
STABILITY, UNFOLDING, AND AGGREGATION OF THE GAMMA D AND
GAMMA S HUMAN EYE LENS CRYSTALLINS

by

Ishara Amenti Rakem Mills-Henry

B.S./M.S. Biology
Clark Atlanta University, 2000

Submitted to the Department of Biology in partial fulfillment
of the requirement for the degree of

T(CTOPR (• PT-ITT O.•OP-TV

at the
Massachusetts Institute of Technology

February 2007

C 2007 Ishara Amenti Rakem Mills-Henry
All rights reserved

The author hereby grants MIT permission to reproduce and to distribute publicly paper
and electronic copies of this thesis document in whole or in part.

Signature of Author
SDepartment of Biology

February 2007

-x

r

Stephen P. Bell
Chairman, Department Committee on Graduate Students

ARCHIVES

MASSACH
OFT

FEB

LIB

USETSTS Is
ECHNOLOGY

R0 9 2007

RARIES

I-.

Crtified by

//

i/

Accepted bY I , -e

I-~ ~ ~ - ,EýLA L 99 1 - -. -
m mg I, •II . .

VVIWLI~N VJ



STABILITY, UNFOLDING, AND AGGREGATION OF THE GAMMA D AND
GAMMA S HUMAN EYE LENS CRYSTALLINS

Submitted to the department of Biology at the Massachusetts Institute of Technology on
January 23, 2007 in partial fulfillment of the requirements for the degree of Doctor of

Philosophy in Biochemistry

ABSTRACT
The transparency of the human eye lens depends on the properties of the a-

crystallin and py-crystallin families of proteins, which accumulate to very high
concentrations in mature lens fiber cells. The 0- and y-crystallins are thought to be
primarily structural proteins while a-crystallin possess an additional chaperone activity.
Aggregation of partially unfolded or covalently damaged forms of these proteins results
in cataract, which is the leading cause of blindness in the world. The biochemical basis
of the very high crystallin stability, and the nature of the misfolded, modified, or
aggregated states, are thus of considerable importance in understanding the etiology of
loss of lens transparency.

All vertebrate P- and y-crystallins are homologous and contain two highly
symmetrical domains with a hydrophobic interface connected by an interdomain linker.
The overall sequences, fold topology, and domain interfaces of vertebrate py-crystallins
are highly conserved. The two domain 0- and y-crystallins are believed to have evolved
by gene duplication and fusion from an ancestral single domain py-crystallin. This thesis
is focused on stability and aggregation properties of human yD crystallin (yDwT) and
human yS crystallin (ySwT), two of the most abundant proteins in the human lens.
Terminally differentiated fiber cells in the central nucleus of the lens are enucleated and
devoid of organelles. The yD crystallins synthesized in utero must remain stable and
soluble throughout life. The yS protein is more prevalent in the cortical regions of the
lens, where protein degradation and synthesis do occur.

Given the importance of long-term solubility for the crystallins, it seems likely
that selection for the two-domain form is related to the need for very long-term stability.
Comparison of the stabilities of the isolated domains and the intact protein indicated that
the domain interface contributes a AGH2 0 of~ 4.2 kcal*mol-l to the stability of the
complete yDwT two-domain protein. The differential stability observed for the yD
isolated domains was not as distinct for the yS isolated domains. These results support
the idea that selection for increased thermal stability was one of the factors leading to the
evolution of two domain crystallins.

A distinct hysteresis occurs during equilibrium unfolding and refolding, due to a
kinetic barrier in the unfolding pathway. By extrapolating kinetic unfolding results from
denaturing GuHCl concentrations to buffer, I show that the ti 2 for the initial unfolding
step is -19 years. The value extrapolated for the YSwT is not as long, though still
significant. This supports the earlier conclusion that the domain interface is an important
source of stability.

Previous studies had shown that upon dilution from denaturant partially folded
intermediates of yD crystallin formed highly ordered fibrous aggregates that were not
amyloid in nature. This aggregation reaction of yDwT polypeptide chains competing with



productive refolding provided a model for cataractogenesis in vitro. The structurally
homologous ySwT crystallin did not exhibit an off-pathway aggregation under the same
conditions as yDwT. This suggested that the pathway of aggregation involved specific
amino acids or sequences essential for association and was not a general feature of the y-
crystallins. To investigate this disparity between two structurally similar crystallins,
chimera proteins were created in an attempt to narrow down regions of the protein that
promoted aggregation in DwTr or regions in ySwT that inhibited aggregation. The
aggregation behavior upon refolding was analyzed for the chimeras and isolated single
domains. Partitioning of refolding chains into the aggregation pathway was strongest for
the full-length proteins that retained the yD interface. This result is consistent with a
domain swapping mechanism for the off-pathway aggregation of the crystallins. This
aggregation reaction may be coupled to the increased stability of the yD-protein, as a kind
of evolutionary cost of the extremely stable and long-lived native state conformation.

Thesis Supervisor: Jonathan King, Professor of Biology
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CHAPTER ONE:

INTRODUCTION



A. VERTEBRATE EYE

The beauty and function of the eye have captured the attention of artists and

scientists from Leonardo DaVinci to Charles Darwin to modern scientists. How the eye

functions and how it evolved into various forms have been pressing questions addressed

by generations of biologists. The ability of organisms to respond to light is common

among most metazoans (Arendt 2003). However, the evolution of organs to use light to

form images of their environment was a major step forward in early metazoan evolution.

There are many different types of eyes ranging from simple pinhole eyes to complex

terrestrial eyes.

The evolution of the vertebrate camera eye, with its image forming capacity,

presumably provided selective advantage for predation in primitive organisms. In order

to fulfill this purpose, the early vertebrate eye probably consisted of a simple small

pinhole opening, but its light gathering capacity would have been limited (Fernald 2000).

To correct for this, the spherical lens evolved to gather and refract light to a concentrated

location allowing for increased visual field and acuity.

The multiple anatomical eye structures displayed by different species suggest that

the eye evolved polyphyletically or in other words multiple times throughout evolution

(Land 2005). However, there are complex genetic networks controlling eye development

that are conserved in many organisms. These genes are called the master regulators of

eye development because they can induce eye structures in other tissues (Gehring 2002).

An example of this is eyeless or Pax6, a gene that is involved in the development of the

brain and eye both in vertebrates and invertebrates. A loss of function mutation in the

Pax6 gene will result in a no eye phenotype; whereas a gain of function induces ectopic

eye formation (Halder et al. 1995). In addition to the conserved genetic networks,

pigmented photoreceptors are also conserved throughout multiple eye types (Nilsson

2004).



Figure 1-1. A diagram of the eye. Different tissues of the eye are noted: lens, cornea,
pupil, retina, and optic nerve. (Courtesy of the National Eye Institute, National Institutes
of Health)
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B. HUMAN LENS ANATOMY AND COMPOSITION

The lens is a small, clear spheroid situated behind the cornea of the eye. Its main

function is to fine focus light using its high refractive index properties onto the

photoreceptors in the retina to allow for proper spatial vision (Fig 1-1). The structure,

components, and proteins of the lens are essential for maintaining such visual acuity. The

lens consists of the epithelial, cortical, and nuclear cellular layers, all derived from the

embryonic surface ectoderm, also the source of the corneal epithelia. The nuclear core of

the lens consists of primary fiber cells arranged in an ordered array. The secondary fiber

cells can be as long as a few mm surrounding the nuclear core region of the lens.

The fiber cells are filled with proteins called the crystallins. There are three major

vertebrate crystallins, a, 0, and y that comprise the major soluble components of the lens.

Alpha (a)-crystallin provides a structural and chaperone function while the P and y-

crystallins are primarily structural proteins.

C. LENS DEVELOPMENT

Early in embryogenesis, the neural ectoderm forms the optic cup inducing the lens

placode (fated ectoderm) to thicken and invaginate to form the lens vesicle (Henry and

Grainger 1990). The posterior cells in the lens vesicle elongate and differentiate into the

primary lens fiber cells while the anterior cells form the lens epithelial monocellular layer

(Lovicu and Robinson 2004, Fig. 1-2A). The lens epithelium is a regenerative source of

secondary lens fiber cells throughout life. Secondary lens fiber cells elongate and

differentiate forming concentric layers of cells packed in hexagonal manner surrounding

the nucleus. In the adult lens, the lens nucleus consists of primary lens fiber cells and

mature (terminally differentiated) secondary fiber cells (Fig. 1-2B). The cortical region

of the lens consists of gradually differentiating lens fiber cells, indicating that these outer

layers remain capable of protein synthesis and regeneration.



During the development of the lens, the lens fiber cells terminally differentiate in

an apoptotic-like process that degrades all organelles including the nucleus (Lovicu and

McAvoy 2005). This process limits the scattering of light necessary for lens transparency

and refraction. Therefore, the proteins in the central region of the lens that were

expressed in utero, do not experience protein degradation or regeneration. The lens is

continually adding cell layers onto these previously differentiated cells throughout life.

Thus, the outer cortical and epithelial cell layers remain metabolically active.

The expression of crystallins is coordinated with the differentiation of the lens

fiber cells. a-crystallins are expressed in epithelial cells but are upregulated upon lens

fiber cell differentiation. 03 and y-crystallins are lens fiber cell specific, varying in spatial

and temporal developmental expression, predicted to be important for the refractive

gradient (Bloemendal et al. 2004).

D. LENS TRANSPARENCY

Crystallins are extremely abundant in the human lens present at concentrations of

200-450 mg/ml (Fagerholm et al. 1981b; Siezen et al. 1988). The crystallins maintain

high protein concentration, short-range order, and polydispersity in the lens contributing

to its transparency and high refractive index (Delaye and Tardieu 1983; Tardieu 1988).

As noted above, terminally differentiated fiber cells in the lens are enucleated and devoid

of all other organelles to prevent diffraction of light and allow for proper focusing. Thus,
the crystallins must remain soluble throughout life despite high concentrations of protein,
continual UV exposure and oxidative stress.

The achievement of the uniform distribution of the crystallins has been studied by

X-ray and visible light scattering studies. These studies have shown that light does

scatter in lens protein solutions at concentrations lower than -~130 mg/ml. At higher

concentrations, the light scatter decreased accordingly with increased protein

concentration (Bettelheim and Siew 1983; Tardieu et al. 1992). This phenomenon was

named short range order, resulting in a reduction of scattered light and contributing to

transparency.
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At such high protein concentrations, the polydispersity of the crystallins is

proposed to prevent crystallization. The different sized and shaped crystallins and their

surface properties contribute to this polydispersity. The crystallins can be thought of as

building blocks fitting together to form a highly-ordered matrix (Fig. 1-3). The surface

charge of the crystallins - the 0-crystallins are repulsive while the y-crystallins are

attractive - is thought to be important for the short range order. Microequilbrium and

surface plasmon resonance data of the different crystallins has demonstrated homologous

and heterlogous interactions (Biswas and Das 2004; Ponce et al. 2006). These coulombic

interactions between the crystallins possibly assist in their solubility as well.

E. VERTEBRATE GENES FORMING THE LENS CRYSTALLINS

Several genes encode the vertebrate ubiquitous crystallins. There are four

different groups of y-crystallin, y M, yN, yS, and yA-F. The yS crystallins subgroup is

expressed in all vertebrates; while the yA-F crystallin expression is limited to mammalian

systems and yM crystallin are mostly present in aquatic vertebrates (Wistow et al. 2005).

yN crystallin is present in all vertebrate genomes, similar to yS. However, yN expression

has only been found in some organisms with limited expression in specific tissues. In

mammalian organisms, j8 crystallin is located on a different chromosome from the yA-F

crystallins which are clustered together in tandem on the same chromosome. The "A-F

crystallins have the highest sequence similarity among one another.

There are two types of 0-crystallins, acidic and basic. Both P-crystallins have N-

terminal extensions and the basic crystallins have an additional C-terminal extension.

The acidic [-crystallins include [A1, [A2, [A3, and [A4, while the basic [-crystallins

include 3B 1, B2, and PB3. The QA1 and PA3 crystallins are expressed by the same

gene with the 3A3 transcript initiating more upstream than 3A1. This difference

corresponds to a longer N-terminal extension. There are two separate functional ac-

crystallin genes, axA is expressed in a lens specific manner while aB is expressed in other

tissues such as the muscle, brain, and heart.

20
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In the human genome, yA-F crystallin genes are in tandem repeats on

chromosome 2, and )S crystallin is located on chromosome 3. Both )E and )F are

pseudogenes, and NV (located on chromosome 7) transcripts have not been detected in the

lens (Hejtmancik et al. 2001). Among the y-crystallins that are expressed, 7C, yS and yD

are most abundant in that order whereas yA and yB are present at low levels. The 0-

crystallin fA4, /B2, /B3, andpseudo fiB2 cluster is located on chromosome 22. In

contrast other 0-crystallins, /A1 and 3 are found on chromosome 17 while ,8A2 is on

chromosome 2 near the yA-F cluster. For the a-crystallin genes, the ar4 gene is located

on chromosome 21, and cB gene on chromosome 11 (Hejtmancik et al. 2001).

In mammalian organisms, 0- and y-crystallins are fiber-cell specific. In contrast,

a-crystallins are expressed both in the epithelial layer of the lens and in the lens fiber

cells. In particular, yA-F crystallins and 3B1 crystallins are expressed in utero and are

localized to the lens nucleus (Chambers and Russell 1991; Flaugh et al. 2006; Lampi et

al. 1998). In contrast, [B2 and yS-crystallin, are postnatally expressed in the secondary

fiber cells and are expressed throughout life (Peek et al. 1992b; Ueda et al. 2002; Wistow

et al. 2002).

F. CONFORMATION AND PROPERTIES OF THE LENS CRYSTALLINS

The ubiquitous vertebrate crystallins, a-, 3-, and y-crystallins are small globular

proteins. a-crystallins and y-crystallins are approximately 20 kDa and 0-crystallins are

slightly larger, ranging from 23kDa - 28 kDa in size. The crystallins lack metals or

prosthetic groups as well as in most cases disulfide bonds. Structurally, the crystallins

can be divided into two separate families, the a-crystallins and the py-crystallins. The

structure of a-crystallin differs from the 3- and y-crystallins in that it is thought to have

one P-sandwich domain while the 0- and y-crystallins have two 3-sandwiches consisting

of double Greek Key motifs. The stabilities of the crystallins vary with the monomeric y-

crystallin more stable than the oligomeric P- and a-crystallins (Fig. 1-4).
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Figure 1-4. Ubiquitous vertebrate crystallin proteins (A) Wheat small heat shock protein
(Hsps) polymer a model of ox-crystallin oligomerization (B) X-ray crystallography
structure of the 3B2 crystallin (C) X-ray crystallography structure of the y crystallin
(Modified from Slingsby, C. and Clout, N.J. Eye (1999) Pt 3b (395-402))



1. a-crystallin

There are two a-crystallin proteins in the lens, aA (lens specific) and aB which

are at a ratio of 3aA:laB (Horwitz 2003). a-crystallin forms polydispersed

heteroligomers with complexes ranging form 300 kDa to 1200 kDa (MacRae 2000). A

crystal structure of the a-crystallin has yet to be solved likely due to its polydispersed

nature. Both aA and aB are homologous to the small heat shock (sHsp) family of

molecular chaperones (de Jong et al. 1998). Many members of this family also form

polydispersed multimers.

The sHsps have three major regions, a variable N- and C- terminal extension and

a highly conserved P-sandwich a-crystallin domain (Mornon et al. 1998). Circular

dichroism (CD) and infrared spectroscopy (IR) analyses support the P-sandwich

conformation with unstructured N-terminal and C-terminal regions (Bloemendal et al.

2004). An X-ray structure of a wheat sHsp dodecamer polymer demonstrates the

formation of a higher order structure by association with the N- and C-terminal regions

(Van Montfort et al. 2001; van Montfort et al. 2001, Fig. 1-4). In addition, cryo-electron

microscopy reconstructions of aB-crystallin suggest that it forms a micelle-like structure

~19 nm in diameter, having a central cavity with a diameter of~- 8 nm (Haley et al. 1998;

Haley et al. 2000).

This proposed structure along with chaperone assays of a-crystallin in vitro has

lead to a plausible mechanism of a-crystallin function. In addition to its structural role, it

is hypothesized that a function of a-crystallin in vivo involves binding misfolded proteins

to prevent aggregation (Clark and Muchowski 2000; Ganea and Harding 2000). There is

no evidence that a-crystallin refolds proteins by itself, therefore acting as an ATP-

independent passive chaperone. The proposed cavity of the a-crystallin provides an

attractive model in which the aggregation susceptible crystallins may be internalized into

the cavity.



a-crystallin demonstrates lower stability than the py-crystallins, with aA slightly

more stable than aB (Sun et al. 1999). Thermal stability assays revealed a TM of~-600 C

and both aA and aB crystallin initiate unfolding at lower concentrations of denaturant

than the Py-crystallins (Das and Liang 1997; Santini et al. 1992)..

2. A- and )ycrystallins

The [- and y-crystallins are proposed primarily to function as structural proteins.

Structurally, the vertebrate P and y-crystallins are similar in that they contain two highly

symmetrical domains with an interface connected by an interdomain linker (Fig. 1-4).

Other structural commonalities are the intercalated double anti-parallel [-sheet Greek

Key motifs, in which strand d of the first motif is paired with strand c of the second motif

(Bax et al. 1990). Also, a tyrosine corner present in each domain is thought to be

stabilizing to this [-hairpin of the Greek Key (Bax et al. 1990). The tyrosine corner is a

hydrogen bond between the tyrosine on strand c of the second motif with the backbone of

strand d of the same motif and is thought to be common among [-sandwich Greek Key

containing proteins (Hemmingsen et al. 1994). Only a few structural differences are

observable between [ and y-crystallins such as the [-crystallins N- and C-terminal

extensions as well as their ability to associate.

The [- and y-crystallin sequences are only 30% conserved. However, the

interdomain interface and the tyrosine comer have high sequence similarity. The domain

interface has a hydrophobic region and peripheral amino acids that are situated above and

below the hydrophobic residues. The peripheral residues may act as a barrier to the

solvent surrounding the hydrophobic region (Flaugh et al. 2005a). Also, there is high

conservation of the four tryptophans in the buried core of the crystallins and tyrosines

throughout the crystallins, many of which are surface exposed.

In the human lens, the major crystallins are the closely related yC, yS and yD (Fig.

1-5). Their amino acid composition is not unusual except possibly for a higher



percentage of Arg and a higher percentage of aromatic residues consistent with the other

crystallins (Table 1-1). On the other hand, in yD and yC crystallin, the higher

concentration of Arg residues is offset by a reduction in the Lys residues. It has been

predicted that the Arg residues can contribute to solubility. Thus, the higher prevalence

of Arg may assist in the solubility of the protein.

Table 1-1. Amino acids abundance in proteins compared to 7C, yD, yS crystallin
composition. McCadon, P. et al., Proteins: Structure, Function and Genetics 1988, 4:99-
122.

Average HyC- HyD- HyS-
Amino Acid crystallin crystallin crystallin

Percent Percent Percent Percent
Ala (A) 7.34% 2.30% 2.30% 3.90%
Arg (R) 5.2% 11.50% 12.10% 7.30%
Asn (N) 4.57% 2.30% 4.00% 2.80%
Asp (D) 5.12% 5.70% 6.90% 5.60%
Cys (C) 1.76% 4.60% 3.40% 3.90%
Gin (Q) 3.96% 6.90% 5.70% 5.10%
Glu (E) 6.22% 7.50% 5.70% 7.90%
Gly (G) 6.89% 6.30% 8.00% 7.90%
His (H) 2.26% 2.30% 3.40% 2.20%
Ile (I) 5.76% 3.40% 3.40% 5.60%
Leu (L) 9.36% 10.90% 9.80% 5.10%
Lys (K) 5.81% 1.70% 0.60% 5.60%
Met (M) 2.32% 3.40% 2.90% 3.40%
Phe (F) 4.12% 2.30% 3.40% 5.10%
Pro (P) 5.00% 4.60% 2.90% 4.50%
Ser (S) 7.38% 7.50% 9.80% 6.20%
Thr (T) 5.85% 2.90% 1.70% 3.90%
Trp (W) 1.34% 2.30% 2.30% 2.20%
Tyr (Y) 3.25% 8.00% 8.00% 7.90%
Val (V) 6.48% 3.40% 3.40% 3.90%



HumanyC MG----KITFYEDRAFQGRSYETTTDCPNLQPYFSRCNSIRVESGCWMLYERPNYQGQQY 56
HumanyD MG----KITLYEDRGFQGRHYECSSDHPNLQPYLSRCNSARVDSGCWMLYEQPNYSGLQY 56
HumanyS MSKTGTKITFYEDKNFQGRRYDCDCDCADFHTYLSRCNSIKVEGGTWAVYERPNFAGYMY 60

Human7C LLRRGEYPDYQQWMGLSDSIRSCC--LIPQTVSHRLRLYEREDHKGLMMELSEDCPSIQD 114
HumanyD FLRRGDYADHQQWMGLSDSVRSCR--LIPHSGSHRIRLYEREDYRGQMIEFTEDCSCLQD 114
HumanyS ILPQGEYPEYQRWMGLNDRLSSCRAVHLPSGGQYKIQIFEKGDFSGQMYETTEDCPSIME 120

HumanyC RFHLSEIRSLHVLEGCWVLYELPNYRGRQYLLRPQEYRRCQDWGAMDAKAGSLRRVVDLY 174
HumanyD RFRFNEIHSLNVLEGSWVLYELSNYRGRQYLLMPGDYRRYQDWGATNARVGSLRRVIDFS 174
HumanyS QFHMREIHSCKVLEGVWIFYELPNYRGRQYLLDKKEYRKPIDWGAASPAVQSFRRIVE-- 178

Figure 1-5. Sequence alignment of the three abundant y-crystallins in the human lens.

TC and yD crystallins have 72% identity, 83% similarity; yD and yS crystallins have 50%

identity, 69% similarity; yC and yS crystallins have 53% identity and 70% similarity.



Solved structures of the 0-crystallins show two different ways that the [-crystallin

monomers can form oligomers. In 3B2, the dimer formation is a domain swapped

conformation in which the N-terminal domain of molecule A interacts with the C

terminal domain of molecule B. The domain linker is extended to allow for

intermolecular interactions (Bax et al. 1990). On the other hand, in [B1, the linker is

bent as in the y-crystallins and the [B1 monomers interact intramolecularly. The two

monomers associate forming another interface in the [B 1 dimer (Bateman et al. 2001;

Van Montfort et al. 2003). This other interface is the same interface observed in the [B2

tetramer, in which domain-swapped dimers associate (Bloemendal et al. 2004).

In addition to forming homo-oligomers, the [-crystallins can form hetero-

oligomers. Bateman et al. has shown that [A3 and [A4 crystallins can undergo subunit-

exchange to oligomerize with PB1 (2003). These hetero-oligomers and homo-oligomers

formed by the [-crystallins can contribute to the polydispersity of the crystallins,

inhibiting crystallization in the lens as well as promoting an even distribution of protein

in the lens, leading to a higher refractive index.

Comparative experimental studies between P and y-crystallins have shed some

insight into what structural differences are involved in their association properties. Both

have analogous interface residues; therefore, the linker composition between the domains

has been previously studied to determine its role in oligomerization. For instance,

differences between [B2 and yB crystallin are an extended linker in [B2 between the

domains and the N- and C- terminal extensions of [B2. To study the nature of this

association empirically, the linker sequences of [B2 and Bovine yB crystallins were

exchanged and oligomerization was determined. Replacing the yB linker with [B2

crystallin's linker changed the oligomerization of [B2 to a monomeric state (Trinkl et al.

1994). Substituting the [B2 linker in yB did not change the monomeric state of yB-

crystallin (Mayr et al. 1994). These results emphasized the importance of the

interdomain interface association in maintaining the monomeric state of the y-crystallins.

Thus, the y-crystallin linker may serve primarily to lower the entropic cost for these



interactions to be favorable. Contrary to yB, these results suggest that for OB2, the

conformation and length of the linker is crucial for the oligomerization and stabilization

of the dimer. The intermolecular interface also plays an important role in the

stabilization of the dimer.

3. Stability of the P/3crystallins

The P- and y-crystallins have provided one of the major experimental systems for

the investigation of domain-domain interactions in proteins and of domain-swapping in

multimeric proteins (Bloemendal et al. 2004). Although the majority of py-crystallins

have the same structural features, their stabilities vary quite considerably. Several studies

of the 3- and y-crystallins have exhibited differential domain stability in their individual

domains. These isolated domain studies have revealed the importance of the domain

interface in the overall conformational stability.

The py-crystallin family exhibits very high stability, albeit varying in stability

with 0-crystallins considerably less stable than y-crystallins. These py-crystallin

properties have been suggested to be due to the complex topology of the py-crystallin

Greek Key fold (MacDonald et al. 2005). Another contributor is the stronger interface

contacts in the y-crystallins (Mayr et al. 1994; Palme et al. 1997; Wieligmann et al.

1999). Mutations within the interface destabilized both bovine yB and human yD-

crystallins (Flaugh et al. 2005b; Palme et al. 1997; Palme et al. 1998b). Prior to this

thesis, isolated domain studies have been performed in yB, 1B2, and yS crystallins.

Thermodynamic studies of bovine yB crystallin demonstrated a bimodal

equilibrium transition at pH 2.0, in which the N-terminal isolated domain was found to

more stable than the C-terminal isolated domain (Rudolph et al. 1990). This difference in

domain stabilities was attributed to electrostatic repulsions in the C-terminal domain.

The C-terminal domain had a net charge of +16 compared to the N-terminal domain

which had a net charge of +13 at acidic pH. At pH 7.0, closer to the isoelectric point of



both domains the thermodynamic stabilities were similar (Mayr et al. 1997). Thus at

acidic pH, the C-terminal domain's repulsion led to destabilization.

For [B2 crystallin, biophysical studies have shown that the C-terminal domain is

more stable than the N-terminal domain (Wieligmann et al. 1999). The N-terminal

domain in isolation was found to be destabilized at low concentrations without

denaturant. At higher concentrations, the N-terminus dimerized and exhibited marginal

stability. This work suggested a folding pathway for 3B2 in which C-terminal domain

folds first and the N-terminal domain associates with its dimeric partner assisting in the

folding of the protein. These studies suggest that the interface contributes to the overall

stability of the protein.

Human and bovine yS studies also demonstrated differential domain stability.

Wenk et al. found that in both orthologs, the N-terminal domain was similar to the

stability of the C-terminal domain (2000). The hypothesis suggested was that the

interface interactions in yS crystallin were not as strong as in other y-crystallins. In this

thesis, the analysis of the isolated domains demonstrated that the N-terminal domain is

less stable thermally, thermodynamically, and kinetically than the C-terminal domain.

The hypothesis discussed in this thesis is that the contribution of the interface is not seen

in the equilibrium experiments since the (un)folding transitions of the individual domains

overlay or because of the folding cooperativity exhibited by wild type yS crystallin.

However, in the context of the full-length protein, the N-terminal domain is stabilized by

the presence of the C-terminal domain through its interdomain interactions.

4. Microbial Crystallins

Although separated as a different section in this thesis, the microbial crystallins

have a py-crystallin fold. The most extensively studied microbial crystallins include

Protein S and Spherulin 3a. Protein S is a spore coat protein in the soil bacterium,

Myxococcus xanthus, that is activated upon starvation of the bacterium (Inouye et al.

1979; Wistow et al. 1985). Spherulin 3a is also a protein that is most abundantly



expressed upon starvation and stress in Physarum polycephalum, a slime-mold (Bernier

et al. 1986; Bernier et al. 1987; Wistow 1990). It is interesting to note that these two

microbial crystallins have stress-related roles.

Crystallography and nuclear magnetic resonance (NMR) studies of these two

microbial crystallins reveal several structural features common to the vertebrate py-

crystallins. Protein S is also a two domain protein, although the interdomain interface

differs from the vertebrate crystallins and is not symmetrical (Bagby et al. 1994a; Bagby

et al. 1994b; Bagby et al. 1994c). Both domains of Protein S contain the tyrosine corner

motif and similar hydrophobic core within each domain (Clout et al. 1997). Contrary to

Protein S, Spherulin 3a is a single domain crystallin that dimerizes but differs from other

py-crystallins in that it does not contain a tyrosine corner (Clout et al. 2001; Rosinke et

al. 1997). The dimer interface in the Spherulin 3a observed in the crystal structure is not

the conserved interdomain interface of the vertebrate crystallins. However, the domain

interface contacts are extremely strong since appreciable amounts of monomer are not

present in equilibrium. Additional structural features of the microbial crystallins are

symmetrical Ca2+ binding sites in each domain, thought not to be present in the vertebrate

py-crystallins (Clout et al. 2001). In Protein S, Ca2 + binding promotes polymerization of

the protein forming the spore coat in Myxococcus (Kaiser et al. 1979).

Similar to the vertebrate crystallins, the microbial crystallins exhibit high stability

which increases upon binding of Ca2+. In attempts to decipher the folding pathway of

Protein S, isolated domain thermodynamic analyses were performed. These studies from

Protein S showed differential thermodynamic stability like the vertebrate P- and y-

crystallins, with the N-terminal domain being more stable than the C-terminal domain

(Wenk and Jaenicke 1999). This difference is attributed to a weaker Ca2+ binding site in

the N-terminal domain of the protein. Protein S also demonstrates kinetic stability with

increased stability in the context of the full-length protein due to interface contacts

(Wenk et al. 1998). The rates of unfolding of the individual N-terminal domain and C-

terminal domain of Protein S were similar and exhibited a 100-fold increase compared to



the full-length protein suggesting that the interface contacts were important in the kinetic

stability of the protein (Wenk et al. 1998).

Spherulin 3a has demonstrated kinetic and thermodynamic stability by DSC

measurements, equilibrium unfolding/refolding and kinetic unfolding studies

(Kretschmar and Jaenicke 1999; Kretschmar et al. 1999a; Kretschmar et al. 1999b).

Kinetic unfolding studies of Spherulin 3a revealed even higher kinetic stability compared

to Protein S with an extrapolated half-life of -12 days in strong chaotropic denaturant

(Guanidinium thiocyanate) (Kretschmar et al. 1999a). Interestingly, upon binding Ca2+

Spherulin 3a exhibits fluorescence quenching in the native state, similar to other

vertebrate P-and y-crystallins. The structural, functional, and stability properties of the

microbial crystallins suggest that they may be related to the ubiquitous vertebrate

crystallin ancestral protein.

G. THE CRYSTALLIN PROTEINS AND LENS EVOLUTION

1. Vertebrate Ubiquitous Crystallins

The lens is not preserved in fossil specimens making it difficult to study its

evolution through paleontology. However, advances in genomics allowing for

comparative studies of lens related genes have provided insight into lens evolution.

Studies of vertebrate lens evolution have advanced recently due to the discovery of an

ancestral single domain py-crystallin present in the urochordate sea squirt, Ciona

intestinalis (Shimeld et al. 2005). Urochordates are closely related to the ancestor of

modem vertebrates. Protein and structural alignment comparisons support a tree in

which the P and y crystallins evolved from this common ancestral protein (Fig. 1-6).

Surprisingly, the regulatory promoter of this single domain had the ability to be expressed

in the vertebrate, Xenopus laevis. It was previously believed that the lens arose after the

split of the chordates to the vertebrate lineage; however, this new finding suggests that

py-crystallin was expressed in the neuroectodermal tissue before vertebrate lens evolution

(Shimeld et al. 2005).



The discovery of the non-dimeric single domain protein confirms the idea that a

gene duplication event occurred in the evolution of the crystallins. Phylogenetic trees

comparing genes, intronic sequences/structures and protein structures have suggested that

there are four different y-crystallin classes (yA-F, yM, yN, and yS) (Fig. 1-6) (Wistow et

al. 2005). yN crystallin is the evolutionary connection between 0- and y-crystallins

according to its gene and protein structure similarities to both groups. These diverse

subgroups of y-crystallins are important for the different optical properties required for a

diverse set of organisms. While the sequence and structural alignments of the crystallin

proteins have given us a phylogenetic lineage and information on the evolution of the

crystallin family, biophysical properties may also give insight into the importance of the

gene duplication of these proteins as well as the stability of these proteins.

Since py-crystallins have structural and gene similarities with microbial stress

proteins, it has been suggested that the crystallin ancestor had a primitive role in stress

and was possibly recruited to the vertebrate lens for its stress-related properties. The

crystallins are present in other tissues such as the retina and the presence of non-lens [y-

crystallins such as the Absent in Melanoma (AIM) protein associated with a suppression

of malignancy in melanomas, contributes to the idea of recruitment (Aravind et al. 2006;

Rajini et al. 2003).

2. Taxon-specific crystallins

In addition to the vertebrate a, 3, and y crystallins, invertebrates and vertebrates

have recruited other proteins for crystallins. These are called taxon-specific crystallins.

Many of the taxon-specifc crystallins are believed to have evolved through a gene-

sharing mechanism (Piatigorsky and Wistow 1989). Gene sharing refers to using

identical genes are utilized for two different functions.
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An example of gene sharing in the lens is the lactose dehydrogenase (LDH)/E-

crystallin of the avian lens and the argininosuccinate lyase (ASL)/82 crystallin (Hendriks

et al. 1988; Piatigorsky et al. 1988). These housekeeping proteins exhibit dual roles as

both metabolic enzymes and refraction proteins in the lens. Some of the taxon-specific

crystallins have retained their enzymatic activity. Another avian crystallin, 81, does not

have the same gene and seems to be a gene duplication of the ASL gene (Thomas et al.

1990). The avian 81-crystallin has adapted to the lens environment by sequence changes

that increased its thermal stability (Voorter et al. 1993). The recruitment of enzymes to

act as refractive proteins may be associated with the need for high expression of

crystallins to produce the len's high refractive index properties.

H. 1-SHEET PROTEIN FOLDING

The folding mechanism of 1-sheet proteins are still not well understood and are

lagging far behind a-helical proteins. The structural properties of P-sheet proteins are far

more complex than a-helices primarily because of the separation in linear sequence

compared to the interacting residues of the 13-sheet secondary structure. For example,

although RNase has been extensively studied, pathways leading to the formation of the

three 1-strands still have not been elucidated. Although some of the available techniques

can catch submillisecond transitions, studies of 13-sheet model proteins still have

difficulties analyzing the fast folding intermediates, which are thought to be mostly 13-
turns and 13-hairpins. 13-hairpins and 13-turns seem to be the first to fold and unfold in a 13-
sheet structure (Searle and Ciani 2004). Protein engineering methods to create one 3-
hairpin or 1-turn in conjunction with submillisecond techniques are being used to identify

initial steps in 13-sheet folding. The formation of these intermediates may involve non-

native contacts. Additionally, computational studies are being utilized (Hughes and

Waters 2006). In the future these techniques may provide further insights.

Model small globular 13-sheet proteins have been utilized to studying the early

intermediates formed during the folding pathway such as Interleukin-l 3 and ubiquitin. In



studies of these model proteins, the first folding intermediates identified thus far have the

3-strand already formed. In many cases, the first folding intermediates have non-native

contacts. Multiple techniques have been employed in determining the structure of these

intermediates such as hydrogen exchange/NMR (HX)/NMR or NMR at various

equilibrium or kinetic phases. Further studies may lead to insight into the structure of the

intermediates containing non-native interactions.

Interleukin-1 3 is a 3-trefoil protein with six two-stranded 3-hairpins. CD studies

have suggested a molten globule intermediate with 90% secondary structure forms on a

millisecond timescale along the folding pathway (Ptitsyn et al. 1990). However,

(HX)/NMR detected intermediates after 1 second demonstrating the rapid folding of P-

sheets. After this time period, a transient intermediate formed after which a more native-

like intermediate is structured (Varley et al. 1993). Taken together, these studies

suggested that the fast non-native 3-sheet intermediate is formed before the more native-

like structured P-sheet on the folding pathway (Varley et al. 1993).

Ubiquitin is a small 76 amino acid protein that has a five P-strand structure

consisting of three anti-parallel 3-strands and one parallel 3-strand as well as two Xa-

helices. Although upon initial inspection, the folding kinetics appeared to be two-state,

further experiments indicated that this protein may have kinetic folding intermediates

(Khorasanizadeh et al. 1993). (HX)/NMR folding experiments indicated that the N-

terminal region of the protein consisting of an a-helix and a 3-hairpin was more

structured than the C-terminal region (Went and Jackson 2005). This intermediate was

able to be stabilized. More recent techniques including pressure unfolding and

computational analysis also suggest that the folding nucleus of the protein may be this a-

helix, P-hairpin region. It also supports the idea that these early transient intermediates

may involve non-native contacts.



I. OTHER PROTEINS WITH GREEK KEY MOTIFS

A type of 3-sheet fold is the Greek Key motif which obtained its name from the

symbol found on Greek Attic vases which resembles the anti-parallel 3-sheets of the

protein fold. The Greek Key containing proteins consist of at least four anti-parallel 3-

sheets; for instance, with one Greek key motif strands 1 and 4 interact and strands 2 and 3

interact (Fig. 1-7). However, the presence of only one Greek Key motif in isolation has

not been found in nature (Jaenicke and Slingsby 2001). Greek Key motifs are found in

many 3-barrel and 3-sandwich structures which can form a diverse set of topologies. The

3-barrels form a closed structure consisting of (-twists and coils and participate in

hydrogen bonding of the first 3-strand to the last 3-strand. (-sandwiches are stacked 3-

sheets intertwined to maximize the interactions between the two sheets. Both types can

contain right and left handed Greek Key motifs and can form multiple types of

orientations (Zhang and Kim 2000). The mechanism of Greek Key folding is still under

investigation. In theory there are a number of ways to obtain the configuration of the

Greek Key. However, common conformations are observed in the 0-sandwich proteins

involving a five-stranded overlapping Greek Key, that is, the Greek Key is split between

the two stacked sheets (Zhang and Kim 2000).

Examples of well-studied 0-sandwich proteins are the immunoglobulins. The

Greek Key motifs observed in these proteins are common to the Ig-like structural family

of proteins with diverse functions. Some additional examples of this structural family

include fibronectins and cadherins. It has been proposed that due to the similarities in the

kinetics and stabilities of these proteins that they have a common folding nucleus (Clarke

et al. 1999). Commonalities include interactions among some of the interacting 3-strands

of the proteins and were confirmed by computational methods (Mirny et al. 1998). This

folding nucleus may be important for understanding the folding of the Greek Key 3-

sandwich proteins.

Another example of a folding nucleus in the Greek Key domains was found in

NMR studies of the N-terminal isolated domain from the microbial crystallin, Protein S.



Since the N-terminal domain of Protein S exhibited non-coincidence in fluorescence

spectroscopy and CD studies, this suggested that N-terminal domain was not a two state

folder. NMR on equilibrium intermediates identified a p-hairpin region of the Greek Key

that was structured. This region was in the second motif of the Greek Key (innermost

Greek Key, closest to the interface) including the tyrosine corner and may act as a

nucleus for the folding of the protein (Bagby et al. 1998).

In Chapter two of this thesis, refolding kinetics of the human yD and yS

crystallins detected a partially folded intermediate in the formation of the isolated

domains (two intercalated Greek Key motifs). This intermediate may indicate a

sequential folding of each Greek Key motif within the domain or alternatively may be a

combination of folding both Greek Key motifs. The results from the aforementioned

Bagby et al. support the sequential Greek Key motif folding hypothesis in which the

region containing the tyrosine corner in the second motif is the first to fold (1998).

Similar to the Ig-like structural family, analysis of these refolding intermediates may give

insight into how the Greek Key domains fold.

J. FOLDING, UNFOLDNG AND AGGREGATION OF HUMAN yD

CRYSTALLIN

Fluorescence spectroscopy has been beneficial in determining the folding and

stability of the crystallins. The y-crystallins have four conserved tryptophans that are

buried in the four different quadrants of the protein core. Two of the tryptophans are

located in the upper regions of the two domain protein in near symmetrical positions

while the other two are located in the bottom region (Fig. 1-8). Human yD crystallin

(yDwT) and many of the other 3 and y-crystallins have tryptophans that are quenched in

the native state. The trytptophan quenching phenomenon in 'DwT has recently been

elucidated. It involves a charge transfer mechanism in which the top tryptophans, Trps

68 and 156, undergo a charge transfer to the amide backbone polypeptide chain. The

moderately fluorescent bottom tryptophans, Trps 42 and 130, undergo an energy transfer

mechanism to their corresponding top tryptophans, Trps 68 and 156 (Chen et al. 2006).
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Two Intercalated Greek Key Motifs = One Domain
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Motif 1 Motif 2

Figure 1-7. Greek Key topology two-dimensional schematic. N and C (white) represent
the N-terminal and C-terminal domain. Top: One Greek Key motif. Bottom: Two
intercalated Greek Key motifs as seen in one domain of the ~- and y- crystallins. A, B, C,
and D represent the different n-strands of the each motif, red represents motif 1 and blue
represents motif 2. The green circle represents the location of the tyrosine corner in motif
2 of the P- and y- crystallins.
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Therefore, when the tryptophans are buried in the protein's folded state, the fluorescence

emission is lower than the exposed tryptophans in the unfolded state.

yDwTr has been cloned, expressed, purified and characterized biophysically

(Kosinski-Collins and King 2003; Kosinski-Collins et al. 2004). Previous kinetic and

equilibrium studies have identified a folding pathway for yDwr. By probing the structure

of YDwT, the unfolding and refolding of the protein was monitored. In work by Kosinski

et al., triple tryptophan mutants of yDwTr were made in order to gain insight into the

folding pathway of yDwr, by monitoring the fluorescence of each individual tryptophan

(2004). These studies showed that the C-terminal domain folded before the N-terminal

domain.

In studies by Flaugh et al., mutations in the yDwTr interdomain interface

demonstrated the importance of the interface for overall stability of the protein (2005).

The C-terminal domain acts as a template for folding and stabilization of the N-terminal

domain. These studies also identified an intermediate along the folding/unfolding

pathway. The interface mutants were destabilized in the transition monitoring the N-

terminal domain (Flaugh et al. 2005b). Thus, the populated equilibrium intermediate had

likely the C-terminal domain folded and the N-terminal domain unfolded. The studies of

the isolated domains in this thesis confirmed these observations.

The characterized partially folded intermediate with the N-terminal domain

unfolded and the C-terminal domain folded provides insight for the folding of multi-

domain proteins. Independent folding of each domain has been proposed as a mechanism

of multi-domain protein folding. Although this is a viable hypothesis and many domains

seem to fold independently, yD crystallin has revealed a nucleated folded process. This

suggested that the N-terminal domain in the context of the full-length protein may be in a

partially structured state such as a molten globule or a precursor to j-sheet formation that

has yet to be described. However, the N-terminal domain of the protein can, on its own,
fold into a native-like structure (Chapter 2).
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Figure 1-8. Human yD and murine yS high resolution structure. (PDB ID: 1HKO and
1ZWO). The four buried conserved tryptophan residues and the interdomain interface
residues are represented in ball and stick.
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Recently, it has been also shown that deamidation mimetic mutations in the

interface decreased this kinetic barrier to unfolding, indicating the importance of the

interface in the kinetic stability of the protein (Flaugh et al. 2006). Deamidated

crystallins have been detected in the insoluble fraction of lens homogenates and

deamidation is thought to be one of the most abundant modifications of the crystallins

(Wilmarth et al. 2006). These studies suggested a plausible model of how a post-

translation modification of the crystallins by introducing a negative charge into the

interface can cause destabilization of the protein. In the context of the lens, multiple

species of a destabilized intermediate possibly, the N-terminal domain unfolded and the

C-terminal domain folded, may associate in cataract formation or may bind a-crystallin.

K. BASIS FOR GLOBULAR PROTEIN STABILITY

Numerous weak interactions contribute to the marginal stability of folded

proteins. Studies of a host of proteins in vitro have designated hydrogen bonding, the

hydrophobic effect, the packing of the protein core, and electrostatic interactions as

contributors to stability (Matthews 1993; Rose and Wolfenden 1993). Although more

than 30,000 3-D structures of proteins are now solved, it is still difficult to predict

particular interactions that are important for protein stability. For example, in the case of

the crystallin proteins, f and y crystallins structurally have few noticeable differences

between them (Bax et al. 1990; Blundell et al. 1981). However, [B2 crytallin is a

domain swapped dimer that is less stable than the monomeric yB crystallin. By

inspection of structure alone, the differences in stability and state of association are not

explainable (Jaenicke and Seckler 1997). Hence, determining stability differences

between proteins has been accomplished mostly by empirical methods. Individual

mutations of specific amino acids have been important in determining their contribution

to stability. The location of the specific interactions is also important in that the same

interaction engineered in a different region of the protein would not have the same effect

(Matthews 1993).



The contribution of hydrogen bonds to stability remains controversial. It was

predicted that the stability of the H-bonds between polar groups is minimal due to the fact

that these polar groups would H-bond with solvent in the unfolded state also. However,

Fersht et al. using mutational analysis demonstrated that hydrogen bonds could contribute

0.5 to 1.8 kcal/mol with polar side chains and higher when the amino acid side chain was

providing an ionic interaction (1985). Since the hydrogen bonds are intramolecular

interactions as opposed to intermolecular interactions that would occur between solvent

and the side chain, multiple hydrogen bonds could contribute to the overall stability of

the protein. However, the surrounding environment of the intramolecular hydrogen bond,

and also solvent variability could provide alternative results. In addition, these

substitutions were alanine mutations which could disrupt other interactions due to the

change in size and loss of atoms in the alanine mutation. Calculations of the free energy

of the hydrogen bond through mutational analysis may be affected by these contributions

from other forces such as reduced van der Waals interactions. In the crystallins, the

symmetrical twisted [-sheet structures is thought to contribute to the stability by

maximizing the hydrogen bonding between the strands (Jaenicke 1999).

The hydrophobic effect is generally accepted to be the major force of protein

folding via the hydrophobic-collapse model. Mutational studies on the hydrophobic core

of T4 lysozyme show a linear relationship between the decrease in stability and how

much of a cavity is created by the substitution (Eriksson et al. 1992). However, there is

variability in the amount of energy that each hydrophobic residue provides within the

protein in the case of some non-destabilizing mutations (Eriksson et al. 1992). This

discrepancy was suggested to be due to an adjustment of the protein structure when a

mutation is made to prevent a destabilizing cavity (Karpusas et al. 1989; Matsumura et al.

1989). An extensive mutational study of the Arc repressor, demonstrated that several

residues in the hydrophobic core of the protein were the most destabilizing (Sauer et al.

1996). In addition, although some polar and ionic residue substitutions were

destabilizing, replacing these residues with non-polar residues improved the stability of

the protein. Surface substitutions were more tolerant to mutations compared to the

hydrophobic core (Brown and Sauer 1999).



The high packing density of globular proteins is also important for protein folding

and stability. It has been extensively debated whether hydrophobic cores are fixed or

tolerate more fluidity. There is strong evidence for both ideas; for example, several

amino acid mutations in the core have been shown to have minor effects on stability

albeit some do exhibit more destabilization than others (Lim and Sauer 1991;

Matouschek et al. 1989; Matthews 1987). In contrast, packing density measurements of

hydrophobic cores demonstrate well packed interiors (Richards 1977). An explanation

for these different results is that the secondary structural components are arranged in the

core limiting accessibility to solvent. Although mutations may not affect the stability of

the protein, crystallography studies do show alterations in packing which are adjusted for

by rearrangement in the core. Thus, the close packing of globular proteins contributes to

their overall stability (Rose and Wolfenden 1993).

It has been difficult to assess the contribution of electrostatics in protein stability.

It has been proposed that the effects of electrostatics are minimal in the stability of a

protein (Akke and Forsen 1990; Sun et al. 1991a). For example, in T4 lysozyme, a basic

protein, long range repulsion was tested by replacing Lys and Arg residues with Glu

(Dao-pin et al. 1991; Sun et al. 1991b). These mutations did not affect the thermal

stability or thermodynamic stability of the protein. Mutagenic analyses of salt bridges

have also demonstrated minimal effects on stability (Erwin et al. 1990; Horovitz et al.

1990). Additionally, the dependence of stability on pH was unchanged when one

charged residue was substituted for an uncharged residue (Sun et al. 1991b). The entropy

needed to orient the ionic pair for a favorable interaction is expected to be the reason as

to why these otherwise stabilizing interactions do not contribute more significantly to the

protein's stability (Dao-pin et al. 1991). On the other hand, ionic networks have been

proposed to be stabilizing perhaps by limiting the entropic cost required to obtain a

favorable interaction (Nordberg Karlsson et al. 2003).

Stability assessments of the thermophilic proteins compared to mesophilic

homologues have been important in attempts to determine interactions important for

protein stability. Analysis of thermophilic proteins has suggested several contributions to



their stability including hydrophobics, local ionic interactions, overall surface attraction,

secondary, tertiary, or quaternary structure, post-translational modifications and

associations (Jaenicke 1996). In comparing thermophilic and mesophilic cold shock

proteins (CSP), mutations of specific residues achieved high stability. These residues

were involved in local electrostatic interactions important for the overall stability of the

protein (Wunderlich et al. 2005).

Ionic networks and/or aromatic networks may be particularly important for the

stability of the y-crystallin proteins. The crystal structures of human y D crystallin and yS

crystallin have extensive ionic networks that had been proposed previously (Salim and

Zaidi 2003). Additionally, the high percentage of aromatic residues may act as a network

to contribute to the overall stability observed in the y-crystallins.

Most of the aforementioned studies have focused on thermodynamic or

conformational stability which is a measure of the difference in the free energy of

unfolded and native states. Another source of stability is kinetic stability which refers to

the high kinetic barrier between the unfolded and native states. The basis for kinetic

stability is still being investigated. In thermophilc proteins, electrostatic interactions have

been suggested to be a source of high kinetic stability as well as thermodynamic stability

(Jaenicke and Bohm 1998; Solis-Mendiola et al. 1998). Surface hydrophobic residues

(Machius et al. 2003), addition of disulfide bonds (Mansfeld et al. 1997), and metal

binding sites (Pozdnyakova et al. 2001) have demonstrated increased kinetic stability.

Proteins which demonstrate high kinetic stability have common features such as P-sheets

and oligomeric quartenary structures, albeit these features are not strictly required for this

property (Manning and Colon 2004). For instance, a-lytic proteases and al-antitrypsin

both have a-helical components and are known for their high kinetic stability (Carrell

and Huntington 2003; Jaswal et al. 2002). In addition, high kinetic barriers have been

associated with preventing disease prone conformations. As an example, the oligomeric

transition of Transthyretin from a tetramer to the amyloidogenic monomer has a high

kinetic barrier (Johnson et al. 2005).



L. CATARACT AS A PROTEIN DEPOSITION DISEASE

Cataract, the leading cause of blindness in the world, is defined as an

opacification of the lens. Cataracts afflict primarily older adults and diabetics (sugar

cataracts). Congenital cataracts occur at a low frequency with approximately 40 cases

per 100,000 births (Graw 2004). Congenital cataracts can affect individuals from birth or

develop during childhood. Mature-onset cataract affects 46% of people worldwide who

experience some form of blindness regardless of gender, race, or economical differences.

Increasing global population and the increase in human lifespan has compounded this

problem.

Analysis of cataractous lens tissue reveals an abundance of protein aggregates

consisting of multiple lens protein species. Major components of these aggregates are the

lens crystallin proteins (Fig. 1-3). Identification of post-translational modifications of

crystallins have been performed by removing young, cataractous and age-matched lens

and using tandem mass spectrometry to identify modifications. Comparative analyses on

water soluble and insoluble fractions of these lenses have attempted to uncover which

modifications lead to the disease state. Multiple studies have demonstrated that post-

translational modifications of the crystallins included oxidation, carbamylation, UV-filter

adducts, truncations, and deamidations (Hanson et al. 2000; Lampi et al. 1998; Ma et al.

1998; Robinson et al. 2006). Among the modified amino acids are methionine

sulfoxides, deamidated glutamine and asparagines, and disulfide bonded cysteines.

Recently, it was found that in every lens regardless of age, the insoluble crystallin

fraction had higher percentages of deamidation modifications in all of the crystallins

(Wilmarth et al. 2006).

Structural studies of the cataract are mostly through EM and Fourier transform

analysis of removed lenses. Comparisons of EM thin sections between normal aged

lenses and mature-onset cataractous lenses reveal numerous cellular abnormalities in the

membranes of the lens fiber cells (Costello et al. 1993). The large cataracts appear to

disrupt the membranes between lens fibers. Cataractous lens membranes within the



nuclear region were most disrupted consisting of vacuoles between membranes,

multilamellar membrane aggregates, globular bodies, and highly convoluted membranes

(Costello et al. 1992). Globules, vacuoles, membrane aggregates, and lens cell swelling

all are observed in diseased lenses (Gilliland et al. 2001). Utilizing Fourier analysis to

compare cataractous and transparent lenses demonstrated a correlated roughness with an

increase in scatter (Freel et al. 2003). This may be indicative of the aggregation of the

crystallin proteins.

Currently, there are several proposals as to the causes of mature-onset cataract.

These models include age-related modifications of proteins such as oxidative or UV

damage leading to protein unfolding, aberrant protein interactions, and/or disruptions in

short range order, resulting in protein precipitation, insolubility, or aggregation (Benedek

1997). The remarkable stability of the crystallins and chaperone function in the lens is

presumed to prevent these mishaps for a long period of time, i.e. 40 years. Thus, the high

stability of the crystallins is accordingly a subject of much interest.

1. Mutations in Crystallin Genes Leading to Congenital Cataracts

Autosomal dominant single amino acid mutations in the crystallin genes have led

to several different forms of congenital cataracts (Graw 2004; Heon et al. 1999; Santhiya

et al. 2002). Mutations in human yD crystallin include many Arg substitutions, such as

R58H and R36S. Both R58H and R36S mutations enhance crystallization; as a result,

R36H crystals are visible in the lens of patients (Pande et al. 2001). Contrary to the other

mutations, R14C, develops disulfide bonded higher ordered aggregates progressively

increasing early in life (Pande et al. 2000; Stephan et al. 1999). Another mutation P23T

protein structure has been characterized further and indicates slight perturbations in

structure leading to aberrant association and insolubility of the protein (Evans et al. 2004;

Pande et al. 2005).

An additional congenital mutation, T5P, is found in the abundant, human yC

crystallin (Heon et al. 1999; Ren et al. 2000). Studies of the mutant protein in vitro

demonstrated reduced stability and conformational change in the native state (Fu and



Liang 2002a; Fu and Liang 2003) Additionally, the binding of this mutant to other y- and

a-crystallins was reduced, confirming structural alterations caused by the mutation in the

protein (Fu and Liang 2003).

Other congenital mutations have been identified in P and o-crystallins as well as

gap junction and other structural proteins (Li et al. 2006; Vanita et al. 2006). For

example, mutations in a-crystallins prevent binding of other crystallins, presumably

inhibiting its chaperone function (Fu and Liang 2003).

2. Potential Causes ofMature-Onset Cataract

Partial protein unfolding and subsequent aggregation is an important model for

the lens disease, cataract. In contrast to some congenital cataracts, a probable cause of

mature onset cataract is the accumulation of modifications causing instability of the

protein, leading to aggregation. For many protein deposition diseases, it has been

difficult to determine the conformation of the partially unfolded aggregation prone

conformer. In the protected environment of the lens, it has been difficult to assess which

stresses are responsible for initiating the aggregation process. Modifications detected

upon examination of the insoluble fraction of the lens could be an effect of cataract

formation and not causative. Thus, it is important to study how these modifications affect

proteins in vitro.

Recently, studies which mimic protein damage such as deamidation have shown

destabilization of the protein in vitro. Previous studies on human yD crystallin,

demonstrated that deamidation of the interface residues led to destabilization of the

protein due to introduction of a negative charge in the domain interface (Flaugh et al.

2006). Similarly, some deamidation mimetic mutations in both PB2 and 3B1 crystallins

have led to destabilization of these proteins. Studying the unfolding and aggregation of

the crystallins in vitro, may provide insight into the cataract formation (Harms et al.

2004; Lampi et al. 2006, Fig. 1-9).



3. Role of cicrystallin

As the lens ages, proteosome activity decreases in the terminally differentiated

fiber cells (Viteri et al. 2004). Therefore, at the high concentration of a-crystallin present

in the lens, it is likely the primary mechanism in rescuing endangered crystallins.

However, it acts as a passive chaperone binding partially unfolded proteins but not

refolding them. This sponge-like mechanism may act as a quality control mechanism

from childhood to middle age. However, a-crystallin is also susceptible to age-related

modifications as with the py-crystallins and it is found in the cataractous lens aggregate

with multiple age-related modifications. One possible hypothesis has been that as the

percentage of the partially unfolded proteins increases, the a-crystallin "sponge"

becomes fully saturated and is integrated into the cataractous aggregate (Fig. 1-9).

Accordingly, this confirms the high stability requirements as described in Chapter two

and three, important for the crystallins to prevent accumulation of aggregation prone

intermediates.

M. MECHANISMS OF PROTEIN AGGREGATION RELATED TO HUMAN

DISEASE

Protein aggregation has been implicated in various diseases and is a major

problem in the biotechnology industry and in biomedical research laboratories. Studies

of aggregation pathways suggest that this reaction can occur through three different

mechanisms. One mechanism is initiated by a slight conformational change in the native

protein leading to a native-like, off-pathway conformer which interacts with identical

conformers to initiate aggregation. The polymerization of sickle cell hemoglobin at low

oxygen tension is a classic example.
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Figure 1-9. Model of cataract in vitro.



Secondly, partially folded or unfolded intermediates along the folding or

unfolding pathway can be precursors to aggregation. This is the major source of the

inclusion bodies that accumulate in E. coli after high-level expression of many cloned

proteins (Betts and King 1998; Mitraki and King 1992). In the past, these mechanisms

were thought to simply be random and non-specific interactions of exposed hydrophobic

residues in these intermediates leading to off-pathway aggregation. However, there is

increasing evidence that the early steps leading to aggregation may involve more specific

interactions consisting of associations between similar structural conformations or

particular amino acid interactions. The third and most extensively investigated

mechanism is amyloidosis in which variable conformation changes lead to similar cross

3-sheet structure regardless of the protein.

1. Amyloidosis

The accumulation of"cross-p" amyloid fibers is implicated in several

neurodegenerative, transmissible spongiform encephalopathies (e.g. Type 2 Diabetes),

and prion related diseases (Zerovnik 2002). The final amyloid fibrillar state as well as

the intermediates leading up to the amyloid fibrils have been proposed to be the cause of

these diseases. Several of the amyloid diseases have been associated with specific

precursor proteins. For example, the amylin is the component in the type 2 diabetes.

Although amyloidogenic proteins do not have sequence similarity they contain similar

structural characteristics, such as P-strands (Zerovnik 2002). Most proteins involved in

amyloidosis exhibit a conformational shift that consists of P-sheets that are involved in

amyloidogenesis. In addition, the specificity of these reactions is observed in the mixing

experiments in which adding amyloidogenic proteins does not decrease the lag phase of

the reaction. Understanding the pathway of amyloidosis is important for determining

what causes the disease. Proposed models have suggested non-native conformers

associate to form a "donut-like" shapes leading to protofibrils and then to extended

amyloid fibrils (Caughey and Lansbury 2003). The regulated cross-P structure can be

detected by binding to spectroscopic dyes, EM, and X-ray diffraction has enabled such

studies.



Solid state NMR has been utilized to obtain the structural information on amyloid

fibrils formed by many proteins (Tycko 2006). Using this technique provides valuable

information not observed with X-ray diffraction. These studies have provided insight

into the structural characteristics, such as the orientation, size of P-strand segments, and

demonstrated that the cross-0 structure maximizes hydrogen bond capacity (Tycko 2006).

These studies have given us a detailed structural end point but have not provided the

mechanistic perspective of how amyloids are formed. In addition to NMR structural

studies, other studies such as isotope-edited infrared spectroscopy have been utilized to

probe the structural properties and the mechanism of amyloidosis. Recent studies using

isotope-edited IR spectroscopy monitored the amyloidogenic peptide of the Syrian

hamster prion protein in amyloid fibrils. Modifications of the amyloid characteristic

amide I (and II) bands by specific 13C-labeled residues allowed for determination of the

directionality and register of the Syrian hamster prion peptide (H1) (Petty et al. 2005).

The wild type register peptides formed thin protofibrils followed by twisted fibril

morphology versus the peptides in different register which exhibited only the thin

protofibrils and did not form larger fibrillar structures (Petty et al. 2005). In addition, by

utilizing isotope-editing in kinetic studies, the process of amyloid alignment was

observable in a concentration dependent manner (Petty and Decatur 2005). Two

mechanisms were proposed concerning the observed precise alignment and

rearrangement between the peptides; one suggested a detachment/reannealing mechanism

at low concentrations and the other a reptation-like mechanism at higher peptide

concentrations, the latter mechanism takes longer to nucleate since it was more difficult

for the peptides to get into register for nucleation (Petty et al. 2005). These two models

demonstrated the multiple nucleation mechanisms in the initial steps of amyloid fibril

formation.

2. Loop Sheet Insertion - The Case of the Serpins

The serine protease inhibitors, serpins, consist of a diverse set of proteins found in

several organisms and even viruses (Silverman et al. 2001). The serpins include as the

name implies several types of inhibitors but also proteins that participate in diverse



biological processes such as chromatin packing (Lomas and Carrell 2002). Although the

serpins have diverse functions, the tertiary structure of all serpin family members is

preserved. The inhibitory mechanism of the protease inhibitor serpins is described as a

loop sheet insertion mechanism. Each inhibitory serpin contains a reactive loop (denoted

R in the Fig. 1-10A) that binds to the active site of the protease mimicking its substrate.

This binding is followed by a conformational change in the serpin whereby the reactive

loop intramolecularly inserts into P-sheet A of the protein forming a 1-strand. This

dramatic structural shift of the reactive loop which is covalently linked to the protease,
distorts the protease leaving it irreversibly inactive (Huntington et al. 2000, Fig. 1-10A).

The serpins are metastable in the active form, relying on kinetic stability instead of

thermodynamic stability to prevent unfolding of its structure. The insertion of the

reactive loop into P-sheet A increases the serpin's stability (Gettins 2000).

Examples of inhibitory serpins include the al-antitrypsin, anti-thrombin, Cl

inhibitor, and plasminogen activator inhibitor 1. All of these proteins are important in the

blood plasma inhibiting excessive protease activity for the circulatory and inflammation

system. For example, al-antitrypsin inhibits the neutrophil elastase from degrading of

tissues such as the connective tissue of the lungs (Carrell and Lomas 2002). The loop

sheet insertion mechanism of the serpins renders it susceptible to various diseases. For

instance, certain point mutations in the reactive loop or within the 1-sheet A region

allows for insertion of another serpin molecule causing polymerization. One of these

mutations has been extensively characterized and is prominent in people of North

European descent. This mutation is a Glu > Lys substitution (called the Z variant) in one

of the hinges above the 3-sheet A of al-antitrypsin promoting insertion of another al-

antitrypsin molecule instead of self-insertion (Lomas et al. 1992). Alternatively, it can

form a closed loop leading to a latent conformation of al-antitrypsin (Silverman et al.

2001).
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Figure 1-10. Serpin protease, al-antitrypsin normal function and disease state
(A) Inhibitory protease mechanism - Loop sheet insertion of reactive loop (R)
intramolecularly into the 3-sheet A (shown in green) deforms the trypsin protease (shown
in blue) rendering it irreversibly inactive.
(B) Point mutations in the al-antitrypsin forms polymerized state. The Z variant
mutation in the P-sheet A region allows for anther molecule to insert into the region
leading to a latent form or a polymerized state. (Modified from Lomas and Carrell, Nat
Rev Genet (2002), 3: 759-768.
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The extensive polymerization process leads to inclusions in liver cells and a loss of the

al-antitrypsin in the plasma contributing to cirrhosis and emphysema, respectively

(Carrell and Lomas 1997). This polymerized form has been studied both in vitro and in

vivo (Janciauskiene et al. 2002; Le et al. 1992). The al-antitrypsin polymerization from

the Z-variant is proposed to be a form of domain swapping mechanism (Fig 1-B).

Crystallization of the Pittsburg mutant Met > Arg in the n-Sheet A region exhibits an

open-ended domain swap mechanism (Bennett et al. 2006).

3. Domain Swapping - In general

There have been many examples of the domain swapping mechanism in

functional protein structures as well as in protein aggregation. Domain swapping is

sometimes referred to as 3-D domain swapping so as not to confuse it with protein

engineered swapping of domains. In this thesis, domain swapping will refer to 3-D

domain swapping. A protein is considered to have a 3-D domain swap when it maintains

the same non covalent bond interactions as it does in the monomeric form but

intermolecularly with another monomer to form a dimer or other oligomers (Schlunegger

et al. 1997). Closed-ended domain swapping may result in an oligomeric structure, while

open-ended domain swapping can lead to polymerization that may be pathologically

detrimental. To date there are approximately 30 solved structures by NMR or

crystallography of domain swapped proteins (Bennett et al. 2006). Some of these

proteins were obtained through non-physiological conditions and their physiological

relevance as domain swapped structures is unclear (Liu and Eisenberg 2002).

There are three different types of domain swapping that result in domain swapped

oligomer structures. One type involves proteins that have both monomer and domain-

swapped protein forms. The first defined domain swapped protein, Diphtheria toxin, is

an example of this type. Diphtheria toxin has an active monomeric and an inactive

dimeric form (Bennett et al. 1994). Little is still known about the mechanism of creating

this domain swap. Mutations in the interface of sucl, a cell cycle protein, have shown a

shift in equilibrium from monomer to dimer suggesting properties of the interface are



important in this mechanism. In addition, other structural features consist of proteins

forming closed-ended linear and cyclic oligomers; open-ended and closed-ended trimers

such as RNase A, which have been shown to form domain swapped closed trimers and

linear trimers (Bennett et al. 2006).

Another type of domain swap mechanism involves groups of proteins which are

products of divergent evolution, the sequence of the proteins are not identical but they

have structural similarities in the monomeric form and domain swapped form. The [B2

crystallin and y-crystallins are an example of this group. These proteins have -30%

sequence homology but are structurally similar. Lastly, there are intertwined oligomers

that resemble domain swapped proteins but do not have an observable corresponding

monomeric form. An example of this domain swap is RecA, a protein involved in DNA

repair and recombination which has a N-terminal a-helical domain swap (Story et al.

1992).

In addition to domain swapped functional proteins, open-ended domain swapping

is a mechanism in forming polymerized fibrillar structures. Lee and Eisenberg showed

that the hamster prion protein PrPRDX, can form a cross P-sheet amyloid structure (2003).

This is caused by an open-ended runaway swaps polymerized to form a cross P-sheet

structure. This is caused by a runaway swap in which one domain interacts with another

molecule leaving one domain unsatisfied (Fig. 1-11). Alternatively, closed-ended

domain swaps with all domains satisfied can form higher ordered polymerization

(Bennett et al. 2006). An example of a closed-ended domain swap aggregate is formed

by cystatin C, which forms amyloid domain swapped amyloid aggregates (Janowski et al.

2005).
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4. Light Chain Amyloidosis and Light Chain Deposition Disorder

The variable region of immunoglobulin chains shares a P-sandwich Greek key

fold. They have the ability to dimerize through interface contacts which are stabilized

through disulfide bonding and are covalently bonded to the heavy chain of the antibody.

They are relatively stable thermally and the disulfide bonds contribute to the

thermodynamic stability of the bonds. The immunoglobulin light chains have high

sequence diversity due to the variable regions that are necessary for the function of

antibodies. Given the random VDJ recombination responsible for the variability of the

light chains, it is expected that a percentage of these proteins may be destabilized in the

native state.

Light chain amyloidosis, a systemic disease, occurs when this amyloidogenic

variable light (VL) chain is expanded as a monoclonal light chain that has been selected

for a particular antigen. Other related diseases such as the Light Chain Deposition

Disease (LCDD) involve aggregation of the VL chain. In contrast to Light Chain

Amyloidosis, LCDD is a non-amyloidogenic aggregate. The Greek Key nature of the VL

chain has proposed domain swapping as a model in the aggregation of these chains

(Wetzel 1997). There is heterogeneity in the kinds of aggregates that can be formed with

these same proteins.

In Chapter four of this thesis, the yD crystallin aggregation reaction is investigated

as a model of cataract in vitro. Domain swapping has been proposed for many

aggregation mechanisms. Characterization of yD and yS domain-exchanged chimeras are

consistent with a domain swap model for yD crystallin aggregation.

N. THE BIOLOGICAL CONTEXT OF THIS THESIS

All of the experiments in the following chapters consist of the biophysical

characterizations of purified crystallins. However, reflecting on my background as a cell

biologist and geneticist the motivating questions in this thesis were the evolution of these



proteins and their biological roles. All known crystallins in modem day vertebrates have

duplicated domains. One question that has arisen from this observation is the basis for

gene duplication in these organisms? Additionally, is this gene duplication important for

the crystallin biophysical characteristics such as protein stability? A second question was

why numerous crystallins are needed and are differentially expressed in different regions

of the lens.

These biophysical properties of the crystallins may give us insight into

understanding the underlying molecular mechanisms that may lead to cataract as well as

provide more insight into the evolution of the crystallins, leading to insight into lens

evolution in general.



CHAPTER TWO:

FOLDING AND STABILITY OF THE ISOLATED GREEK KEY DOMAINS OF

THE LONG-LIVED HUMAN LENS GAMMA D CRYSTALLIN.



A. INTRODUCTION

Crystallins are the major proteins in the elongated fiber cells of vertebrate eye

lenses, present at concentrations of 200-450 mg/ml (Fagerholm et al. 1981 a; Siezen et al.

1988; Slingsby and Clout 1999). The crystallins are responsible both for the transparency

and high refractive index of the lens (Delaye and Tardieu 1983; Femald and Wright

1983). The P- and y-crystallins are thought to be primarily structural proteins while oa-

crystallin possesses an additional chaperone activity. Terminally differentiated fiber cells

in the lens are enucleated and devoid of all other organelles, and are unable to degrade

damaged crystallins or to synthesize new ones (Oyster 1999). Thus, the crystallins must

remain soluble for decades despite high concentrations of protein, continual UV exposure

and potential oxidative stress. This is particularly true of the crystallins in the central lens

nucleus, which are synthesized in utero (Aarts et al. 1989; Harding JJ, Crabbe MJC 1984;

Lampi et al. 2002)

Cataracts interfering with light transmission represent an aggregated and insoluble

form of the crystallins. Mature-onset cataract affects more than 40% of people who

experience some form of blindness, regardless of gender, race, or economic status. The

protein composition of the insoluble fraction of aged and cataractous lenses includes the

a, 3, and y lens crystallins, with many carrying a variety of oxidative modifications and

truncations (Hanson et al. 2000; Lampi et al. 1998; Lapko et al. 2005; Searle et al. 2005;

Wilmarth et al. 2006).

Models for the causes of mature-onset cataract include oxidative or UV-induced

protein damage leading to protein unfolding, aberrant activation of fiber proteases, and

saturation of a-crystallin chaperone function. Any or all of these could result in protein

precipitation, insolubility, or aggregation. The remarkable stability of the crystallins and

chaperone function in the lens is presumably to prevent the onset of these aggregated

states. The biochemical basis of the very high stability of the crystallins, and the nature

of the misfolded, modified, or aggregated states, are thus of considerable importance in

understanding the etiology of cataract.



All P and y-crystallins have two homologous Greek key domains. They are

believed to have evolved by gene duplication and fusion from an ancestral single domain

py-crystallin. A candidate for this precursor has recently been found in the urochordate

sea squirt, Ciona intestinalis. Gene and structural alignment comparisons suggest that P

and y-crystallins evolved from this common ancestral protein (Shimeld et al. 2005).

Each domain consists of two anti-parallel 3-sheet Greek Key motifs, which are

intertwined interacting with each another. The two highly symmetrical domains interact

through a hydrophobic interface and are connected by an interdomain linker. The y-

crystallins are monomeric, whereas the P-crystallins can form multimers (Bateman et al.

2003; Lampi et al. 2001; Werten et al. 1999). Differences between these two groups are

attributed to N and/or C-terminal extensions in the 3-crystallins, an extended linker in

3B2 crystallins such that the composition of this linker is important for oligomerization,

and intermolecular and intramolecular associations (Bateman et al. 2001; Mayr et al.

1994; Norledge et al. 1997; Trinkl et al. 1994).

The stability of the P and y-crystallin proteins have been suggested to be due to

the complex topology of the double Greek Key (MacDonald et al. 2005), in which strand

d of the first motif is paired with strand c of the second motif (Fig. 2-1). Although the

majority of p and y-crystallins have these features, there are differences in the intrinsic

stabilities among the crystallins and their different domains.

An additional distinctive feature of the vertebrate py-crystallin family is the

interface between the Greek key domains. In human yD-crystallin, this is composed of a

hydrophobic patch of six residues, three from each domain, plus a pair of glutamines

shielding the hydrophobic domain from solvent, and an arginine and methionine at the

base of the interface near the linker (Basak et al. 2003). These residues are highly

conserved among vertebrate crystallins. The contribution of these residues to overall

stability has been assessed by characterizing proteins with alanine substitutions of the

interface residues. Substitutions of both the hydrophobic and the polar residues of the



interface significantly destabilized the native protein (Flaugh et al. 2005a; Flaugh et al.

2005b). Substitutions in the interface of bovine yB crystallin (ByB-Crys) have also been

found to be destabilizing (Palme et al. 1997). Liu and Liang have shown that polar

substitutions of hydrophobic residues in the 1-strands of the domain interfaces of human

PB2 crystallins significantly destabilized the protein (2006).

Human yD crystallin and human yS crystallin are two of the most abundant

proteins in the human lens. These proteins share 69% sequence similarity and 50%

sequence identity and are -21 kDa in size. Human yD crystallin is found at highest levels

in the central nucleus, and is primarily synthesized in utero. Thus the long term

solubility and stability of this protein is particularly important for maintaining lens

transparency. Families carrying single amino acid substitutions in this protein exhibit

juvenile-onset cataracts (Heon et al. 1999; Pande et al. 2000; Santhiya et al. 2002; Smith

et al. 2000; Stephan et al. 1999). One of these mutations P23T reduces the stability and

solubility of the mutant protein in vitro (Evans et al. 2004; Pande et al. 2005). On the

other hand, yS crystallin is more prevalent in the outer regions of the lens, primarily the

cortex, which continues to grow throughout life (Bron et al. 2000; Cook et al. 1994;

Wistow et al. 2002). Both proteins synthesis and turnover is thought to occur in these

regions.

The yDwT crystal structure has been solved as well as the C-terminal domain of

ySwTr in isolation. The murine yS crystallin structure has been resolved by NMR

methods. There are few noticeable differences between the two proteins (Fig. 2-1)

though yS crystallin has a four amino acid N-terminal extension and possibly two

additional amino acids in its interdomain linker. Crystal structure and modeling studies

have shown that both yD crystallin domains have high structural similarity (Basak et al.

2003; Blundell et al. 1981). The NMR solved structure of murine yS crystallin also

demonstrated high structural similarity among domains (Wu et al. 2005). Therefore, both

y-crystallins have similar structures and their individual domains display high structural

similarity between each other.
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Figure 2-1. Crystal structure of yDwr and NMR structure of ySwr (mouse NMR). Both
full-length proteins are -20 kDa in size. (A) A ribbon diagram of the yDwr X-Ray
crystal structure (Basak et al. 2003)( PDB ID: 1HKO). The isolated yDN protein ends at
Pro82 (highlighted in gray) not including the short interdomain linker. The isolated yDc
protein begins at Arg 89 (highlighted in gray) at the beginning of the P-sheet. (B) A
ribbon diagram representing the NMR structure of the murine yS crystallin protein (Wu et
al. 2005) (PDB ID: 1ZWO). The His 86 position is the same amino acid in the human
sequence while that Ala 93 position is replaced with Tyr in the human sequence.
Sequence alignment between human and murine yS crystallin shows 89% identity and
96% similarity (bl2seq, Blosum 62 matrix).



Human yD-crystallin (yDwr) has been cloned, expressed, purified and

characterized with respect to its folding and unfolding in vitro (Kosinski-Collins and

King 2003; Kosinski-Collins et al. 2004). Similarly, the unfolding and refolding of

human yS-crystallin (ySwT) in vitro has also been characterized ((Wenk et al. 2000).

The unfolding and refolding of yDwTr is a three state process. Kinetic and

equilibrium studies have identified a major partially folded intermediate in its unfolding

and refolding pathway, in vitro. This species has its C-terminal domain folded and its N-

terminal domain unfolded or at least disordered. From the three state melting transitions,

it was clear that the N-terminal domain was much less stable than the C-terminal domain.

Further information on the interaction between the domains was obtained from site-

specific mutations of the residues forming the domain interface. Not surprisingly

substitutions of the N-terminal residues contributing to the interface destabilized the N-

terminus. However, unexpectedly, substitutions of the C-terminal residues in the

interface had little effect on the C-terminus itself, but also destabilized the N-terminal

domain (Flaugh et al. 2005b). This suggested that C-terminal domain provided a

template for the folding of the N-terminal domain. This raised the possibility that the N-

terminal domain of DwTr could not fold independently.

Recently, it has been also shown that Gln > Glu mutations mimicking

deamidation, in the yDwTr interface decreased yD stability, indicating the importance of

the interface in the unfolding barrier (Flaugh et al. 2006). Deamidation in the interface of

the dimeric [3B2-crystallin also destabilizes the intact protein, supporting an important

role for the domain interface (Lampi et al. 2006).

Wenk et al. showed that the unfolding and refolding of bovine and ySwr followed

a two state transition, implying that the stability of the two domains was similar (2000).

The isolated domains from these studies suggested that the yS N-terminal domain and C-

terminal domain had slightly different stabilities suggesting that the domain interface

may not be important for the stability of the protein and that this protein folds not

sequentially like yDwr but more cooperatively. Other studies have shown that the



isolated domains of bovine yBcrystallin and PB2 crystallin are not as stable as the full-

length protein (Mayr et al. 1997; Wieligmann et al. 1999).

To explore more deeply the question of the contribution of domain interactions to

overall protein stability, we have prepared and investigated the properties of the isolated

domains of yDwr. We have included in these experiments the analogous isolated N- and

C-terminal domains of ySwT. Efforts to crystallize the isolated N-terminal domain of yS

crystallin have been unsuccessful; raising the possibility that it's N-terminus in isolation

was also not in the native fold. The studies below attempt to address the question of the

importance of the domain interface in the evolution of the two domain vertebrate

crystallins.

B. MATERIALS AND METHODS

1. Preparation of Constructs for Isolated Domains and ySwT

A previously subcloned vector of yDwT as described in (Kosinski-Collins and

King 2003) was used to prepare yDN. This vector includes an N-terminal His-tag for

purification with Ni-NTA affinity chromatography (Qiagen). PCR primers (IDT-DNA)

were designed to introduce a stop codon (QuikChange Site-Directed mutagenesis,

Stratagene) at position 83 to create the yDN consisting of residues G1- P82. The rest of

the single domains were prepared using PCR primers (IDT-DNA) designed at appropriate

positions in the sequence. The resulting PCR products were subcloned into the pQE-1

vector using the blunt-ended PvuII (adaptable for other blunt-ended restriction enzymes)

and the HindIII enzyme restriction sites. All vectors included a N-terminal His-tag,

MKHHHHHHQA, to aid in purification.

yDc consisted of residues R89 - S174 (based on numbering in PDB:1HKO). The

ySN consisted of residues S1 - H86 and ySc consisted of residues Y93 - E177. The YDwT

template was a generous gift from S. Helber at Commonwealth Biotechnologies, Inc.



The vectors were all sequenced to confirm and to ensure no erroneous mutations,

additions, or deletions occurred in the sequences (MGH DNA Core, Cambridge, MA).

All protein sequences are included in the appendix.

2. Expression and Purification of Proteins

Recombinant full-length and variant proteins were prepared as described in

(Kosinski-Collins et al. 2004). Briefly, all aforementioned vectors were transformed into

E. coli M15[pRep4] cells (Qiagen), utilized for tightly regulated protein expression. The

cells were lysed by conventional methods and purified by Ni-NTA resin (Qiagen) affinity

chromatography using a Pharmacia FPLC apparatus. The purity and size of each protein

was confirmed by SDS-PAGE. The identities of yDwr, yDN and yDc were additionally

confirmed by Mass spectrometry (CCR Biopolymers Laboratory, MIT). This purification

protocol produced proteins with a purity of >90%.

Protein concentrations were determined by unfolding of proteins in 5.5 M GuHCl

and measuring absorbance at 280 nm using their respective protein extinction

coefficients; yDwT, YDN, yDc, ySwT, TSN and ySc, 41,040 cm-IM-1, 20,580 cm 1 M-1

21,555 cm-'M-', 41,040 cm-'M-', 21,860 cm-'M 1, 19,180 cm-'M-1, respectively.

3. Analytical Size Exclusion Chromatography

All samples were prepared by diluting to a final protein concentration of 80 glg/ml

in 10 mM Ammonium Acetate buffer, pH 7.0. The column was equilibrated with 100

mM sodium phosphate, 1 mM EDTA, 5 mM DTT, pH 7.0 buffer. The samples were

loaded onto the SuperdexT200 10/300 GL (Pharmacia Biotech) column using a FPLC

apparatus (Pharmacia). Molecular weight standards were utilized to determine relative

elution times for various protein sizes. Overlays of each spectrum were made using the

Unicorn program and subsequent analysis in Excel (Microsoft). Peak fractions were

collected and SDS-PAGE analysis confirmed the presence of each protein.



4. Circular Dichroism

All experiments were performed on the Aviv Model 202 CD spectrometer with an

internal Peltier thermoelectric controller used to maintain constant 370C temperature

(Lakewood, NJ). Protein samples were prepared at a 100 jig/ml protein concentration in

a degassed 10 mM sodium phosphate buffer (no EDTA or DTT to prevent absorption at

lower wavelengths) and equilibrated overnight at 370C. Each sample was placed in a

1mm quartz cuvette (Starna, Inc.), allowed to equilibrate in the CD spectrometer for 1

minute and data recorded in the 260 - 195 nm wavelength range, with each wavelength

averaged over a 10 second period. The CD spectrum of the buffer was subtracted from

all spectra and the molar ellipticity was subsequently calculated. Deconvolution of the

CD spectrum was performed using CDPro suite software package consisting of the

CONTILL, CDSSTR, and SELCON3 programs

(http://lamar.colostate.edu/-sreeram/CDPro/, Sreerama and Woody 2000; Sreerama et al.

2000). The IBasis 1 parameter (Johnson 1999) was chosen since it analyzed a larger

range for the recorded data, had a large reference set (29 proteins) and had a lower

RMSD and NRMSD for most of the data. The results from each program were averaged

to obtain the overall secondary structure percentages.

5. Thermal Denaturation

All experiments were performed on the Aviv Model 202 CD spectrometer with an

internal Peltier Thermoelectric controller (Lakewood, NJ). A quartz four sided screw top

cuvette with a bandwidth of 4 mm was used to prevent loss of sample due to evaporation

as the temperature increased. Samples were prepared at a concentration of 100 jig/ml in a

degassed 10mM phosphate buffer, pH 7.0. Samples were equilibrated for 1 minute for

each 1 oC increase in temperature and all data points were averaged over a 3 second

period. Specifically, decrease in the P-sheet secondary structure minimum at 218 nm

versus increase in temperature was monitored. Buffer was subtracted for each data point.

Due to aggregation of the proteins at high temperatures, fraction native of each protein

was calculated by the following equation.



FN = (y-yu)/(yN-yu)
Where FN = Fraction Native, y = Ellipticity at 218 nm, yu = the unfolded/aggregation

baseline, yN = the native baseline. All experiments were repeated three times, calculating

averages and standard deviation.

6. Fluorescence Spectroscopy

Fluorescence emission spectra were taken using a Hitachi F-4500 fluorimeter

equipped with a temperature control circulating water bath to maintain 370C. The

fluorimeter parameters were a bandpass of 10 nm for excitation and emission

monochromators, scan speed 60 nm/min, and a 2 s response time. All proteins were

analyzed at a concentration of 101g/ml in 100 mM phosphate, 1 mM EDTA, and 5 mM

DTT buffer, pH 7.0 and 5.5M GuHC1 for the unfolded protein samples. The protein

samples were excited at 295 nm and the emission fluorescence was recorded from a

wavelength range of 310 - 400 nm.

7. Equilibrium Unfolding and Refolding

Equilibrium unfolding samples were diluted to a protein concentration of 10

Lg/ml with increasing concentrations of GuHC1 (OM - 5.5M) in 100 mM sodium

phosphate, 1 mM EDTA, 5 mM DTT, pH 7.0 buffer (Guanidine Hydrochloride solution,

8 M (GuHC1), Sigma@). In equilibrium unfolding experiments, all samples were

equilibrated for 24 hours in order to reach equilibrium. For equilibrium refolding

experiments, a 10X protein solution was unfolded at 5.5 M GuHCl for 5 hours. The

unfolded protein was then diluted 10-fold into various concentrations of GuHCl (0 M-5.5

M) giving a lowest GuHCl concentration of .55 M GuHC1. These samples were also

allowed to equilibrate for 24 hours. Exact GuHCl concentrations of each sample were

determined by refractometer readings. Emission spectrum was recorded from

wavelength range 310 - 400 nm. All spectra were corrected for buffer. Equilibrium

unfolding/refolding curves were fit to a two state model according to the methods of

(Greene and Pace 1974), or a three state model according to the methods of (Clark et al.



1993). Calculations of thermodynamic parameters were performed on 360 nm emission

data and 360/320 nm emission ratio data using Kalediagraph software version 4.0

(Synergy Software). Both analyses were comparable and within standard error of one

another. 360/320 nm is shown for visual clarity of equilibrium transitions. Single

wavelength 360 nm data was used to calculate m and AG values. Each experiment was

repeated three times to determine averages and standard deviation parameters.

8. Productive Refolding Kinetics

Productive refolding kinetics experiments were performed by first unfolding 10X

protein in 5.5 M GuHCl for 5 hours to guarantee complete unfolding of the protein. The

10OX unfolded protein sample was diluted 10-fold into agitated 100 mM phosphate, 1 mM

EDTA, 5 mM DTT, pH 7.0 buffer using the injection port system with a dead time of- ~1

s. Temperature was maintained at 180C utilizing the circulating water bath feature. The

samples were excited by 295 nm wavelength with 10nm bandpass. Emission at 350 nm

wavelength with 10 nm bandpass was recorded over time. Unfolded and native control

spectra were recorded at the beginning of the experiment and at the end of the

experiment. The refolding kinetic data was analyzed using different exponential model

equations to fit by (Fersht 1999) and residual distribution to determine the best fit. The

data was analyzed by fitting it to equations depicting two state, three state, or four state

models by Kaleidagraph 4.0 software. All experiments were performed three times to

calculate average kinetic rates and standard deviation. All refolding data is depicted as

normalized fluorescence data for comparison.

C. RESULTS

1. Protein Purification and Characterization

The isolated domains of yDwT were constructed by examining the crystal structure

and including the sequences of the protein without the linker. The yD N-terminal domain

(YDN) construct included residues Gly 1 - Pro 82 at the end of the P-strand before the



linker. The yDN construct was created by introducing a stop codon at residue 83 (His 83

stop) into the DwTr sequence. The yD C-terminal domain (yDc) construct was created by

cloning into the pQEl vector (Qiagen), sequences corresponding to Arg 89 after the

linker and at the beginning of the f3-strand, continuing to Ser 174 at the end of the protein

(Fig. 2-2).

At the time of creating the yS isolated domain constructs, there was no structure

available of the yS N-terminal domain or linker. Thus, it was difficult to predict what

sequences should be included in the constructs. The yS N-terminal domain (ySN)

construct was created by introducing a stop codon at residue 87 (Leu 87 stop) into the

ySwr sequence. Recently the NMR structure of the murine yS predicted a linker region of

ySwTr (residues 85-93) according to Entrez protein database (# NP_060011). Therefore,

YSN starts with Ser 1 and includes His 86, one residue within the proposed linker. The yS

C-terminal domain (ySc) was created by cloning into the pQE1 vector, sequences

corresponding to Tyr 93 to Glu 177 at the end of the protein (Fig. 2-2). The solved yS C-

terminal domain crystal structure also began with Tyr 93 in the C-terminal domain

(Purkiss et al. 2002).

All full-length and isolated domain proteins were expressed by inducing E. coli

cell culture with IPTG and incubating at 370C for several hours. The full-length

recombinant crystallins were soluble, accumulating in the cell supernatant. The isolated

domains also behaved as soluble subunits, accumulating in the cell supernatants. The

isolated domain recombinant crystallins were purified using Ni-NTA affinity

chromatography, following the same protocols used for the full-length yD and yS

crystallins. The elution of the isolated domains was similar to the full-length protein

elution during column purification. YSwr and its isolated domains eluted from the Ni-

NTA column with lower concentrations of imidazole than yDwr and its isolated domains.

In general, the isolated domains behaved similarly to the full-length crystallins during

protein expression and purification.
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Figure 2-2. Protein sequence alignment of yDwT and ySwT. The regions of the protein
included in each domain are highlighted, yDN G1 - P82 (blue), yDc R89 - S174 (red),
YSN S1 - H86 (green), ySc Y93 - E177 (gray). Upper numbers represent the residues in
YDwT, lower number represent the residues in ySwT.
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Analysis of His-tag DwTr revealed no difference in the kinetic, equilibrium, and

secondary structural characteristics compared to recombinant protein without His-tag

(Kosinski-Collins and King 2003). In addition, analysis of His-tag SwTr compared to no

His-tag recombinant ySwr detected no difference in the secondary structure as analyzed

by CD spectroscopy or in kinetic and equilibrium data as analyzed by fluorescence

spectroscopy (Kosinski-Collins et al. unpublished results).

2. Analytical Size Exclusion Chromatography

Previous studies with isolated domains of 3B2 N-terminal domain showed the

possibility of dimerization occuring between isolated domains (Wieligmann et al. 1999).

In addition, the microbial single domain Spherulin 3a crystallin forms dimers at

physiological concentrations (Kretschmar et al. 1999b). In order to determine if the

isolated domain dimerized under experimental conditions, analytical size exclusion

chromatography (SEC) was utilized. Protein was loaded onto the column at a

concentration of 80 jig/ml. Molecular weight standards elution volumes were determined

to estimate elution of different sized proteins. All of the isolated domain proteins eluted

after the 13.7 kDa protein standard (Ribonuclease A) indicating that all proteins were in

the monomer form (Fig. 2-3). Moreover, the isolated domains did not overlay with the

wild type proteins confirming that the isolated domains did not form stable dimers in

appreciable amounts.

DwTr protein eluted from the column at peak volume of 17.86 ml while ySwT

eluted at 17.4 ml. This result is expected since ySwTr is 1 kDa larger than DwTr. The yDc

isolated domain eluted at a peak volume of 18.45 ml and the yDN isolated domain at a

peak volume of 18.84 ml confirming yDc is -~1 kDa larger than yDN (Fig. 2-3A). The

isolated domains of yS eluted at similar volumes compared to yD isolated domains (Fig.

2-3B). Eluted peak volumes ofySN and ySc were 18.54 ml and 18.04 ml, respectively.
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Figure 2-3. Analytical Size Exclusion Chromatography profiles of the isolated domains
and wild type proteins. All samples were loaded onto a Superdexm200 10/300 GL
column at a protein concentration of 80 glg/ml. The molecular weight standards were
Ovalbumin (45 kDa), Chymotrypsinogen A (25 kDa), Ribonuclease A (13.7 kDa) and are
noted by arrow. (A) YDWT (black), yDN (dark blue), and yDc (red) (B) ySwT (light blue),
YSN (green), and ySc (orange).
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3. Circular Dichroism (CD) Spectroscopy

To determine if the isolated domains were folded into native-like conformations,

we examined them by CD and fluorescence spectroscopy. The secondary structure of the

isolated domains and the full-length proteins were analyzed by Far-UV CD spectroscopy

at 370 C (Fig. 2-4). CD spectrum of the complete yDwT protein demonstrated the

characteristic 13-sheet ellipticity minimum at 218 nm. The spectrum of yDc domain also

indicated the characteristic 13-sheet structure as well and was not distinguishable from

YDWT (Fig. 2-4A). However, the yDN spectrum exhibited a possible increase in random-

coil structure as seen by an increase in negative molar ellipticity at 204 nm. These CD

spectra were further analyzed by deconvolution software, CDPro Suite, to determine

quantitative percentages of secondary structure (Sreerama and Woody 2000).

Deconvolution of the CD spectra agreed with qualitative observations that the yDwT and

yDc domain 13-sheet structure were not distinguishable (Table 2-1). yDwTr analysis

showed a -40% 13-sheet, -6% a-helical, mostly 310 a-helical structure (consistent with

3D structure), -21% turn, and -31% unordered. yDc deconvolution was similar to yDwT

with -41% 13-sheet, -5% a-helical, -22% turn, and -32% unordered. The differences in

percentages are probably within experimental error of one another. However, the CD

deconvolution of yDN domain suggested it had a decrease in 13-sheet (-30%) and an

increase in a-helix (-11%), turns (-24%) and unordered (-35%) secondary structure

(Table 2-1).

The ySwT also exhibited the characteristic 13-sheet structure with a minimum at

218 nm and its isolated ySc domain had a similar spectrum to full-length ySwr (Fig. 2-

4B). The ySN isolated domain spectrum showed the largest difference when compared to

the YSWT CD spectrum. The deconvolution of YSN yielded -29% 1-sheet, -4% a-helical,

-25% turns, and -40% unordered compared to -33% 13-sheet, -6% a-helical, mostly 310

a-helical structure (consistent with 3D structure), -24% turns, -36% unordered for ySwT.

Again, ySc deconvolution was similar compared to ySwT with -32% 13-sheet, -9% a-

helical, -26% turns, and -34% unordered (Table 2-1). Secondary structure similarity



between ySwT and ySc is consistent with atomic structure similarity observed between the

murine NMR ySwr structure and the crystal human ySc structure (Purkiss et al. 2002; Wu

et al. 2005).

Crystallin proteins consist of Greek Key anti-parallel J-sheets, a topology that

contains a considerable amount of twisted 3-sheets (Bax et al. 1990; Blundell et al.

1981). It has been previously observed that the deconvolution of CD spectra of these

proteins are difficult to assess due to the fact that the twisted anti-parallel [-sheets have

similar optical dispersions as unordered peptides as well as the lack of reference sets for

these proteins (Sreerama and Woody 2003). This is supported by the high percentage of

unordered structure in our deconvolution analysis. Nonetheless, we were able to

ascertain quantitative overall relatively small differences in yDN and ySN secondary

structure while both C-terminal domain secondary structures remained similar to their

respective full-length proteins.

4. Fluorescence Spectroscopy of the Purified Proteins

Fluorescence spectroscopy was utilized to monitor the tertiary structure of both

crystallins. yDwTr and ySwr both have 4 conserved tryptophans, 2 buried within the

hydrophobic core of each domain. The tryptophans are at position 42 and 68 in the yDN

(46 and 72 in ySN) and 130 and 156 in the yDc (136 and 162 in ySc). The fluorescence of

these tryptohans are highly quenched in the folded state (Chen et al. 2006; Kosinski-

Collins et al. 2004). Trps 68 and 156 are quenched through a charge transfer to the

polypeptide chain backbone, while Trps 42 and 130 undergo an energy transfer

mechanism to Trps 68 and 156, respectively (Chen et al. 2006). ySwr may be quenched

in the native state by a similar mechanism. As a result, tryptophan fluorescence is a

sensitive reporter of the native-like state of these proteins.
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Figure 2-4. Far-UV CD spectroscopy of isolated domains and full-length proteins.
Samples are at a protein concentration of 100 pg/ml in 10 mM sodium phosphate buffer,
pH 7.0 at 370C. (A) CD spectra recorded from 195-260 nm wavelengths for yDwr (black
*), yDN (dark blue *), and yDc (red m) (B) CD spectra recorded from 195-260 nm
wavelengths for ySwT (light blue A), TSN (green A), and ySc (orange I)



In addition to the four tryptophans, there are 14 semi-conserved tyrosines (71%

identity, 93% similarity based on 32 diverse y-crystallin sequences) located throughout

the protein. There are 7 Tyr in each domain of yDwT. For ySwr, there are 8 Tyr in ySN

and 6 in ySc. In order to monitor preferentially the structure surrounding the tryptophan

residues to probe distinct locations of the proteins, we excited the proteins at 295 nm and

recorded the fluorescence emission spectra from wavelengths 310 - 400 nm.

The fluorescence emission spectra of the isolated domains at 370C shown in

Figure 2-5 were similar to those of the full-length proteins. yDwT has a quenched native

maximum of 326 nm and a red-shifted unfolded maximum of 350 nm (Table 2-1). The

native maximum of yDc domain is similar to full-length and has quenched fluorescence

intensity as well, indicating a native-like structure. The yDN domain fluorescence had a

higher quantum yield than both yDwT and yDc indicating that it is not as quenched in

isolation possibly due to disruptions in structure around Trp 42. However, upon

denaturation in GuHC1, the fluorescence intensity of the yDN domain increased indicating

it was native-like in the absence of denaturant.

YSWT had a quenched native emission maximum of 329 nm and an unfolded

maximum of 350 nm (Fig. 2-5D, Table 2-1). Its C-terminal domain exhibited an increase

in fluorescence intensity, also indicating that the C-terminal domain had a higher

quantum yield and is not as quenched in the native state (Fig. 2-5F). ySN domain had a

similar peak and fluorescence intensity compared to ySwr, although the overall shape of

the spectra indicates there may be some differences in tertiary structure (Fig. 2-5E).

In conclusion, all domains in isolation though exhibiting slight alterations in

secondary and tertiary structures are relatively structurally similar to their respective full-

length proteins as well as to each other.



Table 2-1. Deconvoluted CD spectra and fluorescence emission spectra maximums for
'yD and yS wild type and isolated domain proteins

CD Spectra Fluorescence Emission

PROTEI % 1- % a-Helix % Turns % Unordered Native Unfolded

N sheet (nm) (nm)

yDw 40 6 21 31 326 350

YDN 30 11 24 35 326 350

y'Dc 41 5 22 32 326 350

ySW 33 6 24 36 329 350

7SN 29 4 25 40 329 350

ySc 32 9 26 34 329 350
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Figure 2-5. Fluorescence emission spectra of native and unfolded of the isolated domains
and full-length yDwr and ySwr. All proteins excited at 295 nm and emission recorded
from 310-400 nm wavelengths. Samples consisted of 10 jgg/ml protein in 100 mM
sodium phosphate, 1 mM EDTA, 5 mM DTT, pH 7.0 and additionally 5.5M GuHC1 for
unfolded samples equilibrated at 370 C.
(A) Native spectra for yDwr (*) and Unfolded spectra for yDwT ( line); (B) yDN Native
(e) and yDN Unfolded (line); (C) yDc Native (m) and yDc Unfolded (line); (D) YSwT
Native (A), YSwT Unfolded (line); (E) ySN Native (A) and ySN Unfolded (line); (F) ySc
Native (k), and ySc Unfolded (line).



5. Thermal Denaturation Indicates Differential Domain Stability

Circular dichroism and fluorescence emission spectra indicated that the isolated

domains were in native-like conformations. To assess the stability of these domains

qualitatively we examined their thermal denaturation. Although thermal denaturation is

qualitative, this tests the stability in a more physiological manner than denaturant

experiments.

Figure 2-6 shows the thermal melting behavior monitored by CD. All four of the

isolated domains remained folded until 600C or higher and exhibited a cooperative

melting transition consistent with thermal denaturation unfolding transitions. We

monitored the effects of increasing temperature by the loss of 13-sheet structure

determined from Far UV CD spectroscopy. Thermal denaturation was an irreversible

reaction demonstrated by visible aggregation upon the completion of the experiment.

Since the calculation of meaningful thermodynamic parameters is limited by the lack of

reversibility, we report only the fraction native as a function of increasing temperature

(Fig. 2-6).

Both full-length yDwTr and ySwr were extremely stable with a TM of 84.50C and

TM of 74.10C, respectively. The differences in stability between the individual domains

were evident in the thermal experiments; the TM ofyDN domain was 64°C, while the TM

of yDc domain was 770 C (Fig. 2-6A). The TM of the ySN domain was 69.10 C and ySc

domain was 75. 1 C (Fig. 2-6B). The TM difference between yD isolated domains was

larger than the yS isolated domains confirming the idea that the DwTr interface is

essential in increasing the thermodynamic stability of its N-terminal domain. In addition,

full-length DwTr has a 70 C increase in TM compared to the isolated yDc domain,

reinforcing that both domains are necessary for overall conformational stability. The

interface of ySwr even though essential in increasing the stability of its N-terminal

domain may not be as crucial in the overall stability of the protein as suggested by

various other studies (Wenk et al. 2000; Zarina et al. 1994).
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6. Equilibrium Unfolding and Refolding In Vitro

The polypeptide chains of the isolated domains described above folded into their

native-like state within E. coli. To determine if the isolated domains would refold in

vitro, we conducted equilibrium unfolding/refolding experiments. These results also

allowed us to estimate quantitatively the stability of each domain under the conditions

previously described (Flaugh et al. 2005b). The denaturant GuHC1 was used instead of

urea because previous analysis had shown that yDwr is resistant to up to 8 M urea

denaturant (Kosinski-Collins and King 2003).

As seen in Fig. 2-7, the isolated yDN and yDc domains refolded at high yield when

diluted out of denaturant. As reported by (Wenk et al. 2000), the isolated ySN and ySc

domains also refolded at high yield when diluted out of denaturant. In contrast to yDwT,

we observed no evidence for aggregated states competing with productive refolding for

any of the isolated domains and ySwr (Figs. 2-7 and 2-8).

To compare the stabilities of the isolated domain proteins, the analyses of yDN,

yDc, YSwT, and its ySN and ySc domains were also performed under these same

conditions. The equilibrium unfolding/refolding curves were determined by calculating

the ratio of the fluorescence emission at 360 nm and 320 nm versus denaturant

concentration (Figs. 2-7 and 2-8). Since the irreversibility of yDwTr can cause

extrapolation errors in determining free energy (H20), we used transition midpoint CM

values (GuHCl concentration at which 50% of the protein is denatured) of the

equilibrium unfolding/refolding curves as a measure of stability. However, since all of

the other proteins exhibited full reversibility under these experimental conditions, we

have extrapolated AGH2 0 values and have included m-values in Table 2-2 for yDwr and

Table 2-3 for ySwr. These calculations confirmed the CM comparisons of yDwr, YSwr

and their respective individual domains.



E
C

QC

ILL

E
C0
N
<C)

Ci
CE)

0 1 2 3 4

Concentration GuHCI (M)

Figure 2-7. Equilibrium unfolding (closed symbols) and refolding (open symbols) for
YDwT (*), YDN (*), and yDc (m). Samples consisted of 10 pg/ml protein concentration,
100 mM sodium phosphate, 1 mM EDTA, 5 mM DTT, pH 7.0 and various
concentrations of GuHC1 at 370C. Fluorescence emission at 360 nm and 320 nm ratio
were calculated. Equilibrium data fit indicated by solid black line.



The equilibrium unfolding/refolding curves for yDwT was best fit to a three state

transition (Flaugh et al. 2005b). The CM of the first transition of the yDwT was 2.2 M

GuHC1. The CM of the second transition was 2.8 M GuHC1. The corresponding AGH20

values were 7.7 and 8.9 kcal*mol-', respectively (Flaugh et al. 2005b). Both domains in

isolation fit best to a two-state transition with no detectable equilibrium intermediates

along the folding pathway. The yDN domain was destabilized in isolation with a CM of

1.2 M GuHC1, and AGH20 of 3.7 kcal*mol-'. The yDc domain stability parameters were

CM of 2.7 M GuHCl and AGH20 of 8.7 kcal*mol "' in isolation, comparable to the CM of

2.8 M observed in the second transition in yDwT. Therefore, this result confirms that the

second transition is monitoring the unfolding of the yDc domain while the first transition

is monitoring the unfolding of the yDN domain. The overall AG of yDwT can be estimated

by the addition of the AG of both individual domains plus the AG of the yDwT interface,

depicted in the following equation.

AGyDovma = AGN-td+ AGc-td+ AGim, thus AGim = AG - (AGN-td+ AGc-td)

Utilizing this equation we estimate that the yDwT interface contributes approximately 4.2

kcal*mol-1 to the overall free energy of yDwT. In other words, in the absence of the yDc

and its interface contacts, yDN was 4.2 kcal*mol"' less stable compared to the yDwT.

7. SwT Equilibrium Unfolding/Refolding Analysis Also Demonstrates Differential

Domain Stability

Initially we did not know if ySwT would refold like yDwT efficiently under these

conditions, pH 7 and 370 C. Previously, Wenk et al. analyzed the stability of the human

and bovine yS crystallin as well as their isolated N-terminal domains and C-terminal

domains at 200C (2000). Equilibrium unfolding/refolding experiments were performed

to analyze the stability of ySwr and its individual domains. We were able to detect

complete refolding of ySwT out of denaturant at pH 7 and 370C as observed in the overlay

of native and refolding equilibrium curves (Fig. 2-8).
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Therefore, we analyzed the stability of the ySwr as well as its N-terminus and C-terminus

in isolation under these previous conditions. The results from these experiments also

allowed us to compare yDwT and its isolated domains to YSwT and its isolated domains.

All of the unfolding and refolding transitions of the full-length yS crystallin and

the yS isolated domains were best fit to a two state model. The CM value observed for

ySwr was 2.3 M GuHCl while the AGH20 was 10.5 kcal*mol-'. The difference in stability

between the yS isolated domains was significant but was not as great a difference as seen

in the YDwr isolated domains. The equilibrium unfolding experiments yielded a CM of

1.7 M GuHCl and a AGm0 of 4.9 kcal*mol "' for ySN. The ySc CM and AGmo values were

2.3 M GuHCl and 8.2 kcal*mol-1, respectively. By observing the slight differences in N

and C-terminal domain CM values, the CM of YSwr is likely an average of both of the

domain stabilities. Thus, the unfolding/refolding of 'SwT may populate intermediates

that are not detectable by this method. Since there are differences between the N and C-

terminal domains, there is a possibility that the one domain folded, one domain unfolded

intermediate described for other y-crystallins may also occur in YSWT. Further

experiments consisting of interface mutants such as those performed in yDwT will be

essential in determining the stability of the interface as well as if the folding pathway

consists of an intermediate of one domain folded and one domain unfolded.

Comparison between the yD and yS crystallin isolated domains show similar

stability results as the thermal denaturation experiments. The ySN domain was less stable

than the ySc domain; however, the isolated ySN domain is more stable than the isolated

YDN domain. In contrast, the isolated yDc domain is more stable than the isolated ySc

domain. In general, from these experiments we detect differential domain stability

among both crystallin's N and C-terminal domains. Yet, the sequence homology

between both crystallin's N and C-terminal domains is higher than the N and C terminal

domains within the yD or yS crystallin.
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Figure 2-8. Equilibrium unfolding (closed symbols) and refolding (open symbols) for
YSwT (A), YSN (A), and ySc (k). Samples consisted of 10ug/ml protein concentration,
100 mM sodium phosphate, 1 mM EDTA, 5 mM DTT, pH 7.0 and various
concentrations of GuHC1 at 370C. Fluorescence emission at 360 nm and 320 nm ratio
were calculated. Equilibrium data fit indicated by solid black line.
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8. Productive Refolding of ýDwT, ,6wTand Their Respective Isolated Domains

All full-length and single domain proteins had the ability to refold after complete

unfolding in GuHCl and subsequent dilution out of denaturant. Protein refolding kinetics

was monitored using tryptophan fluorescence spectroscopy to measure the quenching of

the tryptophans as they folded into the native state. To better resolve the intermediate

steps, these experiments were performed at lower temperature, 180C. All proteins

refolded in a time frame of -300 s with the exception of yDwT and ySwT (Figs. 2-9 and 2-

10). yDwTr was productively refolded in 1 M GuHCl since it exhibited off-pathway

aggregation when refolded in < 1 M GuHCI (Kosinski-Collins and King 2003). The rest

of the proteins were allowed to refold in < 1 M GuHC1.

YDwT refolding kinetic measurements was best fit to a four state transition in these

experiments with an average calculated tl/ of 10 s, 36 s, 252 s for the three exponentials

(krl, ka, k3) (Fig. 2-9 and Table 2-4) at 180C (Equation 1).

Unfolded k c ) 1 ] k2 ]- Native (1)

Mutations in the interface affect the refolding rate ofyDwr (Flaugh et al. 2005a;

Flaugh et al. 2005b; Flaugh et al. 2006). These mutations suggested that two refolding

intermediates are populated; the first intermediate is the C-terminal domain Greek Key

motif 4 (one closest to the interface) is folded and the motif 3 of the C-terminal domain

and N-terminal domain unfolded. The second intermediate is likely the C-terminal

domain fully folded and the N-terminal domain unfolded.

All of the refolding reactions of the isolated domains were best fit by a three state

model indicating one observable intermediate for each refolding pathway. For the

isolated domains, this kinetic refolding intermediate is likely to be a partially folded

individual Greek Key domain.

Unfolded k [I] k, i Native (Double Greek Key) (2)

The kinetic refolding parameters for isolated yDN and yDc domains were tl/2 of 3 s

and 4.5 s for refolding transition 1 (krl) and 17 s and 14 s for refolding transition 2 (ka),
respectively (Equation 2).
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Figure 2-9. Kinetic refolding of isolated domains of yDwr (inset shows completion of
yDwT refolding kinetics reaction), yDN, yDc. Protein was unfolded at high GuHCI
concentration, then diluted into 100 mM sodium phosphate, 1 mM EDTA, 5 mM DTT,
pH 7.0 buffer for a final protein concentration of 10 pg/ml. Protein tryptophan
fluorescence emission at 350 nm was recorded every second and data normalized for
comparison. All experiments performed at 180C. Kinetic refolding reactions of all
proteins in 1 M or > 1 M GuHC1 concentration (see text for details).



Both individual domain kinetic refolding parameters were within standard deviations of

each other for both kinetic refolding transition rates. The first kinetic refolding transition

ti2 was 14.5 s for ySN and -~12 s for ySc and for the second kinetic refolding transition ti 2

was 190 s for ySN and 122 s for ySc.

These parameters were also within standard deviation of one another for both

kinetic refolding transitions (Table 2-4). ySwT refolding kinetics was best fit to a four

state model, indicating two intermediates (Fig. 2-10). The refolding rates were

considerably slower than yDwT with calculated average tl/2 of 20 s, 194 s, and 1043 s for

k1, kr2, and 4r3 respectively.

D. DISCUSSION

All known eye lens [3 and y-crystallins have two homologous Greek key domains

interacting through a tight interface, presumably evolved from an ancestral single domain

protein. Given the importance of long term solubility and stability for the crystallins, it

seems likely that the evolution of a two domain form is related to the need for very long

term stability of the lens crystallins. Previous evidence that in YDwT protein, the C-

terminus served as a template for the folding of the N-terminus, raised the possibility that

the N-terminal domain could not fold or be stable on its own, due to the absence of the

domain interface. On the contrary, the results reported here show that the N-terminal

domain of yD does fold on its own in vivo within the E. coli cytoplasm, and remains

folded through purification and storage. In addition, both equilibrium and kinetic

experiments confirmed that these isolated domains were able to refold to a native-like

state upon dilution out of denaturant. The isolated N- and C-terminal domains of yS

crystallin also folded in vivo and refolded in vitro, as previously reported (Wenk et al.

2000).
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Figure 2-10. Kinetic refolding of isolated domains of ySwT (inset shows completion of
YSwr refolding kinetics reaction), ySN, and ySc. Protein was unfolded at high GuHCi
concentration, then diluted into 100 mM sodium phosphate, 1 mM EDTA, 5 mM DTT,
pH 7.0 buffer for a final protein concentration of 10 tg/ml. Protein tryptophan
fluorescence emission at 350 nm was recorded every second and data normalized for
comparison. All experiments performed at 180 C. Kinetic refolding reactions of all
proteins >1 M GuHCI concentration.
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Nonetheless, the isolated N-terminal domain of yD was considerably less stable

than the isolated C-terminal domain, in addition to being less stable in the full-length

protein. Comparison of the stabilities of the isolated domains and the full-length protein

indicated that the domain interface contributes AG20 of~ 4.2 kcal*mol"1 to the overall

stability of the complete two domain protein. Similarly, isolated domain and full-length

protein analysis of bovine yB crystallin at pH 2 determined that the interface contributed

a AGmH2 of- 3.8 kcal*mol I' (Mayr et al. 1997). The differential domain stability was also

observed for the yS crystallin isolated domains, although the stability differences between

the two domains were not as significant as yDwTr isolated domains.

1. Native-like Folded Conformation of the Isolated Domains

The unusual fluorescence quenching of the buried tryptophans provides a very

sensitive reporter of the folded state of the crystallins (Chen et al. 2006). Both emission

maximum and intensity of the fluorescence spectra of the isolated domains indicated that

they were in the native-like fold. The ySc Trps are highly fluorescent consistent with the

increased fluorescence spectra observed when probing only C-terminal domain Trps in yS

crystallin N-terminal Trp > Phe mutants (Chen et al. unpublished). Circular dichroism

spectroscopy confirmed the native-like structure of the isolated domains, indicating only

minor structural differences between the domains themselves and their full-length

counterparts. Analytical size exclusion demonstrated that all of the isolated domain

chromatographs showed monomeric species that did not form stable dimers or multimeric

species.

2. Stability of the Full-length )4Crystallins and Their Isolated Domains

Comparison between both proteins demonstrated that yDwr is more stable than

ySwT. This result was suggested empirically previously since ySwT could be unfolded in

high molar urea whereas yDwTr could not (Kosinski-Collins and King 2003; Wenk et al.

2000). By comparing the yD and yS isolated domains, we observed that the yDN domain



is less stable in isolation than ySN domain while yDc domain is more stable than the ySc

domain (Table 2-2 and 2-3).

The thermal denaturation qualitative data agreed with our unfolding/refolding

equilibrium studies concluding that the N-terminal domains (yD 64.50 C, yS 69.1 0C) are

less stable that the C-terminal domains (yD 76.2 0 C, yS 75.1 0 C) of both yDwr and YSwT.

Also overall yDwr (83.8 0 C) is more stable than ySwT (74.10 C). The yDwT TM was higher

than both individual domains emphasizing that both domains contribute to the overall

stability of the full-length protein. The isolated ySc domain TM is similar compared to

full-length ySwT TM. Although the average of the TM measurements of ySc is higher than

its full-length protein, it is within standard deviation of the average of the ySwr.

Therefore, the intrinsic stability of the C-terminal domain contributes most of the overall

stability of the ySwT. Thermodynamic parameters were not calculated from these

experimental results because of the irreversibility of the reaction due to protein

aggregation.

The thermal denaturation experiments represent the stability of the protein in

more physiological conditions than in high concentrations of GuHC1. During thermal

denaturation the unfolding molecules aggregate irreversibly corresponding to the events

that are believed to occur within the lens. Exposure to high heat among glass blowers

and chain welders has been correlated with a high incidence of cataract (D'onofrio and

Mosci 1960; Vos and van Norren 1998; Vos and van Norren 2004). Thermally unfolded

proteins could lead to partially unfolded species that are aggregation prone and

subsequently initiate cataract formation.

3. Kinetic Refolding of the isolated Domains and Their Respective Full-length Proteins

Equilibrium unfolding/refolding experiments at 370 C demonstrated full

reversibility establishing that the isolated domain crystallins could refold in vitro

efficiently in the absence of chaperones. The refolding kinetics of the isolated domain

crystallins were best fit to three state models indicating one intermediate. The yD



individual domain's kinetic rates were similar and within standard deviation of one

another. The yD isolated domains exhibited higher kinetic rates compared to the yS

isolated domains, a -3 fold increase for ki and a -11 fold increase for k2. yS isolated

domains also had similar kinetic rates to one another.

Since each crystallin domain contains two Greek Key motifs, one may predict that

the transitions of the isolated domains may be monitoring the refolding of each Greek

Key motif sequentially. Previous studies with a 3y-crystallin fold protein, has suggested

that the interface Greek Key motif and stabilizing tyrosine corner can act as a nucleation

center for folding of the second outer Greek Key motif (Bagby et al. 1998) (Fig. 2-1).

Thus, the first transition of the refolding kinetics may monitor the innermost Greek Key

motif while the second transition monitors the outermost Greek Key. In contrast, since

there is no interface available for these proteins, the first transition may monitor the

refolding of the outermost Greek Key or the combination of both Greek Key motifs. The

two tryptophans in different regions of the domain monitoring the folding of the proteins

both contribute to fluorescence quenching rendering it difficult to sparse out the regions

of the protein sequentially folding (Chen et al. 2006).

yDwT kinetic refolding data was best fit to a four state model, indicating two

intermediates. Previous analysis of yDwTr refolding kinetics indicated that the first

transition monitors the refolding of the C-terminus innermost Greek key motif. The

second transition is thought to monitor the refolding of the second, outermost C-terminus

Greek Key motif while the third transition is complete refolding of the N-terminus

(Flaugh et al. 2006). This analysis was based on interdomain interface mutants which

mostly affected the third refolding transition, suggesting that the interface was important

for the folding of the N-terminus.

The refolding of ySwr was best fit to a four state model indicating two partially

folded intermediates along the folding pathway. The overall refolding tl/2 was

considerably longer than yDwT, with a 4 fold increase in the overall refolding half-life

(Table 2-3). The folding pathway of YSwr has not been elucidated so it is not possible to



compare its transitions to YDwT. However, one possible model for ySwT refolding is the

two domains could fold separately monitored by the first transition and the second

transition monitoring the interactions within the interdomain interface. As mentioned

above, previous studies have suggested that the interface Greek Key motif and the

stabilizing tyrosine corner can act as a nucleation center for folding of the second Greek

Key motif. Thus, it is possible that the first and second transition is monitoring the

refolding of these two innermost Greek Key motifs and interface interactions while the

third transition is monitoring the folding of the outermost Greek Keys.

4. Biochemical Basis of Stability Differences of the Isolated Domains

Although the chain fold in yD and yS N and C-terminal domains is highly

homologous, the primary sequences are 39% identical, 52% similar for yD domains and

30% identical, 47% similar for the yS domains. However, upon structural and sequence

comparison of the two domains, it is not obvious what causes the differences in the

stability. There is also variation in stability between different P and y-crystallins,

although structurally the double Greek Key domains are homologous. In this study, we

observed that yDwT and ySwT have different conformational stabilities, when analyzed

under the same conditions. Moreover, in high concentrations of urea, ySwT completely

unfolds, which is not the case for yDwT (Kosinski-Collins and King 2003; Wenk et al.

2000). In comparing fB2 and Bovine yB crystallin, fB2 crystallin can unfold in low urea

concentrations while yB crystallin requires acidic pH. Without experimental evidence,

there are no obvious reasons for these drastic stability differences when comparing these

two structures (Jaenicke and Seckler 1997). Furthermore, one would suspect that the

oligomeric protein would be more stable than the monomeric protein (Jaenicke and

Sterner 2003).

The yDwT interface consists of six hydrophobic residues, three in each domain

(M43, F56, 181, V132, L145, V170) and two pairs of peripheral residues (Q54 and Q143,
R79 and M147) at the top and bottom of the hydrophobic interface. The interdomain



interface of SwTr is similar to YDwr, the major difference is within the hydrophobic

region Phe>Ile at position 56 in yD. Among alignments of 35 various y-crystallins

sequences, Phe at position 56 is 80% conserved. Mutations of Phe>Ala have

demonstrated destabilization in both bovine yB and human yD crystallin (Flaugh et al.

2005b; Palme et al. 1997; Palme et al. 1998a). The introduction of a smaller hydrophobic

group in this position might contribute to less hydrophobic packing in the interface

(Palme et al. 1998b). Additional mutations of Phe>Trp and Phe>Asp at position 56 in the

bovine yB crystallin lead to destabilization of the protein emphasizing the importance of

the Phe at this position in the interface (Palme et al. 1997).

One possible contributor to the stability of P3 and y-crystallins could be the

packing of hydrophobic residues, particularly aromatic residues. Both yDwTr and ySwr

have high percentages of aromatic residues with 4 Trp, 14 Tyr, 6 Phe (yDwr) and 9 Phe

(ySwT), consisting of -13-14% of residues compared to -8% in other small globular

proteins (McCaldon and Argos 1988). Most of the aromatic residues are strongly

conserved (>80% identity) when comparing a species diverse set of 35 y-crystallin

sequences with the exception of a few Tyr and Phe. Aromatic-aromatic interactions

identified in high resolution structures are predicted to stabilize the protein's native state

(Burley and Petsko 1985). Long range hydrophobic interactions have been computed by

structure and sequence comparison analysis in the cellular retinoic acid binding protein

and have been found to be important for its stability (Gunasekaran et al. 2004).

In addition to the stabilizing interdomain interface, the tyrosine comer of the y-

crystallin proteins has been proposed to be a contributor to stability. The tyrosine corner

is present between strand c and strand d of the second Greek Key motif (Bax et al. 1990;

Hemmingsen et al. 1994). The tyrosine corner has a slight difference in conformation in

yS C-terminal domain as compared to other solved y-crystallin structures such as yDwr

(Purkiss et al. 2002). In the murine yS crystallin NMR structure, ySN did not appear to

have a tyrosine corner present (Wu et al. 2005). It is possible that the lack of the tyrosine

corner in the ySN has an effect on the stability of this domain.



Electrostatic interactions on the surface of the protein may also be contributing to

the overall intrinsic stability of the protein. A surface charge network of human and

bovine yA-D crystallins has been observed through comparative and homology modeling

(Salim and Zaidi 2003). These electrostatic interactions range from ionic pairs to

interaction clusters, some of which are conserved and are located in particular regions of

the Greek Key motif. For instance, one cluster is found on the loop regions in motifs 3

and 4 of yA-D crystallin's C-terminal domain. Many of these ionic interactions have

been confirmed through the yDwr structure (Basak et al. 2003). By comparing potential

ionic interactions in the 'S C-terminal domain crystal structure, surface electrostatic

interactions are also observed albeit these interactions seem to be at a longer range (>4A)

than in the yA-D crystallins.

Although surface electrostatic residues are thought to have a limited effect on

stability due to water's dielectric constant, thermophilic proteins have ionic networks

essential for stability. We calculated the net charge of each yD and yS crystallin isolated

domain by utilizing http://zbio.net. Although, all proteins were close to their isoelectric

points, there are slight differences in the net charge of the DwTr and the SwTr isolated

domains at pH 7. The calculated net charge (Az) was 2.2, 1.9, and 1.6 for yDwr, yDN and

yDc, respectively. While, the calculated net charges (Az) for YSwr, ySN, and ySc, were

0.9, 1.7, and 0.7, respectively. As a protein increases in net charge; the stability of the

protein becomes more sensitive to ionic changes in the environment (Negin and Carbeck

2002). Since there were slight differences in net charge as well as possibilities of non-

measurable local charge interactions, we performed thermal denaturation experiments in

a low ionic strength buffer to better access intrinsic stability. In the thermal denaturation

experiments, differential domain stability observed in the equilibrium studies was

maintained as the C-terminal domains were more stable than the N-terminal domains.

These results suggest that electrostatic interactions may have only minor effects in the

intrinsic conformational stability of the yD and yS crystallins isolated domains. This is

contrary to bovine yB crystallin studies, which demonstrated that at neutral pH the
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individual domains were similar in stability (Mayr et al. 1997). In bovine yB N and C-

terminus studies, the C-terminal domain was greatly destabilized at acidic pH and not at

neutral pH. This suggested that the stabilizing interface contacts were not absent at

neutral pH but difficult to access using equilibrium unfolding/refolding spectroscopic

methods (Mayr et al. 1997).

The NMR structure of the murine yS crystallin also indicates some differences in

the region of the interface and linker that may indicate less packing of the interface (Wu

et al. 2005). However, the authors cautioned against making conclusions without

experimental evidence as to the packing of the yS crystallin interface. Therefore, we

cannot rule out the possibility that human yS crystallin also folds one domain at a time

with stabilizing interface contacts, having an intermediate with the C-terminal domain

folded and the N-terminal domain unfolded. Nonetheless, the interdomain interface

and/or linker of yS~ r may not be as important for stability as the interdomain interface of

YDwT.

5. Comparisons with Other Crystallins

Expression of P and y-crystallins is specific to lens fiber cells, but their

expression varies during development and in the different lens regions. In particular, yA,

yB, yC, and yD crystallins (yE and F are pseudogenes in humans) and [3B1 crystallins are

expressed in utero and are localized to the lens nucleus (Aarts et al. 1989; Chambers and

Russell 1991; Lampi et al. 2002). In contrast, 3B2 and yS crystallin, are postnatally

expressed in the secondary fiber cells and are expressed throughout life (Peek et al.

1992a; Ueda et al. 2002; Wistow et al. 2000). These physiological differences in the

crystallins may be indicative of the stability differences observed biophysically. For

example, the observation that YSwr is less stable than yDwT, may be related to the

location in the lens: ySwr localized to a region that exhibits some protein synthesis due to

the continual lens growth throughout life.
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In addition to the aforementioned studies of yB crystallin, isolated domain studies

of the domain-swapped dimeric fB2 crystallin found that the N-terminal domain was

marginally less stable than its C-terminal domain in isolation. The N-terminal domain in

the monomeric form had a higher propensity to unfold. These results suggested that the

unfolding of the N-terminal domain promotes dissociation of the N-terminal domain from

the C-terminus of its partner molecule, forming a monomeric intermediate in which the

N-terminus is unstructured and the C-terminal domain is folded. Thus, the second

equilibrium transition monitors the unfolding of the C-terminal domain (Fu and Liang

2002b; Wieligmann et al. 1999).

3B 1 crystallin forms dimers and oligomers not by domain swapping but by

intramolecular association (Bateman et al. 2001; Lampi et al. 2001; Van Montfort et al.

2003). Studies using spin-labeling of the OB1 N-terminus demonstrated that the N-

terminal domain of (B 1 unfolded first. Therefore, the N-terminal domain was

hypothesized to be less stable than the C-terminal domain (Kim et al. 2002). All of these

studies demonstrated the importance of the domain interface in the stability of the 3-

crystallins.

The high thermal stability observed in our thermal denaturation experiments is

also consistent with other [3 and y-crystallins previously analyzed. For example,

calorimetry experiments on bovine yB, yF, yE, and yD, established TMs of 71.5 0C, 700 C,

730C, and 740C, respectively (Sen et al. 1992). [-crystallins have lower thermal

stabilities such as fB2 whose TM is 67 0 C. Also, a-crystallins have lower thermal

stabilities with a TMS of - 61 0 C ((Das et al. 1997; Raman and Rao 1997; Surewicz and

Olesen 1995). The crystallins' calculated TM's are within the range of structural proteins

of thermophilic organisms (Jaenicke 1996).
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6. Gene Duplication in the Crystallins

The crystallins are thought to originate from a single domain ancestor supporting

evidence of a gene duplication and fusion event in the crystallin lineage (Lubsen et al.

1988; Piatigorsky 2003; Shimeld et al. 2005). It is interesting to note that one domain

remains more stable than the other indicating one domain may have evolved increasing

stability or the other domain accrued destabilizing properties. The significance of this

observation is unknown in ySwr, since the conformational stability of ySc domain is

similar to the stability of the full-length protein in both thermal denaturation and

equilibrium experiments. However, in 'Dwr, the addition the yDN domain and the

interdomain interface to the yDc contribute to the overall stability of the full-length

protein. This additive stability of both domains is demonstrated in both equilibrium and

thermal denaturation experiments on yDwr. The gene duplication event in the modem

crystallins could be attributed to the necessity for crystallins with higher stabilities in

longer lived organisms.
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CHAPTER THREE:

DIFFERENTIAL KINETIC STABILITY OF GAMMA D AND GAMMA S, AND

THEIR ISOLATED GREEK KEY DOMAINS
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A. INTRODUCTION:

As discussed in Chapter one, the crystallin protein must remain stable and soluble

to maintain lens transparency and proper vision. Loss of solubility of the crystallin can

lead to cataract formation. The lens fibers in the core nuclear region of the lens have no

protein synthesis since these cells are enucleated and devoid of all organelles. In the

cortical regions of the lens, the younger cells that are formed postnatally have protein

synthesis and degradation.

The differential expression of crystallins is thought to have an effect on the

overall properties of the lens. The composition of the different type of crystallins may be

related to the gradient of refraction and visual acuity necessary for diverse organisms. yS

crystallin, the only crystallin in the soft lens of birds is primarily in the soft regions of the

lens (Bloemendal et al. 2004). Moreover, the yS crystallin gene is common to all

vertebrates while the yA-F genes are mostly mammalian. The yA-F crystallins are

primarily in the water poor regions of the lens (Bloemendal et al. 2004). In humans,

there is low expression of the yA and yB genes while the yE and yF are pseudogenes

(Brakenhoff et al. 1990). In the lens, the yA-F crystallins are expressed in the core

regions of the lens in utero while yS is expressed in the cortical regions surrounding the

core postnatally.

T•e differential expression may reflect difference in the stabilities or lifetimes of

the diverse P and y crystallins. Several P and y-crystallins exhibit very high stability,

though with P-crystallins considerably less stable than y-crystallins. This high stability

has been suggested to be due to the complex topology of the P and y-crystallin Greek Key

fold (MacDonald et al. 2005). This topology includes the intercalated double Greek Key

domains, the interdomain interface and linker, and in some cases the tyrosine comer.

Characterizing the high conformational stability of the crystallins may be important in

understanding their properties necessary for their function in the lens.
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One source of stability for the crystallins is kinetic stability, a large activation

energy between the folded native states and intermediates or unfolded state along the

refolding or unfolding pathway. High kinetic stability for unfolding has been observed

though not quantitatively measured in bovine yF crystallin (Das and Liang 1998). More

quantitative unfolding kinetics have been performed in microbial crystallins, Proteins S

and Spherulin 3a, which have a similar Greek Key fold to the vertebrate ubiquitous P and

y crystallins, although it is not clear if these proteins are ancestral (Bagby et al. 1994a).

These microbial py-crystallins exhibit both high conformational and kinetic stability that

increases upon binding Ca2+ (Kretschmar and Jaenicke 1999; Kretschmar et al. 1999a;

Wenk et al. 1998; Wenk and Jaenicke 1999; Wenk et al. 1999).

In addition to the crystallins, other proteins have been found to be stabilized

kinetically. This phenomenon is seen in extracellular bacteria proteases.that need to

remain resistant to self-proteolysis and stable in their bacteria's harsh extracellular

environment. For instance, the native state of the a-lytic protease does not have high

thermodynamic stability; in fact the unfolded state has a lower free energy than the native

state of the protein (Cunningham and Agard 2003). In order to remain folded and stable,

the a-lytic protease has a high barrier to unfolding (Cunningham et al. 1999). However,

this high kinetic barrier provides an additional problem for folding the a-lytic protease

into the native state (Anderson et al. 1999). The solution is that the pro region of the

protein acts as a catalyst for the folding of the protease into the native state (Jaswal et al.

2002). After the folding is accomplished, the pro region is cleaved and the native state

remains stable through kinetic stability with calculated half-life of - 1 year (Sohl et al.

1998).

Other proteins can utilize kinetic stability in the formation of multimers from

monomers. Transthyretin is a human plasma protein that has a r-sandwich fold and in an

altered monomer form is a precursor to senile systematic amyloidosis and familial

amyloid neuropathy (Colon and Kelly 1992). Mutations in humans have been found to

produce this amyloidogenic altered monomeric state. In efforts to study why this protein

forms an amyloidogenic monomer, denaturation equilibrium unfolding and refolding
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studies were performed. The equilibrium transition exhibited strong hysteresis, attributed

to a high activation energy between the tetramer and monomer transition(Lai et al. 1997).

Further studies demonstrated that transthyretin variants as well as some molecules bound

to wt transthyretin, provides a large energy barrier that maintains the tetramer

conformation, preventing formation of the amyloidogenic partially unfolded monomer

(Johnson et al. 2005). Other proteins such as the legume lectins, the carbohydrate

binding proteins, also have high kinetic barriers between monomer and multimeric states

(Ghosh and Mandal 2006).

In Chapter two, the conformational stability of the two homologous crystallins yD

and 7S was analyzed. The results confirmed that the yD crystallin populated an unfolding

intermediate in which the C-terminus was folded and the N-terminal domain was

unfolded. Equilibrium unfolding/refolding studies demonstrated that yD crystallin, the

lens nucleus localized crystallin, was more stable than the yS crystallin.

In this chapter, an extensive comparison of the kinetic stability of two

homologous yet divergent crystallins, yD and 7S, and their respective isolated domains

was performed. The very high kinetic stability of human yD crystallin may reflect its

function as the longest lived crystallin in the eye lens. The nomenclature in this chapter

will be the same as Chapter 2, with the full-length proteins of human yD crystallin and

human yS crystallin noted as yDwr and ySwr, respectively. The isolated domains will be

noted with a subscript N or C to state which domain in isolation is referred (e.g., yDN or

yDc).

B. MA TERIALS AND METHODS:

1. Preparation of Constructs for wild type and isolated domain

As previously mentioned in Chapter two, the wild type and isolated domains were

cloned into the pQEl His-tag containing vector (Qiagen). The yDwTr and ySwr consisted
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of G1 - S174 for yD and Si - E177 for yS. The yDN consisted of residues Gl- P82 and

YDc consisted of residues R89 - S174 (based of a numbering in PDB ID: 1HKO). The

ySN consisted of residues S1 - H86 and ySc Y93 - E177 (PDB ID: IZWO).

2. Expression and Purification ofProteins

Recombinant full-length and variant proteins were prepared as described in

Chapter 2. Briefly, all aforementioned vectors were transformed into E. coli

M15[pRep4] cells (Qiagen), utilized for tightly regulated protein expression. The cells

were lysed by conventional methods and purified by Ni-NTA resin (Qiagen) affinity

chromatography using a Pharmacia FPLC apparatus. The purity and size of each protein

was confirmed by SDS-PAGE and Mass spectrometry. This purification protocol

produced proteins with a purity of > 90%.

Protein concentrations were determined by unfolding of proteins in 5.5 M GuHC1

and measuring absorbance at 280 nm using their respective protein extinction

coefficients; yDwT, YDN, yDc, TSwT, ySN and ySc, are 41,040 cm'l'M', 20,580 cm''M-,

21,555 cm-n'M', 41,040 cmn'M-', 21,860 cm-i'M', 19,180 cm''M-', respectively.

3. Equilibrium Unfolding and Refolding

Equilibrium unfolding/refolding experiments were performed at 180C. Each

unfolding equilibrium sample consisted of 10 jig/ml of protein with increasing

concentrations of GuHC1 (0 M - 5.5 M) in 100 mM sodium phosphate, 1 mM EDTA, 5

mM DTT, pH 7.0 buffer (Guanidine Hydrochloride solution, 8 M (GuHC1), Sigma@).

All samples were equilibrated for 24 hours in order to reach equilibrium except for yDwT

which required a 192 hour equilibration to reach equilibrium. For equilibrium refolding

experiments, a 10X protein solution was unfolded at 5.5 M GuHC1 for 5 hours. The

unfolded protein was then diluted 10-fold into various concentrations of GuHC1 (0 M-5.5

M) giving a lowest GuHC1 concentration of- 0.55 M GuHC1. Samples were excited at a

wavelength of 295 nm. Fluorescence emission spectrum was recorded from wavelength
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range 310 - 400 nm and buffer corrected. Calculations of thermodynamic parameters

were performed on 360 nm emission data and 360/320 nm emission ratio data using

Kalediagraph software version 4.0 (Synergy Software). Single wavelength 360 nm data

was used to calculate m and AG values. Each experiment was repeated three times to

determine averages and standard deviation parameters.

4. Unfolding Kinetics

Unfolding kinetic experiments were performed by first equilibrating 10X of

purified protein in 100 mM phosphate, 1 mM EDTA, 5 mM DTT, pH 7.0 buffer at 180C.

Then the protein sample was diluted 10-fold to a constantly agitated 3.5 M or 5.5 M

GuHC1 buffer using an injection port syringe feature with a dead time of -1 s.

Temperature was maintained at 180C utilizing the circulating water bath feature. Each

sample was excited at 295 nm and the emission wavelength of 350 nm was recorded over

time. The parameters for the fluorimeter were 10 nm bandpass for emission and

excitation monochromators. Unfolded protein and native protein spectrum controls were

recorded to ensure that the native state value was represented in the beginning of the

experiment and that the protein was completely unfolded at the end of the experiment.

The data was analyzed by fitting it to equations depicting two state, three state, or four

state models by Kaldeidagraph 4.0 software. The best fit was determined by analyzing

the most random residuals of the different fits. These experiments were repeated three

times and the data was averaged with standard deviations determined. Normalized

fluorescence data is depicted to allow for comparison between various proteins.

5. Linear Extrapolation of Unfolding Kinetics

Kinetic unfolding experiments were performed for each protein in various

concentrations of GuHCl at 180 C. The concentration of GuHCl was above the

equilibrium midpoints determined for each protein at 180C. Natural logarithmic kinetic

unfolding rates for different kinetic transitions were plotted versus concentration of

GuHCl. A linear regression was fit between all points and extrapolated to the y-axis
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using Kaleidagraph. The R-value of each fit was determined and is designated on each

graph. The y-axis intercept, the extrapolated kinetic rate, was utilized to calculate the

half-lives of each kinetic transition.

C. RESULTS

1. Equilibrium unfolding/refolding experiments at different temperatures and

equilibration times resulted in hysteresis

Previous equilibrium unfolding/refolding experiments with DwTr demonstrated a

hysteresis under the initial equilibrium conditions of 370C for 6 hours incubation time

(Flaugh, et al. unpublished observations, Fig. 3-1B). This observation was striking in that

to be at true equilibrium both unfolding and refolding curves are expected to be

superimposed. In particular, the unfolding of the protein required higher GuHC1

concentration than the refolding of the protein. This difference was observed specifically

in the first transition of the unfolding protein at 370 C. Equilibrium unfolding/refolding

experiments performed at 250C with a equilibration time of 24 hours, increased the

hysteresis ((Kosinski-Collins and King 2003, Fig. 3-1A). Under these conditions, both

unfolding transitions were resistant to higher concentrations of GuHC1 than the refolding

transitions. This result was consistent with a kinetically controlled event along the

unfolding pathway. If the unfolding transitions are kinetically controlled, one would

expect that an increase in equilibration time would alleviate the hysteresis. When the

yDwr equilibration time was increased to 24 hours at 370C, there no longer was a

hysteresis, and the equilibrium unfolding and refolding transitions were indistinguishable

indicating that the protein had reached equilibrium (Fig. 3-1C). Thus, a kinetic barrier

from the unfolded state to the previously identified partially folded intermediate was

indicated.

Contrary to DwrT, SwTr did not exhibit a hysteresis at lower temperatures or at

shorter equilibration times. It was interesting that although structurally similar, these

proteins exhibited differences in their unfolding kinetic barriers.
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Figure 3-1. Equilibrium unfolding (closed symbols) and refolding (open symbols)
experiments of YDwr at different equilibration times and temperatures. Solid line
indicates data fit.
(A) 24 hour equilibration, 250C
(B) 6 hour equilibration, 370 C
(C) 24 hour equilibration, 370 C
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2. Equilibrium Unfolding/Refolding of Wild type and Isolated Domain Proteins

We examined whether the equilibrium unfolding/refolding of the isolated

domains exhibited a hysteresis. These experiments were carried out at a lower

temperature of 180 C. As with the results at 250 C, yDwT had a hysteresis with a more

extensive separation between the equilibrium unfolding and refolding reactions. yDwr

required incubation for 192 hours (8 days) in order to achieve equilibrium. In contrast,

ySwT and all of the isolated domains did not exhibit a hysteresis after the 24 hour

equilibration time.

All four of the isolated domains as well as the full-length wild type proteins

demonstrated reversibility indicating they had the ability to unfold and refold at 180C

(Fig. 3-2). Upon refolding out of denaturant yDwr exhibited an off-pathway aggregation

reaction, visible in the elevated refolding points at low GuHCl concentration. The

equilibrium unfolding of yDwr was best fit to a three state model indicating that an

intermediate was still populated at 180 C similar to 370C. ySwr was best fit to a two state

model with a more cooperative transition. All of the isolated domains were best fit to

two state models. Differential stability was still displayed at the lower temperature.

However, the GuHC1 concentration midpoint (CM) increased about the same increment

for every protein at 180C compared to 370C (Table 3-1). Taken all together, these

properties of these proteins were comparable to the equilibrium unfolding/refolding

experiments at 370C.

3. Unfolding Kinetic Analysis of the Wild Type and Isolated Domain Proteins

In order to understand the kinetic barrier that exists in yDwT, we tested individual

domains to see if a large barrier to unfolding was associated with the N-terminus as

predicted, or with the C-terminus or with both domains. ySwr and its isolated domains

were compared to yDwr since equilibrium studies at lower temperature and at shorter

equilibration times did not exhibit an unfolding hysteresis.
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Figure 3-2. Equilibrium unfolding (closed symbols) and refolding (open symbols) for
yDwr (*), yDN (*), and yDc (m), YSwT (A), YSN (A), and ySc (L). Samples consisted of
10 pg/mL protein concentration, 100 mM sodium phosphate, 1 mM EDTA, 5 mM DTT,
pH 7.0 and various concentrations of GuHC1 at 180C. Equilibration time 24 hours,
except for yDwr, which had an equilibration time of 192 hours. All proteins excited at
295 nm and emission at 360 nm and 320 nm calculated as a ratio. Equilibrium data fit
indicated by solid black line.
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The unfolding kinetic experiments were performed by utilizing an injection port

syringe containing each protein. The protein samples were injected into a GuHCl

containing phosphate buffer, immediately recording tryptophan emission fluorescence

after the dead time of - 1 s. The conformational changes in the protein were monitored

by fluorescence spectroscopy, preferentially exciting the tryptophan residues at a

wavelength of 295 nm and reading the emission at a wavelength of 350 nm.

Upon unfolding of the protein, native state quenching is alleviated creating an

increase in tryptophan fluorescence emission. In order to monitor the fluorescence of the

initial native state for the isolated domains, all kinetic experiments were performed at

180 C. We initially recorded kinetic data as the protein unfolded in 5.5 M concentration

of GuHC1.

The kinetic unfolding experiments performed at 5.5 M GuHCl demonstrated that

DwTr protein was extremely stable requiring close to 3 hours to reach an unfolded

baseline (Fig. 3-3, Table 3-2). Under these conditions, the data fit to a three state model,

different from the four state model fit in our previous paper (Flaugh et al. 2006). This

discrepancy may be due to not enough data to fit this initial burst phase or because the

first two transitions at this temperature are too similar to resolve by this method.

Previously using triple tryptophan mutants, it was shown that the yDN domain unfolded

completely before the yDc domain (Kosinski-Collins et al. 2004). These results

suggested that the following equation 1 (Eqn. 1):

Native k [I ] [k 2 ]- . .2 Unfolded [Eqn. 1]

In which, kul represented the partial unfolding of the N-terminal domain, ku2

represented complete unfolding of the N-terminal domain, and ku3 represented complete

unfolding of the C-terminal domain. In these experiments, we suspect that kui and k2 are

hard to resolve at this temperature. The following equation for the two kinetic transitions

(equation 2, Eqn.2) provided an adequate fit.
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Native k,- [I, ] - -+ Unfolded

The first unfolding transition, kul, represented the complete unfolding of the N-terminus

and ku2 represented complete unfolding of the C-terminus. The average half-life (tl2) for

these two kinetic transitions was 251 s and 3455 s, respectively.

In comparison, YSwr was completely unfolded within minutes at 5.5 M GuHCI

concentration. The ySwT kinetic data was best fit to a three state model, yielding one

observable intermediate (Fig. 3-3, inset). The average calculated t/2 for k~1 and ku were

0.5 s and 37 s, respectively (Table 3-2). yDc kinetic analysis was also performed at 5.5

M GuHCl concentration, demonstrating a two-state transition, with a calculated average

ti2 of 1143 s (Fig. 3-3 and Table 3-2).

At temperatures from 370 C - 200 C most of the single domains unfolded partially

or completely within the dead time of the experiment (~1 s). This result alone

demonstrated that there was differential stability difference between the full-length yD

and its isolated domain proteins. Even at the lower temperature, the ySc, yDN, and ySN all

were partially or completely unfolded at the high GuHCl concentration of 5.5 M, thus, all

of these proteins were analyzed at 3.5 M GuHCl concentration. (The kinetic unfolding

analysis was not performed at lower GuHC1 concentration for yDwr and yDc since at

180 C these proteins are not completely unfolded.) ySwT kinetic unfolding was performed

at lower GuHCl and was fit to a three-state model with calculated average t•n of 308 s for

the first kinetic tranisition and a t/2 of 804 s for the second transition (Table 3-2).
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Figure 3-3. Kinetic unfolding of yDwTr and ySwTr at 5.5 M GuHCI at 180C (Top). Inset is
SwTr refolding kinetics on a smaller time scale in order to observe the kinetic transitions.

ySwT (light blue) yDwT (black)

Kinetic Unfolding of yDwr and ySwr at 5.5 M GuHCI at 180C (Bottom).
yDwr (black), yDc (red)

Protein fluorescence emission at 350 nm was recorded every second unless otherwise
noted and all data normalized for comparison.
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YSwT kinetic data at 3.5 M GuHCl could also be fit to a two-state model; however,

since at increasing concentrations of GuHCl the data exhibited a biphasic transition, this

data was fit to a three state model as well (Fig. 3-3). In other words, at the higher GuHCI

concentrations, the presence of an intermediate in ySwr is observable by a biphasic

transition, a fast first phase and a slower second phase. At the lower GuHC1

concentration, the biphasic kinetic rates for the first and second phase represent only 2-

fold difference, indicating that at this lower concentration, the intermediate observed in

the higher GuHC1 concentrations is not observable by this method. The residuals for

both the two and three state model were similar.

Kinetic unfolding of ySc, yDN, and ySN yielded differential kinetic stability, with

the hierarchy of stability from most stable to the least stable in that order. Kinetic

unfolding of ySN, the least stable, was best fit to a three state model with an average

calculated tl/2 of 0.37 s for the first kinetic transition and 9 s for the second transition

(Fig. 3-4, Table 3-2). Kinetic unfolding of ySc, the most stable, was similar to YSwr and

was best fit to a two state model with a t/2 of 937 s (Fig. 3-4, Table 3-2). yDN was

slightly more difficult to fit, because of a consistent sharp increase then slower decrease

in fluorescence within 50 seconds after monitoring the fluorescence emission (Fig 3-4).

Because of the consistence of this phenomenon, we suspect that it is a result of a short-

lived structured intermediate in which the structure surrounding Trp 42 and/or Trp 68 is

partially relaxed to produce a slightly fluorescent intermediate. However qualitatively,

we can predict that this intermediate has a t,2 of-~25 s. In order to fit the rest of the

kinetic data, -50 s of the data was deleted and was fit to a two-state model (Fig. 3-4).

The results of this analysis yielded an average calculated t/2 of 385 s (Table 3-2).
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Figure 3-4. Kinetic unfolding at 3.5 M GuHCl at 180C. (A) YSN (orange) data taken in
milliseconds (B) ySc (green),yDN (blue) (inset is completion of ySc unfolding kinetics
reaction)
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4. Half-Chevron Plot Analysis Predicts Longer Lived Life Times for %DwT than for 2Aw

We determined extrapolated unfolded kinetic rates and half-lives for each protein

in the absence of denaturant by performing unfolding kinetics at various GuHCI

concentrations. The logarithmic unfolding kinetic rates versus denaturant concentration

are graphed linearly extrapolating the kinetic rate at no denaturant (Schellman 1987).

This "half-chevron" plot analysis allows for comparison of all proteins to determine if in

the absence of denaturant environment, the proteins maintain their differential kinetic

stability (Figs. 3-5 and 3-6). All of the experiments were performed at 180 C in order to

obtain unfolding kinetic comparison data on all of the proteins. YDwr extrapolated values

to buffer was the most stable with a tl/2 of 19 years for the first kinetic transition (kul) and

tj2 of 129 days for the second kinetic transition (ku2). Comparatively, the ySwr

extrapolated values were 1.6 years for the first kinetic unfolding transition and ~ 2 days

for the second kinetic unfolding transition under these conditions (Table 3-3).

The stability hierarchy that was seen in the unfolding kinetic experiments among

the single domains agrees with the extrapolated values with yDc > ySc > I•N > ySN. yDc

has an extrapolated value of~-15 years, slightly less stable than the full-length protein in

buffer (Table 3-3). While yDN extrapolated second kinetic transition tl2 is approximately

~3 hours. Again, it was difficult to calculate the first transition because of the fluorescent

intermediate that occurs in the first ~ 50 seconds of unfolding; therefore, only the second

kinetic transition was extrapolated. For the 7Swr isolated domains, TSc was more stable

than YSN with a ti/2 of 3 days. The ySN ti/2 for the first kinetic transition was 1.3 minutes

and a tl/2 of 26.6 minutes for the second kinetic transition (Table 3-3).

In yDwT and ySwT, the slopes vary for both transitions, with a steeper slope for the

first transition versus the second. For ySwT, by comparing the first transitions versus the

second transitions in decreasing amounts of GuHC1, the rates of the first transitions

decrease faster than the second transition rates. There is a -600 fold decrease in the first

transition rate from high to the low GuHC1. Comparatively, there is a 12 fold decrease in
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the second transition rate from high to the low GuHCl (Table 3-2). This indicates that the

GuHCl has a stronger effect on the first transition versus the second transition. The same

is true for YDwT. By comparing the kinetic rates of higher concentrations of GuHC1 to

5.5 M GuHCI kinetic rates, TDwr has a 13 fold decrease for the first transition rate and a

4 fold decrease for the second transition rate.

All of the extrapolated values are approximations and are not meant to portray

any precise values for these proteins in their native environment especially since the

experiments are performed at a lower temperature and not 370C. In addition,

traditionally chevron plots are not analyzed for multi-state kinetic proteins because the

presence of an intermediate is not guaranteed to be 100%. However, although the

fluorescence emission at 350 nm is monitoring a sum of all species, it should reflect the

most abundant species. Using fluorescence spectroscopy, other studies have extrapolated

multi-state kinetic values to no denaturant with apomygloblin (Baryshnikova et al. 2005).

Furthermore, the differential stability observed between two homologous proteins as well

as their individual domains are qualitatively comparable between kinetic experiments

utilizing GuHC1 denaturant and the linearly extrapolated kinetic values.
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Figure 3-5. Linear extrapolations of kinetic unfolding rate constants versus GuHCl
concentration for yDwT and its individual domains. All experiments performed using
syringe port injection apparatus and consisted of 10ug/mL protein concentration, 100mM
sodium phosphate, 1mM EDTA, 5mM DTT, pH 7.0 buffer, various concentrations of
GuHC1 at 180C. (A) yDwT, (B) YDN, and (C) yDc
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Figure 3-6. Linear extrapolation of kinetic unfolding rate constants versus GuHC1
concentration for ySwr and its individual domains. All experiments performed using
syringe port injection apparatus and consisted of 10ug/mL protein concentration, 100mM
sodium phosphate, 1mM EDTA, 5mM DTT, pH 7.0 buffer, various concentrations of
GuHCI at 180C. (A) ySwT, (B) YSN, and (C) ySc
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DISCUSSION:

In this chapter, I have described in detail the kinetic differences in stability among

yDwT, ySwr and their respective isolated domain proteins. Thus far only one isolated y-

crystallin domain has been found in nature in the sea squirt, Ciona intestinalis. This

discovery raises questions as to why gene duplication was selected for in the py-crystallin

family within all extant lineages, and if this gene duplication is related to stability or

longevity of the protein. In addition to comparing the isolated domains to their respective

full-length two-domain protein, we compared two related but divergent y-crystallins, yD

and yS crystallins. The diverse kinetic stabilities of these y-crystallins suggests that yD

crystallin adapted to its environment by addition of a stronger interdomain interface as

discussed in Chapter two. These improvements may be related to the location of these

crystallins in the lens: yDwTr has greater requirement for stability because of its expression

in primary lens fiber cells which are unable to synthesize new proteins. ySwr exhibited

reduced stability perhaps because of relaxed selection for kinetic stability given its

continued expression in each layer of differentiating secondary lens fiber cells.

1. %Dwr but not iSwr Demonstrate a Kinetically Controlled Hysteresis

The experiments showed that the distinct hysteresis observed in the equilibrium

unfolding/refolding of yD reflected a high barrier to unfolding. The transition that was

most effected was the unfolding of the N-terminal domain of'yDwr. This supports the

view that the interdomain interface was also a source of kinetic stability as well as

conformational stability (Chapter 2). A hysteresis related to kinetically controlled steps

along the folding pathway has been observed in other proteins such as P22 tailspike,

creatine kinase, collagen, Triosephosphate Isomerase (TIM), and transthyretin. The

kinetic control of these transitions may also reflect the aspects of the protein's function.

For example, in the mouse prion protein, there is a high kinetic barrier between the native

cr-helical form and the 3-isoform preventing accumulation of the amyloidogenic P-

isoform (Baskakov et al. 2001).
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2. Kinetic Unfolding of the Full-length PCrystallins and Their Isolated Domains

Other members of the py-crystallin super family of proteins, exhibit a high barrier

to unfolding as well as their aforementioned thermodynamic stability. Microbial

crystallins, Protein S from Myxococcus xanthus and Spherulin 3a from Physarum

polycephalum, demonstrated kinetic stability. The different isolated domains of Protein S

had similar tj/2 values when analyzed while the full-length protein exhibited larger kinetic

unfolding barriers (Wenk et al. 1998). These results suggested that the interface between

the two domains contributed to the kinetic stability (Wenk et al. 1998). Also, Spherulin

3a showed a steeper kinetic barrier when bound to calcium. Linear extrapolation in the

absence of denaturant yielded a t1 /2 that was 1.3 days versus 12 days without or with Ca2+,

respectively (Kretschmar et al. 1999a). In addition, bovine yF crystallin also has a high

unfolding kinetic barrier, though no quantitative kinetic measurements have been

performed (Das and Liang 1998).

In the P-crystallin family, MacDonald et al. showed that a mutation near the

interface of rat PB2 N-terminal domain (C50F) caused an increase in the kinetic barrier to

unfold (2005). The Cys 50 residue in the N-terminal of BB2 is implicated in the subunit

exchange to form homo- and hetero-dimers with itself and other p-crystallins,

contributing to the polydispersity of the crystallins. Therefore in this case, it is thought

that the large barrier is lessened in order to maintain the functionality of 1B2 oligomer

formation.

yDwT unfolding yielded the lowest kinetic unfolding rates, requiring ~ 3 hours to

unfold completely in high concentration of GuHC1. Similarly, the equilibrium unfolding

and refolding experiments of yDwT in this study has shown that at lower temperatures the

barrier to unfolding was increased, requiring eight days in order to reach equilibrium at

180C. Under these conditions, the kinetic transitions were best fit to a three state model.

Previous results have demonstrated sequential unfolding of the two domains in yDwT

(Kosinski-Collins et al. 2004). Thus, we predict that the first transition is monitoring the
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unfolding of the N-terminal domain and the second transition monitors the unfolding of

the C-terminal domain. If the first transition which has a half-life of over 19 years is

monitoring the unfolding of the yDN, we suspect that the interface residue interactions are

the primary source of such high kinetic stability (Fig. 1-7).

Upon refolding out of denaturant, the yDwr chains partition between productive

refolding and a competing off-pathway aggregation. The partially folded intermediate

may be an aggregation-prone species which associates via a domain swapping

mechanism, a possible model for the aggregation of yDwr in vitro. The high kinetic

stability of the protein of this transition could prevent the protein from populating this

aggregation-prone intermediate leading to insolubility. Kinetic analysis of Protein S, a

microbial crystallin, also revealed a high kinetic barrier attributed to its domain interface

(Wenk et al. 1998).

ySwr unfolds substantially faster than yDwr, with a decrease in the overall ti2 of

-90 fold compared to DwTr, at 5.5 M GuHC1, 180 C. As discussed in Chapter two, the

unfolding pathway of ySwr has not been elucidated so it is difficult to compare its

transition states with DwTr. In addition, the kinetic unfolding transitions of YSwT are

difficult to compare to the transitions seen in the isolated domain kinetics due to the fact

that these are smaller proteins and may not fold in the same manner as in the context of

the full-length protein. However, one possible model for the unfolding of ySwr is since

the ySN isolate domain unfolds considerably faster than ySc isolated domain, the first

transition may monitor the unfolding of the YSN while the second transition monitors the

unfolding of the ySc. If our modeling of unfolding is correct, the first transition barrier

would prevent the thermodynamically less stable N-terminal domain from unfolding. It

also suggests that the interface residues though not as kinetically stable as the yD, do

contribute to overall kinetic stability of the protein (Figure 3-7).
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The unfolding kinetics of the isolated domains represent a hierarchy in kinetic

stability, with yDc > ySc > yDN > YSN. yDc was the only isolated domain protein that

could be monitored at high GuHC1 (5.5 M) concentration; it was largely more stable than

full-length ySwT but significantly less stable than full-length yDwT. The presence of a

high fluorescence intermediate in the first kinetic phase interfered with its analysis.

Additional biophysical and structural analysis of the yDN should be performed to

determine the conformation of this fluorescent intermediate. An interesting observation

is that the conformational stabilities of the two C-terminal domains are similar with AG's

of 8 kcal*mol "', but have diverse kinetic stabilities, t,2 of 14 years versus 3 days.

3. Basis for Kinetic Stability in Crystallins

Why does the 3 and y-crystallin superfamily have such high kinetic stability? One might

hypothesize that a high barrier to unfolding is important to prevent exposure to regions of

the protein which are aggregation prone or prevent increased solvent accessibility to

regions of the protein thatcan be post-translationally modified. Studies of these post-

translational modifications in the interface in vitro have been suggested to be deleterious

to the stability and solubility of the yD, 3B2, and 3B1-crystallins (Flaugh et al. 2006;

Harms et al. 2004; Lampi et al. 2006; Wilmarth et al. 2006). In this study, we have

compared the kinetic stability of both y-crystallins and their isolated domains to gain

insight into the intrinsic stability of the domains and the overall kinetic stability of the

full-length protein.

The properties important for high kinetic barriers are poorly understood and have

been difficult to decipher. In this case, perhaps non-local and local interactions are

involved in the kinetic stability of these proteins. However, some common properties of

proteins that have exhibited high kinetic stability have included P-sheet, oligomeric,

protease and SDS resistant proteins (Manning and Colon 2004). Other high kinetic

stability proteins include metal binding properties such as superoxide dismutase (Lynch

et al. 2004). In addition, increasing surface hydrophobics residues have been shown to

increase kinetic stability in a-amylase (Machius et al. 2003). Increased relative contact
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order, a measure of complex topology, has been implicated in the folding rates of the

proteins (Jung et al. 2005; Plaxco et al. 1998). This property may also be correlated to

unfolding rates. The complex topology of the Greek Key crystallins and high relative

contact order of the py-crystallins have been suggested to be important in their kinetic

stability (MacDonald et al. 2005).

However, it is perplexing that two structurally homologous proteins yDwr and

ySwr with similar topologies demonstrate such diverse kinetic properties. Many of the

kinetic models have been proteins that displayed two state kinetics and equilibrium. The

complex multi-state kinetics demonstrated by yDwT and ySwr may add to the complexity

of this theory. In addition to relative contact order which take into account the local and

non-local contacts in the native structure of the protein, local and non-local contacts in

the folding or unfolding intermediates of these proteins may be important. These

contacts might not be obvious in the solved native structure of the protein. The essential

contacts in protein folding and unfolding intermediates would be difficult to determine

and calculate, without additional data for example, two-dimensional NMR, on the

conformation of the intermediates.

4. Evolutionary and Physiological Relevance for the Increased Kinetic Stability of the

7D-Crystallin

Homologous crystallins, yD and yS, are evolutionarily divergent. yS is thought to

have evolved before yA-F due to its presence in all vertebrates (Van Rens et al. 1991).

Upon the divergence of the ancestral single domain crystallin, a gene duplication and

fusion event is thought to have occurred (Lubsen et al. 1988). This gene duplication

event provided the crystallin with an additional domain. Although one domain is less

intrinsically stable than the other, the creation of the domain interface between the two

symmetrical domains added a kinetic barrier. As organisms increased in size and

lifespan, the creation of this kinetic barrier became increasingly important. The

prevalence of the yA-F crystallins in mammalian organisms supports this idea. These
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studies demonstrate that the interdomain interface contributes to the kinetic stability of

the crystallin in addition to thermodynamic stability as studied in Chapter two.

In addition, the biophysical properties may be related to the location of the

crystallins in the human lens. The embryonic crystallins localized in the lens nuclear

core must remain stable from early lens development throughout life to maintain

transparency and prevent insolubility. The cortical crystallins are expressed after birth

and are continually expressed throughout life. Whether the crystallins were recruited due

to their stability properties or if they adapted to the changing environment and lifespan of

the organisms is unclear. However, it seems likely that the crystallins were originally

recruited for their stress-related roles and the structural characteristics of the y-crystallins

allowed for adaptation to the organism and environment.

We observed half-times close to 20 years for a lens nuclear core crystallin in these

studies. High viscosity environments have demonstrated affects on the folding and

unfolding rates of protein (Bieri and Kiefhaber 1999). It has been proposed that the

viscosity of the lens would affect the rates of unfolding by increasing the kinetic stability

of the crystallins (Bloemendal et al. 2004). Macromolecular crowding may also

contribute to the stability of the protein since at this high concentrated environment, a-

chaperone binding to these intermediates may be enhanced (Bloemendal et al. 2004;

Minton 2000).

Although there is a high concentration of crystallins in the lens, partially folded

intermediates would be difficult to populate since the equilibrium will drive intermediate

state molecules to the native state (Fig. 3-7). Thus, partially folded intermediates such as

one domain folded, and one domain unfolded would not be expected to unfold unless

destabilized by post-translational mutations that may be age-related. Therefore, although

the half-lives of these proteins seem shorter than what would be required, it would take

longer periods to produce a concentration of intermediates that may have detrimental

effects.
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In the following chapter, I will try to identify the regions of these intermediates

that contribute to the aggregation process by creating chimeras of yD and TS crystallins

and studying their properties.

133



CHAPTER FOUR:

DOMAIN-EXCHANGED HUMAN GAMMA D AND S CRYSTALLIN

CHIMERAS DEMONSTRATE DIFFERENTIAL AGGREGATION

PROPERTIES
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A. INTRODUCTION:

As discussed in Chapter one, misfolding, aggregation, or deposition of specific

proteins is a major cause of several diseases. The insoluble fractions removed by surgery

from cataractous lenses are composed of multiple species of the crystallins including yD

and yS (Hanson et al. 2000; Lampi et al. 1998; Wilmarth et al. 2006). These molecules

are tightly interacting with each other and require strong denaturants for solublizatiion, a

feature of protein aggregates and inclusion bodies. This chapter compares the

aggregation properties of two y-crystallins, yD and yS crystallin, which are abundant y-

crystallins in the human lens. As mentioned before, yD is localized in the lens core

region while yS is localized primarily in the outer region of the lens. Additionally, these

proteins are highly homologous structurally and in sequence. Previously, refolding

studies in vitro identified an off-pathway polymerization or aggregation reaction for yD

upon dilution out of denaturant competing with productive refolding (Kosinski-Collins

and King 2003). Surprisingly, although structurally similar, off-pathway polymerization

has not been observed for yS under the same conditions. These results suggest that there

are particular amino acid interactions that may be involved in the formation of the

aggregate.

As described in Chapter two, other dissimilarities between yD and yS are features

of their unfolding and refolding pathways. yD crystallin populates a partially folded

intermediate along its folding pathway in which the C terminal domain is folded and the

N terminal domain is unfolded. yS crystallin folds more cooperatively than yD and does

not populate this partially folded intermediate during equilibrium folding/unfolding. The

partially folded intermediate of yD with C-terminal domain folded and the N-terminal

domain unstructured was also populated during kinetic refolding experiments (Flaugh et

al. 2006; Kosinski-Collins and King 2003). The kinetic analysis of yS also suggested the

presence of partially folded intermediates along the refolding pathways; but, whether the

conformation of these intermediates resembles yD remains to be determined. These

differences may have an effect on the aggregation properties as well.
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Other studies have identified particular sequences in homologous proteins that

lead to aggregation in one protein but not in the other. In the case of the bovine and

human growth hormones, the refolding of the bovine hormone in vitro is limited by

association of a partially folded intermediate. On the contrary, human growth hormone

did not exhibit an off-pathway aggregation reaction during its refolding (Brems and

Havel 1989). By engineering chimera proteins in which one of the a-helices - the

aggregation prone sequence - in the bovine growth hormone was replaced with the

corresponding human growth hormone sequence, the aggregation sharply decreased

(Brems et al. 1988; Lehrman et al. 1991).

The experiments reported in this chapter involved constructing domain-exchanged

chimeras of these two proteins in order to identify the particular sequences of yD

promoting aggregation or the sequences in yS which may inhibit aggregation. The yD

aggregation reaction may be a useful model in vitro in understanding cataract formation

in the lens. Further characterization of the aggregation pathway may lead to the

identification of small molecules that inhibit this reaction (Blanchard et al. 2004).

B. MA TERIALS AND METHODS:

1. Expression and Purification of Proteins

At the time of creating the chimeras, no full length structures of 'yS were

available. Therefore, it was difficult to predict what region corresponded to the N-

terminal domain and the linker of yS. The chimeras were created based off of the

alignment with yD and yS C-terminal domain structural information that was available.

The yDN-ySc chimera consisted of yDN GI-181; ySc L87-E177. The ySN-yDc chimera

consisted of ySN S1-H86; yDc P82-S174 (Fig. 4-1). The yDN-ySc and ySN-yDc chimera

yS interface residues were mutated to restore the yD interface. These chimeras are

referred to their original names plus [yDrT] to refer to the replacement of the yS interface

residues to the corresponding yD interface residues. All chimeras were cloned into the

136



pQEl vector which has a His tag including a N-terminal Met (Qiagen). All vectors were

transformed into E. coli M15[pRep4] cells (Qiagen), utilized for tightly regulated protein

expression. The cells were purified according to the methods outlined in Chapter 2. The

protein purification protocol produced proteins with a purity of >90% confirmed by SDS-

PAGE.

Protein concentrations were determined by unfolding of proteins in 5.5 M GuHCI

and measuring absorbance at 280 nm using their respective protein extinction

coefficients; yDwT, YSwT, yDN-ySc, YSN-yDC, YDN-ySC YDrNT, and TSN-yDc yDnIrT, 41,040

cmlM-1', 41,040 cm'M 1', 39,790 cm'M 1', 42,320 cm-lM "1 , 41,745 cmM-"1, 44, 725 cm

IM-1, respectively.

2. Analytical Size Exclusion Chromatography

All samples were prepared by diluting to a final protein concentration of 80 jtg/ml

in 10 mM Ammonium Acetate buffer, pH 7.0. The column was equilibrated with 100

mM sodium phosphate, 1 mM EDTA, 5 mM DTT, pH 7.0 buffer. The samples were

loaded onto the Superdexm200 10/300 GL (Pharmacia Biotech) column using a FPLC

apparatus (Pharmacia). Absorption at 280 nm was monitored to determine the relative

amount of protein. Molecular weight standards were utilized to determine relative

elution times for various protein sizes. The molecular weight standards were Bovine

Serum Albumin (BSA) (66 kDa), Ovalbumin (45 kDa), Chymotrypsinogen A (25 kDa),

Ribonuclease A (13.7 kDa). Overlays of each spectrum were made using the Unicorn

and Kaleidagraph programs. Peak fractions were collected and SDS-PAGE analysis

confirmed the presence of each protein.
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Figure 4-1. Sequence alignment of yDwt and ySwt proteins, 50% identity and 69%
similarity. In green is the sequence of the yDN-ySc chimera. In gray is the sequence of
the ySN-yDc chimera. The interface residues are in bold and underlined. The linker
sequences are also underlined.

138

81 82



3. Circular Dichroism Spectroscopy

All experiments were performed using the same conditions as in Chapter 2.

Deconvolution of the CD spectrum was performed using CDPro suite software package

consisting of the CONTILL, CDSSTR, and SELCON3 programs

(http://lamar.colostate.edu/-sreeram/CDPro/) (Sreerama and Woody 2000). As with the

isolated crystallin domains, the IBasis 1 parameter (Johnson 1999)was chosen since it

analyzed a larger range for the recorded data, had a large reference set (29 proteins) and

had a lower RMSD and NRMSD for most of the data. The results from each program

were averaged to obtain the overall secondary structure percentages.

4. Fluorescence Spectroscopy

Fluorescence emission spectra were taken using a Hitachi F-4500 fluorimeter

equipped with a temperature control circulating water bath to maintain 370 C. A protein

concentration of 10 gg/ml was added to 100 mM phosphate, 1 mM EDTA, and 5 mM

DTT, buffer at pH 7.0 and 5.5 M GuHC1 for the unfolded protein samples. All proteins

were excited at 295 nm and the emission fluorescence was recorded from a wavelength

range of 310 - 400 nm. The fluorimeter parameters were the same parameters described

in Chapter 2.

5. Thermal Denaturation

All experiments were performed on the Aviv Model 202 CD spectrometer with an

internal Peltier Thermoelectric controller (Lakewood, NJ) according to the previously

described parameters (Chapter 2). In short, all proteins were at a 100 gg/ml

concentration in a degassed 10 mM phosphate buffer, pH 7.0. Specifically, decrease in

the Pj-sheet secondary structure minimum at 218 nm versus increase in temperature was

monitored. Fraction native of the protein was calculated due to aggregation of the

crystallins at high temperatures.

FN =(Y-yu)/(YN-Yu)
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Where FN = Fraction Native, y = Ellipticity at 218 nm, yu = the unfolded/aggregation

baseline, yN = the native baseline. All experiments were repeated three times to acquire

calculate averages and standard deviation.

6. Equilibrium Unfolding and Refolding

Equilibrium unfolding samples were performed in accordance with previous

method described in detail in Chapter 2. Briefly, for equilibrium unfolding experiments,

the protein was diluted to 10 gg/ml with increasing concentrations of GuHCl (0 M - 5.5

M) in 100 mM sodium phosphate, 1 mM EDTA, 5 mM DTT, pH 7.0 buffer (Guanidine

Hydrochloride solution, 8 M (GuHC1), Sigma@). For equilibrium refolding experiments,

a 10X protein solution was unfolded at 5.5 M GuHCi for 5 hours. The unfolded protein

was then diluted 10-fold into various concentrations of GuHC1 (0 M-5.5 M) giving a

lowest GuHC1 concentration of .55 M GuHC1. All samples had a 24 hour equilibration.

Emission spectrum was recorded from wavelength range 310 - 400 nm and corrected for

buffer. 360 nm data was used for calculating m and AGmo values. 360/320 nm is shown

for visual clarity of equilibrium transitions. Each experiment was repeated three times to

determine the average and standard deviation parameters.

7. Solution Turbidity Measurements

Each chimera and wild type crystallins were unfolded at a 100 gtg/ml (10X)

concentration in 5.5 M GuHCl, 100 mM Sodium Phosphate, 1 mM EDTA, 5 mM DTT,

pH 7.0 at 370C overnight. Each 10X protein solution was subsequently diluted into the

100 mM Sodium Phosphate, 1 mM EDTA, 5 mM DTT, pH 7.0 buffer and incubated at

370C for 24 hours as in the equilibrium refolding experiments. The Cary UV

spectrophotometer was used to monitor the accumulation of high molecular weight

species by light scattering at 350 nm. A fluorescence emission scan under the same

parameters as the equilibrium experiments was performed to monitor right angle

scattering of the sample. Each sample was subsequently centrifuged at high speed

(12,000 rev/min) for 30 minutes to pellet the aggregate. Solution turbidity readings and

140



fluorescence emission scans were performed after centrifugation for comparative

purposes.

8. Aggregation Kinetics

All proteins were unfolded overnight at 370C according to the same method

previously described for the equilibrium refolding experiments. The 10X samples were

then quickly added into 100 mM Sodium Phosphate, 1 mM EDTA, 5 mM DTT buffer,

pH 7.0. Solution turbidity was monitored over 30 minutes using the Cary UV

spectrophotometer at 350 nm immediately after addition. Temperature at 370C was

maintained by a Cary single cell peltier. Every experiment was repeated at least three

times to confirm the data. UV absorption data at 350 nm was corrected for absorption of

each native protein.

9. Infrared (IR) Spectroscopy

All proteins were unfolded as previously described. The proteins were

subsequently refolded in the D20 100 mM sodium phosphate, 1 mM EDTA, 5 mM DTT,

pH 7.0 buffer but at higher protein concentrations in order to obtain a signal by IR. The

protein was in a final protein concentration of- 10 mg/ml. At these high concentrations,

the aggregate was visible and was centrifuged at high speed for 30 minutes. The buffer

was removed and the aggregated washed with D20 buffer. The aggregate was pelleted

again and resuspended in 20 pl of deuterated buffer. The sample was carefully added to

an ATR (Attenuated total reflection) cell used for solid state samples and a Vector 22

Fourier transform Infrared (FTIR) spectrometer was used to obtain measurements.

Temperature at 370C was maintained by using a Peltier controller. 512 scans were taken

and averaged to obtain the final protein interferogram.
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ySc Domain

v V

Figure 4-2. Homology modeling of the yDN-ySc and ySN-yDc chimeras based on the
yDwT structure (PDB ID: 1HKO). The yS domains of the chimeras were modeled from
the yD structure; the yD domains of the chimeras are the same as the published structure
(Basak et al. 2003). The red regions represent regions that were difficult to thread onto
the yDwr structure. Interface residues are represented in ball and stick and are noted
based on the alignment with yDwT structure.
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C. RESULTS:

1. Preparation of Chimera Proteins

As in previous chapters, I will refer to the natural yD and yS sequences as yDwT

and ySwr for further clarity. The polymerization reaction competing with productive

refolding of yDwT has been characterized by Atomic Force Microscopy (AFM) and by

spectroscopic analysis (Kosinski-Collins and King 2003). In brief, by monitoring

solution turbidity spectroscopically, yDwr diluted out of denaturant formed a high

molecular weight species within seconds. Additionally, the DwTr aggregate specifically

bound the hydrophobic dye, Bis-ANS, indicating that the aggregate included exposed

hydrophobic sites. Electron micrographs of the aggregate revealed that it had a fibrous

structure and was not amorphous. Time course AFM studies demonstrated that the

formation of the aggregate consisted of several phases starting from small globular

structures to protofibrils and subsequently arranging into branched and unbranched fibril

bundles similar to the amyloid pathway. However, the fibrous aggregate was not in the

characteristic amyloid cross P3-sheet conformation, as it did not bind Congo red or display

birefringence. In contrast, incubation of yDwr at pH 3 at 370C, formed amyloid fibrils

confirmed by Congo Red binding, electron microscopy, X-ray diffraction and infrared

spectroscopy (Papanikolopoulou et al., unpublished results).

Given the aggregation results in vitro, a particular sequence in yDwr may direct

aggregation or a particular sequence of ySwr may inhibit aggregation. The sequence

identity and similarity between yDwr and ySwr is 50% and 69%, respectively. The

sequence alignment of the two proteins gave regions of disparity dispersed throughout the

proteins (Fig 4-1). Therefore, no particular sequences emerged as crucial in promoting or

inhibiting the off-pathway aggregation reaction. One way to approach identifying key

regions with minimum protein disruption is to create chimeras with one domain from

yDwr and the other domain from ySwr, such as the N-terminal domain of yDwr and the
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C-terminal domain of SwTr (noted as yDN-ySc) and vice versa, N-terminal domain ySwr

and C-terminal domain of yDwr (noted as ySN-yDc).

In constructing the chimera proteins, the protein alignments between yDwr and

ySwTr were taken into consideration (Fig. 4-1). Concerns over interfering with protein

folding and loss of stability were addressed by including the linker sequence belonging to

the protein whose C-terminal domain was used. Since previous results determined that

the yD C-terminal domain (yDc) was important in the folding of the N-terminal domain,

the entire yDc and linker was maintained in the YSN-yDC chimera. The opposite chimera,

YDN-ySc was created by yDwr N-terminal domain (yDN) connected by the ySwr linker to

the C-terminal domain (ySc).

The Swiss PDB threading program was used to predict the structure of the two

chimeras based on the structural homology with the yDwr structure (PDB ID: 1HKO).

The areas in red indicated the regions difficult to thread onto the yDwTr structure (Fig. 4-

2). These areas were primarily in the linker due to the 2 amino acid longer linker (His-

Leu) in ySwTr. The murine yS structure indicates that the linker residues do not interact

directly with the domains but the linker has been proposed to lower the entropic factor

during interdomain interface interactions (Wu et al. 2005). The N-terminal extension of

ySwr, consisting of four amino acids (Ser-Lys-Thr-Gly) was not modeled to the structure

since it is absent in yDwT. According to the murine yS structure, the N-terminal extension

of ySwTr is unstructured and has little interaction with the rest of the N-terminal domain

(Wu et al. 2005).

Since previous evidence indicated the importance of the domain interface in

stability, interface interactions were retained in the structure (Fig.4-2 and Table 4-1).

There were no obvious clashes in the potential interface residue interactions of the

chimeras. The yDwr interface consists of six hydrophobic residues, three in each domain

(M43, F5, I81:V132, L145, V170) and two pairs of peripheral residues (Q54 and Q143,

R79 and M147) on each side of the hydrophobic interface. In yDwr, the hydrophobic
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residues form tight interactions between the two domains. The peripheral residues are

thought to act as barriers to prevent exposure of the hydrophobic region of the interface

to the solvent (Flaugh et al. 2005b). In ySwT, the hydrophobic pairs consist of

homologous residues according to the alignment of DwTr and YSwT, along with another

hydrophobic pair not seen in the yDwr structure. In murine ySwT, these hydrophobic

residues are T45, A47, 160, and V85 in the ySN domain and T135, 1137, L150, and V175

in the ySc domain. In human ySwT, T135 is replaced by a valine and V175 is replaced by

an isoleucine. The peripheral residues are M58 and Q148 and R83 and D152 (Wu et al.

2005). The peripheral Arg and Asp may form an ionic or hydrogen bond contributing to

stability.

Table 4-1 indicates the composition of the interface in all of the chimera proteins.

For simplicity, the numbering of the positions refers to the yDwT crystal structure (PDB

ID: 1HKO) and does not include the other hydrophobic interaction in ySwT. Major

differences between the yDwr and ySWT interfaces include the Phe at position 56 which is

Ile in ySwT, substituting a less bulky hydrophobic residue. At positions 81 and 170, the

Ile and Val interface pairs are switched to Val and Ile in ySwr. These interface

differences in the chimeras for ySN-yDc resulted in a Val-Val interaction. In yDN-ySc, the

domain-exchange resulted in Ile-Ile interactions in this region.

In addition to creating the yD~-ySc and ySN-yDc chimeras, the yD interface was

restored in both chimeras by mutating the yS interface residues to the structural

homologous yD interface residues. These chimeras are designated as yDN-YSc [yDNTr]

and 7SN-yDc [YDDrT] (Table 4-1). Since the structures of the chimeras are unknown, it is

difficult to assess if the interface associations completely mimic the yD interface.

However, the interface residues are aligned to the same positions in ySwr supporting that

these substitutions may interact in a similar manner. Biophysical comparisons between

the mismatched interface chimeras and the yDINT chimeras may give insight into the

differences between the interfaces of the chimeras.
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Table 4-1. Composition of domain interface in wild type and chimera proteins.

a Residues are numbered based on the crystal structure of yDwr (PDB# 1HKO) and
sequence alignment between yDwr and ySwr.
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WT Proteins Chimera Proteins

Residues AA# a  Dwr 7SwTr YDN.-Sc YSN-YDC [c

43 - 145 Met- Leu Ala- Leu Met- Leu Ala- Leu Met - Leu

Hydrophobic 56- 132 Phe - Val lie - lie Phe - Ile lie - Val Phe - Val

81 - 170 Ile -Val Val-Ile Ile - Ile Val - Val Ile - Val

54 - 143 Gln - Gln Met - Gln Gin - Gln Met - Gln Gln - Gin
Peripheral

79 -147 Arg- Met Arg- Asp Arg- Asp Arg- Met Arg -Met



2. Purification of the Chimeras Proteins

All of the proteins were expressed in E. coli and accumulated to comparable

levels. All chimeras were soluble and could be purified by standard lysis protocols. In

addition, all crystallins were able to fold into native-like proteins and were stable through

dialysis and storage. Small losses of protein due to precipitation may indicate a slight

loss in stability. Each recombinant chimera was purified using Ni-NTA affinity

chromatography. There were some slight differences in the purification of the chimeras,

with YSN-yDc and ySN-yDc [yDnTr] requiring higher imidazole concentration to elute from

the Ni-NTA column. The biochemical basis for this observation is unknown.

3. Analytical Size Exclusion Chromatography

Analytical SEC profiles were obtained on each chimera to determine if any

formed stable dimers. All of the recombinant wild type and chimera proteins eluted after

the 25 kDa protein standard (Chymotrypsinogen A) as expected, and near the 13.7 kDa

protein standard (Ribonuclease A) (Fig. 4-3). This result was surprising; however, the

isolated domain proteins eluted at ~1 ml later than the full length proteins indicating in

comparison all full length proteins are eluting at the appropriate volume (Chapter 2).

This discrepancy may be due to the overall shape of the crystallins since all of them elute

at similar volumes.

All chimeras were loaded onto a column at a concentration of 80 pg/ml, 8-fold

higher than the experimental conditions. At this concentration, all of the chimeras eluted

off of the SuperdexTM200 column at similar volumes as 'DwTr and ySwr (Fig. 4-3). The

elution peak volumes for yDwTr and ySwTr were 17.86 ml and 17.4 ml, respectively. The

yDN-ySc chimera eluted at 17.66 ml and yDN-ySc [yDmrr] eluted at a similar volume of

17.67 ml. Also, both ySN-yDc and ySN-yDc [yDINr] eluted at similar volumes of 17.5 ml

and 17.59 ml respectively. The retention volumes of the chimeras were between yDwr

and ySwTr retention volumes as would be expected. Restoration of the yDrNT did not

change the elution volume of the chimeras. Taking into account the isolated domain
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elution data along with the wild type data, these results suggests that all of the chimeras

were in the monomeric form and did not appear to form stable dimers. However,

oligomerization was not tested at higher concentrations of the chimeras which may

demonstrate different properties.

4. Circular Dichroism Spectroscopy

Analysis of secondary and tertiary structure of these chimeric proteins was

performed to determine if they exhibited significant differences from the two parent

molecules, yDwT and YSwT. We utilized Far UV CD spectroscopy to access the secondary

structure of the chimera crystallins. All CD spectra had a minimum at 218 nm

characteristic of the 1-sheet y-crystallins. The chimeras which contained the N-terminal

domain of the parent molecule had CD spectra most similar to that of the parent (Fig. 4-

4). For example, the yDN-ySc chimeras had a CD profile similar to YDwT, while the ySN-

TDc chimeras had CD profiles similar to SwTr. By deconvoluting the chimera spectrum,

a more sensitive comparison was made between the wild type and the chimera proteins.

The deconvolution of the chimeras revealed the similarity between all of the chimeras

along with slight differences in the amount of 1-sheet and a-helical structure (Table 4-2).

5. Fluorescence Spectroscopy

In order to probe the tertiary conformation of the protein, fluorescence spectroscopy was

utilized. Both yDwT and TSWT have four buried tryptophans at different regions of the

protein, Trp 68 and Trp 156 (Trp 72 and Trp 162 in ySwr) at the top region of the protein

and Trp 42 and 130 (Trps 46 and 136 in ySwT) at the bottom region of the protein.

Fluorescence spectroscopy showed that the yDN-ySc chimeras had a fluorescence

maximum at 327 nm similar to the YDwT in the native state (Fig. 4-5, Table 4-2). TSN-

YDc chimeras had a similar fluorescence profile to ySwr with the maximum intensity

slightly red shifted to 330 nm (Fig. 4-5, Table 4-2). All chimeras unfolded with a

maximum intensity of -350 nm in the unfolded state indicative of solvent exposed

tryptophans (Fig. 4-5).

148



10

C

0

44

2

0
12

10

C
0

. 4

44

0

10 12 14 16 18 20 22 24

Elutlon Volume (ml)

Figure 4-3. Analytical Size Exclusion Chromatography profiles of the chimeras and wild
type proteins. All samples were loaded onto a SuperdexT200 10/300 GL column at a
protein concentration of 80 pg/ml. The molecular weight standards were BSA (66 kDa),
Ovalbumin (45 kDa), Chymotrypsinogen A (25 kDa), Ribonuclease A (13.7 kDa) and are
noted by arrow. (A) yDwT (black), ySwr (blue), yDN-ySc (green), and yDN-ySc [TDnr]
(purple). (B) DwT (black), ySwrT (blue), YSN-yDc (gray), and ySN-YDe [YDNTr] (red).
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Figure 4-4. Far-UV CD spectroscopy of wild type and chimera proteins. All samples
were at a protein concentration of 100 gg/ml in 10 mM sodium phosphate buffer, pH 7.0
at 370C.

(A) CD spectra recorded from 195-260 nm wavelengths for 7DwT (black *), yDN-ySc
(green L), and yDN-ySc [yDwr] (purple e).

(B) CD spectra recorded from 195-260 nm wavelengths for ySwr (blue A), ySN-yDc (gray
A), and YSN-TDc [yDNr] (red M).
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Table 4-2. Deconvoluted CD spectra and fluorescence emission spectra maximums for

1yD and yS wild type and chimera proteins.
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CD Spectra Fluorescence
Emission

PROTEIN % P[- % a- % % Native Unfolded
Sheet Helix Turns Unordered (nm) (nm)

yDwr 40 6 21 31 326 350

yDN-'ySc 34 12 23 32 327 350

YDN-ySc 36 11 22 31 327 350[yDrl
ySwr 33 6 24 36 330 350

ySN-yDc 34 5 24.5 35 330 350

ySN-yDc 34 6 25 35 330 350
[yDrNT] I
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Figure 4-5. Native and unfolded fluorescence emission spectra of wild type and chimera
proteins. All proteins excited at 295nm and emission recorded from 310-400 nm
wavelengths. Samples consisted of 10 pg/ml protein in 100 mM sodium phosphate, 1
mM EDTA, 5 mM DTT, pH 7.0 and additionally 5.5 M GuHCI for unfolded samples
equilibrated at 370C.

(A) YDwT Native (black ,) and Unfolded spectra (black dotted line); yDN-ySc Native
(green L) and yDN-ySc Unfolded spectra (green dotted line); yDN-YSc [yTDmr] Native
(purple e) and yDN-ySc [yDrT] Unfolded spectra (purple dotted line).

(B) YSwr Native (blue A), Unfolded spectra (blue dotted line); ySN-yDc Native (grayA)
and YSN-yDc Unfolded (gray dotted line); TSN-yDc [TDNT] Native (red 0), and TSN-yDc
[yDrNT] Unfolded (red dotted line).
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As previously reported, yDwT and ySwT exhibited an increase in fluorescence

intensity in the unfolded state compared to the native state of the protein. All chimeras

maintained this quenching phenomenon further demonstrating the similarity in the native

structure of the chimeras compared to the wild type proteins. Upper Trps 68 (in yS 72)

and 156 (in yS 162) are quenched through charge transfer to the protein backbone (Chen

et al. 2006). In yDwT, the bottom two Trps 42 and 130 are involved in energy charge

transfer to their intradomain upper Trps (Chen et al. 2006). In ySwT, the yS N-terminal

domain does not exhibit energy transfer from the bottom Trp 46 to the top Trp 72 while

the ySc does exhibit energy transfer (J. Chen, personal communication).

6. Thermal Denaturation of the Chimeras Compared to Wild Type Proteins

The stabilities of the chimeras were assessed by thermal denaturation, a

qualitative measure of stability in the context of a more physiological relevant stress.

The stabilities of the chimeras were initially monitored by thermal unfolding in low ionic

strength conditions. Far-UV CD spectroscopy was utilized to monitor the transitions by

measuring the loss of 3-sheet structure at 218 nm with increase in temperature. AG and

m values could not be extrapolated from the reaction data because of the irreversibility

caused by thermally induced aggregation. Instead, the fraction of native protein was

calculated since signal interference from the aggregate would possibly affect the amount

of unfolded protein calculated. Temperature midpoints (TM) of the reaction were

determined by fitting the thermal curve to a two state model indicating no populated

intermediates (Fig. 4-6).

The thermal stabilities of the yDN-ySc chimeras, containing the yD N-terminal

domain, were similar to the yDwT protein. The TM of yDN-ySc chimera was 81.5 0C. The

replaced yD interface chimera, yDN-ySc ['yDNT], had a TM of 79.50 C. Comparatively,

yDwT had a temperature midpoint of 83.8 0 C (Table 4-3). The restoration of the yD

interface in yDN-ySc did not increase the thermal stability of the chimera. On the

contrary, the yDN-ySc [YDmNT] exhibited slight destabilization compared to the chimera

153



that consists of a mismatched interface, yDN-ySc. The chimera TMS were significantly

higher compared to the TM of isolated yD N-terminal domain (64.50 C) and yS C-terminal

domain (75.10C). This result demonstrates the importance of the domain interface,

whether it was the mismatched interface or the restored yD interface, in the overall

stability of the yDN-ySc chimera.

Neither yDI-ySc chimera had similar temperature midpoints comparable to yDwT.

It was hypothesized that mutating the interface back to the yD interface in the yDI-ySc

[yDINT] would increase the TM of the yDN-ySc chimera to match the yDwr values.

However, the restoration of the yD interface did not improve the thermal stability of the

protein. The TM of the yDN-ySc chimeras was ~ 2 - 4'C less than the temperature

midpoint of yDwr. This result confirms that the intrinsic stability of the yD C-terminal

domain is greater than the yS C-terminal domain in context of a full length protein.

The analyses of the yD and yS isolated domains presented in Chapter two revealed

that the C-terminal domain of yD (yDc) had higher temperature midpoints than all other

isolated domains. Additionally, both yD and yS N-terminal domains in isolation

exhibited lower TMs than their C-terminal domain counterparts. Therefore, it was

predicted that the ySN-yDc chimera, containing the yD C-terminal domain, would likely

have a higher midpoint compared to the other chimera. In contrast to our predictions,

both ySN-yDc chimeras had lower TMS similar to the ySwr protein (Fig. 4-6, Table 4-3).

The ySN-pDc chimera had a temperature midpoint of 73.1 0 C while the chimera with the

yD interface, TSN-yDc [yDTr], had a TM of 73.5 0C. The ySwT TM was 74.10C, within the

standard deviations of both chimera temperature midpoints.
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Figure 4-6. Thermal Denaturation of wild type proteins compared to chimera proteins.
Samples were prepared at 100 pg/ml protein concentration in 10 mM sodium phosphate
buffer, pH 7.0 and CD wavelength 218nm was monitored as the temperature increased
from 25-900 C. Data normalized and calculated as Fraction Native.
(A) yDwr (black *), yD~-ySc (green k), and yDN-ySc [yDir] (purple *).
(B) ySwr (blue A), ,SN-yDc (grayA), and ySN-yDe [yDITr] (red m).
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Interestingly, in the case of the ySN-yDc chimeras, both were less thermally stable

compared to yD C-terminal domain in isolation, with temperature midpoints ~ 30C less

than the isolated yD C-terminus (Table 4-3). The mismatched or yD interface did not

affect the overall stability of the protein and the temperature midpoint values of the

proteins were similar to the yS C-terminal domain in isolation. The reason for the

destabilization from the addition of the yS N-terminus linked to the yD C-terminus is

unknown and requires further investigation.

7. Equilibrium Unfolding and Refolding of the Chimeras

As mentioned above, all of the chimeric crystallins were able to refold to native-

like states in vitro, upon dilution out of denaturant. This was also observed in the overlay

of the transitions observed in the chimera equilibrium unfolding/refolding curves at lower

GuHCl concentrations (Fig. 4-7C, D). However, it was possible that the mismatched

interface of the chimeras affect the chimera's stability. Since the thermal denaturation

experiments could not give quantitative stability values, equilibrium unfolding/refolding

experiments using GuHCl denaturant were utilized to evaluate the stabilities of the

chimeras. The ratio of tryptophan fluorescence emission at 360 and 320 nm was plotted

to clearly represent the transitions of the equilibrium unfolding/refolding curves. The

concentration midpoint (CM) of each transition, the concentration of GuHC1 where 50%

of the protein is unfolded, was determined by fitting the curves to two or three state

models. CM was used as a reproducible measurement of stability, although extrapolated

AG and m-values were calculated using single wavelength tryptophan fluorescence

emission values at 360 nm.

Previously, equilibrium unfolding/refolding data of yDwr was fit best to a three

state model (Flaugh et al. 2005b, Fig. 4-7A). In contrast to DwrT, the chimera with the

N-terminal domain of yD, yDN-ySc, had a CM of 2.3 M GuHC1, and was best fit to a two

state transition. Calculated m and AG values for this chimera were 3.15 kcal*mol'-*M'

and 6.9 kcal*mo1-1 respectively. Restoration of the yD crystallin interface in the yDN-ySc

[yDrNT] chimera did not improve the stability of the yDN-ySc chimera. This was
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consistent with the thermal denaturation experiments (Fig. 4-6). The yDN-ySc [yTDIr]

chimera had a similar transition midpoint at 2.3 M GuHC1 and a calculated m and AG

value of 2.4 kcal*mol"'*M1 ' and 5.4 kcal*mol"' respectively (Table 4-3). All of the yDN-

ySc [yDmr] values were within standard deviation of the calculated values of yDN-ySc

(Table 4-3). Comparison between the yDN-ySc chimera and the isolated yD N-terminal

domain, indicated that the ySc interface interactions were adequate to stabilize the N-

terminus comparable to the yDwr first transition. This first transition monitored the

unfolding of the yD N-terminal domain. The isolated C-terminal domain of yS had a CM

of 2.3 M GuHCl similar to the CM of 2.2 M GuHCl of the yD first transition. The

midpoints of the different transitions monitoring yD N-terminus and yS C-terminus in

context of the chimera overlap depicting a more cooperative transition compared to

YDwT.

In contrast, the equilibrium transition of the ySN-yDc chimera was clearly best fit

to a three state transition, with concentration midpoints of 1.8 M GuHCl and 2.9 M

GuHCi (Table 4-3, Fig. 4-7D). These concentration midpoints are similar to the isolated

N-terminal domain of yS (1.7 M GuHC1) and the isolated C-terminal domain of TD (2.8

M GuHC1) (Table 4-3). Therefore, the ySN-yDc chimera likely monitored the intrinsic

stability of both individual domains and not contributions from the interface. The ySN-

yDc chimera m and AG values were 3.4 kcal*mol'l*Mv' and 6.0 kcal*mol- for the first

transition; and 2.8 kcal*mol'l*M "' and 8.24 kcal*mol "' for the second transition (Table 4-

3).
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Figure 4-7. Equilibrium unfolding (closed symbols) and refolding (open symbols) for A.
TDwr (*), B. ySwT (A), and C. yDN-YSc (kL) and yDN-ySc [TDIr] (e), D. YSN-yDc (A) and
TSN-YDC [YDNr] (=).
Samples consisted of 10 pg/ml protein concentration, 100 mM sodium phosphate, 1 mM
EDTA, 5 mM DTT, pH 7.0 and various concentrations of GuHCI at 370C. Fluorescence
emission at 360 nm and 320 nm were calculated as a ratio. Equilibrium data fit indicated
by solid black line.
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Restoration of the yD interface in ySN-yDc obtained similar CMS to the CMS

observed for mismatched chimera interface (Table 4-3). There was a slight increase in

the stability of the yD C-terminal domain, but this affect was minimal with ~ 0.1 M

increase in the second transition CM. The lack of increased stability in the ySN-yDc

[YDINT] chimera suggests that the interface contacts do not stabilize this chimera. These

results differed from the thermal denaturation data which showed a decrease in yD C-

terminus stability in context of the ySN-yDc chimeras. On the other hand, the equilibrium

results do not reveal a stability decrease in yD C-terminus in the context of the chimeras.

As mentioned above, upon refolding of yDwTr from 5.5 M GuHC1 into buffer, the

refolding chains enter an off-pathway aggregation reaction that competes with productive

refolding of the protein (Kosinski-Collins and King 2003). This off-pathway aggregation

reaction results in an increase in light scattering as observed by fluorescence

spectroscopy (Flaugh et al. 2005a; Flaugh et al. 2005b; Kosinski-Collins and King 2003).

The apparent increase in the fluorescence emission at 320 and 360 nm is recorded in the

equilibrium refolding multiphasic curve (Fig 4-7A, yDwr (open 0 symbol)). Only the

YSN-YDC [yIDnr] chimera exhibited the increased light scattering similar to yDwr (Fig. 4-

7D).

8. Equilibrium Refolding Aggregation Properties of the Chimera Proteins

As mentioned above, previous equilibrium refolding studies of yDwr drevealed an

off-pathway aggregation reaction creating ordered fibrils that were not amyloid in nature

(Kosinski-Collins and King 2003). These aggregates formed upon dilution out of high

concentration of chaotropic denaturant even at a low protein concentration of 10 tg/ml

and at 370C. Under these conditions, -50% of the protein partitioned into the off-

pathway polymerization reaction and ~50% refolded into native-like protein. The highly

ordered character of these aggregates suggested that other y-crystallins, which have

homologous structure, may exhibit a similar off-pathway aggregation reaction.

Consequently, ySwr was tested for its ability to aggregate under the same conditions.
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In order to test for the presence of higher molecular weight species, solution

turbidity measurements at 350 nm were utilized to determine the ability of the sample to

scatter light. In addition, fluorescence emission scans of the refolded sample were taken

to assess the conformation of the refolded proteins. However, when probing yDwT

refolded samples, they primarily scattered light yielding a red shifted emission maximum

at ~335 nm and increased fluorescence intensity spectra compared to the native-like

refolded spectra (Kosinski-Collins and King 2003, Fig. 4-8). The fluorescence emission

maximums of the native-like refolded protein were comparable to the native fluorescence

emission spectrum (compare Fig. 4-5 and Fig. 4-8). This difference in the fluorescence

emission of the native-like refolded protein and light scattering aggregated state was used

as a qualitative measurement for the presence of aggregates. Accordingly, fluorescence

emission scans were taken before and after a high speed centrifugation in order to

estimate the amount of partitioning of the protein into the off-pathway aggregation

reaction.

In contrast to YDwT results, upon refolding out of denaturant there was not an

increase in scattering indicating the absence of high molecular weight species in TSwr

(Fig. 4-7 and Fig. 4-8). The ySwT refolded sample was spun at high speed and a

fluorescence spectrum was taken for comparative purposes. Both spectra were similar in

the native-like refolded protein maximum and fluorescence emission intensities

demonstrating no loss of protein during centrifugation. These results agreed with

solution turbidity data that ySwr does not aggregate under these conditions regardless of

the structural similarities with yDwr (Fig. 4-9).

To determine what domain of DwrT or SwTr may be responsible for the

aggregation properties, we assessed if the chimeras would follow the off-pathway

aggregation reaction as seen in yDwT. Both yDI-ySc and YSN-yDc chimeras did not

demonstrate an appreciable increase in solution turbidity as seen in DwTr (Fig. 4-9). The

yDN-ySc and ySN-YDc chimeras yielded spectra similar to their native spectrum (Fig. 4-8).
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However, restoration of the yD interface in the both chimeras, SN.yDc [yDwnr] and yDN.

ySc [yDrT] demonstrated an increase in solution turbidity (Fig. 4-9). Moreover, ySN.YDc

[yDNrr] fluorescence emission spectra recapitulated the distinct spectra observed in the

yDwr refolded samples (Fig. 4-8). The amount of protein partitioned into the off-

pathway aggregate of 7SN-yDC [YDINT] chimera was ~50% similar to yDwT. In yDN-ySc

[yDn-r], the fluorescence emission scan revealed a slight shift in the refolded sample and

the solution turbidity was slightly increased (Fig. 4-8 and 4-9). The red emission shift

and fluorescence intensity was not as dramatic as YDwT and the fluorescence intensity did

not decrease in significant amounts after the centrifugation of the aggregate.

These results suggest that the aggregation process requires both domains,

consistent with domain swap models.
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Figure 4-8. Equilibrium Refolding of wild type and chimera proteins before and after
centrifugation. All samples were unfolded in 5.5 M GuHCl and refolded by dilution into
100 mM Sodium Phosphate, 1 mM EDTA, 5 mM DTT, pH 7.0. Refold samples before
centrifugation (-4-), refold sample after centrifugation (dotted lines).
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Figure 4-9. Solution turbidity of the refolding sample of wild type and chimera proteins
before centrifugation. Protein concentration was 10 jgg/ml. Solution turbidity
measurements absorbance at 350 nm.
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9. Aggregation Kinetics Demonstrate Differential Aggregation Properties

Previous experiments demonstrated that the YDwT off-pathway aggregation

formed within minutes and did not appear to increase with time after 40 hours incubation

(Kosinski-Collins and King 2003). In order to determine if the rate of formation was

altered in the yD interface chimeras and to confirm the equilibrium refolding aggregate

results, we followed the solution turbidity over time for all of the chimeras and wild type

proteins. We also tested the aggregation kinetics of the isolated domains of yDwT, YDN

and yDc. ySN and ySc were not tested since it has been established that the ySwT does not

exhibit aggregation under these conditions.

As observed in Fig. 4-10, the aggregation of HyD-Crys polymerized within

minutes of diluting the protein out of denaturant. It was difficult to monitor the initial

steps of the aggregation which was formed within the dead time of the experiments (~-15

s). The reaction is best fit to a two state transition model indicating the aggregation

reaction associates rapidly. The calculated tl/2 of the absorbance curve was -73 seconds

(1.2 minutes) indicative of a short or absent lag time. The isolated yDN and yDc did not

exhibit any increase in absorbance at 350 nm confirming that both domains are necessary

for the formation of the yDwTr aggregate.

The yDN-ySc and TSN-yDc chimeras did not accumulate appreciable amounts of

aggregated protein. yDN-ySc chimera absorbance at 350 nm revealed a - 5 fold increase

above ySwTr absorbance but a 4 fold decrease compared to yDwr. This result was

reproducible and was consistently higher than the native control, suggesting that this

chimera either forms smaller aggregates than YDwT or forms a small amount of

aggregates. On the other hand, TSN-yDc had a slightly higher absorbance than ySwT,

which likely is not significant and is within the error of the experiment.

In contrast, the yDwT interface chimeras reconstituted the off-pathway aggregation

observed in yDwT. Two-state kinetics were fit to both yDN-ySc and ySN-yDc chimeras. It
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was difficult to fit yDN-ySc because of the decrease in absorbance provided a slanted

baseline for the fit. However, by careful estimation, the rate of aggregation appeared

similar to yDwr which had a ti 2 of~-73 seconds. The nature of this decrease in

absorbance over time is still under investigation, but perhaps there is an equilibrium

between the aggregate and the native refolded protein. In contrast to 'YDN-YSc [DINr], the

opposite chimera, ySN-yDc [yDNwr], led to the formation of the off-pathway aggregation

reaction that persisted for the length of the experiment. This chimera was also fit to a two

state model and it had a calculated t1, of 105 seconds, slightly longer than the t/2 of the

YDwr protein.

The aggregation kinetic results suggested that the interface was the key region of

the protein that was important for the aggregation reaction. Both domains are required

for association in addition to the necessity of restoring the yD interface in order to

promote aggregation. These results support a domain swapped model of the aggregate in

which associations between the domains are maintained like the monomeric protein, but

the associations are intermolecular and not intramolecular.

10. Aggregation Properties at Higher Protein Concentrations

The aggregation kinetics demonstrated that neither the N-terminal nor the C-

terminal isolated domains exhibited competitive off-pathway aggregation at 10 pg/ml

concentration. Also the ySwr isolated domains did not exhibit any aggregation reaction

under these conditions (Chapter 2). In addition, refolding yDwr isolated domains

together under the same conditions did not reconstitute the yDwr aggregation reaction

(data not shown). These results confirmed that a two domain protein was necessary for

the off-pathway aggregation reaction. Although, off-pathway aggregation was not

observed at 10 gg/ml protein concentration, we wanted to determine if increasing the

protein concentration would affect the isolated domains and the chimera's ability to

aggregate.
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Figure 4-10. Aggregation kinetics of the wild type and chimera proteins. All proteins
were rapidly refolded into 100 mM Sodium Phosphate, 1 mM EDTA, 5 mM DTT, pH 7.0
and monitored by absorbance at 350 nm over 30 minutes. All samples have a protein
concentration of 10 pg/ml. YDwT, yDN-YSC [yDlnr], and ySN-yDc [yDmrr] curves which
were fit to two state kinetic models; the matching lines represehts the fit.
(A) yDwT (black *), yDN (dark blue 0), and yDc (orange 0).
(B) yDwT (black *), yDN-ySc (green k), yDN-ySc [yDNr] (purple 0), and ySwT (light blue
A).
(C) YDWT (black *), YSN-YDC (gray A), YSN-YDC [PDNTr] (red M), 5SwT (light blue A).
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The presence of the equilibrium refolded aggregate was assessed again by

solution turbidity measurements. The ability of each protein to aggregate at higher

concentrations was tested using five different protein concentrations, 10, 25, 50, 75, and

100 gg/ml. As the protein concentration increased, the yDwT solution turbidity increased

in a linear pattern (Fig. 4-11; lines are used as guides). During rapid refolding of the

proteins at higher concentrations, ySwT and isolated yDc exhibited off-pathway

aggregation competing with productive refolding (Fig. 4-11). Aggregation in SwTr was

observable spectroscopically at 75 gg/ml; although the turbidity was 5 fold less than

yDwT at this concentration. All isolated domains except for yDc failed to show evidence

of aggregation for concentrations up to 100 pg/ml. For yDc, concentrations at 50, 75, and

100 gg/ml revealed high molecular weight species. However, the observed TDc

aggregation was -3.5 fold lower than yDwT at the respective concentrations. The YDN-

ySc, and ySN-yDc chimeras aggregated at higher concentrations also. The solution

turbidity measurements for these chimeras were in the middle of the measurements

obtained for yDwT and ySwr as would be expected for these chimera proteins. Further

structural analysis of these higher concentration aggregates will need to be performed in

order to determine if the ySwT, yDc, yDN-ySc, and ySN-yDc aggregates have similar

properties as the yDwT refolding aggregate or have different morphologies.
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Figure 4-11. Equilibrium Refold Aggregation of wild type, isolated domains, and
chimeras at different protein concentrations. Proteins were unfolded in 5.5 M GuHCI and
diluted into 100 mM sodium phosphate, 1 mM EDTA, 5 mM DTT, pH 7.0 buffer.
Proteins were diluted to 10, 25, 50, 75, and 100 p~g/ml final protein concentration. All
samples were equilibrated for 24 hours. Lines through the data points are present for
visual clarity.
(A) yDwr (black *), yDN (blue 0), and yDc (red 0).
(B) ySwT (green A), SN (red 0), and ySc (blue m); (Note the y axis is a different scale
for panels A and B).
(C) yDwr (black *), YSN-yDC (red 0) , yDN-ySc (blue M), ySwTr (green A).
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11. IR spectroscopy of the Chimeras

In order to assess the conformation of the different chimera aggregates, we

utilized ATR-IR spectroscopy. IR analysis of the amide I and amide II bands can give

information about the overall secondary structure of the protein. Recent studies have

utilized IR spectroscopy to characterize amide I (and II) bands of amyloid structures due

to unique cross P3-sheet conformation (Petty et al. 2005). We refolded yDwTr and chimera

proteins and placed each individually on an ATR cell used for solid samples, to

determine the refolding aggregate conformation. Comparisons were made between the

IR profile of the yDwTr aggregate and the aggregates of yD-ySc and YSN-yDc chimeras.

All protein samples had similar profiles with a wavenumber maximum at 1630 cm "' for

the amide I band characteristic of a globular r-sheet protein (Fig. 4-12). A similar amide

I band maximum is seen in native yD protein in solution (data not shown). These results

suggest that the yDwr and chimera aggregates retain a similar conformation to the native

yD protein. Also deconvolution of the IR interferograms demonstrated a band at 1680

cm-1 indicative of 3-turn structures. These results confirmed that the yDwTr aggregate

characterized by AFM is structured and not amorphous. The IR interferograms of the

chimera aggregates suggest that they may have similar characteristics to the PDwr

aggregate.

There were slight differences in the amide II band maximum which shifted from

1580 cm-' to 1570 cm-' in the chimeras. This may be attributed to the different side chain

contributions in the protein. Other characteristics of the different crystallin aggregates

may give insight into the conformation of the aggregate formation in vitro.
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Figure 4-12. Infrared Spectroscopy of the wild type and the yDN-ySc and 'ySN-yDc
chimeras. Proteins were refolded at high concentrations 10 mg/ml, in deuterated 100 mM
sodium phosphate, 1 mM EDTA, 5 mM DTT, pH 7.0 buffer. 512 scans averaged to
achieve final interferogram.
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D. DISCUSSION.

In this chapter, the competing off-pathway polymerization reaction upon refolding

of yDwT out of denaturant was investigated. The previously characterized polymerization

reaction revealed highly ordered fibrous aggregates that were not amyloid in nature, but

were ordered. This aggregation reaction of DwTr polypeptide chains may be an model

for cataractogenesis in vitro. The structurally homologous ySwr crystallin did not exhibit

an off-pathway aggregation under the same conditions as yDwT. This suggested that the

pathway of aggregation involved specific amino acids or sequences essential for

association and was not a general feature of the y-crstallins. To investigate this disparity

between two structurally similar crystallins, chimera proteins were created in an attempt

to narrow down regions of the protein that promoted aggregation in yDwT or regions in

ySwr that inhibited aggregation.

Chimeras consisting of one domain of yDwT and one domain of ySwT were created

along with chimeras that restored the natural yD interface. All of these proteins were able

to fold and CD analysis demonstrated primarily P3-sheet character similar to yDwT or YSWT

secondary structure. The chimeras with the N-terminal domain of the wild type proteins

had similar characteristics to their respective protein. For example, yDN-ySc chimeras

had characteristics similar to YDWT. This was unexpected since the structure and stability

of the isolated domains demonstrated that the C-terminal domains were most similar to

the wild type proteins. This surprising result may be due to the presence and

effectiveness of the interdomain interface. The contribution of the interface may support

structural aspects of the protein as well as stability.

1. Structural Aspects of the Chimera Proteins

The topology of the 13- and y-crystallins is identic-al, consisting of two domains

with each domain equipped with two intercalated anti-parallel Greek Key motifs. In spite

of being structurally similar, the 13-crystallins form oligomers and the y-crystallins are
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monomeric. Previously, comparisons between ~B2 and Bovine yB crystallins have been

used as a model to study the differences in associations observed in the py-crystallin

proteins (Mayr et al. 1994; Trinkl et al. 1994). In the case of PB2 crystallin, it can form a

domain swapped dimer and can also form tetramers and possibly hetero-tetramers with

other P-crystallins (Norledge et al. 1997).

The y-crystallins have a conserved proline and glycines in the linker, thought to

be important for their bent linker character. ~3-crystallins also have a proline in its linker

albeit not in the same structural position (Lapatto et al. 1991). It was of concern that the

Pro 83 of both yDN-ySc and ySN-yDc chimeras were not in same topological position as

Pro 82 of yB possibly causing these the domains to dimerize or be destabilized (Lapatto

et al. 1991). However, analytical size exclusion analysis demonstrated that at

concentrations above experimental conditions, all of the chimeras were monomeric.

Therefore, the presence of a proline in the linker was sufficient to prevent dimerization.

In addition, thermal stability of the chimeras only revealed a slight decrease in stability

most likely a consequence of the different domain contributions. However, without the

solved structures of the chimeras, it is difficult to assess what effect the linker might have

on the structure of the chimeras.

2. Stability of the Chimera Proteins

The stability of the chimeras was determined both qualitatively by thermal

denaturation and quantitatively by equilibrium unfolding/refolding experiments.

Thermally, the behavior of the chimeras was similar to the wild type proteins, yDwTr and

ySwT. The loss of secondary structure monitored by CD was not observed until

temperatures above 650 C. All thermal unfolding curves were fit to a two state model

differing from the equilibrium unfolding/refolding curves of yDwr and YSN-yDc chimeras

which are better fit to three state models. However, since the CD signal may be a

mixture of aggregate and unfolded species, any intermediates along the thermal unfolding

pathway would be difficult to decipher.
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The TMS of the yDN-ySc and yDN-ySc [YDiwr] chimeras, containing the yD N-

terminal domain, were the closest to yDwr's TM of 83.8 0 C. On the contrary, the yS N-

terminus containing chimeras, ySN-yDc and ySN-yDc [yDINT], had TMS similar to YSwT TM

of 74 0 C. These results were contrary to what one might expect since the N-terminal

domains of both yD and yS are the least stable in isolation. However, the stability of the

interdomain interface in the yDN-ySc chimeras may contribute to the overall stability of

the proteins. While, the domain interface may not a contributing factor to the overall

stability of the ySN-yDc chimeras. The equilibrium unfolding/refolding experiments

confirmed the thermal denaturation results and yielded comparable qualitative stability

differences in the chimeras.

Contrary to our hypothesis, restoration of the yD interface does not significantly

affect the stability of the chimeras. Both yD interface chimeras had similar

thermodynamic and thermal stability values compared to their parent chimeras. These

results may be a result of the lack of maximum interface contacts due to structural

differences in the interface, which varies from the wild type protein. Alternatively, the

intrinsic domains may be the primary factor in the thermodynamic stability of the overall

protein. Thus, "fixing" the interface will not necessarily restore stability observed in the

wild type thermodynamic values.

3. Aggregation of the Chimeras

Although previous studies of the yDwT demonstrated an off-pathway aggregation

reaction, the aggregation reaction was not observed for ySwT under the same conditions

as yDwr. Additionally, none of the isolated domains demonstrated the aggregation.

Moreover, refolding yD isolated domains together out of denaturant at equal

concentrations of 10 plg/ml did not reconstitute the aggregation reaction. Therefore, both

domains of yDwr were necessary to reconstitute the aggregation observed in DwTr.
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Analysis of the chimeras demonstrated that the yDwT interdomain interface

present in both domains was the key factor in the aggregation reaction. Neither yDN-ySc

nor YSN-yDc chimera recapitulated the solution turbidity observed in the refolding

aggregate of yDwT under similar conditions. Incorporation of the yD interface in

chimeras increased aggregation significantly. These results suggest that the interface

residues in both domains of yDwTr contribute to aggregation observed at 10 gg/ml protein

concentration. Under these conditions, the yDN-ySc chimera exhibited solution turbidity

slightly above its native protein and the refolded ySwr solution turbidity. In contrast, the

opposite chimera, ySN-yDc did not have a significant increase above background solution

turbidity. These results suggest that the N-terminus of yD has a higher propensity to

aggregate when paired with a partner domain.

This higher propensity could be due to yDN domain interface or an intrinsic

residue that is exposed during the refolding reaction. One noticeable difference in the

interface between yDwr and ySwTr is the Phe at position 56 in yD substituted for Ile in yS.

Although the Phe56 might be necessary for the domain swapping mechanism, it is not

sufficient since substitutions of Phe to Ala did not inhibit the off-pathway aggregation

reaction (Flaugh et al. 2005b). Aggregation kinetics performed on mutations in yD may

give more insight into the specific interface residues that contribute to aggregation. The

chimera aggregation results support the idea that the interface of 7Dwr promotes

aggregation and in contrast to the hypothesis that regions in ySwr inhibit aggregation.

In contrast to the results at lower protein concentration, the chimera aggregation

analysis at higher concentrations indicated that the chimera proteins had a higher

propensity to aggregate than the ySwr protein. Thus, the inclusion of either domain from

DwTr is sufficient to initiate aggregation ofyS regions at higher concentrations. This is

likely due the presence of more of the aggregation-prone intermediates at higher

concentration promoting the nucleation event for aggregation. Again, these results

suggest that a region in yDwTr is promoting aggregation instead of the hypothesis that a

region in ySwTr inhibits aggregation.

175



4. Summary of the Chimera Structural, Stability, and Aggregation Properties

The results of all chimera experiments are summarized in Table 4-4. Briefly, the

chimeras containing the N-terminal domain of the wild type proteins had similar

properties. For example, yDN-ySc chimeras had similar secondary and tertiary structure

to YDwr. Also, their thermal stability was similar to DwTr. Thermodynamically, the

yDN-ySc chimeras were not similar because the transitions were more cooperative

compared to YDwr and individual domain transitions could not be resolved. However,

the contribution of the domain interface in the stabilization of the yD N-terminal was

reminiscent of yDw-r. The opposite chimera containing the yS N-terminal domain, 7SN-

YDc and YSN-yDc [yDrNT] had properties similar to YSwr. In addition, the yD interface

containing chimeras aggregated while the other chimeras did not.
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Table 4-4. Summary of yD and yS wild type and chimera structural, stability, and
refolding aggregation properties.

177

Refolding
PROTEIN Secondary/Tertiary Thermal Aggregation

Structure Stability (10 Pg/ml
protein)

,yDwT Yes

YDN-YSC Similar to yDwr Similar to yDw-r Slightly

7DN-•SC [yDINT] Similar to yDwr Similar to yDwT Yes

ySwT No

YSN-YDC Similar to ySwr Similar to ySwr No

YSN-DC [YDINTr Similar to YSwT Similar to ySwT Yes



5. A Domain-Swapping Mechanism for )Dwr Aggregation Model

In general, aggregation-prone species may consist of intermediates along the

normal folding pathway of the protein or non-native conformers of the protein. All of

these results suggest a domain swapping mechanism as a plausible model of the yDwr

polymerization reaction (Fig. 4-13). For example, the N-terminal of one partially folded

conformer interacts intermolecularly with the C-terminal of another molecule forming

open-ended multimers and leading to a highly ordered distinct aggregated state. In this

model, the domain swapped interface would have the same molecular contacts as the

native interface. The reconstitution of aggregation by the yD interface chimeras supports

the domain swapping model for aggregation suggesting that the yD interdomain interface

is the primary driving force in the aggregation reaction. Domain swapping has been

proposed for other aggregation pathways. For example, open-ended extended polymers

in solution have been observed for RNase A, tryptophanase, and tryptophan synthetase

(Schlunegger et al. 1997). The open-ended domain-swapped polymerization has been

confirmed by the filament crystal structure of the T7 helicase (Sawaya et al. 1999), RecA

(Story et al. 1992; Xing and Bell 2004) and carbonic anhydrase proteins (Strop et al.

2001). Mechanisms of how these proteins form domain swapped polymers are still being

studied.

Additionally, the domain swapping mechanism is an attractive model since the

f3B2 crystallin has been shown to form a close-ended domain swapped dimer naturally

(Fig. 4-14). The 1B2 crystallin associates via a domain swapping mechanism in which

the N-terminal domain associates intermolecularly with its dimeric partner's C-terminal

domain. Equilibrium studies showed that the N-terminal domain dimerized at higher

concentrations increasing its stability while at lower concentrations (5 gg/ml) it was in

the monomeric form and had a higher propensity to unfold. In context of the full-length

protein, the equilibrium unfolding/refolding was more cooperative at higher

concentrations, observed by a two state model. In contrast, at lower concentration the

population of an intermediate was observed and the equilibrium data fit best to a three

state model. These results suggested that the unfolding of the N-terminal domain
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promotes dissociation of the N-terminus from the C-terminus of its partner molecule,

forming a monomeric intermediate in which the N-terminus is unstructured and the C-

terminus is folded. Thus, the second equilibrium transition monitors the unfolding of the

C-terminal domain (Fu and Liang 2002b; Wieligmann et al. 1999).

However, we are not ruling out other possibilities such as the loop-sheet insertion

mechanism involving one or more P-strands in the interface that inserts within a domain

or another mechanism involving intermolecular contacts that include the interface

(Carrell and Lomas 1997).

A lag phase is not observed in the aggregation pathway using this method; which

is not consistent with a nucleation dependent aggregation reaction. The extent of

aggregation was concentration dependent. In the domain swapped model, the initiating

species could be an open ended domain swapped dimer which could lead to linear

unbranched fibrils as seen in the AFM. The unbranched fibrils observed in the AFM

could be created by a double domain swapped mechanism it which two structural

elements of the protein would be involved. An example of a double domain swap

creating branched and unbranched fibrils is the E. coli trp repressor structure (Lawson et

al. 2004). Alternatively, the unbranched and branched fibrils can be formed through a

closed-ended mechanism. This mechanism has been proposed for proteins such as

cystatin C, which forms amyloid fibrils observed in its crystal structure (Janowski et al.

2005). To date, none of these structures have been observed in vivo.

There are a few cases reported in which proteins with similar topologies have

different aggregation rates. In the case of Ig-binding proteins, protein L and G, each have

different kinetic refolding pathways which have been studied extensively (McCallister et

al. 2000; Park et al. 1997; Scalley et al. 1997). The rate of aggregation in these two

proteins is different. Comparatively, protein G is a slow aggregator while protein L

aggregates quickly (Fawzi et al. 2005). These diverse aggregation properties have been

attributed to the folding intermediates populated along the folding pathway (Brown and

Head-Gordon 2004). It has been shown that Protein G has a rapid folded intermediate
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state that in theoretical studies prevents "native-like" associations with other molecules.

On the other hand, theoretical studies on protein L have shown that protein L aggregates

more rapidly, since its denatured state has more stabilizing interactions thought to be

aggregation-prone (Fawzi et al. 2005).
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Figure 4-14. Crystal structure of domain swapped dimer in bovine j3B2 crystallin.
Example of the crystallin's ability to oligomerize by domain swapping. (Bax et al.
Nature, 1990, 347:6295 776-80).
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CHAPTER FIVE:

FINAL DISCUSSION
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A. SUMMARY OF CHAPTERS

In the last section of the Chapter one, I noted that the motivating questions for me

for this project as a cell biologist focused on why the crystallin proteins were duplicated

and why so many different crystallins were required and located in different regions of

the lens were of interest. In Chapter two, the thermal studies of the isolated domains

showed that duplication increases stability in yD crystallin. Although, qualitative, the

thermal studies are a more physiologically relevant measure of stability, since heat is a

common stress. However, the isolated domains were extremely stable as well. This is

consistent with the notion that the crystallins were recruited to the lens possibly for their

biophysical properties as well as their proposed stress related roles.

The results in Chapter two, high stability of the yD crystallin involves the intrinsic

stability of the domains as well as the interdomain interface. Mutants of the interface

residues suggested that the stability of the interdomain interface was important for the

folding of the N-terminal domain (Flaugh et al. 2006). The chapter two results confirmed

this previous result and allowed for a calculation of the free energy contribution of the

interface. Another important result from this chapter was in absence of its partner

interface, the N-terminal domain was still able to fold. The stability of the domains in

isolation also suggests that the ancestral single domain crystallins were already quite

stable. In Figure 5-1, the interface of the N-terminal domain and C-terminal domain is

observed.

Another important result from these experiments was the detection of a kinetic

refolding intermediate in the formation of the intercalated double Greek Key domain.

The intermediate detected could correlate to the folding of one individual Greek Key

motif. It has been proposed that the innermost Greek Key motif act as a nucleus for

folding the entire domain. By studying the isolated domain refolding kinetics, we

propose that this observed intermediate may be the innermost Greek Key folded and the

outermost Greek Key unfolded.
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In Chapter three, I discovered that the y-crystallins that would require the longest

life -time exhibited a distinct kinetic stability consistent with its biological function. yD

crystallin exhibited high kinetic stability in addition to its high thermodynamic stability.

On the other hand, yS crystallin did not exhibit such high stability kinetically, thermally

or thermodynamically. This data supported the hypothesis that the crystallins expressed

in different regions of the lens have adapted to their surrounding environments. The yS

crystallin is present in the outer regions of the lens where there is synthesis and

degradation. The nuclear lens core yD crystallin localization requires the high kinetic

stability.

Our results here observed half-lives close to 20 years for the lens nuclear core yD

crystallin. These numbers may increase in the environment of the lens due to

macromolecular crowding. It has been suggested that high concentrations in the cell

improves kinetic stability through. Also excluded volume improves stability by

macromolecular crowding. The molecular crowding could assist crystallin binding to its

partially folded substrates. In addition, the presence of intermediates would not

accumulate in appreciable amounts since the equilibrium between the unfolded or

intermediate state and the native state would drive the partially unfolded intermediates

back to the native state. It is predicted that the post-translational modifications would

shift this equilibrium by destabilizing the native-state.

Although these experiments were performed at low concentrations compared to

the high concentration of the lens proteins, these results may still be physiologically

relevant. In the lens, the amount of partially folded intermediate that would be populated

upon a destabilizing event would be at relatively low concentrations. The presence of a-

crystallin would also have an effect on the concentrations of the partially folded

intermediates. However, late in life the a-crystallin may be saturated and no longer

available to prevent aggregation of the other crystallins.
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In Chapter four, I have observed that there comes a price with increased stability.

In yD, the stabilizing interdomain interface residues are associated with increased

aggregation. This result supports the necessity for the high stability of yD crystallin,

preventing the accumulation of partially folded intermediates with an exposed interface.

The results of Chapter four supports a domain swapping model for the formation of the

aggregation state of yD-crystallin and perhaps other crystallins as well (Figure 5-2).

An interesting observation of this thesis work is the differential thermodynamic

and kinetic stability between two homologous crystallins. While this difference may be

explained by the adaptation of these crystallins in two different regions of the lens, the

biochemical differences that contribute to the stability are still unknown. By comparing

these two crystallins by sequence or structural alignment, it is difficult to assess the

differences in the stability. By studying mutations between both crystallins, the amino

acids important for the overall stability may be determined in the future. Thus, the

crystallins are model proteins for understanding 13-sheet folding, amino acid interactions

contributions to stability and protein aggregation. In addition to these general important

unanswered questions in biology, the comparison of the crystallins promotes

understanding of protein evolution and how it relates to its function.
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APPENDIX A: SUMMARY OF PREVIOUS WORK

Previously, I was a graduate student in Ilaria Rebay's laboratory studying the

retinal determination network. Here, I will give a brief description of the various projects

I addressed in her lab.

The retinal determination (RD) genes twin of eyeless (toy), eyeless (ey), eyes

absent (eya), sine oculis (so), and dachshund (dac) encode transcription factors and

cofactors essential for eye specification (Quiring et al. 1994). Hypomorphic alleles of

these genes result in complete loss or severe defects of the eye. In addition, ectopic

expression of toy, ey, eya, or dac results in the induction of ectopic eye formation (Halder

et al. 1995; Shen and Mardon 1997). While overexpression of so cannot act alone to

induce ectopic eyes, it can act synergistically with eya and dac to produce ectopic eyes.

Null mutations of these genes are homozygous lethal, indicating essential additional roles

in embryogenesis as well as their roles in eye development.

The overall question of one project addressed was the role of MAPK

phosphorylation in regulating the activity of the retinal determination network. The

question of whether MAPK phosphorylation regulates the RD gene network was

analyzed through a biochemical and genetic approach. Biochemically, kinase assays

were performed in vitro to test the ability of these MAPKs to phosphorylate So, Dac, and

Ey protein substrates. The results from this experiment indicated that So was

phosphorylated by JunK, ERK, and p38a MAPKs in vitro. It also suggests that Ey may

be phosphorylated by ERK MAPK, in vitro. This biochemical evidence was followed by

genetic studies to confirm the relevance of the phosphorylation of these proteins in vivo.

In addition to my first project, I contributed to a joint project in the lab which

identified Eya as a phosphatase in addition to a transcription factor (Tootle et al. 2003).

Eya was first identified as a potential phosphatase by sequence homology and structural

modeling of the Eya domain to the Haloacid Dehalogenase (HAD) motif. HAD family

members include magnesium dependent phosphatases that utilize a nucleophilic
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aspartate. The Eya domain contains a catalytic quintet of HAD active site residues that is

conserved in Eya homologs of plants, invertebrates, and vertebrates.

My contribution to this work was the preparation of the Drosophila and Mouse

Eyes Absent protein by determining the conditions necessary to purify multiple deletions

and fragment forms of soluble GST tagged drosophila Eya and mouse Eya fusion

proteins and by optimizing protein purification of both EYA homologues. I also

determined the conditions necessary for the phosphatase activity assays and optimized

the conditions preferred by the phosphatase enzyme.

My second project in the lab involved determining substrates for the Eya

phosphatase and transcription factor. I approached this question utilizing the in vitro

expression cloning (IVEC) technique. The IVEC technique involves transcription and

translation of cDNA pools into S35 labeled proteins in vitro. The cDNA pools were ESTs

from release 1 of the Drosophila genome project. The technique was modified as a

binding assay screen by using tagged proteins as the "bait" and performing GST pull

down experiments to determine protein-protein interactions. The outcome of the IVEC

screen could yield Eya substrates, Eya cofactors, and enzymes that post-translationally

modify Eya (i.e. kinases). I performed the initial screen and the substrates from the initial

screen are now being confirmed and identified.
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APPENDIX B: PROTEIN PARAMETERS

Extinction Coefficients were calculated using the ProtParam tool

(http://us.expasy.org/tools/protparam.html)

Proteins #

YDwT

yDN

yDc

ySWT

YSN

ySc

Chimeras

yDn-ySc

yDn-ySc [yDint]

YSn-yDc

ySn-yDc [yDint]

of AminoAcids

182

92

97

187

99

95

182

188

Extinction Coefficient

41,040 cmn'-M -'

20,580 cml'M'-

20,460 cmlM'l

41,040 cm'M-1

23,170 cmr-M -1

19,180 cm-nM -1'

39,790 cm-'M-'

41,745 cm''M-1

42,320 cmi'M'1

44, 725 cm-'M-1

Molecular Weight

21,817.2 Da

10,972.1 Da

11,833.2 Da

22,156.9 Da

11,406.7 Da

11,510.1 Da

21,559.2 Da

21,547.3 Da

22,486 Da

22, 591.1 Da
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APPENDIX C: EQUILIBRIUM DATA FITTING EQUATIONS

1. Calculating Guanidine Hydrochloride Concentrations

The concentration of GuHC1 was determined by measuring the refractive indexes

of samples and applying the following equation:

[GuHC1] = 57.147*AN + 38.68*AN 2 - 91.60*AN3

AN is the refractive index of the sample minus the refractive index of water.

2. Two-state Equilibrium Unfolding/Refolding

K 1
Native(N) - Unfolded (U)

K = [U]/[N]

K1 is the equilibrium constant for the reaction.

The following equation was used to describe an equilibrium reaction with no

intermediates:

Y = (YNO + SN*[den])*(1/(1 + exp((m*[den] - AG 1)/RT))) + ( Yu +

Su*[den])*(1/(1/exp((m*[den] - AGI0)/RT) + 1))

Where Y is the spectroscopic signal of a mixture of native and unfolded protein.

YNO and Yuo are the signals of the native and unfolded proteins in the absence of

denaturant, respectively and SN and Su are the slopes of the native and unfolded

baselines, respectively. AG1
0 and m value are the equilibrium values of the transition.

AG1
0 = - RT*ln(Ki)
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Data were fit to the two-state equilibrium model using the curve-fitting feature of

KaliedaGraph. The following algorithm was used for experiments performed at 370 C

(310 K) or 200 C (293 K). The gas constant is in units of cal*mol' *K 1.

x=mO;

a=ml;

b=m2;

c=m3;

d=m4;

e--m5;

f-m6;

K1() = exp((c*x-d)/(1.987*310))

twost(a0, bO, cO, dO, eO, f0)= (a+b*x)*(1/(1+K1))+(e+f*x)*(1/(1/K=+1))\;

a=aO\; b=bO\; c=cO\; d=dO\; e=eO\; f=f0O\;

3. Three-state Equilibrium Unfolding/Refolding

K1 K2
Native(N) ---+ Intermediate(I) +---- Unfolded (U)

K, and K2 are the equilibrium constants for the native to intermediate and intermediate to

unfolded transitions, respectively. They are related to the concentration of native,

intermediate and unfolded protein in the following manner:

K1 = [I]/[N]

K2 = [U]/[I]
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The following equation was used to describe an equilibrium reaction with one

intermediate:

Y = (YNo + SN*[den])(1/(1 + exp((mi*[den] - AGI)/RT) + exp((mi*[den] -

AGi)/RT)* exp((m2*[den] - AG2)/RT)) + YI*(exp((mi*[den] - AG 1)/RT)/(

1 + exp((mi*[den] - AGI)/RT) + exp((mi*[den] - AGI)/RT)*

exp((m2*[den] - AG 2)/RT))) + (Yu° + Su*[den])((exp((mi*[den] -

AGI)/RT)* exp((m2*[den] - AG 2)/RT))/(l + exp((ml*[den] - AGI)/RT) +

exp((mi*[den] - AGI)/RT)* exp((m2*[den] - AG2)/RT))

YNo and YuO are the intercepts of the native and unfolded conformations in the absence

of denaturant, respectively and SN and Su are the slopes of the native and unfolded

baselines, respectively. The signal of the intermediate was treated as a single value to

reduce numbers of unknown variables during the fitting.

AG 1o = - RT*ln(K1)

AG 2
0 = - RT*ln(K2)

Data were fit to the three-state equilibrium model using the curve-fitting feature of

KaliedaGraph. The following algorithm was used for experiments performed at 370C

(310 K) or 200C (293 K). The gas constant is in units of kcal*mol-'*K-'.

x = mO;

a = ml;

b = m2;

c = m3;

d = m4;

e = m5;

f= m6;

g = m7;

h = m8;

i = m9;

215



K1 = exp((c*x-d)/(1.987*310));

K20 = exp((e*x-f)/(1.987*310));

threest(a0, bO, cO, dO, eO, fO, gO, hO, iO) =

((a+b*x)+g*K1 O+((h+i*x)*K10*K20))/(1+K10 O+K1 0*K20)
\;a=aO\; b=bO\; c=cO\; d=dO\; e=eO\; f=fD\; g=gO\; h=hO\; i=iO;
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APPENDIX D: KINETIC DATA FITTING EQUATIONS

1. Two-state Kinetics

The following equation was used to describe a kinetic reaction with no intermediates:

kl

A-'B

Y = YB - (YB - YA)*exp(-kl*t)

Data were fit to the two-state kinetic model with the curve-fitting feature of

KaliedaGraph using the following algorithm.

x=mO;

a=ml;

b=m2;

c=m3;

Twokin(aO, bO, cO)=

a*exp(-b*x)+c

\; a=aO\; b=bO\; c=cO\;
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2. Three-state Kinetics

The following equation was used to describe a kinetic reaction with one intermediate:

kl k2

A- B C

Y = Yc - (YB - YA)*exp(-kl*t) + (Yc - YB)*exp(-k2*t)

Data were fit to the three-state kinetic model with the curve-fitting feature of

KaliedaGraph using the following algorithm.

x=-mO;

a=ml;

b--m2;

c=m3;

d=m4;

e=m5;

Threekin(aO, bO, cO, dO, eO)=

a*exp(-b*x)+c*exp(-d*x)+e

\; a=aO\; b=bO\; c=cO\; d=dO\; e=eO\;
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3. Four-state Kinetics

The following equation was used to describe a kinetic reaction with two intermediates:

ki

A -B

Y = YD- (YB - YA)*exp(-kl*t) + (Yc - (Yc - YB)*exp(-k2*t) + (YD- Yc)*exp(-k 3*t)

Data were fit to the four-state kinetic model with the curve-fitting feature of

KaliedaGraph using the following algorithm.

x=mO;

a=-ml;

b--m2;

c=m3;

d=m4;

e=m5;

f-=m6;

g=m7;

Threekin(aO, bO, cO, dO, eO)=

a*exp(-b*x)+c*exp(-d*x)+e*exp(-f*x)+g

\; a=aO\; b=bO\; c=cO\; d=dO\; e=eO\; f=-f0\; g=gO\;

You're back already, I didn't even know that you had left.
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