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Abstract

In this thesis, I study several problems in the following areas: collective excitations in con-
densed matter physics, noise in gene network and stochastic control in biophysics. In the
first area, I construct an effective field theory to describe Bose-Einstein Condensate (BEC)
realized in an external potential. This theory explicitly explores the idea of spontaneous
symmetry breaking and its application in the description of phase transitions of confined
systems. Based on the effective lagrangian, I calculate the excitation spectrum and Mat-
subara Green's functions using the method of functional integrals. The theory also shows
that in one dimension the collective excitation of a bosonic system can be unified with that
of a fermionic system, which is described by Luttinger liquid theory. The unified theory of
collective excitations of low dimensional quantum systems motivates my study of collective
excitations of interacting classical particles confined in one dimension. It is shown in my pa-
per that the structure of Hamiltonian or Lagrangian for one dimensional constrained systems
is uniquely determined by conservation laws. Therefore the excitations of bosonic, fermionic
and classical particles are strikingly similar in one dimension. In the second area, i. e., noise
in gene networks and phenotypic switching in a fluctuating environment, I study the noise
propagation in a gene network cascade using the method of master equations which examines
the validity of the more popular methods such as the Langevin equation. To further explore
the applications of stochastic processes for complex systems, I study phenotypic switches in
a fluctuating environment. By combining the techniques of stochastic differential equation
and stochastic dynamical programming, I propose a simple framework which can be used to
study phenotypic growth dynamics. Another work is to explore the influence of environment
on the dynamical properties of small systems is directed to the unusual blinking statistics
of semiconductor quantum dots. I show in a model system that a broad spectrum of decay
rates is possible when disorder is present in the environment.
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Chapter 1

Effective Quantum Field Theory for

Bose Einstein Condensate

Ordinary phase transitions occur at a true macroscopic level; however, quantum phase tran-

sitions are are much more difficult at this level. Experimental realization of these types of

phase transitions are usually achieved in extreme conditions: high magnetic/electric field,

extremely low temperature and state of art nano-fabrication, which are all aimed at achieving

geometric confinement. From the theoretical point of view, a confined geometry is necessary

since the mean energy spacing is inversely proportional to the size of the system. Therefore

one of the solutions to reduce thermal effects is to set up an artificial confining potential.

This also brings challenges to theorists as most of the standard phase transition theories and

quantum many-body theories assume an infinitely large system and no spacial confinement.

Even though certain symmetries are not available at the onset, new constraints, nevertheless,

show up. In addition, the nature of phase transitions is not changed by confining potentials

because it only relies on those symmetries that are spontaneously broken. These in fact are

some of the keys that lead to successful theories. In this chapter we focus on one type of con-

fined phase transitions, namely, Bose-Einstein Condensation (BEC) realized experimentally

since 1995. We adopt an effective-field-theory view to describe the low-energy excitations

of trapped Bose gases, which allows a direct and systematic way to investigate the conse-



quences of spontaneous synunmmetry breaking. The derivation of the effective La.grangian can

incorporate various approximations and can reproduce the results obtained by the standard

hydrodynamic approach. Based on the effective Lagra.ngian, we calculate the energy spec-

trum and Ma.tsubara. Green's function of trapped 1D Bose gases with (-function repulsive

interaction, allowing the comparison of various results obtained by different approaches. We

also analytically calculate the finite-temperature correlation function of trapped 2D Bose

gases. The calculation scheme can be easily extended to higher dimensions. We find that

particle interactions will always decrease the coherence length of the condensate in 2D, con-

firming recent numerical results. The validation of various asymptotic expressions are given.

1.1 Introduction

The problem of theoretically describing interacting Bose gases at low temperatures has a

long history. Unlike fermionic problems, where by particle-hole transformation Wick's the-

orem can be applied, conventional perturbation theory can not be applied to bosons since

neither creation nor annihilation operators annihilate the ground state, and a.s a result the

application of Wick's theorem becomes much more complicated. The successful perturbative

approach of Bogoliubov [1] is based on the observation of vanishing commutator in the ther-

modynamical limit (N - oc, V -- oc, N/V --+ constant) and separating the creation and

annihilation operators of the ground state into a c-number part and an operator correction

part, which is assumed to be small. Bogoliubov's perturbation theory provides the basis

for the modern theoretical treatment of the Bose-Einstein condensation(BEC) in a confining

external potential, which was experimentally realized in 1995 [2].

The standard starting point of the modern treatment for nonuniform Bose gases at low

temperatures is the Gross-Pitaevskii (GP) equation [3]:

ihOtT(r, t) (= V2 + Vext(r) + gl(r, t)12) (r,) (1.1)
2meter or wave function 

of the condensate, 
V(r) 

is the

where T(r,t) is the order parameter or wave function of the condensate, Vext(r) is the



confining potential and the coupling constant g is related to the s-wave scattering length a

by:
rg (1.2)

The GP equation can be interpreted as a self-consistent Hartree equation for the conden-

sate wave function, so it does not include the effect of the interaction with noncondensate

atoms. In order to study low energy collective excitations, Stringa.ri[4] developed a hydro-

dynamic approach, in which the GP equation is linearized in terms of density and phase

fields. Tile collective excitations are sound waves with a modified dispersion law caused by

the confining potentials. The hydrodynamic approach was further developed by Griffin et

al. [5] where the classical density and phase fields are quantized and the sound waves become

phonons. The hydrodynamic approach was applied extensively to study the excitation spec-

trum and phase coherence of Bose gases in deformed traps at T _ 0 [6, 7, 8]. It was found

that confining potentials play such an important role in suppressing quantum and thermal

fluctuations that dispersion laws become discrete and there exists non-exponential decay

of off-diagonal long range order, which indicates possible BEC at finite T in 2D and ID.

Numerical study [9, 10, 11] of collective excitations of BEC at finite temperatures were im-

plemented by the finite-temperature Hartree-Fock-Bogoliubov(HFB) method. It was shown

that the excitation frequencies have a weak temperature dependence while the condensate

fraction is strongly depleted. Numerical calculations indicate disagreement of theoretical and

experimental results at finite temperatures, so it would be desirable to obtain the Matsubara

Green's functions for trapped gases analytically and give explicitly the validity conditions

for various asymptotic expressions.

The hydrodynamic approach based on the GP equation, although powerful and efficient,

may not be the most natural method for discussing the finite temperature behavior of inter-

acting Bose gases. It is known that field-theoretical quantities such as the Green's function

and vertex function can be expressed directly as functional averages. Furthermore, it is an

advantage to study low energy physics in effective field theories facilitated by the functional

method, see eg. Ref.[11] for a recent review. The functional approach to superfluids was



developed by Popov [13], where the infrared-singularity difficulty encountered in conven-

tional perturbation technique was alleviated by the miethod of successive integration over

fast modes. One essentially obtained anll effective field theory in terms of renormalized cou-

pling constants and slow modes. This approach was further developed by Bogoliubov et al.

[14, 15, 16] to study BEC in confined potentials. A slightly different way to obtain the ef-

fective Lagrangian was adopted in [17, 18, 19], where a. polar coordinate transformation was

performed first. In this paper, we view BEC as a result of spontaneous breaking of global

U(1) symmetry and derive an effective Lagrangian of the corresponding Na.mbu-Goldstone

bosons for the general cases of trapped Bose gases. Despite the recent developments of

techniques for calcula.ting correlation functions in BEC, the confining potential makes the

problem quite complicated so that one must resort to approximations and regulations in

order to obtain simple asymptotic behavior, which leads to different results, e.g. for conden-

sate density [7, 16], exponents of the 1D equal-time single particle correlation function power

law etc. So it is importanlt to compare alnd unify the results obtained by hydrodynamnic and

functional approaches.

1.2 Effective Lagrangian Approach

1.2.1 Derivation of Effective Lagrangian

Let us consider a weakly interacting Bose gas confined in an external potential Vext(r) in

D + 1 dimensions. The partition function can be written as:

Z[ *, ] = *D e- fdf dDr (1.3)

where the Euclidean Lagrangian £ is

£ • * •, V*V + + [Vext(r) -_ •* 9D + V (*) 2  (1.4)
2m 2



The bosons interact with 5-function repulsion and 9D is the coupling constant. Here /3 = '

and p. is chlemical potential. It is clear that the Euler-Lagrange equation of motion for the

field VY* yields the GP equation (1.1) with T -- it/h. To facilitate the analysis of spontaneous

symmetry breaking, it is useful to absorb the third term in (1.4) into the interaction term

to obtain:

£ = *a, + VI*VO + V(V*V,) (1.5)
2mn

and

V((*) = (*, - po(r)) 2  (1.6)
2

is a field potential, of which po(r) is the potential minimum:

p0(r) = [M - Vext(r)] (1.7)
9D

It is clear £ is invariant under a global U(1) symmetry transformation:

' --ei (1.8)

The Goldstone theorem predicts the existence of massless bosons when the global U(1)

symmetry is spontaneously broken. Since we wish to construct an effective Lagrangian

for low-energy processes, the Nambu-Goldstone boson field must a.ppear in the effective

Lagrangian. It is well-known that the Nambu-Goldstone boson is completely decoupled

in the limit of vanishing momentum. This implies that, by a proper transformation of

field variables, the Nambu-Goldstone bosonic field should drop out of field potential term,

V(V* 4)), and this naturally suggests the following choice for field variables:

C(r, 7-) = (r, T)ei(r) (1.9a)

* (r, T) = V/p(r, T)e-iO(rr) (1.9b)



Under the transformation (1.8), 0 transforms a.s: 0 -> 0+a, where (v is a constant. Since C is

invariant under this transformation, the effective lagra.ngian £ef must contain 0 in derivative

forms to preserve the symmetry. A general form of L£ff can then be written as:

Lef. = I ojji0,00,,0 + h.d.t. (1.10)

where g,,,, can be interpreted as an Euclidean metric tensor. For an inhomogeneous situation

g,,, can be different from a constant metric. h.d.t. denotes terms in higher powers of a,,0 and

coupling terms of a,,0 with other degrees of freedom. In the low energy regime, by power

counting, only the first or the first few terms in (1.10) are needed. Working with the effective

Lagrangian, Leff, should allow easier calculations and give same results as those obtained by

original Lagrangian C.

Now we will perform the matching process as the following: By appropriate scaling, i.e.

6 ---+ , one finds £ -- - So gD plays the role of h, when gD is small, and we can use.-5' .-9D

the semiclassical approximation, namely setting all derivatives to zero and minimizing the

field potential energy, to obtain the Thomas-Fermi ground state configuration:

PTF(r) = po(r)0(po(r))

I- [ - Vext(r)]'d (i - Vext(r)) (1.11)
f]D

where iV(x) is the step function. The ground state configuration (1.11) is valid provided that

physical bosons are weakly interacting. The condensate density, PTF(r), can also be obtained

from the GP equation using the TFA. By choosing this nonzero ground state configuration

the global U(1) symmetry is spontaneously broken. Define the dynamic density:

p(r,•) - #*(r,7) (r, )

pTF(r) + a(r, 7) (1.12)

which can be decomposed into a static part PTF(r) and a fluctuating part a(r, T). The fluctu-



ating density a(r, r) generally includes contributions from thermal and quantum fluctuations

of the condensate and the non-condensate. At low temperatures, we expect

PIT(r) > or(r, T) (1.13)

In terms of p(r, 7) and 0(r, T), the Lagrangian becomes:

1 + p 5-1 - (p)2+p + V1
= -9,p + 0 ip (Vp)2 2 + D(P - po) 2  (1.14)

2 2m 4p 2

The first term is a. total derivative and can be dropped. In the low energy regime, (1.13)

holds and we can expand (1.14) in powers of - using (1.12):

h2T VL = ipTFO + -PTF )2

S2m 1 V In -Va - 4 (V lnpTF)2a i( 2 - gPa9 (-po) + i(0O)U
[1 2h h (V

-D g+ t2 lnn+ I(Va)2  -- a In PTF- Va
2 8 mpTF 8mpTF 4 mpTF

+0 ((P0F) 3) (1.15)

The first, line describes the dynamics of the phase field 0(r, 7). The second and third lines

are coupling of fluctuating density field a(r, T) with the static condensate and the phase field

(phonon excitations) in linear and quadratic orders of - . For low-energy processes, it is

sufficient to truncate the series at the quadratic level and the contribution from a field can

be easily evaluated. On the other hand, if one is interested in noncondensate dynamics, the

0(r, T) field should be integrated out instead for the effective Lagrangian. Now by integrating

over the a field, we arrive at:



C= i00 + (VO) 2 - 2 (2V2 I TF + (V ln TF)2

1

x K2 [V2 + 2V In PT. - V - (V In PT )2] - 2 gD

Si8o + (VO)2 -_7h (2V2 l PT F + PT)2) + TF )221n 8 27
(1.16)

where we dropped the term iPTFT-O, which essentially imposes the conservation of PTF.

The following scaling analysis will help to simplify (1.16): V2, 2V In PTF -V and (V In PTF)2

scale as R - 2 and they should become negligible to 29g at large distances. We can define a

length scale ( such that:
It2  2

2mpTF -2 = 2 g92 MnPTF ý2

i.e.

h(r) = (1.17)
V/2mpTF(r)gD

above which we can safely neglect the gradient terms in the demonimator of (1.16). We see

that ((r) defined above is just the healing length and it is a spatially dependent quantity

due to the confining potentials. ý(r) is larger near the edge than in the center of a trap.

The approximation we made here is often called TFA, originally proposed to calculate the

electron density and potential energy of atoms self-consistently[20]. It is useful to estimate

the ratio of healing length ý to the average inter-particle distance d in 3D: d = ()1/3.

Given the coupling constant g3 in (1.2), p (3pa) - 1/6. Typical values of Bose gas density

in experiments range from 1013 _ 1015 cm- 3, while the scattering length a - 10-7cm, so

O(1). In studying long wave length collective excitations, the above simplification is

well justified. In addition, from dimensional analysis and matching (1.16) to (1.10), we only

need to retain derivative terms up quadratic order. So we finally arrive at the following



effective Lagrangian:

Leff = 2K(r) v (a0 )2 + hv(r)(VO)2] (1.18)

where

v(r) = gDTF(r) (1.19)

can be interpreted as the local velocity of sound. The interaction parameter K(r):

K(r) = (1.20)h PTF(r)

is inhomoge-neous due to the confining external potential. It is straightforward to show that

the Riemann tensor is non-vanishing, so the effective Lagrangian (1.18) describes a massless

scalar phase field 0(r, 7) in a. curved spacetime. We see the Nambu-Goldstone boson field

indeed results from the nonvanishing of order parameter in ground state, which spontaneously

breaks the global U(1) symmetry. In 1D and with vanishing external confining potential,

the effective Lagrangian(1.18) also describes the Luttinger liquid of interacting fermions. An

operator approach to the 1D quantum liquid was given by Haldane [1].

1.2.2 Matsubara Green's Function

To discuss finite temperature correlation and linear response, it is desirable to calculate the

Matsubara Green's function defined by

G(r, r; r', T') -= -(T,(r, -t(r',) ')) (1.21)



where T, denotes ina.ginary-tinie ordering. In the functional representation the Matsubara

Green's function can written as:

(r, -; r', T')

. " J D O *D· e- f( J l' d" l,·.r.,X,
.1

f EDpDO p7(r, T)p(r', T) ei(r,')-O(r',T')]- ,dT f rl•Dl[p,O]

f DpDO e- I(l)" dr J (dIlr[p,o]

(r)pT (r) Oei[O(r
r ) -

(r',r')
]
-f

' f -r f IDr ff(O1

- pyTF(r)pTF (r') 0 (ITf d DrCf[O
f DOe-- fo dT f dDrIef[0]

= V/P-TF(r)PTV(r')(Tei [O(r,r)-O(r',r')])

In the second line, we use the fact that the density fluctuation is small (1.13) and therefore

can be neglected. Since the effective Lagrangiain (1.18) is quadratic in 0(r,7), 0(r, T) is a

linear function of bosonic operators. For any function of linear bosonic operators we have

the identity:
.2 -2

(eflef2) e e(hfl2+;(l + f2)) (1.22)

So the Matsubara Green's function becomes:

g(r, r; r', T')= -v/ pT• (r)pTF(r') e 'e' (1.23)

and

F(r, 7; r', T')

9 (0) (r, r; r', T') - [g(O)(r, 7; r, 7) + G(0) (r', T'; r', T')] (1.24)

We thus reduce the '• field Matsubara Green's function to the calculation of the 0 field

Matsubara Green's function 9(0)(r, 7; r', T'):

O(°)(r, 7; r', 7') -(T,0(r,7)0(r',7')) (1.25)



which satisfies:

S+ -V -(pTF(r)V) g(0)(r, T; r', T') (r -r')(T - 7') (1.26)

For vanishing external confining potential, by appropriate scaling, (1.26) is just the Green's

function fo:r D+1 dimensional Poisson equation with periodic boundary condition in the

'ý direction. For the inhomogeneous case, PTF(r) $ constant, one should be careful when

specifying the boundary condition for G(0)(r, 7; r', T') [6]. Since we are working at length

scales no shorter than the healing length (1.17), there is ambiguity in the regions where

pTF(r) = 0. It is natural to impose the natural boundary condition:

1G() (r, 7; r', /') I < 00 (1.27)

from the fact that V) and its normal derivatives are bounded.

1.3 Matusbara Green's Function for Bose Gases in Har-

monic Traps

1.3.1 ID Trapped Bose Gases

The correlation function for an unconfined 1D quantum fluid has been discussed extensively

in the literature [1, 1, 24]. The problem of homogeneous interacting bosons can be related

to the problem of interacting fermions by Jordan-Wigner transformation [22] and they both

can be described by the same effective Lagrangian (1.18), except for possible redefinition of

parameters. We simply have to solve:

S( •+ hvO) g(0 )(r, T; r', 7') = (r - r')6(T - T') (1.28)



which, with (1.24) inserted into (1.23), yields

(1.29)g(r, -; r'.') =
sinh [j•[r - '1 + Ihv(T - T') + d]1

[31 .,

with gas density p , velocity of sound
91V

V =P (1.30)

and interaction parameter

h P=
(1.31)

d is a. short distance cutoff parameter, which regularizes the theory. The scaling exponent:

27 27rhp
SK nmy (1.32)

ha.s pure quantum nature even at finite temperatures. The one-body density matrix

n(r, r') = -g(r, 7; r', T + 0+) (1.33)

which characterizes long-range order, decays exponentially at finite temperature:

n(r, r') c e (T) (1.34)

where the coherence length is found to be

A(T) 2h 2=
rnkBT

(1.35)

Obviously, there is no quantum degeneracy when A(T) < -, which sets an upper bound for

(1.29) to hold:
h2p2

2mkB
(1.36)



At T -+ 0, however, there exists quasi long-range order since n(r, r') decays as a power law.

The zero teml)erature Green's function is given by:

G(r. t; r', t')= (r ,(,., t) tb(r', t')) = p (1.37)
S[7. -7' -v(t -t') + d](

which shows the feature of Lorentz invariance of the effective La.grangian. The speed of light

is replaced by the velocity of sound and the correlation function decays as a power law.

Now let us consider a harmonic external confining potential:

Vext(r) = -rnw227 (1.38)

Since the effective Lagrangian approach is only valid under the condition (1.13), it is neces-

sary to find the classical turning point(surface) Re set by

Vext(Rc) = (1.39)

Physically R/ determines the size of the condensate within TFA. For ID and the harmonic

potential (1.38):

Re = (1.40)
mz

Define dimensionless parameters:

X-= (1.41a)
Re

a = (1.41b)

then

PTF(r) =- (1 - 2 )•9(1 - xi) (1.42)

Perform a mode expansion:

g() (r, T; r', T') = - e-iw r(r-r')() (r, r', w,) (1.43)
UJ,r,1 n



where 0,, = is the Matsubara frequency for bosons, and substitute (1.42) (1.43) to (1.26),

we get:

[(1 - x2)O- - 2.x,: - n.2d] q(, ::', n) = 6(x - x'), Ix < 1I (1.44)

where

2- 

Ln
g(x,:, x,', , = c (0) rh". , , )291

The homogeneous equation to (1.44) is the Legendre equation.

(1.27) requires the following eigenfunction expansion:

O0

S(:, :', na) = • ,,, (X', na)P (x)
71=0

where P,(:r) is the nth Legendre polynomial. Notice that

(1.45)

The boundary condition

(1.46)

7n=O

We obtain:
00 1

g(x, x', na = 0) = - m(m 2 2 Pm(X)
m=O( +1) + a2

g(x ,x', a

(1.47a)

(1.47b)
oo 

1
0) 2 m+ 2 Pm(x)Pm(x')

S M m(m + 1)

The n = 0 mode (1.47b) corresponds to static correlation. Substituting (1.47b) into (1.43)

and performing the sum exactly[25], we obtain the static phase field Matsubara Green's

function:

g0) (r, r')

S1 (0)(r , r' W, = 0)
-- OP -

1
I In6(T)

jr - r'l2)+ 2R-
2Rc

(1.48)

+ ,)Pm (,Z) Pm(X/)

1[



which contributes to the static part of (1.24):

F (r r') = 26(T) i (1 ,)(1 < ) (1.49)

where
2h2 pTF(0) A(T)=(T) - (1.50)

mnkBTR, R.

A(T) is the coherence length defined in (1.35). Due to finite size of the sample, it is possible

to define a characteristic temperature To [26] such that A(TO) = Rc, i.e.

2h2pTF(O)
TO = (1.51)

rmkBRC

At T < To, the coherence length exceeds the sample size Rc, and both density and phase

fluctuations are suppressed. A true condensate can be realized. Notice that F,(r, r') in (1.49)

agrees exactly with that obtained by the hydrodynamic approach [8]. A similar expression

was given by Bogoliubov et al. [16] using the functional method; however, their results have

a different expression for the velocity of sound.

The dynamic part (1.47a) can also be summed exactly to give:

)(r r')= h2w2R sin(v,,r) ,, (1.52)

where
1 1

nv, = - f -+ - n2a 2  (1.53)2 4
and r> - max{r, r'}, r< - min{r, r'}. Pvn (x) is the Legendre function of the first kind. It

is well known that by analytic continuation, iw, -- E + i6, the Matsubara Green's function

becomes the retarded Green's function, whose poles give energy spectrum. From (1.52), we

see that these poles are located at vn = m, m = 0, 1, 2, 7 • -. So the energy spectrum is

m(m + 1)
Em = 2wz ,m = n 0, 1, 2, 1 2 . (1.54)



This result agrees with [16] but different from that of [4, 6] for quasi-1D trapped gas:

E,m =- •- , m(nI + 3) (1.55)
2

The difference is due to the average over radial degrees of freedom of the latter work.

For temperatures:

T> h

2 v rkB

we have Ivj > 1 and we are justified to use the following expansion [19]:

P, (cos ý) = - cos +
v sm 'in

(1.56)

(1.57)4-4

with 0 < E < cp < 7 - E; v > 1, or equivalently, r, r' << R,. In fact, this expansion can be

applied to much lower temperatures and r, r' - R, for the following reasons:(1)Large juvI

can also be ensured by large n in (1.53), so the expansion (1.57) works better for higher

modes;(2)The TFA breaks down near the trap edge, so errors in extending r, r' to R, would

be within that of TFA. To order _, we find( wefin

(1.58)() (r, r', Wn)= cosh no 7 -
dh

2Waa (r, r') RI n I RC

where

a(r, r') TF()+ PTF(')
2 4PTF (O)

Substitution of (1.58) to (1.43) leads to a dynamic correlation function:

9() (r, T;r , 7 T')
1

y(r, r')

1
+ (r, r')

/3hv(O) sinh ___ 1In v sinh v( [Ir - r'l + ihv(O)(r - -r') + d]

prd hf3hv(O) I
In sinh [ [2rrR, - Ir - r'l + ihv(O)(w - T')]

I rd L3hv (0) 1)
(1.60)

(1.59)

12
21 c

+O



with a, spatially-dependent coefficient

(, 27rrhpTF(O)(r, r')
m(y( 0))= (1.61)

It is clear that in the limit R, -> oo, -(r, r') reduces to the result of untrapped gas (1.32).

The phase field Green's function

•() (r, 7; 7-', 7') = 9 0) (r, r') + (0O) (r, 7; r', 7') (1.62)

together with (1.23) and (1.24), yields the following Matsubara Green's function for 1D

trapped bosons in a. harmonic potential:

g( -r, 7; r-T') - T)
v•() sinh [--() /r - r'l + ihv(0)( - T') + d]

1
x1

[sinh [([27rRc- -r- r' + ihv(O)(r - 7')]] r'

(1.63)

where

(r, r', T) = PTF(r)PTF(r')exp (T)In R(1 )(1 (1.64)

is the renormalized static density correlation function, which comes directly from the static

contribution of the phase field F,(r, r'). Note the following features of trapped 1D boson

gases: (a) At finite temperatures, the off-diagonal long range order n(r, r') is determined

by static density correlations, while for untrapped gases it is the dynamic correlation that

contributes. Indeed, expanding ((r, r', T) to lowest order in -I- and • gives

jr-r'11
n(r, r') - e- A•T) (1.65)

which has the same form as untrapped gases (1.34). Close to the edge of the trap, n(r, r')



decays faster than this exponential behavior a.s seen from the logarithm in (1.64). Physically

this can be understood because in the vicinity of trap edge, the healing length is much larger

than in the trap center, so the actual condensate size is smaller than R,; (b) At T = 0, only

the dynamic Fi(r, T. 7r', T') contributes to g(r, 7; r', T'). The inhomogeneity shows up as as

spatial-dependent exponent (1.61), which involves an average over the condensate density

a.t r and r'. This spatial-dependence, which is absent in untrapped gases, is a higher order

effect and it is difficult to detect if the analysis is restricted to the region of trap center. In

fact, as Rc -- oc, F,(r, r') vanishes, and the second term in g(O )(r, r; r', T') (1.60) becomes a.

constant and does not contribute to Fd(r, 7; r', T'). So g('r, T; r', T') (1.63) would only include

the first term thereby reducing to the Ma~tsubara. Green's function of untrapped 1D Bose

gases (1.29), as it should.

It is useful to compare our results for 1D trapped Bose gases with that obtained by

the hydrodynamic approach, for exaimple,[8, 26] and the functional approach of successive

integration of fast modes (SIFM) recently adopted by Bogoliubov et al.[16]. We find that

(a) our results agree exactly with hydrodynamic approach for the static correlation function

and condensate parameters such as condensate density and velocity of sound, but are differ-

ent from that obtained from SIFM; (b) in the quasi-homogeneous limit, our results for the

dynamic correlation reduce to the same functional form as that obtained by SIFM. How-

ever, our spatial-dependent exponent -y(r, r') (1.61) depends on an inhomogeneity expansion

parameter
PTF(r) + pTF(r') (1.66)

4PTF(0)

whereas in SIFM the exponent depends on condensate density at F(---) only. Unfortu-

nately, analytic results from hydrodynamic approach are not available for comparison so far;

(c) we find that static and dynamic correlation play different roles in the off-diagonal long

range order for trapped 1D Bose gases at different temperatures, while SIFM suggests that

only dynamic correlation contributes. In principle, within the TFA, all approaches should

give the same results for physical quantities. We think the discrepancies arise mainly from

technical aspects: In SIFM, one must first integrate over fast modes exactly to obtain an



effective Lagrangian. This is practically not possible due to the new vertices generated by

interaction [13]. So any particular approximation made in this early stage would inevitably

introduce uncertainty in the renormalized coupling para-meters like condensate density, veloc-

ity of sound and so on, which bring about the differences in the final results. A second factor

that accounts for the discrepancies comes from boundary conditions. We find it physically

appealing to use the natural boundary condition (1.27).

1.3.2 2D Trapped Bose Gases

Now let us consider a 2D Bose gas confined in a harmonic potential:

Vext(r) = -mw21 r2 (1.67)
2

where w1 is the radial trapping frequency. The classical turning surface is found to be:

Rc = (1.68)

The condensate density is:

pTF(r) = (1 x2 )0(1 -) (1.69)
g2

where x = ~. In cylindrical polar coordinates

V = 1rer + 1-0~¢ (1.70a)

1 1
V2 = r(rr)r + 1 (1.70b)

6(r- r') = -6(r - r')6(¢ - 0') (1.70c)
r



(1.26) becomes:

1 0-+ -'2Pr (r) ,r + 1
+ -rpTFy(r)O,. 9( 0)(r, T;
T71

-0(T - T )6(r - r')6(o - 0')
r"

Substitution of mode expansion:

G () (r, -; r', T')
1 W, 

I
2, ,r f

to (1.71) leads to:

1 12Lx (x,) - 21. xr
- 2xO, - ,2(12 2 g(xna , 1) =

where
2 vr
/3hw1

g (X, X', na, 1)= 2(0) (r, 'wn, 1)
g 2 7r

To find the Green's function, we first solve the following equation:

(1 - x2)
I d

[x dx
d )dx

12

X21

d- 2x- - A2} ul() = 0O

The eigenfunctions of the equation (1.93) can be found in a series form:

u1 (x) = c2 X2m+l11
m==O

with the following recursion relation for the coefficients:

(2n + 1)2 + 2(2m + 1) - 12 - A2

(2m + 2)(2m + 21+ 2)

r , T)

(1.71)

{ (1 - X2)

(1.72)

-(z - X')
xt

(1.73)

(1.74a)

(1.74b)

(1.75)

(1.76)

(1.77)

I I I

C2m+2 - C2m



It is clear that the series would reduce to a polynomial of order n if

A2 = n2 + 27n - 12 (1.78)

with 7. = 2rmu + 1. We obtain the following eigenfunction:

2

' () = C2nX 2 +1 (1.79)
rn=0

with co is an undetermined coefficient. By analytic continuation i• == E + i6, we obtain the

energy spectrum for 2D trapped Bose gases [18] from (1.73) and (1.78):

n2 + 2n - 12
En,i =- 1 h 2 ' -> Ill (1.80)

The Green's function g(x,x', no, 1) can be constructed from the eigenfunctions {un,i(x)}.

However, unlike 1D, where phase space is so restricted, it is usually difficult to obtain an

analytic expression in higher dimension. On the other hand, if we are interested in regions:

Irl < R,, certain approximation can be made to (1.26). Notice that: (a) if there is no

confining potential, then PTF(r) = PTF(0) is a constant and (1.26) is Poisson equation with

periodic boundary condition, which is exactly solvable; (b) VPTF(r) is only significant at

Irl - R,, so it can be neglected for regions Irl < Re; (c) 9(°)(r, 7; r', 7') is symmetric with

respect to its argument. So we are led to the following approximat equation:

1[ 2 h 2PTF(O)a(r, r') .2 (0)(r, -; r', T') = 6 (r- r')6(T - -r') (1.81)

where a(r, r') is a small parameter with the following properties: (a) a(r, r') is symmetric

with respect to r and r'; (b) 0 < u(r, r') < 1. The equality holds when there is no confining

potential; (3) a(r, r') is small and smooth, so it is not subject to differentiation in this order



of calculation. To find a(r, r'), define r -= ' nd R = r - r'. In the limit Irl, ir' << R:

pTF(r) = PTT (re +
R)
2

- pTF (re) + PTFR ] + O (lmax
rc

2R )

P TF(0) -2 +r

= pTF(0)a(r, r')

)TF(r) + pr-F(r')
4 pTF (0) I

(1.82)

We see a(r, r') takes exactly the same form as that obtained from 1D analytic calculation(1.59).

Now we use the simplified equation (1.81) to calculate g(")(r, T; r', T') for trapped Bose

gases in 2D. Using the mode expansion (1.72), (1.81) becomes:

[02

1 (
+ - Ox - 2 2 +

x

L" )~(·:~ ,nal122 ] <
1

1) 16(
x

-- x')

27R,

0 = v(0)/aV(, -r'

(1.83)

(1.84a)

(1.84b)

(1.84c)

By imposing natural boundary condition (1.27), we find:

9<,d(x, x', n, ) = -/(n(&ix<)K(ln)x,>) ,

g<,, (x, x', I = 0) = In x > ,

1
g<~s(Z,x', (X 0)= --

nd # 0

nd = 0

, n =0

(1.85a)

(1.85b)

(1.85c)

where I,(z) and K1 (z) are modified Bessel functions of first and second kind respectively.

where

2

r(a)0( 

r')

g<(x, x', nd, 1

9TF ,

) = 
q

)a(

(r, r', us,

.I •• t ~ · · -- ·

X<)1
x>



Substituting (1.84) and (1.85) into (1.72) and performing the sum exactly, we find:

92(r, r) Ir r=) (1.86)
27rf.h2 2 Re

() (r, T; r', T7')

g2 1 1

47hZ k=l [T - rT)2+ h 2 2 [k - (T - ')]2 kfphij

92 1 1

4 =1 V (r - r')2• h2i 2[k + (T - T')]32  khii
92 1 g92 (IrrIn (1.87)

47h r -r' + ih(7 - 7( -') 27r/3h2' 2  2f3h

Define z r - r'j + ihi9(T - 7') and examine the asymptotic behavior of g(0)(r. 7; r', 7') =

g0 ~0) (r, r') + o)(r, -; r', 7'):

(a) I1- <,8hf,

This limit corresponds to the case when temperature is sufficient low or (r, 7), (r', T') are

close to each other, so only the third term of (1.87) contributes:

(r, ; r', ') 92 1
47rhf ijr - r'I + ih'i(T - 7/')(

and the Matsubara Green's function for 2D trapped Bose gases is:

g(r,r; r', r') = VpTF(r)PTF(r') exp 92 1 1(1.89)
4irhij d lir - r' + d d+ ihi(T - T')1

It is clear that as Ir - r'I -- phi), the long-range order is not destroyed and there is true

BEC. The short distance divergence is regulated by a short distance cutoff parameter d,

which can be taken as the healing length ((r) or the average inter-particle distance. There

are two main features for the off-diagonal long-range order in this limit: First, the correlation

is almost a constant for the condensate, and the correlation length depends on temperature

only through the upper bound for this limit to hold, i.e. Ir - r'l < ph•. Above this scale the



correlation follows a, power law decay as will be shown shortly. Qualitatively, the coherence

length in this limit goes inversely with temperature. Second, (1.89) shows that particle

interaction reduces the coherence length of the condensate in this temperature regime. In

fact, the condensate density (1.11) is inversely proportional to interaction strength 9g2, so

strong particle interaction would decrease the condensate density and therefore reduce the

coherence length. This effect has been recently confirmed by numerical results of Hutchinson

et al. [11]. They found that in the scaled unit of the condensate size, the particle interactions

always reduce the ra.nge of coherence.

(b)p•3h < jz| a-nd Jr - r'J < 2R(

This limit corresponds to correlation at finite temperatures or distant (r, 7) and (r', T').

In this case the leading contributions are the first and second terms in (1.87) and the two

sums can be replaced by integrals. We have

m n 1Jr - r' l + ihf)(T - T')
()(r, 7; r', T') = (1.90)

21r/ph 2PTF(0)o(r, r') (1h.

and

(r, T; r', T') = -/PTF (r)TF(r') - - (1.91)
|Iir - r'j + ihD(r - -r')

where the exponent of the power law is:

y2 (r, r') =2r/3h2 pTF(0)(rr') (1.92)

It is clear that the exponent explicitly depends on thermal fluctuations. This is different

from 1D case (c.p.(1.61)), where the fluctuation is entirely of quantum nature. In both

cases, the exponents are spatially-dependent due to the confining potential, as can be seen

from the appearance of the inhomogeneity parameter o(r, r'). In this limit, the off-diagonal

long-ranger order decays as a power law and its temperature-dependence is complicated.

The particle interaction affects the coherence length through the condensate density in the

exponent y2 (r, r'), and therefore strong interactions will reduce the coherence of Bose gases in

this finite-temperature region, i.e. we have shown that particle interaction(repulsive) always



reduces the coherence.

1.4 Conclusions

In this chapter, we have derived an effective Lagrangian for trapped Bose gases at low

temperatures. The key idea. is to apply the Goldstone theorem to identify the Namnbu-

Goldstone field as an effective field for low energy excitations. The structure of the effective

field theory is determined by U(1) symmetry transformation of the original field, while the

coefficients are determined by a matching procedure. In this way, we are able to incorporate

various commonly adopted approxima~tions in a coherent way. The functional approach shows

that the standard quantized hydrodynamic approach, which is based on the GP equation,

corresponds to a quantum correction a~round a semiclassical configuration. Both approaches

are valid only for weakly interacting Bose gases.

Using the effective Lagrangian, we have calculated the Matsubara Green's function of

trapped ID and 2D Bose gases. For 1D gases, we are able to compare our results with

that obtained by the hydrodynamic approach and the functional approach of SIFM. We find

that the natural boundary condition is physically appealing and suitable for the Matsubara

Green's function calculation. Our results agree well with that obtained by the hydrodynamic

approach, while they differ from SIFM results. This difference comes mainly from the dif-

ficulty of integrating fast modes in the early stages of SIFM. We believe that the effective

Lagrangian approach is a direct and efficient approach to low energy excitation of trapped

Bose gases. Unlike 1D, the analytic calculation for trapped Bose gases in 2D and higher

dimensions is generally difficult due to inhomogeneous nature of the condensate. We suggest

a possible simplification scheme and apply it to the 2D gases. We find that both the scal-

ing exponent and the velocity of sound are renormalized by the inhomogeneity parameter

a(r, r'), consistent with our 1D results. Finally, we study the role of particle interaction in

coherence property of 2D condensate. Theoretical calculations show that particle interac-

tion always decreases the coherence of trapped Bose gases in 2D due to the decreasing of

condensate density and increasing of healing length.



1.5 Appendix A: Calculation of Energy Spectrum of

2D Trapped Bose Gases

I include the calculation of the energy spectrum of 2D trapped Bose gases in this appendix.

The following differential equation has to be solved:

1 d d
x dx dx)

12
X21

- 2x- I, + p u1(X) = 0

In a standard form it becomes:

•"(x) + p(x)u'(x) + q(x)u(x) = 0

1 2x
p(x) = 2x 1-x 2

,2 12
q(x) =1 -1 - x x2

It is clear x = 0 is a regular singularity point so I look for series solution around x = 0:

00

77,=0

p(x) = Eaanx, -  (1
n=O

00

q(x) = bn-2 (1.
n=O

1 2x 1
p() = = - -2x-2x
x 1 - x2 X

(1 - r2) (1.93)

with

(1.94)

(1.95a)

(1.95b)

96a)

96b)

96c)

.97)(1_ 2x2n+
1



ak = 1

-2
2  

12
q(x) = -1 -X

thus

0

bkt = 12

2Substitutin (9) to (1.94) leads to

Substituting (1.96) to (1.94) leads to

k = 2n - 1,

k =0

k = 2n, n = 1, 2,.

= -1 2X-2 + / 2± 2 2 +2 + + -+ j2:1T2n + . . .

k =2n - 1,

k=0

n = 1, 2,..

(1.100)

k = 2n, n = 1,2,-..

OO OO 0O OO0

(n + s)(n + s - 1)cl+- 2 + k k- r S)Cn+-1 + bk Xk-2
n=O k=O n=O k=O

The coefficients of the series must vanish:

-indicial equation

s(s - 1) + s - 12 = 0

SO

s=l

[1(1 + 1) + (1 + 1) - 12] C = 0

so

(1.105)

n, = 1, 2,.

(1.98)

(1.99)

E Cn
x n + s - 0

n=O

(1.101)

(1.102)

(1.103)

(1.104)

C 1 -= 0



(1 + 1)(1 + 2)c2 + la2 (co + (1 + 2)aoc 2 + b2c0 + boc 2 = 0

21 - 2

(12 0 i·T
S4(1 + 1)

[(1 + 2)(1 + 3) + (1 + 3) - 12] C = 0

(1.109)

x2k+•

4(k + 1)(k + 1 + 1)c2k+ 2 - 2 [lco + (1 + 2)c2 + . + (1 + 2k)c2k] + [ 2(co + c2 + + C2k) = 0

(1.110)

Therefore

C2k+2 =
(2k + 1)2 + 2(2k + 1) - 12 -_ /2

(2k + 2)(2k + 21 + 2)
(1.111)'-'2

The recursion relation (1.111) reduces to a polynomial of order n if

#P2 = n2 + 2n - 12

n = 2k + 1

(1.112a)

(1.112b)

(1.106)

5+ 1

(1.107)

(1.108)



(1.111) can be rewritten as

Im (-1)i(n + 1 -i)2k (k + -i)( + 2k-2,,

(-1)kr(n + 1)r(n + 1 - 2k)
(±co (1.113)

r2(n + 1 - k)

Choose

co = (n1) (1.114)F(n + 1)
then

(-1)kr (n + 1 - 2k) (1.115)
Ck F 2 (n + 1 - k)

(1.112) gives the energy spectrum and u(x) is the eigen function.
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Chapter 2

Classical Field Theory of Transport of

Interacting Classical Particles

Through One-dimensional Channels

Parallel to the study of low dimensional quantum systems, a number of molecular simulations

have been carried out to understand water transport through one-dimensional channels. In

this chapter, I explore the role of a dimensionality constraint on the c'ollective excitations

of a, classical system in one dimension. I show the intrinsic connection between the classical

field theory and the corresponding quantum theory, i. e. Tomonaga-Luttinger liquid thoery,

which describes the interacting fermions in one dimension and the effective quantum field

theory for the Bosonic systems developed in chapter 1. As applications, I calculate the

particle density function along the tube axis and the particle current through the channels

by explicitly including the particle-particle and particle-wall interactions. I find a quantum-

classical correspondence in the conductance formula.



2.1 Introduction

Particle dynamics in one dimension (ID) is of great current interest, in both classical and

the quantum mechanical regimes. In the latter case, the dimensionality constraint plays an

extremely important role; due to the peculiar topology of the Fermi surface in ID, strongly

correlated electrons in ID are described by the Tomonaga-Luttinger model [1, 2] rather than

the usual Fermi liquid model. On the other hand, although there have been a number of

important theoretical studies of the dynamics of classical particles, e. g. , water molecules

and ions in one-dimensional channels [3, 4, 5, 6, 7], the role of the dimensionality constraint

in such systems has not been considered in a. fundamental manner. A comparison of and

a, possible unification of the classical and quantum theories of transport in one-dimensional

mesoscopic channels is therefore of both theoretical and experimental interest.

Molecular dynamics studies of the motion of water molecules in hydrophobic and/or

hydrophilic channels [3, 4] and proton transport in carbon nanotubes [5] have provided

evidence for such striking phenomena as rapid transport, burst-like transmission, and particle

density oscillations along the tube axis. Contrasting probabilistic models have been suggested

to describe these effects: a, random walk (CTRW) model [6] in which a chain of water

molecules moves as a whole, and a single particle sequential hopping model without particle-

particle correlation [7]. These contrasting views suggest the need for a microscopic theory

that explicitly includes the particle-particle (PP) interactions as well as the particle-wall

(PW) interactions.

In this work, we construct a classical field theory of interacting classical particles and

dimensionality constraint. Its relation to the theory of interacting fermions in 1D (Refs.

1 and Refs. 8) is established at the Hamiltonian level. As applications, we obtain the

particle density function (PDF) along the tube axis (the z direction) and an expression for

the particle current, and compare with earlier results.



2.2 Theory

Generally in kinetic theory, the PW interaction is neglected and PP interactions are difficult

to treat exactly in phase space, e. g., the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)

hierarchy. However, the available phase space is severely restricted by the physical dimen-

sionality, which makes some special models exacctly solvable.

Consider a, system of N particles of mass m, confined in a 1D channel of length L,

subjected to periodic boundary conditions. Define a. simple system by the following interac-

tions: (1) hard-sphere exclusion; (2) elastic collisions. Such a. simple system is equivalent to

a system of free particles, if the following conditions hold: (i) spatial dimension d = 1; (ii)

identical particles; (iii) At > c , Ax > ro where At, Ax are temporal, spatial resolutions

and re, r0 are the collision time and the effective diameter of the particles, respectively. The

proof is a~s follows:

(1) Collisions: For particles 1 and 2, let pl , p2 be the momenta before the collision and

pl', p2' be the momenta after the collision. Since d = 1, collisions are head on collisions.

Since collisions are elastic in a simple system, pl' = p2 , p2' = pl. Since particles are

identical, we can define a set of new particles or modes which propagate freely on the scales

set by conditions (iii).

(2) No collisions: Each particle propagates freely.

The newly defined set of particles (or modes) for a simple system are many body in nature

and they greatly simplify the problem by maximally utilizing the conservation of particles,

as will become clear later. We will refer to this new set simply as particles or momentum

(velocity) modes in the rest of this paper.

For N particles {x,(t)}, the density of particles p(x, t) and the current density J(x, t)

are

p(x, t) = 6(x - X(t)) (2.1)
n

J(x,t) = > dxt) 6 (x - x"(t)) (2.2)



If the N particles are subjected to no external forces, the energy-nmomentum tensor TI"(t, :)

in the nion-rela.tivistic regime is

dXV
T""(t,.:) = P•P (t),(x - ',,,(t)) ", p = 0, 1 (2.3)

where

X, (t, x.(t)) (2.4a)

P,7(t) M (E,(t), p,,(t)) (2.4b)

are defined as two-vectors and two-momenta, respectively, with

P",(t) = n Id- (2.5a)

F (tT
2m

For free particles, we have dP''(t) = 0. The conservation of the total energy and momentum

can be expressed by the continuity equation satisfied by the energy-momentum tensor:

0v,T"" = 0 (2.6)

The p = 1 component of the Eq.(2.6) corresponds to the conservation of total momentum,

which can be written in terms of J(x, t) as

8otJ(x, t) = -ox EU2 Z 6(x, - x,(t)) (2.7)
1) IUk=V nfl

where n £ {n|I•;(t) = u}. A summation on v is over all the velocity modes in the N-particle

system. (Particles that propagate with ±v, by definition, belong to the same velocity mode

v.) The conservation of particles is the equation of motion of the particle density p(x, t)

tp(x, t) = -OxJ(x, t) (2.8)



Define the dynamical field 0(x:, t; v) and its conjugate momentum density 7r(x, t; v) such that

0,(:x, t; t,) Po -P - x,.,(t)) )= Po - p(:x:, t;v) (2.9)

7r(x, t; v) _ > uI(x- x,,.(t)) (2.10)

where P0o is a constant which may be different for different models; however, the e.o.m. of

(:r, t: v) and 7r(x, t; v) will not be changed by this constant. hv has the dimension of action

and it is a constant for each velocity mode v. We can obtain the e.o.m. of O(x, t; v) and

7r(x, t: v) immediately from Eqs. (2.7) and (4.47)

dt,(x, t; v) = vr(x, t; v)/h, (2.11)

&tlr(x, t; v) = hvva29r(x, t; v)/h, (2.12)

Up to a surface term and a constant, the noninteracting field Hamiltonian for the classical

particles in 1D is obtained

Ho = E dx{ir2(x; v)/h2 + [O U(x; v)]2} (2.13)

In constructing the Hamiltonian (2.13), we employ the continuity equations of the con-

served quantities: particles, energy, and momentum. It is worth pointing out that in 1D the

conservation of particles is more fundamental than the other two due to the unique dimen-

sional and geometric constraint. In addition, the defined free particles (momentum modes)

facilitate the possibility to identify the density current Eq.(2.11)and the axial current Eq.

(2.12) from the conservation of total particles Eq. (4.47), upon which we find the dynamical

field q(x, t; v) and its conjugate momentum density ir(x, t; v). Furthermore, the field Hamil-

tonian (2.13) is a general structural Hamiltonian, which is determined by the conservation

laws and the 1D constraint, yet the definite physical meaning of the fields O(x, t; v) and field

parameters po and hv are still up to specific models.



By ca~nonical quantization

[ '(:; v), 7r(y; v)] = ih6(x - y) (2.14)

the Ha.miltonian (2.13) is then a collection of massless free boson scalar fields. If only one

of the velocity modes is important, which is the case for the electrons confined in ID a.t

the low energy regime, and upon velocity and field renormalization due to electron-electron

interactions, the Tomona-ga- Luttinger Hamiltonian [7, 9] is obtained. In fa~ct, Dzyaloshinskii

and Larkins solution [10] to the 1D interacting fermnnion problem using Ward identities also

relies on the realization of the important role played by the conservation of charges (particles)

in 1D: in the 1+1 dimensions, the conservation of axial charges (particles) together with total

charges (particles) determine the low energy structure of theory. This is directly related to

the 1D constraint (disconnected Fermi surface) [11].

The physical interpretation of the classical field Hamiltonian (2.13) and the origin of the

various parameters: Po, hv, can be made clear by considering the following 1D lattice model of

.A sites, with occupation number ni E {0, 1}, Vi E nA. Without losing generality, examine a

subset of all the particles which propagate with the same velocity ±v. Define the dynamical

variable qi to be

i = - nj (2.15)
j<i

For 1D geometry, it is convenient to separate the left (L) and the right (R) moving particles:

/i,L(R) - E nj,L(R), nj,L(R) E {0, 1} (2.16)
j<i

with the properties ni,L + ri,R = ni and ri,Ln7i,R = 0. So the free part of the Hamiltonian

can be written in terms of these left and right moving particles

Ho,,, = mI,2a a (- z (2.17)
i,r i



where a is lattice spacing and r = L, R. The form of the lattice Hamiltonian is not unique

at first glance; however, in 1D, since the structure of continuum limit Hamiltonian (2.13) is

determined by conservation laws Eq. (2.7) and Eq. (4.47), the corresponding form of lattice

Hamiltonian is restricted that of (2.17).

In the continuum limit:

•i - (x; v) = - dyp(y; v) (2.18)
x

Oi,L(R) - L(R)(x; v) = - jdypL()(y; v) (2.19)

and the Hamiltonian (2.17) becomes

Ho, -- h.v dx{[OxL(x; v)] 2 + [ RxR(x; )]2 } - Eo (2.20)

where h = mva and
My2 O

L

Eo = m2 Oj L(X; v) (2.21)

Defining the dynamical field O(x; v) and its conjugate momentum density ir(x; v) by

090(x; v) - OO(x; v) + Po = -p(x; v) + Po (2.22)

ir(x;v) E hf[pR(x;v) - pL(x;v)]

= --hv[O.R(; v) -- xOL(; v)] (2.23)

with po = 2 = , we obtain the field Hamiltonian:

Ho,v = v dx + w( [zO,(x; v)]2 (2.24)

In this lattice model, po is taken to be a uniform density of half a particle per site, so

-O0(x, t; v) is equivalent to a spin-' density with +1/2a spin up (site occupied) and -1/2a2 ~13CY YIILT/LW~llU r1CVL~CJalL IL



spin down (site unoccupied). h,, is defined such tha.t the definition of 7r(:x, t) Eq. (2.23) is

consistent with the actual momentum density. A summation over all the velocity modes will

then give the field Hamiltonian (2.13).

We now consider PP (besides the hard-sphere interaction) and PW interactions. The

general form of the two-body PP interaction in 1D is

Hp =- I dx:dyVpp(:C, y)p(x:)p(y) = H2 + H4  (2.25)

H2 is the forward scattering between the left (L) and the right (R) branches, while H4

is the forward scattering in the same branch. The PP interaction will generally couple

the dynamics of individual particles and thus complicate the microscopic treatment of the

transport. To simplify the theoretical description, a standard procedure would be finding

the normal modes of the interaction. The many-body velocity modes defined above are

the normal modes of the hard-sphere PP interaction. These normal modes renormalize

only when there is also a nonlinear interaction, e.g., the soft part of the PP potential,

which generates inelastic scattering processes. Obviously, these processes do not ensure a

perfect gas approximation or an isentropic flow. The exact solution to the 1D imperfect and

nonisentropic flow is a difficult task [10]. Nevertheless, we proceed to propose a simplified

model based on the generic results observed in molecular dynamics simulations:[3, 6, 13](1)

a threshold energy Eth kBT exists for interacting particles to enter the 1D channel, so only

a few activated modes are responsible for the transport; (2) interacting particles transport

through a 1D channel is highly collective unhindered by the interactions with the walls. A

concerted motion in the channel is observed; (3) the time series of the number of particles

transported through a ID channel falls into a narrow range 20/ns. These simulation results

suggest a simplified two-parameter model: The first parameter vo is the typical velocity

mode responsible for the transport through a 1D channel connecting to two fluid reservoirs.

In fact, small perturbations to an equilibrium fluid would propagate with the velocity of

sound, which are then transmitted into a 1D channel. The boundary conditions require the

pressures and normal velocity components of the incident, reflected, and transmitted waves



to be equal at the contact regions. The second parameter K describes the PP interaction

within the mode 'o0, which is described below. Even with these simplifications, we find

the theory exhibits rich physical phenomena and qualitatively explained the results of the

simulations.

In 1D and the continuum limit, the PP interaction can be taken to be local [14]; we

therefore have

H2 = -L dx -h -2  • 2  (2.26)

hvo94 L 7 2
H4 - g4  dx + ( )2  (2.27)

where h = mvoa, and g g94 = mV for density-density interactions but can be taken as

parameters in a more general case. g2 and g4 are negative if the PP interaction is attractive

and they are positive if the PP interaction is repulsive. The PP interaction renormalizes the

velocity of the density wave and the fields.

In the nanoscale, the inhomogeneous PW interaction, which can arise either from the

atomic structure of carbon nanotube wall or the complex composition of the cell membrane,

etc., become important and cannot be neglected. The general form of the PW interaction is

Hpw = - dxVpw(x)(xO) (2.28)

where Vpw(x) is equivalent to a spatial varying magnetic field. The total Hamiltonian is

obtained

H = 2 d 2 (aX)2] - LdxVpw(x)(&o)

= Ho + Hpp + Hpw (2.29)

The renormalized density wave velocity

v = vo/(1 + g4 2 - g (2.30)



The PP interaction parameter is

K = /(1 - 92 + 94)/(1 + 92 + 94) (2.31)

with K > 1 for attractive PP interaction, K < 1 for repulsive PP interaction, and K = 1

for noninteracting particles. In the case of inhomogeneous interaction, v and K are spatial

dependent.

The particle density along . direction is obtained by solving the canonical e.o.m. of the

field (: , t):
va2 K dVpW

2 = V dVpw (2.32)h dx.,

subject to periodic boundary condition and initial conditions. The contribution from initial

conditions are time averaged to zero and the steady PDF is

KVpw(x)
p(x) = Po - = P + ps(x) (2.33)

hv

The average particle density p and the variation density p,s(x) due to channel structure are

P = Po 1 Vp (2.34)
VP + MV02

ps, = W)po (2.35)Vpp + mvo2

where

Vpw =- dxVpw(x.) (2.36)

is the average PW interaction. Vlw(x) = Vpw(x) - Vpw is the inhomogeneous part of the

PW interaction and it is directly related to the wall structure. The intrinsic parameter po

of the field theory appeared in the density function p(x) can be scaled away by defining the



corresponding density p,(x) - p(x)/lp

2-V5 (x)
pr(x) = 1 - V (2.37)

(Vpp - 2Vplw) + mv'2.

which is a good observable. We find (1) the structure of the PDFs (2.35) and (2.37) is

determined by the channel wall structure and composition. We identify the particle density

oscillation periodicity observed in [3] and Fig. 3 (2.6A) of [4] as the periodicity of the atomic

lattice wall. (2) If the 1D channel is connected to reservoirs, the average particle density

(2.34) is determined not only by the PW coupling strength but also by the PP interaction and

the particle kinetic energy. Note that the change of particle density due to PW interaction

modification is more sensitive for the attractive PP interaction than for the repulsive PP

interaction.

The particle current through the 1D channel is directly related to the dynamics of the

field d(x, t)
vovr(x, t)

J(x,t) =) = at(x, t) (2.38)

Consider an external driving field Uex(x, t) = e-i"tU(x) + c.c. coupled to the system. The

corresponding interaction Hamiltonian is

Hint = - dUex(x, t)Oax (2.39)

The contact regions are included as part of the 1D channel. In the limit of w -+ 0, the steady

state current is obtained

K(AUez + AVpw)J(x) = lim(J(x, t)) = K(U + AV ) (2.40)

where the time average is taken. AUex and AVpw are the difference in the external potential

and PW interaction between the two contact regions. If the current is caused by the pressure

difference, then AUex = IL - AR, where PL/R is the chemical potential of the left and/or



right reservoir. The hydraulic permeability Lp is

,Lp (2.41)
AP 2rmvr 0o P (2.41)

The expression of the current (2.40) is the same as that of the electric current for a. quantum

wire, except that for the classical particle current, h depends on lattice spacing (we take

a - ro) and the bare density wave velocity. The current and hydraulic permeability explicitly

depend on the PP interaction, with higher current for the attractive PP interaction (K > 1)

and lower current for the repulsive PP interaction (K < 1). In this model, the steady state

current does not depend on the detailed PW interaction or the length of the channel. This is

in agreement with the molecular dynamics [13, 15] and experimental [16] results. However,

if the PW attractive interaction dominates over kinetic energy, then aln activated sequential

transport theory is needed and the current will depend on the PW intera~ction strength and

channel length.

2.3 Future Direction and Conclusions

Extensions of our model to structured particles can be made straightforwardly. For example,

water molecules with dipolar orientation can be mapped to electrons with spins. The classical

theory will correspond to the TL liquid theory with spin degree of freedom, where spin-

charge separation was predicted. Though the Umklapp backscattering is not present in the

classical model, the hydraulic permeability (2.41) is determined by the interaction parameter

K resembling the quantum case. If reservoirs together with the 1D channel are modeled as an

inhomogeneous system as a whole, the permeability would be determined by the interaction

parameters of the reservoirs instead. So it would be interesting to study classically how

sound waves of reservoirs are transmitted and reflected at the exits and/or entrances in the

presence of interactions. In particular, what is the classical mechanism of the transformation

from the many-body reservoir modes to those of the 1D channel as compared to the quantum

case [17, 18]; what are the functional structures in biological 1D systems that facilitate the



transformation. On the other hand, the effects of classical PP interaction, repulsive or

attractive (e.g., hydrogen bonding), on particle current could provide an interesting insight

into the effects of electron-electron interaction on electric conductivity in ID. In addition to

the above extensions, we note that a general solution of one dimensional isentropic flow is

given by Landau and Lifshitzl2 in terms of a linear differential equation valid for imperfect

anld perfect gases but only easily solvable in the latter case. It would be interesting to

compare our results including particle-particle interactions with those of the treatment of

Landa.u and Lifshitz[10]. This will be considered in a subsequent paper.

In conclusion, we have constructed a, classical field theory for interacting classical particles

(structureless) in 1D channels. The unification of the classical and quantum theories is a

direct consequence of the 1D dimensionality constraint and the conservation laws. Because

of these constraints, the density wave and/or particle-hole excitation is generic for particle-

conserved systems in 1D. In our simplified model, the field theoretical calculations showed

that both PW and PP interactions are important to the filling process, while PP interaction

determines the steady state transport properties. We hope the simplified model will serve

as a basis for extension to more complicated situations.
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Chapter 3

Fluorescence Intermittency of A

Single Quantum System and

Anderson Localization

From this chapter on, I will study how a, single system responses to a, complex environment,

where the complex dynamics of the environment cannot be easily studied through first prin-

ciples. Therefore, disorder and stochastic processes are necessary for studying this type of

systems. In this chapter I consider the quantum regime and propose a model in which a

quantum system is embedded in a complex and non-ergodic environment. I will show that

the statistics of photon emissions from this single quantum system contains the information

of the disordered environment. By applying our model to the fluorescence intermittency

of semiconductor quantum dots (QD) and single molecules (SM), I show this can be un-

derstood from the thoery of Anderson localization. The power law distribution for the on

time is explained as due to the interaction between QD/SM with a random environment.

In particular, we find that the on-time probability distribution behaves differently in the

localized and delocalized regimes. They, when properly scaled, are universal for different

QD/SM systems. The on-time probability distribution function in the delocalized QD/SM

regime can be approximated by power laws with exponents covering -2 < m < 0. Part of
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3.1 Introduction

Recent developments in nano-fa.brica.tion and measurement have made it possible to probe

directly the dynamics of a. single quantum system and its coupling with its local enviromnent.

For optical measurements, in particular, fluorescence intermnittency (FI) occurs in a, wide class

of single quantum systems including semiconductor na.nocrystals [1, 2, 3, 4, 5] and single

molecules [6, 7, 8]. This optical phenomenon is experimentally found to be a. robust and

fundamental property of single photon emitters. The random switching between an emitting

(on) and a non-emitting (off) state is characterized by on-time and off-time distribution

functions. Surprisingly, the distribution functions can often be fitted by power laws instead

of exponentials. The exponents of the power laws vary from system to system and they

are almost independent of temperature. To explain this unusual behavior, Marcus et. al.

[9, 10] recently proposed a, model based on diffusion in energy space. An exponent of -1.5 is

readily obtained for one-dimensional diffusion processes. Deviation from -1.5 is explained

by anomalous diffusion, which has its origin from the Cole-Davison dielectric medium #: / 1.

However, this scenario would predict exponents that are temperature dependent. Recent

experiments also found that exponents - -2.0 for the on time occur in many different single

emitters [1, 4, 6, 7, 8], which are imbedded in various media. The temperature-independence

of power laws with mon/off $ -1.5 and robustness of mon = -2.0 need to be explained.

In this work, we provide a microscopic Hamiltonian model which does not build on

the assumption of anomalous diffusion in energy space and the quadratic form of diffusion

potential. The purpose of this work is to lay the foundation for a quantum-mechanical theory

of FI. In a classic paper [11], Anderson considered a transport process which involves solely

quantum-mechanical motion in a random lattice. His quantum-mechanical treatment of the

process leads to the concept of Anderson localization, which has been applied extensively to

the problem of transport in a random environment. Here, we view the blinking as a charge

hopping process between the QD/SM and the traps in the environment. We find that the



FI can be explained in the framework of the Anderson localization. The basic idea is the

following: due to the coupling to a random environment, the on-site energy of a QD/SM

is renormalized and becomes a random variable. In addition, random configurations of the

local environment lead to a. distribution of decaying (hopping) rates for the QD/SM. This is

the physical origin of the on-time distribution.

3.2 Theory

Based on experimental results, we study the following simple tight-binding Hamiltonian:

H=Eddtd±+ jE4±ý vJ+ V4 (dt&j + d) (3.1)

The ground state is defined such that the QD/SM is neutral. For a QD this corresponds to

a filled valence band. When an electron is excited by photon to an excited state, it relaxes

to the lowest excited state on a time scale from hundreds of femtoseconds to picoseconds.

This lowest excited state is responsible for photon emission and hopping to traps in the

matrix. This state could be 1S state for QDs and it may involve some surface states as

well [12, 13]. The excited electron completes a radiative cycle on a time scale of the order

inverse Rabi frequency: QRabi. This time scale is much smaller than the typical bin size,

>0.2 ms, used in the experiments. Since the excited electronic state is near resonance with

the ground state plus a photon, we define the on-state as the following: it is a dressed

electronic state [14] which has the same bare energy as the excited electronic state, Ed, but

with an infinite lifetime when it is decoupled from the trap states. Physically, this means

that when there is no coupling to the environment, the excited electron localizes inside the

QD/SM and the QD/SM, being in the on-state, keeps emitting photons. Such an on-state

is created by operator dt. The bare on-site energy Ed is renormalized due to interaction with

trap sites j. The coupling constant is vy. The trap site j is created by operator c8 and has a

random energy ej. Here we focus on the class of random environments that are formed by a

topologically random network of chemical bonds. Randomness could arise from a spatially



fluctua.ting potential due to charged impurities and coupling with phonons that arise from

deformation of a, random lattice. The details of randomness are irrelevant to the dynamical

response of the system as is known from scaling theory of localization. For simplicity, we

assume all traps follow the same energy distribution function p(s).

Mathematically, the above definitions are equivalent to defining the zeroth order Green's

function of the on-state as:

G(0) 1 (3.2)d L) - Wd + i7(3.2)

with wd = ed/h, and r; being an infinitesimally small and positive constant. Similarly, the

zeroth order Green's functions of the traps are

GJ0 () = 1(3.3)W - wj + i±r (3.3)

The decay rate of the on-state can be calculated from the full Green's function

Ga (w) = (3.4)

where the only self-energy of the model is

E, (w) (3.5)h(w ) - W .+ ' 77

One obtains the renormalized energy and decay rate from the pole equation. The results to

O(v0) are:

v (Ed - Ej)Ed = d 2(
d+ (Ed - Ej) 2 + (3.6a)

h (Ed - -j)2 + 2 (3.6b)

Since each Ej is a random variable, both the renormalized energy Ed and decay rate F are

random variables. Physically, this corresponds to the situation in which environment stays at

a certain configuration for a period of time during which a physical decay rate can be defined.



The ensemble of configurations that the environment takes on gives rise to a distribution of

decay rates. This picture is valid when static disorder dominates or when the environment

is ergodic.

To find the decay rate distribution function, f(F), from p(Ej), one must perform a sumn-

imation over random variables Ej. In addition, due to lattice deformation, a random spatial

distribution of traps must also be assumed. For simplicity, we assume that all the traps

follow the same distribution function p(r). We will consider two physical regimes, namely

the delocalized and the localized regimes, for the excited electron on the QD/SM according

to the framework of Anderson [11].

The delocalized regime corresponds to most of the experimentally studied situations.

Essentially, electrons excited inside the QD/SM can make real transitions to the trap sites in

the matrix through the mechanism of quantum tunneling, and then become localized. When

this happens, the QD/SM becomes ionized. The results in this regime, which will be shown

later, support the random resonance picture: on average, the energy of a QD/SM, is far

off-resonance with the trap energies, i.e. Ed > Ej. The electrons of QD/SM remain localized

(on state) until a random fluctuation of Ej makes it on-resonance with the QD/SM. This

random resonance could be realized through interaction with phonons [17]. Since there is

finite probability that Ed - Ej - r•- 0+, one cannot perform the summations in the same

way as in [11]. Instead, nontrivial summations of the whole expression (3.6b) are required.

The distribution function f(F) can be calculated by method of Fourier transformation:

f(r) = (t) e- r t  (3.7)

The Fourier transformed probability distribution function 0(t) is given by

(t) = djp() exp it 2 (d - ) 2

j= 1 k=(1

= exp { N ln2 } (3.8)



where N is the number of traps and

2tu.(r)2 71Z=.I . / dr p()p)p(r) expi i (I 2  - )2 12

The integral I is obtained under the assumptions made above, i.e. identical energy and

spatial distributions of traps. This integral needs to be done carefully so that we can express

it in powers of qr. For a real physical system coupled to a, disordered environment, 77 is

small but nonetheless not strictly zero. Physically, this is due to competing non-radiative

relaxation channels which contribute to a small but finite width of resonance. The value of

q can be calculated in a, more sophisticated model, however, in our model we take it as a

fitting parameter. Changing variable to the dimensionless

n - h (3.9)27rv(r)21t 
(3.9)

and noticing ; (U +,2 can be approximated by an impulse function centered at u = Ud as

i7 is sufficiently small, where

Ud t C (3.10)
27v(r)2JtJl

we can separate the integral into three parts: (-oo, Ud - 7/2], (ud - ?7/2, ud + q/2) and

[Ud + i7/2, +oo) to obtain the expansion:

= I - 7 1 - cos ( - i sign(t) sin ()] p(Ed) (v(r)2)ltI + O(73)

Since we are interested in case where there are a large number of traps N > 1, by sub-

stituting the expansion into Eq.(3.8) we rewrite the unknown parameter Ny as Ny = aon

[11, 18], where n is the density of traps and ao is a. fitting parameter. Absorbing the numer-

ical constant in the square bracket of I into ao and neglecting an unimportant imaginary

part as is justified in this delocalized regime, we get

'(t) = exp - (v(r)2)P Ed)naolt (3.11)



The probability distribution function f(r) in the delocalized QD/SM regime:

1 Fo
f() = 2  (3.12)

is Lorentzian, with the characteristic decay rate To given by:

Fo = 2 (v(r)2)p(Ed)nao (3.13)

The on-time distribution function can be calculated as

Po'(t) = dr exp(-rt)f (F) (3.14)

which turns out to be:

2F 0oPo.(t) - [cos(Fot)ci(Fot) + sin(Fot)si(Fot)] (3.15)

where ci and si are cosine and sine integrals [19] respectively.

The expression for Pon(t) in (3.15) has several physical implications. First of all, it

depends only on one parameter Fo (this is also true for Pon(t) in the localized regime (3.19),

which only depends on the parameter yo). The characteristic decay rate 1 o, is purely due

to quantum tunneling and depends on the degree of disorder p(ed)(v(r)2 ). This is a generic

feature of Anderson localization theory. Only the energy fluctuation of traps evaluated at

the bare QD/SM on-site energy, P(Ed), comes into the final result. This supports the random

resonance picture discussed above. The one-parameter theory also implies that experimental

results for different QD/SM systems, when plotted in unit of characteristic on-time lifetime

to = 1/ro, follow a universal distribution Fig.3-1, Fig.3-2 and Fig.3-3. In the long time

limit, t > to, Pon(t) - t - 2 . The exponent of -2 comes from the peak of the Lorentzian

distribution for decay rates, which physically indicates the resonant scattering condition.

This -2 exponent is also robust and it does not depend on the properties of matrix or

emitters [6]. In experiments, the observation time is fixed so that one probes only a certain
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Po,,(t) of a QD/SM with a shorter lifetime 0.5ms. The exponents of the fitting power laws
lie between -1.8 and -2.

range (3 to 4 orders of magnitude in physical time) of the whole probability distribution. The

location of the window in the universal distribution depends on F0 , which is not universal.

If one fits the experimental data with power laws, then the exponents of the power laws

will implicitly depend on Io except for the mon,, = -2 case. From (3.13) we see that Fo

depends on properties of the QD/SM and its embedding matrix. This is one major difference

between our theory and the diffusion-controlled electron transfer theory [9] for the on-time

statistics. In the latter, the exponents of the fitting power laws come from properties of the

dielectric medium alone, i.e. the 3 parameter of the Cole-Davison equation, which depends

on temperature. As Fo rises with increasing coupling strength between the QD/SM and its

local environment, power law exponents observed for SMs would in principle larger than (in

absolute value) that of well-coated QDs. This is indeed consistent with current experimental

results[2, 6].

The quantum mechanical theory of FI allows a weak temperature-dependence of the on-
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time probability density. This comes from the fact that the energy fluctuation of tra~p sites,

besides the mechanisms discussed above, has a temperature component. This dependence

is usually very weak since the typical energy difference between Ed and Ej is on the order

of 1 - 2 eV which is much larger than the magnitude of thermal broadening around Ej.

Increasing temperature slightly increases p(Ed) since cd > Ej and as a. result F0o increases. So

higher temperature would slightly decrease non, towards -2 for the long time.

In the case that the excited QD/SM electron is localized, then we predict very long on

times. This corresponds to the off-resonance situation, ed - Ej > r7, Vj. One can calculate

the probability distribution of
2, 2

F = 2 (3.16)

using the results of [11]:

f(r) = 02 exp (-7yr0/F) (3.17)

where the characteristic decay rate 7y is

2 [aon(v(r))]2 (3.18)

W is the width of energy fluctuation for the traps. n is the density of traps, while ao - O0(1)

is a constant with a dimension of volume. Note that in the limit rl -+ 0, then 'o -- 0 and the

probability distribution function of decay rates is only nonzero when F = 0, i. e. the QD/SM

electron is localized. Physically, the smallness of 7r has to be compared with the energy

difference Ed - Ej [15]. As discussed in the delocalized regime, the coupling of trap electrons

with phonons and non-radiative processes etc. can lead to a sufficiently small, but non-zero

value of rl. The above results are applicable to many topologically disordered systems [16].

Thus, for a QD/SM in this regime, the single emitter experiences very long bright periods,

which are characterized by 1/0y. The on-time probability distribution function is obtained

from (3.17):

Pon (t) 2= exp (-V4 t) (3.19)



So in the limit t << 1/v, the proba.bility distribution of the on-time follows a power law

with an exponent of -1/2. On a. much longer time scale, P,,,,(t) deviates from the power law

and shows a stretched-exponential tail. This stretched-exponential tail is of purely quantumn

nature and depends on the degree of disorder WV/(v(r)).

Now we discuss the nmechanism for the off-time probability distribution. Suppose a. charge

is on the trap site j. The self-energy of G'(w) is Gd(w). The decay rate is vanishingly small,

so the charge is localized. Then on-state can only be recovered via quantum tunnelling of

trapped electrons. P,,(t) is therefore given by

Poff(t) = drg(r)yoff(r) exp [-yofr(r)t] (3.20)

where g(r) is the probability density of an excited electron having been trapped at a. distance

of r from the QD/SM and it is proportional to the square of the excited state wave function.

yoff(r) is the decay rate of a. trapped electron to the QD/SM. A model based on this picture

was first proposed by Verberk et. al. [3] and experimentally examined in [5]. Since the typical

size of a QD/SM is of the order 30A in radius, so to a good approximation, the QD/SM

can be viewed as a shallow impurity [20] and one can use effective mass theory. The wave

function of an excited QD/SM electron behaves as exp(-r/a) at large distances, where

a n= b = aK (3.21)

is the effective Bohr radius and is related to the ionization energy, Eion, of the excited electron

by

a = (3.22)
2miEion

, is the relative static dielectric constants of the media. mrr is the effective mass of the

QD/SM electron. Similarly, y0ff(r) is given by [17]:

of(r) = Yoff exp(-2r/b) (3.23)



where b = h/x/2m~E•t is the spatial extent of a trapped electron's wave function with mp;

and Et being the effective mass and ionization energy at the trap site. We obtain

P,ff(t) W Ct-mno" (3.24)

with

Sar(1 + b/a)C = b/a (3.25a.)
b off

b m)b Eion b 1mff 1 +- = 1 + =*-, = 1 +, b1 (3.25b)

We see that the difference in nmo for different systems comes mainly from the effective mass

m~. and the ability of a matrix to stabilize the charged QD/SM and the ejected electron.

In contrast to the diffusion model [9], the exponents of Poff(t) depend on the relative static

dielectric constant n instead of the Cole-Davison 13 parameter. This is consistent with recent

experimental results [6, 5]. In addition, our model allows mon to take a different value from

mon [1, 4, 6. 7], while the diffusion model predicts that they must be the same.

3.3 Conclusions

To conclude, we have proposed a mechanism for FI as being a manifestation of Anderson

localization. The on-time manifold is shown to be generated by different realizations of

electron delocalization from the QD/SM through the mechanism of random resonance. The

quantum theory predicts a universal probability distribution function for the on time and

shows mon, = -2 is indeed a robust result, which corresponds to the long time limit of Pon(t).

The off state corresponds to a localized electron in the environment. The recovery of the

on state is realized via quantum tunneling.
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Chapter 4

Fluctuation and Its Propagation in

Gene Networks

From the statistical mechanics point of view, the fluctuations of a system become negligibly

small with increasing system size. The most probable configuration dominates over all other

configurations. When the size of the system is very small, the fluctuations of an open system

can be very large and thus completely change the deterministic picture. The fluctuations can

arise from two sources: (1) External noise. The external noise comes from the coupling with

the environment; (2) Internal or intrinsic noise. In contrast to the external noise, which can

be controlled, the internal noise cannot simply be eliminated or reduced. In fact, the intrinsic

noise can originate from spatial inhomogeneity, scattering anisotropy etc. As expected, the

internal noise grows with decreasing size of the system. One challenge to the understanding

of mesoscopic systems is to adequately incorporate fluctuations into theories. In these last

two chapters, I will consider the fluctuations in the classical regime, e. g. biological systems,

and consider its role in the properties and decision making of these important systems. In

this chapter I consider molecule number fluctuation in a gene network. Based on the master

equation, I will systematically derive various approximate approaches to this problem. In

appendix, I provide a. simple example of the simulation of a self-regulated gene network.



4.1 Introduction

In a deterninistic picture, genetically identical cells exposed to the same environmental con-

ditions should exhibit the same characteristics. However, this picture is not true on the

molecular level. Stochasticity arises from fluctuations in transcription and translation evein

as the environment stays in constant conditions, and shows up as significant variation in

molecular content and marked differences in phenotypic characteristics [1]. The process of

gene expression involves several processes such as binding to the promoter, mRNA and pro-

tein synthesis and degradation, dimerization etc. all of which result from random encounters

of two or more molecules. In large systems these processes caii be simply written as rate

equations such as:
kf

A + B P (4.1)
k,

where the change of concentration of product is

d[P]
S= kf[A][B] - kb,[P] (4.2)

However in a small live cell, the fluctuation of molecule number is beyond the predictability

of this deterministic rate equation. This fluctuation has both negative and positive con-

sequences: It can have detrimental effects on cellular function with potential implications

for disease. On the other hand, it can provide flexibility needed by cells to adapt to fluc-

tuating environments or respond to sudden stresses. Studies have shown that regulatory

gene networks exist in cells, that regulate the magnitude of molecule number fluctuations

[2, 3, 4]. Quantitative analysis of these naturally occurring systems is often very difficult,

thus the majority of experimental studies are directed to synthetic networks [5, 6, 7]. Both

negative and positive feedback gene networks are studied. While in negative feedback gene

networks, the molecule number distribution has one peak and is stable, the positive feedback

gene network has a pronounced feature of bistability. In addition, gene cascade networks

are studied where noise attenuation is observed. Most of the theoretical modelling for these



experiments are based on Langevin equations generally of the form:

da

= f(x) + (:x, t) (4.3)
dt

where gaussian white noise is usually a.ssumed:

({(x, t)) = 0 (4.4a)

( (x, t)0(y, t')) = g(x')(x - y)6(t - t') (4.41)

However, the phenomenological Langevin equations are subject to criticism when f(x:) is

nonlinear:
d(x(t))

dt = (f(x(t))) - f((x(t))) (4.5)

Thus fluctuations around a macroscopic solution must be studied in a more fundamental

way.

In this chapter, I theoretically study a generic gene cascade network, based on which

I study different ways of modelling this complex system. In particular, I study how noise

propagates through the cascade as the length of the cascade increases.

4.2 One Dimensional Chain Model

To study how molecular number fluctuation propagates through a gene network, we design a

one dimensional chain model as shown in figure 4-1. This gene network consists of N genes,

D1 2 DN 2  N-
Gene 1 Gene 2 Gene N-1 Gene N

01 02 ON-_ ON

Figure 4-1: One Dimensional Chain Model

each of which is represented as a box. Each gene synthesizes proteins which can regulate its



nearest downstream gene by mechanisms such as binding to a downstream operator. The

status of each gene i is modeled as a. two-state random variable Oi E {a, f3}. This resembles a

one dimensional Ising model. When a. gene i is active, i. e. Oi = (v, it synthesizes proteins D,

(gene i is transcribed alnd the mRNA is translated). The proteins Di can undertake several

processes such as dimerization, degradation, and regulating a. downstream gene. When a

gene i is passive, i. e. O, = ,3. the gene is not expressed and therefore no proteins are

synthesized. The existing protein D, can only be consumed by dimerization or binding to a

downstream operator.

The transition dynamics

ai - 3 (4.6)

is controlled by the nearest upstream protein D,-I therefore a. gene cascade is formed. See

figure 4-2.

i-1 i-1

1-1

SD.IF D1

Figure 4-2: Regulation and Gene Cascade



4.3 Stochastic Modelling

The dynamics of the gene network constructed in the last section is studied phenomenolog-

icallv in this section. No rigorous justification is given on this level of description and all

processes are given as a. result of plausible conjecture.

4.3.1 Protein Synthesis

The process of protein synthesis is one of the most complicated processes in a real gene

network. It starts as unfolding of DNA, followed by processes such as transcription, ribosome

binding, translation and dimerization etc. A complete description is beyond a single equation,

however, if one is content with a relative large time scale, these processes can be summarized

into a. single stochastic differential equation:

dDi(t) = - F(Di)dt + ki(t)dt + &j(Di, t)dZt (4.7)

where Di(t) is the number of proteins (dimer form) at time t.The first term in eq.(4.7)

describes the consumption of protein, which includes

(a) protein degradation: -iDj, where iy is a rate constant;

(b) binding to a downstream operator Oi+1: Aji+lf(Di)n(Oi+l), where Ai+1 is a rate constant,

f(Di) is a binding function. Since the number of proteins is usually much larger than the

number of downstream operators, we can neglect this process in the dynamics of protein.

The second term describes protein production with a time-dependent rate ki(t). Since

protein production involves several processes, ki(t) is a mapping of operator dynamics and

other binding and transport dynamics:

ki(t) = ~i(t)Oj(t) (4.8)

where %i(t) describes random processes other than that of the operator. For compactness of



forinalisnm, I introduce

7',()(t)= (t) ,(t)= 0M (t)o M (t) (4.9)

Fluctuation of molecular number comes from the third term in eq.(4.7). Zt is a, Brownian

motion term that captures the influence of aln environment and internal fluctuation. The

strength of fluctuation is controlled by ai(D,- t). Its explicit form depends on details of the

gene network and its environnment. It is generally an unknown function before taking any

experimental measurement. However, we know that the number of proteins can never go to

negative and for large enough system the strength of fluctuation is proportional to square

root of the size of the sample, therefore to a reasonable approximation Di(t) = VT-ja(t).

Combining all the above analysis, we obtain a plausible stochastic differential equation

for the protein dyna.mics:

dDi(t) = -- yi(D. - ni(t))dt + VFiai(t)dZt (4.10)

Physically, the equation (4.10) describes a. mean reversion process, with a time-dependent

mean ni(t), and it is driven by a Brownian motion with a time-dependent strength.

4.3.2 Operator Dynamics

A second constituent of the model is the dynamics of the operator Oi(t). I describe it as an

inhomogenous random telegraph process:

P(aj, t) -=[ ,0 Ai,c3 P(a, t) (4.11)

P(•, , t), -, P(, (4.11)

where P(Os, t) is the probability that the operator is in state Oi and Aj,... are functions of

Di-1 and they can be generally written as

Aofj = .foa(Di-_)pi (4.12a)



(4.12b)

where pi and vi are rate constants.

Consider a. positive regulation, where gene i is switched on by binding operator Oi with

a protein dimer Dim:

'i - ",Ai [+ Di-1 (4.13)
vi

In this case the operator dynamics is

P(aF, t) ap vi Di-, P(ai, t) (4.14)P(0i, t) i - ViD _ P(0i, t)

For a negative regulation, where gene i is switched off by binding the operator with Di-l:

a + Di-1 Pi 13i (4.15)

we have

SP(az, t) -piDi v [P(aci, t) (4.16)
o P (0i, t) piDi-1 - i P( ,t)

4.4 Master Equation

The stochastic differential equation for the protein dynamics and random telegraph equation

for the operator are formulated from reasonable conjectures. Their validity and applicability

cannot be quantified until a fundamental description on the molecular level is presented. The

purpose of this section is to treat the one dimensional chain model figure 4-1 in a fundamental

way and make connections with the method described in the last section.

4.4.1 Master Equation

We start with defining dynamical variables that specify the gene cascade network. The gene

network consists of proteins: X 1, X 2 , - - -.., XN, and operators: 01, 02, ''-, ON. There is one



additional protein X0 which is an external control molecule and it regulates the first gene in

the network. The state of the system at time t is described by the probability function:

P(n, O, t) = P(n 1 , n, 1 , n2, O, O2, • • 0 , ON, t; no0) (4.17)

where ni is the number of protein Xi. For a.n arbitrary function of ni: g(ni), define the

creation operator 0 as

e/ig(n,) = g(n,, + 1) (4.18a.)

-1=q(n) -g(ni - 1) (4.18b)

We now propose the following assumptions:

Assumption 1 The number of protein Xj is much larger than the number of operators that

it controls so that nu > 1.

Assumption 2 The transition between two states a and f3 of an operator occurs on a much

faster time scale than the protein processes.

Assumption 2 allows us to study the protein number fluctuation using a reduced probability

function for the proteins only. To achieve that we use conditional probability to rewrite

eq.(4.17) as:

P(i, , t) = f(if, t)P(O, ti i) (4.19)

Our goal is to find an equation of motion for the reduced probability f(in, t) of the proteins

alone. Let us focus on the ith gene:

ai -- ai + Xi (4.20)

Xi _7Y+ ) (4.21)

a-V I + Xi -i (4.22)

(ai+1 - i+l + Xi (4.23)
Vi+l1



where 6 represents a sink. Suppressing irrelevant variables, the master equations for (4.20),

(4.21) are

Ofi(ni, t)P(a•., tjn-i) = ksi(i- - 1).f(ni, t)P(ai, tjnil) + 7(i - 1)ni.f(ni, t)P(ci, tjn 1- )

(4.24)

Otf (ni, t)P(/3i, tlni-n ) = 'i( - 1)nif (ni, t)P(/i, tJni-1)

Adding (4.24) and (4.25) gives:

Dtf (ni, t) = [ki(dW-' - 1)P(ai, tlni-1) + 7i(o - i)ni] f(ni, t)

By assumption (1) we can approximate the difference operator as

k (d-1 - 1)P(ai, tini-1 ) kiP(ai, tlnil)(•i - - 1)

(4.25)

(4.26)

(4.27)

to obtain

O f (ni, t) = [kiP(ai, tnin&)(d - ' - 1) + ±,i(0 - 1)hni] f(ni, t) (4.28)

The reduced probability function f(ni, t) can be written in a closed form by applying as-

sumption (2), i. e. the transition of an operator between two states is in equilibrium on the

time scale of protein dynamics:

Q-'-lini-lP(oi, tini- 1) = yiP(oa, tini-1) (4.29)

where Q is the volume of the system. A second equation comes from the normalization

condition:

P(ai, tlnil) + P(/i, tlni_1) = 1 (4.30)

We find
ni-i

QOi + n-i_ (4.31)P(ai, tni-1) =



where

0, = (4.32)

Notice that eq.(4.32) takes the form of Hill functions. Combining eq.(4.28) and eq.(4.31) we

finally obtain the equation of motion for the reduced probability for proteins f(n', t):

,f (i ,, t) = f ( , t) (4.33)

(4.34)N kini- . - 1) + - (°W - 1)hi
i 0- + ni- 1

i= 1

4.4.2 Stochastic Differential Equation

Based on the master equation (4.33) it is desirable to derive a stochastic differential equation

for the protein number dynamics and compare it with what we have conjectured in previous

sections.

Define g(ci, t) the probability density function (PDF) of the ith protein's concentration:

c= = -. The following relation is clear:

1
g(ci, t)dci = g(ci, t) = f(n•, t) (4.35)

as the concentration can only change by multiples of 4. In other words, we have

(4.36)dc i ' -Q•

The creation operator Wi in the this continuum limit has the form:

e -- exp (2 1 ~-2 , , )

100

(4.37)



This correspondence is clearly shown as the following, for an arbitrary function u(n,):

diu(nt) = 'u(ni + 1)
o0

k=0
00 Q-k

k=O

= exp (&-'c,) u(ni)

Using (4.35) and (4.37) to (4.33) and (4.34) we find by expanding the series:

kici-1

Oi + ci-1

+ NQi ac

(_ -1c i, 2 c )/ (ci0t )

+ -' cg(ci, t) +2 -"

For sufficiently large volume of a system we can truncate the series to 2 nd order to obtain:

og(c, t) = S8id [(k•-_iQ-1
Oi + ci-1

g(ci, t)]

+ 1 2 (kic-i,-2
2 ac [Ik Oi + C - I

+ -17ici) g(ci,

Equation (4.40) takes the form of Fokker-Planck equation and it can be converted to a

stochastic differential equation:

dci(t) = -- i

or equivalently

(ci(t)
S -1 k ci-l(t)

Oi + ci- 1(t)

'ikini-l(t)) dt
QOi + ni-1(t)

+ k (kni- (t) + n(t) dZi,V QO + ni-I(t)

Comparing (4.42) with (4.10), we find our conjecture for the form of stochastic differential
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(4.38)

(4.39)

(4.40)

dni(t) = - i

(4.41)

(ni(t) - (4.42)

2-'ltg(ci, t )

/-2k, c_l(t)
dt + - + Q-l1-ici(t) d Z i ,t

S+ c_ I W(t)



equation is correct for large values of n,(t). For small values of ni(t), the applicability of

stochastic differential equation is dubious and one should use the ma.ster equa~tion instead.

4.5 Q-Expansion

The master equation is generally difficult to solve and one way to solve it is to use the Q-

expansion, where Q is the volume of the system. As can be expected, fluctuations depend

on the size of the system, therefore a Q-expansion relies on the smallness of fluctuations.

4.5.1 Derivation

The standard Q-expa.nsion starts from the following time-dependent transformation:

Q; = OQ(t) + 12!5 (4.43)

where O(t) = (0 1(t), 02 (t), O. , N (t)) is a deterministic part which corresponds to a macro-

scopic variable. = (11, ·2, , ýN) is a fluctuation part, which becomes less important as

Q increases. In terms of new variables, the reduced probability f(il, t) transforms to

f(ii, t) f= ( (t) ±+ RQ, t) = p(( t) (4.44)

The creation operator < which maps ni -+ ni + 1 corresponds to mapping +i - i + -

and has the following representation:

= exp 2[- qa] (4.45a)

~- = exp [-Q082] (4.45b)

Also the transformation of the time derivative takes the form:

N

Otf(i, t) = atp(Q, t) - Q 3 1 ,P(, t) (4.46)
i= 1
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It is worth noticing that the 2"d term in (4.46) arises because atf(i~, t) takes partial derivative

with respect to t while holding i- fixed. Therefore the contribution from 0(t) should be

subtracted.

In new variables, the master equation becomes

ap( t) = p(C t) (4.47)

where the differential operator 9 is

N N 1

9ak = exp4 + ki( + Q ti-1)ep- -1I
i=1 i=2 i 1 i-1 -2i-1

ii=1

(4.48)

Before we can correctly expand 9 in power series of Q- 1, special care must be taken about

ki, which is defined as the rate per volume. We must identify its order in terms of Q. Recall

that in our model there is only one copy of each gene. The rate of protein synthesis is

1Sk k = ki

while the rate of protein degradation is

ni

In steady state these two rates equal: ki = y7(¢i),Q, so

ki
- , O(Q) (4.49),Yi
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Thus we define the following rate constant:

(4.50)which is on the -ifrential operator ecoes:

which is on the same order a.s 7.. Then the differential operator 9 1)ecomes:

N

i-=1

N

+ 1
i=2

Qi( i- 1 + ~i- 1 [eýi- xp (-
S i-1 + Q- 2i- 1

N

f+ 1 o [exp (- Q 1 0 -exp 1 c ]
i=l

Now expand 9 in powers of Q:

(2+0 3--,r Q n--1

-1 ( 1i-)1
0i + i-1 + 1/2 i-1 - i -1 Z(-1)n-l i + (-1)

n

?11--- 1

i i 1

0, + (i-1 + Q-1/ 2 i1

exp t-

n Ki 1
n=1

(Qb, + Q (,)

(4.51)

- 1-i • n-_ 1

(-1) + i-)'

- 1 n=
n=1

01 + 00
I

lexp (Q 2 19

1 1

-y [exp (0-i - 1 + Q-I~ J) = ýj
( n= 1

Collecting terms in powers of Q:

N1 N

i= 1 i= 2 Oi+O-

N

01 + o i=1

7,o, ] p( t) = 0
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This equation is satisfied identically if

~i i -1 ii i = 1,..., N (4.52)
Oi + Oi-1

Equation (4.52) is just the macroscop)ic law of gene cascade kinetics.

( - ZD [0 _1- (0+ _)2 - mi~ j p(d t)
i= 1 [ i i- 1  1 i

+ Z [i + pi-1 + 7jA- p(ý, t) (4.53)

Since p(ý, t) has the interpretation of the probability distribution of fluctuation , (4.53) is

the Fokker-Planck equation. Notice the external fluctuation affects the gene cascade through

0o(t) and its dynamics is often known.

We now quantitatively discuss the statistics of fluctuation in and out of equilibrium.

Multiply (i to both sides of eq.(4.53) and integrate [ (by parts) to find:

it ) = i - I -1 i (t) -- i(i(t) (4.54)

•i(t) - Oi + Oi-1 1 i -+ i-1)

It is clearly seen that two sources contribute to the the dynamics of fluctuation at site i:

upstream fluctuation which is transmitted through gene i - 1 and a decay of fluctuation at

site i, made possible by the degradation reaction.

The correlation function of fluctuations at two sites can be calculated by multiplying (i

to both sides of eq.(4.53) and integrate (, we find

i + 4i-1 )
Ot•i(t)•j(t>> +- -- Oj-1 1 ( 0i ) + ti-1j K_(t) +(t)>

+ j + +i-1 Oj -+ +-1• \Oi + Oi-1 +i /
(4.55)
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To study the structure and solution to equa.tion (4.55), I define the H-matrix:

H = -F + T(t) (4.56)

The decay matrix F has matrix element:

(4.57)

and the transition matrix T-mnatrix is defined as

T j+(t) = (tTz i + Ojj M
- jt) 6i-,j (4.58)

Define the Q-matrix as

Qij M [ Ki O•i- 1 (t)

Q 1 0(t) = + ÷ 4 
I_(t)LOf + q5- 1(t)

Then the fluctuation matrix M defined as

Mij = (1i,(t)j(t))

satisfies

dM(t)(t) H(t)M(t) + M(t)HT(t) + Q(t) = H(t)M(t) + Q(t)
dt

where a superscript T denotes transpose. SH is the fluctuation superoperator defined as

YH(t)M(t) = H(t)M(t) + M(t)HT(t) (4.62)

The fluctuation superoperator can be explicitly defined as the following:

(4.63a)Y'(t)nn,ijM(I(t)ij
i,j
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(4.60)

(4.61)



Y H(O)mn,: = Hnibjn+ 7mH iH(,b

The fluctuation matrix can be formally solved to be:

M1(t) = T, exp ( d•rH(7) M(0) + f drT, exp (tds•iY(s) Q(r)
for

(4.64)

where T, is the usual time ordering operator defined in quantum mechanics and field theory.

To theoretically analyze the formal solution of M(t) in eq.(4.64) it is convenient to in-

troduce two super operators:

.FrM(t) = FM(t) + M(t)r (4.65)

(4.66),YT(t)M(t) = T(t)M(t) + M(t)TT(t)

Decompose the fluctuation matrix into a diagonal part M(d)(t), describing the variance of

fluctuation at each site of the cascade, and an off diagonal part M(od)(t) which describes

covariant fluctuations between two sites:

MI(t) = M(d)(t)+ M (od)(t) (4.67)

This decomposition can be achieved by the method of projection operator defined by

P = 6mn 6mi6nj (4.68)

such that

M(d)(t) = PM(t) (4.69a)

(4.69b)M(od)(t) = (1 - P)M(t)
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Multiplying (4.61) by P gives

dM1  d)(t)
d(t

= 7PY 7(t)PAI(t) + Py~;(t)(1 - P)(t) + PQ(t)
= P.:tH(t)a (d)(t) + P99H (t) 11(")(t) + PQ(t)

Multiply (4.61) by 1 - P:

dAMI(od) (t)
= (1 - P))oYH(t)M•(d)(t) + (1 - P))S;H(t)M (°(t) + (1 - )Q(t)dt

Since Q(t) is diagonal, (1 - P)Q(t) = 0 and PQ(t) = Q(t), therefore

dM (od)(t)
= (1 - TP))H(t)M(d)(t) + (1 -_ p)))(t)M(.d)(t)dtH

The equation (4.71) has a formal solution

f dti , 2 exp [f dt2(1 -)) (t2) (1 - (t)M(d)(t)

+t, exp [ft dt1(1 - P)Y'H(t)] M(od) (0)

Suppose that genes are not correlated to each other at time 0 but are under their own internal

fluctuations then M(od)(0) = 0. The 2nd term in (4.72) vanishes. Substituting (4.72) into

(4.70), we get

-P WH(t)dtl7t 2 exp t dt2 (1 - P)YH(t2)] (1 - P)2•H(t)M(d)(t1)

+PyHM(d)(t) + Q(t)

Notice we have the following relations:

P M (d) M= 0

P.2r M (d) = rM"(d)
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.M(od)(t)

(4.71)

(4.72)

dM(d)(t)
dt



(1 - P)frM (d'") = 0

(1 - P)).• M(d) = TM ( d)

7XH (1 - P) = PYT(1 - P)

We obtain a closed differential equation for M() (t):

d11(d) (t)
dt = -rM(d)(t) + Q(t)dt

+YT(t) dti2 eXp t dt2(1 - P)•H(t2)] YT(tl)A1'(tl)

(4.74)

Equation (4.74) shows non-Markovian nature of the diagonal fluctuation matrix. The sources

of fluctuation come from internal noise at each site and transmitted upstream fluctuation.

It is worth pointing out that transmissions of the fluctuations is realized only through off-

diagonal coupling.

When the macroscopic quantities such as Oi(t) are in steady state, YH and Q are inde-

pendent of time. However, the fluctuation M(t) can still evolve in time:

dM"(d)(t)
dM )(t) -rM(d)(t) + Qdt

+-•T dtl exp [(1 - P)Y-H (t - tl)] TM(d(tl) (4.75)

One way to solve (4.75) is by method of Laplace transformation:

(d) () = dt eM(d) (t) (4.76)

then (4.75) becomes

sM(d)(s) - M(d)(0) -yr•M(d) () + Q + YT 1'TM(d)(s) (4.77)
s s - (1 -P)H
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()(s) = + r- + M- )() (4.78)

AM(d)(t) is obtained from inverse Laplace transformation of (4.78). Let us examine the case

when M(")(t) reaches steady state, i. e. M14') - (')(oo). Using the fact for any f(t):

Sf(s) J (I c--:f()

lim sf (s) = lin dx e- xf() f (oo) dx e - z = f(oo)
s-• -0 S ./

we find

Mi + 1 Q (4.80)

(4.80) being formal and exact, it is still hard to analyze the underlying process, therefore we

seek approximations to (4.74).

4.5.2 Markovian Approximation

The difficulty in (4.74) and (4.75)arises from the non-markovian nature of the fluctuation

matrix. To motive the Markovian approximation consider the following integral:

I = dte-a(t-tl)f (ti), a > 1 (4.81)

The weight function (memory kernel) is exponential which kills the contribution of f(tl) at

small tl to the integral. In the large a limit:

I = dtle-'t' f(t - ti)

1 - dxe-zxf(t - )

- j dxe-xf (t)

1
- -f(t) (4.82)
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This is the NMarkovian approximation we would like to apply to (4.74) and (4.75).

If the matrix element of T-matrix is much smaller than that of F-nmatrix:

S i 1

Bi + Oi-1
(4.83)i + i-1Oi + Oi-i

which means each gene synthesizes quite a large number of proteins and the influence of

upstream fluctuation is much smaller than the internal fluctuation at each gene. This is

possible in a, reasonably large system. To quantify this condition notice that in steady state

of 0i:

Oi + Oi-1
(4.84)

Substituting this to (4.83) gives

i-1
(4.85)

S+ i-1 i-

Recall 0j = Mi/vi, so in order to apply Markovian approximation we must require

¢i-ivi > 1i (4.86)

That is the operator of gene i exists in the on-state most of the time.

Under the Markovian approximation (4.74) becomes

dM(a)(t) 1
Idt =- -. frM(d)(t) + Q(t) + (lT(t) 1 •(t)M(d)(t) (4.87)

Given II• r 11> 11T j, we have

1 1 1
(4.88)

(1 - P)(Zr + -T) 1 + £r- 12 T (1 - (4.88)

Since it is the off-diagonal subspace to which [(1 - P)).r]- 1 acts is nonvanishing and £TM(d)
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is already in that space it follows that

- T(t) [(1 _- p)(r + y~Tf)- l + f (t ) Ai d(t)

= 0C()-(1 + c, ifIr) M1(t)

= E (-1)"o•!.(t) [• _I• )] £ T(t)M( )(t) (4.89)

To lowest order in Ar -'A·(t):

= ( _ r M (d) (t) -- n (t) _4_ __o (t) - (t) M (d) (t) (4.90)

where
1

(£1 I)Sm - 1

(4.90) is our Markovian approximation result.

4.5.3 Fluctuation Transmission and Bound

(4.91)

In this section we will study the transmission property of gene cascade within our Markovian

approximation. In the steady state, we obtain a recursion relation from (4.90):

(4.92)

or explicitly:

(4.93)Mkk = ak + bkMk-1 k-1

ak-=
2 2yk

1
bk (Yk + Yk-) k-1

(4.94a)

(4.94b)

ak is the amplitude of fluctuation generated by gene expression at site k alone, while bk is

the transmission efficiency from gene k - 1 to k.
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By iteration, we find

E (1a l b1) (4.95)
i=1 j=i+l

Equation (4.95) has the following interpretation: The fluctuation at gene n is a. sum of all

upstream fluctuations weighted by the product of transmission coefficient of each gene in

between.

Equation (4.95) also predicts an upper bound for the fluctuation in this gene cascade

network. Denote a = sup ai and b = sup bi then

N

I N < bi-1 - bN) (4.96)
i= 1

In the limit N --+ oc:

IMo < (4.97)
1l-b

4.6 Discussion

In this work, I study the fluctuation of protein numbers in a gene cascade. There are two

types of fluctuation: one originates from the coupling with external sources and the second

one is almost independent of environments and the fluctuation exists even when there is

no coupling with external source. The second type is caused by random collisions between

molecules that initiates the chemical and biological reactions. This type of fluctuation can

not be simply removed by reducing the coupling with external worlds and therefore is intrin-

sic. In the following, when we refer to fluctuation we mean the second type of fluctuation.

The fluctuation is increasingly important when the volume of the system is sufficiently small

and there are only tens of molecules. Figure 4-3 shows a simulation of the fluctuation of

protein numbers (monomer and dimer) synthesized by a single gene, which in turn is self-

regulated by the protein (dimer). There is no coupling to an external source and the time

trajectory clearly shows the intrinsic fluctuation. When genes are coupled the analysis of

fluctuation become more difficult. I show in the work that several approaches can be used:
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Figure 4-3: Time Trajectories of Protein Numbers by Simulation

stochastic differential equation and master equation. The construction of the stochastic

differentia equations is mostly built on intuition and it has the advantage of numerical feasi-

bility. The master equation approach is more fundamental but it is very hard to implement

numerically. Nevertheless if the size of the system is not too small, certain approximations

can be applied. In this work, I use the Q-expansion to study the fluctuation propagation

through a gene cascade network. As can be seen from (4.53), which is a Fokker-Planck

equation, the Q-expansion is essentially a gaussian noise approximation around a solution

of macroscopic variables. The validity of this expansion is up to experimental and numer-

ical tests. In figure 4-4 I plot the distribution of protein dimers from the simulation of a

single self-regulatory gene network. Also a gaussian fit is given in this figure. It is clear

that gaussian noise approximation is a good approximation to protein dimer number which

is on the order of 18 molecules. When the number of a protein molecules goes down, the

deviation from gaussian is expected to be prominent. Figure 4-5 shows the distribution of

protein monomer number obtained from computer simulation. It is found that when on
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Figure 4-4: Protein Dimer Number Distribution and Gaussian Fit. The histogram is obtained
from computer simulation and a gaussian distribution fits well to the histogram.
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Figure 4-5: Protein Monomer Number Distribution and Poisson Fit. The histogram is

obtained from computer simulation. A gaussian distribution cannot fit the histogram. A

good fit can be obtained by a Poisson distribution.
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Figure 4-6: The trajectory of the active operator state OR2 shows an on and off dynamics.
See appendix for detailed description.

average only 6 molecules are synthesized the statistics of fluctuation can not be described by

gaussian and instead a poisson distribution is needed. In a typical gene network the number

of protein molecules is on the order 50, therefore the Q-expansion is a reasonable method

to study these systems. The trajectory of the operator dynamics is shown in figure 4-6.

Based on the Q-expansion, I further look at the Markovian approximation to the equa-

tion of motion of the diagonal fluctuation matrix M(d). This approximation is valid when

the coupling of genes is weak enough so that the dominant fluctuation of at each gene site is

its intrinsic fluctuation. In this case, I find an upper bound for the end chain fluctuation and

this result is in agreement with the results from the stochastic differential equation approach.

[8] In this case, a transmission coefficient can be defined for each gene which controls the

fluctuation conductance.
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4.7 Appendix: Simulation of Self-regulatory Gene Net-

work

In this appendix, I will discuss in detail the simulation that is used in the main part of

this chapter for a. regulatory gene network. The regulatory gene network consists of a, single

gene. The gene can be expressed to synthesize protein monomer M and the monomer can

consequently react to form dimer D or simply degrade. The basic reactions are the following:

A4 + VM k D (4.98)
01ki

+ k2
OR,, + D OR (4.99)

02k2

ORI + D E OR., (4.100)
03 k3

k4
OR2 + -- OR3  (4.101)

04k4

M -~ q (4.102)

OR1  OR1 + .M (4.103)

On2 k7) O + A4M (4.104)

The operator 0 can exist in four states {ORo, OR1, OR2 , ORa}. ORO is an off state where

no protein monomer M can be synthesized. When ORo binds with a protein dimer D it

becomes OR, and protein monomer AM can be synthesized only on a base level. When more

protein dimers are available OR1 can bind with the dimers to form OR2 and in this state

protein monomer can be massively synthesized. However, when the number of protein dimers

reaches a certain upper bound, OR2 will bind with the excessive dimer to form OR, and in

this state no protein monomer can be synthesized. Therefore OR, is also an off state. The
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Reaction M D O Ro OR1 OR2  )R3
(4.98)forward -2 1 0 0 0 0

(4.98)backward 2 -1 0 0 0 0
(4.99)forward 0 -1 -1 1 0 0

(4.99)backward 0 1 1 -1 0 0
(4.100)forward 0 -1 0 -1 1 0

(4.100)backward 0 1 0 1 -1 0
(4.101)forward 0 -1 0 0 -1 1

(4.101)backward 0 1 0 0 1 -1
(4.102) -1 0 0 0 0 0
(4.103) 1 0 0 0 0 0
(4.104) 1 0 0 0 0 0

Table 4.1: State Vector Change Table: The state of the system at any point in time is
characterized by a state vector S. Its elements change when chemical reactions occur.

state of the system is characterized as a vector:

M
D

ORo

OR1

OR2

OR3

(4.105)

Each element of the state vector S represents the number of molecules of that species.

When a chemical reaction occurs, the number of molecules of each specie change and they are

summarized in the state vector change table 4.1. The Gillespie algorithm [9, 10, 11] is widely

used to simulate stochastic chemical reactions. In this work I use the Next Reaction algorithm

developed by Gilbson and Bruck [10]. The simulation requires the following definitions:

Propensity a2 : The propensity ai is the rate of changing S due to reaction i.

For example the propensity for the forward reaction of (4.98) is:

(4.106)a, = k M(M - 1)
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Figure 4-7: Dependency Graph: Each chemical reaction is denoted as a, node and the influ-
ence of one node i to another node j is indicated as an arrow pointing from i to j.

Similarly the propensity for the backward reaction of (4.98) is

al,b = O1kjD (4.107)

The propensities for other reactions can be written in the same way.

Putative Time T-: The putative time Tr for reaction i is a random time which follows the

exponential distribution:

P( T)dar = aie-ar"dTi (4.108)

Physically, the putative time Ti is the first passage time that reaction i will occur.

Dependency Graph: The graph that shows the influence of each reaction to others.

In a system of coupled chemical reactions, when a chemical reaction occurs it will change

the state vector S and thus change the propensities and putative time for other reactions

to which it couples. The dependency relations are drawn in the dependency graph. For the

system in this appendix the dependency graph is shown in figure 4-7. It is important to

point out that each reaction also influences itself although this is not explicitly drawn in the
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dependency graph.

The algorithm for the simulation is the following:

1. Initialization:

(a) set initial numbers of molecules to a state vector S, set t -- 0, draw a dependency graph

(b) calculate the propensity ai for each reaction i;

(c) generate a, putative time T- for each reaction i according to (4.108) with parameter ai;

(d) store the Ti, values in an indexed priority queue P;

2. Find the reaction which has the least putative time in the 9 and denote this reaction as

y and its putative time 7,,;

3. Set T +-- T7,;

4. Look in the state vector change table and change S according to the entries of reaction

tp. Set physically elapsed time t - 7;

5. For each reaction v that is influenced by the reaction p, which is indicated by an incoming

arrow from p in P

(a) update a,,;

(b) if v 4 y, set Tv, -- (av,oId/av,,new)(Tv - t) + t;

(c) If v = p, generate a random number E, according to (4.108) with parameter a, and set

-, 6 + t;

(d) replace the old -7, value in Y with the new value;

6. Repeat the loop from 2.
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Chapter 5

Dynamic Phenotypic Switching:

Influence of a Fluctuating

Environment on Population Growth

Phenotypic switching is modelled dynamically as a problem of optimal phenotypic allocation

under uncertainty. We discuss logarithmic fitness function and its generalization to power

fitness functions. Based on our model and calculation, we propose a criterion for selecting

between a responsive switching and a passive stochastic switching. We also calculate the

dynamic long-term growth rate, i.e. Lyapunov exponent, without imposing ergodic condi-

tions, to study how the information of an fluctuating environment is incorporated into the

population growth. Further, we study the a complementary model in which sensing delay

exists and we discuss how sensing delay could change the allocation probability. Finally we

generalize the 2-phenotype model to a general M-phenotype model and discuss redundant

phenotypes in phenotypic switching.
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5.1 Introduction

Environmental conditions, such as temperature, illumination, number of resources and level

of hazard etc., play an important role in the survival of organisms. The changes of en-

vironnmental conditions are essentially stochastic and sometimes unpredictable. To study

population survival in such a fluctuating environment, many mechanisms are proposed, e.g.

adaptive mutations [1, 2], mutator phenotypes [3, 4, 5] and phase variation [6, 7] etc. The-

oretical models for adaption to a. fluctuating environment and optimal strategy for survival

in a, fluctuating environment have been built focusing on different regions of the problem.

These include static mixed strategy and optimization in an ergodic fluctuating environment

[8](Model 1), game theoretical based dynanmic optimization ill discrete time [9, 10, 11](Model

2) and a. more recently proposed stochastic phenotypic switch and growth model in a fluctu-

ating environment [12, 13, 14, 15](Model 3). Model 1 finds the static optimal strategy but

suffers from an ergodic constraint. There is no ergodic assumption in model 2; however, the

assumption of separated periods of decision making and population growth are made and a.

discrete time model is considered. Model 3 considers both responsive and stochastic switch-

ings in continuous time where the environment is assumed to change slowly enough that

for each environmental configuration the largest eigenvalue of the growth matrix is realized.

Though model 3 in principle can be applied to a non-ergodic environment, the calculation

for the Lyapunov exponents are restricted to an ergodic environment. For responsive switch-

ing, the optimal strategy in model 3 is to simply pick the phenotype that has the largest

growth rate. We will show later that this is not always true and it depends on the fitness

function. Besides the insights provided by these models, several important questions need to

be answered in more detail, for example: How do organisms obtain the optimal strategy for

population allocation in different phenotypes? How do they execute the optimal strategy?

How do they decide whether to adopt an active or a passive strategy? Could there exist a

redundancy in the number of phenotypes? To find suggestive answers to the above questions,

we set up a continuous time model where the dynamics of the environment is used as an input

and therefore there is no ergodic constraint. Within this model, we discuss the role of the
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fitness function and we find the dynamic optimal allocation strategy for 2-phenotype model

for power and logarithmic fitness functions and thus calculate the Lyapunov exponents. We

discuss the role of noise in adopting either passive stochastic switching or active respon-

sive switching. Furthermore, we discuss the role of sensing delay on the optimal allocation

strategy. Finally, we generalize the 2-phenotype case to the more general M-phenotype case,

based on which we discuss the redundant phenotypes when phenotypic switching is used to

hedge against environmental fluctuations.

5.2 2-phenotype model

The 2-phenotype model consists of a sensory machinery (SM) that acts as a social planner and

two phenotypes. When the SM is active, it can probe some of the environmental conditions.

This part of conditions is summarized as a random process Zt:

d-It = MI(ZIt)dt + ora(Zt)dZ1 ,t (5.1)

where Z!,t is the standard Wiener process which describes the fluctuation of the probed

part of the environment. The SM also observes the growth of each phenotype through the

mechanism of feedback:

dni,t = ri(ni,t, t)dt + ai(ni,t,It)dZE,t, i = 1,2 (5.2)

where nit is the population of phenotype i at time t and ri is the local deterministic growth

rate of phenotype i at time t. ai is the influence of environmental fluctuations to phenotype

i and ZE,t is a Wiener process describing the fluctuations of the entire environment. The

correlation coefficient between the two processes ZI,t and ZE,t is

p = E[ZI,tZE,t]/ 1l [Zt]E[Z,,t] E [-1, 1] (5.3)
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where E[.. ] denotes expectation. So p has the interpretation of predictability of the probed

part of the environment It. Based on observations, the SM makes a, decision on the optimal

allocation probabilities {~it} to each phenotype. Here ki,t is the probability to switch to

phenotype i at time t. This set of probabilities, serving as a control signal, is transmitted to

individuals by mechanisms such as regulatory networks in which the message can be carried

by regulatory proteins or chemicals. Each individual switches to phenotypes according to

the probabilities contained in the control signal.

To determine {fi,t}, the SM faces the problem of stochastic optimal control of population

growth. To formulate this problem let Nt be the total population of organisms at time t. The

SM maximizes a fitness function .f(Nt); however, the fitness function is generally unknown

except that it must be a monotone increasing function. The most popularly used fitness

function in modelling is the Lyapunov exponent[18, 8, 10]: 1 In NT, which is related to the

geometric mean of the overall growth rate. Generally speaking, the solution of a deterministic

optimization problem is invariant under a nonlinear transformation g(f(Nt)) when g(-) is

a monotone increasing function. However, this is no longer true for optimization under

uncertainty as expectation does not commute with a nonlinear transformation:

E [g(f(Nt))] - g(E [f(Nt)]) (5.4)

We generalize the log fitness function to a more general case for this problem:

N1- " - 1
U(Nt) = N (5.5)

1-a

The logarithmic fitness function is a special case of this class: lim,,- U(Nt) = In Nt. Given

the stochastic process satisfied by each phenotype (5.2), we obtain a stochastic process for

the total population:

dNt = a(4t, Nt, Zt)dt + b(,Pt, Nt, It)dZE,t (5.6)
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where
2

a(4,, Nt,,,,) = 7- -((, ,,Nt,,I) (5.7a)
i=1

2

b((,, N,,Z It) = o ,(0i,tN, ,It) (5.7b)
i=1

where

4) = ' (5.8)

Notice that individuals switch to phenotypes according to the same set of probabilities, so

0i,t is also the fraction of total population allocated to phenotype i at time t. Now we can

formulate the SM's optimal strategy problem as:

max Eo [U(NT)] (5.9)

subject to
2

Si,t = 1 (5.10a)
i= 1

Ci,t E [0, 1] (5.10b)

and equations (5.1) and (5.6). Here E0[.] denotes expectation with respect to the probability

law of the process Nt starting at No.

5.3 Optimal Allocation and the Selection between Re-

sponsive and Passive Phenotypic Switchings

The SM's optimal strategy problem can be solved using the dynamic programming tech-

niques. Let J(Nt, It, t) be the value function defined as

J(N, It, t) = max Et [U(NT)] (5.11)
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Then J(Nt, I,, t) solves the Hamiilton-Jacobi-Bellnman (HJB) equation:

maxllIaX { ,J + a(4), ,NV,~,Z,)AJ + ;. (I(,)0,J1

S [b"(~t,,N,,ItZ,)dNJ +fr(,()OJ]
2+ p

+ b(( ,, N,, IT)t '(Z,)i 7 ,J} = 0 (5.12)

with the boundary condition:

J(NT, 17 , T) = U(NT) (5.13)

We will examine the cases of power fitness function and logarithmic fitness function. In

addition, we assume that each phenotype's population follows a geometric Brownian motion:

(5.14a)

(5.14b)

a(4t, N., It) = N,4:r(IZ,)

b(t, N, IZt) = Nt D'a(Zt)

Define

r(Z) =

cT(It) =

ri (It)

r 2 (t) J
a (It)

(5.15a)

(5.15b)

The HJB equation for this case is

{ OtJ + Ntt r(C t)ONJ + pI(I t)iOJ

S[u T gNT(It)u (z>) j, +J + (zI)oa J]

+ p Nt'Ta(It)a,(It)O2u,iJ} = 0
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5.3.1 Power Fitness Function

The power fitness function is defined in (5.5) as a generalization of logarithm fitness function.

Let , = ¢2,t, so 4l, = 1 -Ot. The HJB equation (5.16) can be rewritten as a.

max { tJ + Nt[r(It,) + ( t(r2(It) - rl(It))]ONJ + p(I t)aiJ

1- 2N21(t) ± t( 2 (I) - (It))]20NJ  + 2(It)9J]
+-[Nt2 [Or (-t) + Ot (92 -t0) "2 1t222

+ p Nt[aOl(z) + (a2 (It) - Nal(It))](Ita ,J} = 0 (5.17)

where t, is the allocation probability to phenotype 2. The first order condition gives Ot as

a function of J(Nt, It, t) and its derivatives:

(r2( t) - rl(It))NJ + P[2(It) - UlCIt)]1,(t )NJ ( zt)
6, = ' - (5.18)[u2(It) - l(_t)]2NttJ a2(t) - (I (5.18)(t)

Notice 2N J < 0 since J is a concave increasing function. Substitute the expression (5.18)

for qt to HJB equation (5.17) we obtain a nonlinear differential equation for J:

1
atJ + Ntr(Zt)aNJ + P,,(_t)aT J + --(o•(Z)2 J + Nt2 1(t) 2a2J) + PNtl(ZIt)(IZt)aNJ

[(r2(Zt) -- rl())aNJ + (2(t) - aO(It))(paI(ZI , J + N (T )ONJ)]2  0 (5.19)

2[02(It) - ui(1t)]2O2J

Without losing generality, we can assume that phenotype 1 has a smaller instantaneous

growth rate than phenotype 2: rl (It) < r2(It). If phenotype 1 also has higher fluctuation

al (It) > a2(1t), it can be seen from equation (5.18) that switching to phenotype 1 is not

optimal. This is intuitively easy to understand as SM would choose a phenotype that has a

high growth rate and a low fluctuation amplitude when the environment changes. In this case

SM will switch to phenotype 2 almost surely. To exclude this trivial case, I assume a, (It) <<

2 (It). In this case though the phenotype 1 has a smaller growth rate, it nevertheless is very

stable against environmental changes. In the following derivation for optimal phenotypic

switch in a fluctuating environment, I will assume aol(It) = 0.
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Under the above simplifica.tion, equation (5.19) becomes

1

t J + Ntr1 (It) ONJ + P i(I,)d J + -I o(It) 1J2
[(r2(zt) - 7rl(It))ONJ + pf 2 (It (It)oI -()5,J]'2

=0 (5.20)
2c 2 j(t)0 J1

The initial condition for J is

J(NT, IT, T) = (5.21)
1 -

So we look for a. solution in the following form:

(Nt, )= f(, t) (5.22)

where the unknown function f(IZt, t) satisfies an initial condition f(IT, T) = 1. Substituting

(5.22) into (5.19) we obtain

Atf + (1 - a)ri(Zt)f + Iti(ZIt)Of + -aO(It)O2f2
(1 - a)[(r2(It) - rl(zt))f + pa2(zt)a,(Izt)Of]2

+ 2()f- 0 (5.23)
2aa2(It)f

Let

f(It, t) = exp [g(t, t)] (5.24)

Then the nonlinear differential equation (5.23) becomes

9tg + (1 - a)r(rl')+ -(,)F+ (I2((I)()g+)2 + aIg
(1 - a)[r2(zt) - r l (zt) + pa2 (Izt)a(I zt) 9]2

+ 2 ( 0 (5.25)
2a2 t(Z.)

I will look for a solution to (5.25) in the following form:

g(It, t) = A(t)Zt2 + B(t)IZ + C(t) (5.26)
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where the three unknown functions A(t), B(t) and C(t) satisfy the initial condition: A(T) =

B(T) = C(T) = 0. Up to now, the framework is quite general. To determine A(t), B(t) and

C(t) I will study the following model:

ri(It) = ri  (5.27a)

7'2(It) = r 2 + SZt (5.27b)

02 (t) = U2 (5.27c)

pI(Zt) = -kZt (5.27d)

a(G:)= aU (5.27e)

This model describes the following situation: The part of environmental conditions being

probed, It, follows an Ornstein-Uhlenbeck process with a reverting force proportional to

k. Phenotype 1 grows at a stable rate rl and it is not affected by environmental changes.

Phenotype 2 has an instantaneous growth rate r2 + sZt. The sensitivity of its growth rate

to changes in It is characterized by parameter s. If s > 0 then phenotype 2 grows fast in

"good" periods but it suffers or even dies during "bad" periods. For this particular model,

substituting (5.26) and (5.27) to (5.25) and we get

1 2
A + BZt + C + (1 - 0)rl - kZt(2At + B) + -[(2At + B)2 + 2A]2

(1 - a) [sIt + r 2 - r1 + pU2U (2At + B)]2  0 (5.28)
S=2u 0 (5.28)

This is a, polynomial equation for It and it has to hold for every It, so all coefficients of the

polynomial should vanish identically. This leads to the following ODEs for A(t), B(t) and

C(t):

( (1- a)p2  (s(1-a)p- _) (1 - a)s2

S+ 20 1 + A2 + 2 -- - k A + 2 0 (5.29a)
OEC 2 2a 2
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pao ( 1 - a)(s + 2paA2,A )  A ;) B + (1 - a)(T2 - r1)(s + 2pU2aIA)
t(T 2 (o2

(5.29b)
1 + (1 - )(T2 - 7'1 + p- 2 I B) 2

C + (1 - a)ri- + (2A + B22) 2  = 0 (5.29c)2 2(rv2
ODEs (5.29) are straightforward to solve though the final expressions are tedious. We will

not list them here. Having solved the H.JB equaytion we finally obtain the optimal allocation

probability for phenotype 2:

r12 - 1' + SIt + pa2ai[2A(t)It + B(t)]
t = 2 (5.30)

The optimal allocation probability for phenotype 2, Ot, is proportional to its excess growth

rate to the phenotype 1, 72 - r1, and it is inversely proportional to its exposure, a2, to the

environmental fluctuation ZE,t = pdZ,t + 1 -- p2dZ 2,t. Due to the nonlinearity of fitness

function, /t is inversely proportional to parameter a. In the case when SM only cares about

the expected population E[NT], we have a = 0 and Ot E {0, 1} which depends on the sign

of the numerator in (5.30). This is easy to understand since the SM only has to choose the

phenotype that has the largest instantaneous growth rate with probability one. This situation

is considered recently by Kussell et.al.[15, 14]. When a $ 1, Ot is reduced so that the SM

would assign a nonzero probability to the slow but stable growing phenotype 1. Therefore

a measures the risk averseness of the SM. This interpretation has a wide application in

finance [19]. The time dependent part has two resources: (1)Instantaneous growth rate of

phenotype 2 in response to the probed environment conditions, i.e. sIt; (2)Predictability of

the information gathered, It, to the whole environmental conditions which is measured by

parameter p. If p > 0 then a good period of the probed environment It, predicts a good

period of the entire environment. In this case the SM would assign a higher probability to

the phenotype 2 when 2t > 0 and smaller probability when It < 0. If p < 0 then a good

period of the probed environment predicts a bad period of the entire environment. In this

case there is a competition between the probed environment and the entire environment on

the allocation probability to phenotype 2.
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The time dependent part of Ot, indicates a. necessity for responsive switching. This is

intuitive a.s the more information gathered of the environment the higher the chance to

survive. Nevertheless, sometimes responsive switching is not adopted. As is shown in recently

research on noise propagation ill gene networks[20, 21, 22], there exists intrinsic noise in

regulatory gene networks due to the small size effect. So in the case where the observations

of s are very noisy and It is not predica.tive, p = 0, for the entire environment, then the SM

would simply a~dopt a time independent passive switching strategy:

r2 - r7l
2t = 2 (5.31)

In such a. case the sensor machinery is turned off. Our analysis for choosing between a re-

sponsive and a passive switching mechanisms provides an additional criterion to the existing

one which uses an argument of sensing cost[15].

5.3.2 Logarithmic Fitness Function

The logarithmic fitness function is popularly used in study of population growth [8, 10]. It

corresponds to the geometric mean of growth rate and it is closely related to the Lyapunov

exponent. As will be shown below it is a special case of the power fitness function(5.5).

Since the stochastic optimization for the logarithmic fitness function is easy to solve we can

remove the simplifying assumption made in the last section and consider a general case. The

total population Nt follows the process

dNt = Nt[r\(zt) + 0&(r 2(zt) - ri(It))]dt + Nt[al(Zt) + &t(a2(zt) - 9 1 (zt))]dZE,t (5.32)

where Ct is the allocation probability for phenotype 2. From Ito's lemma we obtain

InNT = lnNo0 + dtP(t,It) + dZE,t Q t, t) (5.33)
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where

1
I(Ot ·!1) r71 (It) + bt['lr2(It) - 1 () ] - [a(ITt) + Ot(O-2(Tt) - O(It))]2 (5.34a)

Q(Ot, It) = a (zt) + 0t [aU2(I) - a(i(t)] (5.34b)

Notice 7T
Eo [ dZE,tQ(t., It) 0

Therefore the optimization problem becomes

max Eo [In NT]

In No + max Eo dtP(t, It)] (5.35)

Ot is obtained from the first order condition:

o, P (t,,zIt) = 0

So we get the optimal allocation probability to phenotype 2:

= 72(t) - 71 (t) __ 1 or(It)
¢t = - (5.36)

[02 •t) - o (zt_ 2 U2(-) -U (Z-t

For the logarithmic fitness function, we see that the predictability of Zt for the entire environ-

ment is not relevant to the optimal allocation probability and there is no hedging probability

assigned for this predictability. Ot is determined purely from the instantaneous growth rate

and exposure to environmental fluctuations: it is proportional to the instantaneous excess

growth rate of phenotype 2 and it is inversely proportional to the phenotype 2's excess ex-

posure to the environmental fluctuations. If we impose the same simplification as the last

section: al(1It) = 0, (5.36) gives the same result as (5.30) (a = 1, A(t) = B(t) = 0), so the

logarithmic fitness function is indeed a, special case of the power fitness function. Therefore
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it is useful to consider a much large class of nonlinear fitness functions to study the problem

of phenotypic switching in a fluctuating environment.

For the SM that adopts a logarithmic fitness function, it is profitable to use responsive

switching only if the noise in observing the functional relationship between phenotype growth

and the probed environmental conditions is below a, certain threshold level. If there is a

prevailing intrinsic noise in the regulatory and feedback gene networks, passive switching

will be adopted no matter how strong the predictability of It is.

5.4 Lyapunov Exponent

In this section we will discuss how the information of the fluctuating environment is encoded

in the phenotypic growth. It is clear that the optimal allocation probability Ot, (5.30)

and (5.36), contains such information. Another measure discussed in the literature is the

Lyapunov exponent, which is related to the geometric mean of long-term growth rate:

1
AT = - In NT (5.37)

T

In a fluctuating environment, the Lyapunov exponent is no longer a deterministic quantity

but a functional of the entire environment. Using Ito's lemma (see appendix A)it can be

written in the following form:

1 IfT fT
AT[It] = In No + dtR(It) + dZE,tV(It) (5.38)

The first term is a residual term arising from initial condition and it goes to zero as T -- oc.

The second term shows the influence of the probed part of environment Zt on the average

long-term growth rate. The third term is the influence of the entire environmental fluctu-

ation. Since (5.32) holds generally for both the power fitness function and the logarithmic
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fitness function we obtain:

R(1t) ZQ?,t(It)ritGdt) (5.39a)
2

i=L

where j,<t(Zt) is the optimal allocation probability for phenotype i. For phenotype 2, 12,t is

given by (5.30) and (5.36), while 1,t = 1- 02,t. Notice that R(ZI) has two contributions: the

first one is the sum of instantaneous growth rate of each phenotype weighted by its optimal

allocation probability; the second contribution comes from the Ito correction which reduces

the Lyapunov exponent. This additional term missing from a deterministic environment can

be interpreted as a hedging against uncertainty.

5.5 Sensing Delay

In section 5.3 we considered the case when SM is able to optimize at every point in time and

the strategy is carried out by individuals almost immediately. This is a good approximation

if the environment stays long enough in each of its configuration such that the actions can be

completed. In this section we will consider a complementary case. Namely the environment

cannot stay long enough for the decision-making and strategy-executing to be completed.

For simplicity I consider two phenotypes and logarithmic fitness function. I assume that

on average it takes 7 for the signal to be transmitted and executed, so T is a parameter

characterizing sensing delay. The total population Nt then follows the process:

dNt = Nt[r(ZIt) + 4t-,(r2(It)- ri(IE))]dt + N[a,1(It) + t-t-~( 2 (tt)) -)- t)- (t))]dZE,t (5.40)
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The optimization problem becomes:

max Eo [ln NT]

In No0 + dt (r (IT) + _4t-, [r2( t) - ri( t)] - 1 + t- 2 t) - 1 t 2

+ maxEo[ dt (r(It)+t-r2(T - ri(1 It)]- [1 t- 2 t 12t) t(2(t)(y(t)) 2

0t 2

which follows from the fact that Ot is ~Ft-measurable, where Ft is a. filtration on probability

space (Q, ., P), so t, is known for t < 0. We only have to maximize the last term:

maxEo[ dt( rl(Tt+,) + Ot[r2(It+,) - rI(1t+7 )]

1
S[v2 (t+-) + Ot (2(2t+-) - a (It+T))] 2) ] (5.41)

by a changing of integration variable. We look for a control Ot of the following form:

m-1

t = - tix (t, t t 1(I) (5.42)
i=0

where Pm == {0 = to < t .< .-. < tm-1 < tm = T - 7T} is a sequence of partition and

suppose that limm,,o 6(Pm) = 0, where the mesh 6 (Pm) = maxo0 <<,m- Iti+1 - tiI. -t is a

Ft.,-measurable function and X(t,,t,+l](t) is an indicator function:

X(t.,,t,+ 1 (t) = if t (ti, t+i], (5.43)
0 if t ý (ti, ti+i1.

The Ot, being a simple function, corresponds to a situation where the SM adopts a strategy

for a period of time and then changes it to new one for another period of time.
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Substituting (5.42) to (5.41) we obtain:

maxEo[ dt('r• (ItT)

i=O

S202 Et,[
i=0 .

-2(I7)) + El JI [

_1 (It+ )(7 2 ( t+T) 1 t+

(it (r2(Z,+T) - (tj(Z,+T))2 ]

dt (r2(IZt+) - rl(Zt+T))]

(5.44)

where we have used the property of iterated expectation. Taking the limit m -+ c0 we find

max Eo[ J- d-

1 T-T

20

t (r,(-t+r) - 1a2(It+r)) + T
2 J o

(dt OtEt[Tr2 (t+r) - 7l(It+T)]

it tEt[ol1(It+T)(u2 (It+r) - al(It+T))]

dt 2Et 42E[(2Z t+r) _- 01( t+)) 2]

(5.45)

Therefore the optimal allocation probability to phenotype 2 is:

Et[rT2(It+r)- r1(I t+r)] - Et[ui(1t+r)(U2 (It+r) - O1('t+T))]
t Et[(a 2 (zt+r) - 01(Zt+r))2 ]

(5.46)

Now we will discuss the effect of sensing delay and in particular we would like to answer

the question: How would the SM change the allocation probability of the fast growing pheno-

type (phenotype 2) comparing to the case where there exists no sensing delay? First consider

the case where the phenotypes' exposures to the fluctuation of the entire environment are

independent of It. If the excess growth rate of fast growing phenotype is a convex function

of It, then we have

T2(Et E[t+r]) - Ti(Et [It+,]) - (Y1(92 - O1)
Ot >

(a2 - a1)2
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by .Jensen's inequality (see a.ppendix A). The equality holds when r2(t) and rl('t) are lin-

ear in It. We find that if It is a submartingale then the SM will increase the allocation

probability to the fast growing phenotype. This means that when the expected future envi-

ronniental condition It+, is better than today's, more allocation probability will be given to

the present fast growing phenotype compared to no sensing delay. On the other hand if It is

a supermartingale and if the excess growth rate r2(It) - rl(Zt) is a. linear function of It then

72(Et [It+,]) - rl(Et[Zt+,]) - Oa (o 2 - 6l)
(•2 -("1)2

7.2(t) - rl(Zt) - 0-1(U 2 - 5.481)
< 2  (5.48)

(U2 - 1

In this case, the expected future environmental condition It+, is worse than today's so less

allocation probability will be assigned to the fast growing phenotype.

Second, we consider the case when phenotypes' exposures to the entire environmental

fluctuations depend on the probed environmental condition It and we assume o1 (It) = 0:

Et [r2 (It+-) - rI(•Tt+T)]
#t = Et2(T( (5.49)

If It is a martingale(see appendix A), the excess growth rate is a linear function of It and if

2 (Zt) is a linear or convex function of Zt then

r2(Et[_t+,]) - rl(Et[Zt+T])

<- 2 Et [-T - ri(Et[Izt+])

rT2(I) - i1 (Zt)
S ( (5.50)

We find that even if the expectation of future environmental condition -t+r is the same

as today's, the SM will decrease the allocation probability to the fast growing phenotype

compared to no sensing delay. This shows that sensing delay brings in uncertainties about

future environmental conditions such that less probability is given to the fast but vulnerable
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phenotype to hedge against that. If It is a, submartingale, the excess growth rate is a convex

function of Z1 and if 2 (It) is a, linear or convex function of It then

Et [r2(ItT) - ri (t+,)] >_ r 2 ( t) - r1 (It) (5.51a)

E,[ (_,t+)] > o (E,[1,+,]) > (l,) (5.51b)

In this case there are two competing factors: expected improvement in the excess growth

rate and expected larger exposure to environmental fluctuations caused by sensing delay. So

the change of allocation probability for the fast growing phenotype depends on the relative

strength of the two factors.

5.6 M-phenotype and Phenotypic Redundancy

In this section, we will generalize the treatment of two-phenotype to M-phenotype. If we

simply extend two-phenotype to M-phenotype in the following way:

dni,t = ri(ni,t, It)dt + ri('ni,t, It)dZE,t, i = 1, , M (5.52)

it is clear that the first order condition for the HJB equation (5.16) generally does not have

a solution. This is because a(It)a(It)T is a projection matrix, where

o(Z,) = (al(zI),..., JM(It))T (5.53)

so it is not invertible. We shall explain this mathematical 'difficulty' as being caused by

phenotypic redundancy. As a general case, we consider the following model

L

dn,t = ni,trl(Zt)dt + ni,t E 1,J(It)dZJ,t
j=1

M M L

= Nt(1 - E i,t)rl(It)dt + Nt(1 - Zdi,t) Eal,(Zt)dZi t  (5.54a)
i=2 i=2 j=1
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L

(It = n )try (Zi)dt + ni t E j (It)dZEt
j=1

L

= Nti,,tri(t)dt + N,•it C aiy(Zt)dZJ, i = 2, --- A (5.54b)
j=1

(I), = (ý_,,t, • • , ý,t)T is the allocation probability vector, where /i,t is the allocation proba-

bility to phenotype i. The environmental fluctuation vector ZE,t = (,, , ,)T consists

of L independent fluctuation components Zi, The matrix element aio, is the exposure of

the ith phenotype to the jth environmental fluctuation Zj, The probed part of the en-

vironment It satisfies (5.1) and has a correlation vector Q = (pl," ' , PL)T where pi is the

correlation with the ith environmental fluctuation. Therefore the total population satisfies

the following process:

dNt Ntri,tdt + NtltdZE,t + Nt TArtdt NtT tdZE,t (5.55)

where

[U1,I (It)

O'lt lL(t (5.56)

and

Tr2(t) - rl(It)

Tt = " (5.57)

rM(It) - ri(Zt)

is the excess growth rate vector. Aau3 = ai,j(Zt) - al,j(Zt) is excess exposure of the ith

phenotype to the jth environmental fluctuation. The HJB equation is

max { OtJ + Nt(rIt + l TArt)ONJ + 1,7(I t)oI

+t 2 t
+ ~N.7 T + Aot)(a, + Au[4))aJ

+ 2(t)&)J + Nt(OT + ± TAat)p', , J} = 0 (5.58)
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The first order condition for this HJB equation is

71)t NJ Art SrII - A-Ntalt J= Y (5.59)
N,8) J N,8 J

If M-1 = L then Aut is a square matrix. If further Rank([A A<T']) = Rank([AutAfIY]) =

MA - 1, then At At17 is an invertible matrix and we have

(It = (ArtAO )t•Y (5.60)

which subjects to constraint ,,t, E [0, 1] and E'! 2 iJt < 1. In other words if the number

of independent phenotypes, which are defined by conditions above, equals the number of

independent environmental fluctuations plus one, then there exits a unique solution.

If Al - 1 > L and Rank([AatAu ]) = Rank([AtAaIY]) = L, then the SM only needs

to choose L + 1 independent phenotypes out of total M phenotypes to solve optimization

problem. We see in this case that there is a redundancy in the number of phenotypes to

hedge environmental fluctuations.

If M1 - 1 > L and Rank([AaotAa••]) - Rank([AatAaTlY]), then the first order condition

cannot be satisfied. The optimization problem has no interior solution and constrain Oi,t = 0

binds for some i. The optimal solution therefore exists in a subspace of M phenotypes. In

fact, the solution is achieved by first selecting L independent phenotypes out of M phenotypes

that solve the first order condition in this subspace. The optimal solution is the set of L

independent phenotypes, among other sets, which maximizes the fitness function. In this

case we also see redundancy of phenotypes to hedge environmental fluctuations.

If M - 1 < L and Rank([AatAat]) = Rank([AatAaIY]) = M - 1, then all phenotypes

are needed to hedge the fluctuations of environment. However, this hedging is not complete

and only M - 1 out of L environmental fluctuations can be hedged. In this case there is

insufficiency of phenotypes to hedge environmental fluctuations.

To summarize, we find that to hedge L independent environmental fluctuations com-

pletely, exactly L + 1 independent phenotypes are needed. Our model therefore implies that
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in a. real biological system the number of independent environmental fluctuations which are

experienced by the biological system is equal to or larger than the number of existing phe-

notypes. In other words, in order to fully hedge L independent environmental fluctuations,

equal number of independent phenotypes are necessary. However, redundant phenotypes do

not improve the hedging against environmental fluctuations within our model and it might

induce more sensing cost.

5.7 Conclusions

We studied phenotypic switching in a fluctuating environment in a continuous time model,

where ergodic constraint is relaxed. In this model the SM can continuously probe part

of of the entire environment and it can monitor the growth of each phenotype. Based on

the information gathered, the SM sends out signals which consists of optimal phenotypic

allocation probabilities for each phenotype. Since this optimization process in carried out

under uncertainty, we showed that the optimal allocation probabilities depend on the form

of the fitness function. For nonlinear fitness functions, we showed that it is not optimal

to allocate population to the fastest growing phenotype with probability one. A fraction of

population exist in a. slow growing but stable phenotype to hedge against uncertainties. This

principle of diversification also has wide application in financial economics.

We showed in both cases of the power fitness function and logarithmic fitness function

that responsive switching is necessary to hedge against uncertainty while keeping an optimal

growth rate. For the power fitness function, two factors come into play: predictability

of the probed part of the environment Zt and excess growth rate of the fast phenotype.

The SM can infer the global environmental conditions from the information gathered on

the part of environmental that has a direct influence on the phenotypic growth rates. We

showed that when the magnitude of noise (intrinsic and extrinsic) is so large that a definite

relation between the probed environmental conditions and phenotypic growth rates cannot

be obtained or when the probed part of environment is not predictive, it is possible that

passive switching is adopted. In this case a static set of allocation probabilities is used and
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the SM can be turned off to reduce further sensing cost. For the logarithmic fitness function,

the predictability of probed environmental conditions is irrelevant to the optimal allocation

probabilities and sufficiently large noise in a regulatory network can make the SM choose

passive stochastic switching. We also showed that in general the Lyapunov exponent is a

functional of dynamics of the probed environmental conditions and the entire environmental

fluctuations. An It6 correction term shows up in the expression of Lyapunov exponent

indicating a. hedging demand.

The above conclusions are reached in a model where there is no sensing delay which is

a. good approximation when the environment stays at a certain configuration long enough

that the optimal strategy ca.n form and be executed completely. We further showed that

if there is a sensing delay then the set of optimal allocation probabilities will change. The

change depends on the expected change of the probed part of the environment which has a

direct influence on phenotypic growth rates. When the exposure of each phenotype to the

fluctuation of the entire environment is a, constant then the change of optimal allocation

probabilities depends only on the possibility of an improved(or worsened) performance of

Zt+,. However, if the exposure to the total environmental fluctuations is also ITt dependent

then there can exist a competition between improved environmental conditions It+, and

larger exposure to global environmental fluctuations.

We finally discuss a general M-phenotype model. The conclusions for 2-phenotype model

hold for the M-phenotype model: the mathematical structure of optimal allocation probabil-

ities, the role of predictability of the probed part of the environment on optimal allocation

probabilities and the role of noise on choice between responsive and passive phenotypic

switchings etc. In addition we find that to fully hedge L independent global environmental

fluctuations only L independent phenotypes are needed. Redundant phenotypes will not

improve hedging against uncertainties within our model while fewer phenotypes cannot fully

hedge against all environmental fluctuations.
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5.8 Appendix A: Ito Calculus, Martingales and Diffu-

sion Properties

5.8.1 Standard Brownian Motion Z

Mathematically, the standard Brownian motion Z is a stochastic process on a, probability

space (Q, F, P). It belongs to a general class of Levy processes X. We say that a process has

independent increments if for each n E N and each 0 < tl < t2 < . ..<i tn+1 < oO the random

variables X(tj.+) - X(tj), 1 < j < n are independent. X(t) has stationary increments if

X(t,±,) - X(tj) 4 X(tjl - tj) + X(O) (5.61)

d
where = means equals in distribution. To simplify notations, I will use X(t) and Xt inter-

changeably.

The standardBrownian motion Z satisfies the following conditions:

(1) Zo = 0 almost surely (a.s.);

(2) Z has independent and stationary increments;

(3) Z is stochastically continuous, i. e. for all a > 0 and all s > 0

limP(lZt - Zj] > a) = 0 (5.62)
t--

The above conditions are satisfied by all Levy processes. The standard Brownian motion

must also satisfy the following conditions:

(4) Zt - N(O, t) for each t > 0;

(5) Z has continuous sample paths. N(O, t) denotes the normal distribution with mean 0

and variance t which implies:

E[Zt] =0 (5.63)

E [(Zt - Z8 )2] =t- s, for t >s (5.64)
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5.8.2 It6 Integral and It6's Lemma

It6 integral is defined as

Z[f](W) = f (t, W)dZt (W) (5.65)

This integral belongs to a more general class of stochastic integrals, for which the underlying

stochastic processes are the general Levy processes. A rigorous construction is beyond this

appendix and I only outline the procedures that are relevant to this chapter (see [16] for

detailed information).

STEP 1: Define the integral for simple functions

On(t, W) = E ,(W)'fXlt,,t.j+l) ( t )  (5.66)

where 4~,j(w) is Ft, measurable (Intuitively, this means the outcome is an observable.), and

X[t ,t 4 1)(t) is the indicator function defined in (5.43). Then

On] (W) - jkn (tW)dZt (W)

S On J(W) [Ztl - Zt,] (5.67)

STEP 2: If On(t,w), n E N, converges to f(t, w) in L2(P), i. e.

E [ (f - )2dt -- 0 as n --+ 00 (5.68)

then

[f](w) = lim ] n (t, w)dZt (w) (5.69)

Some useful properties of the It6 integral, which are applied in this chapter, are listed here:

f(t, w)dZt = f(t, w)dZ, + f (t, w)dZt 0 < S < T (5.70)
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E f (t, w)dZt = 0 (5.71)

E ( f (t, w)dZt = E f2(tw)d( (5.72)

The last equation is also called the It6 isometry.

It6 Lemma

The It6 Lemma is a fundamental theorem to all the theoretical development of this chapter.

It answers the question: if we know an It6 process X, what process does a function of X

follow? I will only give the one dimensional It6 lemma:

Let X be an It6 process given by

dXt = a(t, w)dt + b(t, w)dZt (5.73)

Let g(t, x) E C'2([0, oo) x R). Then

Y = g(t, Xt)

is again an It6 process and satisfies

dYt [tg(t, Xt) + a(t, w)xg(t,Xt) + b2 (tw)O2g(t Xt)] dt

+b(t, w)9xg(t, Xt)dZ, (5.74)

The It6 lemma implies that we can use the following to manipulate the differentials:

dt -dt = dt -dZt = 0 (5.75)

dZ .- dZt = dt (5.76)
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5.8.3 Martingales

A stochastic process M1.. is a, martingale with respect to a measure P if and only if

E'P[IAtl] < oc for all t (5.77a)

EP[-"MsFet] = At s~ > t (5.77b)

where Ft is a. sub a-algebral belonging to a filtration. Without introducing detailed math-

ematical constructions, F. has the meaning of a collection of all the information about the

stochastic process M up to time t. A good example of a martingale is a Brownian motion:

given that a. Brownian particle starts from somewhere ro and now locates at rt (these infor-

mation is contained in Fe), the expected location of this Brownian particle at some future

time s is just its present location. This is very intuitive from the physics perspective and it

is just what (5.77b) means.

A process X is a sub-martingale if

EP[IXtj] < oo00 for all t (5.78a)

EP[XsFt] > Xt s > t (5.78b)

and we call X a super-martingale if -X is a sub-martingale.

Just like a cartesian coordinate system (2, y, 2) which spans a three dimensional space,

the "space" of all martingales with respect to a measure P can be spanned by the standard

Brownian motion Z under P.

Martingale Representation Theorem

Let Z be a standard Brownian motion with respect to a measure P. Suppose M is a martingale

with respect to P, then there exists a unique stochastic process ¢ with E[fJo ¢'ds] < o00 such

that

Mt (w) = EPM0o] + (s, w)dZt (5.79)
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A direct consequence of the Martingale representation theorem to this chapter is that using

Brownian motion to model a stochastic environment is complete (up to a. drift term) except

for the case when the environmental conditions can undergo a. jump process. For this latter

case a general Malrtingale representation for a. Levy process is needed.

5.8.4 Diffusion Properties

The solution of a stochastic differential equation can be thought of as a problem of a Brownian

particle moving in a fluid, therefore, such stochastic processes are also called diffusions. A

complete description of diffusion properties is not possible in this appendix so I will only

introduce several of them which are relevant to this chapter.

Let Xt be an It6 diffusion process:

dXt - a(Xt)dt + a(Xt)dZt (5.80)

The generator 9 of Xt is defined by

•9f(x) = lim E[f(Xt)IXo = x] - f(x) (5.81)
tlo t

The set of functions f : R - R which have the limit at x is denoted by DVY(x). If f E C2(R)

then
1

f (x) = a(x)Oxf(x) + a2 2(x)O f(x) (5.82)

Dynkin's Formula:

Let f E C2(R•). Then

E[f(Xt)lXo = = f(x) + E [ f (Xt)dt Xo = x (5.83)

Note that this formula is also true when T is a stopping time.
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5.8.5 Jensen's Inequality

If f : R -- 1 R is a. convex function and if X and f(X) are both integrable, then

f(E(X)) : E[f(X)] (5.84)

5.9 Appendix B: Dynamic Programming and the HJB

Equation

This chapter applies extensively the technique of dynamical programming, so I include in

this appendix some essential ingredients of the dynamical programming technique, from

which I will give a derivation to the HJB equation (5.12). In short dynamic programming

is a technique to solve problems which contain similar subproblems. In essence, dynamical

programming is a. searching algorithm which can reduce the complexity of searching from

exponential to polynomial. To lay out the basic problem and algorithm, I will closely follow

the book of Bertsekas [24]. For a more detailed description and proof, please refer to his

book [Chapter 1 and Chapter 7]. The basic problem that is of interest to us is the following:

Suppose we are given a discrete-time dynamic system. The system is specified by a.

state variable Xk where k is an index for discrete time. The state variable involves in time

according to

Xk+1 = fk(Xk, Uk, k) , k = 0, 1,.-. ,N - 1 (5.85)

uk is a control that we can apply to the dynamic system and wk is a noise or disturbance of

which we only know its statistics. It is clear that our control uk depends on our knowledge

about the system at time k; in other words we have a mapping from xk to Uk at every point

in time

Uk ILk(Xk) (5.86)

156



We call a sequence of these mappings a policy:

7 = {I 0, 111, * * , N- 1} (5.87)

At each stage k there is a reward or cost (here I assume reward) function .qk(xk, k, Wk),

k = 0, 1.... , N - 1 and gN(x N). The expected reward given a feasible policy r is

J,(xo)= E g9(X) + gE k (k, U J, Wk) (5.88)
k=0

where the expectation is taken with respect to noise Wk. The objective is to find an optimal

policy that maximizes J,(xo):

J,.(xo) = max J,(xo) (5.89)

The direct method to solve this problem is to enumerate all the possible ways of evolution

and find out the one that maximizes the reward; however, this is computationally infeasible.

The dynamic programming technique solve this problem in a backward fashion: We solve the

last period maximization problem first, move one period backward, solve the N - 1 period

maximization problem and repeat this process until period 0. This technique is built on the

principle of Optimality:

Principle of Optimality:

Let r* = { *, p;, - , / I -1} be an optimal policy for the basic problem. Consider a sub

problem where we are at period k to maximize the reward from time k on to period N:

E g~(xN) + gj (Xj,uJw) (5.90)
j=k

The optimal policy {f7, /~,, - - , P~v•,} is optimal for this sub problem.

Based on this principle, the dynamic programming algorithm is given in the following:

Dynamic Programming Algorithm

The optimal reward J*(xo) of the basic problem is equal to J(xo), which is obtained by the
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last step of the following algorithln which proceeds backward in time from period N - 1 to

period 0:

JN(xyIN) = Y(3x-) (5.91)

Jk (:k) = max {E [gk(X•:, Uik .+ Jk±+l(f(x:k, k, 1k))]} , k = 0,1, - -- , N - 1 (5.92)
Uk.

There are very few cases where the an analytic solution is available, so numerical methods

are developed.

Suppose we are to solve the following problem: The dynamic system can exist in n states

1, 2, ... n. The reward function g(u) is a. n-vector finction whose element gi(u) is the

reward in sta.te i, given control iu. Let P(x) be a. transition probability matrix whose matrix

element Pij(x) is the probability of transition from state i to state j given a control it is

applied. The dynamic programming algorithm is to calculate

,I, = max [g(u) + AP(u)Jt+m] (5.93)

where A E (0, 1] is a parameter.

Backward Recursion

(1) Initialize g(u), P(u), A, ,JN and t ~ N - 1;

(2) set Jt +- max [g(u) + AP('u)Jt+l] and ut +- argmax [g(u) + AP(u)Jt+1];

(3) set t - t - 1;

(4) repeat the loop from (2) until t = 0.

For infinite horizon N --+ oo problem, two numerical schemes can be used:

Function Iteration

(1) Initialize g(u), P(u), A and an initial guess for J;

(2) let J e- max [g(u) + AP(u)J];

(3) repeat (2) until I AJ •j< tol;

(4) set 'u + argmax [g(u) + AP(u)J].

Policy Iteration

(1) Initialize g(u), P(u), A and an initial guess for J;

158



(2) let u *-argmax [g(,u) + AP(,u) J];
(3) let J [-[I - AP(u)]-'g(-u);
(4) repeat the iteration until 1 A J j-< tol.

Now I derive (5.12) from the above discrete time dynamical programming technique. The

value function is

(5.94)

and the reward function is non-vanishing only for period T: U(NT). From (5.92) we have

J(N1 ,IZt, t) = max Et[J(Nt+At,It+at, t + At)]ýPt

Now apply Dynkin's formula (5.83) to the RHS of (5.95) to get

Et [J(Nt+At, It+A,t + At)]

J(Nt,IZ, t) + [OtJ + a(t, Nt,It)ONJ + It(zIt)OJ]At

[+ (b2( , Nt, t)ONJ +f o(Zt)8•J) + p b(4t, Nt,It)O1
2+

(5.95)

(zt)h ,,J] At (5.96)

where I have used the relations

Nt+At = Nt + a(¢t, Nt,zt)At + b(¢t, Nt, It)AZE,t + (9(At 2)

Zt+At = I•t+ (It)At + ci,(z)Az,tI + O(At2)

(5.3) and (5.76). Substituting (5.96) to (5.95) and rearrange terms I thus obtain

max { 6tJ + a(41t, Nt, t)ONJ + II(zt)aJ

+ -[b2( t, Nt,Zt)1 J + ac1(t)a2J]

+ p b(Žt, Nt, z t)ai(ZTt)ON, J}/At - 0

(5.97)

(5.98)

(5.99)

(5.99) has to be true for arbitrary small but nonvanishing At so I obtain (5.12). The HJB
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equation can be proved with much more rigor and for general cases, please refer to [17].
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