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Abstract
Programmed cell death, or apoptosis, is important in the development and

homeostasis of metazoans. In the nematode C. elegans, four genes, egl-1, ced-9, ced-4, and
ced-3, constitute the core pathway acting in all somatic programmed cell deaths. This
pathway is evolutionarily conserved in humans. The BH3-only protein EGL-1 is
transcriptionally upregulated in cells fated to undergo programmed cell death, and EGL-1
blocks cell-death inhibition by the cell-death regulator CED-9, a Bcl-2 family member. The
binding of EGL- 1 to CED-9 releases the Apaf- 1-like adaptor protein CED-4 from CED-9, so
that CED-4 can activate the caspase CED-3, a protease that is the effector of programmed
cell death. In this thesis, I describe three projects, each of which examines one aspect of C.
elegans cell death.

From. screens for mutations that increase cell death in a sensitized genetic
background, I identified a gene that protects cells from programmed cell death. This gene,
spk-1, encodes a homolog of SR protein kinases, which regulate alternative splicing.
Previous work has shown that ced-4 pre-mRNA is alternatively spliced to generate two
transcripts that function oppositely in cell death. I found that spk-1 regulates ced-4 transcript
splicing, thereby influencing the amount of programmed cell death that occurs.

From a screen for genes that promote programmed cell death, I isolated a mutation
in a conserved non-coding element in the transcriptionally regulated cell-death activator gene
egl-1. This element regulates the deaths of specific cells in the C. elegans ventral nervous
system. I found a novel C. elegans transcription factor, Y38C9A. 1, that binds this element
and might function to regulate egl-1 transcription and programmed cell death in the ventral
nervous system.

In addition to the programmed cell deaths that occur in C. elegans, pathological death
of specific cells can be caused by mutations in some genes. I characterized two genes, lin-24
and lin-33, that can mutate to cause the inappropriate death of specific hypodermal blast
cells. One of these genes, lin-24, contains a domain similar to that found in some bacterial
toxins. By morphological and genetic criteria, I show that the lin-24- and lin-33-mediated
deaths are unlike previously characterized necrotic and apoptotic cell deaths in C. elegans.
These deaths require some of the genes responsible for engulfing the corpses generated by
programmed cell death, even though the deaths do not require the core genes of the genetic
pathway of programmed cell death.

Thesis Advisor: H. Robert Horvitz
Title: Professor of Biology
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I. INTRODUCTION

Initially it seems counterintuitive that cells would posses the ability to kill

themselves. However, considering that damaged, infected, or unnecessary cells might harm

an organism, the ability to eliminate such cells in a safe way is clearly important. One of the

most intuitive examples of a type of cell that should be eliminated are cells in the immune

system that recognize self-antigens; such cells can destroy healthy tissues if allowed to

persist in the body (FADEEL and ORRENIUS 2005).

The process of cellular elimination, which functions in many different processes, has

long fascinated researchers. In 1842, Carl Vogt published a paper that many cite as the first

to describe the cell-death process that would later become known as programmed cell death

or apoptosis. In this manuscript, Vogt described cell deaths that occurred in toads as they

underwent metamorphosis (CLARKE and CLARKE 1996). Over the next century additional

papers reported descriptions of similar phenomena in other systems, ranging from ovarian

follicles to neurons in the chick embryo (CLARKE and CLARKE 1996). In 1965, Lockshin and

Williams proposed the term programmed cell death to describe the deaths they observed

during insect development (LOCKSHIN and WILLIAMS 1965). Kerr, Wyllie, and Currie

introduced the term apoptosis in 1972 to describe cellular death that occurs with a specific set

of ultrastructural features (KERR et al. 1972).

Apoptosis is the efficient process of eliminating cells in a manner that prevents the

release of cellular contents in order to prevent the consequent deleterious effects such as

activation of an inflammatory response. Apoptosis functions in many aspects of human

development, from sculpting tissues (e.g. removing the webbing between fingers) to

eliminating excess neurons in the central nervous system (JACOBSON et al. 1997). When the
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normal functions of apoptosis do not work properly, a wide range of consequences can result.

For example, cancerous cells have frequently lost the ability to undergo apoptosis in response

to uncontrolled growth. Conversely, several neurodegenerative disorders are marked by, and

may result from, the inappropriate activation of too much apoptosis (FADEEL and ORRENIUS

2005).

Although the phenomenon of programmed cell death has been observed and written

about for more than 150 years, confirmation that this process is genetically controlled is only

twenty years old, and the identification of the genes that regulate this process is still very

much an ongoing process. Genetic, cellular, and biochemical studies have all contributed

significantly to our current understanding of programmed cell death (DANIAL and

KORSMEYER 2004).

The identification of three genes in the nematode Caenorhabditis elegans, ced-3,

ced-4, and ced-9, defined the basic components of programmed cell death or apoptosis that

function in all systems (HORVITz 2003). In this introduction I will give an overview of the

current state of research of programmed cell death in C. elegans and how it relates to our

understanding of apoptosis in mammals. I will discuss how cells decide to live or die, how

execution of programmed cell death occurs once a cell has made this decision, and how cell

corpses are eliminated. I will also mention a few types of cell deaths that occur in C. elegans

that are morphologically and genetically distinct from programmed cell death. Finally, I will

summarize mechanisms that function in mammalian or insect apoptosis but have not been

described in C elegans.

II. DEVELOPMENTAL PROGRAMMED CELL DEATH IN C. ELEGANS

-12-



A. The History of Genetic Studies of Programmed Cell Death in C. elegans

C. elegans is the small nematode that Sydney Brenner wisely selected for genetic

characterization (BRENNER 1974). Early in the development of C. elegans as a system for

genetic research, John Sulston determined the cell lineage of the ventral nerve cord (SULSTON

1976). Bob Horvitz and others joined Sulston in this pioneering effort and determined the

complete lineage of all cells in this nematode (KIMBLE and HIRSH 1979; SULSTON and

HORVITZ 1977; SULSTON et al. 1983). The pattern of somatic cell division is almost identical

in every individual worm, such that the origin and identity of every cell from fertilization to

adulthood is known. The pattern of cell divisions has been drawn up into a complete lineage

diagram for C. elegans. This lineage map has proven to be a great resource in studies of

developmental biology.

Sulston and Horvitz observed that some of the cells generated in the post-embryonic

cell lineage were rapidly eliminated in a highly-stereotyped fashion (SULSTON and HORVITZ

1977). One hundred and thirty-one of the 1,030 somatic cells that are generated in the

C. elegans hermaphrodite undergo this stereotyped elimination; of these, 105 are neurons

(SULSTON and HORVITZ 1977; SULSTON et al. 1983). The genetic foundations that Sydney

Brenner established for this organism suggested the possibility that it might be possible to

isolate mutations perturbing this pattern of programmed cell death.

In an effort to identify genes that control the cell lineage of the ventral nerve cord,

John Sulston identified an allele of a gene, nuc-1 (nuc, abnormal nuclease), that prevented

the degradation of DNA of cells that died by programmed cell death (SULSTON 1976). Next,

Ed Hedgecock isolated ced-1 and ced-2 (ced, cell death abnormal) mutant alleles that

blocked the phagocytosis of dead cells by neighboring cells (HEDGECOCK et al. 1983).

-13-



Although it would be many years before any of these genes were molecularly identified, their

isolation was a significant contribution to this field of research. The long-term study of

programmed cell death in Bob Horvitz's laboratory led to the identification of the principal

genes that function in apoptosis in all animals (HoRVITZ 2003). Important to the success of

C. elegans's role in defining the basics of programmed cell death is that, unlike most other

animals, C. elegans are viable in the absence of programmed cell death (ELLIS and HORVITZ

1986). This trait has greatly facilitated much of the progress towards understanding of

programmed cell death that has been made using this organism.

Since the identification of nuc-1, hundreds of alleles of genes that alter programmed

cell death have been isolated; for example in the Horvitz laboratory alone, more than 200

alleles of the gene ced-3 have been identified as of this writing. Figure 1 shows a schematic

of how the best understood of these genes fit into our current model of programmed cell

death.

B. The Four Genes ced-3, ced-4, ced-9, and egl-1 Define a Core Programmed Cell Death

Pathway that is Conserved in Most Animals

1. ced-3 encodes a cysteineprotease

One of the first programmed cell death genes in C. elegans to be molecularly

identified is ced-3, and its identification may be the most important. In a screen to identify

suppressors of the persistent programmed cell death corpses observed in mutant ced-1

animals, ced-3 alleles that eliminated these corpses were identified (ELLIS and HORVITZ

1986). Close inspection of these mutant animals showed that almost none of the cells that

normally died during C. elegans development died in these mutants; rather, these cells

-14-



survived and showed signs of differentiation (ELLIS and HORVITZ 1986). The cells that

survive in ced-3 mutant worms have not been found to subsequently divide and often adopt a

cell fate similar to that of their sister cell. These inappropriately surviving cells can, in some

cases, even functionally replace their sister cells (AVERY and HORVITZ 1987).

Years later, ced-3 was cloned and found to be similar to the mammalian protease

interleukin- 13 P-converting enzyme (ICE) (YUAN et al. 1993). The discovery that CED-3 was

a protease provided the first mechanistic insight into apoptosis. CED-3 and ICE were the

founding members of the cysteine proteases, or caspases (cysteine aspartate-specific

protease), that have been shown to function as key effectors of apoptosis in all systems

(DEGTEREV et al. 2003). Although ced-3 is the only caspase known to function in C.

elegans, three other caspase-like genes have been identified and remain to be genetically

characterized (SHAHAM 1998). ced-3 is required in cells fated to undergo programmed cell

death, demonstrating that this gene acts cell-autonomously in a process of cellular suicide

(YUAN and HORVITZ 1990). When overexpressed in cells that do not normally die in C.

elegans, ced-3 can cause their deaths by a process that shares morphological and genetic

features with normal programmed cell deaths (SHAHAM and HORVITZ 1996b).

Caspases such as CED-3 are synthesized as inactive zymogens and become active

only when they are cleaved, usually through autocleavage or by other proteases, particularly

other caspases. The cleavage liberates two subunits, e. g. p20 and p10 (RAMAGE et al. 1995;

YAMIN et al. 1996), which heterodimerize to form an active caspase complex composed of

two p20 subunits and two p10 subunits (WALKER et al. 1994).

In mammals and D. melanogaster, the apoptotic caspases can be divided into two

classes, the initiator caspases and the effector caspases. The distinction between initiator and
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effector caspases does not appear relevant to cell death in C. elegans, in which only the

caspase CED-3 has been shown to act. The initiator caspases, which resemble CED-3, are

characterized by a long prodomain that can function to mediate protein-protein interactions

with upstream regulatory molecules (DEGTEREV et al. 2003). These caspases generally

function by activating the effector caspases, which are characterized by their short

prodomains. Once activated, these effector caspases cleave substrates directly involved in

the process of apoptosis. Initiator caspases possess substrate preferences that make them

better suited to the cleavage and activation of effector caspases than to the cleavage of

downstream substrates (THORNBERRY et al. 1997). There are numerous mammalian

caspases; some of them, such as caspases 3, 6, 7, 8, 9, and 10, have well-established roles in

programmed cell death (SADOWSKI-DEBBING et al. 2002). In all systems, the final stage in

the regulation of apoptosis appears to be the determination of the level of caspase activity.

2. ced-4 encodes an adaptor protein that is similar to Apaf-1 and activates CED-3

As a direct result of the ced-1 suppression screen that identified alleles of ced-3,

screens were performed that recovered a mutant allele of ced-4 (ELLIS and HORVITZ 1986).

Unlike the molecular identification of ced-3, the cloning of ced-4 failed to immediately

provide insight into its function (YUAN and HORVITZ 1992). Like ced-3, ced-4 is required for

essentially all programmed cell deaths and acts cell-autonomously (YUAN and HORVITZ

1990). Genetic analysis suggests that ced-4 functions upstream of ced-3. Specifically,

overexpression of ced-4 in the presence of ced-3 causes robust cell killing, whereas without

ced-3, this overexpression of ced-4 does not kill efficiently. Additionally, overexpression of

ced-3 without ced-4 does kill (SHAHAM and HORVITZ 1996b). Biochemical experiments
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using various assays suggested that CED-4 binds to CED-3 and facilitates its activation

(CHINNAIYAN et al. 1997; SESHAGIRI and MILLER 1997; Wu et al. 1997; YANG et al. 1998).

CED-4 has a caspase activation and recruitment domain (CARD) and an AAA ATPase

domain. The CARD domain allows CED-4 to interact with and activate CED-3. The

function of the putative ATPase domain remains to be established.

Analysis of the ced-4 cDNAs of the genomic loci of ced-4 and its homolog in the

closely related nematodes C. briggsae and C. vulgaris led to the discovery that there are at

least two splice variants of ced-4: the principal splice variant, ced-4S, comprising -90% of

observed messages, and an alternate splice variant, ced-4L, containing an extra 72

nucleotides within the coding sequence (SHAHAM and HORVITZ 1996a). The two ced-4

splice variants appear to function oppositely in programmed cell death: the short variant

ced-4S promotes programmed cell death, whereas the long variant ced-4L may promote cell

survival (SHAHAM and HORVITZ 1996a). In Chapter 2, I present the characterization of the

spk-1 gene, which is a modifier of ced-4 killing activity and a regulator of the alternative

splicing of ced-4 in vivo.

The best-studied mammalian homolog of CED-4 was identified from a

labor-intensive biochemical purification in the laboratory of Xiaodong Wang. This approach

led to the identification of three fractions that were required for Caspase-3 cleavage, a

hallmark of mammalian apoptosis, in a cell-free system. One of these fractions contained the

CED-4 homolog Apaf- 1 (Zou et al. 1997). Like CED-4, Apaf- 1 binds to a caspase

(Caspase-9, called Apaf-3 in this biochemical purification scheme) through interaction with

its long prodomain, thereby promoting its activation (LI et al. 1997). Apaf-l-deficient mice

have reduced apoptosis in the brain, hyperproliferation of neuronal cells, and their cells are
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resistant to numerous apoptotic stimuli (CECCONI et al. 1998; YOSHIDA et al. 1998).

However, much of the cell death that occurs in the immune system proceeds normally in

Apaf- 1-deficient mice. Apaf- 1 shares two of three domains with CED-4: the CARD domain

and the ATPase domain. The third domain, which exists in Apaf- 1 but not in CED-4,

mediates interactions with cytochrome c (ACEHAN et al. 2002). The release of the

mitochondrial protein cytochrome c into the cytoplasm is an important triggering step in

many forms of programmed cell death in mammals, but its role in programmed cell death in

C. elegans has not been examined (LI et al. 1997).

3. ced-9 encodes a protective protein that is similar to the oncoprotein Bcl-2

In a screen to identify mutations that cause cell survival in C. elegans, a

gain-of-function allele of ced-9 was identified, ced-9(n1950gf) (HENGARTNER et al. 1992).

This allele, like loss-of-function alleles of ced-3 and ced-4, prevents apoptosis in essentially

all somatic cells that normally undergo programmed cell death (HENGARTNER et al. 1992).

Molecular identification of ced-9 showed that it encodes a protein similar to the

proto-oncoprotein Bcl-2 (HENGARTNER and HORVITZ 1994b). In some follicular lymphomas,

Bcl-2 is misexpressed in B cells as the result of a chromosomal translocation (BAKHSHI et al.

1985; CLEARY et al. 1986; TSUJIMOTO and CROCE 1986). Overexpression of Bcel-2 can

protect cells against apoptosis (HOCKENBERY et al. 1990; VAUX et al. 1988; VAUX et al.

1992). The observation that Bcl-2 could functionally replace CED-9 in C. elegans provided

the first molecular evidence for the existence of a programmed cell death pathway conserved

from nematodes to mammals (HENGARTNER and HORVITZ 1994b).
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Loss-of-function alleles of ced-9 cause cells that normally survive to die in a process

dependent on the cell-death genes ced-3 and ced-4 (HENGARTNER et al. 1992). Since

elimination of either ced-3 or ced-4 prevents the increased death observed in ced-9(If) (loss

of function) animals, ced-9 was proposed to act genetically upstream of ced-4 and ced-3

(HENGARTNER et al. 1992). Similar to Bcl-2 overexpression in mammalian systems,

overexpression of ced-9 can block normally-occurring programmed cell deaths in C. elegans

(HENGARTNER and HORVITZ 1994b). ced-9 also has a cell-killing function that can be

observed in genetically sensitized backgrounds (HENGARTNER and HORVITZ 1994a).

Of all the gene families that function in mammalian programmed cell death, the Bcl-2

family is the most complicated. The family members that behave most like CED-9 and Bcl-2

(i. e. they are anti-apoptotic), which include Bcl-xL, Bcl-w, Mcl-1 and Al, generally have

four domains found in Bcl-2, known as the Bcl-2 Homology (BH) domains (KUWANA and

NEWMEYER 2003). The other main family of Bcl-2 homologs, the pro-apoptotic family, is

discussed in the next section.

The observation that many of the Bcl-2 family members are localized to the

mitochondria contributed to the hypothesis that mitochondria function in apoptosis (DANIAL

and KORSMEYER 2004; HOCKENBERY et al. 1990). At the mitochondria, members of the

Bcl-2 family may form channels or otherwise regulate the release of apoptosis-promoting

factors from the mitochondria into the cytoplasm. The identification of cytochrome c,

normally found between the inner and outer membranes of the mitochondria, as an important

regulator of apoptosis further implicated mitochondria in apoptosis (LI et al. 1997). Bcl-2

family members may directly mediate release of cytochrome c (KUWANA and NEWMEYER

2003). Several additional functions for mitochondria in apoptosis have been described and
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numerous apoptotic mitochondrial associated-proteins have been described, but many remain

the subject of debate and none is as well established as cytochrome c (KUWANA and

NEWMEYER 2003). In mammals, the apoptotic pathway that involves the release of

cytochrome c from the mitochondria is usually described as the 'intrinsic' pathway, to

differentiate it from an 'extrinsic' pathway, which involves extracellular pro-apoptotic

ligands and does not necessarily act through the mitochondria. The intrinsic pathway is very

important in developmental cell deaths and is the pathway that regulates stress-induced

apoptosis such as that caused by DNA damage or the withdrawal of cytokines.

4. egl- 1 encodes a pro-apoptotic BH-3-only protein

The most upstream gene that functions in the execution of programmed cell death

was the last of the execution genes to be molecularly identified. A cell-specific

gain-of-function allele of this gene, egl-1 (egl, egg-laying abnormal), was originally

identified in a screen for animals that failed to properly lay eggs (TRENT et al. 1983). This

failure to lay eggs results from the mutant animals' lack of the HSNs (HSN,

hermaphrodite-specific neuron), which control egg laying. The inappropriate HSN deaths

and the egg-laying defect in this mutant were completely suppressed by loss of ced-3

function, suggesting that the inappropriate activation of the programmed cell death pathway

in the HSNs was causing the inappropriate death of these cells (ELLIS and HORVITZ 1986).

When intragenic suppressors of this dominant egl-1 allele were isolated, a remarkable

observation was made: not only were the revertants no longer egg-laying defective, but the

HSN neurons of the revertant hermaphrodites no longer died, and essentially none of the 131

somatic developmental programmed cell deaths that occur in wild-type hermaphrodites
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occurred in the revertant strains (CONRADT and HORVITZ 1998). Genetic analysis suggested

that egl-1 was functioning upstream of all the execution genes (ced-3, ced-4, and ced-9) to

regulate cell death. Further analysis showed that egl-1 is likely transcribed only in cells

developmentally fated to die and that the misexpression of EGL-1 can cause cells to die with

morphological and genetic characteristics of programmed cell death.

Molecular identification established that egl-1 encodes a BH3-only protein. This

family of proteins is defined by the possession of only one of the four Bcl-2 homology

domains. Mammalian BH3-only proteins are all pro-apoptotic and regulated in numerous

ways, including transcription (WILLIS and ADAMS 2005). A second gene encoding a C.

elegans BH3-only protein, ced-13, has been identified and might play a secondary role in

C. elegans cell death, specifically in the germline (SCHUMACHER et al. 2005). The

pro-apoptotic BH3-only family in mammals includes the proteins Bim, Bad, Bid, Bik, Bmf,

Puma, Noxa, and Hrk, which are generally activated in response to specific types of cellular

damage. In addition to transcriptional control analogous to that seen in C. elegans (Puma

and Noxa (HAN et al. 2001; NAKANO and VOUSDEN 2001; ODA et al. 2000; Yu et al. 2001)),

mechanisms that regulate the activity of mammalian BH3-only proteins include cleavage

(Bid (LI et al. 1998; Luo et al. 1998)), phosphorylation (Bad (ZHA et al. 1996)), and

sequestration to components of the cytoskeleton (Bmf (PUTHALAKATH et al. 2001) and Bim

(PUTHALAKATH et al. 1999)).

C. A Molecular Model For the Function of CED-3, CED-4, CED-9, and EGL-1

A combination of cell biological, biochemical, and structural experiments has

contributed to a compelling model for how the protein products of egl-1, ced-9, ced-4, and
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ced-3 function in programmed cell death. In C. elegans, CED-9 is permanently localized to

the mitochondria (CHEN et al. 2000), where it binds a dimer of CED-4 molecules (YAN et al.

2005). In cells that are fated to die, newly transcribed and translated EGL-1 binds to a

surface on CED-9, causing a conformational change that releases the CED-4 dimer from

CED-9 and the mitochondria. Upon release, CED-4 assembles into a complex containing

four CED-4 molecules (YAN et al. 2005) and localizes to the nuclear membrane (CHEN et al.

2000). This tetramer of CED-4 molecules binds CED-3 and promotes the autoproteolytic

activation of CED-3 (YAN et al. 2005). This activation of the protease activity of CED-3

causes cell death. The gain-of-function mutation ced-9(n1950) alters the interaction surface

with EGL- 1 and prevents its binding, thus preventing liberation of CED-4 and cell death

(YAN et al. 2004). The protective CED-4L is believed to protect by preventing the formation

of the CED-4 tetramers and the consequent activation of CED-3 (YAN et al. 2005).

Although counterparts of each of these components exists and functions in

mammalian cell death, aspects of the molecular mechanisms of programmed cell death might

differ between worms and mammals. BH3-only proteins in mammals do interact with Bcl-2

family members, but they probably regulate the release of mitochondrial proteins such as

cytochrome c (KUWANA and NEWMEYER 2003). Unlike in C. elegans, mammalian Bcl-2

family members are likely not to interact with Apaf- 1 and thus do not activate Apaf- 1 by

disassociation. Instead, Bcl-2 family members are thought to prevent the release of

cytochrome c from mitochondria and thereby prevent cytochrome c from stimulating the

aggregation of Apaf-1 and subsequent Caspase-9 activation.

D. Morphology of Cells Undergoing Programmed Cell Death in C. elegans
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Cell death in C. elegans can be easily observed using Nomarski

differential-interference contrast microscopy. Cells progress through several morphological

phases as they are dying, and the ultrastructures of these phases have been described

(ROBERTSON and THOMSON 1982). At the time of its generation, a cell that is destined to die

is usually smaller than its sister and, even before cell division is complete, is sometimes

recognized by neighboring engulfing cells. After a period of decreased refractility with little

change in cellular architecture, the nucleus appears increasingly refractile when observed by

Nomarski. At this stage, electron microscopy (EM) shows that the cytoplasm begins to

shrink, the nuclear membranes dilate, and chromatin aggregates begin to form in the nucleus.

Next, the entire cell appears refractile and adopts the classic button-like appearance seen with

Nomarski optics. Ultrastructurally the nucleus becomes dense, very little cytoplasm is

observed, and there is an increase in whorling of internal and plasma membranes. Finally the

cell shrinks and disappears, and traces of the corpse can be observed by EM in the engulfing

cells. This entire process takes less than an hour in the wild type, but can take several hours

in mutants partially compromised in their cell death machinery. Several of these features,

including condensation of cytoplasm and chromatin aggregation, are observed in mammalian

apoptosis, but others, such as membrane whorls, are not.

E. Engulfment of Programmed Cell Death Corpses

Following the death of cells and the generation of corpses, the corpses are engulfed

by neighboring cells. The first genes shown to function in the engulfment of programmed

cell death corpses, ced-1 and ced-2, were isolated by Ed Hedgecock in a genetic screen using

Nomarski microscopy to identify animals with any abnormality (HEDGECOCK et al. 1983). In

- 23 -



animals lacking either ced-1 or ced-2 function, unlike in wild-type animals, the cell corpses

that were generated by developmental cell death often persist. Whereas in wild-type animals

the cell corpses would rapidly disappear, usually within 30 minutes of their generation, the

cell corpses of engulfment-defective mutants can persist for hours. This original screen was

followed up by additional screens and characterization in the Horvitz laboratory, in which

alleles of six additional engulfment genes were isolated (ELLIS and HORVITZ 1991; YU et al.

2006; ZHOU et al. 2001a).

The eight engulfment genes fall into two partially redundant pathways required for

programmed cell death corpse removal: the ced-1, -6, -7 and dyn-1 (dynamin) pathway and

the ced-2, -5, -10, -12 pathway. I will refer to the former as the ced-1 pathway and the latter

as the ced-2 pathway for the remainder of this chapter. Animals lacking the function of two

genes within either pathway do not cause the appearance of more persistent cell corpses than

those visible in animals with a single mutation. However, in animals lacking the function of

cell corpse engulfment genes from each of the two pathways, many more cell corpses persist

than in animals with either of the two mutations on their own (ELLIS et al. 1991; GUMIENNY

et al. 2001; WU et al. 2001; Yu et al. 2006; ZHOU et al. 2001 a). Careful analysis of which

cell corpses persisted in animals with specific alleles suggested that the two pathways are not

responsible for engulfing different subsets of cells, but rather are each providing functions

partially required for all cell corpse engulfment events (ELLIS et al. 1991).

Recent evidence indicates that the engulfment genes function not only in cell corpse

removal but also in cell killing (REDDIEN et al. 2001). Removal of a single engulfment gene

alone can very weakly promote the survival of cells that normally die. In a sensitized genetic

background, such as in the presence of a weak ced-3 loss-of-function allele that by itself

- 24 -



promotes only a small amount of cell survival, elimination of any engulfment gene greatly

increases the amount of survival (REDDIEN and HORVITZ 2004). It is believed that, as the cell

begins to die, it generates surface markers that neighboring cells recognize; these

neighboring cells then begin to engulfment the dying cell and assist in promoting the cell's

death.

1. The ced-1, ced-6, ced-7, dyn-1 pathway functions in recognizing and labeling corpses

The mechanism of action of the genes that function in the ced-1 pathway is not

entirely clear, despite the fact that some of these genes are homologous to mammalian

proteins with known functions. The genes ced-1, -6, and -7 appear to function only in the

removal of programmed cell death corpses, as no additional abnormalities are associated with

mutations in these genes. ced-1 encodes a protein that is a receptor containing sixteen copies

of an atypical EGF-like repeat in its extracellular domain (ZHOU et al. 2001b). The short

intracellular domain of CED-1 contains tyrosines that might be phosphorylated to regulate

the binding of SH2 and PTB (phospho-tyrosine binding) domain containing proteins (ZHOU

et al. 2001b). The mammalian protein that most closely resembles CED-1 is mEGF10, a

mouse protein of unknown function that is related to receptors that have been shown to

function in mediating the phagocytosis of apoptotic cells in cell culture assays (MANGAHAS

and ZHOU 2005). Analysis using GFP-tagged versions of CED- 1 suggests that CED- 1

aggregates around cell corpses during their engulfment, suggesting that CED-1 functions in

recognizing the cell corpse (ZHOU et al. 2001b). Targeted expression suggests that ced-1

functions in cells responsible for engulfment (rather than in cells that die). Identification of

the ligand that CED-1 recognizes on the corpse remains an important unanswered question in
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programmed cell death.

ced-6 encodes an adaptor protein containing a PTB domain that has been shown to be

capable of interacting with CED-1 (LIu and HENGARTNER 1998; Su et al. 2002). CED-6 also

contains both a leucine zipper and a proline rich C-terminus, each of which may mediate

protein-protein interactions. A mammalian homolog of CED-6 (hCED-6, also called GULP)

(LIu and HENGARTNER 1999; SMITS et al. 1999), which was identified on the basis of its

homology to CED-6, can promote the engulfment of apoptotic cells in mammalian cell

culture when overexpressed. Like ced-1, ced-6 is thought to function in cells responsible for

engulfment. Because ced-6 is not required for the clustering of CED- 1::GFP in response to

apoptotic cells, ced-6 might act downstream of ced-1 (ZHOU et al. 2001b).

CED--7 is an ATP-binding cassette (ABC) transporter (Wu and HORVITZ 1998a).

ABC transporters comprise a large family of proteins that actively transport a wide variety of

substances (including lipids, sugars, and proteins) across membranes (KLEIN et al. 1999).

Unlike ced-1 and ced-6, ced-7 is thought to function in both the engulfing cells and the dying

cells, although the significance of this result remains unclear (Wu and HORVITZ 1998a).

Elimination of ced- 7, but not the elimination of ced-6 or other engulfment genes, prevents the

accumulation of CED- 1::GFP around cell corpses (ZHOU et al. 200 lb). Because ced- 7 is

required in the dying cells and is homologous to ABC transporters, ced- 7 may be responsible

for placing a signal that promotes recognition by CED- 1 on the surface of the cell corpse.

Although such a signal has not been identified, one strong candidate molecule is

phosphatidylserine (MANGAHAS and ZHOU 2005).

Recent work has identified a fourth member of this pathway, dyn-1. dyn-1 encodes a

large GTPase homologous to dynamin, which in other systems plays well-established roles in
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vesicle trafficking (Yu et al. 2006). Unlike the other genes in the ced-1 pathway, dyn-1 is

essential. EM analyses suggest that inactivation of dyn-1 prevents the fusion of intracellular

vesicles to the plasma membrane at the site of corpse engulfment. The dyn-1 work suggests

a model in which CED-1 responds to the presence of a cell corpse by accumulating on the

surface of the cell next to the cell corpse. The CED-1 proteins then send intracellular signals,

likely via CED-6, to recruit intracellular vesicles. This recruitment of vesicles to the plasma

membrane is regulated by DYN-1 and allows for extension of the cell membrane around the

corpse and engulfment.

2. The proteins CED-2, CED-5, CED-10O, and CED-12 are similar to mammalian proteins

that regulate cytoskeletal reorganization

Unlike the members of the ced-1 pathway, whose mechanisms of action are

somewhat unclear, each member of the ced-2 pathway has a clearly identifiable mammalian

homolog that functions in cytoskeletal reorganization. Cytoskeletal reorganization is

required for many different cellular processes, including cell migration, cell process

extension, and phagocytosis. In C. elegans, ced-2, -5, -10, and -12 also function in distal tip

cell migration, highlighting their involvement in other processes in C. elegans that require

cytoskeletal reorganization.

CED-10 is most similar to mammalian Rac 1 (REDDIEN and HORVITZ 2000), which is

a member of the Ras GTPase superfamily that includes Rho, Rac, and Cdc42. Each of these

proteins has a well-established role in cytoskeletal reorganization (JAFFE and HALL 2005).

CED-5 is most similar to DOCK180 and is a member of the CDM protein (CED-5,

mammalian DOCK180 and Drosophila Myoblast city) family (Wu and HORVITZ 1998b).
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CED-12 is the founding member of a family that includes ELMO1 (GUMIENNY et al. 2001;

Wu et al. 2001; ZHOU et al. 2001a). CED-5 and CED-12 are thought to function together to

act as an atypical guanine nucleotide exchange factor that activates Rac by exchanging GDP

for GTP (BRUGNERA et al. 2002). Finally, CED-2 is an adaptor protein containing SH2 and

SH3 domains and is most similar to mammalian CrkII (REDDIEN and HORVITZ 2000).

The involvement of CED-2 in engulfment might suggest that there is an upstream

receptor protein that becomes phosphorylated and binds the adaptor CED-2, thereby

promoting CED-2 binding to the CED-5/CED-12 guanine nucleotide exchange factor. Then,

CED-5/CED- 12 would activate CED- 10/Rac 1, which promotes cytoskeletal rearrangement.

The identity of the receptor and the signal that activate this pathway remains elusive. At one

point in my graduate studies, I attempted to knock down the function of each of a majority of

predicted C. elegans receptor tyrosine kinases using RNAi and screened for engulfment

defects. I failed to identify any dsRNAs that caused persistence of cell corpses, however, and

thus the receptor functioning in this pathway remains elusive (B. D. GALVIN and H. R.

HORVITZ unpublished observations).

The original genetic characterization of this pathway suggested that ced-10 was likely

to function only in a pathway with ced-2, -5, and -12. More recent evidence, including the

observation that over-expression of ced-10 can bypass the block in mutants defective in

either the ced-1 pathway or the ced-2 pathway but not of mutants lacking function of both

pathways, suggests that ced-10 may also act downstream of the ced-1 pathway (KINCHEN et

al. 2005). The fact that ced-10 is essential for viability of C. elegans has made genetic

analysis more difficult. Thus, most double-mutant analyses of ced-10 have been performed

using non-null alleles, limiting the conclusions that could be made. Currently there is not a
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consensus about whether or not ced-10 functions in only the ced-2 pathway or in both the

ced-1 and ced-2 pathways.

3. Other genes that have been proposed to function in the engulfment of cell corpses

Additional genes have been suggested to function in the engulfment of programmed

cell death corpses in C. elegans. These genes encode the homologs the phosphatidylserine

receptor and a member of the annexin family of proteins. These genes probably do not play a

significant role in the engulfment process, however, and have never been identified in

screens for mutations that affect engulfment. Interest in these genes began because a

hallmark uniquely present on the outer surface of the cell membranes of apoptotic corpses in

mammalian systems is phosphatidylserine (FADOK et al. 1992). For years, the correlation

between phosphatidylserine exposure and cell death has been explored in great detail. One

of the first genes identified that functions to recognize phosphatidylserine in mammalian

systems is a protein reported to function in both recognition and engulfment (FADOK et al.

2000). The protein encoded by this gene, identified by phage display, was called the

phosphatidylserine receptor. New evidence from knockout mice suggests that elimination of

this gene has no effect on corpse engulfment (BOSE et al. 2004). Additionally, recent

evidence suggests that this protein is likely to be localized to the nucleus (CIKALA et al.

2004; CUI et al. 2004). Similarly, contrary to the claims made in an initial report (WANG et

al. 2003), the C. elegans homolog of the proposed phosphatidylserine receptor, psr-1, is

unlikely to play a role in engulfment, since no persistent cell corpses are observed in animals

in which psr- 1 function has been eliminated (B. D. GALVIN and H. R. HORVITZ unpublished

observation).
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Some members of the annexin family, like the mammalian homolog of NEX-1, are

also capable of binding to phosphatidylserine. Thus there has been interest in investigating

whether C. elegans annexins affect programmed cell death. However, the gene encoding a

member of the annexin family called nex-1 is, despite a previous report (ARUR et al. 2003),

also unlikely to function in engulfment in C. elegans (D. T. HARRIS and H. R. HORVITZ

unpublished observation).

F. Additional Genes that Function in Programmed Cell Death

In addition to the genes that have been shown to function in the execution of

programmed cell death (ced-3, ced-4, ced-9, egl-1, and ced-13) and in the engulfment of cell

corpses (ced-1, ced-2, ced-5, ced-6, ced-7, ced-10, ced-12, and dyn-1), several other genes

have been shown to function in programmed cell death. These genes are described below.

1. ced-8 and ced- 11 encode proteins that are likely to function at cellular membranes

In the screen for mutant animals containing persistent cell corpses, alleles of ced-8

were isolated (ELLIS et al. 1991; STANFIELD and HORVITZ 2000). Although originally

thought to function in cell corpse engulfment, ced-8 was later shown to function in the timing

or efficient progression of cell death. In animals lacking ced-8 function, an abundance of cell

corpses are visible at a late time point at which few cell corpses are observed in wild-type

animals; this observation is most likely a result of the deaths proceeding more slowly

(STANFIELD and HORVITZ 2000). CED-8 is most similar to the putative membrane

transporter XK. The function of CED-8 remains unknown, but mutations in this gene can,

like mutations in ced-7 and other genes, promote additional survival in a weak ced-3
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background.

Another transmembrane protein whose function in programmed cell death remains

unclear is CED- 11. CED- 11 encodes a member of the TRP (transient receptor potential)

superfamily of cation channels (G. M. STANFIELD and H. R. HORVITZ, personal

communication). Members of this family of proteins have been shown to be

calcium-permeable and are involved in many processes, ranging from thermosensation to

mechanotransduction (RAMSEY et al. 2006). Loss-of-function alleles of ced-11 were

originally identified as suppressors of the persistent cell corpse phenotype of ced-5 because

they change the appearance of the corpses such that they no longer have the classic refractile

button-like appearance observed using Nomarski microscopy. This is the only gene currently

known to affect the morphology of the cell corpse.

2. Nucleases function in programmed cell death to degrade the DNA of the dying cell

The first mutation found to alter the process of programmed cell death was in the

gene nuc-1 (SULSTON 1976). In animals lacking nuc-1 function, the DNA of engulfed dead

cells is not properly degraded. nuc- encodes a protein similar to mammalian DNaseII (Wu

et al. 2000). The degradation of DNA during programmed cell death in C. elegans is less

well understood than in other systems (NAGATA 2005). One of the hallmarks of apoptotic

cells in mammalian systems is the presence of TUNEL-positive (Terminal deoxynucleotidyl

Transferase-mediated dUTP Nick End Labeling-positive) DNA in cells that have died

through a caspase-dependent process (GAVRIELI et al. 1992). In C. elegans, TUNEL-reactive

DNA can be detected in dying cells only during a brief period of time during the death

process (Wu et al. 2000). Analysis of loss-of-function alleles of nuc-1 suggests that one of
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the functions of NUC- 1 is to convert TUNEL-reactive DNA to TUNEL-negative DNA, such

that in nuc-l(l) animals, TUNEL-reactive 3' hydroxyl ends of DNA fragments accumulate

in cell corpses (Wu et al. 2000). This result suggests that at least one additional nuclease

functions upstream of NUC-1 to generate the TUNEL-reactive DNA in the first place.

NUC-1 does not function only in the degradation of DNA in programmed cell death, because

bacterial DNA in the gut also goes undigested in nuc-l (J) animals. In mammalian systems,

the NUC-1 homolog DNaseII is clearly responsible for degrading DNA from apoptotic cells,

because in DNasellI-null mice, the macrophages that engulf many apoptotic corpses contain

undigested DNA (KAWANE et al. 2003; KRIESER et al. 2002).

One of the interesting unexplored observations concerning the cell death pathway is

that, in animals lacking ced-1 and nuc-1, none of the TUNEL-reactive DNA that is normally

observed in nuc-1(l) animals can be detected (Wu et al. 2000). Loss of ced-7 also

suppresses the formation of TUNEL-reactive DNA in cell corpses, but not to the same degree

as does loss of ced-1. These results suggest that ced-1 and to a lesser extent ced- 7 are

required to activate the process that leads to the formation of TUNEL-reactive DNA. This

activity further distinguishes members of the ced- I pathway from the ced-2 pathway.

A survey of additional DNase-like genes encoded in the C. elegans genome led to the

suggestion that seven additional nucleases function in some aspects of cell corpse DNA

degradation and cell death execution (PARRISH and XUE 2003). This characterization of

nucleases was performed using RNAi and awaits further confirmation using loss-of-function

alleles. A loss-of-function allele of the gene encoding a homolog of a mitochondria

endonuclease (LI et al. 2001), which may function in mammalian apoptosis, has also been

reported to perturb DNA degradation (PARRISH et al. 2001). Although a mutation that maps
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to the general location of this gene, cps-6, has been isolated in a screen, no DNA sequence

change can be found in the genomic locus and thus further characterization of this gene is

required. The identity of the remaining critical players in DNA degradation and in particular

the nucleases that act to generate TUNEL-reactive DNA ends remains an important open

question, as no candidates have been isolated thus far in C. elegans.

3. A possible new role for mitochondria in programmed cell death in C. elegans

Recent work has focused greater attention on the role that the mitochondria play in

programmed cell death in C. elegans. Although much of the mammalian research into

programmed cell death has focused on mitochondria, until fairly recently the role of

mitochondria in cell death in C. elegans has been limited to the localization of the execution

proteins CED-9 and CED-4 (CHEN et al. 2000). In C. elegans, CED-9 is constitutively

localized to mitochondria and, in the absence of EGL-1, sequesters CED-4 to the

mitochondria and prevents it from activating CED-3. As previously discussed, although the

release of cytochrome c from mitochondria is a critical step in the activation of apoptosis in

mammals, as yet no role has been established for cytochrome c in cell death in C. elegans. In

mammals, mitochondria have been observed to fragment during apoptosis, and interference

with this process has been shown to block apoptosis (FRANK et al. 2001; KARBOWSKI and

YOULE 2003). Evidence has recently been reported that a similar phenomenon occurs in

programmed cell death in C. elegans. This mitochondrial fragmentation can be induced by

EGL-I in a CED-9-dependent fashion and requires the activity of the dynamin-related

protein DRP-1, a protein whose homologs act in mitochondrial fragmentation in mammalian

cells (JAGASIA et al. 2005). Overexpression of a dominant-negative drp-1 construct
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promotes inappropriate cell survival, whereas overexpression of wild-type drp-1 can induce

cell death. These results suggest that the mitochondria may play a significant role in

programmed cell death in C. elegans.

1II. THE REGULATION OF THE PROGRAMMED CELL DEATHS OF SPECIFIC

CELLS IN C. elegans

Although many of the core genes that function in all programmed cell deaths are

known, the regulation of this process in specific cells is less well understood. Only nine

genes that contribute to the regulation of seven programmed cell deaths have been described,

from among 152 somatic cell deaths that occur either in the male or in the hermaphrodite. In

C. elegans, the decision of a cell to live or die depends on whether it expresses egl-1. Thus,

this discussion of the regulation of cell death in C. elegans will focus on the regulation of

egl-1 transcription.

A. Four Genes Contribute to the Regulation of the Deaths of the NSM Sister Cells

Two of the 131 cells that die during hermaphrodite development are the sisters of the

serotonergic neurosecretory motor (NSM) neurons. In a screen to identify mutations that

cause the inappropriate survival of the sisters of the NSMs, alleles of two genes were

isolated. Loss-of-function mutations in ces-2 (ces, cell death specification) prevent the

deaths of the NSM sister neurons, and a gain-of-function mutation in ces-1 prevents these

deaths and the deaths of the sisters of the 12 neurons (ELLIS and HORVITZ 1991). The model

for how these genes function in wild-type animals is that CES-1 is a repressor of egl-1

transcription, and CES-2 is a repressor of ces-1 transcription (METZSTEIN et al. 1996).
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Specifically, CES-2 binds to an intronic element in ces-1 and prevents its transcription. In

ces-l(gf) mutant animals, the DNA element to which CES-2 normally binds is mutated such

that CES-2 can no longer bind and ces-1 is likely expressed. CES-1 then prevents death by

binding to a regulatory site in egl-1 and preventing its transcription (THELLMANN et al.

2003). Loss of ces-2 results in a failure to repress ces-1 expression and thus similarly

promotes survival. This model is supported by the observation that loss of ces-1 completely

suppresses the survival observed in ces-2(l) animals. The products of two other genes, hlh-2

and hlh-3 (hlh, helix loop helix), promote transcription of egl-1 in the NSM sister cells by

binding to sites that overlap with the CES-1 binding site (THELLMANN et al. 2003).

Based on the studies of ces-1 and ces-2 in C. elegans, the mammalian genes SLUG

and HLF (hepatic leukemia factor), respectively, were shown to regulate programmed cell

death in mammalian cells. HLF had been previously identified because a translocation that

causes a chimeric version of HLF fused to the E2A gene is associated with acute

lymphoblastic leukemia (HUNGER et al. 1992; INABA et al. 1992). The translocation found in

leukemic cells leads to the production of a protein that is a fusion of the DNA-binding

domain of HLF to the activation domain of E2A. This HLF-E2A chimera binds to SLUG

and activates its expression, leading to a reduction in the amount of apoptosis in developing

blood cells, and contributing to the development of leukemia (INUKAI et al. 1999). The

mechanism by which SLUG over-expression leads to a reduction in apoptosis is that SLUG

directly binds to and represses PUMA, a BH3-only gene (i.e. a homolog of egl-1 in C.

elegans) (Wu et al. 2005).
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B. Expression of and Killing by egl-1 in the HSNs is Inhibited by the Binding of TRA-1

in Hermaphrodites

The regulation of cell survival of the HSNs, two cells that die in males and survive in

the hermaphrodite, has been described (CONRADT and HORVITZ 1999). Since these cells

control egg laying, elimination of the HSNs leads to an egg-laying defect. As mentioned

above, gain-of-function alleles of egl-1 were identified in screens for animals that do not

properly lay eggs (TRENT et al. 1983). In these dominant alleles of egl-1, the binding site for

TRA-1, a protein that can function as a transcriptional repressor of egl-1 in hermaphrodites,

is mutated and prevents binding (CONRADT and HORVITZ 1999). TRA-1 (tra, sexual

transformer) is the most downstream gene product that functions in C. elegans sex

determination. TRA-1 normally binds to the site altered by these egl-1 gain-of-function

mutations and prevents transcription of egl-1 in hermaphrodite HSNs. Thus, in animals in

which the TRA-1 binding site in egl-1 has been mutated, egl-1 transcription is no longer

inhibited and the HSNs inappropriately die.

The transcriptional activators that function to promote the transcription of egl-1 in the

absence of this repression have not been conclusively identified. A screen for mutations that

suppress the death of the HSNs in egl-l(gf) hermaphrodites led to the identification of two

genes, eor-1 and eor-2, that contribute to death of the HSNs (HOEPPNER et al. 2004). EOR-1

is a putative transcription factor containing zinc finger domains, and EOR-2 is a novel

conserved protein. The protein products of these genes may directly bind and contribute to

the activation of egl-1 transcription.
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C. The Programmed Death of a Specific Ventral Cord Neuron is Controlled by the

Homeodomain Transcription Factors MAB-5 and CEH-20

The Hox genes mab-5 and ceh-20 function together to regulate the death of the

Pl 1.aaap cell (a neuron in the posterior ventral nerve cord) by binding to the egl-1 locus (Liu

et al. 2006). Loss of either mab-5 or ceh-20, which are both expressed in this cell, prevents

this death and specifically prevents egl-1 transcription. Transgenic egl-1 constructs

containing mutations that perturb the binding of MAB-5 and CEH-20 fail to rescue the

inappropriate survival of this cell in egl-1 rescue assays. This direct control of egl-1

expression by Hox genes demonstrates a direct link between these important developmental

genes and the control of programmed cell death.

D. An Evolutionarily Conserved Enhancer Element is Required for the Death of the

VC-like Neurons

In a screen to identify additional genes that regulate programmed cell death, a

non-coding mutation in egl-1 was identified. This element is specifically required for the

death of six neurons - the VC-like neurons - in the ventral nerve cord of C. elegans

hermaphrodite. The characterization of this element and the identification of proteins that

may bind to this element to regulate these deaths are presented in Chapter 3 of this thesis.

E. egl-1 Does Not Regulate Programmed Cell Death in the Germline

Although the execution genes ced-3, ced-4, and ced-9 all function in both somatic and

germline cell death, two observations suggest that programmed cell death in the germline is

regulated differently. First, a gain-of-function mutation in ced-9(n1950), which prevents the
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deaths of essentially all somatic cells programmed to die, has no affect on germ cells

(GUMIENNY et al. 1999). Second, loss of egl-1 does not promote survival in the germline

(CONRADT and HORVITZ 1998). Structural analysis of CED-9 and EGL-1 has shown that the

ced-9(n1950) mutation perturbs the ability of BH3-only proteins such as EGL-1 to interact

with CED-9 (YAN et al. 2005). What controls germline deaths upstream of ced-9 is

unknown. Although the regulation of normal death in the germline is not understood, germ

cell death in response to toxic insults such as DNA may to be regulated by several genes.

One of these genes (cep-1, which is similar to p53) may induce egl-1 transcription and death

in response to DNA damage (DERRY et al. 2001; SCHUMACHER et al. 2001). However, egl-1

does not regulate the normal programmed cell deaths that occur in the germline during

development in the absence of DNA damage.

F. The Programmed Deaths of Several Male-Specific Cells are Regulated Differently

Nearly all of the somatic programmed cell deaths that occur in C. elegans are

believed to utilize the egl-1, ced-9, ced-4, and ced-3 genes. Two cell deaths that occur in

males may be exceptions. One of these deaths appears to be determined stochastically, such

that one member of an equipotent pair of cells, B.alapaav and B.arapaav, always dies and the

other survives (SULSTON et al. 1980). Death of either B.alapaav or B.arapaav requires the

engulfment genes ced-1 and ced-2 (HEDGECOCK et al. 1983), which contribute only very

weakly to most cell deaths in C. elegans. The complete dependence of this death on

engulfment is highlighted by the fact that ablation of the P12.pa cell, which normally engulfs

the cell corpse generated in this cell death, causes this pair of cells both to survive (SULSTON

and WHITE 1980). This linkage of programmed cell death to the cell-cell signaling that must
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be occurring among these cells to ensure that only one of these two cells survives is a novel

phenomenon, and further study of these deaths might provide important insights into the

regulation of programmed cell death. Additionally, the complete dependence of this death on

engulfment should be explored.

The second of the uniquely regulated male-specific deaths occurs in the linker cell,

whose migration leads the extension of the developing gonad in the male (KIMBLE and HIRSH

1979). This cell dies by a process that morphologically resembles programmed cell death but

is not dependent on genes known to function in programmed cell death (ELLIS and HORVITZ

1986) (M. C. ABRAHAM and S. SHAHAM, unpublished observations).

IV. PATHOLOGICAL DEATHS OF SPECIFIC CELLS

In addition to the programmed cell deaths that occur during development and in the

adult germline, there are several pathologic cell deaths that occur in C. elegans as a result of

mutations in specific genes. These deaths are not a part of normal development. Most of the

mutations that cause these deaths have been isolated in screens for specific phenotypes, such

as touch-insensitivity or failure to possess a functional vulva. These deaths are described

below.

A. Channel Hyperactivation Can Cause the Necrotic Deaths of Neurons

In a screen to identify worms that were defective in the avoidance response to gentle

touch, several dominantly acting alleles of mec-4 (mec, mechanosensory abnormal), referred

to as mec-4(d), were isolated that cause the inappropriate death of six neurons (CHALFIE and

Au 1989; CHALFIE and SULSTON 1981). Similarly, an allele of the gene deg-1 (deg,
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degeneration of certain neurons) also causes neuronal death and was isolated in a screen for

animals defective in a different touch response (CHALFIE and WOLINSKY 1990). Both of

these genes encode homologs of subunits of DEG/ENaC (degenerin/epithelial Na channel)

ion channels, and gain-of-function mutations in each of these genes, which cause

inappropriate channel activity and death, affect homologous residues (CHALFIE and

WOLINSKY 1990; DRISCOLL and CHALFIE 1991). MEC-10, UNC-8, and UNC-105 are also

subunits of DEG/ENaC channels and can be mutated to cause the death of specific cells

(HUANG and CHALFIE 1994; LIU et al. 1996; TAVERNARAKIS et al. 1997).

DEG/ENaC channels are heteromeric transmembrane complexes that function in

processes ranging from sensory perception to electrolyte balance (MANO and DRISCOLL

1999). The gain-of-function mutations cause the deaths of the specific neurons in which

these channels are expressed by hyperactivating the channels and causing increased ion

influx that is ultimately toxic. Loss-of-function alleles of mec-4, deg-1, and others do not

cause cell death. Other genes can also mutate to cause necrotic deaths. For example,

gain-of-function mutations in deg-3, which encodes a subunit of a nicotinic acetylcholine

receptor, and transgenic expression of activated Gats (BERGER et al. 1998; KORSWAGEN et al.

1997), can cause deaths that are morphologically very similar to the mec-4(d) and

deg-1 (d)-induced cell deaths.

These cell deaths induced by channel hyperactivation are both genetically and

morphologically distinct from programmed cell deaths. Unlike programmed cell deaths,

which form compacted cell corpses, the neurons that die swell to several times their normal

diameter before disappearing. Ultrastructurally, electron-dense membranous whorls are

observed, followed by a swelling and degradation of organelles, distortion of the nucleus, and
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the appearance of large vacuoles (HALL et al. 1997). These deaths resemble mammalian

cellular necrosis, and for this reasons these types of channel hyperactivation-induced cell

death in C. elegans are normally referred to as being necrotic cell deaths (WALKER et al.

1988). Genetic analysis established that these deaths are independent of the canonical

programmed cell death pathway, as ced-3, ced-4, ced-9, and egl-1 are not required for these

deaths (CHUNG et al. 2000). Although mutations in the engulfment genes slow the

disappearance of the dying necrotic cells, they do not contribute to the cell-killing process in

necrotic cell death (CHUNG et al. 2000). Calcium appears to function in these necrotic

deaths, because mutations in calreticulin, which regulates intracellular calcium, and other

genes that function in calcium regulation can suppress the deaths of these cells (Xu et al.

2001). Finally, these deaths also require the activity of calcium-activated calpain proteases

and aspartyl proteases (SYNTICHAKI et al. 2002).

B. Rare Mutations in lin-24, lin-33, and pvl-5 Can Cause Pn.p Cell Death

In a screen to identify genes that affect vulval cell lineages, alleles of two genes,

lin-24 and lin-33, were identified that caused deaths morphologically distinct from both

programmed and necrotic deaths (FERGUSON and HORVITZ 1985). The mutations in lin-24

and lin-33 cause the death of the Pn.p hypodermal blast cells, three of which normally give

rise to the vulva; thus these deaths result in vulvaless animals. These deaths are

characterized in Chapter 4 of this thesis.

A mutation in the uncloned gene pvl-5 can also cause the death of the Pn.p cells

(JOSHI and EISENMANN 2004). A single allele ofpvl-5 was isolated in a screen for

abnormally shaped vulvas. The Pn.p deaths seen in pvl-5 mutants require ced-3 and ced-9
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but do not require ced-4. This unique genetic profile distinguishes these deaths from

traditional programmed cell deaths, necrotic cell deaths, and the Pn.p cell deaths observed in

lin-24 and lin-33 mutants. The authors of the pvl-5 work suggest that pvl-5 may normally

protect against ced-4-independent death in these cells.

V. PROGRAMMED CELL DEATH REGULATORY MECHANISMS DESCRIBED

IN INSECTS OR MAMMALS BUT NOT IN NEMATODES

The discoveries concerning C. elegans cell death described above have pioneered the

genetic analysis of programmed cell death and laid the foundations of much of the pathway.

Genetic, cellular, and biochemical studies of D. melanogaster and of mammalian systems

have complemented these studies (CASHIO et al. 2005; DANIAL and KORSMEYER 2004).

Three cell death regulatory mechanisms discovered in D. melanogaster and in mammalian

cells play significant roles in programmed cell death but have not been described as

functioning in C. elegans cell death. These three mechanisms are described below.

A. Receptor-mediated Caspase Activation in Mammals

Programmed cell death may be more complex in vertebrates than in C. elegans. In

addition to the larger number of genes involved in the regulation of apoptosis, caspases in

mammals can be activated by mechanisms that do not appear to function in C. elegans. For

example, mammalian caspases can be activated by transmembrane receptors. The

Fas/APO-1/CD95 receptor, a member of the tumor necrosis factor (TNF) superfamily, has a

well-characterized role in direct activation of caspases, bypassing the action of the

mammalian EGL-1, CED-9, and CED-4 homologs. In the late 1980s, two groups identified
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antibodies that could induce apoptosis of specific cells (TRAUTH et al. 1989; YONEHARA et

al. 1989). Cloning of the genes that encode the antigens of these antibodies led to the

identification of the Fas receptor and established that it was similar to the TNF receptors

(ITOH et al. 1991; OEHM et al. 1992). This discovery was significant because it had been

previously observed that adding TNF to tumors caused cell death (BEUTLER and CERAMI

1986; CARSWELL et al. 1975; OLD 1985). Soon after the cloning of the Fas receptor, the Fas

ligand was identified (SUDA et al. 1993). Around the same time, Shigekazu Nagata and

colleagues identified mutations in both Fas and the Fas ligand that could lead to

lymphoproliferative autoimmune disorders in mice (TAKAHASHI et al. 1994; WATANABE-

FUKUNAGA et al. 1992). These observations suggested an important role for Fas and

Fas-ligand in negative selection of autoreactive T cells in the thymus.

Discoveries made in many laboratories have contributed to description of the

mechanism by which Fas induces apoptosis. Activation of Fas by the Fas ligand induces

formation of the death-inducing signaling complex (DISC), the complex of proteins

consisting of Fas, an adaptor protein, and a caspase. Upon Fas ligand binding to its receptor

FADD (Fas-associated death domain containing protein), an adaptor protein, binds to the

death domain in the C-terminus of Fas and recruits one of two initiator caspases, caspase-8 or

caspase-10 (KISCHKEL et al. 1995). Upon oligomerization, caspase-8 (or caspase-10)

becomes activated by proximity-driven cleavage and then cleaves and activates caspase-3, an

effector caspase. This receptor-activated apoptotic pathway is usually referred to as the

extrinsic pathway and can activate effector caspases independently of the mitochondria and

the Bcl-2 superfamily by engaging death receptors at the cell membrane. The extrinsic

pathway can also interface with the mitochondrial, or intrinsic, pathway through
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caspase-8-mediated cleavage of Bid, a BH3-only protein. Cleavage of Bid releases tBid

(truncated Bid), which can then translocate to the mitochondria and induce the release of

cytochrome c, leading to further activation of the apoptotic pathway (LI et al. 1998).

B. Direct Activation of an Apoptotic DNase by Caspase Cleavage of its Inhibitor

Although not essential for apoptosis, the degradation in DNA of apoptotic cells is one

of the most commonly assayed markers of this process (NAGATA 2005). In mammalian cells,

DNA degradation is, in part, mediated by the caspase-activated DNase (CAD, also called

DFF40) (ENARI et al. 1998; LIU et al. 1997; SAKAHIRA et al. 1998), which does not have an

identifiable homolog in C. elegans. This DNase generates double strand breaks with a

hydroxyl group at the 3' end (WIDLAK et al. 2000). This hydroxyl group acts as a substrate

for terminal deoxynucleotidyl transferase (TdT), which is commonly used to detect apoptotic

cells in the TUNEL-labeling protocol. For CAD to be functional, it needs to be synthesized

in the presence of its partner ICAD (inhibitor of CAD), which acts as a chaperone and

ensures proper folding of CAD. ICAD also binds and inhibits the activity of mature, folded

CAD (SAKAHIRA et al. 2000). Upon activation of caspase-3, ICAD is cleaved and active

CAD is liberated to cleave chromosomal DNA in the nucleus. Although a gene encoding this

enzyme has not been found in the C. elegans genome, a DNase (like CAD) that generates

TUNEL-reactive DNA must function in programmed cell death in C. elegans, because

TUNEL-reactive DNA is generated and accumulates in animals lacking the nuclease nuc-1.

C. Inhibitors of Apoptosis (IAPs) and IAP Inhibitors Act To Regulate Cell Death in

D. melanogaster and in Mammals
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In D. melanogaster, the main mechanism by which programmed cell death is

regulated appears to be different from that found in C. elegans. Observations by Hermann

Steller and colleagues sparked extensive research into the genetic regulation of programmed

cell death in D. melanogaster. Their studies indicated that in D. melanogaster, as in C.

elegans, a large number of cells die during embryonic development. These cell deaths

ultrastructurally resembled those observed in C. elegans and in mammalian systems

(ABRAMS et al. 1993). It was found in this work that the vital die acridine orange specifically

labels apoptotic cells in D. melanogaster embryos (ABRAMS et al. 1993). The screening of a

deficiency collection for embryos that lacked acridine orange staining led to the identification

of four overlapping deficiencies that eliminated all death (WHITE et al. 1994). The

deficiencies removed three genes (Reaper, Hid, and Grim) that act in developmental deaths.

Both transcriptional and posttranscriptional regulation of Reaper, Hid, and Grim are

central to the control of apoptosis in D. melanogaster (CASHIO et al. 2005). The proteins

encoded by these genes are thought to induce death by inhibiting the function of Diap 1

(Drosophila inhibitor of apoptosis). Loss of Diap 1 causes lethality and a great increase in

apoptosis (GOYAL et al. 2000; LisI et al. 2000; WANG et al. 1999). IAPs, like Diap, bind to

the active sites of caspases and block their activity by sequestration or by promoting their

degradation (CASHIO et al. 2005). Reaper, Hid, and Grim function both by promoting IAP

degradation and by binding IAPs more efficiently than do caspases (CASHIO et al. 2005).

Mammals have proteins (namely, SMAC/DIABLO and OMI/HTRA2) that are distantly

related to and function similarly to Reaper, Hid, and Grim, and these proteins may be

important activators of apoptosis in mammals (VAUX and SILKE 2003).
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VI. CONCLUSION

In C. elegans, the major determinant of whether most cells will undergo programmed

cell death is whether or not egl-1 is expressed. If egl-1 is expressed, it inhibits the

anti-apoptotic function of CED-9, releasing the adaptor protein CED-4 to activate the caspase

CED-3. Mammalian systems possess homologs of EGL-1, CED-9, CED-4, and CED-3, and

the genetic and molecular interactions between the components have important similarities to

those found in C. elegans. However, mammalian systems also have pathways that activate

caspases directly, by bypassing activities similar to those provided in C. elegans by egl-1 and

ced-9. One such pathway is the Fas/Fas ligand pathway, described above. This Fas/Fas

ligand system is specific to mammals; D. melanogaster does not seem to have any clear

homologs of Fas, and although it does possess homologs of CED-9, CED-4, and CED-3, it

does not appear to have BH3-only proteins similar to EGL- 1. Thus, the decision of cells to

undergo programmed cell death in D. melanogaster is based neither on expression of an

EGL- 1-like protein nor on the activity of a Fas-like pathway, but instead on expression of the

IAP regulators, Reaper, Hid, and Grim. Although IAP homologs exist in C. elegans and in

mammals, they do not play an obvious role in programmed cell death in C. elegans (FRASER

et al. 1999; SPELIOTES et al. 2000) (E. K. SPELIOTES and H. R. HORVITZ unpublished

observations) and the role they play in mammalian apoptosis is unclear (VAUX and SILKE

2003).

Although the details of upstream regulation may differ among C. elegans,

D. melanogaster, and mammals, the regulation of programmed cell death in all systems

comes down to the activation of caspases. In general, especially in C. elegans and mammals,

a single conserved mechanism is used to directly regulate this process: an adapter protein
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forms a platform that can bind caspases and activate them. These platforms can be

assembled in different ways, but they all accomplish the same task: bringing pro-caspase

molecules close together such that they cleave and activate one another. The conservation of

the proteins and the fact that critical discoveries have been made in each system highlights

the importance of these parallel investigations. From future studies in each of these systems,

we will continue to identify the critical mechanisms for the regulation of apoptosis.

Ultimately, therapeutic interventions may be available to correct the negative consequences

that can result from the misregulation of this pathway.

In my thesis work, I have investigated the mechanisms of regulation of cell death in

C. elegans, building on the work described in this introduction. In the following chapters, I

describe some of the experiments I have performed. In Chapter 2, I present the

characterization of a regulator of ced-4 splicing isolated in a screen to identify genes that

function in programmed cell death. In Chapter 3, I discuss the identification of a

tissue-specific enhancer element in egl-1 and a novel transcription factor that may bind to

this element and activate egl-1 transcription in a specific subset of cells. In Chapter 4, I

describe my work characterizing a cytotoxic cell death process that is induced by mutations

in two genes and requires engulfment genes, but is distinct from programmed cell death.
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FIGURE LEGENDS

Figure 1. A molecular genetic pathway for the genes controlling programmed cell death in

C. elegans.
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The SR Protein Kinase spk-1 Regulates Programmed Cell Death in C. elegans

by Controlling the Alternative Splicing of ced-4 RNA
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SUMMARY

To identify additional genes involved in programmed cell death in C. elegans, we

performed a genetic screen to isolate mutations that cause an increase in the number of

programmed cell deaths. We screened for suppressors of the cell-death defect due to a partial

loss-of-function mutation in ced-4, which encodes an essential regulator of programmed cell

death that promotes death by activating the caspase CED-3. We identified one ced-4

suppressor, which had a mutation in the gene spk-1. The spk-1 gene encodes a protein that is

homologous to SR protein kinases, which are thought to regulate splicing. Previous work

suggests that ced-4 can be alternatively spliced and that the splice variants function

oppositely, with the longer transcript (ced-4L) inhibiting programmed cell death. spk-1

appears to promote cell survival by increasing the amount of the protective ced-4L splice

variant. We conclude that programmed cell death in C. elegans is regulated by an alternative

splicing event that is controlled by an SR protein kinase.
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INTRODUCTION

Multicellular organisms can eliminate cells by a process known as programmed cell

death or apoptosis. Apoptosis plays a fundamental role in development and in tissue

homeostasis and human health (FADEEL and ORRENIUS 2005; MEIER et al. 2000). Notably,

improper control of apoptosis is associated with disease. Defects in apoptosis that cause

either too much death or too little have been implicated in cancers, neurodegenerative

diseases, and autoimmune diseases (FADEEL and ORRENIUS 2005).

During the development of the C. elegans hermaphrodite, 1,090 somatic cells are

generated by an essentially invariant pattern of divisions (KIMBLE and HIRSH 1979; SULSTON

and HORVITZ 1977; SULSTON et al. 1983). Of these cells, 131 undergo programmed cell

death (SULSTON and HORVITZ 1977; SULSTON et al. 1983). At least 20 genes have been

identified that regulate either the pattern or the process of programmed cell death in

C. elegans (LETTRE and HENGARTNER 2006). The core pathway of programmed cell death in

C. elegans is composed of four genes: egl-1, ced-9, ced-4, and ced-3. The cloning of these

four genes defined a molecular pathway for programmed cell death later shown to be

conserved in vertebrates (CONRADT and HORVITZ 1998; HENGARTNER et al. 1992;

METZSTEIN et al. 1998; YUAN and HORVITZ 1992; YUAN et al. 1993).

CED-3 is a defining member of the caspase (cysteine aspartate-specific protease)

family (YUAN et al. 1993). The identification of ced-3 as encoding a protease led to the

discovery that caspases are required for many apoptotic cell deaths in mammals (DEGTEREV

et al. 2003). ced-4 encodes a protein similar to Apaf- 1 (apoptotic protease activating factor)

(YUAN and HORVITZ 1992; Zou et al. 1997), which facilitates CED-3 activation

(CHINNAIYAN et al. 1997; SESHAGIRI and MILLER 1997; WU et al. 1997; YANG et al. 1998).
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Cells are protected from programmed cell death by ced-9 (HENGARTNER et al. 1992), which

encodes a member of the Bcl-2 family of apoptotic regulators (HENGARTNER and HORVITZ

1994b). Human BCL-2 can block programmed cell death in C. elegans and can substitute for

ced-9, demonstrating a functional conservation (HENGARTNER and HORVITZ 1994b; VAUX et

al. 1992). Finally, egl-1 encodes a BH3-only protein (defined as a Bcl-2 family member

lacking obvious BHI, BH2, and BH4 domains) that negatively regulates CED-9 in dying

cells (CONRADT and HORVITZ 1998). Transcriptional control of egl-1 is likely to be the

major mechanism of the regulation of programmed cell death (CONRADT and HORVITZ 1998).

egl-1, ced-9, ced-4, and ced-3 act within dying cells to control all somatic programmed cell

deaths in C. elegans (CONRADT and HORVITZ 1998; YUAN and HORVITZ 1990);

loss-of-function mutations in egl-1, ced-4, or ced-3 or a gain-of-function mutation in ced-9

prevent essentially all somatic programmed cell deaths (CONRADT and HORVITZ 1998; ELLIS

and HORVITZ 1991; HENGARTNER et al. 1992).

ced-4 encodes two transcripts, ced-4L and ced-4S, that appear to have opposing

functions (SHAHAM and HORVITZ 1996). Whereas ced-4S (the predominant transcript)

promotes cell death, ced-4L protects cells from death. The observation that ced-4 has two

functionally different splice variants originated from the identification of a DNA element in

the ced-4 genomic locus that was not contained within the originally described ced-4 cDNA.

This element was highly conserved in two Caenorhabditis species, C. briggsae and C.

vulgaris, that are distant relatives of C. elegans (SHAHAM and HORVITZ 1996). This

conservation is significant because only the coding regions and key regulatory elements are

likely conserved between these Caenorhabditis species. Further studies confirmed that this

element was part of an alternative cDNA that encodes a protein that can protect cells against
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death. The function of CED-4L was determined by overexpressing this protein in C. elegans

and observing that, unlike CED-4S, CED-4L protects cells against programmed cell death

(SHAHAM and HORVITZ 1996). Recent structural work suggests that CED-4L prevents the

formation of the CED-4 tetramer, which is required for activation of CED-3 and the initiation

of programmed cell death (YAN et al. 2005).

Approximately 2,500 genes in C. elegans (about 13% of the genes currently

annotated in Wormbase (http://www.wormbase.org/)), are predicted to be alternatively

spliced (ZAHLER 2005). Splicing is a highly regulated process that removes intronic

fragments of RNA from newly transcribed pre-mRNA molecules. The spliceosome, which is

composed of' small nuclear ribonucleoprotein particles (snRNPs) and proteins, is the complex

responsible for splicing (NILSEN 2003). Two families of proteins that assist the spliceosome

in splice-site selection are the heteronuclear ribonucleoproteins (hnRNPs) and the

serine-arginine-rich proteins (SR proteins) (BLACK 2003). These proteins are thought to

function oppositely; SR proteins bind to exonic splicing enhancer elements and promote the

inclusion of exons, whereas hnRNPs bind to exonic splicing silencer elements and suppress

the inclusion of exons. The SR proteins are likely regulated by the phosphorylation of

serines in the SR domains, which are thought to regulate function by modifying

protein-protein interactions (SANFORD et al. 2005). SR proteins are required for splicing in

cellular extracts and might need to be phosphorylated to function (SANFORD et al. 2005). In

this study, we describe a role for an SR protein kinase in the alternative splicing of ced-4

RNA and the regulation of programmed cell death.
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RESULTS

A Screen for Genes that Function to Prevent Programmed Cell Death

The study of programmed cell death in C. elegans has primarily focused on isolating

two types of mutants: those with extra cells and those with either abnormal or persistent cell

corpses. To identify genes that protect cells from undergoing programmed cell death, we

screened for mutations that increase the number of programmed cell deaths. Specifically, we

performed a modifier screen for mutations that suppressed the cell-death defect that is

observed in animals with a loss-of-function mutation in ced-4. To assay cell death, we

examined the ventral nerve cord. During development, 13 neuroblasts -- W, and P1-P 12 --

together generate 10 cells that undergo programmed cell death (SULSTON and HORVITZ

1977). We used worms expressing the lin-11::gfp reporter nlsl06 to visualize a subset of

these deaths: the Pn.aap cells (the posterior daughter of the anterior daughter of the anterior

daughter of one of 12 P blast cells) (REDDIEN et al. 2001). In the ventral cord of wild-type

animals, six Pn.aap cells survive and express gfp, whereas the other six undergo programmed

cell death (the two anterior-most, Pl.aap and P2.aap, and the four posterior-most,

P9-P12.aap) (SULSTON and HORVITZ 1977). By contrast, in mutants defective in cell death,

such as animals with strong loss-of-function mutations in ced-3, five extra Pn.aap cells

survive and reliably express gfp, generating a total of eleven GFP-positive cells. The most

anterior cell, P 1.aap, does not always express gfp and is thus not scored in this assay

(REDDIEN et al. 2001). The survival of Pn.aap cells can be easily monitored in strains

carrying the lin-11 ::gfp reporter using a fluorescence-equipped dissecting microscope.

To facilitate the isolation of mutations with subtle effects on programmed cell death,

we screened for mutations that cause an increase in programmed cell death in a sensitized

- 69 -



genetic background. Worms containing a non-null allele of ced-4, such as n3158, are

partially defective in programmed cell death. The n3158 mutation is an early missense

mutation that changes serine 163 to phenylalanine (B. M. HERSH and H. R. HORVITZ,

personal communication). These animals on average have 4.9 extra GFP-positive Pn.aap

cells. Although n3158 thus strongly prevents the programmed cell deaths of the Pn.aap cells,

it is an allele of medium strength when assayed for survival of cells fated to die in the

anterior pharynx, an independent quantitative assay for programmed cell death

(HENGARTNER et al. 1992). ced-4(n3158) animals have an average of 6.0 extra cells in the

anterior pharynx, whereas animals carrying a null allele of ced-4 have an average of 12.8

extra cells (B. M. HERSH and H. R. HORVITZ, personal communication).

Using the lin-11::gfp reporter, we screened for suppressors of the partial

loss-of-function ced-4(n3158) mutant by looking for mutants with a reduced number of

GFP-positive Pn.aap cells (i.e., fewer than eleven) (Figure 1). The screen was performed

such that mutations in essential genes could be isolated, because mutations that increase

programmed cell death might not produce viable progeny. For example, ced-9, which is

known to protect against cell death, is an essential gene (HENGARTNER et al. 1992).

Specifically, we saved siblings of each screen isolate such that animals heterozygous for

mutations in an essential gene would be maintained. From a screen of 5,000 mutagenized

haploid genomes, one strong suppressor, n3418, was isolated. In addition to recessively

reducing the number of GFP-positive Pn.aap cells in the ced-4(n3158) background, this

mutation caused recessive sterility. The decrease in the number of GFP-positive cells in the

ced-4(n3158) n3418 double mutant was not a consequence of a defect in the generation of

the Pn.aap cells, since the GFP-positive cells were present in n3418; ced-3(null) animals
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(data not shown). This observation indicates that P2.aap and P9-P12.aap are generated

normally but are more likely to undergo programmed cell death in the ced-4(n3158) n3418

strain than in ced-4(n3158) animals. The ced-3 null allele failed to suppress the sterility

conferred by n3418, suggesting the sterility was not caused by excessive programmed cell

death (data not shown).

n3418 Is a Loss-of-Function Allele of spk-1, Which Encodes an SR Protein Kinase

Using a combination of visible phenotypic markers, deficiencies, and polymorphisms,

we mapped our suppressor mutation n3418 to a 90 kb region on linkage group III that

contains 24 genes (Figure 2A). We found that both a deletion allele of and injection of

dsRNA directed against one of theses genes, spk-1 (KUROYANAGI et al. 2000), caused a

sterility resembling that of the ced-4(n3158) suppressor n3418. We identified a mutation that

changes the codon for tryptophan 142 (TGG) to an opal stop codon (TGA) in spk-1 in n3418

mutant animals (Figure 2B). A deletion allele of spk-1, ok706, failed to complement the

sterility of n3418 (data not shown). Based on these observations, we concluded that the

sterility of n3418 was caused by the mutation in spk-1. To determine if loss of spk-1 function

also suppressed the defect in programmed cell death caused by ced-4(n3158), we tested the

effect of the spk-1(ok706A) deletion allele in ced-4(n3158) animals. spk-1(ok706A) caused

suppression of the cell-death defect in ced-4(n3158) animals to a similar extent as did

spk-1(n3418) (Table 1). Together, these results indicate that both the suppression of

ced-4(n3158) and the sterility are caused by n3418, a loss-of-function mutation in spk-1.

spk-1 encodes an SR protein kinase (Figure 2B). The SR protein kinase family

regulates alternative splicing by phosphorylating SR proteins, which are thought to be key
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regulators of splicing (BLACK 2003). In animals carrying only a loss-of-function allele of

spk-1, either n3418 or ok706A, the wild-type number of Pn.aap cells was observed (Table 1),

showing that loss of spk-1 does not cause ectopic Pn.aap programmed cell death in these

cells.

spk-1(n3418) Strongly Suppresses Partial Loss-of-Function Alleles of ced-4

To determine if the loss of spk-1 function specifically increased death in strains

homozygous for the allele ced-4(n3158), we tested the ability of spk-1(n3418) to suppress

additional alleles of ced-4 (Table 2). spk-1(n3418) also suppressed the cell-death defect of

animals carrying ced-4(n3141), which is a slightly weaker allele than ced-4(n3158), the allele

used in our screen. The allele n3141 is a missense mutation that changes arginine 53 to

lysine (B. M. HERSH and H. R. HORVITZ, personal communication). Thus, spk-1(n3418)

suppressed two partial loss-of-function alleles of ced-4. However, spk-1(n3418) did not

suppress ced-4 null alleles. Specifically, spk-1(n3418) failed to suppress either the strong

missense allele ced-4(n3040) or the early nonsense allele ced-4(nl 162), both of which cause

the complete survival of the Pn.aap cells and of all the cells that normally die in the anterior

pharynx (B. M. HERSH and H. R. HORVITZ, personal communication).

To determine if suppression by spk-1 was specific to the ced-4 gene, we tested the

ability of spk-.1(n3418) to suppress alleles of three other genes that function in the killing step

of programmed cell death. We assayed ced-3, ced-9, and egl-1 alleles that cause a cell-death

defect similar in strength to that caused by ced-4(n3158) and ced-4(n3141) in the Pn.aap

cells. We observed that spk-l(n3418) can weakly suppress the cell-death defect observed in

strains homozygous for alleles of ced-9, or ced-3, but not to the same extent as observed in
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ced-4 strains (Table 3). Even the ced-3 allele n2427, which show the strongest interaction

with spk-1(n3418) of the non-ced-4 alleles, is only moderately suppressed by spk-1. Thus,

spk-1(n3418) most strongly modifies the cell-death defect of partial loss-of-function alleles

of ced-4.

spk-1 Regulates the Alternative Splicing of ced-4

Since spk-1 most strongly suppresses ced-4, we hypothesized that spk-1 may have a

specific interaction with ced-4. This hypothesis is attractive given that SR protein kinases

are thought to regulate alternative splicing and ced-4 is the only cell death-gene known to be

regulated by alternative splicing in C. elegans (BLACK 2003; SHAHAM and HORVITZ 1996).

ced-4 encodes two different transcripts; the shorter ced-4 splice product, ced-4S, is thought to

function in promoting programmed cell death, whereas the longer product, ced-4L, is thought

to inhibit programmed cell death (SHAHAM and HORVITZ 1996).

To test directly if spk-1 (ok706A) modifies the splicing of ced-4, we performed

semi-quantitative RT-PCR of ced-4 using RNA from wild-type and homozygous

spk-1(ok706A) animals. Specifically, a primer set that amplifies both the long and short

splice forms of ced-4 was used to detect ced-4 transcripts. We observed that animals lacking

spk-1 showed a decreased amount of the ced-4L product (Figure 3). Given the anti-apoptotic

role of CED-4L, the loss of spk-1 should lead to an increased level of cell death through the

loss of the protective ced-4L transcript, as we observed. This is consistent with the

observation that animals lacking spk-1 have increased death in animals containing partial

loss-of-function alleles of ced-4.
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DISCUSSION

From a genetic screen to identify additional regulators of programmed cell death in C.

elegans, we isolated a mutation in the splicing regulator spk-1, which encodes an SR protein

kinase. Loss-of-function alleles of spk-1 increase the amount of death that occurs in strains

containing partial loss-of-function alleles of ced-4 and might also weakly increase death in

animals with mutations in ced-3 or ced-9. The increase in death correlates with a decrease in

expression of the ced-4L transcript in spk-1 null animals. Previous analysis of the function of

ced-4L relied largely on overexpression studies, whereas the data presented in this chapter

suggest that the alteration of the endogenous levels of ced-4L can directly alter the amount of

programmed cell death. We conclude that, in C. elegans, an SR protein kinase regulates the

splicing of ced-4. We propose that the regulation of ced-4 splicing plays a role in the control

of programmed cell death.

Given our genetic and molecular data, we suggest a model in which SPK-1 normally

promotes the generation of ced-4L transcripts that protect cells from dying (Figure 4). The

loss of spk-1 decreases the level of ced-4L, thereby increasing the likelihood that cells will

die. We suggest that SPK-1 controls the splicing of the fourth exon in ced-4 by regulating

the phosphorylation of an SR protein.

Although there is increased death in the spk-l(lj ced-4(l) animals, we have not

observed ectopic deaths in spk-1 null animals in otherwise wild-type backgrounds. One

possible explanation is that the regulation of ced-4 splicing is a minor determinant of whether

cells live or die. The pathway for programmed cell death in C. elegans generally has been

described as linear, with EGL- 1 promoting death by inhibiting the function of CED-9

(CONRADT and HORVITZ 1998). In the absence of EGL-1, CED-9 prevents CED-4 activation
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of the caspase CED-3 (METZSTEIN et al. 1998). It has been observed, however, that in

ced-9(null); ced-3 partial loss-of-function animals, cell death occurs in a relatively normal

pattern (HENGARTNER and HORVITZ 1994a). A linear model in which EGL-1 functions

through CED-9 would predict that in the absence of CED-9, cell death dependent on EGL-1

expression would not occur normally. However, this result shows that there must be

additional mechanisms that regulate programmed cell death independently of egl-1. Perhaps

the alternative splicing of ced-4 is one such mechanism that contributes to the decision of

which cells live or die, but in a wild-type animal, this contribution cannot be detected. In

sensitized cells, such as those that usually die but survive because of a partial loss of ced-4

function, mechanisms that can influence whether cells live or die are exposed. For example,

the promotion of cell killing by genes involved in cell-corpse engulfment is best observed in

a sensitized background containing a partial loss-of-function allele of ced-3 (REDDIEN and

HORVITZ 2004).

spk-1 is likely required for embryonic development in C. elegans, given that RNAi

with a high concentration of spk-1 dsRNA causes embryonic lethality (KUROYANAGI et al.

2000). If so, why are spk-1 null homozygotes viable and sterile? We suggest that these

animals are sustained by the SPK-1 provided by their heterozygous mothers. The maternal

stores of SPK- 1 might be depleted by late development when the deaths of the Pn.aap cells

occur. Of the 131 programmed cell deaths, 113 occur before hatching; of the remaining 18,

many occur before those of the Pn.aap cells, which die at the end of the first or beginning of

the second larval stages (SULSTON and HORVITZ 1977; SULSTON et al. 1983). Thus, it may

be that the effect that spk-1 has on increasing death in ced-4 loss-of-function animals would
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not be observed if we assayed the cell death of most other cells, which die before hatching

and possibly before the maternal stores of SPK-1 are depleted.

We believe that neither the sterility caused by spk-1 alleles nor the lethality caused by

spk-1 dsRNA is a consequence of inappropriately increased cell death, as spk-1; ced-3(null)

doubly mutant animals, in which no cell death has been observed, are still sterile. Thus,

spk- 1 seems to be essential for additional processes. SPK- 1 is the only protein found in C

elegans that is highly similar to mammalian SR protein kinases. SPK- 1 can phosphorylate

the SR domain of a C elegans SR protein in vitro (KUROYANAGI et al. 2000). There are

eight genes that might encode SR proteins in C elegans. Treatment with dsRNA directed

against individual SR genes does not result in an abnormal phenotype, except for rsp-3 (SR

protein), which causes embryonic lethality (KAWANO et al. 2000; LONGMAN et al. 2000;

LONGMAN et al. 2001). However, treatment with dsRNA directed against specific

combinations of SR genes results in sick or dead worms (KAWANO et al. 2000; LONGMAN et

al. 2000; LONGMAN et al. 2001).

To date, spk-1 and the Drosophila kinase Doa are the only genetically characterized

SR protein kinase genes for which mutations have been isolated and shown to affect levels of

different splice isoforms of target transcripts. Our work shows that, in C elegans, the SR

protein kinase SPK- 1 controls the alternative splicing of ced-4. Previous work in Drosophila

melanogaster has shown that the Clk/Sty protein kinase Doa controls the alternative splicing

of dsx (doublesex), which regulates sex determination (Du et al. 1998). Clk/Sty kinases are

distinct from SR protein kinases like SPK-1, but they do also phosphorylate SR proteins.

Reducing the function of Doa alters the splicing of dsx such that both male and

female-specific dsx mRNAs are produced in female flies (Du et al. 1998). This
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misregulation of splicing correlates with a reduction in the level of phosphorylation of RBP 1,

an SR protein that likely functions in sex determination (DU et al. 1998).

ced-4 is the only gene in C. elegans thought to produce alternative splice variants

with opposing roles in programmed cell death (SHAHAM and HORVITZ 1996). In mammals,

however, alternative splice forms have been described for many regulators of apoptosis,

although the functional significance of these isoforms remains largely unknown (SCHWERK

and SCHULZE-OSTHOFF 2005). For example, the gene caspase-2/Ich-1, a homolog of the C.

elegans gene ced-3, produces functionally distinct alternative splice variants (WANG et al.

1994). The long caspase-2 transcript promotes apoptosis, whereas the short transcript

protects cells from death. Like that of C. elegans ced-4, the alternative splicing of

mammalian caspase-2 is influenced by SR proteins and/or SR protein kinases. Studies in

tissue culture of a caspase-2 minigene, a plasmid construct consisting of a small portion of

the genomic locus surrounding the introns of interest, suggest that overexpression of the SR

proteins SC35 and ASF/SF2 promotes the skipping of a specific exon and the generation of

the proapoptotic isoform caspase-2L (JIANG et al. 1998). Conversely, overexpression of

hnRNP (heteronuclear ribonucleoprotein) Al promotes inclusion of this exon and the

generation of a transcript consistent with the anti-apoptotic caspase-2S isoform (JIANG et al.

1998).

Whereas these studies of caspase-2 do present evidence that SR proteins regulate the

alternative splicing of programmed cell death genes, they contradict the established roles of

SR proteins and hnRNPs in the promotion of exonic inclusion and exclusion, respectively.

As described in the introduction, SR proteins normally promote inclusion of exons, whereas

hnRNPs play the opposite role. One explanation for this discrepancy might be that SR
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proteins are not properly regulated by phosphorylation when they are overexpressed, as they

were in the caspase-2 studies. The genetic studies of Doa in Drosophila suggest that

phosphorylated SR proteins promote the inclusion of exons (Du et al. 1998). If we assume

that SPK-1 phosphorylates SR proteins in C. elegans in vivo as it does in vitro (KUROYANAGI

et al. 2000), then our results are consistent with the Drosophila findings that suggest the

phosphorylation of SR proteins promotes the inclusion of exons. When spk-1 is deleted from

C. elegans, the incorporation of the ced-4L exon decreases, just as, in Drosophila when Doa

function is reduced, the levels of incorporation of the female-specific exon of dsx decrease.

Although caspase-2 is the only mammalian cell death gene whose alternative splicing

has been shown to be influenced by SR proteins, certainly many other mammalian genes

involved in programmed cell death are alternatively spliced. For example bcl-x, which

encodes a protein homologous to CED-9, is generated from a long splice isoform, Bcl-xL,

which inhibits apoptosis and contains all four of the BH domains found in Bcl-2 (BOISE et al.

1993). The protein generated from the shorter isoform, Bcl-xs, promotes apoptosis and

contains only the BH3 and BH4 domains (BOISE et al. 1993). Consistent with their proposed

functions, Bcl-xs protein and mRNA are widely expressed and found in tissues that contain

cells undergoing apoptosis (BOISE et al. 1993; KRAJEWSKI et al. 1994).

Although many alternative splice forms of mammalian genes such as bcl-x and

caspase-2 that function in apoptosis have been described, little is known about the functions

of the alternative splice forms and the mechanisms that regulate the splice site selection of

these genes (SCHWERK and SCHULZE-OSTHOFF 2005). Our studies in C. elegans establish a

robust assay in a genetically tractable system for further investigations into how alternative
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splicing is regulated in general, and how in particular alternative splicing interfaces with

programmed cell death.
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FUTURE DIRECTIONS

The most important question that arises from the identification of SPK- I1 as a

modifier of ced-4 RNA splicing is how it functions. Previous work suggests that SR protein

kinases regulate splicing by phosphorylating SR proteins. I am currently in the process of

obtaining deletion alleles for each of the eight SR proteins found in the C. elegans genome.

Each of these deletion alleles will be tested for the ability to suppress the cell-death defect of

ced-4(n3158) animals. Determining genetically if a specific SR protein is responsible for

regulating splicing of ced-4 would be important.

Although isolation of large amounts of RNA from spk-1(A) animals remains a

technical challenge because loss-of-function alleles of spk-1 confer sterility, I would like to

confirm the observations made by RT-PCR using an assay that does not depend upon PCR

amplification, such as RNase protection. Additionally, I have generated a CED-4L-specific

antibody that might allow me to directly determine if spk-1 alleles result in a corresponding

change of the amount of CED-4L protein.

I would also like to assay the role spk-1 plays in cell deaths other than those of the

specific cells I assayed in this work. Since maternal rescue may preclude the analysis of

early developmental deaths, late developmental deaths, such as those that occur in the male

tail, might be the best cells to assay.

Finally, it would be interesting to modify the ced-4 genomic locus by homolgous

recombination to make targeted changes to test the function of various portions of the

genomic locus. Although no robust system is currently available for homologous

recombination in C. elegans, when it is, these critical experiments need to be performed. I

have spent several months attempting to modify the genomic locus without success.
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EXPERIMENTAL PROCEDURES

Strains and General Techniques

Strains were cultured as described by BRENNER (1974) and grown at 200 C. The

Bristol strain N2 was used as the wild-type strain, except in multifactor mapping experiments

that used the polymorphic wild-type strain CB4856 (WICKS et al. 2001). The mutations used

are listed below, and are description by RIDDLE (1997) unless otherwise indicated:

LGIII: ced-4(n3158) (S. CAMERON and H. R. HORVITZ, unpublished), ced-4(n3141) (G.

M. STANFIELD and H. R. HORVITZ, unpublished), ced-4(n1162), ced-4(n3040) (E. K.

SPELIOTES and H. R. HORVITZ, unpublished), spk-1(n3418) (this study), spk-1(ok706) (C.

elegans Gene Knockout Consortium), lon-1(e185), ced-9(n3377) (P. W. REDDIEN and H.

R. HORVITZ, unpublished)

LGIV: ced-3(n717), ced-3(n2427, n2436) (HENGARTNER and HORVITZ 1994a)

LGV: egl-1(n3331) (REDDIEN et al. 2001), egl-1(n4045) (B. D. GALVIN and H. R.

HORVITZ, unpublished), nIs96(lin-ll1::gfp) (REDDIEN et al. 2001)

LGX: nls 06(lin-11::gfp) (REDDIEN et al. 2001)

The translocation hT2 containing the integrated transgene qls48 was also used

(WANG and KIMBLE 2001).

Screen for Suppressors of ced-4(n3158)

We mutagenized L4 ced-4(n3158); nls106 hermaphrodites with ethyl

methanesulfonate (EMS) as described by BRENNER (1974). After allowing the animals to

recover, Pos were transferred one per 5 cm plate. After 3-5 days, 12 F , L4 hermaphrodites

were individually transferred to 5 cm plates, and F2 animals on these plates were
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subsequently screened for animals with the wild-type number of GFP-positive Pn.aap cells.

We screened the progeny of 2500 F1 animals. Six siblings were picked from any plate on

which a suppressor was isolated to ensure that heterozygous siblings were maintained for

isolates that were inviable.

Quantitation of Cell Death in the VC-like neurons and the Anterior Pharynx

Pn.aap cells expressing GFP were visualized using a dissecting microscope equipped

with fluorescence optics (M2BIO, Kramer Scientific, Valley Cottage, NY). Animals late in

the fourth larval stage were picked using a standard dissecting microscope and transferred to

the fluorescence-equipped dissecting microscope for counting of their surviving VC-like

neurons.

Cloning of spk-1

Using standard deficiency and mapping techniques, we placed the n3418 mutation

between a polymorphism on cosmid F54C8 (snp_F54C8[1]) and a polymorphism on

ZK1098 (snp ZK1098[1]) that exists between C. elegans strains N2 and CB4856.

Determination of Mutant Allele Sequences

We used PCR-amplified regions of genomic DNA to determine mutant sequences.

For spk-1(n3418) we determined the sequence of all exons and splice junctions. Sequences

were determined using an ABI Prism 3100 Genetic Analyzer.

Semi-Quantitative RT-PCR Analysis of ced-4 Transcripts
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Sixty-six 9-cm plates of spk-1(ok706A)/hT2[qls48] animals were washed into 1 L of

liquid growth media. The culture was grown until saturated with gravid adults and harvested

prior to starvation or the appearance of dauer larvae. Worms were bleached to collect

embryos. The embryos were allowed to hatch for 12 hours in 500 mL of liquid growth media

and sorted for non-GFP-positive worms for 4 hours using a COPAS BioSort instrument

(Union Biometrica, Holliston, MA) according to manufacturer's instructions. Worms were

collected in batches of 50,000 and concentrated by centrifugation. The young larva were

flash frozen in liquid nitrogen and stored at -800 C in Trizol (Invitrogen, Carlsbad, CA).

The same procedure was performed on the N2 control, strain except the 1 liter culture was

started from six 9 cm plates. RNA was isolated from the animals as previously described

(PORTMAN 2006), except smaller volumes were used. The purified RNA was DNase treated

using amplification grade Deoxyribonuclease I (Invitrogen, Carlsbad, CA) according to the

manufacturer's instructions. RT reactions were performed with random hexamers according

to the manufacturer's instructions for use with SuperScript III First strand Synthesis System

for RT-PCR (Invitrogen, Carlsbad, CA). Dilutions of RT-reaction were performed to

establish a linear range for semi-quantitative PCR reactions. The sequences of the ced-4

primers are 5'-ACCTTGCTGATTTCCTCGAA-3' and

5'-AATGAAGTCGGTGATCGAATG-3', and for the loading control ama-1 (which encodes

the large subunit of RNA polymerase II) they are 5'-GATCAGGCGACCTATTTGGA-3' and

5'-TGGAAGAAGAATTCCGATGG-3'.
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FIGURE LEGENDS

Figure 1: Screen to Identify Genes that Protect Against Programmed Cell Death

After mutagenizing ced-4(n3158); nIsl06 animals with EMS, we used fluorescence

microscopy to examine F2 individuals for a decreased number of GFP-positive cells.

Figure 2: Molecular Identification of the ced-4(n3158) Suppressor spk-1(n3418)

(A) Schematic representation of the physical map of the spk-1(n3418) region and the gene

structure of spk-1 showing the location of the allele n3418 and the deletion allele ok706A.

The interval to which spk-1(n3418) was mapped contained 24 genes. RNAi against one

gene, B0464.5, in the interval caused a sterility that resembled that of spk-1(n3418)

(KUROYANAGI et al. 2000). Sequence analysis and genetic tests with the deletion allele

spk-1(ok706) showed that this identified nonsense mutation caused the observed phenotype.

(B) SPK-1 is similar to mammalian SR Protein Kinases. Human SRPK1 and SRPK2 are

compared to SPK-1. The numbers indicate amino acid positions. The red asterisk indicates

the location of the n3418 mutation, which changes tryptophan 142 to a opal stop codon.

Figure 3: spk-1 Promotes Generation of the Protective ced-4L Transcript

This agarose gel stained with ethidium bromide shows products generated by PCR using

primers flanking the first three introns of ced-4 and the sixth intron of the control ama-1 from

wild-type and spk-1(ok706A) RNA, labeled + and A respectively at the bottom of the gel (see

Experimental Procedures for details). The ama-1 band in the spk-1(ok706A) is smeared due

to an impurity in the gel. 1 kb Plus DNA Ladder (Invitrogen, Carlsbad, CA) was run in the

first and sixth lanes and the 200, 300, 400, and 500 base-pair bands are labeled.
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Figure 4: Model for the Regulation of ced-4 RNA Splicing and Programmed Cell Death

by SPK-1

(A) In wild-type animals SPK- 1 promotes the generation of the protective ced-4L

alternative splice variant, which protects against programmed cell death. Loss of SPK- 1

decreases the production of ced-4L, thereby decreasing protection against programmed cell

death.

(B) SPK-1 might promote the use of the ced-4L splice site in the ced-4 pre-mRNA by

phosphorylating an SR protein.
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Table 1. Loss-of-function Alleles of spk-1 Suppress the
Survival of Extra Pn.aap Cells in ced-4(n3158) Animals

No. extra
Genotypea Pn.aap cells ± SE (n)

Wild type 0 (109)

ced-4(n3158) 4.9 ± 0.04 (50)

ced-4(n3158) spk-1(n3418) 2.0 + 0.1 (71)
ced-4(n3158) spk-l(ok706A) 1.3 ± 0.1 (57)

spk-1(n3418) 0 (56)
spk-l(ok706A) 0 (37)

The number of extra Pn.aap cells were counted as
described in Experimental Procedures. Because spk-
1(n3418) and spk-l(ok706A) cause recessive sterility,
strains containing these alleles were derived from
heterozygous parents; see Experimental Procedures. n,
number of animals.
a All strains are homozygous for nls106, an integrated lin-
11::gfp reporter (REDDIEN et al. 2001).
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Table 2. spk-1(n3418) Suppresses Only the Cell-death Defect of Partial Loss-of-
function Alleles of ced-4

No. extra cells in anterior No. extra Pn.aap
Genotypea pharynx ± SE (n) cells ± SE (n)

ced-4(n3141) 3.0 ± 0.4 (>15)c 4.6 ± 0.1 (50)

ced-4(n3141) spk-1(n3418)b  ND 1.2 - 0.1 (55)

ced-4(n3158) 6.0 ± 0.7 (>15Yc 4.9 ± 0.04 (50)

ced-4(n3158) spk-l(n3418) ND 2.0 ± 0.1 (71)

ced-4(n3040) 11.5 ± 0.4 (>15)c  5.0 ± 0 (52)

ced-4(n3040) spk-1(n3418)b  ND 5.0 - 0 (50)

ced-4(n1162) 11.8 ± 0.2 (>15)c 4.9 ± 0.03 (50)
ced-4(n1162) spk-1(n3418)b ND 4.9 ± 0.04 (58)

The number of extra Pn.aap cells and number of extra cells in anterior pharynx were
counted as described in Experimental Procedures. Because spk-1(n3418) and
spk-1 (ok706A) cause recessive sterility, strains containing these alleles were derived
from heterozygous parents; see Experimental Procedures. n, number of animals.
ND, not determined.
" All strains used to count extra Pn.aap cells are homozygous for nlsl06, an
integrated lin-11::gfp reporter (REDDIEN et al. 2001).
b spk-1(n3418) was cis-marked with lon-1(e185) in each of these strains to facilitate
identification of homozygous animals.
c These data were provided by BRAD HERSH and H. R. H. (unpublished
observations).
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Table 3. spk-J(n3418) Weakly Suppresses the
Survival of Extra Pn.aap Cells of Partial Loss-of-
function Alleles of Some Additional Ced Genes

No. extra Pn.aap
Genotypea cells + SE (n)

ced-3(n242.7) 3.4 ± 0.2 (50)
spk-1(n3418); ced-3(n2427)b  1.2 ± 0.1 (60)

ced-3(n2436) 4.8 ± 0.1 (50)
spk-1(n3418); ced-3(n2436)b 4.0 + 0.1 (52)

ced-9(n3377) 2.3 ± 0.1 (50)
spk-1(n3418) ced-9(n3377)b 1.6 ± 0.1 (67)

egl-1(n3331) 4.7 ± 0.1 (50)
spk-1(n3418); egl-l(n3331)b 4.5 ± 0.1 (48)

egl-1(n4045) 3.8 ± 0.1 (50)
spk-1(n3418); egl-l(n4045)b 3.6 ± 0.1 (60)

The number of extra Pn.aap cells were counted as
described in Experimental Procedures. Because
spk-1(03418) causes recessive sterility, strains
containing this allele were derived from
heterozygous parents; see Experimental
Procedures. n, number of animals.
a All strains are homozygous for nlsl06, an
integrated lin-11::gfp reporter, except those
containing egl-1(n3331), which are homozygous
for the related reporter n1s96 (REDDIEN et al.
b spk-J(n3418) was cis-marked with lon-1(e185)
in each of these strains to facilitate identification
of homozygous animals.
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SUMMARY

The BH3-only killer gene egl-1 is the most upstream gene that functions in the

execution phase of programmed cell death in C. elegans and is thought to be expressed only

in cells that die. The mechanisms by which egl-1 gene expression is regulated are known for

only a small number of cells that die, including the HSNs, the NSM sister cells, and

P 11.aaap, a neuron located in the posterior ventral nerve cord. From a screen to identify

mutants defective in programmed cell death, we isolated a mutation in egl-1 that lies in an

evolutionarily conserved DNA element four kilobases downstream of the coding sequence.

Both this point mutation and a deletion allele that removes this conserved element prevent

the deaths of the VC-like ventral cord neurons that normally die in hermaphrodites. We

performed a yeast one-hybrid screen to identify proteins capable of binding to this conserved

DNA element. We identified three candidate proteins that could strongly interact with a

reporter construct containing the wild-type enhancer element; two of these three candidates

failed to activate a reporter containing a mutant enhancer element. Analysis of one of these

two candidates, Y38C9A. 1, suggests that it may function to regulate the deaths of the VC-like

neurons in vivo: both dsRNA directed against this gene and two deletion alleles of this gene

can partially prevent the deaths of the VC-like neurons. Y38C9A. 1 encodes a novel protein

with no characterized homologs or obvious DNA binding domains. Thus, we have identified

both a new regulatory site in egl-1 that controls expression in specific neuronal cells and a

novel protein that may bind and activate transcription at this site.
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INTRODUCTION

Programmed cell death, or apoptosis, is the highly regulated process of eliminating

cells that are either unnecessary or deleterious. Apoptosis is essential for the proper

development and health of most animals. The elimination of a wide variety of cells,

including self-reactive immune cells or fibroblasts with DNA damage, prevents the survival

of potentially dangerous cells. The misregulation of apoptosis contributes to numerous

disease processes, ranging from cancer (associated with decreased apoptosis) to forms of

neurodegeneration (associated with increased apoptosis) (FADEEL and ORRENIUS 2005).

During the development of the C. elegans hermaphrodite, 1,090 cells are generated,

131 of which are eliminated by programmed cell death (KIMBLE and HIRSH 1979; SULSTON

and HORVITZ 1977; SULSTON et al. 1983). Many genes have been identified in C. elegans

that function in this process of programmed cell death (LETTRE and HENGARTNER 2006).

Each of these genes can be placed into one of four steps: specification, by which cells

become fated to undergo programmed cell death; execution of the death process; engulfment

of the dying cell by neighboring cells; and the degradation of the dead cell within the

engulfing cell. The conservation of this pathway is highlighted by the fact that related

proteins play similar roles in apoptosis in all animals.

The four C. elegans genes that function in the execution step in all somatic

programmed cell deaths are egl-1 (egl, egg laying defective), ced-9 (ced, cell death

defective), ced-4, and ced-3. egl-1, which encodes a BH3-only (Bcl-2 homology region 3

protein, is thought of as the master regulator of programmed cell death, as it is likely to be

expressed only in cells that die and is the most upstream gene that functions in the death of

all somatic cells (CONRADT and HORVITZ 1998). BH3-only proteins are also key
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pro-apoptotic proteins in mammals (WILLIS and ADAMS 2005). EGL-1 inhibits the

anti-apoptotic function of the Bcl-2 homolog CED-9 (CONRADT and HORVITZ 1998), which

functions to sequester CED-4 (the C. elegans Apaf- 1 ortholog) to mitochondria (CHEN et al.

2000). Binding of EGL-1 to CED-9 liberates CED-4 (CHEN et al. 2000; DEL PESO et al.

2000; DEL PESO et al. 1998; YAN et al. 2004), which can then function to activate the caspase

(cysteine aspartate-specific protease) CED-3 (CHINNAIYAN et al. 1997; SESHAGIRI and

MILLER 1997; WU et al. 1997; YANG et al. 1998). The autoproteolytic activation of CED-3,

the most downstream player in the execution step, provides the critical activity required for

all programmed cell deaths to occur. Elimination of egl-1, ced-4, or ced-3 function, or a

gain-of-function mutation in ced-9, prevents all somatic programmed cell death (CONRADT

and HORVITZ 1998; ELLIS and HORVITZ 1986; HENGARTNER et al. 1992).

The current model is that transcriptional regulation of egl-1 is central to the control of

individual cell deaths; that is, cells in which egl-1 is transcribed die and cells in which egl-1

is not transcribed survive. We understand the transcriptional regulation of egl-1 for only a

small number of the 152 somatic cells that die either in hermaphrodite or male development.

For the two hermaphrodite-specific neurons (HSNs), which control egg laying in the

hermaphrodite and die in the male, the sex-specific repression of egl-1 transcription has been

described. In the HSNs, TRA-1, which is the most downstream gene product in the sex

determination pathway and is specifically active in hermaphrodites, binds to a regulatory

element of egl-1 and prevents its transcription (CONRADT and HORVITZ 1999). In males,

which lack TRA-1 activity, egl-1 transcription in the HSNs is not repressed, and the HSNs

die. In hermaphrodites that contain a mutation disrupting the TRA- binding site that

regulates egl-1 expression in the HSNs, the HSNs inappropriately die (CONRADT and
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HORVITZ 1999). Given that TRA-1 acts as a repressor of egl-1 expression in the HSNs, the

question of what activates egl-1 expression in these cells remains. EOR-1, a putative

transcription factor containing zinc finger domains, and EOR-2, a novel conserved protein,

may function together to promote the death of the HSNs; however, these proteins have not

yet been shown to directly regulate egl-1 transcription (HOEPPNER et al. 2004).

The mechanism of the regulation of egl-1 has also been described for the NSM sister

neurons, which are two pharyngeal neurons that die in wild-type animals. The identification

of gain-of-function mutations in ces-1 helped to define egl-1 regulation in these cells (ELLIS

and HORVITZ 1991). CES-1 is a member of the Snail/Slug family of zinc finger transcription

factors (METZSTEIN and HORVITZ 1999). The egl-1 genomic locus contains a site to which

CES- 1 can bind; a mutation of this site that specifically disrupts CES- 1 binding blocks the

ability of overexpressed CES-1 to protect the NSM sister neurons from death (THELLMANN et

al. 2003). This site overlaps with a binding site for two basic helix-loop-helix (bHLH)

transcription factors, HLH-2 and HLH-3, which promote egl-1 transcription in the NSM

sisters (THELLMANN et al. 2003). The death decision of the NSM sister neurons is thought to

be made by the regulation of the two opposing activities of CES-1 on the one hand and

HLH-2 and HLH-3 on the other.

The mechanism of activation of egl-1 transcription in another dying cell has also been

studied. Analysis of transgenic animals and biochemical assays suggest that the proteins

encoded by the HOX genes ceh-20 and mab-5 directly bind to elements controlling egl-1

expression and activate egl-1 transcription, thereby regulating the death of P 11.aaap, a

posteriorly located cell in the ventral nerve cord (Liu et al. 2006). This work suggests that

HOX genes, which are important developmental genes that regulate body morphology and
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cell fate, can directly regulate cell death by binding to sites within the egl-1 genomic locus

and control egl-1 transcription.

Given the prominent role apoptosis plays in many disease processes, proteins that

bind to and regulate egl-1 expression are good candidates to possess homologs involved in

disease processes. For example, this link with disease has already been established for the

homologs of the proteins that regulate the death of the NSM sister neurons. In addition to

mutations in ces-1, mutations in ces-2 were identified in the genetic screens for mutations

that prevent this death. Gain-of-function mutations in ces-1 and loss-of-function mutations

in ces-2 prevent NSM sister neurons from normally undergoing programmed cell death

(ELLIS and HORVITZ 1991; METZSTEIN et al. 1996). Based on these studies of ces-1 and

ces-2, the mammalian homologs of CES- 1 and CES-2 were shown to function in regulate

apoptosis in hematopoietic and lymphoid cells. CES-2 is similar to the proto-oncogene HLF

(hepatic leukemia factor), a transcriptional repressor (METZSTEIN et al. 1996). The

oncogenic form of this gene is the result of the chromosomal translocation t(17;19), which

fuses the DNA binding domain of HLF to the transactivation domain of E2A (HUNGER et al.

1992; INABA et al. 1992). This chimeric protein binds to and causes overexpression of the

anti-apoptotic CES- 1 homologue SLUG, which can prevent the death of the leukemic pro-B

cells (INUKAI et al. 1999). Recent work suggests that SLUG may directly prevent the

expression of a BH3-only gene, a function highly similar to the function of CES- 1 in

repressing egl-1 expression in the NSM sister neurons of C. elegans (Wu et al. 2005).

In mammalian systems, the transcriptional regulation of genes that encode BH3-only

proteins is one of the major modes by which apoptosis is regulated. Numerous BH3-only

proteins are found in mammalian genomes, including Bim, Bad, Bid, Bik, Bmf, PUMA,
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Noxa, and Hrk (WILLIS and ADAMS 2005). Redundancy has complicated the genetic analysis

of these genes, but some, such as PUMA (p53 upregulated modulator of apoptosis), which is

directly regulated by p53, have well-understood roles as transcriptionally-regulated

regulators of apoptosis. The transcription factor p53 is a critical tumor suppressor gene that

is often mutated in cancers and is an important regulator of apoptosis (HOFSETH et al. 2004).

In its first intron, PUMA has a p53 binding site, which is required for its radiation-induced

transcriptional activation by p53 (Yu et al. 2001). p53 regulation of PUMA appears to be

physiologically relevant, as PUMA-knockout mice closely resemble p53-knockout mice with

respect to apoptosis. Both knockout mice are similarly impaired for apoptosis induced by

y-irradiation in thymocytes, oncogenes in MEFs, and DNA damage in neurons, suggesting

that PUMA is one of the main transcriptional targets of p53 in the induction of apoptosis

(JEFFERS et al. 2003; VILLUNGER et al. 2003).

Given the importance of BH3-only proteins in regulating apoptosis, we sought to

understand the regulation of egl-1 transcription in a subset of cells whose decision to die was

not previously understood. In this work, we identified a conserved enhancer element in egl-1

that controls the death of specific cells in the ventral cord. Using a yeast one-hybrid screen,

we identified the protein Y38C9A. 1, which binds to this element and may directly regulate

the transcription of egl-1 in these cells in vivo. Deletions of either the egl-1 non-coding

element or Y38C9A. I each promote survival in the same cells. Y38C9A. I1 may encode a

novel DNA-binding protein, as it has no characterized homologs or recognizable domains

from any previously identified transcription factors.
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RESULTS

Identification of a Mutation in an Evolutionarily Conserved DNA Element in egl-1

We performed a screen seeking mutants defective in programmed cell death in C.

elegans by screening for enhancers of the cell-death defect of animals containing the mutation

n2427 (HENGARTNER and HORVITZ 1994), a weak loss-of-function allele of the caspase gene

ced-3. To assess the amount of cell death, we used a modified lin-11::gfp reporter that is

expressed in neurons of the Pn.aap lineage in the ventral cord (REDDIEN and HORVITZ 2004).

In the C. elegans ventral nerve cord of the hermaphrodite, twelve cells are generated in the

lineal position Pn.aap (the posterior daughter of the anterior daughter of the anterior daughter

of one of twelve P blast cells); six of those twelve (the two anterior-most, Pl.aap and P2.aap,

and the four posterior-most, P9-P12.aap) die by programmed cell death (Figure lA)

(SULSTON and HORVITZ 1977). The six Pn.aap cells that survive differentiate into class VC

motor neurons, some of which innervate the vulval muscles of the adult hermaphrodite. The

modified lin-ll::gfp reporter nls106 expresses in Pn.aap cells, including Pn.aap cells that are

normally fated to die but whose deaths have been prevented by mutations blocking

programmed cell death (REDDIEN et al. 2001). These cells that usually die but whose death is

prevented will be called VC-like neurons in this chapter, because they closely resemble the

VC motor neurons that survive in wild-type animals (WHITE et al. 1991). Five of these

VC-like neurons can be reliably scored by assaying expression of lin-ll::gfp (REDDIEN et al.

2001). This reporter is extremely useful in studying programmed cell death, because it

provides a measure of programmed cell death that is both quantifiable at the single-animal

level and easily scored using a dissecting microscope equipped with fluorescence optics. In
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our screen, we isolated lin-ll::gfp animals possessing an increased number of GFP-positive

cells, reflecting a possible defect in programmed cell death.

One mutation we identified in our screen was designated n4045. This mutation

promoted survival of GFP-positive VC-like neurons that normally undergo programmed cell

death (Table 1). This effect on VC-like neuron survival was not dependent on a defect in

ced-3 killing activity, as n4045 strongly protected these cells when it had been separated

from the ced-3(n2427) mutation used in the screen (Figure 1, Table 1). We mapped n4045 to

an interval containing the known regulator of programmed cell death egl-1. n4045 failed to

complement the Ced phenotype of a loss-of-function allele of egl-l(nl084 n3082) in the

VC-like neurons (data not shown). A single mutation was found in the strain containing this

allele, located approximately four kilobases downstream of the coding region of egl-1

(Figure 2). This mutation lies in a small region that is highly conserved in sequence and

location in the genomes of the two Caenorhabditis species with sequenced genomes, C.

briggsae and C. remanei (Figure 2). These three species are distantly related nematodes in

which only coding sequences and important regulatory regions are thought to be conserved.

We named this DNA element in egl-1 the VCK (VC-like neuron killing) element.

Isolation of Additional egl-1 Alleles Mutated in the VCK Element

To identify additional alleles of egl-1 that might help better define the VCK element,

we performed an egl-1 non-complementation screen using the lin-11::gfp reporter. We

mated mutagenized males with egl-(l) hermaphrodites and screened for animals with

undead VC-like neurons. In a screen of approximately 13,000 haploid genomes, the single

egl-1 allele n4629 was isolated (Table 1). n4629 caused the identical base change identified
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in egl-l(n4045) (Figure 2). This independent isolation of the identical mutation strongly

suggested that this sequence alteration was responsible for the observed phenotype of

survival of the VC-like neurons.

At this point we could not distinguish between two models of how this point mutation

was behaving: the mutation might disrupt the binding of a transcriptional activator or it might

increase binding of a transcriptional repressor, perhaps by creating a regulatory site not

normally found in this location. To distinguish between these two models we sought a

deletion of the VCK element. A very small deletion of 309 base pairs was isolated from a

library of mutagenized C. elegans, n4908A (Figure 2). This deletion was centered on the

n4045 mutation such that approximately 150 base pairs were eliminated on both sides of the

point mutation. n4908A was able to phenocopy the point mutations n4045 and n4629,

establishing this site as a binding site for a transcriptional activator. Unlike the two point

mutations, the deletion allele completely eliminated the deaths of all VC-like neurons,

suggesting that the point mutations do not completely eliminate the binding of the

transcriptional activator (Table 1).

The VCK Element Specifically Controls Cell Death of the VC-like Neurons

The mutations in the VCK element of egl-1 that we isolated strongly prevented the

deaths of the VC-like neurons that normally die in wild-type hermaphrodites. It remained to

be determined whether this effect was specific to these cells or the consequence of a more

general loss of egl-1 function, affecting the deaths of other cells that normally die in C.

elegans. Another anatomical region in which cell death is routinely assayed is the anterior

pharynx; the cells of this region can readily be counted using Nomarski differential-
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interference contrast microscopy (HENGARTNER et al. 1992). Sixteen cells of the anterior

pharynx, arising from multiple lineages, normally undergo programmed cell death, and the

number of these cells that inappropriately survive provides a quantitative assay of possible

defects in programmed cell death. In the anterior pharynx, no additional cells were observed

in strains containing the egl-I mutation n4045 or the VCK deletion allele n4908A (Table 2).

Additionally, when these alleles were assayed in the presence of a weak ced-3 allele, n2427,

which provides a sensitized background in which very weak cell-death defects can be

detected (REDDIEN et al. 2001), no enhancement of the weak survival caused by

ced-3(n2427) was observed (Table 2). These findings suggest that the mutations in the VCK

element specifically prevent the death of the VC-like neurons. Thus, the VCK enhancer

element appears to promote tissue-specific activation of egl-1 transcription.

A Yeast One-Hybrid Screen Identified Proteins that Bind the VCK element

To identify proteins that bind to the VCK element, we undertook a yeast one-hybrid

screen. The yeast-one-hybrid system is conceptually similar to the yeast two-hybrid system

that is used for the detection of protein-protein interactions (CHIEN et al. 1991). In the yeast

one-hybrid system, a single hybrid protein containing a C. elegans cDNA fused to a strong,

heterologous activation domain is tested for reporter gene activation, which occurs when the

hybrid protein interacts with the DNA bait containing the DNA element of interest (LI and

HERSKOWITZ 1993). The reporter construct used in these one-hybrid screens contained eight

copies of a 31 base-pair element centered on the point mutation found in egl-1(n4045) and

egl-1(n4629) (Figure 3A). Versions of this reporter were generated containing the wild-type

sequence and the n4045 mutant version, both for screening purposes and to determine
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whether candidate interactors specifically activate the wild-type reporter but not the mutant

reporter. Two types of screens were conducted in parallel. In the first, we tested the ability

of approximately two-thirds of the 1,000 predicted transcription factors (DEPLANCKE et al.

2004) in the C. elegans genome to bind to the VCK element. In the second, we screened a

library of most C. elegans cDNAs fused to an activation domain (WALHOUT et al. 2000) for

candidates that bind to the VCK element.

None of the predicted C. elegans transcription factors that we tested activated the

wild-type or mutant reporters. They were tested on yeast strains containing the egl-1

reporters by either individually mating yeast strains containing each of the transcription

factor fusions or by transformation with a library containing only these transcription factor

fusions. Three candidates that successfully retested were identified from the cDNA library

screen. Y38C9A. I1 was isolated three times from the cDNA library screen with the wild-type

reporter. B0238. 11 was isolated once from the cDNA library screen with the wild-type

reporter. The last candidate was defined by a cDNA containing Y38F1 1.3 and parts of two

adjacent predicted genes (Y43F1 1.5 and Y38F1 1.2); this cDNA was recovered three times,

once when screening using the wild-type reporter and twice when screening using the mutant

reporter.

When each of these isolates was retested against both the mutant and wild-type

reporters, both Y38C9A. I1 and B0238. 11 selectively activated the wild-type reporter, whereas

Y43F11.3 activated the mutant and wild-type reporters equally (Figure 3B). The selective

activation of the wild-type but not the n4045 mutant reporters by both Y38C9A. 1 and

B0238. 11 was of particular interest, because such a profile might represent genes whose

binding to the enhancer element is prevented by the point mutation. Thus, these two genes
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are candidates for functioning in vivo to regulate egl-1 transcription in the VC-like neurons

that normally undergo programmed cell death. Of the three predicted proteins we found that

could interact with the egl-1 enhancer element in the yeast one-hybrid system, only one,

B0238.11, is predicted to contain a recognizable DNA-binding domain, a high mobility

group (HMG) box domain (BIANCHI 1995).

Inactivation of Y38C9A.1 Promotes the Survival of VC-like Neurons

To determine whether the candidates isolated in the yeast one-hybrid screen function

to regulate the death of the VC-like neurons, we screened a library of mutagenized C.

elegans and isolated animals carrying deletions in each of the three candidate interactors

(Figure 3C). These deletions were each tested using the modified lin-11::gfp reporter nls106

to determine whether they promoted survival of the VC-like neurons that normally undergo

programmed cell death. The deletion allele n4909A eliminates Y43F 1.3, the only predicted

gene wholly contained in the yeast one-hybrid screen isolate that also contains part of

Y43F11.5 and Y43F11.2. Animals containing this deletion appeared superficially wild-type

and did not promote survival of VC-like neurons. n4904A, which deletes B0238.11, causes

early larval arrest, consistent with the phenotype we observed by injection of dsRNA directed

against this gene (data not shown). None of the small number of animals that developed far

enough to express gfp from the lin-ll::gfp reporter had surviving VC-like neurons.

Two deletion alleles of Y38C9A. 1, n4799A and n4917A, as well as injection of

dsRNA directed against Y38C9A.1, caused several abnormalities. Most significantly, the

deletions caused survival of VC-like neurons that normally die. In Figure 4A, a confocal

image is shown of a representative animal carrying a deletion in Y38C9A. 1, and harboring

-110-



surviving VC-like neurons. This finding is consistent with a role for Y38C9A. I in the control

of the death of the VC-like neurons. Additionally, in combination with the lin-ll::gfp

reporter nIs106, the Y38C9A.1 deletion alleles appear to cause an alteration in sex

determination, since animals were observed that contained sexual characteristics of both

hermaphrodites and males.
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DISCUSSION

Transcriptional control of egl-1, a BH3-only protein-encoding gene, is the primary

mechanism of regulating somatic programmed cell death in C. elegans (CONRADT and

HORVITZ 1998). Similarly, transcriptional activation of the pro-apoptotic BH3-only proteins

is fundamental to the regulation of apoptosis in mammals (WILLIS and ADAMS 2005). Thus

an understanding of how egl-1 is regulated in cell death is critically important. This work

has established a mechanism of transcriptional control of egl-1 in specific cells, the VC-like

neurons in the ventral nerve cord, in which the mechanism of egl-1 activation was previously

uncharacterized. By means of a genetic screen, we identified a non-coding regulatory site of

egl-1 required for the death of the VC-like neurons. Genetic analysis suggests that mutations

in this VCK element can perturb the binding of a transcriptional activator. We identified

three proteins capable of binding to the VCK element in a yeast one-hybrid assay and found

that one of these proteins may regulate egl-1 transcription in vivo. This protein product of

the Y38C9A. I gene has no known DNA-binding domains and thus may contain a previously

unidentified DNA-binding domain.

Deletion of Y38C9A. I caused abnormalities not observed in strains carrying

mutations in the VCK element, demonstrating that Y38C9A. 1 affects processes in addition to

egl-1 activation in the VC-like neurons. The observed survival of the VC-like neurons might

be a result of perturbation of sexual identity rather than a defect in the specification of death

of the VC-like neurons, as some animals carrying a deletion in Y38C9A. 1 display sexual

characteristics of both males and hermaphrodites. Alternatively, Y38C9A. I might control

VC-like neuron survival and also function in other independent processes in C. elegans,

possibly explaining why this gene has not been isolated in the numerous screens performed
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with this reporter. Significantly, deletion of Y38C9A.1 did not promote survival of the

VC-like neurons as strongly as did mutations in the non-coding egl-1 regulatory element.

This result suggests that Y38C9A. 1 is unlikely to be the only activator that binds to this site.

It remains to be seen whether two or more of the three candidates isolated in the yeast

one-hybrid screen might act redundantly to control VC-like neuron cell death.

Consistent with our studies of Y38C9A. 1, Previously identified egl-1 regulators seem

to be involved in multiple processes and are not exclusively devoted to regulating egl-1

transcription to control cell death. TRA-1, which represses egl-J transcription in the HSNs,

is a master regulator of sex determination (MEYER 2000). Mutations in eor-1 and eor-2, two

genes that promote HSN cell death, both cause a range of abnormalities, including

incompletely penetrant lethality (HOEPPNER et al. 2004). hlh-2, which activates transcription

of egl-1 in the NSM sister cells, is essential (KRAUSE et al. 1997), as is ceh-20, which

activates egl-1 in Pl l.aaap, a cell near the tail (LIU et al. 2006). The partner with which

CEH-20 dimerizes to control egl-] expression in the P11 .aaap cell, MAB-5, is not essential,

but animals lacking mab-5 function show cell lineage defects in the tail region, including the

cells whose survival mab-5 appears to directly control (KENYON 1986). CES-2 is a regulator

of excretory canal cell morphogenesis (WANG et al. 2006) in addition to controlling egl-1

expression in the NSM sister cells (METZSTEIN et al. 1996; THELLMANN et al. 2003). Our

work demonstrates that deletions of Y38C9A. 1, in addition to promoting survival of the

VC-like neurons, cause abnormalities in sex determination that lead to animals displaying

characteristics of both males and hermaphrodites.

To date, only two transcriptional factors seem to regulate egl-1 specifically and not

affect additional processes: HLH-3, which has a very weak influence on cell death and
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appears to act primarily as a cofactor for regulation of egl-1 expression by the essential gene

hlh-2 (THELLMANN et al. 2003); and CES-1, which acts to repress egl-1 expression in the

NSM sisters (THELLMANN et al. 2003). It remains highly possible that HLH-3 and CES-1

possess additional functions, as yet unknown, beyond their cell-specific roles in the control

of programmed cell death.

Although egl-I transcription has been suspected of being the main control mechanism

of programmed cell death in C. elegans, a limited number of genes that control its expression

have been identified. The well understood regulation of egl-1 in the HSNs was established in

a way that is similar to this work, by identifying non-coding mutations in egl-1 that alter the

survival decision of a specific cell (CONRADT and HORVITZ 1999). Mutational analysis of the

egl-1 locus using extrachromosomal arrays in transgenic animals was important for

establishing the roles of hlh-2, hlh-3, ceh-20, and mab-5 in the regulation of egl-

transcription. It is very likely that the transcription factors that regulate egl-1 expression

function in many processes in addition to programmed cell death, such that they cannot be

identified in genetic screens. This has certainly been the case for most genes that regulate

egl-1 expression studied to date. The genetic approaches used in this manuscript of

identifying non-coding regulatory regions in egl-1, and then using these regulatory regions to

identify proteins that bind to them, may therefore be the most useful method of identifying

additional factors that control the survival decisions of specific cells by regulating egl-1

expression.
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FUTURE DIRECTIONS

The current data suggest that genes that regulate egl-1 expression in a cell-specific

fashion might not function solely to regulate egl-1 expression; rather, loss-of-function

mutations in these genes might well cause additional phenotypic defects, making such

mutations difficult to isolate in screens. Our work and other related work suggest that an

alternative genetic approach to identifying genes that regulate egl-1 expression is to identify

functional regulatory elements of egl-1 and then identify proteins that bind to these sites by

methods such as one-hybrid screens. These regulatory elements can be identified by

recovering animals from a genetic screen, most efficiently in an egl-1 non-complementation

screen as demonstrated in this work. Alternatively, one can test mutant strains deleted for

genomic regions near to the egl-l coding region, an approach this work also validates. In the

case of the targeted deletions, it may be possible by means of rescue experiments or by a

return to egl-1 non-complementation screens to identify within a larger deletion the specific

regulatory element responsible for cell-specific control of egl-1 expression. Further

understanding of the regulation of egl-1 expression and the expression of mammalian

BH3-only genes is clearly critical to our understanding of programmed cell death, so taking a

non-standard approach to isolating egl-1 transcription factors seems warranted. Approaches

such as are described above and those we have used in this work may serve to identify new

regulatory regions and the factors that act upon them.

In the yeast one-hybrid screen, I identified two additional genes that remain to be

characterized. Given their strong interaction with egl-1 in the yeast one-hybrid assay, it is

possible that these genes regulate egl-1 expression in cells other than the VC-like neurons.

Worms carrying deletions in each of these genes should be examined for other cell-death
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defects. Recent data suggest that the egl-1 deletion allele n4908 might also promote survival

of the male-specific CEM neurons, which normally die in hermaphrodites (in contrast to the

point mutation we originally isolated, which does not protect these cells) (H. SCHWARTZ,

personal communication). Perhaps one of the genes identified in the yeast one-hybrid screen

regulates the death of these cells, or alternatively the 309 bp deletion might eliminate another

element that specifically contributes to the regulation of those deaths.
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EXPERIMENTAL PROCEDURES

Strains and Genetics

Strains were cultured as described by BRENNER (1974) and grown at 200 C on NGM

agar using E. coli OP50 as a food source. The Bristol strain N2 was the wild-type strain.

The mutations and balancer chromosomes used in the study are as follows and are previously

described (RIDDLE et al. 1997) unless otherwise indicated:

LGI, dpy-5(e61), nIs133 [pkd-2::gfp; lin-15AB(+)] (JAGER et al. 2004)

LGII, rol-6(e187), Y43F11A.3(n4909A) (this study), rrf-3(pk1426)

LGIII, unc-32(e189)

LGIV, ced-3(n717), ced-3(n2427) (HENGARTNER and HORVITZ 1994), unc-30(e191)

LGV, dpy-11(e224), rol-4(sc8), unc-42(e270), unc-76(e911), egl-1(n1084 n3082)

(CONRADT and HORVITZ 1998), egl-1(n4045, n4629, n4908A) (this study),

Y38C9A. I(n4799A) (this study), Y38C9A. J(n491 7A) (this study), B0238. 11(n4904A) (this

study)

LGX, lon-2(e678), nlsl 106 [lin-11::gfp; lin-15AB(+)] (REDDIEN et al. 2001).

The translocation nT1 IV;V with the dominant marker qls51 [myo-2::gfp] (SIEGFRIED

et al. 2004) was used as a balancer for B0238. 11 (n4908A).

Identification and Mapping of egl-l(n4045)

We mutagenized L4 ced-3(n2427); nIsl06 hermaphrodites with ethyl

methanesulfonate (EMS) as described by BRENNER (1974). After letting the animals recover,

single Po animals were transferred to 9-cm plates. After 6-8 days F2 animals on these plates

were screened for animals with five surviving GFP-positive VC-like neurons. n4045 was
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mapped to linkage group V using the markers dpy-5 I, rol-6 II, unc-32 III, unc-30 IV, dpy-11

V, and lon-2 X (BRENNER 1974). Further mapping placed n4045 approximately 13/20 of the

distance from rol-4 to unc- 76 on LGV, a position consistent with those of two genes known

to cause survival of VC-like neurons in hermaphrodites, egl-1 and sel-10. Further

investigation demonstrated that n4045 did not cause defects consistent with a mutation in

sel-10 (H. SCHWARTZ, personal communication).

egl-1 Non-complementation Screen

We mutagenized L4 nls133; nls106 males with EMS as described by BRENNER

(1974) and mated them with nls133; rol-4(sc8) egl-1(n1084n3082) unc-76(e911); nls106

hermaphrodites. After 3-4 days, F, non-Rol non-Unc cross progeny were screened to

identify animals with surviving GFP-positive VC-like neurons.

Quantitation of Cell Death in the VC-like neurons and the Anterior Pharynx

VC-like neurons expressing GFP were visualized using a dissecting microscope

equipped with fluorescence optics (M2BIO, Kramer Scientific, Valley Cottage, NY).

Animals late in the fourth larval stage were picked using a standard dissecting microscope

and transferred to the fluorescence-equipped dissecting microscope for counting of their

surviving VC-like neurons.

Nomarski differential-interference contrast microscopy was used to count the number

of extra cells in the anterior region of the pharynx as previously described (HENGARTNER et

al. 1992).

- 118-



Determination of Mutant Allele Sequences

We used PCR-amplified regions of genomic DNA to determine mutant sequences.

For egl-1(n4045), we determined the sequence of approximately 13 kb surrounding the gene.

For egl-1(n4629), we determined the sequence of the coding region and the interval

containing the egl-I(n4045) mutation. For egl-1(n4908A), we determined the sequence of

the interval containing the deletion. Sequences were determined using an ABI Prism 3100

Genetic Analyzer.

Generation of Yeast One-Hybrid Reporter Constructs and Strains

To generate a DNA bait construct containing eight copies of the 31 base-pair DNA

element centered on the n4045 mutation, four pairs of complementary oligonucleotides, each

containing two copies of the element, were annealed and ligated into pUC19. M13 primers

flanked by Gateway-compatible cloning sites were used to PCR-amplify the 8X DNA

element, after which the resulting PCR amplicon was cloned via a Gateway BP reaction into

the entry vector pDONR-P4-P1R, as described (DEPLANCKE et al. 2004). One

sequence-verified entry clone was then used for LR cloning into the destination vectors and

integrated into the genome of YM4271 yeast, as described (DEPLANCKE et al. 2004). Bait

strains were verified by PCR of yeast genomic DNA using vector-specific primers, after

which PCR amplicons were sequenced. Self-activation of promoter bait strains was tested as

described (DEPLANCKE et al. 2004).

Yeast One-Hybrid Screens
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Mating experiments using strains of opposite mating types, one containing the

promoter bait and the other containing the AD-TFs (Activation Domain-Transcription

Factors) (B. DEPLANCKE and A. J. M. WALHOUT, unpublished data) were performed as

described (WALHOUT and VIDAL 2001).

Promoter bait strains were transformed with the AD-wrmcDNA (C. elegans cDNAs)

and AD-TF libraries as described (DEPLANCKE et al. 2004), and plated onto Sc-His, -Ura,

-Trp media containing 40mM 3AT. 9.4 x 106 and 3.8 x 105 colonies were screened per strain

for the AD-wrmcDNA and AD-TF libraries, respectively, for the wild-type reporter. 2.5 x

106 and 3.4 x 105 colonies were screened per strain for the AD-wrmcDNA and AD-TF

libraries, respectively, for the n4045 mutant reporter. Potential positives were picked and

retested as described (DEPLANCKE et al. 2004). To sequence ORFs encoding potential

interactors, yeast colony PCR was performed as described (WALHOUT and VIDAL 2001).

Gap-repair-based phenotypic retesting was performed as described (WALHOUT and VIDAL

2001).

RNA Interference of Candidates Isolated in the Yeast One-Hybrid Screen

Vector-specific primers flanked by T7 binding sites were used to PCR-amplify the

one-hybrid isolates that retested. To generate double-stranded RNA, a MEGAscript® T7 Kit

(Ambion, Austin, TX) was used according to the manufacturer's specifications. dsRNA for

each isolate was injected into the gonad of rrf-3(pk1426); nIsl06 worms. The F1 progeny

were scored for extra GFP-positive VC-like neurons and other abnormalities.

Isolation of Deletion Alleles
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Genomic DNA pools from the progeny of EMS-mutagenized animals were screened

to identify deletions using PCR as previously described (CEOL and HORVITZ 2001). Deletion

mutant animals were isolated from frozen stocks and backcrossed to the wild type.

egl-](n4908A) removes nucleotides 1819 to 2127 of plasmid VF23B12L.

Y38C9A. (n4799A) removes nucleotides 530 to 2807 of YAC Y38C9A. Y38C9A.I(n4917A)

removes nucleotides 8199 to 11139 of YAC Y38C9A. B0238.11(n4904A) removes

nucleotides 28722 to 30199 of cosmid B0238. Y43FllA.3(n4909A) removes nucleotides

5846 to 7310 of YAC Y43F11A.
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FIGURE LEGENDS

Figure 1: egl-l(n4045) Promotes Survival of VC-like Neurons

(A) In the ventral cord, the twelve P cells P1-P12 each divide post embryonically to generate

a Pn.a (n is 1-12) neuroblast and a Pn.p hypodermal cell. P3-8 give rise to the six Pn.aap

cells that survive and differentiate into the VC motor neurons, whereas P1, 2, 9 - 12 give rise

to Pn.aap cells that undergo programmed cell death shortly after they are generated, in the

late Li/early L2 larval stage. The modified lin-1l::gfp reporter nlsl06 reliably expresses in

any of the eleven Pn.aap cells generated by P2 - P12 if they survive through the fourth larval

stage.

(B) Confocal images of nlsl06 expression patterns. In wild-type animals containing the

modified lin-.ll::gfp reporter nlsl06, four of the six VC neurons generated by the P3-5, and

P8 lineages, can be easily observed by fluorescence microscopy, whereas the fluorescence

from VC neurons generated by the P6 and P7 lineages is obscured by GFP fluorescence in

vulval tissue. In egl-l(n4045) animals, P2 - P12.aap cells usually survive and express gfp.

Figure 2: n4045 and n4629 Are Identical Mutations in the VCK Element of egl-I

A schematic representation of the egl-1 locus, showing the locations and sequences of the

egl-1(n4045), egl-l(n4629), and egl-1(n4908A) alleles and their evolutionary conservation.

In the alignment of the conserved DNA element 3' of egl- I in C. elegans, C. briggsae, and C.

remanei, identical nucleotides are shaded. The DNA element in C. elegans has the opposite

orientation of that found in C. briggsae and C. remanei.
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Figure 3: Three Proteins Bind to the VCK Element of egl-1 in A Yeast One-Hybrid

Assay

(A) Schematic of the HIS3 reporters used in the yeast one-hybrid assays.

(B) Isolates from the yeast one-hybrid screen were tested for their ability to allow HIS3-

yeast strains to grow in the absence of His by assaying for their abilities to activate the HIS3

reporters containing eight copies of either the wild-type (+) or mutant (n4045) VCK element.

Cells were plated on Sc -His, -Ura media supplemented with 20 mM 3AT.

(C) Schematic representation of genes that encode the proteins isolated in the one-hybrid

screen, showing the location of the deletion alleles (n4799A, n4917A, n4904A, and n4909A)

isolated for each gene.

Figure 4: Y38C9A.1 Functions to Promote the Deaths of VC-like Neurons

(A) Confocal image of Y38C9A.1 (n4799A); nIs106 animals, which display fluorescence in

VC-like neurons that failed to die.

(B) Model for the death of VC-like neurons. In VC-like neurons that die in wild-type

animals, Y38C9A. 1 binds to the VCK element in egl-1 defined by n4045 and promotes

transcription of egl-]. In either the absence of a functional VCK element or in the absence of

Y38C9A.1, egl-1 transcription is not promoted and the cells inappropriately survive.
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Table 1. Mutations in the VCK Element in egl-1
Promote Survival of VC-like Neurons

No. of VC-like
Genotype neurons ± SE (n)

Wild type
ced-3(n2427)
ced-3(n242 7); egl-1 (n4045)
egl-1(n4045)
egl-](n4629)
egl-1 (n4908A)
egl- I(null)̂
ced-3(n717)

0 ± 0 (109)
2.4 ± 0.2 (50)
5.0 + 0.1 (102)
4.5 + 0.1 (50)
4.4 + 0.1 (50)
5.0 + 0 (50)
5.0 + 0 (25)
5.0 + 0.1 (25)

VC-like neurons counted as described in
Experimental Procedures. n, number of animals.
SE, standard error.
All strains were homozygous for nIs106, the
integrated lin-ll::gfp reporter. Genotypes are
otherwise indicated.

A egl-1(n1084 n3082)
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Table 2. Mutations in the VCK Element in egl-1 Do Not
Promote Survival of Extra Cells in the Anterior Pharynx

No. of extra cells in anterior
Genotype pharynx ± SE (n)

Wild type 0 + 0 (20)
egl-1(n4045) 0 ± 0 (10)
egl-1(n4908A) 0.1 ± 0.1 (10)
ced-3(n2427) 1.3 ± 0.3 (10)
ced-3(n2427); egl-1(n4045) 1.3 ± 0.3 (10)
ced-3(n2427); egl-1(n4908A) 1.2 ± 0.3 (10)
egl-l (null)A  11.1 ± 0.1 (113)
ced-3 (n 717) 12.0 ± 0.3 (20)

Number of extra cells counted as described in
Experimental Procedures. n, number of animals. SE,
standard error.
A egl-l(n1084 n3082); these data were taken from
CONRADT and HORVITZ (1998).
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Chapter Four

Mutations in Two Novel Genes, lin-24 and lin-33, Cause Cytotoxic Cell Death

in C. elegans that Requires Apoptotic Corpse Removal Genes

Brendan D. Galvin, Saechin Kim, and H. Robert Horvitz

Saechin Kim initiated preliminary characterization of lin-24 and lin-33 and cloned lin-24.

Erika Hartwieg performed the electron microscopy.
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SUMMARY

In C. elegans, two types of cell death have been studied extensively: programmed cell

death and necrosis. In this work we characterize a novel type of cell death that occurs

inappropriately in animals containing mutations in one of two novel genes, lin-24 and lin-33.

Gain-of-function mutations in the genes lin-24 and lin-33 can cause either the inappropriate

deaths of the Pn.p cells or prevent these cells from adopting their proper fates. Since some of

the Pn.p cells are vulval precursor cells, lin-24 and lin-33 gain-of-function mutations result in

a vulvaless hermaphrodite. We showed that the corpses resulting from the Pn.p cells that die

in lin-24 and lin-33 mutant animals are morphologically and ultrastructurally distinct from

the corpses that characterize programmed cell deaths and cells that die by necrosis in C.

elegans. We have molecularly identified both genes and found that lin-24 encodes a protein

containing a domain similar to one found in numerous bacterial toxins and that lin-33

encodes a novel protein. We showed that the cytotoxicity caused by mutation of either gene

requires the function of the other, demonstrating that these two genes work together in this

process. The Pn.p cell cytotoxicity of lin-24 and lin-33 mutations also requires a subset of

the genes necessary for the engulfment of cell corpses during programmed cell death. Thus,

we conclude that the engulfment genes from the programmed cell death pathway also

function in the process of cell killing initiated by lin-24 and lin-33 mutations, even though

these deaths are distinct from programmed cell deaths and do not require the execution genes

from this pathway.
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INTRODUCTION

During the development of the C. elegans hermaphrodite, 131 of the 1030 somatic

cells that are generated are eliminated by the process of programmed cell death or apoptosis

(KIMBLE and HIRSH 1979; SULSTON and HORVITZ 1977; SULSTON et al. 1983). The

identification of the genes that function in this pathway provided valuable insights into this

conserved process. For example, molecular identification of the caspase gene ced-3 defined

the first biochemical mechanism of apoptosis (YUAN et al. 1993). Caspases are cysteine

aspartate-specific proteases that act in apoptosis in all animals (DEGTEREV et al. 2003).

Similarly, studies of C. elegans ced-9 and human Bcl-2 revealed that the misregulation of

apoptosis can cause human disease, in this case, cancer (HENGARTNER and HORVITZ 1994;

VAUX et al. 1992). More than 20 genes have been identified in C. elegans that function in

programmed cell death, and many have homologs that function in mammalian apoptosis

(METZSTEIN et al. 1998).

Apoptosis is not the sole mechanism of cell death; cells can also die by necrosis and

by autophagy. In autophagy, cells consume themselves from within, for example, under

situations of nutritional deprivation (EDINGER and THOMPSON 2004). There are currently no

examples of autophagic deaths in C. elegans. Necrosis is the cellular death process defined

largely by ultrastructure, which includes the swelling of organelles and loss of plasma

membrane integrity. Necrosis can be caused by injury or physiological insult and contributes

significantly to human diseases, such as the immediate tissue damage that occurs after a heart

attack due to lack of oxygen (ZONG and THOMPSON 2006). Some cell deaths that occur in C.

elegans ultrastructurally resemble necrotic cell death. The best understood necrotic deaths in

C elegans are the deaths caused by gain-of-function mutations in the gene encoding the
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mechanosensory sodium channel subunit MEC-4 (DRISCOLL and CHALFIE 1991). Mutations

in several other genes, such as deg-1 (encoding a related channel subunit) (CHALFIE and

WOLINSKY 1990), deg-3 (encoding an acetylcholine gated ion channel) (TREININ and

CHALFIE 1995), and activated transgenic Gas (BERGER et al. 1998; KORSWAGEN et al. 1997),

probably act by a similar mechanism. The gain-of-function mutations in mec-4 cause the

hyperactivation of DEC/ENaC channels and cause the deaths of the six touch-receptor

neurons in which this subunit is expressed (LAI et al. 1996). These deaths seem to require

release of calcium from the endoplasmic reticulum (Xu et al. 2001) and the activation of the

calcium-activated calpain proteases and specific cathepsin aspartyl proteases (SYNTICHAKI et

al. 2002). This death process is similar to that proposed for channel-mediated toxicity in

mammals (DRISCOLL and GERSTBREIN 2003).

We have observed and characterized a third type of cell death in C. elegans that is

distinct from necrotic cell death and programmed cell death, which we refer to as

cytotoxicity. This novel type of cell death occurs in C. elegans containing mutations in

either one of two genes, lin-24 or lin-33. The genes lin-24 and lin-33 were identified in

screens for mutants abnormal in vulval cell lineages (FERGUSON and HORVITZ 1985). These

mutations cause a vulvaless phenotype. Additional alleles of each gene that cause the same

phenotype were isolated in a screen for egg-laying defective mutants (TRENT et al. 1983) and

in a screen for suppressors of the multivulva phenotype (S. G. CLARK & H. R. HORVITZ,

unpublished results). In this work, we show that the vulvaless phenotype is due to a novel

type of cell death that inappropriately occurs in the vulval precursor cells in lin-24 and lin-33

mutant animals.

- 138-



RESULTS

Mutations in lin-24 and lin-33 Cause Both Inappropriate Cell Deaths and Aberrant Cell

Fates of Pn.p cells

C. elegans strains with mutations in the genes lin-24 and lin-33 had been isolated

previously as having a vulvaless phenotype or being unable to lay eggs (FERGUSON and

HORVITZ 1985; TRENT et al. 1983). To determine the cause of the vulvaless phenotype, we

directly observed the Pn.p cells in lin-24 and lin-33 mutants using Nomarski differential

interference contrast microscopy. The Pn.p cells were examined because these cells

normally give rise to the vulva, and the mutant animals are vulvaless. We confirmed that, in

lin-24 and lin-33 mutants, these cells frequently look abnormal and either die inappropriately

or survive but fail to adopt their proper cell fates, as previously reported (FERGUSON and

HORVITZ 1985; FERGUSON et al. 1987). We observed that late in the first larval stage (L1) or

early in the second larval stage (L2) in lin-24 or lin-33 mutant hermaphrodites, the nuclei of

many of the Pn.p cells increase in refractility and form non-circular refractile bodies that can

persist for minutes to hours (Figure 1). Once the refractility begins to decrease, one of three

outcomes is observed: the cell dies, the cell survives but the nucleus is abnormally small, or

the cell survives and the nucleus looks normal. The refractile bodies are distinct from the

circular and more highly refractile corpses seen in programmed cell death (SULSTON and

HORVITZ 1977). The refractile bodies are also distinct from necrotic corpses, which swell to

several times their original diameter (CHALFIE and SULSTON 1981; CHALFIE and WOLINSKY

1990). We tracked 176 Pn.p cells from the mid-L1 larval stage to the early L2 larval stage in

16 lin-24(n2050) animals and observed that 31 died inappropriately (18%), two survived but

had small nuclei, and 143 returned to looking normal. For lin-33(n2003), 38 of the 99 cells
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we tracked died inappropriately (38%), six had small nuclei, and the remaining 55 returned to

looking normal.

The surviving Pn.p cells failed to adopt their correct cell fates in lin-24 and lin-33

mutants. Three of the 12 cells, P(5-7).p, normally undergo three rounds of division to

generate the cells that form the vulva (SULSTON and HORVITZ 1977). Three neighboring cells

P(3, 4, 8).p, although competent to make vulval cells, normally divide once to generate two

descendants that fuse with the hypodermis (SULSTON and HORVITZ 1977; SULSTON and

WHITE 1980). We examined the fates of P(3-8).p in lin-24 and lin-33 mutant animals and

observed that these cells almost never divided. In lin-24(n2050) animals, of the 56 cells we

tracked, all but two never divided. Instead these cells probably went on to fuse with the

hypodermal syncytium, a fate normally assumed by P(1,2).p, P(9-12).p. Therefore, the

abnormal death of 20-30% of the Pn.p cells, combined with the adoption of abnormal cell

fates by the remaining cells, causes the vulvaless phenotype observed in lin-24 and lin-33

mutant animals.

The Abnormal Cells in lin-24 and lin-33 Mutant Animals Are Distinct from Cells that

Undergo Necrotic or Programmed Cell Deaths

We examined the ultrastructure of the abnormal Pn.p cells in lin-24 and lin-33

mutants by electron microscopy. Hallmarks of programmed cell death, such as shrinking of

cell volume and chromatin condensation (ROBERTSON and THOMSON 1982), were not

observed. Similarly, the large vacuoles observed in mec-4 and deg-l-induced necrotic deaths

were not seen (HALL et al. 1997). Four ultrastructural characteristics are associated with the

refractile Pn.p cells observed in lin-24(n423) animals, lin-33(n1043) animals, and
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lin-33(n1043) lin-24(n432) doubly mutant animals (Figure 2): (1) disruption of mitochondrial

ultrastructure, (2) electron dense puncta in the nuclei, (3) dilation of the nuclear membrane

and its associated membranes, (4) electron-dense membranous whorls in the cytoplasm.

These four characteristics distinguish lin-24 and lin-33-induced cell deaths from both

programmed cell deaths and the necrotic deaths associated with mutations in the genes mec-4

and deg-1.

The lin-24 and lin-33 Alleles that Cause Cytotoxicity Are Not Loss-of-function Alleles

In several different screens performed previously, several alleles of lin-24 and lin-33

had been isolated. To rank them by penetrance, we scored the vulvaless phenotype by

assaying the percent of the animals of each strain that could not lay eggs. The penetrance of

the egg-laying defect of eight of the nine lin-24 and lin-33 alleles ranged from 75% to 100%

(Table 1). Using this same assay, we also found that both lin-24 and lin-33 alleles can cause

a semidominant vulvaless phenotype (Table 1). This result gave the first indication that these

alleles were not loss-of-function mutations. We therefore sought to isolate mutations that

reduce or eliminate lin-24 and lin-33 function to define the loss-of-function phenotype of

these genes. Analysis with deficiencies suggested that lin-24(n432)/lin-24(null) and

lin-33(n1043)/lin-33(null) were wild-type (data not shown). Thus, we predicted that we

should be able to isolate lin-24 and lin-33 loss-of-function mutations as dominant suppressors

of the vulvaless phenotype of lin-24(n432) or lin-33(n1043) in an F1 reversion screen. We

mutagenized strains that were homozygous for either lin-24(n432) or lin-33(n1043) and

isolated non-Vul animals from the F1 self-progeny. One isolate from each of these two

screens was a good candidate to be an intragenic revertant allele based on its map position
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(lin-24(n432 n1503) and lin-33(n1043 n1502)) (data not shown). Like the deficiencies, each

of these mutations was able to dominantly suppress the vulvaless phenotype of lin-24(n432)

or lin-33(n1043), suggesting that they were loss-of-function alleles (data not shown).

Animals homozygous for either of the intragenic revertant alleles appeared wild-type,

suggesting that the null phenotype of these genes is not vulvaless and that the previously

isolated alleles of lin-24 and lin-33 that cause the vulvaless phenotype are not

loss-of-function alleles. This was confirmed once we molecularly identified the genes and

isolated deletion alleles of the genes (see below). The deletion alleles did not cause a

vulvaless phenotype, confirming that the alleles of lin-24 and lin-33 that cause cytotoxicity

are not loss of function alleles.

Molecular Identification of lin-24 and lin-33

lin-24 had been previously mapped between unc-22 and dpy-26 on linkage group IV

(FERGUSON and HORVITZ 1985). We further mapped lin-24 to the left of a polymorphism on

cosmid C41D9 between C. elegans strains N2 and N62 (G. GARRIGA, personal

communication) (Figure 3A). We cloned lin-24 using transformation rescue by injecting

wild-type cosmid DNA into lin-24 mutant animals that displayed a recessive vulvaless

phenotype. Although some alleles of lin-24 are semidominant, we choose to use recessive

alleles for these experiments to facilitate transformation rescue. Of the four cosmids we

tested from within the defined interval between unc-22 and the polymorphism, two

overlapping cosmids (T20H7 and B0001) rescued the recessive vulvaless phenotype of

lin-24(n1821) animals in germ-line transformation experiments. A 6.3 kb fragment within

the overlapping region between T20H7 and B0001 containing a single predicted gene,
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B0001. 1, was sufficient to rescue the recessive vulvaless phenotype of lin-24(n2050)

animals. We determined the sequence of the presumptive lin-24 gene in each of the four

different mutants and found that each contained a different missense mutation (Figure 3C).

Six lin-24 cDNAs were isolated from a mixed-stage cDNA library; the longest appeared to

be full-length, as it contains an SL 1 trans-spliced leader sequence. This cDNA established

the gene structure of lin-24 shown in Figure 3B. This gene is highly similar to an

uncharacterized C. elegans gene, C31H1.6.

lin-33 was previously mapped between dpy-13 and unc-8 on linkage group IV

(FERGUSON and HORVITZ 1985). We further mapped lin-33 to the right of a polymorphism

(at position 5412) on cosmid C10G6 between C. elegans strains N2 and CB4856 and to the

left of unc-44 (Figure 3D). We cloned lin-33 by injecting DNA isolated from lin-33 mutant

animals (displaying the dominant vulvaless phenotype) into wild-type animals and

determining the minimal fragment of DNA that caused animals to be vulvaless. Seven PCR

products that had been generated from lin-33(n1302) genomic DNA ( which together covered

most of the relevant 156 kb interval were tested for the ability to phenocopy the vulvaless

phenotype of lin-33(n1302) animals. A single 9 kb PCR product predicted to contain a single

gene, H32C10.2, caused a vulvaless phenotype in wild-type animals. We determined the

sequence of the H32C10.2 locus from each of the five semidominant lin-33 mutants and

found that all five contain the identical missense mutation, changing glutamic acid 230 to

lysine (Figure 3F). Two lin-33 cDNAs have been isolated by Yuji Kohara and coworkers

(KOHARA 1996); one, ykl 122h12, appears to be full-length, as it contains a SL1 trans-spliced

leader sequence. The gene structure of lin-33 based on this cDNA is shown in Figure 3E.
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LIN-24 Contains a Toxin Domain and LIN-33 is a Novel Protein

BLAST and related searches with the LIN-33 protein did not identify any significant

domains or homologs in other organisms. Similar searches using the LIN-24 protein

revealed that it contains a domain found in many bacterial toxins. This domain, spanning

amino acids 62 to 176, is most similar to the Bacillus sphaericus mosquitocidal toxin Mtx3

and related toxins (Figure 4) (Liu et al. 1996). These toxins are thought to function by

binding to eukaryotic cells and aggregating to form holes in the membrane, ultimately

causing osmotic lysis by disrupting membrane permeability (GILBERT 2002). It is tempting

to speculate that LIN-24 may be able to cause cytotoxicity by a mechanism similar to that of

these bacterial toxins. Five of the seven isolated mutations in lin-24 are located in the toxin-

related domain (Figure 4), including three loss-of-function alleles that were isolated in

reversion screens, suggesting that this domain has an important function in LIN-24.

The lin-24(n432) Mutation May Result in a Novel Gene Activity

We identified deletion alleles of lin-24 and lin-33 (lin-24(n4294A) and

lin-33(n4514A)) by screening a library of mutagenized worms. Animals homozygous for

either deletion allele appeared wild-type, demonstrating that the null phenotype of these

genes is not vulvaless (Table 2). The lin-24(n432)/+ and lin-33(n1043)/+ strains have a more

penetrant vulvaless phenotype than lin-24(n432)/lin-24(A) and lin-33(n1043)/lin-33(A),

suggesting that the presence of a wild-type copy of the respective gene can increase the

toxicity of these alleles (Table 2). The relative penetrances of the vulvaless phenotype of the

following lin-24(n432)-containing strains was lin-24(n432)/Df(0%) < lin-24(n432)/+/+

(34%) < lin-24(n432)/+ (55%) < lin-24(n432)/lin-24(n432) (95%). These results indicate
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that an increase in the dosage of the lin-24(+) gene product can result in a decrease in the

percentage of hermaphrodites that are vulvaless. These data suggest that the wild-type lin-24

gene product may antagonize the vulvaless phenotype of the semidominant mutation.

Therefore, the lin-24(n432) mutation probably does not result in an increase in the wild-type

function of the gene product, but rather in the generation of an abnormal cytotoxic gene

product. The complete suppression of the vulvaless phenotype of lin-24(n432) and

lin-33(n1043) when in trans to their respective deletion alleles suggests that they need a

minimum level of expression of either mutant or wild-type gene product to cause the

vulvaless phenotype.

We also isolated a deletion allele of the gene that encodes a protein highly similar to

LIN-24, C31HI. 6. C31H1. 6(n4763A) mutants also appear wild-type, both alone and in

combination with lin-24(n4294A). The wild-type phenotype of the doubly mutant strain,

lin-24(n4294A) C31H1.6(n4763A), suggests that these two genes do not function redundantly

in a pathway that regulates an obvious process.

The lin-24 and lin-33-induced Toxicities Each Require the Function of the Other Gene

In addition to isolating loss-of-function alleles of both lin-24 and lin-33 in their

respective dominant suppressor screens, isolates of the other gene were also isolated in each

screen. One loss-of-function allele of lin-33, n1968, was isolated in the lin-24(n432) screen

and one loss-of-function allele of lin-24, n2333, was isolated in the lin-33(n1043) screen.

These results suggested a genetic interaction between lin-24 and lin-33 that was further

explored using the deletion alleles, which are molecular nulls. Strains of the genotypes

lin-33(n1043) lin-24(n4294A)/ lin-33(n1043) lin-24(n4294A) or lin-33(n4514A)
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lin-24(nl043)/lin-33(n4514A) lin-24(n1043) are wild-type (Table 2). Additionally, as

suggested by their isolation in a Fi screen, the loss-of-function alleles of lin-24 and lin-33 can

suppress the vulvaless phenotype caused by mutations in the other gene when they are

present only in one copy (data not shown). For example, an animal of the genotype

lin-33(nl 043) lin-24(n4294A)l lin-33(n1043) lin-24(+) is not vulvaless, so a loss of one copy

of lin-24 is able to suppress the vulvaless phenotype of a lin-33 mutant animal. These results

show that the lin-24 and lin-33 requires the function of the other to induce cell death.

Genes that Function in the Engulfment Process of Programmed Cell Death Are

Required for the lin-24 and lin-33-Induced Cytotoxicity

To determine if genes known to be required for the programmed cell deaths in C.

elegans are also required for the lin-24 or lin-33-induced cytotoxicity, we tested whether

mutations in such genes affect the vulvaless phenotype of lin-24(n432)/+ and lin-33(1043)/+

animals (Figure 5). We found that the penetrances of the Vul phenotype of lin-24(n432)/+

and lin-33(n1043)/+ animals were not affected by loss-of-function alleles of ced-3 or ced-4

or by a gain-of-function allele of ced-9. A loss-of-function allele of egl-1 partially

suppressed the Vul phenotype, although not to the same level as the modifiers discussed

below. This result demonstrates that lin-24 and lin-33-induced cell death does not require

most of the killing genes in the pathway of programmed cell death.

The genes of the ced-2, -5, -10, and -12 engulfment pathway were required for the

lin-24- and lin-33-induced deaths (Figure 5). These four genes function together in one of

two engulfment pathways involved in corpse removal. ced-12 mutations almost completely

eliminated the cytotoxicity of either lin-24 or lin-33. The ced-1, ced-6, and ced-7 genes from
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the second engulfment pathway are not required for these deaths. For example, the

cytotoxicity is unchanged in ced-7 mutant animals. The engulfment genes have been shown

to influence the killing of cells that undergo programmed cell death (REDDIEN et al. 2001).

Our findings indicate that some engulfment genes are also required for mediating the killing

and cytotoxicity caused by mutations in lin-24 and lin-33. Therefore, we believe that this

cytotoxicity is due, in part, to injury mediated by the gene products of ced-2, -5, -10, and -12.
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DISCUSSION

In this work we have identified two genes that, when mutated, can cause the

inappropriate deaths of Pn.p cells, a subset of which give rise to the vulva. These genes

appear to work together to mediate this cytotoxicity. The deaths caused by lin-24 and lin-33

mutations are cytologically distinct from the previously characterized deaths that have been

observed in C elegans, namely programmed cell death and necrotic death. lin-24 and lin-33

cytotoxicity does not require most of the execution genes of programmed cell death, as the

cytotoxicity persists in animals harboring mutations in the genes the Bcl-2 family member

ced-9, the Apaf-1 homolog ced-4, and the caspase encoding gene ced-3. egl-1 may be

partially required for the cytotoxicity, since egl-(lf) (loss of function) can partially suppress

the vulvaless phenotype of both lin-24(n432) and lin-33(n1043) animals. The partial

suppression by egl-1 is particularly interesting, as it suggests that the most upstream gene

that functions in all somatic programmed cell deaths may also function independently from

ced-3, ced-4, and ced-9 in non-programmed cell deaths. The cytotoxicity requires the

functions of the genes from one of the two partially redundant programmed cell death corpse

engulfment pathways, mediated by ced-2, -5, -10, and -12.

ced-2, -5, -10, and -12 function in parallel to the genes ced-1, -6, and -7 for the rapid

removal of corpses generated by programmed cell death. Whereas the function of the ced-1,

-6, -7 pathway is unclear, the ced-2, -5, -10, -12 pathway is likely a signal transduction

pathway, the output of which causes cytoskeletal rearrangement (MANGAHAS and ZHOU

2005; REDDIEN and HORVITZ 2004). CED-2 appears to be an SH2 (Src-homology 2) and

SH3 (Src-homology 3) domain containing adapter protein (REDDIEN and HORVITz 2000),

CED-10 is a Racl-like GTPase (REDDIEN and HORVITZ 2000), and CED-5 and CED-12
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exchange Rac 1 GDP for GTP (GUMIENNY et al. 2001; Wu and HORVITZ 1998; WU et al.

2001; ZHOU et al. 2001). The mammalian counterparts of CED-2, CED-5, and CED-12

regulate Rac (AKAKURA et al. 2005; Lu and RAVICHANDRAN 2006), a member of the Ras

GTPase superfamily family that includes Rho, Rac, and Cdc42, each of which has a

well-established role in cytoskeletal reorganization (WENNERBERG and DER 2004).

Cytoskeletal reorganization is important for the process of polarized surface extension that is

critical for cell migration, axonal outgrowth, and phagocytosis.

Whereas the ced-1, -6, -7 pathway appears to be specific for programmed cell death,

the ced-2, -5, -10, -12 pathway has been shown to be involved in several processes in C.

elegans such as: programmed cell death, distal tip cell migration, axonal outgrowth, and now

lin-24/lin-33-mediated cytotoxicity (MANGAHAS and ZHOU 2005; REDDIEN and HORVITZ

2004). Our work suggests that the ced-2, -5, -10, -12 pathway might respond to a signal

presented on the cell surface of a cell that is sick or dying (Figure 6). It is possible that the

signal presented by the cells affected by lin-24/lin-33-induced toxicity is the same as that

recognized by the ced-2, -5, -10, -12 pathway in programmed cell death. The ced-1, -6, -7

pathway, in contrast, may recognize a different signal that is specific to corpses generated by

programmed cell death. Although less likely, it is possible that ced-2, -5, -10, and -12

function within the dying cells rather than engulfing cells (although this is certainly not the

case in programmed cell death, where the engulfment genes are necessary in the neighboring

cells that do the engulfing, but not in the dying cells). This possibility needs to be explored

by determining the site of action of these genes in this lin-24- and lin-33-mediated

cytotoxicity.

- 149 -



The observation that mutations in ced-2, -5, -10, and -12 reduce lin-24- and

lin-33-induced cytotoxicity parallels the observation that engulfment genes are involved not

only in engulfing corpses generated by programmed cell death, but also in the execution of

programmed cell death (REDDIEN et al. 2001). This conclusion was based on the observation

that mutations in engulfment genes enhance the cell-death defect observed in a sensitized

background containing a weak ced-3 loss-of-function allele. There are also a few

programmed cell deaths, such as death of one of the pair of cells B.alapaav and B.arapaav in

the male tail, that appear to be entirely dependent on engulfment (HEDGECOCK et al. 1983).

Additional studies of the lin-24- and lin-33-mediated cytotoxicity could provide valuable

insight into how engulfment contributes to both this cytotoxicity and possibly programmed

cell death. If the ced-2, -5, -10, -12 pathway recognizes a signal presented by the sick Pn.p

cells in lin-24 and lin-33 mutants, it may be possible to isolate mutations in this signal by

screening for suppressors of the vulvaless phenotype caused by mutations in lin-24 and

lin-33.

In contrast to both programmed cell death and lin-24- and lin-33-mediated

cytotoxicity, necrotic deaths do not involve the function of engulfment genes. Specifically,

engulfment genes function in the engulfment of the necrotic corpses generated by mutations

in mec-4 and deg-3, but they affect only the timing of the disappearance of these corpses and

not cell survival (CHUNG et al. 2000).

One other C. elegans cell death seems to require the function of the engulfment

genes, which is the death of the Pn.p cells in animals containing a mutation in pvl-5, a gene

not yet identified molecularly (JOSHI and EISENMANN 2004). When observed by Nomarski

optics, the abnormal Pn.p cell nuclei in animals with the pvl-5 mutation resemble those
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observed in mutant lin-24 and lin-33 animals. These pvl-5-induced deaths are genetically

distinct from lin-24- and lin-33-induced deaths, however, as the pvl-5-induced deaths require

the caspase encoding gene ced-3. pvl-5-induced deaths do not require the activity of ced-4,

which encodes the Apaf- 1 homolog that activates CED-3, making these deaths also distinct

from programmed cell deaths (JOSHI and EISENMANN 2004). pvl-5-induced deaths do occur

in animals lacking any one engulfment gene (in contrast to the lin-24 or lin-33-induced

deaths, which require ced-2, -5, -10, and -12), but these deaths do not occur in ced-1; ced-5

double mutants (JOSHI and EISENMANN 2004). Thus, at least one engulfment pathway must

be functional in pvl-5 mutant worms to allow killing. The authors suggest that pvl-5 might

function to protect the cells from inappropriate activation of ced-3-dependent programmed

cell death by a pathway independent of its physiological activator ced-4 (JOSHI and

EISENMANN 2004). The mechanism of this protection is not known.

We are very interested in understanding how mutations in lin-24 and lin-33 induce

cell death, and the toxin-like domain in LIN-24 suggests a possible mechanism. Related

toxins are thought to form membrane complexes that alter eukaryotic membrane permeability

and cause osmotic lysis (GILBERT 2002). Perhaps the lin-24 and lin-33 mutations

inappropriately activate the toxin activity of the toxin-like domain of LIN-24, causing the

deaths of the specific cells in which they are both expressed. The neomorphic activity of the

allele lin-24(n432), which causes the vulvaless phenotype, is consistent with our data.

Given the similarity of LIN-24 to bacterial toxins, what might be the wild-type

function of the lin-24 gene product in C. elegans? Neither loss of lin-24 function alone, nor

loss of lin-24 function in combination with loss-of-function of its close homologue C31H1.6,

results in any obvious abnormal phenotype. Members of the Caenorhabditis genus are one
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of a small number of eukaryotic organisms that contain members of this family in their

genomes. Almost all LIN-24 homologs are found in bacteria, which are the food source of

C. elegans. In such bacteria, these toxins are produced and are capable of killing animals

such as mosquitoes and cattle by forming oligomers that increase membrane permeability

and cause osmotic lysis. Perhaps the wild-type LIN-24 normally functions to interact with

bacterial toxins and inactivate them, possibly by a mechanism that requires LIN-33. Such an

activity might allow C. elegans to be able to eat the bacteria that produce such toxins that are

normally capable of killing.
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FUTURE DIRECTIONS

The next step in this project is to determine the mechanism by which lin-24 and

lin-33 mutations cause cytotoxicity. A genetic approach to this would be to perform a

large-scale F2 and F3 suppression screen of the vulvaless phenotype caused by mutations in

lin-24 and lin-33. In addition to alleles of lin-24 and lin-33, alleles of some engulfment

genes should be isolated. Previously uncharacterized genes might also be identified, some of

which may function in programmed cell death and some of which might function solely in

the cytotoxicity of lin-24 and lin-33. It would be very exciting to try to use this sort of screen

to isolate the gene(s) encoding the signal presented by dying cells that are recognized by

neighboring cells to trigger engulfment.

I would like to determine the expression patterns of lin-24 and lin-33. Our hypothesis

is that the expression patterns might inform us about why the Pn.p cells appear to be the only

cells affected by these mutations. Perhaps they are the only cells that express both lin-24 and

lin-33. I have already made antibodies to LIN-24 and LIN-33 and transcriptional gfp reporter

constructs for both genes, but analyses with these reagents have not been useful in

determining the expression pattern of these genes. Also, I am interested in determining

whether ced-2, -5, -10, and -12 work non-cell autonomously in lin-24/lin-33-mediated

cytotoxicity, as they do in programmed cell death. I would also like to determine whether

lin-24 and lin-33 work cell autonomously or non-cell autonomously.

Establishing if there is a direct physical interaction between LIN-24 and LIN-33

would confirm part of our model for the activity of these two proteins. The possible

interaction could be explored by either yeast two-hybrid analysis or co-immunoprecipitation

experiments using our anti-LIN-24 antibody, which works on western blots.
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I wish to test the hypothesis put forth in this chapter that the wild-type function of

lin-24 might be to defend worms against one of the toxins that their food source (bacteria) use

to kill organisms. To test this initially, I would examine if loss of lin-24 function and the

function of the highly similar C31H1.6 gene alters the ability of C. elegans to survive on

Pseudomonas aeruginosa. We would examine Pseudomonas aeruginosa first, because

survival assays have been established for this organism (TAN et al. 1999) and it possesses a

cytotoxin that is somewhat similar to LIN-24 (HAYASHI et al. 1989).
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EXPERIMENTAL PROCEDURES

Strains and General Techniques

Strains were cultured as described by BRENNER (1974) and grown at 200 C. The

Bristol strain N2 was used as the wild-type strain, except in multifactor mapping experiments

that used the polymorphic wild-type strains N62 and CB4856 (WICKS et al. 2001). The

mutations used in the study are listed below, and a description, unless otherwise noted, can

be found in RIDDLE (1997):

LGI: ced-](el 735), ced-12(n3261) (ZHOU et al. 2001)

LGIII: ced-9(n1950), ced-4(n1162), ced-6(n1813), ced-7(n1996)

LGIV: lin-24(n432, n1057), lin-24(n1821, n2050) (S. G. CLARK & H. R. HORVITZ,

unpublished results), lin-24(n2258, n2333, n4294) (this study), lin-24(n432 n1503) (this

study), lin-33(n1043, n1044) lin-33(nl110) (M. K. EDWARDS & H. R. HORVITZ,

unpublished results), lin-33(n1302) (J. H. THOMAS & H. R. HORVITZ, unpublished

results), lin-24(n1968, n2003, n4514) (this study), lin-33(n1043 n1502) (this study),

ced-3(n717), ced-2(el752), ced-5(nl812), ced-10(n1993), unc-44(e362)

LGV: unc-76(e911), egl-](nl084 n3082) (CONRADT and HORVITZ 1998)

Assay for Vulvaless Animals

Only worms propagated through two generations without starvation were scored.

Five-centimeter plates were seeded 12 to 24 hours prior to assay with an overnight culture of

the E. coli strain OP50. Single L4 animals were placed one per plate. Sixteen to 18 hours

later, plates were examined for the presence of gravid adults. Plates with gravid adults were

scored for the presence or absence of eggs. Plates without any eggs were scored as vulvaless.
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To assay for suppression of lin-24(n432) and lin-33(n1043)-induced death by

loss-of-function alleles of genes that function in programmed cell death, we modified the

above assay. Homozygous males (e.g., ced-5(n1812) lin-24(n432)) were generated by heat

shock and mated with homozygous unc-76(e911) marked strains (e.g., ced-5(1812);

unc- 76(e911)), and three to five days later non-Unc L4 hermaphrodites were assayed as

described above.

The assay for the dosage studies of lin-24 not included in Table 2 was performed as

previously described (FERGUSON and HORVITZ 1985).

Nomarski Observation of Pn.p Cells

Pn.p cells in lin-24 or lin-33 mutant animals were observed using Nomarski

differential interference contrast microscopy at different times during development as

previously described (SULSTON and HORVITZ 1977).

Electron Microscopy

Nomarski differential interference contrast microscopy was used to select a nematode

with refractile bodies, and digital images were taken to note their positions. Mutant animals

were recovered from the slide and fixed as previously described (BARGMANN et al. 1993).

The fixed, embedded animals were sectioned as previously described (GUMIENNY et al.

1999) and photographed using a JEOL 12000CX electron microscope at 80 kv. After finding

the location of the anus or the gonad in the EM photographs, nuclei were counted by

examining EM photographs of adjacent sections and the cell that corresponded to the
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refractile Pn.p cell identified in the original digital Nomarski image was identified and

examined.

Dominant Suppression Screen for Revertant Alleles of lin-24(n432) and lin-33(nl043)

We mutagenized homozygous L4 or early adult hermaphrodites homozygous for

either lin-24(n432) or lin-33(n1043) with ethyl methanesulfonate (EMS) as previously

described (BRENNER 1974). After mutagenesis, three to four Po hermaphrodites were placed

on each five-centimeter plate. F 1 self-progeny animals that were non-Vul were picked to

individual plates. If greater than 10% of F2 animals were non-Vul, individual non-Vul F2

animals were picked to separate plates and assayed the next generation for suppression of the

Vul phenotype.

Cloning of lin-24 and lin-33

Using standard three-point and polymorphism mapping, we placed lin-24(n1057) and

lin-33(n1043) in small map intervals. To clone the gene lin-24 we performed transformation

rescue experiments as previously described (MELLO et al. 1991) using pRF4 plasmid as a

coinjection marker. To clone the gene lin-33 we injected DNA from lin-33 mutant animals

into unc-76(e91 1) animals, using wild-type unc-76 DNA as a co-injection marker, to identify

DNA that caused the vulvaless phenotype. The DNA injected for the lin-33 cloning were

PCR products generated from lin-33(n1302) animals using the Expand Long Template PCR

System (Roche Applied Science, Indianapolis, IN) according to manufacturer's instructions.

Isolation of lin-24 cDNAs
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A 10.8 kb SmaI-Ncol fragment from cosmid T20H7 was used to screen more than

800,000 plaques of a X ZAP cDNA library derived from mixed-stage poly(A)-positive RNA

collection as previously described (BARSTEAD and WATERSTON 1989). Fourteen plaques

were isolated, six of which hybridized to fragments of the 10.8 kb fragment required for

rescue.

Determination of Mutant Allele Sequences

We used PCR-amplified regions of genomic DNA to determine mutant sequences.

For all alleles of lin-24 and lin-33, we determined the sequence of all exons and splice

junctions. Sequences were determined using an ABI Prism 3100 Genetic Analyzer.

Isolation of Deletion Alleles

Genomic DNA pools from EMS-mutagenized animals were screened for deletions

using PCR as previously described (CEOL and HORVITZ 2001). Deletion mutants were

isolated from frozen stocks and backcrossed to the wild type six times. lin-24(n4294)

removes nucleotides 2259 to 3253 of cosmid B0001. lin-33(n4514) removes nucleotides

28902 to 29937 of cosmid H32C10. C31H1.6(n4763) removes nucleotides 27211 to 28463

of cosmid C31H1.
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FIGURE LEGENDS

Figure 1. The Pn.p Cells in lin-24(n432) and lin-33(nl043) Mutants Look Abnormal

and Appear Different from Both Necrotic and Programmed Cell Death Corpses

(A) Normarski photomicrograph of representative abnormal Pn.p cells in a lin-33(n1043)

L1 larva. The white arrows point to two Pn.p cells that have the refractile appearance often

observed in lin-24(n432) and lin-33(n1043) animals.

(B) Nomarski photomicrograph of corpses generated by programmed cell death in a

ced-5(lf mutant.

(C) Nomarski photomicrograph of a necrotic corpse in a mec-4(d) mutant (photograph

provided by Monica Driscoll).

Figure 2. Ultrastructural Characteristics of the Refractile Pn.p cells in lin-24(n432) and

lin-33(n1043) Mutants

(A) Electron photomicrograph of the refractile body corresponding to P10.p in a

lin-33(n1043) mutant. Four abnormal ultrastructural characteristics of these animals are

indicated: (1) dilated mitochondrion with disrupted internal architecture, (2) electron dense

puncta in the nucleus, (3) dilation of nuclear and associated membranes, and (4) dense

membranous whorls. (5) One of several mitochondria in neighboring cells with normal

architecture. Note that these four abnormal characteristics are not observed in the adjacent

cells, which all have normal cellular architecture.

(B) Increased magnification of (A) showing the disrupted mitochondrion.

(C) Increased magnification of (A) showing a mitochondrion with normal architecture.
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(D) Increased magnification of (A) showing the electron-dense nuclear punctations and

membranous whorls.

Figure 3. Molecular Identification of lin-24 and lin-33

(A) Genetic and physical maps of the lin-24 region. The four cosmids shown were tested

for their abilities to rescue the recessive Vul phenotype of lin-24 mutants. The overlapping

cosmids B0001 and T20H7 rescued the Vul phenotype. An NcoI-HindIII fragment

containing the gene BOO01. 1 also to rescued.

(B) The structure of the lin-24 gene as deduced from genomic and cDNA sequences. The

location of the deletion lin-24(n4294) is indicated by the horizontal line.

(C) The sequences of the lin-24 mutations. The mutated bases are underlined.

(D) Genetic and physical maps of the lin-33 region. PCR products generated from

Iin-33(n1302) genomic DNA spanning most of the shown interval were tested for the ability

to phenocopy the dominant vulvaless phenotype of the mutant animals when injected into

lin-33(+) animals. The 26 kb PCR product #6 was able to cause the vulvaless phenotype.

The 9 kb PCR product containing only the gene H32C10.2 was also able to cause the Vul

phenotype.

(E) The structure of the lin-33 gene as deduced from genomic and cDNA sequences. The

location of the deletion lin-33(n4514) is indicated by the horizontal line.

(F) The sequences of the lin-33 mutations. The mutated bases are underlined.

Figure 4. LIN-24 Contains a Domain Similar to that Found in Bacterial Toxins
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Sequence alignment of LIN-24 and the 3.58-kilodalton-mosquitocidal toxin Mtx3 found in

Bacillus sphaericus. Numbers at the right and left indicate amino acid positions. Identical

residues are colored blue, and similar residues are colored red. Missense mutations found

within the region of homology are indicated.

Figure 5. The Cytotoxicity of lin-24 and lin-33 Is Suppressed by Mutations in the

Engulfment Genes ced-2, ced-5, ced-lO0, and ced-12

We analyzed lin-33(n1043)/+; ced/ced and lin-24(n432)/+; ced/ced mutants as described in

Experimental Procedures. An average of 76 ± 29 (± standard deviation) animals were

assayed for each genotype.

(A) The penetrance of the Vul phenotype of lin-33(n1043)/+ animals was modified by

mutations in some of the genes required for programmed cell death. Genes on the X-axis are

organized in the following order: cell killing genes in order of action (egl-1, ced-9, ced-4,

ced-3); one partially redundant engulfment pathway (ced-1, ced-6, ced-7); the other partially

redundant engulfment pathway (ced-2, ced-5, ced-10, ced-12).

(B) The penetrance of the Vul phenotype of lin-24(n432)/+ animals was modified by

mutations in some of the genes required for programmed cell death.

Figure 6. Model for the Effects of Engulfment on lin-24/lin-33-induced Cytotoxicity

Mutations in lin-24 and lin-33 make the Pn.p cells sick, possibly by a mechanism

related to the toxin domain of lin-24. A signal of this sickness is presented on the cell

membrane and recognized by a neighboring cell. The neighboring cell then either removes

or injures the sick cell in an process that requires the engulfment genes ced-2, ced-5, ced-10,
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and ced-12, which likely act by reorganizing the actin cytoskeleton (adapted from REDDIEN

and HORVITZ (2004)).
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Table 1. lin-24 and lin-33 Allele
Genotype % Vul (n)

Wild type 0 (89)
lin-24(n432) 92 (90)
lin-24(n432)/+ 66 (109)
lin-24(nl821) 75 (89)
lin-24(n1821)/+ 0 (72)
lin-24(n2050) 91 (87)
lin-24(n2050)/+ 0 (71)
lin-24(n1057) 2 (90)
lin-24(n105.7)/+ 41(74)
lin-33(nl043) 97 (90)
lin-33(n1043)/+ 77 (121)
lin-33(nl 044) 96 (90)
lin-33(nl110) 92 (88)
lin-33(n1302) 100 (90)
lin-33(n2003) 99 (90)
lin-33(n 1043) lin-24(n432) 97 (89)

The penetrance of the Vul phenotype (%) was
determined as described in Experimental
Procedures. Heterozygous animals were
generated by crossing homozygous mutant
males with unc-76(e911) hermaphrodites, and
non-Unc progeny were scored. n, number of
animals.
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Table 2. Gene Dosage and Gene Interaction
Studies of Ilin-24 and lin-33 Alleles
Genotype % Vul (n)

Wild typec 0 (89)
lin-24(n432)/lin-24(n432)c 92 (90)
lin-24(n4294A)/lin-24(n4294A) 0 (102)

lin-24(n432)/lin-24(n4294A)" 3 (89)
lin-24(n432)/+c 66 (109)
+/+/+d 0 (33)
lin-33(nl 043)/lin-33(n1043)c 97 (90)
lin-33(n4514A)/lin-33(n4514A) 0 (72)
lin-33(n1043)/1in-33(n4514A)b 21(77)
lin-33(n1043)/+c 77 (121)
+/+/+e 0(53)
lin-33(n1043) lin-24(n432)c 97 (89)
lin-33(n1043) lin-24(n4294A) 0 (56)
lin-33(n4514A) lin-24(n432) 0 (60)

The number of Vul animals was counted as
described in Experimental Procedures. n, number
of animals.
" lin-24(n432) homzygous males were mated with
lin-24(n4294A) hermaphrodites, which were cis-
marked with dpy-4(e1166), and non-Dpy cross
progeny were scored.
b lin-33(n1043) homozygous males were mated
with lin-33(n4514A) hermaphrodites, which were
cis-marked with unc-30(el91), and non-Unc cross
progeny were scored.
c These data are from Table 1.
d This strain was of genotype dpy-13(e184)

unc-24(e138); mDp4; only non-Dpy non-Unc
animals were scored.
e This strain was of genotype unc-30(e191)

dpy-4(e1166); yDpl; only non-Unc non-Dpy
animals were scored.
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