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Abstract

Background: Investigators have focused on mechano-regulation of upstream

signaling and responses at the level of gene transcription, protein translation and post-

translational modifications. Intracellular pathways including those involving integrin

signaling, mitogen activated protein kinases (MAPKs), and release of intracellular

calcium have been confirmed in several laboratories.

Studies with IGF-1: Insulin-like growth factor-I (IGF-1) is a potent anabolic

factor capable of endocrine and paracrine/autocrine signaling. Previous studies have

demonstrated that mechanical compression can regulate the action of IGF-1 on

chondrocyte biosynthesis in intact tissue; when applied simultaneously, these stimuli act

by distinct cell activation pathways. Our objectives were to elucidate the extent and

kinetics of the chondrocyte transcriptional response to combined IGF-1 and static

compression in cartilage explants. Discussion: Clustering analysis revealed five distinct

groups. TIMP-3 and ADAMTS-5, MMP-l and IGF-2, and IGF-1 and Collagen II, were

all robustly co-expressed under all conditions tested. In comparing gene expression

levels to previously measured aggrecan biosynthesis levels, aggrecan synthesis is shown

to be transcriptionally regulated by IGF- 1, whereas inhibition of aggrecan synthesis by

compression is not transcriptionally regulated. Conclusion: Many genes measured are

responsive the effects of IGF-1 under 0% compression and 50% compression. Clustering

analysis revealed strong co-expressed gene pairings. IGF-1 stimulates aggrecan

biosynthesis in a transcriptionally regulated manner, whereas compression inhibits

aggrecan synthesis in a manner not regulated by transcriptional activity.
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Chapter 1

Mechanobiology: Introduction, Background, and Significance*

* This chapter has appeared as a review paper in Current Opinions in Orthopaedics

(Wheeler, Cameron A; Fitzgerald, Jonathan B; Grodzinsky, Alan Cartilage

mechanobiology: the response of chondrocytes to mechanical force. Current Opinion

in Orthopedics. 16(5):346-353, October 2005.)



1.1 Purpose of the Review

A comprehensive understanding of chondrocyte mechanobiology is critically

important for a clear understanding of the etiopathology and treatment of osteoarthritis

(OA) as well as for the long-term survival of tissue engineered implants for cartilage

repair.

Recent Findings

A large body of evidence has emerged documenting the effects of various

mechanical loading modalities on chondrocyte biosynthesis and gene expression. Many

physical forces and flows occur in cartilage during loading in vivo. For example, dynamic

compression of cartilage results in deformation of cells and the extracellular matrix,

hydrostatic pressurization of the tissue fluid, pressure gradients and the accompanying

flow of fluid within the tissue, and streaming potentials and currents induced by fluid

convection of counter-ions through the negatively charged extracellular matrix (ECM). In

addition, local changes in tissue volume caused by compression also lead to alterations in

matrix water content, ECM fixed charge density, mobile ion concentrations, and osmotic

pressure. Any of these mechanical and physicochemical phenomena in the micro-

environment of chondrocytes may affect cellular metabolism. While specific components

of certain mechanotransduction pathways have been identified, the exact mechanisms by

which mechanical forces influence the biological activity of chondrocytes are not yet

fully understood. New genomic and proteomic technologies and methodologies including

systems biological analyses are being applied to better understand cellular

mechanotransduction.

Summary

Investigators have focused on mechano-regulation of upstream signaling and

responses at the level of gene transcription, protein translation and post-translational



modifications. Intracellular pathways including those involving integrin signaling,

mitogen activated protein kinases (MAPKs), and release of intracellular calcium have

been confirmed in several laboratories.

1.2 Introduction

Articular cartilage is an avascular, aneural, alymphatic tissue that provides a low

friction weight bearing surface for joint locomotion. During joint loading in vivo,

cartilage is subjected to mechanical stresses and strains that span a wide range of

amplitudes and frequencies [1, 2]. Peak stresses can reach 10-20 MPa (100-200 atm)

during activities such as stair climbing [3]. While compressive strains of 15% - 40% may

occur in response to long-term or "static" loads within the physiological range [1],

compressions of only a few percent occur during normal ambulation (e.g., the "dynamic"

strains that occur at walking frequencies of -1 Hz). Chondrocytes occupy 3% to 5% of

tissue volume in adult human cartilage [1]. These cells maintain a mechanically

functional extra-cellular matrix (ECM) by mediating the synthesis, assembly, and

degradation of proteoglycans (PGs), collagens, glycoproteins, and other matrix

molecules. It is well known that chondrocytes can sense and respond to their mechanical

environment; however, the mechanotransduction pathways by which mechanical forces

influence the biological activity of chondrocytes are not fully understood.

1.3 Systems for Studying Chondrocyte Mechanotransduction

Since mechanotransduction mechanisms are difficult to quantify in vivo, model

systems such as cartilage explant organ culture and three dimensional chondrocyte/gel

culture have been used. Cartilage explants preserve native tissue structure and cell-matrix

interactions and thereby enable quantitative correlations between mechanical loading

parameters and biological responses such as gene expression and biosynthesis. Muir [4]



emphasized the important but complex role of the native ECM and chondrocyte-ECM

interactions in chondrocyte response to load; thus, investigators [4] have cautioned that

the use of isolated, plated chondrocytes that are depleted of ECM must be approached

with care regarding the potential for chondrocyte dedifferentiation and the interpretation

of the results in relation to the behavior of cartilage. In native tissue, however, the

coupling between mechanical, chemical, and electrical forces and flows within the ECM

can complicate the identification of specific physical stimuli, necessitating specialized

experimental and theoretical modeling approaches. Therefore, three-dimensional agarose

[5], alginate [6], and other scaffold culture systems have also been used to study

chondrocyte response to mechanical compression[7-9], hydrostatic pressure [10], stretch

[11 ], physicochemical stimuli (pH and osmolarity [12], and electrical currents [13]).

Finally, a variety of specialized, incubator-housed instruments have been developed to

mimic mechanical stimuli found in vivo and apply components of compression, shear,

stretching, hydrostatic or osmotic pressure to explants, isolated cells, or cell-encapsulated

gel constructs in vitro [14-17], shown schematically in Fig. 1.1.

1.4 Chondrocyte biosynthesis and gene expression

Static compression (Fig. 1.1 a) of animal and human cartilage explants [18, 19] as

well as high hydrostatic pressure applied to chondrocyte monolayers [20] can cause a

dose-dependent decrease in the biosynthesis of proteoglycans, collagens, and other ECM

proteins as quickly as one hour after application of compression. Complete recovery of

biosynthesis can occur after release of compression, but at different rates for different

ECM macromolecules [21], strongly suggesting that specific transduction pathways are

involved. In contrast, dynamic compression and shear (Fig 1.1 b,c) [18, 22, 23] and cyclic

hydrostatic compression [20, 24] can markedly upregulate ECM biosynthesis in a manner



dependent on compression amplitude and frequency [20, 22], as well as the

developmental stage and the depth from the articular surface of the cartilage sample [14,

25, 26]. Tissue-level and cell-level quantitative autoradiography have been used to

visualize the spatial distribution of newly-synthesized ECM molecules in response to

compression and shear [23, 27, 28], and to compare with the theoretically predicted

profiles of physical stimuli, highlighting the roles of ECM and cell deformation as well as

intratissue fluid flow (shown schematically in Fig. 1.1).

Mechanical forces can also influence aggrecan gene expression [29-33] and the

transcription of many matrix proteins and proteases in chondrocytes and other connective

tissue cells [33-36]. Investigators have also found thatfluid shearflow [37-40] can alter

aggrecan synthesis and the expression of aggrecan, TIMP-1, IL-6 and MMP-9. The

induction of MMP-9 gene expression appeared to be mediated via the JNK signaling

pathway [38], and the aggrecan promoter via the ERK pathway [39]. While the fluid

velocities in these experiments were much higher than physiological for cartilage, the

resulting shear stresses may be relevant. When isolated bovine and human chondrocytes

were cyclically stretched on flexible membranes, aggrecan and type II collagen mRNA

expression were increased [40], consistent with a role for cell deformation and membrane

perturbation. Cyclic (1 Hz square wave) uniaxial stretch (5% elongation) of embryonic

chick sternal chondrocytes seeded into a 3D collagen sponge induced expression of

Indian hedgehog (Ihh) and also upregulated bone morphogenic proteins 2 and 4

downstream of Ihh which, in combination, stimulated cell proliferation [11].

Interestingly, mechanical induction of Ihh mRNA was abolished by blocking stretch

activated channels [11].

1.5 Upstream Signaling



Investigators have been trying to map the sequential intracellular signaling pathways

through which mechanical forces can modify the gene expression of specific molecules.

Major roles have been identified for certain classical signaling pathways including those

involving integrins, mitogen activated protein kinases (MAPKs), and release of

intracellular calcium.

Integrin signaling pathways

Evidence suggests that integrins can convert extracellular mechanical stimuli into

intracellular signals in a variety of cell types [41]. In chondrocytes, the alpha a5Pf

fibronectin-binding integrins have been implicated as part of a mechanotransduction

complex that involves tyrosine protein kinases, cytoskeletal proteins, ion channels, and

second-messenger signaling cascades [42, 43]. Researchers have also shown that the

a53l integrin complex is present in OA chondrocytes, but results in different downstream

effects when activated or blocked compared to normal chondrocytes [44]. Application of

hydrostatic pressure to chondrocyte monolayers in a manner that induced strain on the

culture dish and plated cells caused interleukin-4 (IL-4) secretion via a5p1 integrin and

subsequent intracellular calcium release followed by cell hyperpolarization [42, 45]. One

possible connecting link is the N-methyl-D-aspartate (NMDA) receptor, since integrin

signaling has been shown to influence the activity of this receptor in other cells [46].

NMDA is phosphorylated by protein kinases including protein kinase C (PKC) and

phosphotidylinositol 3-kinase (PI3K) [47]. Salter el al. observed that the NMDA receptor

induced depolarization in OA chondrocytes and hyperpolarization in normal

chondrocytes, suggesting a possible alteration in chondrocytic mechanotransduction as a

consequence of the function of the NMDA receptor during OA [48].

Mitogen activated protein kinase pathways



Investigators have been trying to map the sequential intracellular signaling

pathways through which mechanical forces may modify chondrocyte gene expression of

specific molecules. Several recent studies have demonstrated a role for mitogen activated

protein kinases (MAPKs) [49, 50] which can alter matrix gene expression and changes in

matrix production by chondrocytes within compressed cartilage and in chondrocyte

monolayers [51]. This family of ubiquitous signaling molecules includes extracellular-

signal regulated protein kinases (ERKl/2), c-Jun N-terminal kinase (JNK) and p38.

Activated MAP kinases are thought to translocate to the nucleus, where they may induce

phosphorylation of transcriptional factors and eventual upregulation of various genes.

Fanning et al. [52] examined the effects of slow ramp-and-hold compression of cartilage

explants to final static strains up to 50% that were held for a range of compression

durations; these compression conditions were found previously to inhibit chondrocyte

biosynthesis but not to affect cell viability. Mechanical compression caused (1) a rapid

induction of ERK1/2 phosphorylation at 10 min followed by a rapid decay, as well as a

sustained level of ERK2 phosphorylation that persisted for at least 24 hrs; (2)

phosphorylation of p38 in strictly a transient fashion, with maximal phosphorylation

occurring at 10 min; and (3) stimulation of SEK1 phosphorylation with a maximum at the

relatively delayed time point of lhr and with a higher amplitude than ERK1/2 and p38

phosphorylation. (SEKI is an immediate upstream specific activator of JNKs 1,2 and 3

[53], and the JNK and p38 kinases together constitute the SAPK sub-family of MAPKs

[54]). Fanning et al. [50] proposed that the rapid activation of ERKl/2 and p38 may be

due to the cell deformation, fluid flow and pressurization, while the SEK1 pathway was

activated only under static compression without fluid flow or pressurization [50]. Thus,

it was suggested that the initial transient ERK1/2 response was due to the dynamic

components of static compression, consistent with the results of Li et al. [49], who found

a significant upregulation of ERKl/2 activation in response to dynamic compression.



ATP and Ca2+

Ion channels have been identified as another important factor in

mechanotransduction, including effects of cell stretching on chondrocyte

hyperpolarization and depolarization [55]. ATP has been shown to be involved in

signaling in many cell types. Under compressive conditions, bovine chondrocytes can

release ATP [56, 57] which, in the extracellular space, can then bind to membrane

receptors and initiate a signaling cascade including stimulation of an increase in

proteoglycan synthesis [58]. While ATP can induce anabolic signaling in normal

chondrocytes, OA chondrocytes do not show upregulation of matrix production.

Mechanical stimulation can also increase the concentration of intracellular calcium ions,

derived either from intracellular stores or from the extracellular space and transported

into the cell via stretch activated ion channels. While hyperosmotic stress can initiate

intracellular Ca2+ signaling in chondrocytes [59], Erickson et al. demonstrated that the

stretch activated ion channels were not necessarily responsible for Ca2+ transients under

these conditions. Cell volume was also shown to decrease under hyperosmotic stress

and, hence, the stretch effect was explained by an inhomogeneity in the cell surface [59].

The role of intracellular calcium in native cartilage explants was studied by Vahlmu and

Raia [60]; using blockers of intracellular Ca2+ and protein kinase C, they demonstrated

that regulation of aggrecan mRNA levels under creep compression involved

Ca2+/calmodulin and myo-inositol 1,4,5-triphosphate signaling processes. Fitzgerald et al.

also found that compression of cartilage explants induces multiple time-dependent gene

expression patterns that involve intracellular calcium and cyclic AMP [61].

1.6 Pro-inflammatory pathways in normal and injurious

compression



Acute traumatic joint injury increases the risk for subsequent development of OA

[62]. In order to quantify the events following cartilage and joint injury, investigators

have turned to a variety of in vitro and animal models. Studies have shown that threshold

levels of compressive strain, strain rate, and peak stress can cause cartilage matrix

disruption, tissue swelling, cell necrosis and apoptosis, and increased loss of matrix

macromolecules [63-70]. As a baseline control for changes in gene expression in bovine

calf cartilage explants, mRNA levels measured in non-injured free swelling tissue was

found to vary over five orders of magnitude, with matrix molecules being the most highly

expressed of the genes tested and cytokines, matrix metalloproteinases (MMPs),

aggrecanases (ADAMTSs), and transcription factors showing lower levels of expression

[71]. While the matrix molecules showed little change in expression after injurious

compression, MMP-3 increased -250-fold, ADAMTS-5 increased -40-fold, and TIMP-1

increased -12-fold over free swelling levels [66]. In addition, injurious compression

results in a decrease in biosynthetic rates in the remaining viable cells, and these viable

cells no longer respond to the stimulatory effects of moderate dynamic compression seen

in normal cartilage [70]. Taken together, these studies suggest that mechanical overload

can cause long-term cell mediated changes in matrix quality and turnover.

Deschner et al. recently summarized the interaction between loading and inflammatory

pathways [72], which may be activated by excessive loads and inhibited by moderate

cyclical loading [42, 45, 73]. Thus, these interactions appear to depend on the magnitude

and loading rate (frequency). Mechanical forces can influence production of NO [ 16, 74,

75], PGE2 [37], and IL-6 [76]. Interestingly, cross-talk between NO and PGE2 pro-

inflammatory pathways, and between NOS2 and COX2 (upstream of NO and PGE2), can

be regulated by mechanical stimuli [77]. These pathways have been traditionally

associated with inflammatory cytokines such as IL-1, an initiator of cartilage degradation

[42, 45, 73, 78-80]. Dynamic compression (15% strain amplitude, 1Hz, 48 hr) could



inhibit NO synthesis by equine chondrocytes in agarose gel constructs [81] ,and could

inhibit NO and PGE2 release by superficial zone equine chondrocytes stimulated by IL-

13 [82].

Cell microenvironment and organelle morphology

Loading of cartilage (Fig. 1.2a) produces cellular deformation [83, 84] in

proportion to the local deformation of the ECM, and in a manner consistent with the

depth-dependent compressive properties of the bulk tissue [85]. Deformations within the

pericellular matrix (Fig. 1.2b) also affect the physicochemical microenvironment of the

chondrocyte [28, 86] and may, in turn, signal the cell to modulate its biosynthetic

response. Deformation-induced fluid flow in the pericellular region enhances transport of

soluble factors to cell receptors, and alters the local concentration of mobile ions leading

to electrochemical changes such as shifts in pH[87]. Cell-surface connections to the ECM

enable pericellular deformations to be transmitted through the cell membrane to

intracellular organelles via cytoskeletal elements such as actin microfilaments,

microtubules, and intermediate filaments[20, 83, 88]. Compression can also dramatically

affect the morphology of intracellular organelles that regulate cell biosynthesis and

metabolism by altering gene transcription, intracellular transport and trafficking, and

protein translation and post-translational processing. Using chemical fixation, high-

pressure freezing, and electron microscopy, Szafranski et al. [89] observed that

compression of bovine cartilage explants caused a concomitant reduction in the volume

of the extracellular matrix, chondrocyte, nucleus, rough endoplasmic reticulum, and

mitochondria. Interestingly, however, the Golgi apparatus was able to resist loss of

intraorganelle water and retain a portion of its volume relative to the remainder of the

cell. These combined results suggested the hypothesis that organelle volume changes

were driven mainly by osmotic interactions while shape changes were mediated by



structural factors, such as cytoskeletal interactions that may be linked to extracellular

matrix deformations. The observed volume and shape changes of the chondrocyte

organelles and the differential behavior between organelles during tissue compression

provides evidence for an important mechanotransduction pathway linking translational

and post-translational events. For example, since the Golgi is the site of post-translational

modifications of aggrecan (e.g., glycosylation and sulfation) [89, 90], changes in Golgi

morphology and function with compression may play a critical role in the known changes

in GAG chain length and sulfation caused by compression [21]. Such changes in GAG

and aggrecan structure, which also occur naturally with age (Fig. 1.2c) may profoundly

influence aggrecan function. Such functional mechanical changes can now be measured

directly using atomic force microscopy methodologies [91, 92] (Fig. 1.2d).

1.7 Systems biology approaches

Real time PCR and gene clustering analyses have been used to study

intermediate-size gene sets thought to be involved with cartilage mechanotransduction.

Fitzgerald et al. [33] examined the kinetics of mechano-regulation of gene transcription

in response to static compression of bovine calf cartilage explants for periods between 1-

24 hours in the presence or absence of an intracellular calcium chelator or an inhibitor of

cyclic AMP activated protein kinase A. Cluster analysis of the data revealed four main

expression patterns: two groups that contained either transiently upregulated or duration-

enhanced expression profiles could each be subdivided into genes that did or did not

require intracellular calcium release and cyclic AMP activated protein kinase A for their

mechano-regulation. Transcription levels for aggrecan, type II collagen, and link protein

were upregulated approximately 2 to 3-fold during the first 8 hrs of 50% compression and

subsequently down-regulated to levels below that of free-swelling controls by 24hrs.



Transcription levels of matrix metalloproteinases-3,9,13, aggrecanase-1 and the matrix

protease regulator cyclooxygenase-2 increased with the duration of 50% compression 2

to 16-fold up to by 24 hrs. Thus, transcription of proteins involved in matrix remodeling

and catabolism dominated over anabolic matrix proteins as the duration of static

compression increased. These approaches are also being used to study responses to

dynamic compression and tissue shear of cartilage explants.

Researchers have begun to integrate genomic and proteomic approaches with the

computational tools of systems biology for applications in musculoskeletal research,

including medical diagnostics, and drug discovery [93]. DNA microarray technology is

being used to explore the complex feedback loops in transcription factors and layered

signaling pathways underlying the mechanotransduction as well as the pathobiology of

osteoarthritis. Aigner et al. [94-96] examined transcript levels of matrix components and

matrix degrading proteinases using DNA arrays. By comparing normal chondrocytes

with early and late stage OA chondrocytes, they examined expression trends involving up

and down regulation of MMPs, TIMPS, proteoglycans, and collagens [96]. Such

approaches can be directly applied to the study of mechanotransduction. While DNA

arrays can sample large numbers of genes, they are limited in their sensitivity and they do

not measure posttranscriptional regulation or modifications [94]. While recognizing these

limitations, the potential of such profiling approaches is clear [95, 97], since the results

can be used to formulate hypotheses about specific molecules and mechanisms in ways

that are complementary to the traditional one-gene or one-protein hypothesis-testing

approach.

1.8 Conclusion

Chondrocytes can sense and respond to mechanical forces in an extraordinarily

sensitive and robust manner. These cells can distinguish between compression, tension



and shear deformation of the surrounding ECM, and respond in a manner that varies with

the rate (frequency) of loading. Recent studies have identified several intracellular

signaling pathways that are involved in chondrocyte mechanotransduction and the

regulation of cartilage and exhibit levels of overlap or crosstalk in their signaling. These

complex signals are responsible for activation of ECM molecules proteinases,

inflammatory factors, and regulatory proteins which govern tissue homeostasis.

Significant technical advances have enabled the study of transduction mechanisms by

chondrocytes within their native, dense ECM. Advanced genomic and proteomic

technologies should lead to a further rapid increase understanding the fundamental link

between chondrocyte mechanobiology, physiology, and tissue homeostatis in health and

disease, with direct application to cartilage repair and tissue engineering.
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Figure 1.1: Schematic of physical forces and flows occurring during mechanical loading
of cartilage in vivo, that can be stimulated in vitro by means of (a) static compression, (b)
dynamic compression, and (c) dynamic tissue shear.
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Figure 1.2 : Loading of cartilage explants (a), or direct mechanical stimulation of cells
(b) can produce mechanical stimuli that may be sensed by the cell and its pericellular
microenvironment (b). These mechanical stimuli may alter the rate of synthesis as well as
the molecular structure of ECM molecules such as aggrecan (c) which, in turn, could
ultimately affect tissue-level biomechanical properties in a feedback fashion (a). New
cell-level and molecular-level measurement techniques, such as those based on atomic
force microscopy, are being used to quantify the molecular mechanical properties of
ECM macromolecules (d) as well as cellular mechanical properties (b).

(a)



Chapter 2

TRANSCRIPTIONAL EFFECTS OF COMBINED MECHANICAL
COMPRESSION AND IGF-1 STIMULATION ON BOVINE CARTILAGE
EXPLANTS*

* This chapter is in preparation for submission to the Journal of Orthopaedics Research
(Wheeler, Cameron A and Grodzinsky, Alan J.)



2.1 Abstract

Introduction: Insulin-like growth factor-i (IGF-1) is a potent anabolic factor capable of

endocrine and paracrine/autocrine signaling. Numerous studies have shown that

chondrocytes produce this important growth factor, and that IGF-1 can stimulate ECM

biosynthesis by chondrocytes in native cartilage and tissue engineered constructs.

Previous studies have demonstrated that mechanical compression can regulate the action

of IGF-1 on chondrocyte biosynthesis in intact tissue; when applied simultaneously, these

stimuli act by distinct cell activation pathways. Our objectives were to elucidate the

extent and kinetics of the chondrocyte transcriptional response to combined IGF-1 and

static compression in cartilage explants. Methods: Cartilage explants were harvested as

performed previously in our lab. Cartilage plugs were placed in 50% compression and

0% compression with or without 300 ng/ml of IGF-1. RNA was obtained and measured

by real-time PCR for 2, 8, 24, 32, 48 hours after treatment and compression.

Results and Discussion: Transcript levels in response to compression alone agreed with

previously published data. Key matrix molecules, aggrecan and collagen II, responded

positively to the addition of IGF-1 without compression, but this effect was abrogated

when compression was applied in combination with IGF-1 treatment. Clustering analysis

revealed five distinct groups. TIMP-3 and ADAMTS-5, MMP-1 and IGF-2, and IGF-1

and Collagen II, were all robustly co-expressed under all conditions tested. These co-

expressed molecules suggest inherent regulation and positive feedback in chondrocyte

gene expression. In comparing gene expression levels to previously measured aggrecan

biosynthesis levels, aggrecan synthesis is shown to be transcriptionally regulated by IGF-



1, whereas inhibition of aggrecan synthesis by compression is not transcriptionally

regulated.

Conclusion: Many genes measured are responsive the effects of IGF-1 under 0%

compression and 50% compression. Clustering analysis revealed strong co-expressed

gene pairings. IGF-1 stimulates aggrecan biosynthesis in a transcriptionally regulated

manner, whereas compression inhibits aggrecan synthesis in a manner not regulated by

transcriptional activity.



2.2 Introduction:

Insulin-like growth factor-i (IGF-1) is a 7.6 kDa, 8.5 PI, potent anabolic factor

capable of endocrine and paracrine/autocrine signaling. While IGF-1 is primarily

produced in the liver and transported throughout the body via the blood stream, numerous

studies have shown that chondrocytes produce this important growth factor, and that IGF-

1 can stimulate ECM biosynthesis by chondrocytes in native cartilage and tissue

engineered constructs. The use of growth factors as therapeutics to reverse or inhibit

cartilage degradation has been an underlying focus in cartilage research. The avascular,

alymphatic, and aneural nature of cartilage suggests that the growth factor be

administered though means of local delivery. Local delivery is complicated due to joint

motion and cartilage structure which affects special and temporal diffusion rates.

To investigate the effects of exogenous IGF-1, many studies have examined how

chondrocytes respond at the protein level as well as the gene transcript level. General

protein levels have been measured using conventional radiolabel incorporation (35S, 3H),

and show that chondrocytes respond in a dose dependent manner to IGF-1 [1-6]. The

environment the chondrocytes are cultured in varies (explants, gels, monolayer), but

generally chondrocyte biosynthesis levels are increased from 150% [4] to 2-6 fold

control levels [3, 6-8]. Researchers have also examined particular proteins using western

blot analysis. For example, MMP-13 was found to be suppressed in response to IGF-I

treatment [9]. When examining the transcript or gene levels in response to IGF-1,

researchers have focused on specific molecules using real-time PCR and reverse

transcription PCR. Type II collagen was shown in multiple studies to be significantly



upregulated by IGF-1 [3, 10-12]. Aggrecan transcripts have shown no significant

increase [3, 4] or slight upregulation [12] with the addition of IGF-1 in the first 48 hours

of IGF-1 treatment, yet were significant upregulation (130%) when treated for 1-3 weeks

[10]. IGF-1 transcript levels were shown to peak at 24 hours after IGF-1 treatment,

suggesting that IGF- 1 has an autocrine response [1]. Sox-9, a transcription factor was

also shown to have no significant response to IGF- 1 [11].

Chondrocytes have been shown to be responsive to mechanical compression on

both the protein and gene transcript levels. Static compression in vitro has been shown to

decrease protein biosynthesis levels of type II collagen and proteoglycans in a dose

dependent manner [5, 13]. In alginate and type I collagen gels seeded with chondrocytes,

50% static compression was shown to decrease radiolabel incorporation by nearly half in

comparison to non-compressed controls [14, 15]. Similar findings have been shown in

cartilage explants with proteoglycan and type II collagen synthesis decreasing within 1-2

hours of loading and remaining suppressed for the loading period (24 hrs) [16, 17].

When transcript levels were examined in response to static loading, type II collagen and

aggrecan were shown to initially peak anywhere from 1 to 4 hours after compression,

followed by a decrease to unaffected level of gene expression [13, 15, 18, 19]. Fitzgerald

et al. have investigated 28 different ECM related molecules including matrix proteinases,

tissue inhibitors of matrix metalloproteinases (TIMPs), growth factors, cytokines, and

structural ECM molecules, under static compression for a 24 hour period and reported 4

distinct patterns associate with gene expression [19].



Bonassar et al. have examined the combination of IGF-1 treatment with static

compression at a protein level and found when cartilage explants were treated with IGF-1

under 0% compression (cut thickness) a 2-3 fold increase was found over 48 hour [5].

Under static compression biosynthesis was decrease by 50% compared to non-

compressed conditions. When compressed explants were treated with IGF-1,

biosynthesis rates significantly increased, returning to levels comparable to non-

compressed, non-treated explants. Thus compression diminished the effects of IGF-1,

but did not altogether eliminate them. IGF-I was still able to upregulate or rescues the

synthesis rate of statically compressed cartilage explants.

Chondrocyte gene expression under a combination of IGF-1 treatment and static

compression have not been examined thoroughly. Our objectives were to elucidate the

extent and kinetics of the chondrocyte transcriptional response to combined IGF-1 and

static compression in cartilage explants.



2.3 Methods:

Cartilage Harvest, Mechanical Loading, and Growth Factor Treatment:

Cartilage-bone plugs were harvested from the patello-femoral groove of 1-2 week old

calves. Cartilage disks (1mm thick X 3mm diameter) were cored and punch from the

middle zone as described previously [20] and equilibrated for two days under free-swell

conditions in the presence of serum-free feeding medium consisting of high glucose

Dulbecco's modified essential medium supplemented with 10 nM Hepes Buffer, 0.1 mM

nonessential amino acids, 20 jig/ml ascorbate, 100 units/ml penicillin, 100 gg/ml

streptomycin, and 0.25 jig/ml amphoericin B. Five anatomically matched disks were

separated for each time point (Figure 2.1), and placed in polysulfone loading chambers.

Each time point consisted of four separate experiments. With cartilage disks matched

for time, 8 disks were allocated to 0% compression (i.e., compressed to 1-mm cut

thickness from free swelling), 50% compression, 0% compression + 300 ng/ml IGF-1,

and 50% compression + 300 ng/ml IGF-1, the IGF-1 concentration found previously to

maximally stimulate similar free-swelling calf cartilage explants [5]. At time zero, all

chambers were slowly compressed to specified strains over a 3 minute period to avoid

injurious effects of high strain rates. These strains were maintained for each of the four

conditions for 2, 8, 24, 32, and 48 hours (Figure 2.1). Upon completion of loading time,

disks were promptly removed, flash frozen in liquid nitrogen, and stored at -80o C.

RNA Extraction and Quantization, Primer Design, and Real-Time PCR: 8 disks

for each time point and condition were taken from -80o C freezer and pulverized. In

order to prevent RNA degradation, the pulverizing apparatus was constantly cooled using



liquid nitrogen. Once samples had been pulverized, Trizol (sigma, st. Louis) was added

and homogenized to thoroughly break down the tissue. After chloroform was added, the

mixture was transferred to pre-spun phase gel tubes, and spun at 13,000 rpm for 10

minutes at 40 C. Supernatant was removed, and RNA was extracted using Qiagen

RNAeasy mini kit protocol with recommended DNase digest (Qiagen). RNA was stored

in 50 gl of RNase free water under -80o C conditions. RNA quality and amount was

quantified by using NanoDrop ND-1000 spectrophotometer. According to RNA

measurements, 1 jg of RNA was reverse transcribed using Applied Biosystems reagents

as previously described [21]. Forward and reverse primers for 24 relent genes (Table 2.1)

were designed based on bovine genomic sequences and standard curves were calculated

as previously described [19]. Once cDNA was obtained, Real-Time PCR was performed

using MJResearch Opticon2 instrument and SYBR Green Master Mix (SGMM, Applied

Biosystems). SGMM was combined with RNase free water and cDNA and aliquated into

MJResearch 96-well plate. Using a multi-pipette, a premixed solution of forward and

reverse primer for 24 different genes was added to each well. Measured threshold values

(Ct) were converted to RNA copy number according to previously calculated standard

curves.

Data Normalization and Statistical Analysis: Under each loading condition and

time point, each gene RNA copy number was normalized to the 18s housekeeping gene

from that same condition and time point [22]. To examine the time course of gene

expression, 0% compression + IGF-1, 50% compression, and 50% compression + IGF-1

were normalized to 0% compression levels. Thus, if a gene expression value was below



or above 1, it represented a decrease or increase of gene expression respectively

compared to 0% compression. Expression levels due to experimental error were

removed. To assign statistical significance to expression levels, a non-parametric test

was used to ensure unbiased results by avoiding the assumption of a parameter based

distribution. The Wilcoxon sign ranked test was used to judge significance which

incorporates the amount of data in the significance statistic. Significance was assigned if

the Wilcoxon sign ranked test statistic produced a p-value less than 0.07. The minimum

p-value using the Wilcoxon sign ranked test is 0.068 due to the fact that there are only

four replicates. Thus, significance of 0.07 was chosen because with this non-parametric

test and amount of data, 0.05 cannot be obtained.

Clustering Analysis: In order to understand general transcriptional patterns in the

data, clustering analysis was performed on all normalized conditions (0% compression +

IGF-1, 50% compression, and 50% compression + IGF-1) and time points (2, 8, 24, 32,

48 hours) over 23 genes. This resulted in a 15 x 23 matrix which was standardized by

expression amplitude as described previously [19], in order to accentuate gene expression

patterns as appose to expression magnitudes. The 15 gene expression array vectors were

clustered using k-means clustering. Principle component analysis (PCA) was used to

determine the components that contain the greatest variance in the expression data[23,

24]. Once the 15 principle components had been calculated, the k-means clustering

algorithm was applied to the 15 principle components and clustered into k groups. The

average and variance of each projected coordinate group was calculated to compose a

group centroid. Centroid vectors were formed by combining the three main principal



components weighted by their projected centroid coordinate. The uniqueness of each

Group's expression patterns were evaluated by the Wilcoxon sign ranked test.



2.4 Results:

Effects of static compression: Cartilage disks were subject to 2, 8, 24, 32, and 48

hours of compression applied in a ramp and hold fashion. The disks experience a peak

stress when the compression is applied, followed by a slow stress relaxation due to the

poroelastic properties of cartilage. The five time points were chosen to capture the

kinetics of gene expression in repose to the changes in stress. Twenty-four different

genes were measured at each one of the five time points and were normalized to 18s, a

housekeeping gene, and 0% compression with no added IGF-1 was used as a control. 8

of the 23 genes measured were up-regulated for 3 or more of the time points examined.

These included ADAM-TS5, MMP-13, MMP-3, TGF-3, c-Fos, c-Jun, and Sox-9 (Figure

2.2, Appendix A). Matrix metalloproteinase- 3 (MMP-3) was significantly up-regulated

at 8, 24, 32, and 48 hours with a peak expression level of 30-fold compared to control at

32 hours (Figure 2.2A). ADAM-TS5 and MMP-13 displayed a transient increase in

expression levels peaking at 48 hours with >6-fold and >17-fold up-regulation

respectively (Figure 2.2B, Appendix A). TGF-f was consistently up-regulated 2.5-fold

from 8 hours to 32 hours (Figure 2.2D). Supporting previously reported data[19], c-Fos

and c-Jun were significantly up-regulated in response to 50% static compression at all

time points measured (Appendix A). Interestingly, c-Fos, c-Jun and Sox-9 were all

maximized at 8 hours (23-fold, 30-fold, and 6.8-fold respectively) (Appendix A).

Displaying a transient decrease, IGF-1 was the only gene measured that showed a

significant down-regulation in the presence of 50% strain for at least 3 of the measured

time points. IGF-1 was significantly down-regulated by 50% at 24 hours and up to 70%

at 48 hours (Appendix A).



Effects of GF-1: To examine the effect of IGF-1 on cartilage explants, disks

were incubated for 2, 8, 24, 32, and 48 hours with 300 ng/mL IGF-1 under 0%

compression. 10 of the 23 genes were upregulated with the treatment of IGF-1. IGF-1

up-regulated for three or more time points, MMP-13, MMP-1, TNF-x, and IL-1 3, which

traditionally are thought to play catabolic roles in cartilage. MMP-13, TNF-a, and IL-1P

were significantly up-regulated and peaked at 24 hours to the level of 8-fold, 2.5-fold,

and 2.75-fold respectively (Figure 2.2B and Appendix A). MMP-1 and IGF2 were

transiently up-regulated to a significant level until a 32 hour peak (4.75-fold and 3-fold

respectively), after which expression levels returned to control (Figure 2.21, 2.2E). Link

and Aggrecan were also transiently up-regulated with a peak of 32 hours (4-fold and 2.5-

fold respectively), but expression levels at 48 hours were still significantly above control

(Figure 2.2F, 2.2G). As in 50% static compression, Sox-9 was significantly up-regulated

at 8 hours to a comparable level of 6.3-fold (Appendix A). TIMP-3 and HSP90 were

significantly upregulated with for all time points and both displayed an initial peak of

expression (5-fold and 3-fold respectively), followed by a transient decrease of

expression over time (Figure 2.2C, Appendix A). No genes measured were significantly

down-regulated by the treatment of IGF-1.

Effects ofIGF-1 and static compression: Combining the treatment of 300 ng/mL

of IGF-1 and static compression to a level of 50% strain, 11 of the 23 genes were

significantly different than the 0% control for 3 or more time points. MMP-13, MMP-3,

TGF-j, c-Fos, c-Jun, TIMP-3, and HSP90 were significantly up-regulated in at least 3 of



the measured time points. MMP-13 and MMP-3 were significantly upregulated 4 out of

the 5 time points and had peak values of 28-fold and 33-fold respectively at 24 hours

(Figure 2.2B, 2.2A). TGF-f3 and HSP90 were transiently upregulated to a peak level of

3.8-fold and 2.25-fold respectively, at 32 hours (Figure 2.2D, Appendix A). c-Fos and c-

Jun were again significantly up-regulated for all time points with expression peaks at 24

and 8 hours (Appendix A). The peak value of c-Fos, 22-fold, was similar to the

expression levels found in 50% static compression alone. Alternatively, the peak value

of c-Jun had decreased from 30-fold under 50% static compression to 16-fold under 50%

static compression with IGF-1. TIMP-3 showed a slow increase of expression which

peaked at 24 hours to a level of 19-fold, followed by an up-regulated level of 10-fold

(Figure 2.2C). Co12, IGF-2, TIMP-2, and Txnip were significantly down-regulated for 3

or more time points measured. IGF-2 and Txnip showed a transient decrease of

expression over time and bottomed out at 48 hours decreasing 45% and 52% expression

below control (Figure 2.2E, Appendix A). Co12 and TIMP-2 were drastically decreased

under 50% static compression with IGF-1. Co12 was transiently down-regulated,

decreasing expression levels by 43% at 24 hours, to 62% at 48 hours (Figure 2.2H).

TIMP-2 was also transiently down-regulated, decreasing expression levels by 50% at 24

hours and 92% at 48 hours (Appendix A).

Comparing effects of IGF-1 under 0% and 50% compression: To elucidate the

different effects of IGF- 1, the effects of IGF- 1 were isolated by normalized gene

expression to like loading conditions. 50% static compression with IGF-1 was

normalized by 50% static compression, and 0% static compression with IGF-1 was



normalized to 0% static compression. When examining the effects of IGF-1 under non-

loaded conditions (0% static compression), 9 of the 23 genes were significantly altered

for 3 or more time points by the addition of IGF-1. Under loading conditions (50% static

compression), 4 of the 23 genes were significantly altered for 3 or more time points by

the addition of IGF-1 (Appendix B). Of the significantly affected genes, aggrecan, IGF-

2, and TIMP-3 were significantly affected by IGF-1 in both loaded and un-loaded

conditions (Figure 2.3). Aggrecan, IGF-2, and Link were all up-regulated when treated

with IGF-1 under un-loaded conditions, and down-regulated when treated with IGF-1

under loaded conditions (Figure 2.3A, 2.3B, 2.3C). Aggrecan in particular was

significantly up-regulated for all time points by IGF-1 under un-loaded conditions, and

significantly down-regulated for all time points by IGF-1 under loaded conditions (Figure

2.3A). In contrast, TIMP-3 was up-regulated significantly under both un-loaded and

loaded conditions (Figure 2.3D). MMP-1 was up-regulated significantly with treatment

of IGF- 1 under un-loaded conditions, but was unaffected by the treatment of IGF- 1 when

loading conditions were present (Figure 2.3E).

Expression Trends and Groupings: After normalization of the data, using

principle component analysis (PCA), the 15 dimensional space was reduced to a three

dimensional space, by calculating three eigenvectors or principle components that

represent 80% of the variance in the data. With three principle components, each

standardized gene was projected in to the principle component space and can be

visualized as shown in figure 2.4. All 15 dimensions of each gene were used in the k-

means clustering technique to ensure that smaller gene variations were represented in the



grouping. After dividing the genes into 2 to 8 cluster groups and visually comparing the

distinctness of the groups, 5 groups appeared to be an adequate number of groupings

(Figure 2.4). These 5 groups contained 4 to 7 genes as shown in Table 2.2A. The mean

expression level is represented by a centroid (Figure 2.4) and the mean expression profile

of the 5 groups is shown in Figure 2.5.

Group 1 was significantly upregulated for all conditions and all time points

(Figure 2.5A). Under treatment of IGF-1, a 2-fold increase was observed at 24 hours and

under loading conditions a > 6-fold increase was observed at 24 hours as well. When

combining the treatment of IGF-I and compression, it appears the expression levels of

IGF-1 treatment dominate initially (2 hours). At 24 hours there appears to be an additive

effect of compression and IGF-1 treatment as the combined compression and IGF-1

levels are about 9-fold. (>6 + 2). At 32 and 48 hours, the effects of compression appear

to dominate the effects of IGF-1 treatment. Group 2 under treatment, compression, and

compression with treatment, are initially significantly upregulated, but return to control

expression levels at 48 hours (Figure 2.5B). In both compression and treatment

conditions, group 2 responds strongly by reaching > 3-fold and 2.5-fold respectively.

When IGF-1 treatment and compression are combined, all significantly upregulated time

points (2-32 hours) in treatment and compression are reduced with a peak value of 2-fold.

Under treatment conditions, with a strong significant up-regulated for the first three time

points, (peaked at > 3.5-fold) group 3 appears to be strongly upregulated by IGF-1

(Figure 2.5C). Under compression, group 3 has no significant initial changes, but at 48

hours in upregulated > 2-fold. When combining compression and treatment all time

points are reduced to control levels, apart from 24 hours, which is still significantly



upregulated, but reduced to 2-fold from > 3.5-fold in treatment alone. Group 4 under

IGF-1 treatment conditions is increasing significantly up-regulated until 32 hours (2.5-

fold) before it returns to near control levels at 48 hours (Figure 2.5D). Under

compression conditions, group 4 exhibits a near opposite effect as in the treatment

conditions, by initially being up-regulated ( 3-fold), and decreasing over time to return to

control levels. Previous data has shown that Aggrecan, a member of this group, acts in a

similar expression profile with a initial upregulation with compression followed by a

return to control levels [19]. Combining compression and treatment, no time points are

significantly different than control, but artifacts of the initial peak at 2 hours from

compression alone and peak at 32 hours from IGF-1 treatment alone appear. Group 5

showed very little change under IGF-1 treatment with a significant upregulation at 32

hours of 1.5-fold (Figure 2.5E). Under compression conditions, group 5 was upregulated

significantly at 2 and 8 hours with a peak of 1.6-fold, but by 24 hours until 48 hours was

significantly decreasingly down-regulated to a minimum point at 48 hours, loosing

greater than 50% expression compared to control. When combining compression and

IGF-1 treatment, all time points were lower than either compression or IGF-1 treatment

alone, and 24-48 hour were decreasingly down-regulated to a significant level, loosing

greater than 60% expression compared to control at 48 hours.



2.5 Discussion

To understand the transcriptional responses under different conditions, the 23

genes observed were clustered according to IGF-1 treatment alone, 50% static

compression alone, and the combination of static compression and IGF-1 treatment.

Lastly, to understand a more global view of transcriptional activity, all conditions and

time points were clustered together. The groupings assigned by clustering analysis can

be seen in Table 2.2A. Looking at the groupings under IGF-1 treatment alone, Link, type

II collagen, and aggrecan which were significantly upregulated, were grouped together,

while Txnip, the only molecule that was significantly down regulated by IGF-1 treatment

for multiple time points is uniquely grouped (Table 2.2B). Groupings of compression

alone isolate IL-6, highly non-responsive to compression over the time course measured,

in its own group. Transcription factors, highly initially upregulated genes, were grouped

together while transiently upregulated proteinases were allocated to a different grouped,

both of which support previous findings for compression (Table 2.2C) [19]. Examining

the combination of the treatments, Fibronectin was partitioned to a unique group for its

seemingly non-responsive behavior to compression and IGF-1 treatment. The majority

of proteinases were also grouped together (Table 2.2D). Looking at all three sets of

clusters, of note, MMP-1 and IGF-2 were grouped together under the three different

conditions, as well as link protein, and the components of the AP-1 complex, c-Fos and c-

Jun. Type II collagen and IGF-1, TIMP-3 and MMP-3, Sox-9 and TIMP-1 were

allocated in the same group for all three conditions. Compiling all conditions observed

into an expression vector, cluster analysis revealed that all cytokines were grouped

together, and were significantly upregulated under IGF-1 treatment alone compared to



controls. Under compression alone and IGF-1 and compression experiments this

extensive upregulation was not observed, suggesting that IGF-1 has a stimulatory effect

on cytokines which is mitigated when compression is present. Also of note, Aggrecan,

type II collagen, and link protein were all in separate groupings, suggesting that there

may be different mechanisms involved in the activation of these molecules. Of the

strongly upregulated group, transcription factors, growth factors, protease inhibitors, and

proteinases were grouped together, namely c-Fos, c-Jun, TGF-P, TIMP-3, MMP-3,

MMP-13, and ADAMTS-5.

With the 4 different sets of data clustered, (compression, IGF- 1, compression +

IGF-1, all conditions) three interesting pairings were always present: MMP-1 and IGF-2,

TIMP-3 and ADAMTS-5, type II collagen and IGF-1. MMP-1 or collagenase-1 is shown

to cleave key ECM molecules including collagen I, collagen II, aggrecan (at the MMP

cleavage site in the interglobular domain), fibronectin, and link protein [25]. MMP-l has

been shown to play a role in the regulation of paracrine signals, through the degradation

of cytokines such as IL-I1 [26]. Collagenase-1 has also been shown to degrade insulin-

like growth factor binding proteins (IGFBP) 3 and 5, which indirectly increases presence

of free (unbound) IGF [27, 28]. IGF-l and IGF-2 are known to bind IGFBP-3, the most

abundant IGF binding protein in human serum [29]. IGF-2 is known to stimulate DNA

and proteoglycan synthesis in chondrocytes [30] and has been shown to act in an

autocrine fashion [31]. IGF-2 has also been shown to stimulate type 1 IGF receptor, a

key receptor for IGF-I and also IGF-2 with lesser affinity [32, 33]. The co-expression of

MMP-1 and IGF-2 suggests that the two contain each other through their anabolic and



catabolic activities and have the capability of a strong anabolic response, due to the

stimulatory secondary effects of MMP- 1.

TIMPs act in a stochiometric fashion to reversibly inhibit metallo-proteinases

[34]. Of the four known TIMPs (1-4), TIMP-3 has been shown to be a strong inhibitor

of Aggrecanase-1 (ADAM-TS4) and Aggrecanase-2 (ADAM-TS5) with Ki values in the

subnanomolar range [35, 36]. When added exogenously to bovine nasal and porcine

articular cartilage, TIMP-3 retains the ability to inhibit aggrecanase activity induced by

catabolic factors [37]. In the current study, TIMP-3 is shown to be significantly

upregulated with the addition of IGF-1, and acts in a compression independent manner

(Figure 2.3). Although Aggrecan can be degraded by multiple members of the matrix

metalloproteinase family, it has recently been shown that ADAMTS-5 is the primary

aggrecanase responsible for aggrecan degradation in a murine model of osteoarthritis

[38]. The constant grouping based on expression profile of TIMP-3 and ADAMTS-5

suggests a biological control may present to ensure the turn over of aggrecan and the

regulation of anabolic and catabolic factors. Supporting these ideas, past clustering

analysis with cartilage under multiple conditions also grouped ADAMTS-5 and TIMP-3

together [19].

Type II Collagen, a key matrix protein, adds structure and strength to articular

cartilage. IGF-1 has been shown to elevate levels of type II collagen under a number of

different conditions [3, 10]. The co-expression of type II collagen and IGF-1 under

compressive and/or IGF-1 treated conditions suggests a positive feedback loop between

IGF-1 and type II collagen. Under IGF-1 treatment both are upregulated, while under

compression, both are down regulated. This supports previous data suggesting that IGF-1



acts in an autocrine fashion [1, 32]. Further studies using promoter analysis must be

performed to confirm if these pairings are co-expressed or if these results are an artifact

of the selected genes measured.

In contrast with previously published reports [3, 10, 11], the current results show

a slight upregulation of type II collagen in response to IGF-1 alone, compared to a

significant upregulation (Figure 2.2H). A possible explanation for the discrepancy in the

magnitude of type II collagen expression induced by IGF-1 was the 0% compression

control present in the current study, where free swell conditions were used in previously

published studies. Aggrecan was previously shown to have no significant change in the

first 48 hours [3], which this study supports (Figure 2.2F). Previously published data

show that MMP- 1, MMP-3, and MMP- 13 were unaffected by the addition of IGF- I after

48 hours, while the current data suggests a significant increase for 4 out of the 5 time

points in MMP-1 and MMP-13 (Figure 2.21, 2.2B). Again, reasons for this discrepancy

may be due to the 0% static compression present during IGF-1 treatment. IGF-1 mRNA

levels were maximum at 32 hours (Appendix A), where previous studies reported them to

peak at 24 hours [1]. Nixon et al. examined time points at 0, 4, 14, 24, 48, and 72 hours,

thus finding a maximum of 32 hours is not in direct contradiction to the previously

published finding. Sox-9 expression was shown to be significantly upregulated by IGF-1

at 4 of the 5 measured time points (2, 8, 32, 48), which previously was shown to be

unresponsive to IGF-1 at 72 hours (Appendix A). Many differences in the two

experiments exist possibly explaining the difference in IGF-1 response, i.e., bovine vs.

human, explant tissue vs. monolayer, 300 ng/mL IGF-1 vs. 100 ng/mL IGF-1.



In agreement with previously published data [13, 15, 18, 19], under static compression,

type II collagen and aggrecan were initially upregulated and then down regulated to

nearly control levels (Figure 2.2H, 2.2G).

Examining the transcriptional effects of IGF- 1 on aggrecan and link, IGF- I

appears to act via a compression-dependent manner (Figure 2.3A, 2.3C), whereas the

transcriptional effects of IGF-1 on collagen II and fibronectin appear to be independent of

compression (Figure 2.3F, Appendix B). This phenomenon could easily be explained by

the compacted ECM present under compression, dramatically restricting transport of

IGF-1 to chondrocytes. To test this idea, experiments were performed allowing IGF-1 to

be incubated for 24 hours (transport studies performed by Bonassar et al. [5]), to allow

IGF-1 to diffuse completely into the cartilage explant. Results of this experiment

replicate the trends seen in Figure 2.3A, 2.3C, suggesting that aggrecan and link act in a

compression-dependent manner when treated with IGF- 1. Whether this change is due to

decreased receptor-ligand affinity, or to mechanotransduction intracellular signaling

interference, remains to be determined.

At the transcriptional level, the current study points out the anabolic response due

to the treatment of IGF-1 under 0% compression loading, and the mixed anabolic and

catabolic signals under 50% static compression coupled with IGF-1. To further

investigate the transcriptional response to the protein synthesis under IGF-1 treatment

and compression, Figure 2.6 shows the levels of aggrecan protein synthesis, normalized

to 0% compression 0 IGF-1 compared to gene expression of aggrecan. Aggrecan gene

expression under 0% compression, 300 ng/ml IGF-1 is upregulated compared to control



for all 5 time points measured (Figure 2.6B). Examining the corresponding aggrecan

protein level at 0% compression, 300 ng/ml IGF-1, there is a strong increase in aggrecan

synthesis at 8, 24, and 48 hours (Figure 2.6A). These data suggest that aggrecan

synthesis is transcriptionally regulated by IGF-1. Examining the gene expression of

aggrecan under 50% compression 0 IGF-1, there is an initial bolus of transcript at early

time points, followed by a return to control levels (Figure 2.6B). Examining the protein

synthesis levels of aggrecan, at the same early time points, aggrecan synthesis is reduced

below control and this reduction is sustained for all time points measured, suggesting that

the inhibition of aggrecan synthesis by compression, with no IGF-1, is not

transcriptionally regulated (Figure 2.6A). Thus, in attempts to reconcile the

responsiveness of aggrecan under 50% static compression at the translational level with

the unresponsiveness of aggrecan at the transcriptional level, the authors support the

hypothesis [4] that under static compression, proteoglycan synthesis occurs through post-

transcriptional machinery.

2.6 Conclusion

Experiments have been performed to assess expression levels of a range of ECM

related genes in response to static loading in the presence and absence of IGF-1. Through

k-means clustering analysis, major co-expression trends were elucidated, grouping genes

into highly responsive, non-responsive, and differentially active gene profile groups. The

gene pairs MMP-1 and IGF-2, TIMP-3 and ADAMTS-5, and type II collagen and IGF-1

were consistently co-expressed in multiple clustering conditions, suggesting the

possibility of strong regulation and control relationships between members of each pair.



Aggrecan and link protein responded to IGF-1 in a compression-dependent manner,

whereas type II collagen and fibronectin appeared to respond to IGF-1 in a manner

independent of compression. While aggrecan transcripts were significantly upregulated

with the addition of IGF-1 under 0% compression, IGF-1 was unable to upregulate

aggrecan when the cartilage explants were statically compressed to 50% strain. In

comparing aggrecan gene expression to aggrecan synthesis, these data suggest that

aggrecan synthesis is transcriptionally regulated by IGF-1 while the inhibition of

aggrecan synthesis by compression is not transcriptionally regulated. However, more

studies are needed to elucidate the specific stimulatory mechanism(s) induced by IGF-1

and the post-translational inhibitory effects of compression.
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Figure 2.1. A schematic of the four conditions measured. 5 plugs were punched for each
time point and matched for time. IGF-1 treatment and static compression were applied at
time 0, and plugs were flash frozen at 2, 8, 24, 32, and 48 hours.
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Figure 2.2. Gene expression of proteinases, growth factors, and ECM molecules. 8
cartilage disks were pooled for each time point for each experiment. All genes were
normalized to 18s and plotted relative to 0% compression 0 IGF-1. Significance was
measured by the Wilcoxon sign ranked test compared to 0% compression 0 IGF-I (* p-
value <0.07). Mean + SE (n=4)
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Figure 2.3. Effects of IGF-1. Gene expression was plotted normalized to like loading
condition in order to elucidate the effects of IGF-1 under compression or non-
compression. Aggrecan (A) and Link (C) respond to IGF-1 in a compression dependent
manner, while TIMP-3 (D) and Collagen II (F) respond to IGF-1 in a compression
independent manner. Significance was measured by the Wilcoxon sign ranked test
compared to like compression 0 IGF-1. (* p-value <0.07). Mean ± SE (n=4)
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Figure 2.4. Standardized gene expression visualized in principle component space.
Principle component 1, 2, and 3 represent 80% of the variance in the data. Genes were
allocated to one of five distinct groups by way of k-means clustering. Large solid black
circles denote the centroid of the corresponding group.
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Figure 2.5. Five expression profiles represent the combination of 0% compression 300
ng/ml of IGF-1, 50% compression 0 ng/ml of IGF-1, and 50% compression 300 ng/ml of
IGF-1. Centroid profiles were calculated through the average projection coordinates of
genes in each group, and transformed from principle component space through use of the
calculated principle components. Mean ± SE (n varies based on group component
number)
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Figure 2.6. Aggrecan Protein Synthesis compared to Aggrecan Gene Expression. (A)
Aggrecan protein synthesis as measured by 35S radiolabel incorporation normalized to
0% compression 0 IGF-1 adapted from Bonassar et al [5]. Mean plotted. (B) Aggrecan
gene expression normalized to 18s and plotted relative to 0% compression 0 IGF-1.
Significance was measured by the Wilcoxon sign ranked test compared to like
compression 0 IGF-1. (* p-value <0.07).
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Table 2.1. 24 Cartilage Relevant Genes. Primers were designed Primer3 software
(www.genome.wi.mit.edu/cgi-bin/primer/primer3www.cgi). Standard dilutions were
used to calculate relative mRNA copy number.

Protease Growth Transcription Stress Activated Housekeeping
Matrix Molecules Proteases Cytokinesinhibitors Factors Factors Genes Gene
Type II Collagen MMP1 Timp-1 TNF-a IGF-1 c-Jun HSP90 18s

Aggrecan MMP3 Timp-2 IL-1 IGF-2 c-Fos Txnip
Link Protein MMP13 Timp-3 IL-4 TGF-B Sox-9
Fibronectin ADAMTS-5 IL-6



Table 2.2. Gene clustering groupings. Resulted gene sorting according to extent and
kinetics of expression. Specific gene allocation and centroid coordinates when all data
are clustered (A), 0% compression 300 ng/ml IGF-1 data clustered (B), 50%
compression 0 IGF-1 data clustered (C), and 50% compression 300 ng/ml IGF-1 data
clustered (D).

Centroid Coordinates
Group Genes (PC1, PC2, PC3)

1 TGF-B, c-Fos, c-Jun, Timp-3, ADAMTS-5, MMP13, MMP3 (-2.46, 2.37, -0.33)
2 Sox-9, HSP90, Timp-1, Link (-3.10, 0.95, -0.07)
3 TNF-a, IL-1, IL-4, IL-6 (-2.78, -1.50, -0.94)
4 IGF-2, MMP1, Fibronectin, Aggrecan (-2.71, -0.24, 2.03)
5 IGF-1, Txnip, Timp-2, Collagen II (0.32, 3.21, -0.19)

B
Centroid Coordinates

Group Genes (PC1, PC2, PC3)
1 TGF-B, Sox-9, Timp-2, Timp-1, Fibronectin (-1.81, 0.93, 0.43)
2 Txnip (1.11, 0.91, -1.55)
3 IGF-2, IGF-1, c-Jun, c-Fos, ADAMTS-5, MMP1, Link, Collagen II, Aggrecan (-2.05, 0.39, -0.25)
4 TNF-a, IL-6, IL-4, MMP13 (-1.48, -1.58, -0.22)
5 IL-1, HSP90, Timp-3, MMP3 (-2.03, -0.57, -0.05)

C
Centroid Coordinates

Group Genes (PC1, PC2, PC3)
1 IGF-1, Timp-2, Collagen II (0.44, 2.03, -0.13)
2 IGF-2, Txnip, MMP1, Fibronectin, Aggrecan (-1.41, 1.42, -0.48)
3 TNF-a, IL-4, IL-1, Timp-3, ADAMTS-5, MMP13, MMP3 (-1.92, 0.16, 0.56)
4 TGF-B, c-Jun, c-Fos, Sox-9, HSP-90, Timp-1, Link (-1.73, -0.86, -0.37)
5 IL-6 (0.59, -1.18, -1.76)

D
Centroid Coordinates

Group Genes (PC1, PC2, PC3)
IGF-2, MMP1

IL-6, IL-4, IL-1, Timp-3, ADAMTS-5, MMP13, MMP3
TGF-B, TNF-a, c-Jun, c-Fos, Sox-9, HSP90, Timp-1, Link

Fibronectin
IGF-1, Txnip, TIMP-2, Collagen II, Aggrecan

(-0.52, 0.62, -1.65)
(-1.88, -0.49, 0.14)
(-1.88, 0.62, 0.05)
(1.34, -1.62, -0.59)
(1.77, 0.70, 0.14)
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Cellular Events Leading to Chondrocyte Death After
Cartilage Impact Injury

D. M. Green,' P. C. Noble,' J. S. Ahuero,1 and H. H. Birdsall3

Objective. We undertook this study to test our
postulate that leukocytes extend the zone of injury in
cartilage after acute mechanical trauma.

Methods. Fresh cadaveric canine femoral con-
dyles were subjected to 20-25-MPa impact injury. Con-
dyle explants or dispersed chondrocytes were cultured
with autologous blood mononuclear leukocytes (MNLs).
Viability of chondrocytes at varying distances from the
impact site was assessed by trypan blue exclusion.

Results. Mechanical injury caused a significant
loss of viable chondrocytes over 7 days, even in cartilage
>10 mm from the impact site. After biomechanical
stress, death of cells within 10 mm of the impact could
be largely prevented by addition of N-;.monomethyl-L-
arginine to inhibit nitric oxide (NO) generation. Chon-
drocytes within 10 mm of the impact were also suscep-
tible to killing by living MNLs, but not by incubation
with the supernatants of endotoxin-activated MNLs.
Chondrocytes in this vulnerable zone expressed inter-
cellular adhesion molecule 1 (ICAM-1) (CD54), facili-
tating attachment of MNLs that localized adjacent to
the chondrocytes. Leukocytes killed dispersed chondro-
cytes harvested from the impact zone by generation of
reactive oxygen species. Leukocyte-mediated killing
could be blocked by desferoxamine or by antibodies to
CD)18, which prevent attachment of leukocytes to ICAM-
1-expressing chondrocytes.
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Conclusion. Our data suggest that after mechan-
ical injury, chondrocytes distant from the site may be
killed through the generation of NO. Inflammatory
leukocytes further extend the zone of chondrocyte death
by adhering to chondrocytes expressing ICAM-1 and by
inducing the accumulation of free oxygen radicals in the
chondrocyte cytoplasm. Patients may benefit from ther-
apies that reduce infiltration of inflammatory leuko-
cytes into acutely injured cartilage.

In vivo, human articular cartilage is repeatedly
subjected to peak stresses of up to 15-20 MPa (1). After
exposure to mechanical injury exceeding 20 MPa, up to
50% of chondrocytes die within 6-96 hours, principally
by apoptosis (2,3). Proteoglycans are also degraded in
the zone of injury (1,4), releasing glycosaminoglycans
into synovial fluids (5). Although it is well appreciated
that acute impact loading causes degeneration of artic-
ular cartilage via intracellular and extracellular pro-
cesses, the role of the inflammatory system in the
response of articular cartilage to mechanical trauma has
yet to be fully elucidated. Traumatic and ischemic injury
to parenchymal tissues typically stimulates an influx of
leukocytes (6). Even though their products may initially
exacerbate tissue injury, the infiltrating leukocytes ulti-
mately promote tissue regeneration and healing (7). The
situation may be different in cartilage. Considering the
limited regenerative potential of cartilage, tissue injury
caused by leukocytes might outweigh any reparative
phase they might direct.

When activated in vitro, cultured chondrocytes
release chemoattractants such as interleukin-8 (IL-8)
and monocyte chemoattractant protein 1 (MCP-1) that
direct the migration of leukocytes (8,9). Leukocytes, in
turn, are a source of proinflammatory cytokines, such as
IL-1 and tumor necrosis factor a (TNFa), that induce
apoptosis in both hypertrophic and nonhypertrophic
chondrocytes (10,11). IL-1 can also induce chondrocytes
to produce sufficient nitric oxide (NO) to cause cell
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death (11). These proinflammatory cytokines up-
regulate the expression of intercellular adhesion mole-
cule 1 (ICAM-1) on chondrocytes, which allows the
attachment of leukocytes, and facilitate the accumula-
tion of toxic agents within the chondrocyte cytoplasm
(12). In addition, these cytokines stimulate the release of
metalloproteinases by injured chondrocytes and leuko-
cytes, and these metalloproteinases promote the degra-
dation of the extracellular matrix (10,13-18).

While it is clear that mediators released by
activated leukocytes can injure cultured and/or activated
chondrocytes in vitro (10,15-18), few studies have exam-
ined the effects of inflammatory cells on chondrocytes
embedded in their native matrix and activated by me-
chanical injury. Moreover, the mechanisms by which
inflammatory cells cause localized destruction of articu-
lar cartilage through direct interaction with chondro-
cytes are not fully understood. Using in vivo and in vitro
models, this study is the first to examine the mechanisms
of chondrocyte death after impact injury and the role of
leukocytes in extending the zone of injury to chondro-
cytes still resident in the articular matrix.

MATERIALS AND METHODS

Mechanical injury of condyles. Canine hind knee joints
were collected within 1 hour after death from 24 skeletally
mature young adult animals and sectioned, separating the
medial and lateral condyles. Each condyle was stored in 40 cc
of Dulbecco's phosphate buffered saline (DPBS) for no more
than 1 hour before being subjected to impact injury. Each
specimen was mounted beneath a drop weight impactor mod-
ified from the design of Thompson et al (19). An indentor,
consisting of a stainless steel rod of 6 mm diameter with a
0.5-mm rounded edge, was positioned perpendicular to the
surface of the articular cartilage. A 2-mm-thick piece of butyl
rubber was placed between the cartilage and the metallic tip to
distribute impact and prevent punch-out injury to the cartilage.
A sliding weight was used to strike the indentor, generating a
peak compressive stress of 20-25 MPa over a period of -10
msec. This stress has been determined by others to cause
reproducible cartilage injury (20). This system has also been
tested in an in vivo model and has been shown by magnetic
resonance imaging evaluation to create predictable osteochon-
drial injury (21).

Prior to impact injury, each condyle was mounted on a
metal plate at 30 degrees to the horizontal, and the indenting
rod was placed on a flat portion of the articular surface and
clamped in place. Three impacts were then delivered in rapid
succession. Because of the curvature of the condyle, the
30-degree angle allowed 2 sites to be impacted perpendicular
to the articular surface with minimal shear. After impacting 1
side of the condyle, the specimen was turned 180 degrees and
subjected to another series of 3 impacts. The condyle was then
divided in half between the impact sites and placed into fresh
DPBS. The left condyle remained uninjured and served as a

control, and was likewise divided into medial and lateral
halves. The impacted and control specimens were kept moist
during the experimental procedures, received the same length
of exposure on the test platform, and underwent the same
processing except for impact injury.

Culture of condyle explants. The condyle halves were
washed 3 times in 40 ml of DPBS, and the basal side was
irrigated to remove all macroscopic evidence of marrow. The
condyles were placed in 40 ml of RPMI 1640 with 10% fetal
calf serum (FCS) and 1% penicillin/streptomycin in a T-75
flask. This volume of medium was sufficient to completely
submerge the tissue and maintain the explants without acidi-
fication of the buffer. Samples were cultured in 5% CO 2 and
room air at 37"C. In some cases, condyles were cultured either
with autologous mononuclear leukocytes (MNLs) at a final
concentration of 1 x 105/ml or with the supernatant of
endotoxin-stimulated MNLs (20% [volume/volume]). In some
experiments, NG-methyl-L-arginine (L-NMA; Sigma, St. Louis,
MO) was added at a dose of 1 mM, which has been shown to
inhibit NO synthase in chondrocytes (22,23). Condyle explants
cultured with MNLs were gently rocked on a daily basis to
resuspend the MNLs.

Analysis of chondrocytes. After various intervals of 12
hours to 7 days, depending upon the experimental protocol,
specimens were removed from culture, and full-thickness
cartilage samples were harvested with a 4-mm biopsy punch
from 1) the area immediately contacted by the indentor (the
impact zone), 2) a site 6-9 mm from the edge of the impact
zone, and 3) a site at the periphery of the articular surface >10
mm from the impact zone. Samples were processed for histo-
logic analysis by frozen section or digested to harvest individual
chondrocytes. To disperse chondrocytes, cartilage was digested
in collagenase (2 mg/ml; Sigma) in complete medium (RPMI
1640 with 10% FCS and 1% penicillin/streptomycin) for 10
hours at 37"C in 5% CO2. Chondrocytes were harvested by
centrifugation at 1,100 revolutions per minute for 5 minutes
and transferred into complete medium. Cell viability was
assessed using trypan blue exclusion; a minimum of 100 cells
were counted in duplicate from each sample. Chondrocytes
were readily distinguished from leukocytes on the basis of size.
Each punch biopsy specimen yielded, on average, 5.62 ±
0.15 x 105 chondrocytes (mean t. SEM of 56 specimens), and
there were no significant differences in the total numbers of
chondrocytes recovered from biopsy samples obtained from
the different sites in the impacted condyles or from the
sham-treated condyles (P = 0.37 by Kendall's test).

Preparation of MNLs. Autologous blood was collected
into preservative-free heparin. MNLs, which include lympho-
cytes and monocytes, were isolated by density-gradient centrif-
ugation over Ficoll-Hypaque (Sigma) (24). Isolated MNLs
were washed in Ca 2̀ -free and Mg2+-free Hanks' buffered
saline (Life Technologies, Gaithersburg, MD) and then resus-
pended in complete medium at a concentration of 4 x 105/ml.
MNL viability was >95%. All reagents were nonreactive for
endotoxin by the Limuhlus amebocyte assay (Associates of Cape
Cod, Woods Hole, MA), which will detect as little as 0.03
endotoxin units/ml. MNLs were not activated by this isolation
protocol, since they have the same expression of L-selectin,
CD11b/CD18, and CD11a/CD18 as unseparated MNLs in
whole blood. MNLs were cultured in polypropylene tubes to
minimize subsequent monocyte isolation and/or loss through
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adherence to the culture vessel walls. Some MNLs were
stimulated with 1 gg/ml of Escherichia coli endotoxin (Sigma)
for 12 hours, and the supernatant, which contained the proin-
flammatory cytokines they released, was collected by centrifu-
gation.

Flow cytometric detection of adhesion molecules on
chondrocytes. Chondrocytes were suspended in complete me-
dium at 5 x 105/ml and incubated with Cell Tracker Green
(Molecular Probes, Eugene, OR) for 20 minutes at 370C to
identify viable cells (24). These cells were then washed with
DPBS, stained with mouse monoclonal antibody to canine
ICAM-1 (clone G-5; Santa Cruz Biotechnology, Santa Cruz,
CA) at 10 ng/sample for 30 minutes at 4°C, washed, and
stained with a phycoerythrin-conjugated goat anti-mouse anti-
body (Dako, Carpinteria, CA) for 30 minutes at 40C. Cells
were fixed in 1% paraformaldehyde and analyzed by flow
cytometry to assess the percent of viable chondrocytes express-
ing surface ICAM-1 (25). Delimiters on the flow cytometer
were set using cells stained in the same manner but with
nonspecific mouse immunoglobulin in lieu of anti-ICAM-1.

Immunohistochemical detection of adhesion mole-
cules on chondrocytes. For immunohistochemistry, tissues
were: mounted in OCT embedding compound and quick-
frozen. Five-micron sections were mounted on slides, fixed in
acetone for 4 minutes, then rinsed in water and PBS. Endog-
enous peroxides were blocked with 3% H20 2 for 30 minutes.
The sections were then rinsed and treated with 1% bovine
serum albumin for 15 minutes to block nonspecific staining.
Slides were stained with monoclonal anti-ICAM-1 (anti-
CD54) followed by biotinylated secondary rabbit anti-mouse
IgG and developed with avidin-biotin complex, diaminobenzi-
dine, and H20 2. Slides were then counterstained with hema-
toxylin to visualize nuclei.

Interactions of MNLs with chondrocytes. The condylar
explants were immersed in a suspension of MNLs at a final
concentration of 1 x 105/ml in complete medium. To aid in
identification, MNLs were prestained with a fluorescent green
dye (Cell Tracker Green) as previously described (24). After
12 hours, explants were dipped in medium to remove nonad-
herent leukocytes. Punch biopsy samples were obtained and
sectioned perpendicular to the cartilage surface. Sections were
examined with an inverted fluorescence microscope to identify
the location of MNLs that had adhered to the articular
cartilage.

Detection of oxidative species transferred to chondro-
cytes. Chondrocytes were released from collagenase-digested
cartilage biopsy samples 12 hours after injury and were then
incubated with 5- (and 6-)dichlorodihydrofluoresceindiacetate
(DCFDA; Molecular Probes) at a final concentration of 100
OM for 40 minutes at 370 C (26), washed twice, and suspended
in complete medium. DCFDA-labeled chondrocytes were
mixed with an equal number of MNLs (5 x 104 of each) in a
final volume of 200 p1 in a 96-well plate and incubated at 37°C.
Conversion of DCFDA to its oxidized fluorescent product was
detected with a fluorescence plate reader at 6 hours. In other
experiments, the incubation with leukocytes was extended to
72 hours, and viability was assessed by trypan blue exclusion.
To inhibit oxidative radicals, we used superoxide dismutase
(final concentration 200 units/ml; Sigma) or desferoxamine
(final concentration 0.1 mM; Sigma). Desferoxamine chelates
the iron that catalyzes the formation of hydroxyl radicals from

02- and H20 2. Superoxide dismutase inhibits the formation of
hydroxyl radicals by degrading 0 2-. When added to culture
medium, desferoxamine can diffuse into cells, but superoxide
dismutase cannot. To inhibit adhesion of leukocytes, we used
murine monoclonal anti-CD18 (R15.7; final concentration
50 /Lg/ml) (a gift from Dr. Wayne Smith, Baylor College of
Medicine). This antibody was incubated with MNLs for 30
minutes prior to their addition to chondrocytes.

Statistical analysis. Values are presented as the
mean ± SEM. Due to the small sample size, statistical
significance of differences between variables was calculated
using the nonparametric Mann-Whitney U test.

RESULTS

Viability of chondrocytes after mechanical in-
jury. Only 45 ± 3% of the chondrocytes from the
impacted zone were viable after 7 days in culture (P =
0.03; n = 4 dogs), compared with 92 ± 1% of chondro-
cytes from the uninjured controls (Figure 1). Chondro-
cyte viability was also significantly decreased in samples
taken 6-9 mm from the impact site (44 ± 2%) (P =
0.03) and even in samples taken >10 mm from the
impact site (60 ± 4%) (P = 0.03). The addition of
L-NMA to inhibit production of NO partially inhibited
chondrocyte death in the impact zone (P = 0.03) and
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Figure 1. Effect of mechanical injury on cartilage. Explants from
impact-injured and control uninjured condyles were cultured in me-
dium alone or in the presence of 1 mM Nc'-methyl-L.-arginine (L-
NMA). After 7 days, core biopsy samples were taken from the
uninjured condyle, at the impact site, within 6-9 mm of the impact, and
at a distant site >10 mm from the impact zone. Chondrocytes in the
biopsy samples were released by collagenase treatment, and their
viability was measured. Values are the mean ± SEM of data from 4
dogs. Impact injury led to significantly increased chondrocyte death in
all sampled sites, and this could be blocked to varying degrees by the
addition of L-NMA.
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completely prevented the death of cells >10 mm from
the impact site (P = 0.03) (Figure 1).

Effect of leukocytes on injured chondrocytes. To
evaluate the ability of leukocytes to extend the zone of
chondrocyte death after impact injury, we cultured
autologous peripheral blood MNLs (e.g., monocytes and
lymphocytes) with the cartilage explants for 7 days. In
the impact zone, chondrocyte viability dropped from
55 ± 3% in the absence of MNLs to 33 ± 6% when
cultured with MNLs (P = 0.0002; n = 8 dogs) (Figure 2).
In the zone adjacent to the impact, chondrocyte viability
dropped from 56 ± 4% in the absence of MNLs to 39 ±
8% when MNLs were present (P = 0.001). However, the
viability of chondrocytes located >10 mm from the
impact and that of chondrocytes from the unimpacted
control condyle were unaffected by coculture with
MNLs (P = 0.8 and P = 0.22, respectively). Chondrocyte
killing appeared to require living MNLs, because incu-
bation with the supernatants of endotoxin-activated
MNLs, which contained elevated levels of TNF and IL-1,
did not increase the numbers of nonviable chondrocytes
from any of the samples above those seen with medium
alone (data not shown).

MNL-chondrocyte interactions. To evaluate
which chondrocytes in injured cartilage provide chemo-
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Figure 2. Effect of mononuclear leukocytes (MNLs) on injured car-
tilage. Explants from impact-injured and control uninjured condyles
were cultured in medium alone or in the presence of autologous
MNLs. After 7 days, core biopsy samples were taken from the
uninjured condyle, at the impact site, within 6-9 mm of the impact, and
at a distant site >10 mm from the impact. Chondrocytes in the biopsy
samples were released by collagenase treatment, and their viability was
measured. Values are the mean + SEM of data from 8 dogs. Impact
injury led to chondrocyte death in all sampled sites. Incubation with
MNLs resulted in additional killing of chondrocytes at the site of
impact and within 9 mm of the impact.

Figure 3. Adherence of mononuclear leukocytes (MNLs) to injured
chondrocytes. Explants from impact-injured condyles were cultured
for 12 hours with autologous MNLs that had previously been labeled
with fluorescent green dye. Punch biopsy samples 4 mm in diameter
were taken from the impact site, washed by immersion in Dulbecco's
phosphate buffered saline to remove unattached leukocytes, and
sectioned for examination by microscopy. The figure shows the fluo-
rescent light image, to visualize the MNLs, superimposed on the
photomicrograph taken with incandescent light, to show the location of
the chondrocytes. The section is from the articular surface of the
cartilage. MNLs (green, single arrow) tended to localize immediately
adjacent to a chondrocyte (double arrow) (original magnification x
1,000).

tactic stimuli and adhesive ligands for MNLs, we incu-
bated the condyles with fluorescently tagged MNLs for
12 hours and examined thin cross-sections by fluores-
cence microscopy. MNLs adhered to cartilage explants
that had received an impact injury (Figure 3), but not to
uninjured cartilage explants (data not shown). The leu-
kocytes were not randomly distributed across the carti-
lage; instead, each leukocyte was located immediately
adjacent to a chondrocyte (Figure 3).

Expression of ICAM-1 on chondrocytes. Paren-
chymal cell expression of ICAM-1 (CD54) mediates the
attachment of leukocytes expressing counterreceptors
such as CDIla/CD18 (lymphocyte function-associated
antigen 1 [LFA-1]), CD11b/CD18, or CD11c/CD18. To
evaluate whether stress-injured chondrocytes express
ICAM-1, we harvested chondrocytes from explants after
24 hours in culture and used monoclonal antibodies to
identify ICAM-1-positive cells by flow cytometry (Fig-
ure 4A). Uninjured chondrocytes did not display any
ICAM-1. However, in the impact zone, 58 ± 7% of the
chondrocytes expressed ICAM-1 (P = 0.03; n = 4 dogs).
The fraction of chondrocytes expressing ICAM-1 de-
creased with distance from the impact site, with only
44 ± 4% ICAM-l-positive chondrocytes in the zone 6-
9 mm from the impact site (P = 0.03 versus uninjured
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Figure 4. Expression of intercellular adhe
on injured chondrocytes. Condyles were su
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condyles were cultured for 24 hours, and
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mm of the impact, and at a distant site
Chondrocytes, released by collagenase, wer
ICAM-1 by flow cytometry. Bars show the
viable chondrocytes that expressed ICAM
formed in quadruplicate. B, Staining for IC
after impact injury to articular cartilage. AI
with hematoxylin to identify nuclei. Cells thL
arrow) are ICAM-1 positive; blue cells (d
negative. The majority of ICAM-1-positiv
25% of the articular cartilage (original ma

chondrocytes). In samples taken
impact site, only 7 ± 1% of the ch
ICAM-1. This value was significan
uninjured controls (P = 0.03),
lower than that in samples taken frt
site of impact (P = 0.03). To furthe
within the cartilage of chondrocyte
we examined sections by immu
hours after impact injury. The
chondrocytes were predominantly

A 25% of the articular cartilage and were uncommon in
the less superficial layers within the cartilage (Figure
4B).

Transmission of oxidative species from MNLs to
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tant of activated MNLs, were able to kill injured chon-
drocytes suggested a mechanism involving direct transfer
of toxic substances from the MNLs to the chondrocyte.
To evaluate whether MNLs transfer oxidative radicals to
the chondrocytes, we loaded the chondrocytes with a
cytoplasmic dye, DCFDA, which fluoresces when oxi-
dized. MNLs did not transfer oxidative radicals into

6-9mm from >10 mm control uninjured chondrocytes (P = 0.4) (Figure 5).
impact rroun impact However, if first injured by mechanical stress, DCFDA-
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in fluorescence, indicative of oxidative damage, when
subsequently incubated with MNLs (P = 0.002; n = 6
dogs) (Figure 5). The increase in fluorescence was seen
-1-2 hours after addition of MNLs (data not shown)
and peaked at 6 hours.

To determine whether reactive oxygen species
(ROS) are transferred directly from the leukocyte to the
chondrocyte or merely released into the microenviron-
ment of the chondrocyte, we used a series of inhibitors
that block generation of hydroxyl radicals. Superoxide
dismutase, which cannot enter the cell cytoplasm, was
lnahlh, tn inhihit the inrrenas nf nvidntivp rndirnal in the

sion molecule 1 (ICAM-1) chondrocytes (P = 0.59). Desferoxamine, which can
bjected to an impact injury
berted. A, Explants from the enter the cytoplasm, blocked the increase of oxidative

then core biopsy samples radicals in the chondrocytes (P = 0.002) (Figure 5).
the impact site, within 6-9 Addition of blocking antibodies to CD18, which prevent
>10 mm from the impact. the binding of leukocytes to ICAM-1-expressing chon-
*e assayed for expression of drocytes, also suppressed the increase of free oxygen
mean and SEM percent of
-1. Experiments were per- radicals in the chondrocytes, by 70 _ 6% (P = 0.009)
,AM-I expression 12 hours (Figure 5).
11 cells were counterstained To evaluate whether the transmission of ROS
at are stained brown (single was responsible for the leukocyte-mediated killing of
louble arrow) are ICAM-1 chondrocytes, we investigated the effects of these same
e cells are found in the topgnification the top00). blocking agents on viability of chondrocytes from im-

pacted cartilage. Impact injury alone caused 36 ± 2% of
the chondrocytes to die within 3 days. Addition of

>10 mm from the leukocytes increased the fraction of nonviable chondro-
Londrocytes expressed cytes to 70 ± 1%. Leukocyte-mediated injury was unaf-
tly higher than that in fected by superoxide dismutase (69 ± 1% nonviable
but also significantly chondrocytes) (P = 0.2). However, the additive effect of
om zones closer to the inflammatory leukocytes was fully blocked with des-
:r identify the location feroxamine (40 ± 1% nonviable chondrocytes) (P =
s expressing ICAM-1, 0.03) or L-NMA (42 ± 1% nonviable chondrocytes)
nohistochemistry 12 (P = 0.03) and was partially prevented by anti-CD18
ICAM-l-expressing antibodies, which block adherence of MNLs to ICAM-1

located within the top (48 ± 1% nonviable chondrocytes) (P = 0.03) (Figure 6).
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Figure 5. Transfer of oxidative radicals from mononuclear leukocytes (MNLs) to injured chondrocytes.
Chondrocytes from the impact site or from uninjured condyles were released by collagenase treatment 12
hours after impact injury and loaded with an oxidation-sensitive fluorescent dye, 5- (and 6-)dichlorodi-
hydrofluoresceindiacetate. Chondrocytes were incubated with MNLs or medium alone for 6 hours. Bars
show the mean and SEM fold increase in fluorescence relative to chondrocytes incubated without MNLs
(n = 6 dogs). The transfer of oxidative radicals could be inhibited with desferoxamine or with blocking
antibodies to CD18, but not with superoxide dismutase (P = 0.59).

DISCUSSION
Our studies are the first to examine the fate of

chondrocytes after they are exposed to mechanical stress
while still resident within the cartilage. When articular
cartilage was exposed to an acute impact, approximately
half of the chondrocytes died within 7 days, whereas
>90% of the chondrocytes survived in uninjured carti-
lage. A surprising finding was the reduced viability of
chondrocytes located well outside the zone of direct
impact. Chondrocyte death at all sites was blocked by

Control carlilage

No MNL

MNIL &. medium

MNL. + superoxide dimulasc

MNL - desferoxaminc

MNL ÷ L-NMA

MNL + anti-CD l

L-NMA, an inhibitor of NO production (22,23). This
finding is consistent with those of others who have
demonstrated inhibition of apoptosis after NO blockade
with L-NMA in an arthritis model (27). The directly
impacted chondrocytes may have released NO, which
triggered apoptosis of distant chondrocytes. In addition,
the shock wave propagating from the epicenter of the
impact may have activated distant chondrocytes and
triggered production of NO.

Chondrocytes have shear stress response ele-

impactod catilage

50%·i I 0)L/,

S1.03

- i.031

50% 100%

% viable chondrocytes

Figure 6. Effect of oxidative radicals from mononuclear leukocytes (MNLs) on chondrocyte viability.
Chondrocytes from the impact-injured or uninjured condyles were released by collagenase treatment 12
hours after impact injury and incubated with medium or MNLs. After an additional 72 hours, chondrocyte
viability was assayed by trypan blue exclusion. Values are the mean and SEM (n = 6 dogs). Viability of
impact-injured chondrocytes was decreased in the presence of MNLs, and this could be prevented by the
addition of desferoxamine, NA-methyl-L-arginine (L-NMA), or anti-CD18, but not by the addition of
superoxide dismutase (P = 0.2).
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ments and are known to respond to biomechanical
signals by up-regulating matrix metalloproteinases and
proinflammatory cytokines (28,29). Clements et al dem-
onstrated that cyclical loading of cartilage at physiologic
peak stress levels causes apoptosis of cells both at the
site of compression and in an area immediately around
this site (30). In the present study, we examined cellular
events following discrete traumatic impact of osteochon-
dral specimens. The magnitude of the peak stresses
generated in the present study was several times larger
than that of those applied by Clements and coworkers.
High-impact injury may have a different signaling cas-
cade that makes chondrocytes susceptible to cell death
from NO; this requires further study.

Chondrocytes injured by impact became vulner-
able to further injury mediated by leukocytes. The
vulnerability of chondrocytes to leukocyte-mediated in-
jury was inversely proportional to the distance from the
impact site. This outcome could be explained by differ-
ential rates of ICAM-1 expression, since chondrocytes
within or immediately adjacent to the impact zone
expressed ICAM-1, whereas those distant from the site
of impact expressed very little ICAM-1, and no ICAM-1
was found on uninjured chondrocytes. ICAM-1 is an
adhesion molecule that can be displayed by diverse
somatic cells, particularly after injury or in the context of
inflammation. Leukocytes express receptors, CD11a/
CI)18 and CD11b/CD18, which allow them to attach to
target cells expressing ICAM-1. ICAM-1 was expressed
primarily by chondrocytes in the upper layer of the
cartilage. This is also where leukocytes adhered to the
chondrocytes. The role of ICAM-1 in the interaction of
leukocytes with injured chondrocytes was verified by
showing that in the presence of blocking antibodies to
CD18, the 3-chain common to both leukocyte receptors,
chondrocytes were no longer killed by leukocytes.

In this study, ICAM-1 expression was demon-
strated on chondrocytes as early as 12 hours after injury.
ICAM-1 has been demonstrated on isolated chondro-
cytes, cultured in vitro in the presence of proinflamma-
tory cytokines (12). However, this is the first time
up-regulation of ICAM-1 has been demonstrated after
acute mechanical injury of articular cartilage. In our
specimens, ICAM-:l was induced on injured chondro-
cytes even in the absence of MNLs, indicating that
leukocyte-derived factors were not required. ICAM-1I
was also found on chondrocytes that were not in the area
of the direct impact.

There are several possible mechanisms for injury
to chondrocytes distant from the direct site of impact.
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Previous studies have demonstrated that the ICAM-1
gene has a shear stress response element and that
endothelial cells exposed to flow-mediated shear stress
up-regulate their expression of ICAM-1 (31). During
localized impact of a joint surface, a shear wave propa-
gates through the cartilage and the underlying subchon-
dral bone. We hypothesize that this perturbation triggers
the shear stress response elements known to be present
within chondrocytes (32), and this intercellular signaling
event up-regulates ICAM-1. An alternative explanation
is that chondrocytes at the impact site released soluble
factors such as cytokines in response to mechanical
injury, which then stimulated nearby chondrocytes to
up-regulate ICAM-1. NO, for example, can initiate
intracellular signaling cascades leading to up-regulation
of cytokines (33). Basic fibroblast growth factor can also
be released from extracellular stores by mechanical
stress and activate the ERK signaling pathway, which
leads to a variety of proinflammatory responses (34).

The preferential influx of MNLs into injured, as
opposed to control, cartilage is probably mediated by
chemotactic factors released by the chondrocytes. Pre-
vious studies of inflammatory arthropathies and of car-
tilage stimulated with IL-1 in vitro have demonstrated
that 2 chemokines, MCP-1 and IL-8, are produced by
stimulated chondrocytes (8,9). MCP-1 is a highly potent
chemotactic factor for monocytes, and IL-8 is chemotac-
tic for neutrophils. It is likely that leukocytes have access
to impact-injured cartilage in vivo. We have found
lymphocytes, monocytes, and neutrophils in the synovial
fluid of dogs whose femoral condyles received an impact
injury similar to that applied to the explants in these
experiments (21). In the present study, we only evalu-
ated the adhesion of MNLs to the chondrocytes. Other
investigators have tested the ability of polymorphonu-
clear leukocytes to adhere to fragments of cartilage and
have found evidence of surface macromolecules that
block the adhesion of neutrophils (35).

Our studies show that leukocyte-mediated killing
of impact-injured chondrocytes involves ROS and/or
NO. The failure of superoxide dismutase, which remains
extracellular, to inhibit the oxidation of an indicator dye
in the chondrocyte cytoplasm indicates that the mecha-
nism does not involve release of ROS into the extracel-
lular milieu and subsequent uptake by the chondrocytes.
Inhibition by desferoxamine, which enters cytoplasm,
and by anti-CD18 antibodies, which block binding by
leukocyte adhesion molecules, is most consistent with a
model in which leukocytes adhere to chondrocytes and
transfer ROS directly into their cytoplasm. Such a
mechanism has been observed in other systems such as
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leukocyte-mediated killing of injured myocytes (36).
However, it is also possible that adherent leukocytes
induced the chondrocytes to generate ROS. NO and
ROS together can generate peroxynitrite (37), which is
highly toxic for chondrocytes (38,39). In our experi-
ments, cells were cultured in 5% CO 2 with room air,
which may best model processes occurring on the carti-
lage surface near the synovial fluid. Mechanisms of
injury for chondrocytes located more deeply in the
cartilaginous matrix may differ due to the lower oxygen
concentration in those sites (40-42).

Compared with medium alone, the supernatant
of endotoxin-stimulated MNLs, which contained TNFa,
IL-1, and IL-6, had no adverse effect on injured chon-
drocytes, suggesting that these cytokines are not respon-
sible for killing in this model. Our results suggest that
attachment to chondrocyte ICAM-1 mediated by leuko-
cyte CDlla/CD18 (LFA-1) or CDllb/CD18 brings leu-
kocytes into close apposition with the chondrocytes.
Indeed, as we have shown, treatment of cultured chon-
drocytes with antibodies to CD18 decreased accumula-
tion of free oxygen radicals in the chondrocytes by 70%.
ICAM-1/LFA-1-mediated cell death of chondrocytes
has been described previously (12), but this is the first
time that mechanical injury has been shown to cause
contact-mediated cell death of chondrocytes by inflam-
matory cells.

Our findings have possibly interesting clinical
implications. First, we have demonstrated that acute
mechanical injury of the articular surface causes death
of chondrocytes located at a distance from the site of
trauma. Second, up-regulation of adhesion molecules on
the affected chondrocytes allows leukocytes to adhere
and to extend the zone of injury beyond the impact site.
Thus, the data in this study suggest that therapies to
reduce acute influx of leukocytes into damaged cartilage
should be considered in the future when treating osteo-
chondral injuries.
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