1W

i=0

S(A + BKf) G(A + BKf)iLNW
i=0 1-a P

T ((A + BKfr)2 N (A + BKf)iLNlW
i=0=

= F 5 1 Be (A + BKf)ms LN-l

and combining with (3.37), this implies F 0  XN-1. B

Furthermore, with a stabilizing terminal controller Kf, the size of the p-norm ball

fn(E) in (3.36) can be made arbitrarily small using a sufficiently large s. Similarly,

the norm a in (3.38) can be also made arbitrarily small. Therefore, the conservatism

in the sufficiency (3.36) and (3.37) for (3.32) can be made arbitrarily small.

The above result shows that constraining the choice of policy such that (3.36) and

(3.37) hold ensures the existence of a nonempty feasible set. Note that (3.36) and



(3.37) are both convex constraints on the disturbance feedback policy P.

Using a hypercube (p = oc) to bound the approximation error, the constraints

(3.36) for a given s is implemented as

.1 (A + BKfr)LN_ _,< El,
i=0

Vvo0  V, VV 1  V, ... , VVs -1 E V, (3.39)

which considers all combinations of disturbance vertices. The condition (3.37) is

implemented as

1 N-2

(C, + DrKf) ((A + BKf)'LN_1 gv, + - chb Ymaxr trj
i=o j=o

Vvo0  V, Vvl E V,..., v-_l E V, Vr, Vb, (3.40)

The vector hb is a b-th vertex of the unit hypercube B'(1). Note that these constraints

(3.39)--(3.40) are linear in LN-1 and trj, which are linear in the decision variables Pj's.

In summary, the sufficient conditions for the existence of a nonempty feasible set

using mRPI are (3.27), (3.29), and (3.39)-(3.40). Note that c in these equations is

a variable that the offline optimization also chooses. Otherwise, with a fixed small

E, it might not be feasible to find an outer approximation that is as good as e for a

given s.

3.5.3 Maximum Disturbance Handling

Because the differences in various robust MPC algorithm become more apparent in a

high disturbance regime, one criterion for choosing P is to ensure that the controller

can tolerate strong disturbances. Then, this will lead to a controller that has a large

feasible region.

The proposed offline procedure optimizes over P, but it also introduces a positive



scalar parameter /3 that scales the disturbance level

W(O) = {w I HL,,w < /ýKj}

and checks if there exists a controller P that gives nonempty constraint sets for the

disturbance level 3. The disturbance level 3 linearly scales the vertices g, and the

slack variables trj. Thus, g, and trj in (3.27)-(3.28) and (3.39)-(3.40) are replaced

by P3g and 3tj, respectively.

To maintain the convexity of the problem, new variables are introduced y := 0'-,

6 := 7y, which replace the variables 3, e. Combining all the constraints (3.27), (3.29),

(3.39)-(3.40) and dividing all by 0, the final form of the offline optimization is written

as

s.t. (C ,AA +

min 7
yS,Pl ,LN-l ,tij

SCrAJ-'BPi + - DfrPj+I gv < trj,
1=1

Vv, Vr, Vj-

N-2

E trj < •Ymaxr,
j=O

I s-1

E I E (A + BKf)'±SLN-_ gv, < 61,
--In i=O

Vr (3.43)

Vv0 E V, Vvl E V,..., VSl E V

A+B~fyLLN...lgv-+ 1 N-2
A + BK g 1 hb < maxr trj1-a j=0

Vvo E V, Vvl E V,..., Vvs-1E V, Vr, Vb

N-1

LN-1 = A N- I + EAN-1-IBPI
1=1

(3.44)

(3.45)

(3.46)

which maximizes the disturbance level /3, while ensuring the existence of a controller

Pj that gives nonempty constraint sets Yj and XF. Note that all the constraints in

this optimization are linear in the decision variables y, 6, Pj, LN-1, and tij.

(3.41)

(3.42)

s-1

i=0



By maximizing the disturbance level, the resulting robust MPC can be applied to

a system subject to a very strong disturbance, where other feedback correction con-

trollers would make the tightened set empty and cannot even find a feasible solution

to the first online optimization.

3.6 Numerical Example

This section shows how the offline procedure presented in Section 3.5 improves the

controller's performance under the action of disturbances. The calculation of invariant

sets, Pontryagin difference, and Minkowski sum are done using the set operation tools

in Refs. [98, 99].

A simple double integrator is used here

Xk+1 = Axk + Buk + Wk

1 10.5A= , B=
01 1

and the constraints are

-Xmax XXk Xmax 10
5

IUk < Umax- = 4.

The bounded disturbance w is described by

1 0

-1 0

0 1

0 -1

, Kw =

0.3

0.3

1

1

A stabilizing controller is used as a terminal controller Kf = [-1.46, -1.71], and

the planning horizon is N = 5. Seven different disturbance rejection controllers are

Hw =



compared, each using a different policy P/K to determine the constraint tightening:

1. 2-step nilpotent controller (L 2 = 0) [2-step nil]

2. 3-step nilpotent controller (L3 = 0) [3-step nil]

3. Controller obtained by optimization (3.41)-(3.46), with s = 3 and a = 0.36.

[max-dist]

4. LQR with Q = diag(100, 1), R = 1 [LQR r]

5. LQR with Q = diag(1, 100), R = 1 [LQR v]

6. LQR with Q = diag(1, 1), R = 100 [LQR u]

7. LQR with Q = diag(100, 100), R = 1 [LQR z]

In this example, the offline optimization (3.41)-(3.46) returned E = 0. From (3.36)

and the definition of Ys-1, this indicates that LN-1 = L4 = 0 and the policy turns

out to be nilpotent, although no such requirement was imposed.

3.6.1 Feasible Set Comparison

Figure 3-2(a) shows the limits on position, velocity and control enforced by the con-

straint set for the terminal step YN-1 as a function of the disturbance level P. As the

disturbance level increases, the constraints are tightened linearly. When any one of

the limits falls below zero, the set YN-1 becomes empty and the feasible set is therefore

empty. Figure 3-2(b) shows the same sets YN-1 generated by the LQR policies. Note

that some controllers give empty terminal sets before any of the constraints in YN-1

hits zero. This is because the other RPI constraint (A + BKf)x E RCT - LN-1W

becomes empty with a non-zero LN-1. Observe that the max-dist controller can

handle much larger disturbances than the others (40% stronger compared to the best

of all the others), which is to be expected as that controller is designed to handle the

greatest disturbance possible.
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Figure 3-2: Terminal constraint ~N-1 as a function of disturbance level 3. The
controller max-dist keeps the constraint set YN-1 nonempty at a disturbance level
much higher than the others.

Figure 3-3 shows a set of initial states from which a controller has a feasible

solution, for the three controllers 2-step nil, 3-step nil, and max-dist. As shown

in Figure 3-3(b), when 0 = 1.5, the controllers 3-step nil and max-dist have

a larger set of feasible initial states compared to the controller 2-step nil. The

difference between the controllers 3-step nil and max-dist is not apparent at this

disturbance level. When P = 1.89, the controller max-dist has a feasible region

much larger than the controller 3-step nil, as shown in Figure 3-3(c). The larger

set means the system has more room to operate, directly affecting the performance

of the controller, as shown in the next subsection.
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Figure 3-3: A set of states for which a feasible solution exists.
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Table 3.1: Performance Comparison

2-step nil
3-step nil
Max-dist

LQR r
LQR v
LQR u
LQR x

disturbance level 0
1.0

1.017
1.003
1

0.998

1.010

1.5

1.792
1.031
1.014

1.034

1.89

1.958
1.031

1.569

3.6.2 Performance Comparison

Table 3.1 shows the effect of the disturbance level on the performance to minimize.

If the controller cannot handle a given disturbance level because the constraint set

YN-1 or 7ZCT are empty, the entry is marked with "--". The performance evaluation

is quadratic

kmax

J = (IlX k - XrllQ + Iluk - UrdIR)
k=O

with the following values

Xr = , Ur = 0, Q R = 0.
0 0 0

The random disturbance sequence is generated from the same seed for each controller.

The simulation step of kmax = 8 is used. The table lists the normalized values.

The case with 0 = 1 shows that the choice of the controller Pj's has little effect

on the performance when the system can stay away from constraints because the

disturbances are weak. However, the difference becomes significant with stronger

disturbances, when the constraints tend to be active and limit the performance. In

such a case, the proposed controller, which has a larger feasibility region, gives the

best performance (35% better compared to the best of all the others).



3.7 Summary

This chapter presented a new robust MPC algorithm using constraint tightening. The

correction is described as a direct feedback of the disturbance, and a class of policies

represented by the new parameterization is shown to be a strict superset of the class

of policies represented by previous constraint tightening algorithms. An offline linear

optimization is used to compute a feedback gain that can tolerate much stronger

disturbances than other prefixed feedback gains, giving a large operating region. The

simulation results show that this proposed controller leads to both a larger feasible

set and performance improvements under the action of strong disturbances.



3.A RPI Set of Constraint Tightening Algorithm

Much of the work on robust MPC [41, 90, 100] assumes a fixed state feedback control

beyond the horizon N. When the terminal controller K(x) is chosen to be a fixed linear

feedback controller Kf, every RPI set 7 of the system (3.1)-(3.3) has the property

Vx ER ? =

(A + BKf)x + w E T,
(C + DKf)x e Y.

The terminal set of constraint tightening algorithm (3.9) uses a slightly different RPI

set

VX E R•T (A + BKf)x + LN-lw e RCT, Vw E W

(C + DKr)x E YN-1.

There is a significant difference between the standard RPI set and the invariant set

RCT used in constraint tightening algorithm. A simple example below shows that

under the same terminal controller Kf, there exists a case where R is empty, but RCT

is not.

Example: Consider the following 1-state, 1-input, 1-disturbance system with a con-

straint only on the state.

Xk+1 =

XkI <_
Wkl <

Xk + Uk + Wk,

1,

Wmax.

Using a stabilizing terminal controller

invariant set R is

Kf = -0.618, the maximal robust positively

Vx R E R 0.382x + wE 1,

xI•1.·

VIwI < Wniax

Vw EW



When Wmax > 0.618, this set is empty. Otherwise, R = {x x < 1}.

Using the same stabilizing controller Kf = -0.618, the set RCT for the constraint

tightening algorithm is

Vx E RCT = {0.382x 'RCT,

.Xr < 1 - Wmax

VI < Wmax

if Pj's are chosen such that the policy is one-step nilpotent (i.e., L 1

empty when Wmax > 1. Otherwise, RCT = {x z X 1 - Wmax}.

= 0). This set is

3.B Comparison with Feedback Policy Optimiza-

tion

3.B.1 Feedback Policy Optimization

Feedback Policy Optimization (FPO) [89, 90, 101] affinely parameterizes the control

using a matrix M and a vector v. The affine control policy is written as

i-i

Ui E Mijwj + vi.

j=0

The online optimization solves for a pair of matrix M and vector v, so the number of

decision variables is O(N 2 ). This number of decision variables in Miy can be reduced

from O(N 2) to O(N) by using the following parameterization (the same as Eq. (7.38)

of [46]).

u= Mw + v,

0

Mi, 0

M2,0

0

0

A12,1

0 ...

0. .

0 ..

. .. MN- 1,N-2

0

0

0O (3.47)

MN- 1,o MN- 1,1



u= Pw+v, P=

0 0 0 ... 0

Pi 0 0 ... O

P 2  P1 0 ... 0

PN-1 PN- 2 ... P1 0

By comparison,

Mi, Mi+l,+l (1 < i < N- 1, 0 < < i)

Pi-j = M, (3.49)

The structure of matrix P in (3.48) states that the time varying control law (time

varying with respect to the prediction step) does not change over the execution time

step. The constraint tightening (CT) algorithm assumes that the feasible candidate

control law (3.14) does not change from time k to k + 1, which has the same notion

as the structure in (3.48).

It can be shown that the two approaches (FPO and CT) are identical if

* the terminal set is given (the objective is to simply reach the target set, which

does not need to be invariant);

* the disturbance feedback Misj has a block Toeplitz structure shown in (3.49);

and

* Mj is precalculated and fixed in the optimization (i.e., the constraint contrac-

tion 6c in [89] is obtained offline and is not a decision variable in the optimiza-

tion)

However, the two approaches are different for the infinite horizon problem or the typi-

cal UAV trajectory generation problems that require a long plan. The main difference

comes from the robust invariant set in which each finite horizon plan terminates. For

brevity, the current time k is assumed to be 0. When the optimization is performed

over N steps of control input, the decision variables are ui (i = 0,... , N - 1) and

Xi (i = 0,..., N).

(3.48)



3.B.2 Control Inputs Without Re-optimization

If no re-optimization is performed, the two approaches implement the following control

inputs.

CT (using the candidate solution):

i-1

uili = uilo + E Pi-_jw
j=O

(i < N- 1) (3.50)

1 N-1

UN+lJN+l = Kf(A + BKf)1N + S Kf(A + BKf)'-jLN_lwJ + Y PN-jWl+j
j=o j=1

(N <i = N + 1). (3.51)

After time N, the control inputs at time step i = N + I rejects the previous distur-

bances in two ways: the first 1 + 1 disturbance inputs (wo, ... , wl) are rejected using

Kf and LN-1; and the last N- 1 disturbance inputs (w1+l,... , W+N-1) are rejected

using PN-j.

FPO:

i-1

ui = vi + E Mijw
j=0

N+1 = Kf(A + BKf)i1N

(i < N- 1)

N-1 N-1

+ Kf(A + BKf) (A"N- - + E AN-1-mBMm,j)Wi
j=0 m=j+1

+ ± Kf(A + BKf)'-jWN_I+j
j=1

(N < i = N+ l)

After time N, the control inputs at time step i = N + 1 rejects the previous distur-

bances in two ways: the first N disturbance inputs (wo, ... , WN-1) are rejected using

Kf and Mm,j; and the last I disturbance inputs (WN,..., WN+11) are rejected using

only Kf.

(3.52)

(3.53)



Table 3.2: Coefficient of each term in the parameterized u

parami

iN

TVOWo

UwI

Wl+ i

WN--2

WN--1

WN

WN+1-2

WN+l-1

FPOCT

Kf(A+BKf)l

Kf(A+BKf) (AN-I + AN-1-mBPm)

Kf(A+BKf) - 1 A N-+ E AN-1-mB
mn=1

Kf(A+BKf)o N- + AN-i1-mBPm)

PN- 1

P1+1
P,

P2P1

3.B.3 Difference

From the observations given above, the two approaches implement the same control

inputs up to N- 1, as in (3.50) and (3.52). However, they are different after time

N. The control input at time N + 1 depends on the terminal states of the nominal

prediction iN and the disturbances wo, .. , WN+l-1. Table 3.2 shows the coefficients

of these terms in (3.51) and (3.53). It is assumed that I < N here, but the case 1 > N

does not change the discussion below.

By comparing the coefficients listed in the second and third columns of Table 3.2,

it can be seen that some UN+IIN+1 cannot be represented with the form of (3.53) using

any choice of Kf. Assuming wo = ... = WN+1-3 = 0, we only need to look at the

bottom two rows of the table. The last row requires Kf = P1 , but we can easily

choose P2 such that P2 - P1 (A + BPI) = Kf(A + BKf). This discussion shows that

constraint tightening is not subsumed by FPO.

One exception is the 1-state, 1-input, 1-disturbance system with a nilpotency

requirement. In that case, nilpotency requires Pj = 0, (j = 2,..., N- 1) for the CT

column, and (A + BKf) = 0 for the FPO column, so the argument above does not

Kf(A+BKf) l

N-IKf(A+BKf) (AN- + ANl-1"'BMm.o
N- I

Kf(A+BKf) 
N

-2 + E AN-1 .BMmi..
m=2

N-I

r=1+2

Kf(A+BKf) (A + BMN-1,N-2)
Kf(A+BKf)l

Kf(A+BKf)
11

Kf(A+BKf)
Kf



hold, but this exception is a very restrictive case and is of little importance.



Chapter 4

Robust Receding Horizon Control

for Trajectory Planning

This chapter presents a receding horizon controller (RHC) that can be used to design

trajectories for a UAV operating in an environment with disturbances. The algorithm

is a combination of the constraint tightening presented in Chapter 3 and the receding

horizon multi-resolution planning presented in Chapter 2. In particular, it uses con-

straint tightening to achieve robustness to external disturbances, an invariant set to

ensure safety in the presence of changes to the environment, and a cost-to-go function

to generate an intelligent trajectory around known obstacles. The approach chooses

online a robust control invariant admissible set as a terminal set that does not need to

be a target set of the overall guidance problem. This result extends previous work in

two ways: the vehicle is guaranteed to remain safe under the influence of disturbances;

and much longer robust trajectories can be constructed online. The full algorithm is

demonstrated in several numerical simulations and hardware experiments.

4.1 Introduction

The focus of this chapter is a class of problems, called "target reach," which are

of particular interest for the guidance of unmanned aerial vehicles and the trajec-

tory/activity planning for autonomous rovers. In contrast to regulation problems,



a terminal target set must be reached by the trajectory while meeting various con-

straints on the way. The algorithm presented in [52] assumed that the target set

is reachable over the planning horizon. However, the computation required to de-

sign a long trajectory could be excessive if this requires to solve large optimization

problems online. One approach is to terminate the optimization when a time limit

is reached. When the algorithm has a feasible candidate solution, the optimization

could be stopped at any time. However, this will degrade the performance of the

closed-loop system, and it is still necessary to find an initial feasible solution. If the

controller is required to design a long trajectory from the initial states that are not

known a priori, then finding this initial feasible solution online could be difficult.

This chapter extends the constraint tightening approach to address these com-

putational issues. In particular, the new algorithm presented in this chapter does

not explicitly require that the system states be able to reach the target set over the

planning horizon. Instead, the controller only requires that the states can be driven

to a robust control invariant set, which can be updated as the system evolves. This

approach also represents an extension of the concept of a basis state in which the

system can safely remain for an indefinite period of time [15, 62, 70]. Note that the

robust control invariant set used in this chapter needs not be at or around the target,

as is common in other MPC methods [45, 47, 102], and this enables the use of very

short planning horizons. The approach is combined with a cost-to-go function, which

can provide a good estimate of the path beyond the planning horizon to the goal [32].

As a result, the algorithm can be used to solve much longer robust paths than the

approach in [52].

The chapter is organized as follows. Section 4.2 extends the algorithm presented

in Chapter 3 so that the target set is not necessarily reached. Section 4.3 presents

several simulation results, followed by hardware experimental results in Section 4.4.



4.2 Robust Constrained RHC Algorithm

The problem of interest has the overall goal of reaching the target set while robustly

maintaining feasibility. However, in order to maintain the feasibility, reaching the

overall goal could be aborted. The algorithm relaxes the constraints that the target

set must be reached in the planning horizon, allowing the controller to use a short

planning horizon. The computational burden then becomes less severe even when the

target set is far. A cost-to-go function provides a good estimate of the remainder of

the path to reach the target, even in a complicated environment.

Various constraints are imposed in the problem, such as turning rate limits and

bounds on the vehicle speed, and target regions and no-fly zones are included in the

environment. The proposed algorithm modifies these constraints to ensure that the

online optimization remains feasible even when the vehicle is acted upon by unknown,

but bounded, disturbances. In order to maintain safety [70] of the vehicle under the

changes in the environment, additional constraints are added that require that some

robust control invariant admissible set 7R is reachable over the short planning horizon.

This ensures that the feasibility of the optimization at time k implies the feasibility

at the next time k + 1, resulting in the robust feasibility.

4.2.1 Problem Statement

The LTI system dynamics are the same as in Chapter 3

Xk+1 = Axk + Buk + Wk (4.1)

Yk = Cxk + Duk E Y (4.2)

wk E IW/ (4.3)

where xk is the state vector, Uk is the input vector, and wk is the disturbance vector.

The disturbance Wk is random but lies in the bounded set W), which is assumed to

be known. The constraint (4.2) captures the constraints on the states, the inputs, or

combinations of both by using the general output vector Yk.



The general objective function takes the form

00

J = 1(uk, xk, XF) (4.4)
k=O

where 1(-) is a stage cost function and XF is a target set into which the state x is to

be driven. In the receding horizon framework, the optimization is performed over a

finite horizon; then, the first control input is executed; the new state is measured and

the new optimization is repeated until the system reaches the target set.

4.2.2 Algorithm

MPC solves the optimization problem online as the new information on the states

becomes available. The control inputs are developed for a finite horizon of N steps,

where the prediction of a value at time (k + j) made at time k is denoted by subscript

(")k+jlk. The online optimization problem at time k is defined as:

J* = min E1(uk+jlk, Xk+jlk, iXF) + f (k+Nlk, "f) (4.5)
U'IkSk j=0

subject to

Xk+j+llk = Axkjlk+ Buk+jlk, Vj- (4.6)

Yk+jlk = CXk+jlk + DUk+jlk C yj, Vj- (4.7)

XkJk = Xk (4.8)

Xk+NIk E Sk (4.9)

Sk- = Rk " LN-1W (4.10)

SE Rk Ax + B(x) + LN- E Rk, VW W (4.11)
Cx + Dn(x) E YN- .

The matrices Lo,..., LN-1 and the output constraint sets Yo,. . , YN-1 are defined in

(3.10)-(3.13). As noted in Section 3.2, Vj implies Vj = 0,..., N- 1, and Vj- implies



Vj = 0,...,N-2.

The constraint (4.9) of this algorithm ensures that the terminal step of the plan

enters the invariant set characterized by (4.11). The set Sk in (4.9) is called a safety

set, because once the vehicle enters Sk, it can remain in the set Rk indefinitely without

violating any constraints. The key difference from the formulation in Chapter 3 is

that the terminal set Sk is a decision variable that is calculated online as the system

evolves and new information becomes available. This is important when the vehicle

is operated in a cluttered environment with limited initial information and the offline

calculation of a general invariant set is intractable.

Theoretically, using the maximal robust control invariant admissible set C, as

a terminal set, where C, is the greatest feasible invariant set under any nonlinear

feedback K(x), provides a larger set of initial states from which the optimization has

a feasible solution. However, the calculation of the maximal robust control invariant

set could be very computationally intensive, even for offline computation, unless the

problem setup is very simple (e.g., double integrator with a few constraints). In the

trajectory optimization problems, it is usually not feasible to precalculate the exact

maximal robust control invariant admissible set and use it in the online MPC opti-

mization. In such cases, finding a good robust control invariant set online is crucial

to maintaining feasibility and achieving a good performance. The proposed approach

parameterizes the invariant set and solves for a simple robust control invariant admis-

sible set Rk in the optimization at time k. The invariant set could be parameterized

in several ways, depending on the dynamics of the vehicle, and Section 4.3 addresses

this issue in more detail.

The algorithm uses the target set XF in the objective function, and there is no

requirement that the target set is reached. The function f(.) is the terminal penalty

*that represents the distance from the safety set Sk to the goal XF. Hence, mini-

mization will drive the system to the goal if possible. This function f(-) is called

a cost-to-go function in the receding horizon framework, and one simple example

is a two-norm distance between the safety set and the goal. However, choosing a

good cost-to-go function could significantly enhance the performance of the planning



Algorithm 4.1 RSBK algorithm
1: Given a disturbance feedback controller and a set of cost points rp, calculate the

output constraint sets yj and a cost map c(rcp) that can be used to evaluate the
cost-to-go function f(.)

2: for k = 0 to k = 00 do
3: Take a measurement of the current states Xk

4: if the knowledge of the environment has changed then
5: Redo line 1
6: end if
7: Formulate a MILP problem using the stored values from line 1
8: Solve optimization (4.5)-(4.11) and obtain the control inputs Uk+jlk
9: Apply the first step of the optimal control sequence to the system (4.1): Uk

Uklk
10: Go to the next time step
11: end for

system [32], especially when the operating environment is complicated. Simulation

results in Section 4.3 highlight the significance of this cost-to-go function.

The complete algorithm is summarized in Algorithm 4.1. The algorithm is called

robust safe but knowledgeable (RSBK) algorithm in this thesis.

4.2.3 Algorithm Properties

Theorem 4.1 (Robust Feasibility). The system (4.1) controlled by Algorithm 4.1

satisfies the output constraint (4.2) under the action of the bounded disturbance (4.3)

for all positive k, if the optimization (4.5)-(4.9) at initial step k = 0 is feasible.

Proof. The proof is based on a recursion and is similar to the proof of Theorem 3.1.

The only difference is that the sets R•k and Sk are decision variables, and must be able

to be constructed from the solution of the previous time step. A candidate solution

is given by

itk+j+llk+l - Uk+j+llk + Pj+lWk, Vj (4.12a)

Xk+j+1jk+1 = Xk+j+llk + LjWk, Vj (4.12b)

Uik+Nlk+1 = Kr(ik+NNk+1) (4.12c)

'k+N+1lk+1 = AiVk+Nlk+l + Bfik+NIk+1 (4.12d)



7Rk+1 = 7 k (4.12e)

k+ 1 = Sk (4.12f)

Since R k is a robust invariant set, 17k+1 is also a robust invariant set that satisfies

(4.11). Thus, the candidate set Sk+1 = Sk is also feasible. Therefore, Xk+NIk E Sk at

time k: implies x•k+N+1Ik+1 E Sk at time k + 1, satisfying (4.9). The rest of the proof

is identical to the proof of Theorem 3.1. LO

Remark 4.1. The algorithm does not require that the target region XF is reachable

over the planning horizon N. The horizon N could be very short, resulting in a

computationally fast algorithm.

Remark 4.2. In order to recursively prove the robust feasibility, the algorithm re-

quires the existence of the initial feasible solution. However, because the horizon

length N is much shorter than in previous algorithms, this approach can find an

initial feasible solution much faster than the full horizon approach.

Remark 4.3. If the candidate control Kj is nilpotent so that LN-1 = 0, then the set

R•k = Sk is a nominal control invariant set

VX ER -~ Ax + B(x) E R
Cx + Di(x) E YN-1

which is much easier to compute. One simple nominal invariant set for fixed-wing

aircraft is a loiter circle, or for rotorcraft, any point with zero velocity is invariant [70].

Remark 4.4. In contrast to the nominal safety approach [70] that assumes no dis-

turbance (i.e., W P = 0), the algorithm presented here never fails to find a feasible

solution under the action of bounded disturbances. Furthermore, the number of con-

trol variables is the same as the nominal algorithm. By over-bounding the Pontryagin

difference operation in (3.13) and (4.10), the algorithm will have the same number of

constraints [102].

Remark 4.5. The RSBK algorithm is an anytime algorithm, that is, the optimization



Algorithm 4.2 Modified RSBK algorithm
1: Given a disturbance feedback controller, calculate the output constraint sets yj

and a cost map rcp, C(rcp) that can be used to evaluate the cost-to-go function

f(-)
2: for k = 0 to k = oc do
3: Take a measurement of the current states xk
4: if the knowledge of the environment has changed then
5: Redo line 1
6: end if
7: Formulate a MILP problem using the stored values from line 1
8: Solve optimization (4.13), (4.6)-(4.11), (4.14) and obtain the control inputs

Uk+jlk
9: Apply the first step of the optimal control sequence to the system (4.1): Uk

Uklk
10: Go to the next time step
11: end for

can be stopped at anytime. In such a case, however, a feasible solution is always

available. This follows because a candidate feasible solution can be always constructed

from the previous feasible (not necessarily optimal) solution. As shown in (4.12), the

calculation of a candidate solution is simple and involves 1) shifting the previous plan

by one time step, 2) adding a disturbance feedback sequence, and 3) appending a

terminal control input using K at the terminal step of the plan.

With a slight modification to the RSBK algorithm, it can be shown that the

algorithm decreases the cost monotonically. The modified algorithm introduces an-

other variable sk to evaluate the cost-to-go function, replacing Xk+NIk in (4.5). The

formulation requires that the staged cost is 0, giving the following optimization

J*= min f(Sk, XF) (4.13)
u(.), Sk, Sk

subject to

(4.6) (4.11)

Sk C Sk. (4.14)

This variable sk is required to be in the safety set Sk and measures how good the



terminal safety set is.

Theorem 4.2 (Monotonically Decreasing Cost). The objective function (4.13) monoton-

ically decreases over time k in Algorithm 4.2.

Proof. Consider the candidate solution given in (4.12) and

sk+l = sk. (4.15)

Then,

8 k+1 = Sk E 8 k-- 8 k+1

so that the candidate solution (4.12) and (4.15) for time k +1

(4.15) shows that this candidate solution at time k + 1 gives

in (4.13) as the solution obtained in the previous time k.

optimization, the cost is non-increasing (i.e., monotonically

is feasible. Furthermore,

the same objective value

Therefore, by successive

decreasing). O

4.3 Simulation Results

This section presents several simulation results that highlight the extensions in this

new RSBK algorithm. The simulation uses rotorcraft, but the algorithm easily ex-

tends to other vehicles, such as fixed-wing UAVs. The motion of the vehicle is assumed

to be in 2D.

4.3.1 Vehicle Model

The rotorcraft dynamics can be approximated by a double integrator with constraints

on speed and acceleration.

rk+l = A k+ Bak +wk
Vk+1 Vk

(4.16)



I2 At 12 -- 2 12
with A = and B =

02 12 AtI 2

where r, v, and a are the position, velocity, and acceleration vector respectively.

I2 and 02 express an identity matrix and a zero matrix of size 2 respectively. The

disturbance wk enters as a disturbance on the acceleration, and can be written as

wk E W = {w w = Bn, n E R2 , In [• <• Wmax}. (4.17)

Output constraints

The general output constraints include the obstacle avoidance

[I2, 02]Xk+jlk V 0

where 0 C R2 expresses no-fly zones that the vehicle is not allowed to enter, the

maximum speed

([[02, 12]Xk+jlk I 2 < Vmax, (4.18)

and the maximum acceleration command

ak+jjk 12 • amax (4.19)

where Vmax and amax are the maximum speed and acceleration for the rotorcraft. In

this section, a simple two-step nilpotent controller is used to tighten the constraints.

The nilpotent controller K for this system is analytically obtained from (A + BK)2 =

0, which produces

K= I 12 2 2 12[ At 2 ' 2At



Obtaining Pj's through Pj+i = K(A + BK)j and performing constraint tightening

(3.13) give the following constraint set [52, 103]

[12, 02]Xk+jlk O D ajjB (4.20)

[102, 12]Xk+jlk 112 Vmax - •3j (4.21)

Ia(jk + ilk)2 < amax - 7j (4.22)

where the set B represents a 2D unit box, i.e., B = {x E R2 (ix[ix < 1}, and

ao = 0

a, = [l1 0 0 0]LoBll|wmax

aj = a, + 11[1 0 0 0]LiB|lwmax, j > 2

So = 0

1i = -V 11[0 0 1 0]LoBlllwmax (4.23)

j = 31 + V• 'I[0 0 1 0]L1BlllWmax, j > 2

Yo = 0

71 = V 11[1 0]PiBllwma,,

- = 'y + V2 II[1 0]P 2Bll1Wmax, j > 2.

Note that (4.20) expands the no-fly zones to guarantee robust feasibility. These non-

convex constraints are implemented using MILP. The coefficient v/ appears when

performing the Pontryagin difference between a two-norm bounded set (4.18) or (4.19)

and the infinite-norm bounded disturbance set AW (4.17). This is because W has the

maximum magnitude of the length v-Wmax in the diagonal directions.

Terminal constraints

In order to reduce the computation load of the online optimization, it is desirable

that a simple set is used as Sk. For a rotorcraft UAV, hovering states [70] can be

used to form a robust control invariant admissible set Rk. Note that in this example,



LN-1 = 0 when N > 2, due to the nilpotency of the controller K. This allows us to

use a nominal control invariant set as Sk with a tightened constraint set, leading to

a very simple parametrization. The invariance (4.11) of the set Sk is implemented by

imposing the following hovering constraints in the optimization.

Xk+N+llk = Xk+NIk V ( (4.24)

The tightened constraint set YN-1 corresponds to aN-_1, _N-1, -YN-1 in (4.23).

For fixed wing aircraft with a minimum speed bound, a loitering circle can be

used as a terminal set. In such case, one simple parameterized invariant set that can

be used to generate the terminal constraints is a loitering circle with the minimum

turning radius [70]. Examples using fixed-wing aircraft are given later in Chapter 5.

4.3.2 Results

The following values are used in the simulation.

At = 2.6 seconds, Vmax = 0.5 m/s,

N = 6, amax = 0.17m/s 2

Comparison with Nominal Safety Approach

The first example compares the two trajectory planning approaches that maintain

feasibility of the online optimization using an invariant set. The first approach uses

nominal MPC with a nominal invariant set [70]. In this approach, a feasible solution

to the optimization problem at time k + 1 is constructed by combining: 1) the tra-

jectory portion constructed at time k that was not executed; and 2) an extra time

step in the nominal invariant set in which the previous trajectory ends. However,

the optimization could go infeasible if the vehicle does not reach the state that was

predicted in the previous time step, due to disturbance actions.

Figure 4-1(a) shows a trajectory generated with this nominal safety approach.

The fifth optimization generates a trajectory that lies near the obstacle boundary. At
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the next time step, the disturbance pushes the vehicle into the infeasible region, and

the optimization cannot return a feasible solution.

This issue is successfully resolved by the robust approach presented in this chapter.

Figure 4-1(b) shows that the vehicle can reach the goal in spite of the disturbance

acting on the system. The constraints were tightened in such a way that no matter

where the vehicle reaches after one time step, the feedback correction is possible to

maintain feasibility of the online optimizations.

Change in the Environment

The next example demonstrates the performance improvement achieved by the dif-

ferent choice of the terminal penalty function f(.). An intelligent cost-to-go func-

tion that represents the future maneuver of the aircraft operated in an obstacle rich

field [32, 68, 104] allows RHC to generate a knowledgeable trajectory. As discussed in

Chapter 2, for UAV trajectory planning problems with no-fly zones, a cost-to-go eval-

uated at the terminal state is based on the estimate of the collision free path length

from the terminal state to the target region. As shown in Figure 4-2, the cost-to-go

estimate is based on the best knowledge of the world, and the new information could

become available beyond the detection range.

Figure 4-3 compares trajectories generated with different terminal penalty func-

tions. The obstacle in the left is not initially known. The optimal route is to go

through a narrow passage between the other two obstacles. The vehicle finds a new

obstacle when it comes within the sensor detection range. The sensor detection range

is 8 meters and is larger than the planning horizon (N = 5 in this example only). The

safety set Sk is not affected by the new information of the environment and hence

is invariant after the obstacle discovery as long as Sk is within the detection range.

Fig. (a) shows that the vehicle remains safe against the pop-up obstacle under the

action of the persistent disturbance. In this case, a simple two-norm distance to the

goal is used as a cost-to-go function, and the vehicle is trapped in the concave region.

In Fig. (b), an intelligent cost-to-go function brings the vehicle out of the entrapment,

successfully guiding it to the target.
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Figure 4-3: Comparison of two robust safe trajectory planning approaches. Two tra-
jectories are generated with simple terminal penalty and intelligent terminal penalty.
The vehicle starts in the right, and the goal is marked with o. The disturbance level
is 10% of the control magnitude.
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Table 4.1: Comparison of the performance for three different disturbance levels.

Disturbance Average Steps
level speed

0 % 0.50 m/s 26
10 % 0.44 m/s 30
20 % 0.28 m/s 48

4.3.3 Long Trajectory Design

The last simulation results demonstrate that the RSBK algorithm can design a very

long trajectory without computational issues. In this example, the target region is

far from the current vehicle location. In order for the plan to reach the target set, it

is required to make a plan as long as - 30 steps. Designing one long trajectory that

reaches this target set is not computationally tractable for real-time applications.

Figure 4-4 shows trajectories generated under three different disturbance levels.

* Wmax = 0

* Wmax = 0.1 amax

* Wmax = 0. 2 amax

In all cases, the RSBK algorithm guided the vehicle to the target, and the average

computation time was below 0.2 second. When the disturbance level is 10% of the

control authority, the trajectory is similar to the one with no disturbance. However,

when the disturbance level is raised to 20% of the control authority, the vehicle takes

a different route because the passage in the middle of the figure used by the other

plans is too narrow to pass through robustly. A cost-to-go calculation based on the

robustified environment O D aN_1W does not allow the vehicle to enter the narrow

passage where the vehicle could violate the collision avoidance constraints due to a

strong disturbance.

Note that the vehicle moves slowly when the disturbance is strong, as it is expected

intuitively. Because more margin must be saved to reject a stronger disturbance, less

control authority can be used when generating the trajectory. The hovering state used

as a terminal invariant set requires the vehicle be able to stop at the end of each plan
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Figure 4-4: Long trajectories generated by RSBK algorithm. The vehicle starts at
the right, and the goal is marked with o. The obstacles are expanded in the RSBK
calculation to account for the avoidance check imposed only at discrete time steps.

103

K _ I



Figure 4-5: Quadrotor testbed using Vicon system [105, 108]

using the small control authority available in the prediction. Table 4.1 summarizes

the result. The average speed becomes significantly smaller when the disturbance

level is increased from 10% to 20%. The number of steps required to reach the target

set is significantly longer with the 20% disturbance level, partly because of the longer

route it chooses, but mainly due to the reduced speed.

4.4 Experimental Results

The RSBK algorithm has been tested in the 3D environment using an unique quadro-

tor testbed developed at the Aerospace Controls Laboratory of MIT.
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4.4.1 Quadrotor Testbed

This section briefly describes the quadrotor testbed. More details are available in the

recent article [105]. As a sensing device, the testbed uses a Vicon motion capture

system [106], which are the cameras shown in background of Figure 4-5. The Vicon

system provides a position estimate of sub-millimeter accuracy at 100 Hz, and the

filtered time difference gives a velocity estimate of 1 cm/s peak-to-peak accuracy.

The vehicles are commercially available Draganflyer V Ti Pro [107], and no signifi-

cant modifications was required to the hardware to fly them autonomously. Several

lightweight reflective markers are attached to each vehicle in a unique configuration,

which the Vicon system uses to track the position and orientation of each vehicle in

the room. The low-level controller is designed to track waypoints which are then pro-

vided in real-time by the planner. The waypoint follower was designed using standard

LQR techniques, which calculates the motor commands of each rotor off-board and

sends them to the quadrotor using an R/C transmitter [105].

4.4.2 Implementation with Non-zero Computation Time

Figure 4-6 shows how the algorithm is implemented, when the computation time is

not negligible. The discrete time step k is defined as the time when the control uklk

is implemented. The latest measurement is taken 7 seconds before the discrete time,

where T is an upper bound on the computation time. To form Xklk, the measured

states are propagated using a model of the low-level controller, assuming that the

control input uk-llk-1 is still being executed. The propagated states xklk are then

used as the initial condition of the optimization at time k.

4.4.3 Result

The objective of this experiment is to demonstrate that the RSBK algorithm can gen-

erate online a long trajectory using receding horizon techniques. Many disturbances

sources exist in the hardware experiments, such as air flow, modeling error of the

vehicle, sensing noise, communication delay, and imperfect tracking of the low-level
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Figure 4-6: Implementation of the algorithm with non-zero computation time

controller.

satisfy the

The RSBK algorithm must account for these uncertainties to robustly

constraints. The following parameters were used in the tests.

At = 3 sec,

Vmax = 0.25 m/s,

wr = 0.12 m,

7 = 1.1 sec

amax = 0.31 m/s 2

w, = 0.10 m/s

N = 4.

In order to demonstrate the robustness of this approach, several long flight tests

were conducted. Figures 4-7 to 4-9 show the scenario and the resulting trajectories.

The mission is to fly back and forth between two target areas several times. The

target areas are squares, 0.9 m on a side, centered at (1.5, 2.3, 0) and (-1.5, 2.1, 0),

and are in green lines in the figure (the centers are marked with x). The vehicle must

avoid the obstacles in the middle of the room (a box on the floor next to a large pole).

The performance objective penalized the vehicle altitude, and the main objective of

minimizing the time of arrival forces the vehicle to fly close to the obstacle boundaries.

In scenario #1 and #3, the quadrotor starts around (0, 0, 0.5). The scenario #2 is a

continuation of the scenario #1, and the vehicle started around (-1.5, 2.1, 0.2).

The thick red lines are the actual trajectory of the quadrotor recorded at 2 Hz.

The planned waypoint commands are marked with o and are connected with blue

lines. The low-level controller tracked the planned trajectory reasonably well, and
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Figure 4-7: RSBK algorithm on the quadrotor testbed in 3D environment - Test 1
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Figure 4-8: RSBK algorithm on the quadrotor testbed in 3D environment - Test 2
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Figure 4-9: RSBK algorithm on the quadrotor testbed in 3D environment - Test 3
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the difference between the actual and the planned trajectories is captured as a distur-

bance. In scenario #1 and #3, the vehicle starts by lowering its altitude to minimize

the altitude penalty. The planned trajectories between the two targets stay close to

the obstacle boundaries, indicating that the trajectories are nearly optimal. Note that

the planned trajectory points do not lie on the obstacle boundary because the plan-

ner accounts for the disturbances by systematically tightening the constraints (i.e.,

expanding the obstacles) in the prediction steps. The actual vehicle trajectories show

some oscillatory behaviors, which are not modeled in the double integrator model that

was used. A better closed-loop model of the low-level controller or a fine tuning of

the waypoint follower could reduce the prediction error and improve the smoothness

of the actual trajectories. The average MILP computation time was about 1 second

using a 2.4GHz laptop with 1GB of RAM. The overall results demonstrate that the

RSBK planner can generate three dimensional trajectories online while accounting

for disturbances and robustly satisfying constraints.

4.5 Summary

This chapter presented a computationally efficient robust constrained trajectory opti-

mization algorithm. The result extends previous algorithms to allow for much shorter

plans that do not necessarily reach the target set. The invariance constraints are im-

posed at the terminal step of this short plan to ensure the safety of the vehicle under

the changes in the environment beyond the planning horizon. A sophisticated cost-

to-go function was shown to significantly improve the performance while maintaining

feasibility of the optimizations. Simulation and hardware results for a rotorcraft

showed that the proposed algorithm safely navigates the vehicle to the target under

the action of an unknown but bounded disturbance.
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Chapter 5

Decentralized Robust Receding

Horizon Control for Multi-vehicle

Guidance

This chapter presents a new distributed robust Model Predictive Control algorithm for

multi-vehicle trajectory optimization and demonstrates the approach with numerical

simulations and multi-vehicle experiments. The technique builds on the robust-safe-

but-knowledgeable (RSBK) algorithm in Chapter 4, which is then extended in this

chapter for the multi-vehicle case. The key advantage of this RSBK algorithm is that

it enables the use of much shorter planning horizons while still preserving the robust

feasibility guarantees of previously proposed approaches. The second contribution of

this chapter is a distributed version of the RSBK algorithm, which is more suitable

for real-time execution. In the distributed RSBK (DRSBK) algorithm, each vehicle

only optimizes for its own decisions by solving a subproblem of reduced size, which

results in shorter computation times. Furthermore, the algorithm retains the robust

feasibility guarantees of the centralized approach while requiring that each agent

only have local knowledge of the environment and neighbor vehicles' plans. This

new approach also facilitates the use of a significantly more general implementation

architecture for the distributed trajectory optimization, which further decreases the

delay due to computation time.
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5.1 Introduction

When using robust MPC in dynamic environments, fast online computation is needed

in response to new information. However, the computation required scales poorly

with both the length of the trajectories being planned and the number of vehicles

to be planned for. This chapter addresses both of these scalability issues, adopting

shorter horizons for scaling with length and distributed computation for scalability

with fleet size. The first contribution of this chapter is the extension of Robust

Safe But Knowledgeable (RSBK) algorithm to the multi-vehicle case. As shown in

Chapter 4, this algorithm plans over only a short horizon, terminating in a robust

control invariant set that needs not to be near the goal. The main difference is that

the constraints and the invariant set in this chapter includes the states/plans of the

other vehicles.

For multi-vehicle control, decentralized MPC [57] addresses the computational is-

sue associated with the centralized optimization by breaking the optimization into

smaller subproblems, with the rationale that solving many small problems is faster

and more scalable than solving one large problem. For multi-vehicle problems, it is

natural to divide the problem such that the plan for each vehicle is computed onboard

that vehicle, i.e., such that local decisions are made locally. Besides the computa-

tional advantages of decentralized MPC, this also offers a reduction in the amount of

data that needs to be exchanged between vehicles, and a potentially reduced level of

dependency of any individual vehicle.

A second contribution of this chapter is to develop a distributed form of RSBK

(DRSBK). The primary computational benefit of the DRSBK algorithm over RSBK

is that each vehicle only calculates its own trajectory, which is obtained by solving a

subproblem of reduced size. The algorithm creates a queueing order of non-conflicting

groups of vehicles [38], where each group optimizes sequentially, while vehicles within

a group solve their subproblems in parallel. This does not require iteration, which is

crucial for a real-time implementation over a realistic communication network. The

chapter also presents a generalization of the implementation architecture for widely
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separated teams of vehicles. In particular, we define a local neighborhood of each

vehicle to be all other vehicles that could have a direct conflict with that vehicle. By

limiting the number of vehicles to consider to only those within a local region of each

vehicle, the number of constraints in each subproblem can be significantly reduced.

This modification further simplifies the DRSBK computation, but although the plans

are only communicated locally, DRSBK is shown to maintain the robust feasibility of

the entire fleet. This architecture generalizes the rigid implementation approaches of

Refs. [62, 102] to enable some of the vehicles to compute their plans simultaneously,

which can significantly reduce the delay incurred.

The chapter is organized as follows. Following the problem setup in Section 5.2,

Section 5.3 presents the RSBK algorithm. Section 5.4 extends the RSBK algorithm

to the distributed computation using only local information. Section 5.5 shows sev-

eral simulation results, and Section 5.6 shows experimental results on the hardware

testbed.

5.2 Problem Statement

The problem of interest has the overall goal of reaching the target while robustly

maintaining feasibility. In this chapter, p, q, r that are used as an index or superscript

denote the vehicle number, subscript k denotes the current time step, and subscript

j denotes the prediction step. There are total of n vehicles whose dynamics are

decoupled and are described by an LTI model

X p  = APxp + BPup + wp (5.1)

for p = 1,... n, where xp is the state vector, up is the input vector, and wp is the

disturbance vector for the pth vehicle. The disturbances wp are unknown but are

assumed to lie in known bounded sets

w C E Wp. (5.2)
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The environment has obstacles to be avoided and the vehicles have flight envelope

limitations. The general output sets YP capture these local constraints of each vehicle

p= 1,...,n

CxP + DPu y E Y. (5.3)

Vehicles are coupled through the constraints, and a further set of constraints c =

1, ... , nc are applied to the sum of the outputs from each vehicle

Vc: zc= Ec , Vp = 7l,...,n

zPS Z (5.4)
p=l

where z P  denotes p's variable that is coupled with other vehicles' variables. For

pair-wise collision avoidance constraints, each constraint c has only two nonzero ma-

trices Ec and E q, and enforces a minimum separation between that pair of vehicles

IIrP - r I > 2d (5.5)

where rP is a position of the vehicle p, and 2d is the minimum separation distance.

Note that each set Zc is non-convex in this case. Finally, the objective of the trajectory

optimization is to navigate the vehicles to their assigned targets, and the objective

function is the sum of individual costs

XP XC (5.6)

n NP-1

J = 1P(X ,U) (5.7)
p=l k=O

where N P is the time of arrival at vehicle p's target XTP and is a variable to be

minimized, and P1 is a staged cost of vehicle p.
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5.3 Robust Safe but Knowledgeable Algorithm

This section presents a Robust Safe but Knowledgeable (RSBK) algorithm presented

in Chapter 4 in the multi-vehicle setting. When applied to multi-vehicle control, this

algorithm solves a centralized problem, i.e., solving for the plans of all vehicles p =

1,.... n in a single optimization. Section 5.4 discusses how this computation can be

separated into a sequence of smaller problems and distributed across the vehicles in

the team.

5.3.1 Algorithm Description

Solving a single optimization (5.1)-(5.7) is not tractable when the vehicle flies through

complex environment to a distant target, because the complexity of the optimization

grows rapidly with the number of steps Np required to reach the target. Furthermore,

the situational awareness can change as the vehicle flies and there could be significant

uncertainties in the far future. It is inefficient to devote considerable computational

effort to plans for the far future because these are likely to be revised in the light of

future learning.

The online MPC optimization develops the control inputs for a short horizon of

N steps. To simplify the presentation, let xk without the vehicle superscript denote

the vehicle states of all the vehicles. The optimization P(xk) at time k is defined as:

n N- 1

J* = min Z (uk+j, X )k+jlk+( +N k) (5.8)
Ik' k p=1 j=O

p=1,...,n

subject to Vp = 1,...,n, and Vj

xPk = xP (5.9)

++l = Ax+ k + BPu+ (5.10)
Yk+j+1k k+j k +  k+j •

Yj= Cpk pjik + DPuP+jk E (5.11)k+jlk k Ik Yi
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p+ =- Ep xP+k+jIk, c c k+jlk

zk+jlk, c
p=l

Xk+NIk

Sp

VXP E RP k

E Zj, c, Vc = 1,. .. , n

ES

= RP LP I WPIcN-l

APxP + BpP(xP) + LP-U1 w E R,, VwP E WP

C xx + DP; r(xP) C YN1
n.

Vc = 1, .. .. , nc : EcxP ZN-i1,c
p=l

V(x',..., x") E(S X ... x Sk}.

The states xP in (5.9) is the measured states of vehicle p. The decision variables are

the control inputs Usk and the terminal invariant set Sk that ensures the safety of the

vehicle beyond the planning horizon. Note that predictions (5.10) are made using only

the nominal system model, with no disturbance. In order to guarantee robustness

against disturbances w, the sets yP are constructed by tightening the original set YP

using a linear controller P? that rejects the disturbance

(5.17a)

(5.17b)

YOX = YP

•+, = YP - (C p Lp + DPP+) J WPJ 3 J+

where LP is a state transition matrix

LP = I

LP+ - A PL P + B PPP+ 1, Vj-.

(5.18a)

(5.18b)

The notation Vj- implies Vj = 0,..., N- 2, and Vj implies Vj = 0,..., N- 1, as in-

troduced in previous chapters. Equations (5.12) and (5.13) represent the inter-vehicle

constraints such as collision avoidance, and more details on the MILP implementation

are found in Appendix 5.C. Similar tightening is performed on the coupling constraint
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sets in (5.13), allowing uncertainty margin for all subsystems within each constraint

(Vc = 1,....ne)

Zo, c = Zc (5.19a)

--+1, = ZiL, ( E)L)W1 9 ... G E"LnW, (5.19b)

where the operator D denotes the Minkowski sum [109]. Unlike other robust MPC

approaches, the constraint tightening approach does not increase the complexity of

the problem and is well-suited for real-time applications. Another advantage of this

approach is that the optimization considers the entire range of vehicle dynamics

allowed by the constraints (5.11)-(5.13).

The set Sr in (5.14) is called a safety set, defined by (5.15). The set 1Zk is a

robust control invariant admissible set [98] that has a property (5.16). The property

states that once the vehicle enters the set RPT, the vehicle can remain safe indefinitely,

satisfying all the constraints using a pre-determined terminal control law ~P(xP).

The vehicle is safe also against any changes in the environment that occur outside of

this safety set. This terminal set SP moves with the vehicle towards the target and

therefore a decision variable in the online optimization, as indicated in (5.8). The

RSBK algorithm parameterizes the invariant set, and by using nilpotent candidate

controllers, which gives LN_1 = 0, it can solve for a simple nominal control invariant

admissible set [52]. One simple invariant set for fixed-wing aircraft is a loiter circle,

or for rotorcraft, any point with zero velocity is invariant [70]. Detailed examples are

given later in Section 5.5. Note that vehicle q's safety set S can overlap with vehicle

p's path to its safety set Sk without any issues. This is because by the time q reaches

Sk, vehicle p has already executed the portion that overlaps with S.

The function fP(xk+NIk) in (5.8) represents the cost-to-go beyond the planning

horizon and is associated with the terminal states of the planned trajectory. The

cost-to-go function for minimum time problem is

f(xPp+Nk p (5.20)
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I _~ · · _. 1
Path consistent with
discretized dynamics

Path associated with
line of sight vector

Path associated with
cost to go

Figure 5-1: Representation of the cost-to-go function showing the three levels of

resolution used to approximate a complete path to the goal.

The results presented in this chapter uses a 2D version of the cost-to-go calculation,

as shown in Figure 5-1, but the result easily extends to 3D environment considered

in Chapter 2.

Given these main components, the overall RSBK algorithm is summarized in

Algorithm 5.1. From the optimal solution at time k, the first control input u k for

each vehicle is applied to the system (5.1). At the next time k + 1, the states of each

vehicle x 1, are measured, and the optimization is repeated.

5.3.2 Properties

Theorem 5.1 (Robust Feasibility). The system (5.1) controlled by Algorithm 5.1

satisfies all the local and coupling constraints (5.3)-(5.4) under the action of bounded

disturbances (5.2) for all positive k, if the optimization (5.8)-(5.16) at initial step

k = 0 is feasible.

Proof. It can be shown that feasibility at time k ensures that a particular candidate
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Algorithm 5.1 RSBK algorithm for multiple vehicles
1: Given a disturbance feedback controller, calculate the output constraint sets y'

through (5.17)-(5.18), the coupling constraint sets Zj through (5.19), and a cost
map rcorner, cP(rcorner) that can be used to evaluate the cost-to-go function fP(.)

2: for k = 0 to k = oo do
3: Take a measurement of the current states xp

4: if the knowledge of the environment has changed then
5: Redo line 1
6: end if
7: Formulate a MILP problem using the stored values from line 1
8: Solve optimization (5.8)-(5.16), (5.20) and obtain the control inputs u +jlk
9: Apply control uk = ul kI from the optimal sequence to the system (5.1)

10: Go to the next time step
11: end for

solution

,&p UP WP V- (5.21a)

k+j+llk+1 - k+j+ll k  P+l , Vj (5.21a)
=P x+P + Lw ,  (5.21b)

k+j+lik+l k+j+lik +  k v

Uk+NIk+1 IP( Nk++ ) (5.21c)
5P  = Ai p  + Bpi p  (5.21d)

k+N+llk+1 k+NIk+1 k+Nik+l

R+1 = Rp (5.21e)

S+ 1 = S (5.21f)

is feasible at time k + 1, and hence the optimization at time k + 1 must be feasible.

See Appendix 5.A for more detail. O

Remark 5.1. In order to recursively prove robust feasibility, the algorithm requires

the existence of an initial feasible solution. Because the algorithm uses a short plan-

ning horizon and does not require the vehicles reach the goal in the first plan, it is

typically very easy to find an initial feasible solution, as will be shown in the experi-

mental results Section 5.6. One such initialization is a simple loiter pattern, assuming

the vehicles are far enough apart compared to the diameter of the loiter circle. This

initialization is much simpler than that required in the previous robust multi-vehicle

MPC algorithms [52]. This feature will also be exploited in the distributed form of

119



Plani
hori

graph Xk Vehicle p's
/neighbor range

Figure 5-2: The neighborhood of each vehicle is shown by the dashed lines. Each

plan terminates in a safety circle.

the algorithm, where initialization can be a significant challenge.

5.4 Distributed RSBK Algorithm

This section presents a distributed version of the RSBK algorithm. In this approach,

each vehicle solves a reduced subproblem to determine its control inputs. These

optimizations are solved in sequence and the distribution is achieved by having each

vehicle exchange its plan information with the other vehicles. A key element of this

work is that the vehicles must only exchange information with its neighbors, enabling

the local optimization to be based on local information [62]. This is important because

it reduces the communication requirements and enables the groups to re-plan faster.

5.4.1 Algorithm Description

The basic idea is to include only the vehicles that could have direct conflicts with the

vehicle that is planning. Figure 5-2 shows an example with three aircraft. Any plan
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of the vehicle r would not have conflict with p's plan because they are far apart. On

the other hand, the vehicle q could have a conflict with p if both p and q generate

their plans independently and move towards each other. Therefore, p's optimization

must include the intention of q, but the vehicle r could be disregarded.

Before presenting the algorithm, several aspects of the notation are defined. First,

define vehicle p's neighbor §E as an ordered set of vehicles whose plans made at time k

could have direct conflicts with p's plan made at time k. More formally, q E 2k if there

exist locally feasible solutions u Sq and up Sp that individually satisfy the

local constraints (5.9)--(5.11) and (5.14) for vehicle p and q, but can violate any of the

coupling constraints (5.12)-(5.13), (5.15)-(5.16) if combined. For the multi-vehicle

collision avoidance problem, a simple implementation of vehicle p's neighborhood is a

set of vehicles within distance 2D from the vehicle p, where D is the maximum plan

length with some margin and is given by

N

D = Zj(vmax - !k)At + d + aN 1 + 2p (5.22)
k=O

with At being the sampling time of the discrete time system, d being the size of

the vehicle, p being the radius of the loiter circle, aN-1 being the margin included

for robustness [102], and 3 k being the constraint tightening margin for the velocity,

whose analytical calculations are given later in (5.50). The arc in Figure 5-2 shows the

boundary of p's neighborhood. The communication range of the vehicles is assumed

to be larger than 2D. For each vehicle, all obstacles within range D from the vehicle

are assumed to be known. Note that the neighbor set is a function of time k, because

the relative position of the vehicles will change over time.

The set Tk also determines the order in which the vehicles calculate their new plans

sequentially, although Section 5.4.5 modifies the assumption on this strict ordering.

Let pre(q) denote the vehicle ordered prior to the vehicle q, and next(q) denote the

vehicle ordered after q. The first and the last element of this set is expressed as

first(lk) and last(4), respectively. With the definition of 2k, we know a priori

that for any two vehicles p and q with q V 2k (and hence p ý I!), the plans of the
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two vehicles satisfy the coupling avoidance constraints for all steps over the planning

horizon. Hence, even if the subproblem for the vehicle p includes only the plans of

its neighbors, all of the coupling avoidance constraints will be satisfied.

The result of this analysis is that only a subset of all n, coupling constraints need

to be considered in each subproblem. Define C C {1,..., nc} as the set of coupling

constraints to be included in subproblem p at time k. Then,

CP = {c E 1,..., nc : 3q E -k, [Ep Ec ] - 0}. (5.23)

This excludes two kinds of constraint irrelevant to p: those that couple p to the

vehicles outside its neighborhood, and those that do not involve p at all, i.e., with

EP = 0.

Let Gk denote a vehicle graph whose node is a vehicle and edge connects two nodes

if the corresponding vehicles are neighbors. If 9k is a disconnected graph, then 9k is

divided into a set of connected subgraphs. The information of the neighbor sets Jk is

shared by the vehicles in the connected graph (or subgraph if 9k is not connected),

so that the vehicles in the connected graph have the consistent information on the

planning order. This can be done using only the inter-vehicle communication. Note

that the vehicles that belong to different connected graphs do not need to exchange

information because there will be no conflict among them.

5.4.2 Algorithm

At time k, the pth vehicle generates its own control inputs uk by solving the following

optimization subproblem PP(xP):

N- I

min E IP( UP (5.24)
UP S k+jl' k+jk) + f(k+NIk) (5.24)

1 k' k j=(

subject to Vj Eqs. (5.9)-(5.12), (5.14),

z+jk, c k+jk, c 3 c, V(5.25)
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APxp + BPI•K(xP ) E Sc

Cp x + DPKP(xP) E YN- 1
VxP E Sk" q VcCq pZN-, (5.26)

V(xPo,.. ., I XP") So x ... x Sk"}

In DRSBK, each vehicle is assumed to use a nilpotent controller PP that makes

LP_, = 0, and therefore (5.15) is not included. The term +jlk, c is a summation

of the outputs from the neighbor vehicles and is constant in this local optimization.

The term has two components Vj, Vc C C

Z+jlk,c= k+jlk, c  k +jlk-1,c (5.27)
qETP, q E k ,

ord(q)<ord(p) ord(q) >ord(p)

The first term is the summation over the vehicles that have already planned at time

k. The second term is for the vehicles that have not planned at time k, so that the

prediction made at (k - 1) is used. This prediction comes directly from (5.12) in

the optimization pq (xq_ ). The original coupling constraint sets Zc are modified in

the following manner, dividing the tightening process from (5.19b) into intermediate

stages for each vehicle

Zpp = Z (5.28a)

ZP ' ( c Z E LW',q Vj, q E 2, q Po (5.28b)

PC, = -Z O - EPOLPOW  , Vj- (5.28c)
•-+1,cc - "P0c

with po = first(rk) and pn = last(ZLk). (5.28b) tightens the constraints from the

vehicle q to pre(q). This represents that the vehicle pre(q) saves some margin for

the vehicle q so that q can use it to reject the disturbances W q. (5.28c) tightens the

constraints from the prediction step j to (j + 1). This represents that the optimization

at time k for vehicle p~ saves some margin so that the optimization at time (k + 1)

for vehicle po can use it to also reject the disturbances.
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Algorithm 5.2 DRSBK algorithm
1: Given a disturbance feedback controller, calculate the output constraint sets yP

through (5.17)-(5.18), the coupling constraint sets Z? through (5.28), and a cost
map rcorner, cP(rcorner) that can be used to evaluate the cost-to-go function fP(.)

2: Find a feasible solution of the DRSBK optimization starting from the current
states (See Remark 5.2)

3: for k= 1 to k = 00 do
4: for each vehicle p = 1,..., n do
5: Update the neighbor set Zk
6: end for
7: for each vehicle p = 1,..., n, in a predetermined order (e.g. 1,..., n) do
8: Gather, by communication, the latest plans zIk, or z·k- l c from its neighbors

9: Take a measurement of the current states xz
10: if the knowledge of the environment has changed then
11: Redo line 1
12: end if
13: Construct a cost map rcorner, cP(rcorner)
14: Formulate a MILP problem using the stored values from line 1
15: Solve subproblem PP(xp) and obtain the control inputs uk+jlk
16: end for
17: Apply control nu = Uklk from the optimal sequence to each vehicle p in (5.1)
18: Go to the next time step
19: end for

In (5.26), for the vehicles that have already planned at time k, the latest solu-

tion Sk is used. For the vehicles that have not planned Vq E {next(p),... ,pn}, the

invariant set constructed at the previous step is used, i.e., S = S•_ 1.

Algorithm 5.2 shows the full DRSBK algorithm. Note that this algorithm is also a

generalization of the two previously published distributed MPC algorithms [62, 102],

in that it includes both robustness and a short plan that does not necessarily reach

the target.

The lines 2, 5, 8-13 are implemented in MATLAB. Before solving each subproblem

in line 15, MATLAB forms the MILP constraints using both the static parameters

such as vehicle dynamics limit, target location, and constraint tightening margin,

and the dynamically updated parameters such as current vehicle states, obstacle

boundaries, and other vehicles' plans. More details on the MILP implementation are

shown in Appendix B. Then, the MILP solver CPLEX is invoked in line 15. The
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optimized control states and inputs are extracted from CPLEX into MATLAB and

is sent to the vehicle in line 17. Note that in the hardware experiment section 5.6,

MATLAB receives the measured states from the vehicle in line 9.

5.4.3 Robust Feasibility

Even though each subproblem only uses local information, the robust feasibility of

the entire fleet can be proven using an approach that parallels [110].

Theorem 5.2. The system (5.1) controlled by Algorithm 5.2 satisfies all the local and

coupling constraints (5.3)-(5.4) under the action of bounded disturbances (5.2) for all

positive k, if feasible solutions to all subproblems PI(xI),...,Pn((X) can be found at

time 0.

Proof. The proof is based on a recursion and similar to the proof of Theorem 5.1

in Appendix 5.A. Without loss of generality, the planning order is assumed to be

1, 2,..., n. The proof considers two main stages, as outlined below. More details are

found in Appendix 5.B.

0. Assume all the subproblems PP(zx) have a feasible solution at time k.

1. Given feasible solutions of vehicles 1,..., n at time k, it can be shown that a

feasible solution exists to the first subproblem P1 (xlk+) at time k + 1 for all

disturbances wk acting on the vehicle 1 despite the change in the neighbor set

k+1-. This is done by showing that the following candidate solution is feasible.

k+ 1 +j+k U llk + Plwk, Vj- (5.29a)

+lk+1 = ++ll k + Lwk, Vj (5.29b)

1 K (529c)
k+Nlk+1 - k+Nik+l) (5.29c)

Xk+N+1lk+1 = AA +Nlk+1 + B'i+Njk1 (5.29d)

+1 = Sk (5.29e)
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2. Given feasible solutions of vehicle 1,...,p at time k + 1 and p + 1,..., n at

time k, it can be shown that a feasible solution exists to the next subproblem

PP+1 (x +), by showing the feasibility of a candidate sequence. Similar to (5.29)

in Step 1, the candidate solution is constructed by shifting the previous plan

for vehicle p + 1, assumed known in Step 0, by one time step and adding a

perturbation sequence using the predetermined controller PP+1

Therefore, at k + 1, all subproblems Pl(xk+l),..., p n(X+ 1) are feasible. O

5.4.4 Remarks

Remark 5.2. Simple Initialization: Initializing this algorithm requires the other

vehicles' previous solution, as shown in (5.26) and (5.27). However, a simple initial-

ization technique such as loiter circle can be used, as discussed in Remark 5.1 of the

RSBK algorithm.

Remark 5.3. Scalability: If each subproblem includes the interactions with all the

other vehicles, as in [102], the number of constraints grows rapidly with the size of

the fleet, which would increase the problem complexity. The algorithm presented

here only requires the information about its neighbors, resulting in a more scalable

approach. Furthermore, each vehicle only needs the information from its neighbors,

so that the algorithm requires much less communication bandwidth.

5.4.5 Simultaneous Computation

This section removes the assumption on the strict ordering and enables simultaneous

computation among vehicles.

Theorem 5.3. Two vehicles p and q can generate trajectories simultaneously without

causing infeasibility in the algorithm if p ý I q (and hence q ý ZP).

Proof. By the definition of neighbor IP and 2q, the plans for p and q have no conflict.

Given an arbitrary vehicle r (# p, q), both optimizations by p and q ensure that
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Figure 5-3: Output of Brelaz's heuristic algorithm for vertex coloring. Each node

represents a vehicle, while each line connecting two nodes represents that they are

neighborhood. The number is a group label for the vehicle and vehicles with the same

group label can compute simultaneously.

the same candidate plan similar to (5.29) for each vehicle r is feasible. Thus, when

p and q calculate simultaneously, any vehicle r has a feasible solution at the next

optimization. E

By applying this theorem to pairs of vehicles in the fleet, it can be shown that

more than two vehicles can perform optimization simultaneously. The vehicles that

compute simultaneously are grouped together, and the number of vehicles that com-

pute simultaneously is to be maximized. This grouping problem is cast as a vertex

coloring problem on the vehicle graph gk, where each vertex represents a vehicle and

vertices are connected if they are neighbors. The goal is to color all the vertices

with a minimum number of colors while using different colors for adjacent vertices.

Brelaz's heuristic algorithm [111] is used here because it provides good solutions very

rapidly. Vehicles of the same color are in one group and can compute their solutions

simultaneously.

Algorithm 5.3 shows a Brelaz's algorithm. This algorithm orders the color from 1

to n, where n is a number of vertices. The vertex degree is defined as the number of

adjacent vertices, and the color degree is defined as the number of adjacent vertices

that have already been colored. The input to this algorithm is a graph of r vertices

and an adjacency matrix.

Figure 5-3 shows a simple example where Brelaz's algorithm is applied to a graph
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Algorithm 5.3 Brelaz's algorithm
1: Initialize by setting all vertices uncolored
2: while there is an uncolored vertex do
3: Find an uncolored vertex with the highest color degree
4: if more than one vertices are found then
5: Choose the vertex of the largest degree
6: end if
7: Color the vertex with the smallest color that does not conflict with its neighbor's

color
8: end while

of 10 vehicles. Note that in order to color the vehicles, the location of all the vehicles

in the connected graph must be known. A central ground station can be introduced

to run the grouping algorithm and determine the planning order. Alternatively, the

vehicles can obtain this information by communicating only locally through neighbors.

Then, the lines 5 and 7 of the DRSBK algorithm in Algorithm 5.2 are modified to

the following.

5. Ground station receives vehicle positions r , runs the grouping algorithm, and

determines the planning order. Each vehicle updates the neighbor set I.

7. For each group, do the following simultaneously for all vehicles p's in the group.

5.5 Simulation Results

5.5.1 Vehicle Model

A point-mass dynamics model is used to approximate the translational dynamics of

UAVs

P P

Vk+ 1 J [P k

tI2 

2 

2 2

AP= 2 I, 1 BP= 2 12

02 12 At12
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where r P, vP, and ap are the position, the velocity, and the acceleration vector re-

spectively. Matrices I2 and 02 express an identity matrix and a zero matrix of size 2

respectively. The disturbance wp enters through the input acceleration and

wP E WP = {w I w = Bn, n E R 2, Ilnllj < Wmax}. (5.30)

The local constraints include the obstacle avoidance, the maximum/minimum speed,

and the maximum input constraints

Vmin - IVI[ 12  Vax

IaPkII2 amax

where 9 C R2 expresses the no-fly zones, and Vmin, Vmax, amax are the minimum speed,

maximum speed, and maximum acceleration of the vehicle. A two-step nilpotent

controller KP for this system is KP = [-_i2, - 2-I2], which enables the use

of nominal invariant set as a safety set. Obtaining Pj through Pj+1 = KPLj and

performing constraint tightening (5.17b) give the following constraint set [102]

rk+jIk (9 ae B (5.31)

Vmin + 03 : V+jIk 2l 1 Vmax - (5.32)

akl+jk 2 amax - (5.33)

where constraint contraction parameters a, f, and y are defined in (5.50) in Appen-

dix 5.C. The set B represents a 2D unit box, i.e., B = {x e R2 1 00xllii < 1}. Note that

(5.31) expands the no-fly zones to guarantee robust feasibility. The cost map calcu-

lation is based on the expanded obstacles 0 D cOzN_-B. The inter-vehicle avoidance
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constraints in p's optimization are written as

r+jIk krq+jk > 2d + 2a, if ord(q) <ord(p), q C

- rk +jqk1 > 2d + a9 + aj+& , if ord(q) > ord(p), q C 2

where r . are sent from p's neighbors. The terminal safety sets Sp must not overlap

with each other, as shown in (5.26), so that the sets S• (Vq f p) are treated as no-fly

zones after time step k+N- 1 in the optimization PP(xp). These non-convex avoidance

constraints are implemented using MILP. More details are found in Appendix 5.C.

5.5.2 Multi-UAV Scenarios

The simulations used homogeneous fixed-wing UAVs. The maneuver limit of the

vehicle is given by vmin = 18 m/s, vmax = 24 m/s, amax = 3.84 m/s 2. The disturbance

magnitude Wmax is 5% of the control authority amax. The planning horizon length

N is 5. Fixed-wing UAVs have minimum speed limit, and a safety loitering circle is

used as a terminal invariant set [621. For simplicity, in this section, the simultaneous

computation is implemented as a sequential computation on a single computer but in

the same simulation time step. The hardware experiments presented in Section 5.6

use the distributed implementation where each vehicle has one onboard processor.

The DRSBK algorithm was tested in the following two scenarios. The first scenario

uses four vehicles with vehicle avoidance constraints. Figure 5-4(a) shows the entire

trajectories. Goals are marked with 0 together with the corresponding vehicle indices.

Figure 5-4(b) shows the plans made at time k = 5. The rectangle in dashed lines

shows a safety region where the safety circle is contained and the other vehicles cannot

enter after time k + N. Note that the plan of the vehicle 4 (marked with *) aims for

the corner (marked with o) of this rectangle of the vehicle 1 because this corner is

in the cost map. As shown in Figure 5-4(c)--(e), it is acceptable for the plan of one

vehicle to pass through the safety region for another. The terminal set (5.26) only

requires that the safety regions do not overlap each other.

The second scenario is much more complicated and involves ten vehicles and four

130



I - - veh 1
veh 2

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

(a) Trajectories

200

-200

-400 -200 0 200 400 600 800 1000

Snapshot at time 5.

<KL-~l

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

(c)Snapshot at time 6.

-0 400

-200

-400

-1000 -800 -600 -400 -200
(d) Snapshc

0 200 400 600 800 1000

)t at time 7.

S0

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

(e) Snapshot at time 8, showing the successful
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Figure 5-4: Trajectories generated by DRSBK in a four vehicle scenario. The goal
points are shown with 0 with the corresponding vehicle index. Note that squares
containing safety circles do not overlap with each other.
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Figure 5-5: Ten vehicle scenario with four obstacles.
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Table 5.1: Average computation time (seconds) of each subproblem
Scenario

4 veh
10 veh (local comm.)
10 veh (full comm.)

Cost map Optimization
calculation (MILP)

0.04 0.21
0.21 0.25
0.21 0.37

obstacles. Figure 5-5(a) shows the trajectories of all ten vehicles. Although computa-

tion was done on one processor in this section, the grouping algorithm was included

to investigate the potential for speed-up by simultaneous computation. Figure 5-

5(b) shows a snapshot of the vehicle locations (marked with o) at time t = 14. The

neighbors are connected by the lines and each vehicle is labeled with a color/group

number. Note that no two vehicles connected to each other have the same group

number. The vehicles in the same group can simultaneously solve their optimization

without any conflict in their trajectories. Figure 5-5(c) shows the time history of the

number of colors required for grouping the vehicles. The number of groups is low

when the vehicles are far apart, but as might be expected, this increases to six in the

middle of the mission when the vehicles are in close proximity.

Table 5.1 shows the average computation time for these scenarios. The cost map

calculation was done in MATLAB, and the MILP optimization was solved using

CPLEX 9.0 on Pentium IV 3.2GHz machine with 1GB of RAM. The computation

time of the cost map calculation grows with the number of vehicles because a larger

number of loiter circles means that more obstacles must be considered. In order to

demonstrate the effect of using only the local information, the ten vehicle scenario

is tested also with a case where each vehicle includes all other vehicles as neighbors

with full communication. The last two rows of Table 5.1 illustrate that DRSBK with

local communication solves the problem much faster. The output of the grouping

algorithm is used to enable simultaneous computation, and the number of groups

that must compute sequentially is 10 in the full communication case, as opposed to 6

in the local communication case. This indicates the local communication architecture

reduces the fleet computation time further by 40% in this scenario, compared to the
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approach using the fully sequential computation.

5.6 Experimental Results

This section presents experimental results of the DRSBK algorithm on the multi-rover

testbed. The hardware demonstrations introduce realistic features such as computa-

tion and communication time delays and prediction errors that naturally arise from

the various sources of uncertainty in the system, including the tracking errors from

the low-level waypoint follower and modeling errors of the vehicle dynamics. These

implementation challenges must be addressed by the algorithm in order to successfully

generate trajectories online.

5.6.1 Testbed Setup

Figure 5-6 shows the testbed setup with the indoor positioning system from Arc-

Second Constellation 3D-i and Pioneer 3-AT from ActivMedia Robotics. In order

to demonstrate the online distributed computation amongst the vehicles in the fleet,

each rover has two laptops, as shown in Fig. (a). A small "control" laptop performs

the navigation and low-level vehicle control tasks, and a 2.4GHz "planning" laptop

performs the DRSBK computation using a combination of MATLAB and CPLEX.

The control laptop runs an estimator for the position and the velocity estimate of

the vehicle. For practical implementation, instead of applying the acceleration com-

mand u* as in Algorithm step 17, the onboard planner sends the optimized trajectory

to the control laptop, which generates wheel speed commands for the rover. A non-

linear guidance law [17] is used to implement a trajectory tracking controller, which

runs at a faster rate than the DRSBK controller. This represents an apportionment

of uncertainty in the problem, with the low-level handling fast dynamics and the

high-level handling uncertainty in the environment, collision avoidance, and residual

tracking errors. The ground station laptop runs a grouping algorithm at each time

step, but all DRSBK calculations are done onboard, as shown in Figure 5-7. Each

planning laptop communicates its local solution with its neighbors using the 802.11a
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Figure 5-6: Multi-rover testbed

135

lans

ind
ion



I. Take a measurement

Veh 3 -

Veh 2

Veh 1

Ground
station

I I -r
k-1 k Time

Figure 5-7: Timing of the DRSBK algorithm on the testbed.

wireless LAN. For this testbed, the inter-vehicle communication is facilitated using

an access point connected through an Ethernet cable to the ground station laptop.

Figure 5-7 shows the timing of the experimental setup. This example has three

vehicles in two groups where the vehicles 1 and 2 compute simultaneously. The

control input of each vehicle is implemented using fixed discrete time steps. The

planner takes a measurement (I) and propagates forward the measured states using

the nominal model to predict the initial states Xk of the plan. This propagation

compensates for the system delay that results from the computation time tcomp, the

communication delay tcomm, and the actuation delay tdelay. It then computes the

optimal control input (II) and waits until the control update time (III). The step size

At between time step k and k + 1 was 2.8 seconds for two-rover cases and 3.5 seconds

for three-rover cases.

A typical experimental run starts by commanding the vehicles to drive straight in

the initial heading direction. After 1.5 seconds, the first vehicle takes its measurement

and the DRSBK loop starts. For other vehicles that have not made any plans, loiter

circles starting from their current states are used as their initial feasible plan, as

mentioned in Remark 5.2. This demonstrates the online initialization capability of

this algorithm.
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Given the applications of interest are multi-UAV coordination problems, the rovers

have been modified to emulate the motion of a UAV in 2D. In particular, the vehicles

are constrained to a maximum speed Vmax = 0.25 m/s, a minimum speed vmin =

0.044 m/s, and a minimum turning radius rmin = 0.9 m. The vehicle size is d = 0.25 m.

The planning horizon length is three steps. The disturbance wP is assumed to enter

into position and velocity separately,

wk e W = {w R4 111[2, 02 ]w 2  Wrmax, , [ I2]w~ l 2  WVmax}. (5.34)

Extensive testing of the vehicle on different types of flooring indicated that the pre-

diction errors due to the uncertain vehicle dynamics, navigation errors and external

disturbances are approximately wrmax = 0.15 m and Wvmax = 0.05m/s. Due to the

tightened constraints, the speed is constrained to be 0.14m/s < v < 0.15 m/s after

N = 3 steps.

5.6.2 Results

Scenarios are constructed to highlight several features of DRSBK algorithm: onboard

laptops generate trajectories online, which shows the computational advantages for

real-time applications; the vehicles are required to maneuver in a constrained envi-

ronment, which demonstrates the robust feasibility under the action of disturbances;

plans based on distributed computation can satisfy the coupling collision avoidance

constraints.

Test 1: The first set of experiments was designed to test the obstacle and vehicle

avoidance using two rovers. During the first few steps in each run, the separation

between the two vehicles was more than 2D = 6.34 m, and the onboard computers

optimize trajectories simultaneously. However, as they move towards each other,

the planning horizons overlap, and they compute the solutions sequentially. For

the purposes of the demonstration, the experiment is terminated once the vehicle

avoidance and obstacle avoidance maneuvers are completed. Figure 5-8 and Figure 5-

9 show four runs performed on this testbed. DRSBK algorithm maintained feasibility
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Figure 5-9: Two vehicle experiment results. The arrows show the initial heading
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Figure 5-10: Three vehicle experiment results. The arrows show the initial heading

directions of the vehicles. The goals are marked with E.
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under the action of the disturbances, and all runs show the robust vehicle avoidance

and obstacle avoidance based on the online distributed trajectory generation.

Test 2: The second set of runs examines vehicle avoidance maneuvers using three

rovers that are forced to execute a crossing pattern. Figure 5-10 presents the executed

trajectories for three runs with different initial locations and headings. Note that

the resolution strategies differ with the scenario. One of the key features of MILP

is that it handles the non-convexity directly and looks for solutions on all sides of

avoidance zones and conflicts. This example illustrates that DRSBK is making use

of this functionality, as opposed to other methods that could simply refine the initial

guess that are given. In these scenarios, vehicles 1 and 3 are initially neighbors

because they are closer than 2D = 6.54m, and thus compute sequentially. Vehicle 2

is initially independent of that pair, and thus solves for its plan simultaneously with

one of them. However, since the vehicles are crossing, vehicle 2 joins the pair after a

few time steps, and then all three vehicles compute sequentially. Once the vehicles

finish the avoidance maneuver near the middle of the figure, the group breaks up as

the vehicles move apart and starts solving for the plans simultaneously again. The

results demonstrate online dynamic grouping and re-grouping of the vehicles using

the algorithm in Section 5.4.5.
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5.7 Summary

This chapter presented a new distributed robust Model Predictive Control algorithm

for multi-vehicle trajectory optimization. Each vehicle generates its control inputs

by solving a subproblem in sequence, while freezing the plans of other vehicles. The

solution is then communicated to other vehicles in the fleet. The approach extends

previous results to ensure robust feasibility without having to plan all of the way to

the goal and with only communicating the plans within a local neighborhood rather

than the entire fleet. This two new features greatly reduce the computation effort and

facilitate a significantly more general implementation architecture for the distributed

trajectory optimization. Experimental results on a multi-vehicle testbed demonstrate

many advantages of this algorithm including online distributed optimization, simul-

taneous computation, and the robust feasibility against the disturbances in the real

environment.
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5.A Proof of Theorem 5.1

If the optimization (5.8)-(5.16) is feasible at time k, then the vehicles satisfy all

the constraints at time k. This is because the constraints (5.11) and (5.13) in the

optimization ensure that the constraints (5.3) and (5.4) of the real system are satisfied

through (5.17a), (5.19a), (5.9), and UPkl = uPk

Therefore, the proof needs to show that the optimization (5.8)-(5.16) is always

feasible under the action of the bounded disturbance (5.2). The proof is based on a

recursion that is similar to the proof of Theorem 3.1.

Candidate Solution at Time k + 1

First, assume the form of the candidate solution at time (k + 1) as

Vp : ^p

uk+j+llk+1

ip

k+N+llk+l

2+1

Sk+ 1

k+j+llk + Pp+1w, Vj.

= ++1k + Lw, Vj

= KP bk+Njk+l)

= AP•P + BP' Pk+Nlk+

= RP

= Sk

(5.35a)
(5.35b)

(5.35c)

(5.35d)

(5.35e)

(5.35f)

which is constructed from the solution obtained at time k. Note that the disturbance

realization w p at time k is available at time (k + 1).

Initial Condition (5.9)

By setting j = 0 in (5.35b),

k+lk+l = Xk+lk k

= Ax~(k + Bu +k + WP

-AxP + B up + wp = xP'k k k k+l
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Thus, the candidate solution satisfies the initial condition (5.9) at time k + 1.

State Equation (5.10)

At time k + 1, the state equation (5.10) for the prediction step j = N- 1 is satisfied

by the definition of ý+N+1k+1 in (5.35d). For j = 0,..., N- 2, from the definition

of LP (5.18),
Lp wP= = APLBwp + BP

j+l jk 3 k +  3+l

which holds for any wP. By adding this to the following state equation at time k

Xp = Ap + BPupk+j+2 k k k+j+ll k + Uk+j+ll k

and using (5.35a) and (5.35b), we have

kP = Ap: pP + BPiLPk+j+21k+l k+j+llk+l k+j++lk+l

for all p.

Local Constraints (5.11)

For prediction steps j = 0,..., N- 2,

kY+j+llk+1 = Cpk+j+llk+ k++ Dkkc+j+llk l ~k+j+llkk+

SCPx+j+llk + DPup+j+l k + + CP~Lw" + DnP l w"

= Y+j+1lk + (C PLp + DPP?'±) w.

Note that the solution at time k satisfies Y +j+P1k y, and the bounded distur-

bance is (CPL p + DPPjp 1
) w p E (CPL + DPP,?+ ) )VP. Therefore, using the relation

(5.17b), we have

Yk+j+1k+1 E Y Vw•.
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Coupling Constraints (5.12)-(5.13)

For each prediction step Vj,

k+j+LIk+1, c = c k+j+llk+l

-= E kP+j+llk + E kLw "

Note that the solution at time k satisfies

n

p=1

n

S k+j+llk, c
p= 1

E zj+1,c

and the disturbance terms are

EPL Ew EEPLPW, VpEILj Ik C j p
n

p j "k
p=1

E EnL'WWn).

Thus, using (5.37), (5.38), and the relation (5.19b), the summation of (5.36) over the

vehicles is

Zik+j+l1k+1,c E Zj+1,c e (EL LW 1  ... e E"L W,)
p= 1

Czj, c.

Note that the Pontryagin difference has the following property

(A ~ B) B C A (5.39)

and (A - B) E B # .A in general [95].
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Terminal Constraints (5.14)-(5.16)

Check if the terminal step of the candidate solution satisfies the terminal constraint

X;+N+1 k+l E Sk+1. By letting j = N- 1 in (5.35b),

k+Nlk+1 = k+NX k + L- P w

Since

XNk  Sk = RPk - LPN_ 1W P

L P E LP WP
LN- Wk  N- 1

we get

k+Nk+1 k Z •k+1'

Using the property (5.16),

APk+Nk+ BP( +Nlk+l) + LPN-1WP  k, VP

C +Nk + DPP(i+NIk+l) N-1

VwP E WP

YN-l

Ik+N+llk+l ' LN-l P = S = +l

CPPk+Njk+1 + DPuk+NIk+l YN-I

Thus, the candidate solution also satisfies the terminal constraint (5.14). The last line

shows that the local constraint (5.11) for prediction step j = N- 1 is satisfied at time

k + 1. Since the safety sets Sk,... ,Sn at time k satisfies the property (5.15)-(5.16),

the candidate safety sets~k1 ,4... given by (5.35f) also satisfy (5.15)-(5.16).

Therefore, under the action of a bounded disturbance w C E WP, the candidate

solution (5.35) satisfies all the state prediction equation, local constraints Yf, and

coupling constraints Zj, at time k + 1, and the terminal state i4+N+1k+1 lies in the
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safety set S•., = S,, which has the robust invariance property of 7~. O

5.B Proof of Theorem 5.2

As stated in the outline of the proof on p.126, the proof needs to show the following

two arguments.

1. Given feasible solutions of vehicles 1,..., n at time k, a feasible solution exists

to the first subproblem Pl(xk 1) at time k + 1.

2. Given feasible solutions of vehicle 1, ... , p at time k + 1 and p + 1,..., n at time

k, a feasible solution exists to the next subproblem PP+I(xp+j) at time k + 1.Sk+l at ti k + 1

5.B.1 Feasibility of Vehicle 1

All the vehicles 1,..., n are assumed to have a feasible solution at time k, satisfying

the following constraints.

Vp: X• = APx 2 + BPuk+j+llk - k+jlk Uk+jlke
P = CPP + DPup+Cl

Z+k =- EP+XPk+jlk , c k~jlk

ZP ++.P G k ck+jlk, c k+jlk, C J, C, VC ( CP

Xk+Nik C

APx p + BPraP(xp ) E SkP

Cp x ' + Dp ' (xp ) c yPN 1

Vx P E S2 ==>
Vc CC: E ECq ZN-l,C

) qE C{ x.V'(XP°, , XPn )E f kp X .
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We assume the following form of the candidate solution

+j+llk+ Uk+j+llk  Pj+1 k, Vj (5.40a)

-. 1
Xk+j+l1k+1 = Xk+j+l k + Llwl, Vj (5.40b)

Uk+Nlk+1 1 (k+NIk+1) (5.40c)

k N+llk1 = A k+Nlk+1 + B 1 k+Nlk+1 (5.40d)

•k+ = S- (5.40e)

and check if this satisfies all the constraints.

The initial condition (5.9), state equation (5.10), and local constraints (5.11) are

identical to those in Appendix 5.A, and therefore satisfied by the candidate solution

(5.40).

Coupling Constraints (5.25)

Since vehicle 1 is the first vehicle to plan at time k + 1, other vehicles' plans (5.27)

are

Zk+j+llk + 1,c = Z+j+llk,c. (5.41)
qEZ -+, ql1

Because vehicle n has a feasible solution at time k,

z k c C . (5.42)

Zk+j+llk, c Z c  V E ZC(5.42)

The definition of neighbors and the coupling constraint set (5.23) ensure that other

coupling constraints c ý C~ are already satisfied prior to the optimization by n. By

combining this with (5.42), the constraint satisfaction of the fleet is guaranteed

n.

S+j+1 Z7c Vc (5.43)
q=1
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By using (5.12) and (5.40b), Vj,

Zk+j+llk+1,c = E k+j+llk+l

-= Exk+j+llk + EL Lw.

Combining above equations, we have

k+j+llk+l,c + Zk+j+llk+l,c = Zk+j+llk, c + Ek L w z++lk, c
q=2

E Z n1, 1 ED L3 W1

C Z,
J, C' Vc.

The last step used the definition of the set Z in (5.28c) and the property of the

Pontryagin difference (5.39).

Terminal Constraints (5.14) and (5.26)

Check if the terminal step of the candidate solution satisfies the terminal constraint

xk+N+l|k+1 E S~+1. Since DRSBK uses a nilpotent policy L_ 1 = 0, we have the

following by letting j = N- 1 in (5.40b).

^1 1
Xk+Nlk+1 = Xk+NIk

Since the solution from the previous time step k ensures X +NIk E Sk, the property

(5.26) gives

A k+NIk+1 B 1 i' (+Nk+1) e SI

C1 B11
C1 k&+Nlk+1 + D K1 1(+Nk+1) YN-1

Vc cEC : E5 EZN-_,c

V(Xo,... ,XoPn)C {S ° x
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(E Ski

1-~
1 + D'ý U±Ik±1 C

Thus, the candidate solution also satisfies the terminal constraint (5.14) for the op-

timization at time k + 1. The last line shows that the local constraint (5.11) for

prediction step j = N- 1 is also satisfied at time k + 1. Since the safety sets S1 at

time k satisfies the property (5.26), the candidate safety sets S+1 given by (5.40e)

also satisfy (5.26).

5.B.2 Feasibility of Vehicle p + 1

This subsection assumes the same form of the candidate solution for vehicle p + 1

iP+1 1 = U +1pk+ 1 p+k1 Vj- (5.44a)
k+j+llk+l k+j+llk  j+l k

p+1l = xPj+1k Lp+l p+1 Vj (5.44b)

p+ 1 = p+(lP (5.44c)
k+NYk+l Nk+=1 )  (5.44d)

jp+ 1 = A 15p+1 + B 1,P+1 (5.44d)
k+N+llk+l k+N-k+l k+Npk+ 1

kP+1 = S p+1 (5.44e)

and check if this satisfies all the constraints. Again, the initial condition (5.9), state

equation (5.10), and local constraints (5.11) are identical to those in Appendix 5.A,

and the candidate solution (5.44) satisfies them. The proof for the terminal con-

straints (5.14) and (5.26) is the same as the one given in Section 5.B.1 with a change

of the superscript from 1 to p + 1.

Coupling Constraints (5.25)

The term 4+j+llk+l,c, as defined in (5.27), is

Zk+1' q7+k+1c
q<p+l q>p+l
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Because vehicle p has a feasible solution at time k + 1,

z zqSk+j+llk+l, c
qEI+pk+ 11

q:5p

k+j+llk, c 3 •c,

The definition of neighbors and the coupling constraint set (5.23) ensure that other

coupling constraints c + C are already satisfied prior to the optimization by p.

Therefore,

p

zk+j+llk+l, c
q=l

n

+ q Elk+j+1|k, c q3, p
q p+1

Vc. (5.46)

By using (5.12) and (5.44b), Vj,

pj+1=l
k+j+llk+l, c

Ep+1 + 1 |c k+j+llk+l

= EcP+ x1  + Ep k 1Lp+w+l+
S k+j+llk c k

= zp+l + EP+lLp+l w+l
k+j+llk, c c j k

Then, (5.46) becomes

S q 'p+l
k+j+lk+l, c +  k+j+llk+l, c

q=l

SEPp+lLP+ P+l Z- + k+j+k, c
q=p+2

Using (5.28b),

S -+p+lk+j+llk+l, + k+j+llk+l,c
q=1

Finally, we have

n

zI q EZZ Ep+ 1 LP+ 1 .P+ 1k+j+llk, c JI c E
q=p+2

C Z p I
- 3 c,

.j + P+C ZP+1
k+j+llk+l,c + kj+llk+l,c j,c

satisfying the coupling constraints for vehicle p + 1.
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5.C MILP Implementation of DRSBK Optimiza-

tion

This appendix shows the detailed MILP implementation of DRSBK algorithm. The

disturbance in this section is assumed to be infinity-norm bounded, i.e., WP =

{w I w = Gn, IlnllK • Wmax}.

Constraint Tightening for Robustness

The constraint tightening in (5.17) and (5.28) are implemented using the following

constraint contraction parameters [102]

0 =0, )j = aj-1 + 11[10 0 0]LP _BPGGIwmax, j 2 1

o0 = 0, 0j = 3j-1 + CII[O0 1 0]LP_ BPG lWmax, j Ž 1

Yo = 0, yj = _1 + CII[1 0]PBPGIIWmax, j > 1 (5.50)

where a,, 3j, and -j respectively represents the constraint contraction for position,

velocity, and input for the jth prediction step. The coefficient C = 1 when the

constraint set (5.32) and (5.33) and the disturbance set are both two-norm bounded.

However, C = 0V when performing the Pontryagin difference between a two-norm

bounded set and the infinite-norm bounded disturbance set /WP in (5.30). This is

because WP has the maximum magnitude of the length V2wmax in the diagonal

directions.

Output Constraint Set (5.11)

The obstacle avoidance constraints use binary variables. For each point r'±+jIk

[X+j yk+j k]T and each rectangular shaped obstacle defined by two corners [Xlow, ylow]T
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and [Zhigh, Yhigh] T , the avoidance constraints can be expressed as

Vo, Vj Xk+jlk Xw, - + M obst,jo1  (5.51a)

Y±+jlk < Ylow,o - aj + Mb•bst,jo2 (5.51b)

Xk+jlk 2 Xhigh,0 -Oj- M bobst,jo3  (5.51c)

Y k+jjk Ž Yhigh,o + j- M bbstjo4  (5.51d)
4

b2obst,joi  3 (5.51e)
i=1

where M is a large number to relax the constraints in (5.51a)-(5.51d), and o denotes

the index of the obstacle. The logical constraint (5.51e) requires at least one constraint

in (5.51a)-(5.51d) be active. Note that the parameter aj tightens the constraints by

enlarging the obstacles.

The output constraint (5.11) also includes the bound on speed and inputs. Let

vectors r, v, and a respectively represent position, velocity, and acceleration input in

the inertia frame. A set of nd linear constraints approximates the two-norm bounded

constraints on the acceleration and velocity vectors, which in turn limits the maximum

turning rate

[cos m, sin 0m V+jik Vmax - / (5.52a)

[cos 0m, sin On,] aP+jik a ax - j (5.52b)

m= 2 , Vm= 1,...,nId.
nd

The minimum speed constraint is non-convex and requires n, binary variables to

express in MILP

[cos m, sin Om] +jk Vmin + - 2Vmax bel,jm (5.53a)

Ebel,jm - n, - 1 (5.53b)
m=

One advantage of MILP is that the optimization can consider the entire range of
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vehicle dynamics allowed by these constraints.

Invariance Constraints (5.14)

From the terminal states, the vehicle has an option to enter a left or right loiter circle.

The centers of the left and right safety circles are

OP k+Nk- V +NIkS2 Vnax - 13N- Ik+Nle

S= k+Nk + R p N-1 k+N
2) Vmx - /N-I V+NJk

(5.54a)

(5.54b)

where R(O) is a rotation matrix of angle 0, and p is the radius of the turning circle

given by

(Vmax - /N-1) Vm -max N-1
amax - Vmin N-amax 7N-1 min + ON-1

The second term accounts for the variability of the terminal speed IIvk+N±k .

binary variable beft chooses either the left or right safety circle

The

(5.55a)

(5.55b)

OP - 2(p + aN+1)(I - eb1t) <- 0P < O - 2(p + aN,_1)( - bpft)
OR - 2(p + a•_-l)bP,t < OP < OR - 2(p + aN-)bPjet.

With the notation OP = [ZXcenter , Yenter]"', the obstacle avoidance constraints of the

safety circle are written as

Vo : ZXenter • Xlow,o

Ycenter • Ylow,o

- (p + aN-1) + M bPirc-obst,o 1

- (p + aNi) + M bpirc-obst,o2

center high, (P N-) - M circ-obst,o 3

Ycenter > Yhigh,o + (P + a N - 1) - iAbpcrc-obst,o4

cE birc-obst, oi < 3
i=l
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Interconnected Constraints (5.13)

Over the planning horizon, the coupling constraints include vehicle avoidance con-

straints

P < Q Pq + bpq
k+jlk - k+jlk total veh,jl

Yk+jlk - Yk+jk - dtal + Mb eh,j2

Xk+jlk X+jlk + dP bP

k +jk + dtota l - M veh,j4
Yk+jlk -- k jlk + -- al

(5.57a)

(5.57b)

(5.57c)

(5.57d)

(5.57e)bP h<3vehPe ,,.i

where

dqal 2d + 2aj, q < p

S2d+aj+aj+i, q>p.

Beyond the planning horizon, constraints on the safety circles ensure the vehicle

avoidance

Xenter center - 2(p + d + aNl) + M brc,1

Ypenter -5 Ycenter - 2(p + d +

xpenter l + 2(p + d + aN-l) -center - center

aN-l)+ M bPc,2C'rc,2

M C.,3

(5.58a)

(5.58b)

(5.58c)

(5.58d)

(5.58e)

Yenter Ž- Ycenter + 2(p + d + aN-1) - M bcirc,4

i=1

Objective Function (5.20)

The objective function uses a binary variable bis to select one visible point ri s from

a list of cost points, from which the cost-to-go is known. Let rcp,i denote the ith cost
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point and i = 1,..., ncp where ncp is a number of cost points. Then,

SrVISV1S, 2 CPi (5.59a)

(5.59b)

(5.59c)

Svis,i 1
i=1

'ncp

fP (TrPis) =E bvis,i
, p (Pi)

= f P (cPi)

where the cost-to-go fP(rp  ) from each cost point to the target of vehicle p is calcu-

lated prior to MILP and is constant in MILP. The objective value JP to be minimized

is a sum of two-norm distance from the terminal point rP+Njk to the selected cost

point rvis and the cost-to-go from there

JP > [cos 0m, sin Om](r p  ) P(r ), Vm.
--+~l /vis \vis/

(5.60)

To ensure the visibility of the selected cost point ri s
p from the terminal point +N

obstacle avoidance constraints are enforced on nint interpolation points that are placed

on the line connecting ri s. and x +NP kvis k±Njk

pl k+NIk +

[lXk+NIk +

IA1Yk+Nlk +

( 1- pi
(1- A,)Pis

/1-ti) XPv i.s>

(1- A)yvpvis

4

int,loi

S r i

Xlow,o - ON-l1 + MV1 Oint,l 1o

Ylow, ON-1 + Mbint,lo2

Xhigh, o + O'N- 1 - M bint,o3

Yhigh,o + aN-1 - M bint,10o4

3

n1 =
tint

In summary, the MILP implementation of subproblem PP(xP) is to minimize JP

in (5.60) subject to (5.9)-(5.10), (5.51)-(5.61). The optimization variables are rk+jlk'

kP ap O p , O P , Op , rp and all binary variables bP's.Vk+jlk, k+jlk, R1 vis,
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(5.61d)
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1 = 1,..., nint.



Chapter 6

Cooperative Decentralized

Trajectory Optimization with

Coupling Constraints

Motivated by recent research on cooperative UAVs, this chapter introduces a new

decentralized trajectory optimization approach for systems with independent dynam-

ics but coupled constraints. The primary objective is to improve the performance of

the entire fleet by solving local optimization problems. The challenge here is how to

coordinate the vehicles without reproducing the global optimization problem for each

agent. To achieve cooperation, the approach exploits the sparse structure of active

couplings that is inherent in the trajectory optimization. This enables each local

optimization to use a low-order parameterization of the other agents states, thereby

facilitating negotiation while keeping the problem size small. The key features of

this approach include (a) no central negotiator is required; and (b) it maintains

feasibility over the iterations, so the algorithm can be stopped at any time. Fur-

thermore, the local optimizations are shown to monotonically decrease the overall

cost. Simulation results are presented to compare the distributed, centralized, and

other (non-cooperative) decentralized approaches in terms of both computation and

performance.
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6.1 Introduction

Much of the current research on decentralized trajectory optimization uses a setup

where each vehicle optimizes only for its own control and communicates this intent

information to its neighbors [62, 71, 110, 112- 115], as represented by the DRSBK

algorithm presented in Chapter 5. These decentralized algorithms typically lead to

a Nash equilibrium [116] or a Pareto optimal surface [113, 117], which is not nec-

essarily the globally optimal solution, because these so-called "communication-based

approaches" [115] do not use the information about the cost functions of other sub-

systems and do not consider the overall performance.

A typical cooperative behavior is to sacrifice the individual objective if it benefits

the overall team performance. The challenge in achieving such fleet level coopera-

tion is how to address the global performance in the decentralized planning setup.

For example, previous work by Inalhan [113] softens the constraints and achieves

fleet level agreement by iteratively increasing the penalty on the constraint violation,

but this iteration process could take a long time before it even reaches a feasible

solution. Another iterative decentralized scheme has been recently proposed [115]

for systems coupled through their dynamics to achieve a cooperative solution. A

dual decomposition approach has been proposed for systems coupled through objec-

tives [118]. This chapter focuses on problems with independent dynamics but with

coupling constraints. The application examples include formation control of a fleet of

UAVs, vehicle avoidance maneuvers, and multi-vehicle path planning under line-of-

sight constraints. The proposed algorithm minimizes the global cost by solving local

optimizations while satisfying all the constraints. The new approach in this chapter

avoids the complexity of global optimization by using a reduced decision space for

neighboring systems in each local optimization. In particular, it exploits the prob-

lem structure to parameterize the other vehicles' decisions using the active coupling

constraints. This approach is suitable for trajectory optimization because it typically

has only a few active couplings.

The chapter is organized as follows. First, Section 6.2 introduces the overall
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problem and two straightforward approaches. In Section 6.3.1, a simple form of the

proposed algorithm is presented first to highlight the implication of this approach.

Section 6.3.2 presents the complete decentralized cooperative algorithm. Finally, Sec-

tion 6.5 shows the simulation results and compares the algorithm with other available

approaches in terms of performance and computation time.

6.2 Problem Statement

The problem of interest is a general optimization for multi-vehicle systems, with a

particular emphasis on path planning. A fleet of n vehicles are assumed to have

independent dynamics. In this chapter, the superscript or subscript i, j denote the

vehicle index. Different types of constraints are imposed, but they can be divided into

(a) local constraints, such as speed bounds, input saturation, and obstacle avoidance;

and (b) coupling constraints such as vehicle avoidance, inter-vehicle communication

range, and line-of-sight between vehicles.

The system dynamics are in discrete time, and an optimization is performed to

obtain the optimal input for each vehicle over N steps into the future:

Vi = 1,...,n, Vk=0,...,N-1:

Z = f, (4X, ui) (6.1)

9i(X4, u~) < 0 (6.2)

Aix' + A3 xJ < bj, Vj= i+1,...,n (6.3)

where fi (x, u') represents the nonlinear dynamics of vehicle i, and gi (xi, ui) rep-

resents all local constraints imposed on the states and the inputs of vehicle i. The

pair-wise constraints (6.3) capture the coupling between all pairs of vehicles and are

assumed to be a combination of linear constraints, which can express various types

of polyhedral constraints including the 1-norm, the approximate 2-norm, and the

c>-norm bounds.

The objective function for the entire fleet is a sum of the individual costs, which
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fii

Figure 6-1: Node i's neighbor set A and active coupling neighbor set A.

could be competing with each other

n

min J (6.4)
i=1

N-

s.t. Ji= Zli(4,u u) +Fi(x ), Vi (6.5)
k=0

where li(xi, 'u}) is a stage cost and Fi (x ) is the terminal penalty.

6.2.1 Notation

In this chapter, we define the term neighbor of vehicle i as a set of vehicles that have

any coupling constraint with vehicle i. In particular, if A[(i) denotes this neighbor set

for vehicle i, then there exists a coupling constraint between the two vehicles i and

j E GA(i). Furthermore, let A(i) denote a set of vehicles that have active coupling

constraints with vehicle i. Figure 6-1 shows an example of a graphical representation

of a vehicle fleet. Each node represents a vehicle, and the arc connecting two nodes

shows that there is a coupling constraint between the two vehicles. The shaded nodes

in the figure are the neighbors of vehicle i, i.e., ji,..., j4 E AN(i). In general, not all

of the coupling constraints are active. In this example, active coupling neighbors of

vehicle i are marked with thick lines, and jI, j2 C A(i) but j3, j4 A(i).

For notational simplicity, let zi denote the decision variable of the ith vehicle, i.e.,
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zi u ,... , U T IT Then, with some abuse of notation, a compact form of the

optimization (6.1)-(6.5) can be written as

n

minm Ji(z) (6.6)
Zl,...,Zn

i=l

subject to Vi: g(zi) < 0

h(zi, zj) O0, j Af(i)

where g(zi) represents the local constraints for vehicle i, and h(zi, zj) represents the

coupling constraints between vehicles i and j.

6.2.2 Centralized Approach

The centralized approach directly solves the full (and potentially large) optimiza-

tion given in (6.6). This approach produces the globally optimal solution; however,

it scales poorly because the optimization becomes very complex for large fleets for

most problem types (i.e., quadratic programming and mixed-integer linear program-

ming) [102].

6.2.3 Decentralized Non-cooperative Approach

One decentralized approach is to decompose the centralized problem (6.6) into smaller

subproblems, as discussed in Chapter 5. Figure 6-2 shows the procedural flow. Similar

to Gauss-Seidel iteration [119], the approach sequentially solves the local subproblems

and sends the solutions to other vehicles. In a subproblem, each vehicle i freezes the

other vehicles' decision variables and solves for its own optimal input zi*. The local

optimization for vehicle i can then be written as

min Ji(zi) (6.7)
zi

subject to g(zi) < 0

h(zi, zj) < O, j E N(i).
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Vehicle ID

,1
2
3

time

Figure 6-2: Decentralized sequential planning. Each gray region represents that the
vehicle is computing during that time.

The decision variables of the other vehicles are assumed to be constant, which is

denoted as ij. The solution zi* to the subproblem (6.7) is sent to the other vehicles,

and the optimization of the next vehicle i + 1 starts after receiving zi*.

The main advantage of this approach is that the subproblem has a smaller decision

space (approximately n times smaller than the centralized approach), with many fewer

constraints, as shown in Chapter 5. As a result, the computation time is much smaller

and the algorithm scales much better than the centralized approach. Furthermore, all

the constraints are satisfied while cycling through the vehicles. However, since each

vehicle does not account for the objectives of other vehicles, the resulting solution

is coordinated but non-cooperative. This non-cooperative solution is called a Nash

equilibrium, where no vehicle can improve its local cost by changing only its own

decision, and has to be avoided in the cooperative approach. These benefits and

limitations of this approach are clearly illustrated in the examples in Section 6.5.

6.3 Decentralized Cooperative Optimization

This section presents a new decentralized cooperative algorithm. We first describe

the approach for a simple version of the algorithm with only two vehicles i and j, one

coupling constraint, and no local constraints.
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6.3.1 Simple Version

Similar to the decentralized non-cooperative approach, each vehicle solves a local

optimization problem in a sequential way by freezing the other vehicle's decisions

when the coupling constraints are inactive. The key difference is that when there is

an active coupling constraint, the new approach recognizes that each vehicle should

consider sacrifices to its local performance if it is possible to reap a larger benefit to

the overall team performance.

More formally, when vehicle i solves the optimization after vehicle j, the coupling

constraint aizi + aj2j 5 bij is modified, if active, in the following way

aizi + a32j < bij - 3. (6.8)

The parameter 0 tightens the constraint for vehicle i if /> 0, which could make the

local performance worse. However, vehicle i can account for the potential benefit to

the other vehicle j by adding an extra term to the objective function

min Ji(zi) - A/ (6.9)
Zi,0

where A =ý 0 is a Lagrange multiplier of the coupling constraint that is obtained

from the previous solution of the optimization by vehicle j. This Lagrange multiplier

represents the amount of improvement (if A > 0) or loss (if A < 0) the optimization

of vehicle j can obtain given some change in the right hand side of the coupling

constraint ai•i + ajzj • bij [120]. In the hierarchical setup, the Lagrange multiplier

could be used to represent the "price" of each vehicle's solution that the centralized

negotiator can use to obtain a coordinated solution [7]. Note that this approach is

meaningful only when the coupling constraint is active and hence A = 0.

The decision variables of vehicle i's optimization in (6.9) are its local decisions

zi and the negotiation parameter /3 for the other vehicle. The parameter f3 allows

vehicle i to sacrifice its local cost if that leads to more benefit to the other vehicle

j, which corresponds to a cooperative behavior. This is the same as minimizing the
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global performance by solving the local decentralized problems.

6.3.2 Full Version

This section generalizes the idea introduced in Section 6.3.1 to cases with multiple

coupling and local constraints. When there are multiple active coupling constraints,

simply including the effect A/, for each active coupling constraint could doubly count

the benefit that the other vehicle can obtain. Also, the scope of the simple prob-

lem must be expanded because it is possible to have vehicle i tighten its coupling

constraint, as in (6.8), to enlarge the operating region of vehicle j, but a local con-

straint of vehicle j prevents it from using that extra region and obtaining the expected

benefit AP.

The simple version used the negotiation parameter 3 in vehicle i's optimization

as an implicit decision variable for vehicle j. In the full version, vehicle i makes an

explicit decision for vehicle j, which is denoted by 6zj. Then, vehicle i's optimization

is

min Ji(zi) + Jj(2j + 6zj) (6.10)

s.t. g(zj) < 0 (6.11)

g(·j + 6zj) • 0 (6.12)

Aizi + Aj(ýj + 65z) < b~j (6.13)

where 6zj is related to P through Aj6zj : /3. The modified local optimization in

(6.10) appears similar to the one solved in the centralized approach, but the key

point is that, for the problems of interest in this work, the decision space can be

reduced significantly, as discussed below.

Sparse active coupling

The approach avoids reproducing the global optimization problem for each agent by

exploiting the structure of active couplings that is typical of trajectory optimization.
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Figure 6-3: A two norm constraint approximated by a combination of linear con-
straints. The arrow shows a relative position vector. The thick line shows the only
active coupling constraint.

For example, the vehicle avoidance constraints are imposed over all time steps of the

plan, but they are typically active only at one or two time steps. Communication

range limit constraints could be expressed as a nonlinear two-norm constraint on the

relative position, but a combination of several linear constraints can approximate

it. In such a case, as illustrated in Figure 6-3, only a few of the many existing

constraints are active. The algorithm exploits this sparse structure of the active

coupling constraints to reduce the size of the optimization problem.

Low-order parameterization

Without loss of generality, the upper rows of the coupling constraints (6.13) can be

regarded as active and the lower rows as inactive.

[ Aactive pactive

Ai]active zj

We focus on changing lactive by 6zj, because a change in these active coupling con-

straints can lead to the direct change of the other vehicle's cost. This corresponds

to focusing on the non-zero A in the simple version. In order to address the change

in 3
act ive , a low-order parameterization of 6zj can be used because dim(pactive) <

dim(6zj) in trajectory optimization.
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Let m denote the row rank of A ct iv e , which is also a number of elements in 1 active

that any 6zj can change independently. Therefore, a new variable aj E Rm could

replace 6zj, where in the trajectory optimization problems the dimension m of aj is

significantly smaller than the dimension of 6zj. Let A denote a matrix composed of

the m independent row vectors extracted from Aact ive. Then, 6zj is parameterized by

aj as

6z- = AT(AAT) laj Tjaj. (6.14)

The inverse in this equation exists because the product (AAT) is a matrix of full rank

m, so the parameterization matrix Tj also exists.

With this new variable aj, the local optimization can be rewritten as

m {n Ji(zi)+ E Jj(2j + Tja)} (6.15)
aj •iEA( i )  

jEA(i)

subject to

g(zj) < 0
g(Qj + Tjaj) O, j E A(i)

h(zi, .j) < 0, j J(i), j A(i)

h(z , 2 j + Tjaj) 0, j E A(i)

h(4k, j + Tjaj) • 0, k E Af(j), k A(i)

h(zýi + Tj ay,j 2 + Tjiaj2 ) < 0, j 2 C A(i).

The parameterization is based on the active coupling constraints, but the optimization

includes both the active and inactive constraints. The first two constraints are the

local constraints for vehicle i and for its active coupling neighbors. The next four

equations express different types of couplings shown in Figure 6-4. Type I is between

vehicle i and its neighbors with no active couplings; Type II is between vehicle i and

its neighbors with active couplings; Type III is between vehicle i's active coupling
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Figure 6-4: Different types of coupling constraints.

neighbors and their neighbors; Type IV is between vehicle i's two active coupling

neighbors. Note that some constraints in h(zi, fj + Tjaj) < 0 could be omitted if aj

has no impact on them because of the row rank deficiency of Tj. The key advantages

of this algorithm are:

1. It does not freeze the other vehicle's plan, so that it can avoid Nash equilibrium;

2. It reduces the decision space of the other vehicles, so that the complexity of

each local optimization remains low. For a problem of interest with a relatively

large decision space (e.g., dim(zi) = 20, n = 5) and sparse active couplings (two

active coupling neighbors, dim(a) = 2), the reduction of the decision space of

each optimization would be a factor of - 4.

The algorithm iterates over the vehicles and the complete flow is summarized in Al-

gorithm 6.1. Note that in the line 6 of Algorithm 6.1, the vehicle i makes a decision

on itself and its neighbors. Then, line 7 ensures that all of the vehicles have the same

values for the decision variables zi and zj. The local optimization (6.15) requires

the knowledge of other vehicles' cost function, but this depends only on the target

score, target location, vehicle states, etc., and is simple to communicate. The simu-

lation results in Section 6.5 show that two iterations over the fleet produces a good

performance that is comparable to the centralized approach.
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Algorithm 6.1 Decentralized cooperation algorithm
1: Initialize the counter as 0
2: for each iteration do
3: for each vehicle i = 1,..., n do
4: Find the active coupling with this vehicle: A(i)
5: Calculate the parameterization matrix Tj, j E A(i)
6: Solve local optimization (6.15) and obtain the solution (zi*, aj*)
7: Send the solution to other vehicles. Each vehicle updates the plan

Zi := Zi*

zj := zj + Tj*, jE A(i)
8: if the counter is larger than the maximum number of iterations then
9: Terminate

10: else
11: Increment the counter by 1 and go to the next vehicle
12: end if
13: end for
14: end for

6.4 Algorithm Properties

This section discusses two key properties of this algorithm.

6.4.1 Feasibility Over the Iteration

First, we show that feasibility is maintained while cycling through the vehicles.

Theorem 6.1. Assume the fleet initially satisfies all of the constraints

Vj: g(zj) < 0

h(zj,zk) 0, k E NAf(j).

Then, if the optimization of vehicle i is feasible, the optimization of the next vehicle

i + 1 is also feasible.

Proof. Let the superscript (-)o represents the decision variable prior to vehicle i's
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optimization, and the superscript (-)* represents the solution optimized by i. Initially,

Vj: g(z ) < 0
h(zy, z4) 5 0, k E f(j).

The feasible solution of vehicle i's optimization that is obtained in step 6 of Algo-

rithm 6.1 satisfies the following constraints.

g(zi*) < 0

g (z + 6z ) 0,

h(zf, zo) 0,
h(z*, zj + 6z) < 0,1

h(z', z + 5z) < 0,0 Z3 +Zj

h(zl + 6z;, 2 +zj*2) 5 0,

j E A(i)

jE A(i), j (i)

j e A(i)

k E Af(j), k ( A(i)

jl, j2 E A(i)

After communicating the solutions and updating them in step 7 of Algorithm 6.1, the

variables satisfy all the constraints

Vi: g(1) 0o
h(zi, j) 5 0, Vj e N(i)

(6.16a)

(6.16b)

where

Z = 3 + 6z;j*,

zj=Zi 0

j E A(i)

j V A(i).

Given these results, the constraints for the problem for the next vehicle in the opti-
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mization sequence (i + 1) are:

g(zi+l) _ 0

g(zj + 6zj) < 0,

h(zi+i, zj) < 0,

h(zi+,, zj + 6zj) < O,

h(Zk, Zj + SZj) 0,

h(Z 1 + 6zj•, z + zj~) < 0,

j E A(i+ 1)

j Af(i + 1), j 4 A(i + 1)

j A(i + 1)

k E Af(j), k V A(i + 1)

ji, j2 E A(i + 1).

By comparing (6.16) and (6.17), it can be shown that reusing the solution from vehicle

i's optimization

Zi+l =i+I,

6zj = 0, Vj c A(i + 1)

provides a feasible solution to the optimization of i + 1. O

Note that because the feasibility of the entire fleet is maintained over the iteration,

the algorithm could be terminated at any time. Previous work [62, 110] also maintains

this feasibility property, but not the following property about the performance.

6.4.2 Monotonically Decreasing Global Cost

This subsection shows that the global objective value is monotonically decreasing

along the iteration.

Theorem 6.2. The global cost function defined by

J(z) = EJi(zi)
i=l

is monotonically decreasing in Algorithm 6.1, while cycling through the vehicles (line 3)

and over the iteration (line 2).
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Proof. The local optimization of vehicle i results in

J (Z4) + 1• Zj(z) > J (z*) + 1 Ji(zj + 6z;)

Let J(z) denote the global cost prior to the optimization by vehicle i and J()(i)

denote the global cost prior to the optimization by the next vehicle i + 1. Then,

J(zo) = Ji(z4) + E JJ(z) + E Ji(z)
jEA(i) jOA(i)

> Ji(z4) + E J3(z; + 6z;) + E J3(zy)
jEA(i) j.A(i)

= Ji(20)+ E Ji (f)+ E Jj(,) = J(2)
jEA(i) jOA(i)

Therefore, each local optimization decreases the global cost. Because this algorithm

maintains feasibility, it monotonically decreases the global cost while cycling through

the vehicles and over the iteration. O

6.5 Simulation Results

6.5.1 Simulation Setup

In this simulation, all n vehicles are assumed to have the same linear dynamics which

are described by a simple double integrator model: Vi = 1,..., n

S+l= O T +  I u
i iT  T

k I- rk V k
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Constraints are imposed on the position, the speed, and the control input of each

vehicle at each time step k = 0,..., N

Ilrki 11 1, Il,.V II2 
<  0.35, IIu•I2 <  0.18.

The systems are coupled with two neighbors through the following position con-

straints.

r -r+1 2 <0.8, i= 1,..., n-1
rn - rk12 < 0.8

These two-norm constraints are expressed as a combination of linear constraints. The

cost direction for the ith vehicle is

Ci = (s sin(

The overall cost function to minimize is quadratic

n N-1
N i T R + i R2 ci T N rN THr'

k k UkR2UkN N
i=1 k=O

where the weights on the states R 1 and inputs R 2 in the stage cost are chosen to be

much smaller than the weight H on the terminal position. Both the centralized and

the local optimization are written as quadratic programming, and CPLEX 9.1 is used

as a solver.

6.5.2 Simple Two Vehicle Case

The first example involves two vehicles i and j that can move on a two dimensional

plane. The terminal position of the vehicle i has its local minimum at coordinates (0,

0.7), i.e.,

Sarg m gin CiT N TN N},S7 r i +r Hr"
0.7 N
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Figure 6-5: The evolution of plans over the iteration for the simple two vehicle ex-
ample.

and that of the vehicle j is at (0, -0.7). Because the two vehicles must satisfy the

separation constraint of 0.8, their separate objectives are conflicting. The planning

horizon is three steps for both vehicles.

Figure 6-5 shows the evolution of plans over two iterations. The plans of vehicle

i are marked with o, and those of vehicle j are marked with x. Originally, both

vehicles are at the origin. First, vehicle i solves its local optimization. Because no

coupling constraints are active at this point, the plan reaches the local minimum (0,

0.7). Vehicle j then solves its optimization, but given the separation constraint, this

vehicle can only plan to move to (0, -0.1), as shown in the second part of the figure.

The vehicle i solves the next optimization, but since a coupling constraint has

become active, it uses a parameterized decision for j with a variable aj of dimension

m = 1. The bottom figure shows the plans after two iterations. The final plans are
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the same as the globally optimal centralized solution.

If the decentralized non-cooperative algorithm in (6.7) were used, it would produce

a Pareto optimal solution shown in the second figure of Figure 6-5, which is clearly not

the globally optimal solution shown in the bottom. Note that if the vehicle j plans

first followed by vehicle i, the non-cooperative algorithm results in a symmetric Pareto

optimal solution, which again is not the globally optimal solution. This example

clearly shows the performance improvement over the decentralized non-cooperative

approach.

6.5.3 Five Vehicle Case

Figure 6-6 shows a more complex case with five vehicles. In this example, the local

minimum for each vehicle is located on a unit circle centered on the origin. The

planning horizon is three steps for all vehicles, and the planning order was 1 --+ 3 -+

5 - 2 - 4 to highlight the effect of the planning order on the performance.

Two other algorithms described in Section 6.2 are used as benchmarks. These are:

1) the centralized approach (6.6) that provides the globally optimal solution, and 2)

the decentralized non-cooperative approach (6.7) that produces a locally optimized

solution.

As shown in Figure 6-6(b), the decentralized non-cooperative approach produced

a suboptimal solution, because the vehicles that plan earlier are less constrained and

have more region to operate than the vehicles that plan later in the cycle. The

decentralized cooperation algorithm produced the trajectories shown in Figure 6-6(c)

whose shape are very similar to the centralized solution shown in Figure 6-6(a).

6.5.4 Performance and Computation

Figure 6-7 compares the global objective value and the cumulative computation time

of three algorithms for the five vehicle example. Different lengths of the planning

horizon N = 4, 6, 8 were considered to investigate the scalability of the algorithms.

The solutions of the decentralized non-cooperative approach are marked with E.
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Figure 6-6: Final plans for five vehicles

Although the computation time is small, the cost is fairly high. The centralized

(and hence globally optimal) solutions are marked with o. The lines with x show the

evolution of the global cost of the decentralized cooperation algorithm. The plot starts

from the end of the first iteration when every vehicle has its solution and continues

to the end of the second iteration. This proposed algorithm has objective values

comparable to those of the centralized solution but scales better than the centralized

solution when the problem size increases.

Figure 6-8 shows cases with more vehicles (n = 5, 7, 10, 15). The decentralized

non-cooperative approach has much higher cost and is out of the range of the plot.

For the centralized and the proposed approach, the differences in the computation
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time scale up significantly for larger fleets. Note that in all the plots of Figures 6-7 to

6-8, the lines of the proposed approach are monotonically decreasing, which validates

the result in Section 6.4.2 by simulation.

6.6 Summary

This chapter presented a decentralized cooperation algorithm for systems coupled

through the constraints. By exploiting the sparse structure of the active coupling

constraints of trajectory optimization, the algorithm uses low-order parameterization

of the decisions of neighboring vehicles. Simulation results showed that the proposed

algorithm scales much better than the centralized approach and the performance is

much better than that of the non-cooperative approach. Over the iteration, it is

shown to maintain feasibility and monotonically decrease the global cost.
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Chapter 7

Cooperative Decentralized Robust

Trajectory Optimization using

Receding Horizon MILP

The work in this chapter combines the decentralized cooperation technique presented

in Chapter 6 with the distributed robust MPC path planner presented in Chapter 5

and then investigates how it extends to complex path planning problems using MILP.

The overall goal is to develop a decentralized approach that solves small subproblems

but minimizes a fleet-level objective. In this new algorithm, vehicles solve their sub-

problems in sequence, while generating feasible modifications to the prediction of

other vehicles' plans. In order to avoid reproducing the global optimization, the de-

cisions of other vehicles are parameterized using a much smaller number of variables

than in the centralized formulation. The reduced number of variables is sufficient to

improve the cooperation between vehicles without significantly increasing the com-

putational effort involved. The resulting algorithm is shown to be robustly feasible

under the action of unknown but bounded disturbances. Furthermore, the fleet ob-

jective is proven to monotonically decrease while cycling through the vehicles in the

fleet and over the time. As an example of the cooperative behavior, the results from

simulations and a hardware experiment demonstrate that the proposed algorithm can

improve the fleet objective by temporarily having one vehicle sacrifice its individual
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objective.

7.1 Introduction

In the multi-vehicle path planning problem, the path only needs to be designed locally

around the vehicle, and several distributed control architectures have been proposed.

Much of the current research on the distributed path planning assumes that each

vehicle solves a local problem and communicates this intent information to its neigh-

bors [62, 110, 112, 113]. In particular, DRSBK algorithm presented in Chapter 5

generates a local plan over a short horizon while guaranteeing the robust feasibility

of the entire fleet under the action of bounded external disturbances [71]. This algo-

rithm uses distributed robust MPC to predict and account for the behavior of other

vehicles. However, because each vehicle only optimizes for its own control inputs and

freezes the decisions of other vehicles, the resulting trajectories can be locally optimal

but globally suboptimal (called the non-cooperative solution) [115].

This chapter extends the DRSBK algorithm to enable cooperation amongst the

vehicles in the fleet. The approach builds on the decentralized cooperation tech-

nique presented in Chapter 6 and extends it to the more complex predictive control

framework for path planning with coupling and obstacle avoidance constraints. Each

vehicle solves its subproblem in sequence to optimize its own control input, as in

DRSBK, but the subproblems also explicitly include the ability to modify the de-

cisions of other vehicles to improve the global cost. The challenge here is to avoid

reproducing the global optimization for each vehicle. The proposed approach uses a

low-order parameterization of other vehicles to reduce the decision space while retain-

ing the freedom to alter the key decisions of other vehicles. The DRSBK algorithm

uses MILP in which binary variables represent the non-convex constraints and logical

decisions in the trajectory optimization. The new algorithm presented in this chapter

fixes most binary variables for other vehicles in a way that does not overly restrict

the decision perturbation. This enables a negotiation with other vehicles through

solving subproblems, with only a small increase in the computational complexity of
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the subproblem. Another advantage of this approach is that this negotiation does

not require iteration, and the algorithm is well-suited for real-time applications.

The chapter starts with a problem setup in Section 7.2. Section 7.3 presents the

cooperative form of DRSBK algorithm. Section 7.4 proves that the new algorithm

retains the robust feasibility and that each solution of the subproblem monotonically

decreases the global cost. Finally, Section 7.5 shows simulation results, followed by

the hardware results in Section 7.6.

7.2 Problem Statement

Notation: In this chapter, the index or superscript p, q denotes the vehicle index,

index k denotes the current time step, and index j denotes the prediction step. There

are total of n vehicles. Unless otherwise noted, Vp implies Vp = 1,..., n, and Vq

implies Vq = 1,..., n but q # p. The neighbor set .N is a set of vehicles that have

coupling constraints with vehicle p. It also determines the order that the vehicles

solve their subproblems.

The vehicle dynamics are described by LTI model

k+ = A + Bup + w , Vp, Vk (7.1)

where xP is the state vector of size nx, up is the input vector of size nu, and wP is

the disturbance vector for the pth vehicle. The disturbances wp are unknown but

lie in known bounded sets w( E- WP. The environment has obstacles to be avoided,

and the vehicles have flight envelope limitations. The general output sets YP capture

these local constraints of each vehicle

YP = CXP + DUV E Y, Vp, Vk. (7.2)

The coupling between vehicles is captured by a further set of constraints applied to
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the sum of outputs from each vehicle

z=E , Vp (7.3a)

zp G Z. (7.3b)
p=l

For pair-wise collision avoidance constraints, for a given row of the output matrix

E, there are only two matrices EP and E q that have nonzero entries. The set Z is

non-convex in this case.

Although the objective function can be an arbitrary function of all vehicles' deci-

sions, this chapter assumes that the goal of the trajectory optimization is to minimize

the mission completion time of the fleet. The summation of the individual cost is also

included with a small penalty e, so that the vehicles that complete the mission before

the last vehicle also minimize the individual completion time.

min J
n

J = max JP(x P, up) + 6 ] JP(xp , uP) (7.4)
p=l

7.3 Cooperative DRSBK Algorithm

This section presents a cooperative form of DRSBK algorithm using an approach that

is similar to Chapter 6. The DRSBK algorithm described in Section 5.4 guarantees

the robust constraint satisfaction under the action of disturbances. However, because

the objective function (5.24) does not consider the effect from/on the other vehicles

as in (7.4), the resulting solution could be a Nash equilibrium, where the solution

is individually optimal but globally suboptimal. One intuitive approach to resolve

this issue is to include all the decision variables of other vehicles in each subproblem.

However, this will reproduce the global optimization for each vehicle and is clearly

not scalable. The proposed approach explores the sparse structure of the coupling

constraints of trajectory optimization and uses the low-order parameterization of the

other vehicles to reduce the dimension of the decision space. The overall optimization
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is implemented using MILP.

To simplify the presentation, some notation are introduced to represent the con-

straints of the DRSBK algorithms. Let CP(xp, Up) denote a set of constraints (5.9)-

(5.16), (5.20) for vehicle p. The first argument x~ is the initial condition used in the

right hand side of (5.9), and the second argument U' denotes the control inputs of the

predictive controller, i.e., U, = [U|kWT,..., Uk+Ngllk T]  From the optimal solution

at time k, the first control input u'•k for each vehicle is applied to the real system

(7.1). At the next time k + 1, the states of each vehicle x 1+, is measured, and the

optimization is repeated.

7.3.1 Subproblem

Whereas DRSBK freezes all the decisions of other vehicles, the cooperative DRSBK

(CDRSBK) updates the candidate solution of other vehicles by designing a feasible

perturbation to other vehicles' decisions. Each vehicle sequentially solves its own

subproblem as well as slightly modified subproblems of other vehicles. To simplify

the presentation, this chapter assumes the planning order is 1,..., n.

Let CP(x', U2) denote a set of constraints that is the same as CP(xp, Uk) except

that the tightened constraint equations (5.11) and (5.13) are replaced by the following

Vj Y: +jlk E %y' (7.5)
ZP+jk + Pk+lk Z (7.6)

z+jlk p+jlk C 74+1

with y A Y 1 and Z - Z•- 1, which are consistent with the tightening equations

(5.17) and (5.28) under the nilpotency assumption L _ 1 = 0. Then, the vehicle p

solves the following optimization PP:

min J
k k
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s.t. (7.4),

F(C'(x, Uf + 6Uk), .. , C- (XP-, 6-+ p-u I), CP(xP, u ),

I (XP+ +1 .+) Un (X, Un < 0
kkC" -l' kl-1 + 6UU ),', C"( lk-1 + U) (7.7)

The function F(.) represents the constraints imposed on all vehicles. In this optimiza-

tion, vehicle p designs its own control UkP as well as perturbation to other vehicles'

control 6U~,... ., 6U - 1 , SU + 1,.. ., + 6Uk. The notation (-)q denotes the variables that

are received from other vehicles and are constant in vehicle p's subproblem, so that

the control inputs for vehicle q are

Uf = Uq + 6U± . (7.8)

As shown in (7.7), if a vehicle q has already planned at time k, i.e., q < p, then the

vehicle p uses Cq(xq, Uk + 6Uk) as the constraints for q. Otherwise, the constraints

for q are Cq X(q Uk-'+ 6U), where the initial states are the states predicted in the

previous plan. The objective is to minimize the fleet cost (7.4). After solving the

optimization, the solution (-)* updates the control as

Uk:= Uk*

U, := U + 6Uk*, Vq p

which are sent to the next vehicle p + 1. The formulation (7.7) may look similar to

the centralized global optimization, but the next subsection discusses how to reduce

the decision space.

7.3.2 Reduced-order Decision Space

Binary variables in MILP encode logical constraints or non-convex constraints but are

the major source of the computational complexity in the MILP solution process. With

the goal of obtaining small perturbations for other vehicles' decision, the CDRSBK

algorithm freezes all of the binary variables of other vehicles, with one exception for
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a loitering circle, as discussed later. Continuous decision variables are parameterized

using the technique discussed in Chapter 6. A new decision variable (q is introduced

for the parameterized continuous decision of vehicle q (4 p), so that

6UW = T-qq

where T q is a parameterization matrix. The dimension of (q is much smaller than

that of the original control input variables 6UZ, so the row size of T q is larger than

the column size. In the examples considered in Sections 7.5 and 7.6, the row size is

2-6 times larger than the column size.

The performance of DRSBK algorithm depends strongly on the location of the

invariant safety set that the terminal states Xk+Nlk lies in. Thus, the terminal states

XZ+NIk are selected as variables that are added to the subproblem of vehicle p. Since

Xk+Nik = Xkjk + [AN - 1 B, ... , AB, B]

UqUk+N-1 k

the perturbation in the control inputs are parameterized as

6Uq = AT (AAT) - lJx+Nik A Tgq q .  (7.9)

This parameterization matrix T q always exists when the system is controllable and

hence the matrix A has full row rank. The parameterization (7.9) reduces the dimen-

sion of the decision space from 6Uf, which is Nn,, to 6xk+NIk, which is n,. Note that

if vehicles p and q are far apart and do not interact with each other, the perturbation

SU, can be set to zero in p's optimization.

If the terminal invariant constraint requires the vehicle to stop at the terminal

step of the plan, as in the hovering constraint for rotorcraft, the parameterization

matrix must be formed differently. Let Cos A [I, 0] and Cvel A [0, I] for a double
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integrator system, where

Xq [ k+NIk=
k+Njk - I

L k+NlkJ

In order to keep the zero terminal speed, i.e., 6 Vq+Njk = 0, the perturbation 6Uq must

lie in the null space of CvelA. By introducing a new vector q, this can be written as

ukg = Eq

where E denotes an orthonormal basis for the null space of CvelA. With this 6Uk, the

perturbation to the terminal position is written as

rq+NIj = CposAE1

so that q that changes the terminal position rk k without changing the terminal

velocity Vqk+Nk is parameterized as

7= (CposAE)T( ((CosAE)(Cp,sAE)T )- 1q

which gives

5Uk = E(CposAE)T( (CposAE)(CposAE)T)-1 q A T)qq. (7.10)

Note that (q in (7.10) has the same dimension as the position, whereas the dimension

of (q in (7.9) is nx.

Then, vehicle p's subproblem PI is written as

min J

s.t. (7.4), (7.9) or (7.10),
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Algorithm 7.1 Cooperative DRSBK
1: Find a feasible solution of the DRSBK optimization starting from the initial states

x), communicate the solutions, form U1,..., UO, and set k = 1.
2: for k = 1 tok = oodo
3: Form the candidate control U ,...,U" from the previous solution

UL-,, U- using (7.12).
4: for p = 1,...,n do
5: Measure the current states and form &x.

k"6: Solve the subproblem P".
7: Update the control U : U-*, UO U: + T Vqq*
8: Send the solutions to the next vehicle.
9: end for

10: Apply the first step of the control inputs up = filk to the system (7.1), Vp.
11: end for

F(C 1
X

1 
-1 1 p-1 (p--1k

F ( C •- O U),..., CP- (x , k U ), V CP( k, Uk),

C"( klk-1  k+1+ -U-kp+1)7 C(lk-, n+ -6Ukl) < 0 (7.11)

The full CDRSBK algorithm is shown in Algorithm 7.1. As shown in line 3, when

the time step is incremented, the candidate decisions U2 to be made at the current

time are constructed from the decisions U_ 1 made at the previous time using

Vp U +jk = +jk-1, Vj- (7.12a)

f1 k p 4p ) (7.12b)
S+N-1|k k+N-llk-1). (7.12b)

This operation shifts the plan U•P , by one time step and appends the terminal step

taken from the invariance control law P(x) in (5.26). The states '+- llk are

obtained through the state equation

X" = AptP + BPft VXk+j+llk- 1  k+jk- k+jlk-11

All vehicles are assumed to have a synchronized discrete time, which is sampled

at the time when the control is executed in line 10 of Algorithm 7.1. Non-zero com-

putation and communication times are readily handled by propagating the measured

states when forming xk in line 5. Figure 7-1 shows the time lines of the CDRSBK
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Vehicle ID

P-

P

P+

Figure 7-1: Time flow of CDRSBK algorithm with non-zero computation and com-

munication time

algorithm implementation. After receiving the latest plans from the previous vehicle,

the vehicle takes a measurement of the latest states immediately before solving its

subproblem. The vehicle propagates the measured states up to the discrete execution

time, as shown with the gray arrow. When the last vehicle finishes its computation,

it broadcasts the final plans to the fleet, and all vehicles implement the control at

the same time. Note that when the vehicle p is planning at time k, the prediction for

vehicle p- 1 is based on the latest states xk 1 and the inputs up- 1, but the prediction
xpl 1  -1 that are predicted

for vehicle p + 1 is based on the states xkk-1 and the inputs that are predicted

at the previous time k - 1.

By aligning the states and the control inputs of all vehicles at the discrete time

steps, this framework compiles various sources of uncertainties into one and allows

us to treat them as a single prediction error, which can be calculated simply as

wk_, = x k - XkIk 1 . Future work will extend this implementation to reduce the

delay associated with the propagation, as studied in [52].
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7.3.3 MILP Implementation

The following describes the MILP implementation of the CDRSBK algorithm.

Constraints

Output constraints are composed of the following.

* Obstacle Avoidance: (5.51)

* Speed and input constraints: (5.52) and (5.53).

* Invariance Constraints: (5.54), (5.55), and (5.56)

* Interconnected Constraints: (5.57) and (5.58)

For vehicles q (> p), the subscript j of the constraint tightening parameters aj, Oj, 'j

must be replaced with j + 1, as shown in (7.5)-(7.6).

Objective Function

The individual objective function is the same as (5.59)-(5.60) except that the cost-

to-go is evaluated from a point 0 p in the invariant set SP

JP = | PO+ -- +is P(Pis).

The MILP implementation of the fleet cost (7.4) is

n
min Jworst + E J P

p= 1

Jworst _ JP,

JP > [cOS m, sin Om](Op - rpis) + P(Tr Vm

(7.13a)

(7.13b)

(7.13c)

(5.59).

To ensure visibility of the cost point ri sp from O P, obstacle avoidance constraints are

enforced on Pint interpolation points placed on the line connecting rvis and OP =
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Xenter, Ycenter]

9LXcenter + (1- )XP)is < xlow, o - aN- 1 + Mbnt,ol (7.14a)

I7IYenter + (1- II)yis Ylow,- aN1 + Mbt,lo2 (7.14b)

tlX center + (1- t)XPis > Xhigh, o  aN-1 - Mb o3 (7.14c)

AI/YPenter + (1- ti)yvPis Yhigh, o ± ON-1 - MbVt,o4 (7.14d)

4

Snt, toi 3 (7.14e)
i=1

1
Pt - , 1, ... , nint.

hint

Decision Variables

The inputs of other vehicles are the sum of the published inputs q' and the parame-

terized perturbation

Vq: = U + Tq[]. (7.15)

Uk+N-1|k

The binary variable blqft selects the left/right safety circle, and the location of the

safety circle has a large effect on the objective value. Therefore it is beneficial to

keep the binary b ~f as a free decision variable in p's optimization, as mentioned in

Section 7.3.2. Other binary variables are fixed if the superscript does not include p.

Vq: b bst = bbst, (7.16a)bq bobst -bobst)

bcirc-obst = birc-obst, (7.16b)

b vis = bvqis, (7.16c)

bnt = b nt, (7.16d)

b = bqrh, Vr ~ p, r q (7.16e)

b cr-circ = bcrI-circ, Vr - p, r f q (7.16f)

190



Full optimization
Fixed binaries

max constraints

Figure 7-3: Feasible perturbation of the
Figure 7-2: Feasible perturbation of the velocity, with fixed vmin binaries
position, with fixed obstacle avoidance
binaries

In summary, the MILP implementation of subproblem P' is to minimize (7.13a)

subject to the initial condition (5.9), state prediction (5.10), constraints (5.51)-(5.59),

and (7.13b)- (7.16).

7.3.4 Effect of the Fixed Binary Variables

The CDRSBK algorithm fixes binaries of other vehicles, while solving for perturba-

tions of their continuous variables. Figure 7-2 shows the effect of fixed binaries on the

obstacle avoidance (5.51). In region A, the admissible binaries are [0, 1, 1, 1] where

1 means the avoidance constraint is relaxed. In region C, the binaries are [1, 1, 1, 0].

The regions B 1, B2 have three possible binary settings [0, , 11, 1], [1, 1, 1, 0], and

[0, 1, 1, 0], and the output of the MILP solver could be any of them. If the binaries

are fixed [0, 1, 1, 0] for a point in region B, which is a union of B 1 and B 2, then the

perturbed point must also stay inside the region B only. To enable larger pertur-

bations, CDRSBK algorithm performs a MILP pre-processing and sets [0, 1, 1, 1] as

the binaries of the point in B 1, which allows the point to move within A, B 1, and B2.

Similarly, the point in B2 uses the binary setting [1, 1, 1, 0]. As an illustration of this

binary fix, Figure 7-2 shows feasible and infeasible perturbations from a point * with

o and x respectively. The binaries of the non-convex minimum speed constraints are
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fixed in the same way to allow for maximum perturbation, as shown in Figure 7-3.

Note that the problem statement includes many binary variables that are effec-

tively fixed by (7.16) or constraints that are always satisfied (e.g. the lower left side

of constraints in Figure 7-3). The MILP solver CPLEX eliminates these redundant

variables and constraints in the pre-solve step, and the size of the CDRSBK subprob-

lem increases only slightly from the DRSBK subproblem. In the example shown later

in Section 7.5, the number of variables after the CPLEX pre-solve increased by 15%

for continuous variables and 1% for binary variables.

7.4 Algorithm Properties

This section discusses the two important properties of CDRSBK algorithm in terms

of constraint satisfaction and the performance.

7.4.1 Robust Feasibility

The next theorem guarantees the robust feasibility of the entire fleet after solving

each subproblem.

Theorem 7.1. If a feasible solution U01,..., Un to the following constraint ((7.7)

with k = 0, p = n) is found

F(Cl(4x, ),..., Cn(xn, U)) < 0 (7.17)

then, the system (7.1) controlled by Algorithm 7.1 satisfies the constraints (7.2)-(7.3)

under the action of disturbance w'P E WP for all vehicles p and all future times k (> 0).

Proof. The proof is based on a recursion. The argument is very similar to the proofs

in Chapter 5.

First, show that vehicle l's optimization at time k (> 0) is feasible, assuming the

feasibility of vehicle n's optimization at time k -1. After vehicle n updates the control
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input in line 7 of Algorithm 7.1, we have

F(C'(x , U 1 X), ...- ,, Cn (" ., Ukt)) • 0 (7.18)

From this solution U- 1 , ... , Uk 1 to (7.18), one can construct a candidate control

tU,..., Uk by shifting the solution by one time step and appending a terminal control

at the end, as shown in (7.12). Because the constraints CP(x Ik- 1, IU) are constructed

also by shifting CP(x_ ,) Uk) by one time step and the starting states x P

CP(xlk 1, U2) is the second step of CP(xP , UkP_), the candidate control n0,..., U"

satisfies

F(C• (xkl,-1 ),..., n( kkl, n)) < 0 (7.19)

which is a shifted version of (7.18). Using the following

Uk+jlk =

^1

Xk+jlk =

Uk+N-llk =

+ 

1

Xk+NIk -

-1 D 1

Uk+jlk-1 + Pj+lWk-1, Vj

-1
Xk+jlk- 1 + LJwkl, Vj

+1 .+N-1k)I,

Al lk+N-lk 1 BIk+N-11k

(7.20a)

(7.20b)

(7.20c)

(7.20d)

for vehicle 1, which is denoted by U , and letting

6Uk = 0, Vq

for other vehicles, it can be shown that (7.19) implies

(C'(x, ^1 C2 k 2)7* n kk1, U)) < 0k Uk')7 C (Xklk-1, Uk kIk-1 7 Uk>l (7.21)

for any w , by comparing C1(x , ) and C1(x, U1). This shows that the

feasibility of the last vehicle's (p = n) optimization at time k - 1 guarantees the

feasibility of the first vehicle's optimization at the next time k.
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Second, show that vehicle p's optimization at time k is feasible, assuming the

feasibility of (p - 1)'s optimization at time k. After the vehicle p - 1 updates the

control input in line 7 of Algorithm 7.1,

(C( x ),..., Cp-) (P- , " ), Cp(f p)) -*- k- 7n)) < 0.

The set of constraints for p's optimization is

F(C1(4, tiJ ,), .. ., C ), &',U), (xk-P+ ,'> , ) n n(lk-,_U1 )) < 0 (7.22)

and is the same set of constraints as (p- 1)'s, except for the change from CP(xk-_l k)

to CP(4X, Uk). It can be shown that p's optimization has the following candidate

solution

Uk+jlk =k+jk- p P+lwkl, Vj- (7.23a)

k+jlk = k+jlk- + Lwk, Vj (7.23b)

&U+N-1lk = +N-lk) (7.23c)

Ik+Nlk = +N-1k +N-k (7.23d)

for its own decision and

sUk = 0, Vq (7.24)

for other vehicles' decisions. This solution is feasible to (7.22) for any disturbance

realization wp_1 that acted on vehicle p at time k - 1, showing that the feasibility of

(p - 1)'s optimization guarantees the feasibility of p's optimization.

Therefore, with the initial feasibility (7.17), the subproblem remains always fea-

sible. The initial step of the control up and the states xPl,. satisfy the original

constraints (7.2)-(7.3), and the robust feasibility of the fleet is proven. O
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7.4.2 Monotonic Decrease of the Fleet Cost

Another important property of CDRSBK algorithm is that the fleet objective is

monotonically decreasing by solving each subproblem.

Theorem 7.2. The fleet objective value (7.4) monotonically decreases by solving each

subproblem P' over the fleet (line 4 in Algorithm 7.1) and over the time (line 2).

Proof. The proof is based on showing that the candidate solution to p's optimization

yields the objective value that is no worse than the objective value found in the

optimization of the previous vehicle p - 1 (or n if p = 1).

In p's subproblem, the candidate solution (7.24) does not change variables for

vehicles Vq - p, and hence the local cost Jq. For vehicle p, with the assumption of

nilpotency L' 1_, = 0, the terminal states can be written as

k+Nlk = A k+N-l k-1+ BP k+N-1lk-1)

using (7.23b)--(7.23d). If the terminal controller rP(.) makes the vehicle loiter in a

circle with a, constant turning radius, the center of the invariant set OP does not

move. This means the individual objective value JP of the candidate solution does

not change. Because p's optimization can use the candidate solution to achieve the

same fleet cost updated by the previous vehicle (p- 1), the fleet cost can only improve

by optimization. O]

Note that this does not mean the monotonic decrease of the individual cost. The

simulation results in Section 7.5 demonstrate a temporary increase of the individual

cost that leads to a greater reduction of the fleet cost.

7.5 Simulation Results

This section presents the performance comparison of DRSBK and CDRSBK through

simulation.
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7.5.1 Setup

The simulation uses homogeneous fixed-wing UAVs, whose dynamics are described in

Section 5.5.1. The disturbance magnitude wmax is 5% of the control authority amax.

The planning horizon length N is 4. The parameters for dynamic constraints are:

Vmin = 18, Vmax = 24, aax = 3.84. A two-step nilpotent controller is used for this

system, and the parameters for constraint tightening are obtained through (5.50)

ao= , =o = 0, Yo = 0,

a 1 = 2.4, 31 = 1.4, 71 = 0.54,

a•y = 4.8, y = 2.7, 'Yj = 0. 8 1, j > 2.

The parameterization matrix Tq is calculated from (7.9)

Tq =

0.012 0 -0.07 0

0 0.012 0 -0.07

0.004 0 0.01 0

0 0.004 0 0.01

-0.004 0 0.09 0

0 -0.004 0 0.09

-0.012 0 0.17 0

0 -0.012 0 0.17

7.5.2 Results

The scenario considers two vehicles trying to reach their own targets (marked with 0)

while avoiding obstacles and the other vehicle. The goal is to minimize the mission

completion time with a small penalty E = 0.05 on the individual cost in (7.4). Fig-

ures 7-4 and 7-6 show the trajectories generated by DRSBK and CDRSBK algorithm

respectively. The trajectory of vehicle 1 is marked with x, and that of vehicle 2 is

marked with A. Because vehicle 1 has to traverse a longer route, the optimal solution

is for vehicle 2 to back off. Figures 7-5 and 7-7 show the trajectories optimized in
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Figure 7-4: Trajectories executed using DRSBK algorithm
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Figure 7-5: Trajectories generated by DRSBK algorithm at each time step
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Figure 7-6: Trajectories executed using CDRSBK algorithm
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Figure 7-8: Time history of the objective function

each subproblem from time k = 8 to 11. The trajectory of the vehicle solving the

subproblem is shown in thick lines. The dashed boxes show the region where the

safety circle lie in.

Both distributed algorithms maintained feasibility under the action of distur-

bances. As shown in Figure 7-5, however, DRSBK subproblem solely minimizes the

individual cost without accounting for the performance of the other vehicle, making

no improvements on the cost for some time. In CDRSBK, plan #9 of vehicle 1 flips

the side of loiter circle of vehicle 2. Furthermore, in plan #9, vehicle 2 sacrifices

its own objective for the improvement of vehicle 1's cost, by moving the trajectory

towards the left of the figure.

This cooperative behavior is seen also in the objective values. Figure 7-8 shows the

time history of the individual cost JP and the fleet cost J. Both algorithms monoton-

ically decrease the fleet objective. As shown in the right figure, the cooperative

formulation allows the individual cost to increase if it leads to a larger improvement

of the fleet cost. Between optimization #14-17 (which correspond to time 7-9), the
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vehicle with a better cost (vehicle 2) yields to the vehicle with a worse cost (vehicle

1), enabling a large reduction in the fleet cost J. The average computation time

for solving MILP in this scenario was 0.050 second for DRSBK and 0.064 second for

CDRSBK.

7.6 Hardware Results

A similar scenario is tested with two quadrotors introduce in Section 4.4.1. A planning

laptop is assigned to each vehicle, and the inter-vehicle communication is implemented

as a communication over the TCP/IP network. The following parameters were used

in the algorithm.

At = 2.5 sec, N=6

T1 = 1.3 sec,

Vma x = 0.30 m/s,

w, = 0.27 m,

72 = 0.7 sec

amax = 0.45 m/s 2

WV = 0.09 m/s

where T1 and T2 are the propagation time for vehicle 1 and 2, as shown in Figure 7-1.

The offline procedure in Chapter 3 produced the following constraint contraction.

a0o = 0,

al = 0.27,

a 2 = 0.428,

aj = 0.440,

00 = 0,

Pl = 0.09,

32 = 0.198,

O3 = 0.208,

yo = 0,

Yi = 0.067,

Y2 = 0.106,

yj = 0.110,

The vehicles 1 and 2 started around (1.5, 3.5) and (-1.2, 2.5) respectively. The

targets for vehicle 1 are (-1.5, 3.0) are (-2.4, 5.0), and the targets for vehicle 2 are

(1.2, 2.3) and (2.0, 3.5), which are all marked with 0. The vehicles must switch the

position while avoiding the other vehicle and the obstacle in the middle.

Figure 7-9 shows the scenario and the plot of the trajectories of each vehicle. The
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Figure 7-10: Individual costs and the global cost

red thick line is the actual trajectory of the vehicle, which were recorded at 2 Hz. All

the plans generated in the receding horizon framework are shown with blue lines.

As a result of their initial locations, vehicle 2 approaches the bottom of the obstacle

before vehicle 1, and vehicle 2 then tries to go along the bottom of the obstacle, as

the planned trajectories in Figure 7-9(b) show. This would have the effect of delaying

vehicle 1, which has targets that are further away, and already has a longer mission

to execute than vehicle 2. Thus, vehicle 2 yields way to vehicle 1 to minimize the fleet

mission completion time in (7.4). This cooperative effect is also shown in Figure 7-10,

which plots the objective values of the first 15 plans. Note that between plans 5 and

9, there is a temporary increase of the cost for vehicle 2, but, even under the action

of disturbances, the total objective value is monotonically decreasing. The average

computation time for each local optimization on a 2.4GHz laptop was 0.31 second.
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This flight test successfully demonstrated the cooperative behavior by the distributed

online planning algorithm.

7.7 Summary

This chapter extended a robust decentralized trajectory optimization algorithm to

include explicit cooperation. Each vehicle sequentially solves the subproblem, but

the subproblem also includes the global objective and feasible modifications to other

vehicles' plans. In order to maintain the scalability of the algorithm, continuous

variables of other vehicles are parameterized using a variable of smaller dimension,

while most binary variables are fixed. The result shows the robust feasibility and the

monotonic decrease of the global cost with a marginal increase in the computation.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Receding Horizon MILP (Chapter 2)

Chapter 2 has extended the previous RH-MILP formulation to three dimensions. In

the cost map construction phase, an LP formulation is presented that can be applied

to the visibility check of the general n-dimension case. In the MILP optimization

phase, a new objective function is developed to enable the vehicle to stay close to the

ground but fly over obstacles if necessary. Depending on the penalty of the altitude,

the approach is shown to generate various different trajectories in complex scenarios.

Numerical simulation also demonstrated the reduction of the computation time by

using an initial guess for MILP within CPLEX.

Constraint Tightening Robust MPC (Chapter 3)

Chapter 3 reparameterized the feedback correction used in the constraint tightening

robust MPC, and showed that the new approach can represent a larger class of dis-

turbance rejection policies. In order to address the question of how to design a good

feedback correction off-line, the chapter presented the necessary and sufficient condi-

tions for the existence of a feasible set. Using these conditions, it then presented an

off-line linear optimization to design the disturbance rejection controller that max-
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imizes the disturbance level that the controller can handle. The simulation results

demonstrated significant performance improvements over the previous approaches at

high disturbance levels.

Robust Receding Horizon Trajectory Optimization (Chapter 4)

Chapter 4 combined the RH-MILP and the robust MPC algorithm while retaining

the advantages of both algorithms, i.e., the algorithm is robust to disturbances, safe

against environmental changes, and able to generate a knowledgeable trajectory using

a short planning horizon. The robust stability of the planner was proven by showing

that the candidate solution gives a cost that is no worse than the current cost and

hence the cost is monotonically decreasing. The hardware experiments using the

quadrotor testbed demonstrated that the algorithm can fly the vehicle in a three

dimensional environment close to the constraint boundary, while robustly accounting

for the prediction errors arising from various sources including wind disturbances, the

modeling error of the vehicle, and a tracking error of the low-level waypoint follower.

Distributed RSBK Algorithm (Chapter 5)

Chapter 5 first extended the RSBK algorithm in Chapter 4 to the multi-vehicle case.

Then, a decentralized form is developed by having each vehicle solve a local sub-

problem, whose problem complexity is much smaller than the centralized problem.

This reduces the computation of the vehicle team without a significant increase in

the communication. Because the algorithm uses a short planning horizon, the ini-

tialization of the distributed algorithm is much simpler than the previous work, so

that it is better suited for online planning. The robust feasibility of the entire fleet

with local planning and local communication is proven. A grouping algorithm is also

integrated to enable simultaneous computation among the vehicle team. The overall

distributed planning architecture was implemented on the multi-rover testbed and

the results of the hardware experiments demonstrated the onboard and online com-

putation capabilities of the algorithm as well as the robust constraint satisfaction in

the real world.
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Cooperative Decentralized Trajectory Optimization (Chapter 6 and 7)

The last part of the thesis focused on how to improve the team performance and

achieve a cooperative behavior by solving local optimizations. Chapter 6 developed a

decentralized cooperation algorithm that enables vehicles to sacrifice the local cost if

it leads to a larger improvement of the global cost. The key was to parameterize the

decision of other vehicles using the active coupling constraints. The approach is shown

to be more scalable than the centralized algorithm and gives better performance than

the non-cooperative distributed algorithm. Using this technique, Chapter 7 extended

the DRSBK algorithm, where each vehicle optimizes its local decision as well as a

feasible modification to the prediction of other vehicles' plans. The overall robust

cooperative distributed algorithm was demonstrated on the multi-quadrotor testbed,

showing the validity of the computation and communication requirements of this

algorithm.

8.2 Future Research Directions

Building on the contributions listed above, suggestions for the future research direc-

tions are outlined below.

Unification/comparison of Robust MPC

Much of the robust MPC work [41, 90, 100, 121] rely on similar underlying concepts in

order to ensure the robustness and the stability of the controller. It would be valuable

to put together different formulations or different notations into one framework and

compare the approaches in terms of performance, computation complexity, region of

feasibility, and the degradation of these with respect to the disturbance level.

Bounded Disturbance with Time Correlation

'The robust MPC algorithms presented in this thesis ensured that the controller is

robust to any disturbance realization from a bounded set. In reality, it is unlikely that
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the worst case disturbance keeps acting on the system over a long time. An alternative

formulation could be developed that captures the time correlation of the disturbance

sequence. This will exploit the previous history of disturbances in predicting the

future disturbance realization, and could reduce the conservatism of the controller.

Analysis of Performance Robustness

Multi-parametric programming [99] is a tool that can calculate off-line an explicit

solution to LP, QP, and MILP. The explicit solution of the optimal controller is

expressed in the form of a set of partitioned state space, where each partition has a

constant control gain. To obtain the control input, the original online optimization

becomes an online evaluation of which partition the current states are in. Further

analysis will enable us to calculate the expected and/or worst-case performance of the

complicated optimization-based controllers under the presence of disturbances. This

could be extended to identify other key issues such as noise sensitivity, controller

bandwidth, robustness margin, and the effect of filtering on the overall performance.

Control of the Closed-loop System

With the increase of the autonomy of the unmanned vehicle systems, the system

typically has multiple control loop closures, such as low-level control, guidance, and

task allocation. Since each control loop focuses on a different aspect of the problem,

they can be designed separately in the ideal situation. For example, when designing

the outer-loop MPC, the inner-loop controller is assumed to be either given or chosen

by trial and error [122]. However, in order to enhance the capability of the overall

system, tighter integration of the multiple loops is desired. With the performance

analysis tool of the MPC controller, one can investigate the effect of the low-level

controller design on the higher-level controllers and can ensure the intention of the

inner loop controller matches that of the high-level controller. This could enable a

new simultaneous design procedure of inner and outer control loops.
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Communication Modeling for Distributed Planning

The communication in the distributed planning system introduces continuous delays

and discrete packet loss. More detailed modeling of the communication network will

allow the planner to explicitly account for the stochastic nature of the inter-vehicle

communication. Further work is required to extend the existing robust planner to be

robust to these different types of uncertainties.

Asynchronous Control of Multiple Vehicles

In this thesis, the vehicles in the fleet are assumed to have the synchronized discrete

time step. As the number of vehicles involved in the planning process increases,

ensuring the perfect synchronization among the large vehicle fleet becomes difficult.

Asynchronous algorithms in the distributed setting have been studied in the field of

Computer Science [123], and it would be interesting to expand the UAV research into

such a field.
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