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Abstract

Markov Decision Processes (MDPs) model problems of sequential decision-nmaking
under uncertainty. They have been studied and applied extensively. Nonetheless,
there are two major barriers that still hinder the applicability of MDPs to many
more practical decision making problems:

* The decision maker is often lacking a reliable MDP model. Since the results
obtained by dynamic programming are sensitive to the assumed MDP mnodel,
their relevance is challenged by model uncertainty.

* The structural and computational results of dynamic programming (which deals
with expected performance) have been extended with only limited success to
accommnodate risk-sensitive decision makers.

In this thesis, we investigate two ways of dealing with uncertain MDPs and we
develop a new connection between robust control of uncertain MDPs and risk-sensitive
control of dynamical systems.

The first approach assumes a model of model uncertainty and forimulates the con-
trol of uncertain MDPs as a problem of decision-making under (model) uncertainty.
We establish that most formulations are at least NP-hard and thus suffer from the
"'curse of uncertainty."

The worst-case control of MDPs with rectangular uncertainty sets is equivalent
to a zero-sum game between the controller and nature. The structural and comnputa-
tional results for such games make this formulation appealing. By adding a penalty
for unlikely parameters, we extend the formulation of worst-case control of uncertain
MDPs and mitigate its conservativeness. We show a duality between the penalized
worst-case control of uncertain MDPs with rectangular uncertainty and the mnini-
mization of a Markovian dynamically consistent convex risk measure of the sample
cost. This notion of risk has desirable properties for multi-period decision making,
including a new Markovian property that we introduce and motivate. This Markov-
ian property is critical in establishing the equivalence between minimizing some risk



measure of the sample cost and solving a certain zero-sum Markov game between the
decision maker and nature, and to tackling infinite-horizon problems.

An alternative approach to dealing with uncertain MDPs, which avoids the curse
of uncertainty, is to exploit directly observational data. Specifically, we estimate the
expected performance of any given policy (and its gradient with respect to certain
policy parameters) from a training set comprising observed trajectories sampled under
a known policy. We propose new value (and value gradient) estimators that are
unbiased and have low training set to training set variance. We expect our approach to
outperform competing approaches when there are few system observations compared
to the underlying MDP size, as indicated by numerical experiments.
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Chapter 1

Introduction

Decision problems can be abstracted mathematically in terms of a set U of options

to choose from and a mapping that associates a performance vector to each option

u E U. The performance vector captures all the evaluation criteria that the decision

maker considers relevant. In general, the performance vector has multiple conflicting

dimensions, making the choice of a decision subtle. For example, a manufacturer

miight have to trade-off the quality and the production cost of its products. In addi-

tion, when the performance of a decision depends on the realization of an uncertain

exogenous factor co, the performance becomes a function of both the decision u UE U

and of the uncertain variable w. Notwithstanding, in most cases the decision maker

can rank the attractiveness of all possible perfornlance vectors. Specifically, we will

assume that the decision maker has a "cost function" c (which could also be inter-

preted as the negative of its utility function) that maps each possible decision to a real

number, with preferred decisions corresponding to lower cost. Given such a model

for a decision problem, the identification of the best decision amounts to solving the

minimization problem

inf c(u).
uEU

At a high level, this thesis investigates how the aforementioned approach needs to

be a(dapted when no model is available for the problem of interest, or when the model



is uncertain. Specifically, we will focus on problems of sequential decision making

under uncertainty. These are decision problems with two salient characteristics:

* the decision maker interacts with the system over multiple "time periods," mak-

ing a new decision at each period,

* the decision maker's decision at time t can depend on some observations of the

system up to time t. In particular, it can depend oil the realization of some

uncertain variables (feedback control).

Since the actions of the decision maker are "feedback policies," the decision space

U is a policy space, which can be huge, both in terms of cardinality and dimension.

This thesis focuses on an important class of problems of sequential decision making

under uncertainty, called Markov Decision Processes (MDPs - cf. Subsection 2.2.1

for a definition). An MDP model describes the state dynamics of a system and the

associated cost over a time horizon. At each time period, the controller observes the

state of the system and chooses an action. Conditional on this choice, the system

moves to a new (possibly random) state and the controller incurs a cost. The objective

of the controller is to minimize its expected cost.

In this thesis we investigate three main questions about the control of uncertain

MDPs:

(a) the computational complexity of different formulations for the optimal control

of uncertain MDPs,

(b) the decision-theoretic justification of the worst-case control of MDPs and the

duality between risk-sensitive and robust control of MDPs, which allows us to

define a broad class of tractable risk criteria for MDP control, and

(c) the "efficient" estimation of the value of different policies from system trajec-

tories.

In the next paragraphs, we outline the content of the three chapters dedicated to

each of these questions, but we leave the literature review and the precise statement

of contributions to the introduction section of each chapter.



In the next chapter, we study the computational complexity of different formu-

lations for the optimal control of MDPs when the model is uncertain. When the

controller has an MDP model for the system of interest (say, with a finite state-action

space XA over a finite time horizon T), it is well-known that a cost-minimizing policy

can be chosen amnong the deterministic policies whose action at a given time depends

only on the current system state. Hence, provided the model is known, the Markov

property allows the controller to restrict, without loss of optiniality, its attention to

the space of "Markovian" deterministic policies, which has cardinality (AIT'lxl . In

addition, dynamic programming methods allow us to find a minimum cost policy in

this exponentially large decision space with only order O(TIXI2IAI) arithmetic oper-

ations. In applications where the state-action space is very large, the computational

complexity of solving an MDP to optimality becomes intractable -- this limitation of

the use of MDPs is known as the "curse of dimensionality." In Chapter 2, we consider

the case where the MDP model is not perfectly known and show that most formula-

tions for the control of uncertain MDPs suffer from a worse complexity curse, namely

the "curse of uncertainty." Most formulations are NP-hard, and even PSPACE-hard

in situations where learning takes place. We draw a comprehensive picture for the

complexity of the control of uncertain MDPs by analyzing many different formula-

tions. This picture is important for a modeler who can trade-off the comnplexity of a

particular formulation with its fit to a lparticular application.

In Chapter 3, we make connections between risk-sensitive control of MDPs, zero-

sum Markov gaines, and the worst-case formulation of uncertain MDPs. Specifically,

we define the concept of a Markovian dynamically consistent convex risk measure of

the uncertain outcome of a dynamic state space model (which is a notion of preference

on uncertain trajectories, not on uncertain models, with desirable decision-theoretic

properties). We prove that the minimization of such risk measures amounts to solving

a zero-suIn Markov game, which is also equivalent to optimizing an uncertain MDP

for the worst-case model with "state-rectangular uncertainty set". Our notion of risk

not only justifies this common formnulation for the control of uncertain MDPs from a

decision theory plerspective, but it also motivates a new worst-case formulation, where



each possible model comes with a penalty (for example capturing its unlikelihood)

so that the worst-case model balances its penalty and its disadvantage to the con-

troller. Thus, the penalized worst-case formulation to the control of uncertain MDPs

yields less conservative policies for the decision maker than the worst-case approach.

Furthermore, the penalized worst-case control of MDPs generates a broad class of

tractable risk criteria for the risk-sensitive control of MDPs.

Finally, Chapter 4 of this thesis takes a data-driven approach to the control of

MDPs. Instead of estimating a model and then evaluating or optimizing the esti-

mated MDP model, we bypass model estimation to avoid the curse of uncertainty by

exploiting system trajectories observed under a, known sampling policy to estimate

directly the performance of other policies. We derive estimators for the value and

the value gradient that are guaranteed to be unbiased and that have lower variance

than competing approaches from the literature, and we illustrate the advantages of

our approach with numerical experiments.



Chapter 2

Computational complexity of

control of uncertain Markov

Decision Processes

2.1 Introduction

2.1.1 Motivation

Markov decision processes (MDPs) are a versatile class of models for controlled

discrete-time stochastic dynamical systems [11, 12]. They have been extensively stud-

ied in operations research and applied in many different domains such as operations

management, network management, marketing, or robotics.

An optimal policy in a known MDP can be computed efficiently by dynamic

programming techniques. For large-scale problems, approximate solution methods

are available [14]. Still, the applicability of this approach is limited by the sensitivity

of the optimal solution to parametric uncertainty. In particular, an optimal policy

for a given set of model parameters might perform poorly on a system with slightly

different parameter values, as illustrated recently in [86] and [54]. In this chapter,

we are interested in the influence of parametric uncertainty on the expected policy

performance in MDPs, but not so much in the internal randomness of the sample cost



along system trajectories, as in the literature on risk-sensitive control. Specifically,

we study different formulations to find a policy that performs "consistently" well in

an uncertain MDP, with an emphasis on their computational complexity.

2.1.2 Contributions and literature review

In this chapter, we study different formulations of the robust control of uncertain

MDPs from a computational complexity perspective. The controller can optimize

different objectives: the finite-horizon cost, the infinite-horizon discounted cost, or

the expected average cost.

We assume that the uncertain parameters are constant so that the controller

could learn about their value along the way and exploit this knowledge with history-

dependent policies. Hence, the control problem can be related to partially observable

Markov decision processes (POMDP) or Markov games with imperfect information.

The complexity of POMDPs has been studied first in [58] and some refinements were

obtained in [47]. Globally, these active learning problems are much harder (PSPACE-

hard) than the optimal control of a given MDP with perfectly known parameters.

This huge complexity increase together with other arguments (cf. Subsection

2.2.3) makes the history-dependent control of uncertain MDPs often inappropriate.

Therefore, most of this chapter deals with the simpler Markovian policies.

Two recent papers [54] and [38], building on the theory of zero-sum Markov games

with perfect information, proposed a robust control formulation based on the worst-

case formulation. This formulation provides a strong performance guarantee in face

of parametric uncertainty. Furthermore, stationary robust policies can usually be

computed at almost no extra cost compared to the nominal problem. However, this

analysis requires a so-called rectangularity assumption on the uncertain parameter;

otherwise it does not apply. We show that without this assumption the problem is

NP-hard, even when there are only two possible values for the uncertain parameters.

Since the approach in [54, 38] can be very conservative, because the policy is

tailored to the worst-case value of the parameters, we also investigate two alterna-

tive formulations, well-motivated by decision theory: one based on expected utility



and another based on the worst-case regret. We establish a comprehensive table

of complexity results for the three formulations, with different assumptions on the

system's uncertain parameters and on the controller's objective. Most of the result-

ing problems are "intractable," making by contrast the worst-case formulation under

state-rectangularity computationally attractive.

In the special case where the controller minimizes its average cost with respect to

a (generalized) state-rectangular uncertainty over the set of Markovian policies, we

estalblish modified Bellman's equations provided that the system does not come back

to state that it has left in the past (Proposition 2.5.3).

2.1.3 Chapter structure

We end this introduction with a note on complexity theory. The next section is

devoted to the definition of uncertain MDPs. Section 2.3 studies the complexity

of history-dependent control of uncertain MDPs for different decision models. The

rest of the chapter is then focused on stationary control and is organized by the

controller's objective function: Section 2.4 deals with the worst-case performance,

Section 2.5 studies the average performance for different parameter values, and Section

2.6 analyzes the worst-case regret objective.

2.1.4 Computational complexity theory

In this thesis, we assume that the reader is already familiar with computational conm-

plexity theory (cf. [26] for an introduction). Our model of computation is a Turing

machine (However, we will only count arithmetic operations, as opposed to bit oper-

a.tions, in our size and running time estimates). The complexity classes we will need

are those consisting of decision problems solvable in polynomial time (P), nondeter-

ministic polynomial time (NP), and polynomial space (PSPACE) as a function of

the instance size. Recall that P C NP C PSPACE.

While we are ultimately interested in finding an optimal policy, we will focus on

the question whether the minimal cost is below a given bound, in order to fit the



complexity framework of binary decision problems.

2.2 Uncertain Markov Decision Processes

2.2.1 Markov Decision Processes

System description and notations

Markov Decision Processes are controlled discrete-time stochastic dynamical systems

[11]. In this chapter, which is focused on computational complexity issues, we will

only consider an MDP with a finite state space X, lXi = n, where in all states

x E X, there is a finite action set A(x) available to the controller, IA(x)I <• r.

We will use the notations XA for the state-action space and A for the probability

simplex over X. Given that the system is in state x E X and that the controller

chooses action a E A(x), the system moves at the next stage to state y E X, with

probability p(y; x, a), and incurs an expected immediate cost c(x, a). The notations

x (t), a'(t) and c (t) refer, respectively, to the realizations of the state of the system,

the controller's action and the incurred( cost at time t, under a given policy r. Denote

by vo the distribution over X of the state at the beginning of the time horizon.

The parameters of an MDP are the expected immIediate cost c(x, a) and the one-

step transition probability vectors p(.; x, a) for all state-action pairs (x, a) E XA. The

family of transition probabilities vectors P = (p(.; x, a))(x,a)exA is called the transition

kernel of the MDP. Later, we will use the notation p(-; x, -) E AA(x) where x E X for

the vector (p(-; x, a))aEA(x) of transition probabilities for all actions available in state

X.

For finite-horizon problems, the specification of an MDP instance includes gener-

ally different cost parameters and transition probabilities for each time point, whereas

we assume that these parameters are independent of time in infinite-horizon problems.

The respective description lengths are then O(n2rT) and O(n2r).



Optimal control problem

The controller's interaction with the dynamical system is specified by a "feedback"

policy. Let It be the information available to the controller at time t. It comprises

at least the current state but could include the time index and the past trajectory.

A randomized policy 7r of the controller is a mapping from the information space

to the distributions over the action space such that r(It) gives non-zero probability

only to actions available in the current state, i.e., a'(t) E A(x7(t)) almost surely. A

deterministic policy is a randomized policy that picks an action as a deterministic

function of It. The policy is Markovian (resp. stationary) if it depends only on the

state and time index (x, t) (resp. the state x). Denote by IIh,r, Im,r and IIs,r the space

of randomized history-dependent, Markovian and stationary policies, respectively.

Similarly, let IIh,d, HIm,d, and 1 s,d be the space of deterministic history-dependent,

Markovian, and stationary policies.

The controller could minimize different objective functions over a given policy

space. In this chapter, we will consider as objective

1. The finite-horizon cost, E [•To0 c(t)u0] , where T E N is the horizon length.

2. The infinite-horizon cost:

(a) Discounted cost, E [=0 oatC'(t) vo], where a E [0, 1) is a constant dis-

count factor.

(b) Expected average cost, limsuprTc o E [T 0 c (t)vo]

Solution of nominal MDPs

When the transition kernel and the expected immediate cost parameters of an MDP

are known, the controller can use classical dynamic programming techniques to min-

imize the cost, over the set of history-dependent policies n1 h,r

For finite horizon problems, an optimal policy in 1Ih,r can be taken deterministic

Markovian (and may depend on the time index). An optimal policy can be computed

by the dynamic programming recursion in O(rn2T) arithmetic operations, whereas



the instance size describing the parameters for each time is also O(rn2T). If the

parameters are time-invariant, the finite horizon control problem can be described

with only O(rn2 + log T) bits, but the evaluation of a stationary policy can still be

done in polynomial time as shown in the next proposition.

Proposition 2.2.1. Computing the value function of a time-invariant Markovian

policy in a time-independent finite horizon problem can be done in O(n3 log T) time.

Proof. For notational convenience, assume T = 2K -1. Let P E R'n n be the constant

transition kernel under a stationary policy and c Rn be the associated expected

immediate cost. The value function of the policy is

2K-1 2K-1-1 K-1
V= E Pt (I+ p2K- E pt C = (1 + p2)C.

t=O t=o k=O

Given P 2k for k = 0,..., K- 1, the value function can be computed in O(n 3 log T).

The powers P 2k, k = 0,..., K - 1, can also be computed in O(n3 log T) time. O

Remark 2.2.2. When a finite-horizon MDP control problem is specified in terms of

a time-invariant transition kernel, the optimal control problem is P-hard, and could be

NP-hard (it is not known whether this is the case). For the finite-horizon discounted

cost problem, Tseng gave in [97] an exact polynomial-time algorithm to compute the

optimal expected cost of an MDP, provided that the same MDP over an infinite hori-

zon has a unique optimal stationary policy. But the complexity of this algorithm is

proportional to O(1/(1 - a)) so that it is polynomial only when the discount factor a

is bounded away from one.

For infinite horizon problems, the stationarity of the environment makes the com-

plexity of the nominal MDP control relatively simpler, even though the instance

description length is only O(rn2).

For discounted cost problems with a discount factor a E [0, 1), the minimal ex-

pected cost starting from state x, V*(x), over the set of history-dependent policies



satisfies the Bellman equations [12], i.e.,

V*(x) = mm c(x,a) + aC p(y;xa)V*(y) , x EX.
aA(x)yEX

Without loss of optimality, the controller can pick a policy in the set of deterministic

stationary Markovian policies IIs,d that is greedy with respect to V*. It is well-known

that the optimal value V* can be found by solving the following linear program with

n variables and at most nr constraints, where ci > 0, i = 1,..., n, are arbitrary,

n

max c4V(i)
i=1

V(i) • c(x,a) + a p(y;x, a)V(y), (x, a) E XA.
yEX

Since linear programs are solvable in polynomial time, the optimal value of discounted

cost problem can also be computed in polynomial time.

For expected average cost control problems with finite state and action spaces,

results similar to the ones for discounted cost problems hold under mild assumnptions.

For exampIle, when all stationary policies are unichain (cf. p. 204 in [12]), the minimal

average cost A* satisfies the Bellmnan equations,

A* + h*(x) = min c(x, a) + p(y; x, a)h*(y), x E X.
aEA(x) yEX

The controller can pick an optimal policy that is deterministic, stationary, and

Markovian. Moreover, the optimal average cost A* is independent of the initial state

distribution vo, and can be found in polynomial-time as an optimal solution of the

following linear program

max A
A,hER"'

A + h(x) 5 c(x,a) + Ep(y; x, a)h(y), (x, a) E XA.
yEX



In all cases, it is worthwhile observing that the standard dynamic programming

technique provides polynoinial-time algorithms to verify whether the cost of a policy

is less than a given bound, for any fixed Markovian policy in finite horizon problems,

and any fixed stationary Markovian policy for infinite-horizon problems.

2.2.2 Different descriptions of parametric uncertainty

In this chapter, we will focus on uncertainty about the transition kernel

P= (p(-; x, a))(x,a)exA

because uncertainty on cost parameters can be reduced to uncertainty on the tran-

sition kernel. Moreover, when the transition kernel is known, the problem under a

worst-case criterion essentially reduces to a constrained MDP (cf. [2] and the refer-

ences therein), which has been studied extensively and can be solved efficiently. In

contrast, uncertainty on the transition kernel is harder to deal with.

We assume that the uncertain transition kernel P lies in a known uncertainty set

p C AxA. Since we are interested in computational complexity issues, we will assume

that P is a finite set. To avoid notational ambiguity, we will sometimes index P by a

model index set M. For example, the transition probability vector from state-action

pair (x, a) in the MDP model m E M will be denoted pm(.; x, a). Each parameter

value defines a nominal MDP model, which is often called scenario or environment

in the sequel. By default, the instance description of an uncertain control problem

includes as input the specification of IMI nominal MDPs.

In some contexts, we will endow the uncertainty set 'P with a probability measure

q = (qm)EM. The expected cost of a policy (where the expectation is taken with

respect to the stochastic trajectory realizations for a given MDP model P) becomes

a random variable with respect to the uncertain parameter P E P.

Observe that the uncertainty set P or the distribution of the uncertain parameter

q can encode some dependencies between the uncertain parameters at different state-

action pairs. Indeed, for a set P C AXA, define the sets 'P• = {p(-; x, -), p E PP} for



all states x E X and P(x,a) = {p(.; x, a), p E P} for all state-action pairs (x, a) E XA.

Clearly, P C Eex Pxo c H(x,a)EXA P(x,a). But these inclusions can all be proper with

the elements in the difference "ruled out by dependencies" across states or state-action

pairs.

A state-rectangular uncertainty imposes some independence across states of the

uncertain parameters. It plays an important role when it induces a principle of

optimality that decomposes the problem state by state (cf. Subsection 2.4.3). When

nature picks the worst possible parameter P E P, the rectangularity assumption has

been malde explicit in [38] and [54].

Definition 2.2.3. When the time horizon is infinfinite, the uncertainty set P is state-

r c(tangular if there are sets P. C AA(x), x E X, such that P = -,Ex Px; equivalently,

P = {P E AxA I P = (p(';x, )),,x and p(-; x, -) E Px, Vx E X}.

Similarly, the uncertainty set P is state-action rectangular if there are sets P(x,a) C

A, for all (x, a) E XA, such that P = H(x,a)EXA P(x,a); equivalently,

P = {P E AxA I P = (p(-; x, a))(x,a)ExA and p(; x, a) E P(x,a), V(x, a) E XA}.

When the time horizon T is finite, the uncertainty set P is state-rectangular if

there are sets t,x C AA(x), x E X, t = 1,... ,T, such that P = t,xEX Pt,x; equiva-

lently,

P = {P E ATA I P = (p(.;t,z,-))xEx and p(.; t,,) EPt,, Vx E X, t= 1,...,T}.

Similarly, the uncertainty set P is state-action rectangular if there are sets P(t,x,a) C

A, for t = 1,..., T and all (x, a) E XA, such that P = I-t,x,a P(t,x,a).

In particular, with this convention, state-rectangularity of the uncertainty set P

of a finite-horizon problem implies that the set P factors along the time dimension

a property that we will refer to as time-rectangularity.

When the uncertainty set P is endowed with a probability measure q, the concept



of rectangularity can be extended so that the observation of an uncertain parameter

at a state is not informative on its value at other states.

Definition 2.2.4.

a) A random uncertainty q is state-rectangular if it has a state-rectangular support

p C A x A and if there are probability distributions qx on P. for all x E X such

that for all P E P,

q(P) = J qx(p(-; x, )).
xEX

b) Similarly, a random uncertainty q is state-action-rectangular if its support P is

state-action-rectangular and if there exist probability distributions q(x,a) on P(x,a)

for all state-action pairs (x, a) E XA such that for all P E P.

q(P)= = q(x,a)(p(; x,a)).
(x,a)EXA

Remark 2.2.5. When we assume that the uncertainty is rectangular, we will also

assume that the problem instance is given in factored form. For example, if the

uncertainty is state-rectangular, P (resp. q) is described by Px, x E X (resp. qx, x E

X). Thus, the number of uncertain scenarios in P is exponential in the instance

description length.

2.2.3 Connection with decision theory

We will focus on three formulations for the control of uncertain MDPs. They address

different needs, and correspond to different approaches in decision theory.

Random uncertainty

When the uncertain parameter is endowed with a probability distribution q, a natural

decision-theoretic framework is the one of expected utility as laid out by Von Neumann

and Morgenstern [53].



Recall that there are two levels of randomness. For a fixed MDP model m E

AM, the cost along a realized trajectory of the associated MDP under policy 7r is a

random variable with expectation denoted by Cm(rr). Utility-based decision theory

says that a controller with utility function u and subjective probability measure q

on the uncertain MDP model would choose a, policy 7r that maximizes his expected

utility. In this chapter, we restrict our attention to a risk-neutral decision-maker, that

is. with a utility function u(x) = x. Nonetheless, this work serves as a basis to analyze

other utility functions, in particular risk-averse criteria. Formally, the decision maker

solves

sup E qmCm(7r).
r mEM

Furthermore, observe that a decision-maker might be essentially risk-neutral with

respect to the trajectory realization but risk-averse with respect to the uncertain

parameters. For example, if the controller is interacting with a large population of

identical but independent systems, the randomness of the trajectory averages out but

the parametric uncertainty does not.

Worst-case uncertainty

In the tradition of robust continuous-time control and more recently robust opti-

miization [92], decision robustness is interpreted as a performance guarantee for the

worst-case parameter in the uncertainty set. In that case, the controller plays a, zero-

sum game with nature. As in most of the formulations considered in the literature,

nature observes the controller's policy when choosing the uncertain parameter. Thus,

the decision maker solves

inf mnax Cm(r). (2.2.1)
Sr mE•M

The worst-case formulation (2.2.1) relates to risk-averse decision theory through

theI recent, yet popular, notion of coherent risk measure [3]. In this framework the

controller seeks to minimize his risk over his available positions. Here, if the risk

is defined as the worst-case expectation over M, which is a coherent risk measure,



then (2.2.1) corresponds to a risk minimization problem. The notion of coherent risk

measures is motivated axiomatically and generalizes to some extent decision theory

based on expected utility. The reader should refer to Chapter 3 for more details.

Maximum regret

The last robust formulation that we consider is based on the maximum regret decision

theory introduced by Savage [79] as anl alternative to the utility-based theory. It also

offers a principled way to mitigate the potential conservativeness of the worst-case

approach mentioned above. Indeed, the worst-case formulation will only consider the

worst possible scenario and possibly behave very poorly in all other, more favorable,

cases, whereas the maximum regret formulation adjusts for the potential of each

scenario.

In our setting, the regret of a given policy in a certain environment is the difference

between the expected cost of the policy in that environment and the minimal cost

achievable in that environment if the controller knew which environment it was facing.

Let C* be the minimal cost for the MDP model m E M. Minimizing the worst-case

regret amounts to solving

inf max(Cm(7r) - C*).
7r mEM

As mentioned earlier, the advantage of this formulation compared to the worst-

case approach (2.2.1) is that it takes into account the intrinsic potential of a given

environment m through C,*. As a. result, the attention of the decision maker is not

restricted to the worst environment, but spans all the possible scenarios.

Why restrict the policy space?

History-dependent policies are studied (briefly) in Section 2.3, but the core of this

chapter is devoted to Markovian control of uncertain MDPs. When the time horizon

is infinite, we will further restrict our attention to stationary policies. There are

several motivations for giving up the opportunity to learn the unknown parameters

with history-dependent policies.



1. A history-dependent policy can be hard to compute and potentially impossible

to implement. The former point is formalized in Section 2.3, while the latter

relates to possible practical limitations or interests of the decision-maker. For

example, the past information available to the controller may be limited. In

a dynamic pricing problem, it might be hard or costly to adjust the prices,

whereas optimal history-dependent policies tend to take relatively large and

irregular actions (cf. p. 478 in [5]) .

2. The value of active learning is limited by the time needed to exploit new findings

or by the cost of gathering more information given a possibly extensive preex-

isting knowledge of the system. In these cases, stationary policies can perform

almost as well as history-dependent policies and are simpler.

The restriction of the policy space to deterministic policies can also be justified

in many contexts. For example, in social sciences where the controller interacts with

p)eoIple, deterministic policies can be better accepted since they are more predictable,

transparent, and fair.

2.3 History-dependent control of uncertain Markov

decision processes

In this section, the controller picks a policy in the set of history-dependent policies,

which is a very large decision set. For simplicity of exposition, we present the finite-

horizon case here, but most of the results presented in this section generalize to the

infinite horizon discounted and average cost problems.

Since the time horizon is finite, nature can in general choose the uncertain para-

meters independently for each time step, but her choice is fixed at the beginning of

the time horizon. Her choice is either random or adversarial, knowing the controller's

policy. In both cases, the controller has the opportunity to learn about nature's choice

and exploit new information by using a history-dependent policy.



The results of this section are summarized in Table 2.1. For conciseness, the proofs

are presented only for deterministic policies, but they extend readily to randomized

policies.

Besides, we do not study the case where there are a fixed number of uncertain

parameters in this section.

Uncertainty Randomn uncertainty Worst-case Maximum regret
General case PSPACE-hard PSPACE-hard PSPACE-hard

State-rectangularity NP-hard zero-suin Markov games ?

Table 2.1: Summary of the complexity of finite-horizon history-dependlent control of
uncertain MDPs

2.3.1 Random uncertainty

Here we assume that nature picks a scenario in a finite set M according to a distrib-

ution q known to the controller. However, the controller does not observe the chosen

scenario. A risk-neutral controller wants to solve

rmmin qmCm(). (2.3.1)
7rE nh,d

mEM

The case of general random uncertainty

When no assumption is made on the uncertainty distribution q, the active learning

problem (2.3.1) is a particular type of partially observable Markov decision process

(POMDP). The computational complexity of POMDP problems has been studied

first in [58] and then refined in [47], which delineates how the difficulty to represent

history-dependent policies affects the complexity of solving a POMDP. The analysis

of the former paper applies to our special type of POMDPs.

For our special type of POMDPs and a uniform distribution q over the set of

scenarios M (i.e., qm = 1/IMI), Papadimitriou and Tsitsiklis show in Theorem 6

of [58] that the PSPACE-complete quantified satisfiability problem (QSAT) can be



reduced to the finite horizon control problem. In addition, when the time horizon T

satisfies T < IXI, the problem is in PSPACE.

QSAT amounts to checking whether an expression 3xlVx 23... F(xl,...,x,) is

true, where F is a Boolean expression in conjunctive normal form with three literals

per clause. The reduction used in [58] builds a scenario for each logical clause of F

such that a history-dependent policy is mapped to a quantified logical assignment.

A clause is satisfied if and only if the policy achieves zero expected cost in the cor-

responding scenario. Otherwise, the controller pays a cost of 1. Consequently, F is

a "yes" instance of QSAT if and only there is a history-dependent policy achieving

zero expected cost.

It is clear that the problem remains PSPACE-hard even for the more general case

of a non-uniform distribution q.

Rectangular random uncertainty

Even when the probability distribution q of the uncertain scenario is state-rectangular,

the decision problem associated with (2.3.1) is not tractable. This result should be

contrasted with the case of worst-case control studied in Subsection 2.3.2.

First, observe that, even when the probability distribution q is state-rectangular,

the problenm (2.3.1) does not reduce to a standard MDP. Indeed, when the system

conmes back to a state x with uncertain parameter p(-; x, a), the uncertain parameter

is required to be the same since the uncertain parameters are sampled once at the

beginning of the time horizon. In particular, the uncertainty is not time-rectangular.

Theorem 2.3.1. The risk-neutral history-dependent (deterministic or not) finite-

horizon Markovian control of multiple MDPs under the state-rectangularity assump-

tion (cf. Definition 2.2.4), even with four states, is NP-hard.

Proof. We reduce the NP-complete problem DECISION TREE in [26] (p. 282) to

the control problem (2.3.1).

INSTANCE: Finite set M of hypotheses, collection T = {T 1,..., T, } of binary

tests, that is Ti : MA• {0, 1}, positive integer K.



R 0 0 T(x) = 0

S

S 1 T(x )= 1

Guess Test

Figure 2-1: The reduction of DECISION TREE to control of uncertain MDP by
history-dependent policies.

QUESTION: Is there a decision tree for M using the tests in T that has total

external path length K or less? The total external path length of a decision tree is

the sum over all leaves of the number of edges on the path from the root to the leaf.

Hence, it is MI times the expected number of questions from T to identify with

certainty a random, uniformly chosen element of M, according to a given decision

tree.

Given an instance of DECISION TREE, we build a four-state uncertain MDP

with IMI equiprobable scenarios (hypotheses) defined as follows. Let m E M be the

true scenario initially unknown to the controller. In the start node S, the controller

can choose a test, say T,,, u = 1,... , r, with a cost of 1, that leads him to state 0

if T,(m) = 0 and 1 otherwise, or make a guess y E M about the hypothesis he is

facing. If the guess is right, he moves at no cost to an absorbing state R; otherwise

lie pays a large cost C > IMIr and goes to state 1. From both states 0 and 1, the

system moves with certainty back to state S at no cost. The system is illustrated in

Figure 2-1. Observe that the dynamics are uncertain only out of state S. Therefore,

the uncertain parameter is state-rectangular, but not state-action-rectangular.

From the standard theory of POMDPs, deterministic history-dependent policies

are optimal, so that the result for randomized policies follows from the one for deter-

ministic policies. Hence, we assume that the controller can only pick a deterministic

policy.



Furthermore, it is sufficient to consider a horizon of length T = 2r + 1 since by that

time, the controller would have had the opportunity to use all the tests and identify

the right hypothesis. The expected cost of a deterministic policy, averaged over the

M41I possible scenarios, is less than or equal to r if the corresponding policy induces a

decision tree over AM. When a deterministic policy corresponds to a decision tree, its

expected cost is equal to 1/IMI times the total external path length of the associated

decision tree. As a result, there is a decision tree with external path length of K or

less if and only if there is a history-dependent deterministic policy for the uncertain

MDP described above that achieves an expected cost of K/jMI or less. O

2.3.2 Worst-case uncertainty

In this subsection, nature observes the controller's policy and picks the worst possible

parameter in the uncertainty set AM. Formally, the controller solves

inf max Cm(7r). (2.3.2)
7rEHh,r mEM

For general uncertainty set AM, checking whether the optimal value of (2.3.2) is

below a threshold is PSPACE-hard. Indeed, the aforementioned argument of [58]

generalizes straightforwardly to this problem, because the average of nonnegative

costs is zero if and only if their maximum is zero.

However, when the uncertainty set M is state-rectangular, Problem (2.3.2) re-

duces to a zero-sum sequential Markov game [82] (Recall that for finite-horizon prob-

lems, state-rectangularity implies time-rectangularity). These games have been ex-

tensively studied. For the finite-horizon and the infinite-horizon discounted cases,

Bellman-Shapley equations hold, deterministic Markovian policies are optimal, and

the value of the game can be computed by value iteration. As a result, the finite-

horizon control problem can be solved in polynomial time when the problem instance

comprises the description of the transition kernels at all times. The infinite-horizon

discounted case can be efficiently approximated by value iteration. These results hold



even though the uncertainty set is exponentially large in the instance's description

length when it is state-rectangular (cf. Remark 2.2.5).

The consequences of the equivalence between worst-case control with state-rectangular

uncertainty set and zero-sum Markov games will be studied in more detail in Subsec-

tion 2.4.3.

2.3.3 Worst-case regret

When the uncertainty set is general, the same argument as in the previous subsection

shows that minimizing the worst-case regret of an uncertain policy is PSPACE-hard.

Indeed, the minimal maximum regret achieved by a history-dependent policy in the

uncertain MDP defined in [58] is less than or equal to zero if and only if the corre-

sponding QSAT instance is satisfiable.

However, it is not clear whether rectangular uncertainty set makes the control

problem any easier, as it was the case for the worst-case performance, because the

connection with zero-sum Markov games does not hold when dealing with worst-case

regret.

We finally note that the analysis in this section can be adapted to the control

problem of minimizing expected regret, because it is equivalent to minimizing ex-

pected cost. When the random uncertainty is general, the problem is PSPACE-hard,

and when the uncertainty set is state-rectangular, the problem is at least NP-hard.

In this section, we analyzed the complexity of history-dependent control of uncer-

tain MDPs. When learning takes place, the control problems are intractable. These

results are little surprising since the decision set Ih,r is huge. As a result of this

analysis and of the motivations reviewed at the end of Section 2.2 for using simpler

policy space, we restrict the controller to pick Markovian policies in the rest of this

chapter.



2.4 Stationary control of uncertain MDPs: the

worst-case uncertainty

In contrast to the previous section on history-dependent control of uncertain MDPs,

the controller now has to select a Markovian policy. Moreover, the chosen Markovian

policy needs to be stationary when the time horizon is infinite. The controller wants

to minimize its cost, but nature knows the policy and chooses the worst possible

parameter in a given uncertainty set. Hence, for finite-horizon problems, the controller

solves

inf sup Cm(7r), (2.4.1)
7rEfIr.r mEM

and for infinite-horizon problems, it solves

inif sup Cm(7r). (2.4.2)
7rEHs,r mEM

The complexity of deciding whether the above infima are less than a threshold

is summarized in the following table, whether the controller uses deterministic or

randomized policies.

Uncertainty Finite-horizon Discounted cost Average cost
General NP-complete NP-complete NP-complete
2 MDPs NP-complete NP-complete NP-complete

State-rectangular Polynomial-time Markov game Markov game

Table 2.2: Summnary of the comp)lexity of Markovian control of uncertain MDPs in
the worst-case scenario

When the uncertainty set is state-rectangular, this problem can be cast as a zero-

sumn Markov gamie with perfect information, as observed recently in [54] and [38].

He(nce, the worst-case control of uncertain MDPs builds on a large literature on

Markov games, starting from the seminal paper by Shapley [82]. However, the previ-

ous works oni robust control of MDPs do not make clear the whole complexity picture.

When the uncertainty set is not rectangular for example when the uncertain paraime-

ters are collectively influenced by a possibly small number of causes. the worst-case



control problem is NP-complete.

2.4.1 General uncertainty

When the uncertainty set is general, Corollary 2 in [58] can be adapted to show that

the worst-case control of uncertain MDPs is NP-complete. The reduction is analogous

to the one used for the worst-case control with history-dependent policies.

Recall from the previous section that any instance of QSAT can be reduced to

the worst-case control of an MDP with history-dependent policies oi1 a finite-horizon.

Intuitively, each clause was mapped to an MDP model. A policy 7r achieving zero ex-

pected cost on a given MDP model corresponds to a satisfying quantified assignment

for which the dependencies of policy 7r on the history captures the dependencies of a

given Boolean variable on other variables in the satisfying assignment of the QSAT

instance. Here, we restrict the policy space to Markovian stationary policies which

cannot capture the variable quantification of QSAT instances. Nonetheless, QSAT in-

stances without universal quantifiers are instances of the satisfiability problem (SAT),

which is NP-complete.

Hence, the reduction of QSAT also reduces SAT to the worst-case control of

uncertain MDPs. To any SAT instance we can associate an uncertain MDP with one

scenario per clause, on which stationary deterministic policies map to a SAT variable

assignment. The expected cost of a stationary policy on a clause/scenario in this

reduction is zero if and only if the corresponding assignment of the boolean variables

makes this clause true. If the variable assignment associated with policy 7r does

not make a SAT clause true, the cost of 7r on the MDP scenario corresponding to the

unsatisfied clause is one. As a result, the minimal expected cost of a stationary policy

on the considered uncertain MDP is zero if and only the SAT instance is satisfiable.

This argument extends straightforwardly to randomized policies and the infinite-

horizon setting so that the finite-horizon, infinite-horizon discounted, and average

cost problems are all NP-complete under general uncertainty for both deterministic

and randomized control.



2.4.2 Only two possible MDP models

The result of previous subsection can be strengthened to apply to the case of a fixed

number of values for the uncertain parameter, even to the case of only two possible

parameter values.

Theorem 2.4.1. Even when there are only two possible values for the uncertain

parameter, deciding whether there is a deterministic or randomized Markovian and

stationary policy that achieves a worst-case infinite-horizon discounted or average cost

less than a threshold for an uncertain MDP is NP-complete.

Under the same condition, deciding whether there is a deterministic or randomized

Markovian policy that achieves a worst-case finite-horizon cost less than a threshold is

NP-hard. When the instance's description comprises one transition kernel per' stage,

it is NP-completc.

Proof. We will reduce the NP-complete problem PATH WITH FORBIDDEN PAIRS

([GT54], p. 203 in [26]) to the control problem of uncertain MDPs with only two

scenarios. The problem statement for PATH WITH FORBIDDEN PAIRS is as fol-

lows. Let G = (V, A) be a directed acyclic graph with specified vertices s, t E V. Let

v = Vi and a = A. Let K = { {el, e},... , {e, e'}} be a list of pairs of vertices

in V. The question is whether there exists a directed path from s to t in G that

contains at most one vertex from each pair in K (such a path will be called an ad-

mlissible path). This problem is NP-complete even when G has no nodes with in- or

out-degree exceeding 2 and the pairs in K are disjoint.

By a polynomial time preprocessing of the graph G, we can delete all nodes in V

that are not connected to the destination node t by a directed path. As a result, we

will assume that all nodes in V are connected to node t by a directed path. We will

also assume that there exists a directed path from s to ei for i = 1,..., n.

By another polynomial-time preprocessing of the constraint set K, we call check

whether there exists a directed path from ei to e' or conversely. If there is none, we

calln delete the constraint {ei, e'}. If there is a path, say from ei to e', there is no

reverse path since G is acyclic. Hence, we can assume without loss of generality that



the pairs in K are ordered so that the prime refers to the second vertex along G.

From an instance of PATH WITH FORBIDDEN PAIRS, we will build an uncer-

tain MDP whose cost will be zero if and only if there is an admissible path in the

graph G.

First, let us show that the infinite-horizon stationary control of an uncertain MDP

is NP-complete. Consider an uncertain MDP on the state space X = V U {e},

initialized at state s. The first MDP model, "Normal", is induced by the directed

graph G. From each node i E V, one can move to a child node of i at no cost. In

addition, at the first node ej of each constrained pair (es, e') E K, one can exit at

zero-cost to the absorbing state e. In state e, the system loops and incurs a cost of

1 per stage. In the reduction for worst-case discounted cost control, the destination

node t is zero-cost absorbing, while in the average cost problem, the system moves

with probability one and zero cost to state s.

The second MDP model "Test" is similar to the Normal MDP, but differs in three

ways. First, the system goes with zero cost and probability 1/n to each of the first

node ei of the constrained pairs in K. Second, when the system reaches the second

node eI of a constrained pair (ei, e') E K, it moves with probability one to the first

one, ej, and incurs a cost 1. Third, the recurring cost in node e is zero.

If there is an admissible path from the source s to the destination t, the policy 7r

that follows this path at the states on the path and exits to state e at the states out

of the path incurs a worst-case cost of zero.

Now, assume that there is no admissible path from s to t. Let Sr C V be the

set of states that are visited with positive probability in the Normal MDP under

the stationary Markovian policy 7r. A stationary policy ir that has zero worst-case

expected cost cannot use the action "exit" at any state in S,, because otherwise its

cost in the Normal MDP would be positive. Since G is acyclic, the set S, contains a

path from s to t. On the other hand, since we assumed that there is no admissible

path from s to t, this path hs to contain a forbidden pairl,say (el, e'). In the Test

MDP, the system starts by moving to state el with probability 1/n, will reach with

positive probability e' for some k (k could be different from 1), and incur a cost of 1



when moving from e' to ek. Hence, the expected cost of policy 7r is strictly positive

in the Test MDP.

This concludes the proof that the worst-case (average or a-discounted, 0 < a < 1)

cost of any stationary policy in our uncertain MDP is positive if there is no admissible

path. O)n the other hand, it is possible to check in polynomial-time whether a given

stationary policy has a zero worst-case cost. Hence, this problem is NP-complete.

We need to adapt the above reduction for infinite-horizon problemns in order to

deal with the worst-case control of uncertain MDP when the time horizon T is finite,

because we allow in this case non-stationary policies.

Now, in the Normal and Test MDPs, when the system is at the source state s and

a child node i is selected, it stays in state s with probability 1/2 and moves to i with

probability 1/2. Let tile time horizon T be IV[.

Assume that there is no constrained path from s to t. Consider a Markovian

p)olicy 7 achieving zero cost in the Normal MDP. With positive probability, the system

never loops during the time horizon in the Normal MDP. Since the policy 7 has zero

expected cost in the Normal MDP, it reaches the destination node t through both

nodes of a constrained pair, say (el, e,) E S,. Let T, E [1, T] U {+oo} be the random

time when the system arrives in state el in the Normal MDP under policy 7r, where

T, = +oo if el is not reached during [1, T]. Let t E [1, T] be the shortest time such

that T, = t with positive probability.

In the Test MDP, there is a positive probability that the system loops t - 1 times

in niode s, then moves to node el, and that afterwards the system never remains at

the same state for two consecutive times. In such cases, the system is in a situation

indistinguishable from the Normal MDP where the policy 7r does not use the action

'"exit". As a result, the system will eventually visit a state e' before time T - 1 and

incur at least a cost of 1 when moving from state e' to ek in the Test MDP.

Since one can check in polynomial time that a Markovian policy has zero cost

on a finite horizon (provided the instance description comprises a transition kernel

per stage), the worst-case control of uncertain MDPs over a finite time horizon is

NP-complete. []



Even when the uncertainty is only on the cost parameters, the deterministic worst-

case control of MDPs with only two parameter values is NP-complete.

Theorem 2.4.2. Even when there are only two possible values for the uncertain cost

parameter, deciding whether there is a deterministic Markovian policy that achieves

a worst-case finite-horizon, infinite-horizon discounted or average cost less than a

threshold for an uncertain MDP is NP-completc.

Proof. We reduce the NP-complete problem SHORTEST WEIGHT-CONSTRAINED

PATH ([ND30] in [26]) to the worst-case control problem.

INSTANCE: Directed graph G = (V, E), length l(e) E Z + and weight w(e) E Z + ,

specified vertices s, t E V, positive integers K, W.

QUESTION: Is there a simple path in G from s to t with total weight W or less

and total length K or less?

Let us start with the finite horizon version and let the horizon T = JVJ. Consider

two MDPs with state space V and initialized in s. From any node v E V, the controller

can pick an edge e E E starting from v and the system moves with probability one to

the child node. The first MDP cost is the natural length I and the other is the weight

w. When system reaches the zero-cost terminal node t, the controller incurs a cost of

-K or -W. We have a YES instance of the short weight-constrained path problem

if and only if the minimal worst-case cost of this finite horizon uncertain MDP is less

than 0.

To deal with the average cost problem, we let the system go from t to s with

probability one at no cost.

In both cases, one can check in polynomial time whether a stationary policy

achieves a cost less than a fixed bound. Therefore, these uncertain MDP control

problems are NP-complete.

This reduction can be adapted to uncertain a-discounted cost problems. Consider

a deterministic policy that defines a simple path from s to t but with a length exceed-

ing K. Then its length is at least (K+ 1) since all edge lengths are integer-valued, and

the corresponding discounted cost is at least a lvi (K + 1). Let us pick a discount factor



a close enough to one such that alVl(K+1) > K > aIVIK and alIV(L+1) > L > alVIL.

Then, there is a YES instance of the short weight-constrained path problemn if and

only if there is a deterministic policy with non-positive worst-case cost. O

This reduction using only cost uncertainty does not work with randomized policies;

in fact the problem becomes the well studied problem of constrained MDPs (cf. [2]

and references therein). Intuitively, when the dynamic structure of the MDP is certain

and randomized policies are allowed, the set of achievable steady-state probabilities

is described by a polyhedron, and multiple expected cost constraints can be handled

efficiently by linear programming.

2.4.3 Rectangular uncertainty

When the uncertainty set is state-rectangular, the worst-case control problem reduces

to a sequential zero-sum Markov game between the controller and nature. Hence, the

worst-case control of MDPs is "tractable," even though there are exponentially many

uncertain scenarios.

A sequential zero-sum Markov game is a zero-sum game between two players, one

trying to maximize an objective (the maximizer; here, nature) and the other trying to

minimize it (the minimizer; here, the controller). In our case, the sequence of events

in the gamne is as follows:

* At time t, the controller observes the system in state x E X and chooses an

action a E A(x).

* Nature observes (x, a) E XA and chooses a parameter p(-; x, a) in the uncer-

tainty set P(x), which determines the distribution of the new state y E X at

time t + 1 given (x, a).

* The new state and an associated immediate cost are realized according to

p(.;x,a).

This is equivalent to the situation where the controller chooses a non-stationary

Markovian policy 7r and nature chooses a non-stationary policy p such that the prob-



ability p(pix, a) of choosing parameter p in the state-action pair (x, a) depends only

on the current state-action pair. The objective in our case is the expected cost of the

policy 7r chosen by the controller, evaluated against the nature policy A.

For finite-horizon and infinite-horizon discounted cost problems, Shapley [82]

showed that the associated game has a value, i.e.

min maxCm(r) = max min Cm(ir).
7rEHh,, mEM mEM 7rEIh,r

For finite-horizon problems, the value V*(1, x) of the game initialized in state x

at time 1 can be computed by the recursion

V*(T, x) = mmin c(x, a), x E X,
aEA(x)

V*(t, x) = mm sup c(x, a) + p(y; x, a)V*(t + 1, y)] zE X, t=1,...,T-1.
aEA(x) p(.;x.a)EPr [yEX

For infinite-horizon discounted cost problem, the value of the game satisfies Shap-

ley's equations

V*(x) = min sup c(x, a) + Ep(y; x, a)V*(y) , x E X. (2.4.3)
aEA(x) p(;x,a)EPx yEX

The respective optimal policies for the controller and nature are the ones that achieve

the minimum and maximum in (2.4.3). They are deterministic Markovian (and sta-

tionary for infinite-horizon games) independently of the policy space Ih, 11m or I,

for the controller and nature.

The rest of this subsection looks in more detail into the structure of the zero-sum

Markov games associated with the worst-case control of uncertain MDPs. Although

we can state some insightful properties, the complexity picture of zero-sum sequential

Markov games is not completely clear yet.

For a state x E X, an action a E A(x), and a transition probability vector

p(-; x, ) E P,, define the mapping Tx,a,p from Rn to R by Tx,a,pV = c(x, a) +



a E,,x p(y; x, a)V(y). Define the operator T on RW by

(TV)(x) = mmin sup Tx,a,pV.
aEA(x) pEP.T

Shapley's equations state that the value of the game V* is a fixed point of the operator

T. We will also need the operator T,,, on R' defined for a fixed controller's policy 7r

afnld nature's policy y by

(Tr,/V)(x) -= r(a x) E /(p x,a)Tx,a,pV.
aEA(x) pEP-

The operator T is an a-contraction for the sup-norm on Rn.Hence, the value V*

is the unique fixed point of T in Rn. Moreover, the sequence (Vt) produced by the

value iteration algorithm, Vt+l = TVt, converges geometrically, at rate a, to V*, for

any starting point Vo0.

Although the sequence (Vt) usually keeps changing, we will see that the policy

that is greedy with respect to Vt becomes constant after a polynomial iumber of

iterations, for a fixed discount factor a E [0, 1).

Let 6 E N be the accuracy of the rational data, i.e., the smallest natural number

such that 6a and 6p(y; x, a) are integer-valued for all y, x, a.

Lemma 2.4.3. Assume that all immediate expected costs c(x, a) are integqer-valued

and that there exists 6 < +oo such that JmIax(x,a)EXA Ic(x, a) < •. Then there is a

smallest positive integer t* such that for all t > t*, TVt = T,,Vt implies TV*

T, ,V*. Furthermore, t* < i with

i= log 22n + alog(1/a)

Proof. The proof uses an analogous argumnent to Lemma 1 in [97]. It is reproduced

here (with a minor strengthening) for completeness and with an improved bound t.

Since T is an a-contraction for the sup-norm on Rn, after t = [log(e/|IVo -

V*jj )/log(a)] iterations, we will have ||Vt - V*I , : ý , for all e > 0. We will



conclude the proof by showing that when IIV - V* 1, < c with e < 1/(262n(1 + a)n),

a deterministic policy greedy with respect to V is optimal (in [97], the analogous

expression involves 1/(262nn n)).

When max(x,a)ExA I c(x, a) I < < +00, it is well-known that the value V* satisfies

IIV*I( <_ e/(1-a). The bound i is obtained by replacing IIVo-V*[[K in the previously

obtained bound [log(E/I Vo - V* I,)/ log(a)] by IVoIl1c + e/(1 - a).

Let 7r* and /z* be respectively optimal deterministic stationary policies for the

controller and nature, which induce a Markov chain on X with a transition probability

matrix denoted by Q. The game value V* satisfies V* = [262(1 - aQ)]-lc, where

62(1 - aQ) is a n x n matrix with integer-valued entries. By Cramer's rule, its inverse

is a rational matrix with a maximum denominator equal to the det[62 (I - aQ)] =

62n det(I - aQ). Denote X = det(I - aQ)I N/6 2n, the absolute the value of the

determinant of (I - aQ). We can write V*(x) = 52 W(x)/(62nX), where W E Z is

integer-valued.

If x E X, a E A(x) and p(-; x, a) E Px,a are such that Tx,a,p(.;x,a)V* # V*(x), then

Tx,a,p(-;x,a)V* = c(x, a) + a E p(y; x, a) V*(y)
yEX

c(x, a)62nX + a •-Ex p(y; x, a) 2W(y) 62W(x) V
62n = V*(X

The numerators are integer-valued. Consequently, the two fractions differ by at least

1/(62nx).

Since Q is a stochastic matrix, the magnitude of its eigenvalues is less than or

equal to one by Perron-Frobenius theory. Hence, X < (1 + a)n. As a result, the

condition jIVt - V*||, • 1/262n(1 + al)n implies that |IVt - V*J1K < 1/26 2nX. For

the sake of contradiction, assume there is a deterministic policy that is greedy with

respect to Vt with t > t and that is not optimal. It follows that we have for some x, a

and p(-; x, a) that Tx,a,p(.;x,a)V* # V*(x), and the difference is at least 1/6 2nX . Since

t > t, we showed at the beginning of the proof that JIVt - V*Ilo, 1/(262n(1 + a)n).



Then we have the following contradiction:

ITX,a,p(-;x,a)Vt - V*(x) Z = a Ep(y; x, a)(Vt(y) - V*(y)) + Tx,a,p(-;x,a)V* - V*(x)I
yEX

STx,a,p(.;x,,a)V* - V*(x)l - 11 p(y;x,a)(Vt(y)- V*(y))I
yEX

> 162"X - 1/2j2nX

Ž 1/262n

> |Vt - V*||oo

But, since T is a contraction, ITVt(x) - V*(x)l < aIIVt - V* l,. This concludes the

proof. O

The expression for t should be compared to the instance description length, which

is O(rn2 log 6). Hence, when a is fixed, an optimal policy for the controller and nature

can be computed in polynomial-time. By fixing these policies, the Markov game

b)econmes a Markov chain for which we can compute in polynomial time the exp)ected

cost by solving a system of linear equations (cf. Subsection 2.2.1). However, the

complexity of zero-sum sequential Markov game is still unknown when the discount

factor a is free.

Sequential gaines under an average-cost criterion are more subtle than discounted

ganmes, and a comprehensive analysis of these games is beyond the scope of this

dissertation. In some cases, they have a value that satisfies an average-cost Shapley

equation, but there are many caveats and pitfalls. In any case, average-cost games

cannot be easier than a-discounted games since we can reformulate the latter into

the former by a well-known random restart procedure (e.g., p. 5 in [20]).

In this section, we established that most worst-case formulations are NP-hard.

When the uncertainty set is state-rectangular, the worst-case formulation is equiva-

lent to a zero-sum Markov game between controller and nature. These game enjoy

attractive structural properties such as Shapley's equations and coinputational al-

gorithins such as value iteration, which makes this formulation for the control of



uncertain MDPs appealing.

2.5 Stationary control of uncertain MDPs: the

case of random uncertainty

In this section, we assume that the uncertain transition kernel P E P is sampled

according to a known distribution q. However, the realization of the uncertain para-

meter P E P is not observed by the controller, who wants to minimize his expected

cost over the uncertain parameters. For finite-horizon problems, the controller solves

inf 1 qmCm(.7), (2.5.1)
7rEr mEM

and for infinite-horizon problems it solves

inf E qmCm(ir). (2.5.2)
TrI.. MEM

We study the complexity of deciding whether the above infima are below a given

threshold for a general uncertainty set and for a fixed number of scenarios. Inspired

by the positive results for the worst-case control with rectangular uncertainty, we also

investigate the case of random rectangular uncertainty.

Our findings are summarized in the following table, for the case where the con-

troller uses deterministic or randomized policies.

When the uncertainty set is state-rectangular, even policy evaluation is NP-hard.

Uncertainty type Finite-horizon Discounted cost Average cost
General NP-complete NP-complete NP-complete
2 MDPs NP-complete NP-complete NP-complete

State(-action) rectangular NP-hard NP-hard NP-hard

Table 2.3: Summary of the complexity of Markovian control of the average perfor-
mance of uncertain MDPs

However, in the case where the uncertainty set is state-rectangular and that the



system does not come back to already left states, we prove that modified Bellman's

equations hold and yield an optimal deterministic or randomized policy.

2.5.1 General uncertainty

When the uncertainty set is general and qm = 1/11MI, Corollary 2 in [58] shows that

the control of uncertain MDP with random uncertainty (2.5.2) is NP-complete.

2.5.2 Only two possible MDP models

The stationary control of an uncertain MDP with random uncertainty is NP-complete,

even when there are only two possible scenarios.

Theorem 2.5.1. Even when there are only two possible parameter values in an uncer-

tain MDP, deciding whether there is a deteraministic or rando'mized stationary policy

that achieves an expected cost less than a threshold is NP-complete for the infinite-

horizon discounted and average cost problems.

Under the same conditions, deciding whether there is a Markovian policy that

achieves a finite-horizon expected cost less than a threshold is NP-complete.

Proof. The proof is an immediate adaptation of the proof of Theorem 2.4.1 since the

maximum of two non-negative costs is zero if and only if their average is zero. O

2.5.3 Rectangular uncertainty

When the random uncertainty is state-action rectangular, the evaluation of a station-

ary policy is NP-hard. But it is not known to be in NP when the uncertainty set is

state-rectangular (or state-action rectangular), and therefore, exponentially large in

the instance's description length.

Theorem 2.5.2. When the random uncertainty is state- (or state-action-) rectangu-

lar. deciding whether a given, deterministic or randomized, stationary policy achieves

an expected cost lower than a given threshold is NP-hard for the finite horizon case,

the irnfinite horizon discounted and average cost case.



Procof. This proof uses a reduction from NETWORK RELIABILITY, which is NP-

hard [26]. The corresponding uncertainty set is state- and state-action-rectangular so

that the two corresponding control problems are NP-hard.

The statement of NETWORK RELIABILITY is as follow.

INSTANCE: Undirected graph G = (V, E), two vertices s, t E V, a rational failure

probability p(e) E [0, 1] for each edge e E E, a positive rational number q _ 1. Let

v = IVI and m = |El.

QUESTION: Assuming edge failures are independent of one another, is the prob-

ability that there is at least one path from s to t containing no failed edge larger than

or equal to q?

With an instance of this problem, let us associate the uncertain MDP with states

V and initial state s. At; each state v E V - {t}, the system is reset to s with

probability p E (0, 1), or an edge e = (v, v') is picked randomly uniformly at no cost.

If the edge e is not failed, the system moves with probability one to v'; otherwise the

system is reset to s. When the system reaches t, it occurs a cost of 1 and is absorbed.

A scenario is defined by the status of all edges. Since failures occur independently,

this induces a state- (and state-action-) rectangular uncertainty.

Let us start with the analysis of the average cost problem. Here, there is a

recurring cost of one in state t. If there is a simple path containing no failed edge

from s to t, the system will eventually reach t. Hence, the average cost in such a

scenario is 1. If there is no path between s and t, the cost is zero. Hence, the average

cost over all scenarios will be greater than or equal to q if and only if the probability

that there is a path from s to t without failed edge is greater than or equal to q.

The finite horizon and infinite horizon discounted cases require a finer analysis.

Let N be the random number of transitions starting from s before t is reached. When

there is no simple path from s to t without a failed edge, N = +o00 with probability

one and the expected cost is zero.

Now, consider a case where there is a path from a to t without a failed edge.

Starting from any state that is connected to state t, a path leading to t is followed

with probability at least p = (1 - p)"V(1/m)v -l. Indeed, there is such a path of



length less than v, and the correct edge is selected each time independently with

probability at least 1/m. Moreover, P(N > kv) 5 (1 - p)k for k _> 1. Since the

system starts from state s, which we assumed connected to t, all the states on the

trajectory are also connected to t. Hence, considering the trajectory on the time

intervals (rv, (r + 1)v), r = O,..., k - 1, we have P(N > kv) < (1 - p)k, and

P(N > kv) -- 0 as k -- +oo.

Let 6 be the product of the denominators of p(e) for all edges e E E, and let q

be the largest rational with denominator 6 that is less than q, q > q. Choose the

time horizon length T = kv with k the smallest integer such that (1 - p)kpk-l <

niax(q - q, 1/6). Such a time horizon T is polynomial.

If the equality q = q holds, the expecte(t cost incurred by the system on the

horizon T is at least q - 1/6 if and only if the probability that there is a path from

s to t without failed edge is at least q. Similarly, if q > q, the expected cost incurred

by the system on the horizon T is at least q if and only if the probability that there

is a path from s to t without failed edge is at least q.

Now, let us deal with the infinite horizon discounted cost problem with discount

factor a E [0, 1). When a path exists, the expectation E[aN ] goes to one from below

as a --+ 1. Choosing a close enough to one so that 1 - E[aN] < max(q - q, 1/6) yields

a statement analogous to the finite horizon case. O

A tractable special case under rectangular random uncertainty

As we observed in Subsection 2.3.1, an uncertain MDP with state-rectangular random

uncertainty does not reduce to an MDP because the system may come back to states

visited earlier. When the trajectory of the system does not come back to states that

have already been left (but loops are allowed), an uncertain MDP with rectangular

uncertainty is tractable. This situation will illustrate a context where randomization

can improve the controller's performance, in contrast to the optimal control of known

MDPs.

Proposition 2.5.3. Assume that the expected immediate cost of all transitions is

bounded uniformly by B and that the random uncertainty's probability distribution q



is state-rectangular, i.e., the uncertain parameters (p(-; x, ), c(x, -)) at state x E X

take value (pk(*; x, '), Ck(X,')) with probability qx(k) for k = 1,... , K(x), indepen-

dently of the value of the uncertain parameters at other states. Let p (y; x)

ZaEA(x) Tr(alz)pk(y; x, a) and ck.(x) = aEA(x) 7(alx)ck(x, a, y) be respectively the

probability of moving to state y and the immediate cost, given that the system is

in state x under a stationary policy 7r E Hs,r and the kth uncertain parameter in state

x is realized.

If in all scenarios and under all policies the system does not come back to states

that have already been left, i.e., 7r E Hr, X' (t) # xr (t + 1) = Xs (T) x7 (t), VT > t

with probability one, then the .following holds:

(a) The expected cost V' (x) = E[E-t>1 atc(t) zx(O) = x] incurred by a controller

following a stationary policy 7r E Is,r, starting from state x E X, is the unique

solution of the modified Bellman's equations

K(x) (y;)
V'(x) = qx(k) ['(x) + ) V(y) , x e X.

k=1k y-x

(2.5.3)

(b) For all states x E X, the optimal expected cost V*(x) = infEnH, V (x) satisfies

the modified Bellman's equations

K(x) 1 [ x - (y; X)

V*(x) = inf q(k) '() + a p (; ) V*() , X.
r(.I =l yIx)a ( , )

(2.5.4)

(c) The stationary policy that uses the randomization that achieves the minimum

in (2.5.4) is optimal among the stationary Markovian policies.

Similarly, the deterministic stationary policy that achieves the minimum over

the action choice in Bellman equations (2.5.4) is optimal among the determin-

istic stationary policies.

Proof. First, let us make some preliminary observations.



Let F = (X, S) be the directed graph on the state space. The set of edges S

contains all the directed pairs of states (x, y) such that there is a model m E M and

an action a E A(x) leading from x to y with positive probability in model m, i.e.,

S= {(x, y) E X 2 I3m E M, a E A(x) : pm(y; x, a) > 0}.

Under the proposition's assumptions, it is easy to see that the directed graph F

cannot contain loops of length more than one. Aside from possible loops from one

state to itself, the graph F is essentially acyclic. As a result, it is possible to index the

states by integers such that the state index increases along the system trajectories

with probability one.

Since all the costs are bounded by B < +oo and the discount factor a satisfies

0 < a < 1, all the expectations appearing in the proposition are well-defined and

finite.

(a) Let us fix a stationary policy r E Is,r,. By conditioning on the uncertain model

parameter in state x, we have V7(x) = EK qx(k)E[Et>l ac'(t) I x(0) = x, k].

If the state x is not a leaf node under policy r and uncertain parameter k E K(x),

i.e., pg(x; x) < 1, let T~x > 0 be the random number of loops in state x before the

system moves to another state. Observe that the random variable Tý, is geometrically

distributed, i.e., P(T~,x = t) = p(x; x)t(1 - p (x; x)), and hence "memoryless".

Furthermore,

E at = E 1-
1--Oat=0

1 -ap (x; x)'

and

E atc (t) = c (x) 1t=0 1 - apr(x; x)

Given k, the random new state Y visited after state x is y, with probability

p •(y; x)/(1 - p (x; x)), independently of Tx

If the state x is absorbing under policy r and parameter k, i.e., p (x; x) = 1, then



T, = +oo with probability one, and there is no node subsequently visited. In this

case, we let px)= 0, for y h x.

By the law of iterated expectations, we have

K(x) Tk.: -
V (x) = - qx(k) E c'(t) Iz(0) = x, k + E c r(t ) zx(O) = x,k

k=1 t=Ot>.x

-Ztx) ( p E ) k atc(t) + [(O)Z=,k,Y=yK(x)
= qx(k) c l (x)_k(+; 1 E l)p) E  atc( t) () , k, Yk,• -ap1 1 x (1 p,(X) ,), y

k= kl yOX E t

K(x) + (y;)

= qx(k) l •( Xc)+) E atc'(t) Iz(0)Y = .

The last equality follows from the rectangularity of the uncertain parameter dis-

tribution and the Markov property of the system trajectory given each parameter

value.

This establishes that the Bellman's equations (2.5.3) hold for any fixed stationary

policy 7r E IIl,r.

(b-c) By induction on the states in the order of decreasing index, there is a unique

solution V* to the Bellman's equations (2.5.4). Furthermore, using Equation (2.5.3),

it follows that a stationary policy, which is greedy with respect to V* is optimal

among the stationary policies.

A similar argument takes care of deterministic pIolicies. O

In contrast to standard dynamic programming, the optimal policy might be strictly

randomized as illustrated in the following example. Consider an uncertain MDP with

three states: one starting node S and the two absorbing ones E and G with zero cost.

The controller chooses either action NM, which leads with certainty and no cost to

state E, or choose action M. Under action M, it is uncertain whether the system will

stay in S with a cost of 1 (scenario 1) or move to state G with a cost of -2 (scenario

2). The model is illustrated in Figure 2-2. The controller thinks that both models are



equally likely and needs to pick a stationary policy to minimize its discounted cost

with a = 0.8.

M: -2

NM: 0

Scenario 2:

Figure 2-2: Simple problem where the optimal stationary policy is randomized.

The value function in E and G are both zero, i.e., V*(E) = V*(G) = 0. Let 7r E

[0, 1] be the probability of choosing M in S. The Bellman equation from Proposition

2.5.3 for state S becomes

1 x7r
V*(S) = min - - -7r

r[0,11j 2 1 - air

The policy that never mails has an expected cost of 0, whereas the policy that

always mails has an expected cost of 1.5. The optimal stationary policy corresponds

to w* = 2 0.3611 and yields an expected cost of -0.1072, which is better

than both deterministic policies.

In this section, we established that most formulations for the control of uncertain

MDPs are at least NP-hard, with the exception of a special case where the principle

of optimality is preserved.

1

G

M:

NM: 0

E SceInario 1:



2.6 Stationary control of uncertain MDPs: the

worst-case regret case

In this section, the controller minimizes its worst-case regret, namely for finite-horizon

problems, it solves

inif sup [Cm(ir) - Cm(lr*(m))], (2.6.1)
7rEIm.r mEM

and for infinite-horizon problems, it solves

inf sup [Cm(7r) - Cm(7*(m))], (2.6.2)
7r Cfls.r mEM

where 7r*(m) is an optimal policy when scenario m is known to have occurred.

We analyze the complexity of deciding whether these infima are below a given

threshold. Our results in this section are summarized in the following table, when the

controller uses either deterministic or randomized policies. But the question whether

rectangular uncertainty sets makes the worst-case regret minimization problem easier

to solve remains open.

Uncertainty type Finite-horizon Discounted cost Average cost
General NP-complete NP-complete NP-complete
2 MDPs NP-complete NP-complete NP-complete

Table 2.4: Summary of the complexity of worst-case regret control

2.6.1 General uncertainty set

When the uncertainty set is general, the argument of Subsection 2.4.1 showing that

the worst-case control of uncertain MDPs is NP-complete can be tailored to uncertain

MDP control problems based on worst-case regret. The finite-horizon and infinite-

horizon discounted and average cost problems are NP-complete whether the controller

uses randomized or deterministic policies.



2.6.2 Two possible MDP models

Even when there are only two possible scenarios, the robust control formulations

based on worst-case regret are NP-complete.

Theorem 2.6.1. Even when there are only two possible parameter values for an

uncertain MDP, deciding whether there is a deterministic or rundomized stationary

policy that achieves a worst-case regret less than a threshold is NP-complete for the

infinite horizon discounted and average cost problems.

Under the same conditions, deciding whether there is a Markovian policy that

achieves a finite-horizon worst-case regret less than a threshold is NP-complete.

Proof. The proof is an immediate adaptation of the proof of Theorem 2.4.1. Indeed,

if the controller knows whether it is facing MDP Normal or Test, it can achieve zero

cost. Hence, the worst-case regret is equal to the worst-case cost in the reduction

used in the proof of Theorem 2.4.1. O

Even when the uncertainty is only on the cost parameter, the deterministic control

problemL is NP-complete.

Theorem 2.6.2. Even when there are only two possible values for the uncertain cost

parameter (and no uncertainty on the MDP dynamics P), deciding whether there is

a deterministic Markovian policy that achieves a worst-case regret on an uncertain

MDP less than a given threshold is NP-complete in the finite horizon case, infinite

horizon discounted, and average cost cases.

Prvof. First, we will reduce the NP-complete PARTITION problem (Problem [SP12],

1). 223 in [26]) to a finite horizon worst-case regret problem.

INSTANCE: Finite set A and size s(a) E N for each a E A.

PROBLEM: Is there a subset A' C A such that aEA' s(a) = -aEA-A' s(a) -

K/2, where K = aEA s(a)?
Given a partition instance defined as above with A = {al,... ,a,}, let the time

horizon be T = n and construct an uncertain MDP with n + 1 states as illustrated

in Figure 2-3. There is one state per element in A, also noted ai, with two available



actions S (element ai Selected in A') or NS (ai Not Selected), plus a terminal state

t. The system starts in state al. Under any of the two actions S or NS, the system

moves from state ai, i = 1,..., n- 1 to state ai+l and from an to t. Any deterministic

stationary policy r defines a set A' C A by {a E A I 7r(a) = S}.

Figure 2-3: An illustration of the reduction of PARTITION with four elements to
regret-based control of an uncertain MDP.

There are two possible MDP models. The first one has cost 0 under action NS

and cost s(a) when taken in state a. In the second cost model, we exchange the role

of the actions S and NS.

When the cost parameters are known to the controller, the optimal cost is al-

ways zero. Therefore, the worst-case regret is equal to the worst-case cost, which is

max {CaEA' s(a), ZaEA-A' s(a)} Hence, the maximum regret of a deterministic sta-

tionary policy is less than or equal to K/2 if and only if the associated set A' satisfies

ZaEA' s(a) = -aEA-A' s(a).

This argument can easily be adapted to infinite-horizon discounted cost and av-

erage cost problems. [

2.7 Conclusion

In this chapter, we classified several formulations for the optimal control of uncertain

MDPs into the computational complexity hierarchy. In particular, we identified those

that are solvable deterministically in polynomial time (in P), non-deterministically in

polynomial time (in NP), and in polynomial space PSPACE. By studying different

variations of the optimal control problems, we could pinpoint more accurately the

source of complexity. Our results are summarized in Tables 2.1, 2.2, 2.3, and 2.6.

Most of the problems we considered are at least NP-hard. As a general rule of

thumb, a problem is intractable as soon as the principle of optimality of dynamic



progranmming is lost.

Our findings shed some light on the modeling of uncertain MDPs. In the ab-

sence of strong motivation for coping with the complexity of harder models, the more

tractable models bring the advantage of being colnputationally amenable, while cap-

turing uncertainty. For example, the worst-case control of uncertain MDPs with

rectangular uncertainty sets is a convenient model. On the downside, it can yield

conservative controls.

The complexity of some problems remains unknown, including:

* the control of uncertain MDPs by history-dependent policies when the uncer-

tainty set has only two (or a fixed number of) elements,

* the control of uncertain MDPs with random state-action-rectangular uncer-

tainty by history-dependent policies,

* the worst-case control of infinite-horizon MDPs with rectangular uncertainty

(or equivalently zero-sum sequential Markov games) when the objective is the

expected average cost or discounted cost,

* the worst-case regret minimization when the uncertainty is state-rectangular

or state-action-rectangular, either when the controller uses history-dependent

policies, or only Markovian policies.





Chapter 3

Risk-averse and robust control of

Markov Decision Processes

3.1 Introduction

3.1.1 MDP control background and motivations

Markov Decision Processes (MDPs) [12] have been extensively studied in the con-

trol and operations research literature. They model decision making processes in

discrete-time stochastic dynamical systems where the controller has the opportunity

to reevaluate his decisions as information is revealed. MDPs have been used in many

operational applications such as inventory control [94], pricing [59], network routing,

c:ustomized marketing [86], and more.

Still, some important limitations hinder the applicability of MDP models. MDP

mIodels generally focus on the expected performance of a system in spite of the strong

interest in risk-sensitive decision making, because the latter is theoretically and com-

putationally challenging. Only exponential utility maximization has been identified

to yield a tractable risk-sensitive control problem [36, 61].

Another important limitation to the outreach of MDP models in real-world ap-

pllications is the sensitivity of the recommended policies on the input parameters

together with the difficulty to accurately specify the parameters of these models.



Similar concerns have already been raised in the context of continuous-time control

and more recently optimization (e.g., [92, 93, 90, 91, 27, 28, 15]). When dealing with

MDPs, one needs to specify the distribution of random costs and state transitions,

and there are typically many such parameters. Oftentimes, the parameters are es-

timated from data, for example system behaviors observed in the past, resulting in

uncertainty about their values. These challenges raise the problem of making the so-

lution of an MDP robust to uncertainty in its parameters, so that the recommended

policies perform well in practice.

In this chapter, we will address the two aforementioned challenges to the nor-

mative application of MDP models in practice. On the one hand, we will propose

a risk-sensitive framework for making decisions in an MDP that is computationally

tractable. On the other hand, we will introduce a new formulation for robust control

of an MDP, which is motivated from the perspective of risk-based decision theory and

which is computationally tractable.

3.1.2 Literature review

Before getting into the details of our contributions, let us review (not exhaustively)

three streams of research relevant to our work, namely utility-based risk-sensitive

MDP control, multi-period convex risk measures, and worst-case control of MDPs.

Risk-sensitive control of MDPs, based on expected utility maximization, has

been introduced in the seminal paper of Howard and Matheson [36], which minimizes

the expectation of the exponential of the undiscounted sample cost of terminating

MDPs. Recently, the same problem has been analyzed more comprehensively in [61].

Under some general assumptions, structural properties of the optimal solution are

established and algorithms to compute the optimal expected utility and an optimal

policy are provided. Also assuming an exponential utility function, the papers [74, 34]

rely on Donsker-Varadhan large deviation results to study the average cost problem.

They establish the equivalence of the risk-sensitive average cost problem with a related

zero-sum game. The reader can refer to the review [46] for more details and references.

Considering discounted cost, Coraluppi and Marcus [18] relate the high-risk limit



of the risk-sensitive control problem to a zero-sum game. Such games enjoy nice

structural properties and are computationally "tractable" [82]. Although exponential

utility maximization in an MDP often amounts to solving a zero-sum sequential game,

not all worst-case control problems can be interpreted in terms of a risk-sensitive

control problem with exponential utility function. Besides, when general utilities

are considered, Bellman's principle of optimality is lost on the original state space.

Sometimes, the addition of continuous state variables allows the minimization of non-

exponential utilities, but the computational complexity of the risk-sensitive MDP

control problem increases significantly.

The notion of a coherent or convex risk measure [3, 25] captures the prefer-

ences of a decision maker over positions with uncertain outcomes (and not only the

position's "variability"). Convex risk measures lead to a different approach to risk-

sensitive control than expected utility theory, and the present work will build on that

concept. The axiomatic definition of coherent and convex risk measures is now widely

accepted in the financial literature. The key property of convex risk measures is that

they can be represented as worst-case penalized expectations. As a result, minimizing

such risk measures amounts to solving a zero-sum game between the decision maker

and nature. Originally introduced for single-period positions, coherent risk measures

have been extended to multi-period settings, e.g., in [67, 4, 72, 76, 22]. The work [4]

takes a different perspective than the other papers and our work. Intuitively, its au-

thors map a discrete-time stochastic process to a random variable for which they can

use single-period coherent risk measures. Hence, the coherence assumption for the

multi-period risk measure has a meaning unique to their approach. Interestingly, they

assess the risk of a trajectory, and not only the risk of a final pay-off, and they derive

"Bellman's equations" for some notion of conditional risk. In contrast, [67, 72, 22]

require the risk measure to have an inter-temporal property: dynamic consistency. A

multi-period risk measure is dynamically consistent as information is revealed, in the

sense that if a position is acceptable at time t + 1 for any possible new information,

then it must be acceptable at time t. We will also require this dynamrnic consistency

condition to hold. The papers [67, 72] independently established a representation re-



sult for dynamically consistent coherent risk measures over a finite sample space and

a finite time horizon. The former reference did not study any control setting, while

the latter found a risk minimizing hedging strategy for a financial portfolio as an

application. This optimal hedging problem corresponds to a limited control setting,

where the decision maker does not influence the uncertain outcome, but the authors

proved that "Bellman equations" hold for that example. Reference [22] extended

these two papers from coherent to convex multi-period risk measures. More recently,

[76] generalized further the representation theorem to general functional spaces - al-

though they consider only finitely many time periods- and showed that minimizing

dynamically consistent convex risk measure amounts to solving a dynamic zero-sum

game between the controller and nature. This last paper has the most overlap with

our work in Section 3.2 but it came to our knowledge only at the time of finalizing

this dissertation: it provides a more general representation theorem than the one we

derived independently; but it does not mention the dynamic consistency condition

on risk measures because it only considers risk measures that are obtained by the

composition of a finite number of coherent "conditional risk mappings," which are

dynamically consistent and coherent by construction. In contrast, we show that "Bell-

man's equations" hold for dynamically consistent convex risk measures, even in the

case of an infinite time horizon. Most important, our work differs from the literature

by the introduction of the notion of Markovian risk measures. It allows us to exploit

the state as a "sufficient statistics" in theoretical and computational results (notably,

it allows us to tackle infinite horizon problems). Moreover, the notion of Markovian

risk measures allows us to push further the correspondence between risk minimization

and zero-sum games against nature since dynamically consistent Markovian convex

risk measures can be minimized by solving a Markov game between the controller

and nature.

Worst-case control of MDPs. In the control literature, it has long been known

that the optimal policy and the optimal expected cost of an MDP is quite sensitive to

parameter variations in practice. For recent illustrations of this observation by sim-

ulation examples, see e.g., [44, 86, 54, 38]. To mitigate this problem, the controller



can try to minimize the cost associated with the worst-case parameters within some

given uncertainty set. In the case of "rectangular uncertainty set" and finite-horizon

cost or infinite-horizon discounted cost, this problem has been addressed by Satia and

Lave [78], Nilim and El Ghaoui [54] and Iyengar [38]. Under their assumptions, the

robust optimal control problem is a zero-sum sequential Markov game [82] between

the controller and an adversary (say, nature) that chooses the value of the uncertain

parameters. As a result, the controller and nature can select a deterministic Markov-

ian policy without loss of optimality. In addition, when the time horizon is infinite,

the optimal policies can be chosen stationary. This approach not only yields policies

with strong worst-case performance guarantees, but such policies can be computed

with little extra effort relative to the nominal problem for many interesting uncer-

tainty sets. However, the rectangularity assumption is potentially very conservative.

Another criticism is that the decision-theoretic foundation of the worst-case optimal

control formulation has not been investigated for MDPs, despite some analogies with

the mnultiple recursive priors from economic theory [24, 99].

3.1.3 Chapter contributions

In order of exposition, this chapter makes the following contributions.

1. We introduce and motivate the notion of a Markovian multi-period risk measure

in Subsection 3.3.3 and consider the problem of minimizing a Markovian dy-

namically consistent convex risk measure of the sample cost, over all Markovian

randomized policies. We prove that under mild assumptions a risk-mininmizing

policy can be selected to be deterministic Markovian for finite horizon problems

(cf. Theorem 3.4.3), or deterministic Markovian and stationary for infinite hori-

zon problems (cf. Theorems 3.5.2 and 3.5.6). With our definition of Markovian

risk, an optimal policy can be computed efficiently by classical dynamic pro-

gramnming techniques such as value iteration, even when the time horizon is

infinite. Moreover, we show that a dynamically consistent Markovian convex

risk measure of the sample cost can be minimized by solving a certain zero-sum



sequential Markov game between the decision maker and nature.

2. In Section 3.6, we point out that the robust control of uncertain MDPs proposed

in [38, 54, 78] amounts to minimizing a multi-period coherent risk measure of

the sample cost. This insight justifies from a decision-theoretic perspective this

robust formulation of MDP control with rectangular uncertainty sets. When the

uncertainty sets are not state-rectangular, we illustrate that the optimal robust

controls can be dynamically inconsistent, in addition to being computationally

intractable as we showed in Chapter 2.

3. The same connection allows us to motivate a new robust formulation that is

also a sequential Markov game under some natural assumptions. Nature still

picks the worse parameter but she has to pay a penalty for using "unlikely" pa-

rameters. Such a formulation has the potential to mitigate the conservativeness

of the (classic) worst-case formulation of [78, 54, 38].

4. Finally, we show how to build a multi-period risk measure that is dynamically

consistent, Markovian and convex starting from single-period convex risk nmea-

sures. For example, we can construct a natural extension of the single-period

conditional value at risk (CVaR,) to a multi-period setting, whereas the naive

application of CVaR to multi-period problems yields a dynamically inconsistent

risk measure.

3.1.4 Chapter structure

We begin in Section 3.2 with a review of single-period coherent and convex risk

measures. In Section 3.3, we describe a discrete-time model of controlled stochastic

dynamical systems, and define dynamically consistent and Markovian risk measures.

Section 3.4 deals with the minimization of a Markovian dynamically consistent convex

risk measure over a finite horizon, whereas Section 3.5 deals with the infinite horizon

case. Finally, Section 3.6 introduces a new formulation of the robust control of an

MDP, which amounts to minimizing a convex risk measure, and show how to construct



Markovian dynamically consistent convex risk measures from single-period ones.

3.2 Convex and coherent risk measures

This section reviews in a unified manner existing work on single-period coherent

and convex risk measures. This notion of risk captures more than the variability

of positions with uncertain outcome: it also defines an order of preference on these

positions. We will show that the axiomatically defined notion of a convex risk measure

is equivalent to a worst-case penalized expectation. Therefore, minimizing a convex

risk measure is equivalent to solving a zero-sum game between the decision maker

and nature.

Let Q be a sample space endowed with a ca-algebra F, and let /- he a prob-

ability measure on (Q, F). We let L1 (Q, F, /[) be the vector space of measurable

integrable real-valued functions. We define 11(f) - f If dA, which is the l1-norm of

f E L'( , F, /), and 1, which is the p-norm on LP(Q, F, /). The non-negative ele-

ments f of LP(Q, F, p), 1 < p 5 cc, such that f fdi = 1, will sometimes be viewed

is probability measures on (Q, F), absolutely continuous with respect to p.

Let (7-t, 1) be a normed vector space whose elements are functions from Q into R

and containing the constants. For X, Y E R7-, we write X < Y if X(w) < Y(w) with

M/-probability 1. The norm 1 induces a topology generated by the open balls in H7-.

To be consistent with the intuitive notion of risk, X E 7-I is thought of as the

uncerta.in cost of a position, which depends on the uncertain outcome w e E . This

contrasts with the usual approach in the financial literature, which sees X as a payoff,

but it suits better our line of exposition.

3.2.1 Definition of convex and coherent risk measures

Coherent and convex risk measures are fmnctionals on a position space (7-, 1) that

satisfy a few basic properties, which have been motivated in the seminal paper [3].

These concepts have been subsequently refined and generalized; see e.g., [77]. A

decision maker has a (subjective) notion of risk that maps uncertain positions to



their risk; the lower the risk of a position, the more attractive it is to the decision

maker.

Definition 3.2.1. A convex 'risk measure on 7-I is a functional p :' --+ R U {+oo}

that satisfies the following properties:

1. Normalization: p(O) = 0.

2. Monotonicity: If X, Y E 'I and X < Y, then p(X) _ p(Y).

3. Translation invariance: Vm E R, VX E 'H, p(X + m) = p(X) + m.

4. Convexity: p(AX + (1 - A)Y) < Ap(X) + (1 - A)p(Y) for all X,Y E 'H and

A E [0, 1].

5. Lower semicontinuity: {X E 7-I I p(X) < 0} is 1-closed in 7-I.

If, in addition, p is positively homogeneous, i.e., if for all X E 7- and all A > 0

we have p(AX) = Ap(X), then p is called a coherent risk measure.

Sometimes the risk of a position increases nonlinearly with the position (for exam-

ple, when the market is not liquid). In that case, the risk is convex but not coherent.

The properties of a convex risk measure are self-explanatory, except the last two.

The convexity property essentially states that diversification does not increase risk,

which is arguably reasonable [3, 25]. The last; property of semicontinuity is rather

technical, but it is also reasonable that the risk perception of a decision maker has

some smoothness so that a little perturbation of a position does not affect radically

its risk.

The following two classical results from convex analysis (e.g., Theorems 4.24 and

4.25 in [1]) show that, in order to satisfy condition (5), it is sufficient to check whether

p is bounded on a 1-neighborhood of 0.

Lemma 3.2.2.

(a) If a convex function p is defined on a 1-neighborhood of 0 and bounded above in

that neighborhood, then it is 1-continuous at zero.



(b) If p is continuous at a point in a convex open subset S of a topological vector

space, then p is continuous on S.

Finally, the following lemmna provides two ways to build new convex risk measures

frotm existing ones.

Lemma 3.2.3. For i = 1,..., m, let pi be convex risk measure on I and aji > 0 be

'we(ights such that I 1 qi = 1.

(a) The functional p defined by p(X) = aiPi(X) is a convex risk measure on

(b) The functional p defined by p(X) = maxi=1 ... m pi(X) is a convex risk measure

on 7.

3.2.2 Examples of coherent and convex risk measures, and

connection with expected utility

In[ this subsection, we provide examnples of coherent and convex risk measures fromt

the literature, e.g. [3, 25, 77] to illustrate the generality and the relevance of these

notions. These notions are particularly popular in the financial literature.

* The expectation p(X) = E,[X] with respect to p is the simplest coherent risk

mneasure on LP(Q, , pn), p > 1.

* If Pi,..., Pm E L(OOQ, •, ) are probability measures and ai are non-negative

weights such that a = 1, then p(X) = aiEp [X] is a coherent risk

rmeasure on Li (Q, F j).

* Conditional value at risk (CVaR) is a popular coherent risk measure on L1((, F, [t)

[71]. Intuitively, the a-CVaR, of a position X E L1 ( (, F, p) is the conditional

mean of the worst a-tail of X (a E [0, 1]). For example, the 0-CVaR.(X) is sim-

ply the expectation E,[X], whereas 1-CVaR.(X) corresponds to tile worst-case

value of X.



Formally, define the distribution function Fx of X by Fx(x) = p({X(w) 5 x}),

the value at risk a-VaR,(X) of position X by a-VaR,(X) = infx { x Fx (x) > a}

and the auxiliary distribution function ox,a(x) of the "a-tail" of X by

X ( 0 for x < a-VaR(X)

S (Fx(x) - a)/(1- a) for x > a-VaR(X).

Then the conditional value at risk of position X, a-CVaR(X), is the expectation

of the distribution ox,*.

Remark 3.2.4. When the distribution of X is not continuous, the choice that

bx,,(x) = 0 when x < a-VaR(X), instead of, say x < a-VaR(X), has an

impact on the value of the conditional value at risk (cf. [71] p. 8).

It can be shown [71] that

a-CVaR(X) = inf z + (1 - a ) - 1  Inax(X(w) - z, 0)dI).

When exponential utility functions are considered, the logarithm of the expected

utility p(X) = log E,(exp('yX)) with y/ > 0 is a convex risk measure on

L*(Q, F,/t) [25].

3.2.3 Representation of convex risk measures

Now, we will see that convex risk measures have the key property of being repre-

sentable as worst-case penalized expectations. Although a given convex risk measure

p need not rely on a probabilistic model of the the uncertain outcome w E Q, p im-

plicitly defines a family of "test" probabilistic models P for the uncertainty w and a

penalty function on P such that for all positions X,

p(X) = sup (Ep[X] - O(P)).
PEP



Consequently, when a decision maker chooses a position among (XU,)uEu in I that

minimizes its risk p, it solves the zero-sum game

inf sup (Ep[X,] - O(P)).
UEU PEP

From now on, we will consider the set of positions (7-, 1) to be space of p-integrable

functions on Q endowed with its canonical norm, that is (7-, 1) = (L 1(,F, ,/), l),

unless specified otherwise. Nonetheless, the probability measure A need not be in-

terpreted as a probabilistic model for the uncertainty w. It is introduced mostly for

technical reasons (in order to invoke duality in a functional space) and it matters

essentially through its support and the behavior of its tail. When Q is finite, we have

L' (Q, F, p) = Lm(Q, F, p). Furthermnore, we can even assume that it contains only

the points that have positive p-probability by redefining the sample space Q. In this

case, the probability measure p becomes unnecessary.

Remark 3.2.5. When Q is finite, most of the technicalities of functional analysis in

this section disappear. The reader is encouraged to keep this case in mind. However,

inr order to deal with general systems in the sequel, especially infinite horizon problems,

we will need general sample spaces, and hence a reference probability measure.

Consider the bilinear mapping on the dual pair (L1 (, F, p), L(Q, F, , )) defined

l)y (X, Y) = f XYdl/. When Y > 0 and f Yd/ = 1, (X, Y) can be interpreted as the

ex.lectation of X with respect to the probability measure on (Q, F) that has derivative

Y with respect to Ip. With a slight abuse of notation, we will denote Ep[X] = (X, P)

for all P E L' (Q, F, p), even when P cannot be interpreted as a probability density

function.

Now, we can state the representation theorem for convex risk measures, which,

intuitively, parallels the well-known statement that a closed convex function can be

represented as a supremum of affine functions. In our case, the affine finctions can

be chosen to be only penalized expectations.

Theorem 3.2.6. Let Po be a set of '"test" probability measures in L"(Q, F, /), and

let 00 : L"(Q, F, p) --+ RU{ +oo} be a "penalty" function such that infpE 0,o 0(P) = 0.



The functional p defined by

p(X) = sup (Ep[X] - Oo(P)). (3.2.1)
PEPo

is a convex risk measure on L1 (', F, p).

If, in addition, o0 = 0, then the functional p is a coherent risk measure on

L'(Q, .(Ft).

Conversely, let p be a convex risk measure on L1 ( M, F,p). Define a penalty func-

tion ¢ from Lp(Q, F, p) into R U {+oo} by

O(P) = sup (Ep[X] - p(X))
XE'H

and a set of probability measures

P := P ELL(Q,F,p ) P > 01, JPdlt= 1, (P)< +oo

Then, 0 is convex and 1,-lower-scmicontinuous, P is convex, and

p(X) - sup (Ep[X] - O(P)). (3.2.2)
PEP

In addition, if p is coherent, we have O(P) = 0, VP E P.

This theorem unifies several previous results. For coherent risk measures, it is the

seminal representation theorem of [37] or Proposition 4.1 in [3] when Q is finite, or

Theorem 2.3 in [21] when 7R = L"(Q, F, p) and Q is general. The extension to convex

risk measures and - = Lo(o, F, p) was provided in [25]. In essence, we follow the

proof in [25] to deal with a more general positions space, namely 7- = L'(Q, F, T ),

with arbitrary sample space Q. During the preparation of this chapter, we have

become aware of a more general theorem by Ruszczynski and Shapiro [77] that unifies

all aforementioned results. Essentially, they give sufficient conditions on convex risk

measures oin a given position space so that they can be written as worst-case penalized

expectations with respect to a set of probability measures in a given space. Our



setting (with Condition (5) in Definition 3.2.1) happens to be a particular case of

their analysis.

Proof. The first part of the theorem is obvious since the functional p is defined as the

supremmnun of affine functions. The assumption that infPE-o 0o(P) = 0 is necessary to

guarantee the normalization of the functional p(X) = supp~ op Ep[X] - 00(P).

The second part of the theorem states that essentially all the convex risk measures

take the form of the convex risk measures specified in the first part.

First, the function O(P) = supXE• (Ep[X] - p(X)) defined in the theorem state-

ment indeed mnaps L'(Q, F, up) into [0, +oo] since O(P) > Ep[0] - p(O) = 0. Fur-

thermore, the function 0 is convex and l1-lower-semicontinuous as the supremum of

convex lower-semicontinuous affine functions.

Consider the 11-closed convex set C = {X E L1 (p,)F,/p) I p(X) < 0}. We show

now that O(P) = suPx, c Ep[X] and, as a result, that 0 is positively homogeneous on

L"(Q, F, ,p). First, observe that O(P) = supxe~ (Ep[X] - p(X)) < supxc Ep[X].

On the other hand, note that for any position X such that p(X) < +00, we have

p(X - p(X)) = 0 by translation invariance, and therefore X - p(X) E C. Thus,

O(P) = sup Ep[X - p(X)] > sup Ep[Y].
{XE-tlp(X)<+oo) YEC

This proves that O(P) = supxEc Ep[X].

The inequality p(X) > supp (Ep[X] - O(P)) (Fenchel weak duality) is immedi-

ate. The fact that equality holds (strong duality) will follow from the bipolar the-

oremn applied to C. In order to use the bipolar theorem, we need to show that C

is closed for the weak topology a(L (Q,,~, L), (, F-, Ak)). By the Riesz theorem

(Theorem 10.28, p. 354 in [1]), the norm dual space of (L1 (Q, F, u), 11) is isometric

to (L'(Q,.F, p), lo). Since the li-topology (and of course the weak topology) on

L1 (Q, F, pt) are consistent with the dual pair (L'(Q, F, [t), L (Q, F, _p)), tihe closed

convex sets for the norm and the weak topology are the same (Theorem 4.72, p. 154

in [1]), and C is closed for the weak topology.



The polar CO of C is defined by

CO= {P E LO(,Q, , i) IEp[X] < 1, VX E C}

and its bipolar is

Coo - {X E L'1(, FT, I) Ep[X] < 1, VP E Co}.

Since C is convex, a(L'(, F_, p), LO(Q, F, p))-closed and contains zero, the bipolar

theorem (Theorem 4.77, p. 157 in [1]) states that C = Co.

Now, we show that for all Y E H- such that p(Y) > 0, there exists Q E LM"(, F, p)

such that EQ[Y] - O(Q) > 0. For the sake of contradiction, assume there exists a

position Y E 'H such that p(Y) > 0 and Ep[Y] - supxEC Ep[X] < 0 for all P. Since

Y is not in C = Coo, by the bipolar theorem, there is Q E Co such that EQ[Y] > 1,

and by definition of the CO, supxEc EQ[X] = O(Q) _ 1. The last two inequalities

yield the contradiction that EQ[Y] - O(Q) > 0.

For the sake of contradiction, assume that strong duality does not hold, i.e., there

exists X E IF such that p(X) > supp Ep[X] - O(P). In particular, supp Ep[X] -

O(P) < +oc. Hence, the position Y := X - supp(Ep[X] - O(P)) is in R- and

p(Y) > 0. By the result of the previous paragraph, there exists a Q such that

EQ[X] - supp(Ep[X] - O(P)) - O(Q) > 0. This contradiction concludes the proof

that for all X E H7, p(X) = suppEp (Ep[X] - O(P)).

Now, we show that the supremum can be restricted to the 1,-closed convex set of

probability measures P in L(2(Q, F, p). Recall that O(P) = supxec Ep[X]. Since the

non-positive functions in L1 (Q, F, pt) are in C, O(P) = +oo if P is not non-negative p-

almost surely. In addition, since 0 is positively homogeneous, Q := {P I O(P) < +oo}

is a convex cone included into the positive orthant. In the representation theorem,

it is enough to pick one representative for each ray of Q, namely define P = {P E

QI f PdL = 1}.

Finally, when the risk measure p is coherent, for all A > 0 p(AX) = Ap(X) and

X E C implies that AX E C. Since O(P) = supxec Ep[X], it follows that O(P) = +oo



as soon as O(P) > 0.

Remark 3.2.7. Starting from. a penalty function 0o and a set of test probability

measures Po, the first part of the previous theorem shows that the functional p(X) =

suL)pER,, (Ep[X] - o0 (P)) is a convex risk measure to which the second part of the

theorem applies. Without getting into the technical details, it can be shown that the

penalty function 0 induced by p is the closed convex envelope of o01p in L"(Q, ., p).

It will be useful in Section 3.5 to know when the suprernum in Equation (3.2.2)

is achieved. This question is answered by the following proposition from the theory

of Fenchel duality (e.g., Proposition 3, p. 203 in [6]).

Proposition 3.2.8. Let X E 7- be a position in the domain of the convex risk measure

p. Then the following are equivalent:

(a) p(X) = Ep.[X] - ¢(P*) for P* E P.

(b) P* belongs to the subdifferential of p at X E 7H, Op(X).

Proof. For P* E 7P,

Ep. [X] - ¢(P*) = sup (Ep[X] - O(P))
PEP

<-*Ep.[X] - O(P*) > Ep[X] - O(P), VP E P

<P* E &p(X).

When 7- = L'(Q, F, j, ), there is an analog of the previous theorem, which yields

a representation involving expectations with respect to the continuous dual space of

L' (Q, F, ip), which is ba(Q, F, p), the Banach space of signed bounded finitely addi-

tive mneasunres on (Q, F) that are absolutely continuous with respect to p [1, 21, 25]. If

Q is countable and F = 20, finitely additive measures are a-additive. Therefore, con-

vex risk measures on L" can be represented as worst-case penalized expectations with



respect to probability measures in L'. This result is an easy extension of Theorem

2.3 in [21].

There is also a representation theorem on the position space 7- = L(•(, F, t)

that involves test measures in L' (, F, p). However, for this stronger result, we need

to replace Condition (5) in the definition of a convex risk measure with the stronger

Fatou property. The Fatou property can be defined by three equivalent conditions

(as shown in Theorem 6 in [25]).

Definition 3.2.9. A translation invariant mapping p : L"'(O, F, [A) - JR U {+oo} is

said to satisfy the Fatou property i'f any of the following three conditions is satisfied:

(a) {X E L'( p, ,p) I p(X) 0 } is a(L'(Q, T, p), L'( , T, ))-closed.

(b) p(X) • limn inf p(X) for any sequence of fuinctions (Xn) on L' (Q, F, p), uni-

formly bounded by 1 and converging to X in pi-probability.

(c) p(X,) --+ p(X) for any uniformly bounded sequence X, that decreases to X

p1-almost surely

Remark 3.2.10. The Fatou property is a refinement of condition (5) in the definition

of a convex risk measure on L'(Q,F, Fp). If p has the Fatou property, then {X E

L"((Q, F, M) I p(X) < 0} is weakly closed and a fortiori lI-closed [1].

Now, we can state an analog of Theorem 3.2.6 on L'(Q, F, p), namely Theorem

6 in [25].

Theorem 3.2.11. Let p be a convex risk measure on LO(Q, F,, , p). Assume that p

verifies the Fatou property. Then there exists a 11-closed, convex set of probability

measures P C L'( , F, p) and a penalty function 0 from P to RJ such that for all

X E LO(Qf, 7, pL),

p(X) = sup (Ep[X] - O(P)). (3.2.3)
PEP



Moreover. the penalty function can be chosen as the Fenchel conjugate of the risk

rwcasure:

O(P) = sup (Ep[X] - p(X)).
XE7-f

In addition, if p is coherent, we can have 0 = 0.

Let us illustrate the theorem with the convex risk measure p(X) = log E,,(exp(-yX))

on L (Q, F, p). By the monotone convergence theorem, p has the Fatou property.

Hence, p satisfies all the conditions of the theorem, and thus, can be represented as

a worst-case penalized expectation.

Indeed, it is well-known ([25], p. 441) that

log (E,[exp(X)]) = sup (Ep[X] - D(P; M)),
PEP

where the set of test probability measures is P = L1(Q, , y, ) and the penalty function

is the divergence D(P; p) = f P log Pdi >_ 0. Consequently, we have

p(X) = -log E(exp(-yX)) = sup Ep[X] -D(P;) ,

as predicted by Theorem 3.2.11.

3.3 Risk-averse control of dynamical systems

In this section, we describe a discrete-time model for a controlled stochastic dynamical

system, which includes MDPs as a special case and we comment on our model choice.

Then, we define dynamically consistent multi-period risk measures, and introduce

the new notion of Markovian risk. We conclude with the definition of a sequential

Markov game associated with a risk measure.



3.3.1 Model description and notation

Uncertainty description

Let X and A be a finite state and action space, respectively. The state space X not

only describes the states of the dynamical system, but it can also capture information

about the risk perception of the controller. Defining a state space incorporating the

latter will be critical when we will consider Markovian risk. Consider the sample space

S= x [Rx x (X x R)XA T , where T is the time horizon length (1 < T < +oo).

A sample point w E Q will be thought of as a sequence realized in successive steps

W = (S1, (rl,i)i, (Vi,i,a , ql,i,a)(i,a), (r2,i)i, (V2,i,a, q2,i,a) (i,a), .. .) with the following interpre-

tation: sl is the initial state of the system at t = 1; for t > 1, rt,i E R is used to

randomize the action choice at the state i E X at time t, Vt,i,a E X and qt,i,a E R are,

respectively, the new state at time t + 1 and the associated transition cost out of the

state-action pair (i, a) E XA.

For w E Q and t > 1, we denote the partial histories of length t by

Wt -- (81 l,i)i, ( 1I,i,a, ql,i,a)(i,a), ...* , (rt,iji)

and

t f l ~i)i d 1,i,a, Q1,i,a (i,a), i .* ( rt,ijj (i t.,i,a, qt,i,a)(i,a))

We also let wo = s1. Let Q' = {wt, wt_lw E Q, t > 1} be the set of partial

histories and Qt - { jllw E Q}. If w' e -' is of the form wt or w+ for w E R, we will

write w' - w. For w' E •', let F(w') = {w E Qjwo' -- w} and F(0) = Q.

Define F = F(0) the a-field on Q2 generated by the sets F(w"), w" E V'. Similarly

let F(w') be the a-field on F(w') generated by F(w"), w' w", w " E Q'. The sub

a-field F (w') C F(w') contains the events that are decidable as soon as the next

step after w' occurs. More precisely, Fs(wt) is the sub-a-field of F(wt) generated by

the sets F(wt). Similarly, F•(w,+ ) is the sub-a-field of F(C 1+ ) generated by the set

F(wt).

Let p = plo be a reference probability measure on the measurable space (Q, F),



and let pI,' be a regular conditional probability law of it on (F(w'), F(w')) given

w' E Q' (see e.g. [16], p.430). Random variables will be denoted by upper case letters

(e.g., S1, Rti, Nt,i,a, Qt,i,a), whereas realizations of a random variable (for an implicit

w) will b)e denoted with lower case letters (e.g., 7s, rt,i, Vt,i,a, qt,i,a).

The random numbers Rt,i allow control randomization so that the decision maker

has more power, but we will see in Sections 3.4 and 3.5 that the optimal decisions

can be chosen deterministically under the appropriate conditions. We will assume

that under ti the random numbers rt,i are generated independently for each t > 1

and i E X, and independently from the state-cost process, and such that for all

6 EA = {x E RA I X, > 0, E-A XE = 1}, there exists a measurable function

B : R A verifying for all a E A, i({B(r) = a}) = 6a. Intuitively, the last

condition guarantees that one can sample any probability distribution of action over

A using the random number generator.

The role of the probability measure ip is to describe which events are known to

occur with zero probability a priori, but it need not refer to the "true probabilistic

model" of the system of interest. For example, we can have the following prior

knowledge encoded in the probability measure [L.

* If p({vt,i,a = j}) = 0, then the transition at time t from the state-action pair

(i, a) to the state j is not expected to happen.

* If P({qt,i,a = g(t, i, a)}) = 1 for some function g, then the immediate cost qt,i,a

is a deterministic function of (t, i, a).

Observe that we do not assume that pt is stationary or that there is independence

across steps, as it would be the case if [L was a Markovian model. The probability

measure it could even encode history-dependent restrictions. For example, if we let

L(({ vt,i,a = vt2,i,a, Vt1, t 2 , i, a}) = 1, then all the one-step transitions are the same with

probability one. However, some choices of It might make certain properties of risk

measures on L' (Q, , [,), such as dynamic consistency or Markovianity, impossible to

hold.



System trajectories

A policy 7 is a sequence of measurable mappings (7r, 72, . . .) such that 7t : t x R --+

A. A policy associates with w E Q a state-action-cost trajectory defined recursively

by

Sr(w) = si, (3.3.1)
AT;(iJ)= •t (Mt, Rtts:(,)),

S[+• (o) -- t,s:(w),A,(w).

It will be useful later to have, for all time t, states j, actions a, the notation

Ttj,a(W) for the system's trajectory defined by the above recursion when the system

is initialized at time t in the state action pair (j, a) and the sequence of controls

n = (7t+, n7t+2,,...) is applied.

In each state i E X, there is a non-empty set Ai of available actions. A policy

n7 is admissible if for all w E Q, AF(w) E As,(,u). We use lhh,r to denote the set of

admissible "history-dependent" policies selecting only actions available at the current

state and depending only on the observed state-action-cost trajectory and the last

randomization variable, i.e., if wl, 2 E Q are such that St(wl) = St(w2), A(w 1) =

A(wZ2), Q7(w 1) = Q7(w 2), for t 7T - 1, and S7(w 1) = S7(w 2), and r's=( 1 )

2rs(w2), then A.(w') = Ar(w2). The policy 7r E hl,r can be restricted to depend on

the history only through the current state, time index, and randomization variable

(then the policy 7r belongs to the Markovian policy space IIm,r), or depend only on

the current state and randomization variable (then the policy 7r is in the stationary

Markovian policy space IIs,). The sets of deterministic policies are denoted with the

index d instead of r (Hh,d, IIm,d, and H,d).

For a policy 7r E IIh,r and a discount factor f E [O, 1], we let

h

C = lim infZ t,
h-- tt=-7



which is the tail sample cost incurred by policy 7r. When T > T, we let C' = 0.

lWhen the context is clear, we will write C' instead of CT. Also, we define the tail

sanmple cost CGj,a (resp. Ct0r) of a policy 7r initialized at time t in state-action pair

(j, a) (resp. in state j).

The sample costs are measurable random variables taking values in f = RU{0oo}.

If T < +oo, then Ct is finite for all t and w E Q. However, without additional

assumptions, there might be w E Q such that Ct is not finite when T = +oo. The

following assumption makes sure that the sample cost is integrable.

Assumption 3.3.1. For all 7r E Im,r, t >_ 1, j E X, and a E A, the sample costs

CT, Ctj . and CC5,a are in L'(F(w'), T(w'), ~L,') for all w' E Q' U {0}.

Although there is one version of the tail sample cost in L'(F(w'), TF(w'),/ j~) per

w' E Q' U {0}, we denote all of them with the same notation, namely Ct.

Example 3.3.2.

In order to illustrate our model definition, let us consider a toy example of a

dynamical system on a time horizon T = 2 with two states X = {b, c}, and A =

{l.rm}.

A sample point w is any element of = Xx R x x (X x R) . Let us pick

one sample point w in Q and arrange its components in a matrix form, where the first

two rows correspond to state b and the last two to state c and where the first row in

these pairs of rows corresponds to action 1 and the other to action m,

si rl71,b

rl,c

Vl,b,l, ql,b,l

V1,b,m, 1ql,b,m

1 11,c,l, ql,c,l

Vli,c,m, qi,c,m

r2,b

r2,c

V2,b,l, q2,b,l b

V2,b,m, q2,b,m

V2,c,1, q2,c,l

1V2,c,m, q2,c,m

2.4

6

b, 1

c, 0

c, -2

c, 7

9.34

18.4

c, -5

b, 6

b, 25

c, 7

This specific sample point specifies that the initial state sl = b, that given that the

systemi in state b and that action m is selected at time 1, then the new state would

be V1,b,rn = c and the associated transition cost would be ql,b,m = 0. O() the other



hand, if the system is in state c and action 1 is selected at time 1, then the next state

would be vl,c,l = c and the associate cost would be q1,cl, = -2.

If the controller follows the policy 7r that always chooses action m, then the

uncertainty realization cD induces the state trajectory b, c, c and the total cost is

C7 = 0 + 7 = 7. The information encoded in the sample point 0 that is relevant to

the system trajectory in this example is underlined

2.4 b, 1

c, 0

c, -2

c, 7

9.34

18.4

c, -5

b, 6

b, 25

c, 7

Recall that the support of the probability measure p on (Q, F) encodes the con-

straints of the system that the controller knows a priori. For example, if the controller

knows a priori that

* the system always goes inunediately from state c to state b under all actions,

* that the system stays in state b when it is in state b and control 1 (for loop) is

chosen, and

* the immediate costs are either zero or one,

then we can let

A({S1 =- 1,Nt,i,a = vt,i,a, Qt,i,a = qt,i,a,t > 1,i E X,a E A})

= IPS (81) f PN'Ni., (t,i,a)PQt.i,. (qt,i,a),
t,i,a



--- m(O11

Figure 3-1: Graphical representation of a single-step transition for a simple example
of d(ynamnical system.

where for all t, i, a

Ps1 (S 1 = b) - Ps, (Si = c) = 1/2,

PN,.b,,,(Nt,b,m = b) = IPNNb,,.(Nt,bm = c) = 1/2,

]N,b,l b(Nt,b,l = b) = 1,

PNY,...m (Nt,c,m = b) = IPN•,~., (Nt,c,, = b) = 1,

PQt.i,b(Qt,ib = 0) - , PI.ib(Qt,•.b = 1) = 1/2.

This information is best summarized and represented by Figure 3-1.

3.3.2 Comments on our model choice

In this subsection, we illustrate the modeling richness of our framnework. It might seemn

unnecessary to define such a general and high-dimensional uncertainty cw4 E c . There

is one separate component of w for each possible outcome of interest, in particular

the state vt,i,a E X following each state-anction pair (i, a) E XA, and the associated

immediate cost qt,i,a E R.

In our class of models, we have the imodels in which the same low-dimensional

uncertain outcome wt influences all states:

AS7 = 7rt(St),

St7+1 = f(St, At, wt),

Q7 = g(St, At, wt).

!



This model is simpler and, therefore, seems more appealing than our general frame-

work. But, we will see in Sections 3.4 and 3.5 that our more general model yields

tractable risk-sensitive decision problemns. Furthermore, when the uncertain outcome

wt has too low dimension, it cannot capture some important preferences in face of

uncertainty and ambiguity, which our general model allows.

For example, consider the following situation inspired from Ellsberg's paradox

[23]. There are two coins, respectively called coin A and B, and a player can bet on

the outcome of a flip of one of the two coins. If his guess is right, he gets $100, and

$0 otherwise. It might seem appropriate to have wl be 0 if the flipped coin (either

coin A or B) turns up head and 1 otherwise, but we will see next that this model

cannot capture a different uncertainty aversion for each coin, in contrast with the

more general uncertainty where wA and WB is the uncertain results of coin A and B,

respectively.

Assume that the player believes that coin A is fair and will in heads or tails

with equal probability, whereas coin B is thought to give always the sarme result but

the player does not know whether it is head or tail. If the player had to choose a

subjective probability for the outcome of coin B, it needs to be the probability giving

half and half for head and tail by symmetry. If the player does not like "ambiguity"

as most surveyed people in [23], lie will prefer to bet on the outcome of coin A. This

preference cannot be captured by decision theory based on expected utility as Ellsberg

demonstrated. Neither can it be captured by risk aversion as defined in Section 3.2

if the uncertain outcome wl E {0, 11 represents the uncertain result of flipping the

selected coin. Indeed, since both coins A and B are described by the same uncertainty,

they cannot be discriminated. However, if the uncertain outcome is (WA, WB), where

WA E {0, 1} and wB E {0, 1 } correspond respectively to the realization of coin A

and B, then this model for uncertainty allows to differentiate both coins and thus

capture ambiguity aversion. For example, consider the probability measure PO for

the uncertain outcome WA defined by PA(O) = PA(1) = 1/2, and the two probability

measures PB, P•, for the uncertain outcome WB of coin B defined by Pl(0) = P2(1) =

0.6 and PB(1) = PB(0) = 0.4. Then, the coherent risk measure associated with test



probability measures P = PA x PB on (WA, WB) in the set P = {PA x PA, PO x P,}

gives a risk of -$50 for betting on coin A and -$40 for coin B.

The advantage of using simple uncertainty model is that some technical difficulties

can be avoided. For example, if the controller does not use randomization, if the

inimediate costs Qt,i,a take values in a finite set, and if the time horizon is finite, then

the set of uncertainty Q can be chosen finite. In this case, the functional analytic

issues disappear. (However, a finite Q cannot model infinite time horizon problems.)

3.3.3 Properties of multi-period risk

In this subsection, we define dynamically consistent multi-period risk measures in the

control setting described previously. We introduce the new notion of Markovian multi-

period risk measures and establish some useful properties of dynamically consistent

and Markovian risk measures.

Multi-period risk measures

Definition 3.3.3. A multi-period risk measure on the space L 1 (Q7, -, I) is a mapping

that assigns to each partial history w' E Q'U{0} a risk measure on L1 (F(w'), F(w'), tI'),

denoted p(.jw'). We let p(.) = p(-10).

Remark 3.3.4. The risk measure is defined on a space of "positions" containing

many more random variables than the sample costs Ct, in order to invoke the results

on convex risk measures of Section 3.2, (whereas the set of sample costs is not even

convex). Nonethelcss, this requirement is not restrictive since a decision maker should

have a well-defined risk measure, which really represents his preferences in the face of

uncertainty, not only on the space of possible sample costs C", but for all conceivable

posit ions.

Definition 3.3.5. A multi-period risk measure p is coherent (resp. convex) if for all

/' e Q' U {0}, p('-j') is coherent (resp. convex) on L1(F(w'),7(w'), wl,) .



Dynamically consistent multi-period risk measure

Fix a partial history w' E f'. Let E(w') be the set of possible"single-step outcomes"

following w'. Specifically, E(w') = R x if w' = w'_1 and E(w') = (X x R)XA if w' = wt.

For any w __ w', let V,,(w) be the unique "immediate continuation" v E S(w') such

that w - w'v. If w' is of the form w' = wo-1, then the immediate continuation is

V,,(w) = (Rt,i(w))i, and if w' = wt, then the immediate continuation is V,(w) =

(Nt,i,a(w), Qt,i,a(W))(i,a). An element of L 1(F(y'), F1(w'), p 1,) will be called a single-

step position, since intuitively it is a position whose payoff is determined by the

immediate continuation of w'.

For a given X E L'(F(w'), F(w'), pIl,') and a multi-period risk measure p, consider

the extended real-valued function on F(w'), p(X w'.), that maps w to p(Xlw'v), where

v = V,,(w). It will be convenient to denote this random variable by p(X Iw'V), where

the randomness enters through V.

Definition 3.3.6. A multi-period risk measure is dynamically consistent if

(a) For all w' E Q' and all

X,YE n(F()' (w')' •I•')n vEE(w') Ll(F(w'v), F(w'v)' ,'v))]

the following implication holds

[Vv E 9('), p(X w'v) > p(Y Jw'v)] = p(X w') > p(YIJ').

(b) For all w' E Q', all 7r E IIm, and t > 1, p(Ct"w'.) is a single-step position, i.e.,

it belongs to L'(F(w'), RF(w'), l~,).

This definition is the same as the usual definition of a dynamically consistent risk

measure when the sample space is finite (e.g., [72]) but with the necessary technical

assumptions to cope with general sample spaces.

The restriction of the risk measure p(- Jw'), which is defined on all of L1 (F(w'), .(w'), p'),



to the set of single-step positions L1 (Q, .Fs(w'), •p,) will be denoted by p,w. If p(- w')

is convex (resp. coherent), if follows easily that p,w is convex (resp. coherent).

Lemma 3.3.7. If p is a dynamically consistent convex multi-period risk measure on

.L(Q, .F, p), then for all policies r II Hm,r, all t > 1, and all partial histories w' E C ',

we have p(C7T J') = p,[p(C jwl.)].

Proof. Fix r E IIm,r, t > 1 and w' E Q'. Consider the single-step position X de-

fined by X = p(Ct7w'-). (Note that X is indeed in L1(F(w'), Fs(w'), Ip) thanks to

property (b) in Definition 3.3.6.) Since the payoff of X is determined after the next

single-step outcome v, we have p(Xl w'v) = X(w'v) = p(Ct7w'v) for all v E S(w'),

where the first equality follows from the translation invariance of p(-lw'v). Conse-

quently, property (a) in Definition 3.3.6 yields that p(.X w') = p(Ctjw'). Using the

definition of X, p(CO |w') = p[p(CtlJw'.) w'] = p, [p(COlIw'I)]. O

Now we make a distinction between the risk associated with the controller's ran-

doinization via (Rt,i)i, and the system uncertainty captured by (Nt,i,a, Qt,i,a)(i,a). We

will essentially assume that the controller is "risk neutral" (or has no uncertainty

a.bout the randomness of the random number generator) with respect to the (Rt,i)i.

Assumption 3.3.8. For all w E Q, t > 1, and for all single-step positions X' E

L1(F(w* z), TS(wt_1), p+ ), we have p(Xs w+_)= E, , [X8
].

Under this assumption, the following notations will be handy. For r E IIm,r,

denote Irt(a w+l) =' ({Ag = a}). Let Aj = {X E RA I Xa 0 EaEAj Xa = }.

Markovian risk measures

As time goes and new information is revealed, two drivers of decision-making change:

1. the unrealized or unobserved uncertainty in the system,

2. the risk-sensitivity of the decision maker.

Intuitively, a multi-period risk measure is Markovian if its conditional risk mea-

sures depend on the system history only through the current state-action pair.



Let Gt,j,a be the subset of positions that are flnctions of the tail trajectory of some

Markovian policy initialized in state-action pair (j, a) at time t, i.e.,

Gt,j,a = {f(Ttij,a), 7r E Hm,r, f E L' 1

Similarly, let

Gt { f (Tj)l 7 E Ilm,r, f E L 1}.

Definition 3.3.9. A multi-period risk measure p is Markovian if for all times t > 1,

states j E X, and actions a E A, the following hold:

(a) For all gE Gt,j, P(g1 + 1) does not depend on w+ 1. For any w+ 
1, we denote

this risk mapping on Gt,j by p(-.t, j) = p(.Iw - 1).

(b) For all g E Gt,j,a, P(g wt) does not depend on wt. For any wt, we denote this

risk mapping on. t,j,a by p(- t, j, a) = p(- wt).

For example, C, E 5tj and C•T E Gt,j,a for all Markovian policies 7 E IIm,,.

Hence, the above definition justifies writing p(CO, t, j) and (CO,alt, j, a).

If p is Markovian, the respective notations p(t,j) and p(t,j,a) for the risk measures

p(- t, j) and p(. t, j, a) restricted to the single-step positions in tj and Gt,j,a are well-

defined. Observe also that the risk measures p('-t,j) and p(.-t,j, a) are fixed for all

positions in Gtj and Gt,j,a.

The assumption that a risk measure is Markovian is not very restrictive if we

are willing to have a large state space. Indeed, we can add to the state space X

the information that is necessary so that the decision maker's risk is Markovian with

respect to X. The extreme case is to have one state per partial history. In this

extreme case, some previous works (e.g., [72, 76, 4]) derived equations relating the

p(Cglw') for different w' and t, for dynamically consistent convex risk measures over

a finite time horizon T. These equations can be solved recursively to evaluate the

risk of a policy or to find a Markovian policy with minimum risk. However, there are

as many equations as partial histories w' E 2'. Accordingly, the computational cost

grows exponentially with the time horizon T. Hence, the problem becomes quickly



intractable from a computational standpoint and nothing was said about the infinite

horizon case.

The main motivation for defining Markovian risk measures is to be able to mini-

mize risk efficiently for problems with large state-action space and long, even infinite

time horizon. This will be accomplished in Sections 3.4 and 3.5. As a preview of

the results of these sections and to compare with the aforementioned works, when

the time horizon T is finite, a Markovian policy that minimizes a Markovian dynaini-

cally consistent convex risk measure can be computed by carrying out only O(IXIT),

instead of O(IXIT).

Lemma 3.3.10. Let p be a convex dynamically consistent Markovian multi-period

Trisk mr:asure on L'1(Q, ,p). Assume that Assumption 3.3.8 is satisfied. For any

policy 7r E 1m,r , we have the identities

p(C, It, j) = 7rt(alj)p(CtO,a t, j, a), (3.3.2)
aEA

P(,3, t,j, a) P(t,j,a) [Qt,j,a + p(t+l,N,, It + 1, Ntj,a)] . (3.3.3)

Remark 3.3.11. It is important to notice that the risk mappings that appear in these

identities do not depend on 7r, but only on t, j, a.

Proof. Both identities stein from the combination of the definition of Markovian risk

and Lemmai 3.3.7 on dynamically consistent risk. In addition, the first identity relies

on Assumption 3.3.8, which assumes that the controller is risk-neutral with respect

to the randomi numbers (Rt,i)i.

(a) Since p is Markovian and C"· E 9tj, we have p(CGj |t,j) = p(Ct I • 1) for

an arbitrary wtl. By Lemma 3.3.7, there holds

p(C?, 1 W+_l) = p•, [p(C',· I+ (Rt,i)i)].

Assumption 3.3.8 applied to the single-step position p(Ct, I +-1 (Rt,j)) yields

f-1I - +x89(Rt,j),)].
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When Rtj is such that action a is selected under policy 7, i.e., 71t(t+-l, (Rt,i)i) = a,

then we have, for all w > , (R,, C, () = Ca(w). Now, using the Markovian

property of p with Ctja, we can write

P(C, 3  (Rtji)i)) = P(Ct, a  1(Rt,i)i)) P(3, a  )(CP((2j t-I = P(Cja I t, j, a).

This concludes the proof that

p(Ct, It,j) = w 7t(a lj)p(Cj•T'a I t, j, a).
aEA

(b) Since the risk p is Markovian, we have p(Ctr I t,j,a) p= (C·,a Iwt) for an

arbitrary wt. By dynamic consistency of p, the following decomposition holds

p(Cjo,a I t) = Pw [P (Ctj,a I , (Nt,i,b Qt,i,b)(b,i))]

By definition of the tail sample cost, and then using the Markov property of p with

Ct+1,Nt,j,a E gt+1,N.,,,,, we have

p (Ctj,a I Wt, (N,i,b, Qt,i,b)(b,i))= Qt,j,a + P (CIt+1,Njj I Wt, (Nt,i,b, Qt,i,b)(b,i))

Qt,j,a + P (O+1,N,..j, t + 1,N,j,a)

Combining this with the above decomposition, we obtain

P(Ctj,a I Wt)- Pwt. [Qt,j,a + p(C 1,Nt.a It + 1, Nt,j,a)1

Invoking again the Markov property of p yields the second identity. O

3.3.4 A Markov game induced by a risk measure

In this subsection, we define a zero-sum sequential Markov game between nature and

the controller, induced by a dynamically consistent Markovian convex risk measure

p verifying Assumption 3.3.8. In the next two sections, we will see that minimizing p



amounts to solving this game.

Given time t > 1, state j E X, and action a E A, consider the single-period

risk mapping P(t,j,a) defined on the single-step positions in Gt,j,a let St ,j,a : E

Q1IS7(w) = j, A7(w) = a}. Pick an arbitrary representative wt. Since p is Markovian,

p(- t, j, a) = p(.Ic t) on Gt,j,a. Observe that p7, is a convex single-period risk measure

on L1(F(ct), F's(t), ,) . By the representation theorem 3.2.6 applied to pe,, there

exists a l,-closed convex set of probability measures P C LOO(F(Dt), 17 (ýt), [I1t,,) and

a I•-lower semicontinuous convex penalty function 0 such that

pc,t(XS) = sup (Ep[X'] - O(P))
PEP

for all X' e L1(F(ct), FS(ct), ,).

For P E P, denote pt,j,a the marginal of P on the space of random variables

depending only on (Qt,j,a, Nt,j,a) and let pt, 'j a = P(t,j,a) I P P be the collection of

marginal distributions of P.

For a probability measure Pt,j,a E L0(F(cD), Fs(~,), •) on (R,X), define the

")penalty functions"

Ot,j,a(Ptj,a)= inf 0(P) > 0,
{PEPPt',ja.=pt.ja }

with the usual convention that ot,j,a(Pt,j,a) = +oo if the set {P E p I pt,j,a = Pt,},a

is empty. Also let P(. t, j, a) be the marginal probability distribution on X of Pt,j,a

and let qt,j,a(Ptj,a ) := Ep,tj.[Qt,j,a] E R. When Pt,j,a is the marginal distribution

of P E LC (F(-), .•()), pj,), i.e., Pt,j,a = pt,j,a, the expectation qt,j,a(Pt,j,a) is finite

since for an appropriate Markovian policy ir we have Qt,j,a = C - Ct+I, which belongs

to L1 (F(c), Ts(c), pIe) by Assumption 3.3.1.

Define pt,j,a = {pt,j,a Itj,a,(Pt,a) < +oo, P p P}. pt,j,a is a non-empty set of

"test probability measures".

Now, we associate with p(-Is,) a zero-sum sequential Markov game on X U XA

initialized at si E X at time t = 1. The controller is the minimizer and nature the



maximizer. In state j E X at time t > 1 the controller chooses 7rt(-Ij) E Aj -

{x E 1RA Iz a 0; -aEAj. , = 1}. The game state becomes (j, a), for a E Aj, with

probability wrt(a lj). Then, nature chooses Pt,j,a E pt,j,a and the controller pays to

nature (At,j,a(Pt,j,a) - Ot,j,a(Pt,j,a)). The game continues for t = 1,..., T. At time T,

there is no final cost.

For a fixed controller's policy 7r E IIm,r, this Markov game becomes an MDP

on X, controlled by nature, with the following characteristics. From the state j E

X at time t, nature chooses (Pt,j,a)a-A E aE A pt,j,a, the system moves to state k

with probability EaA 7rt(alj)P(k t, j, a) and nature receives the immediate reward

EaEA rt (a j) (t,j,a (Pt,j,a) - Ot,j,a (Pt,j,a)).

For i7r = (7r(-Ij))jEx E Ij,,~ Aj, we can define the classical dynamic pro-

gramming operators. For 3 E (0, 1), define the operator for 8-discounted problem

T01 :R
x -+ R x by

(TW V)(j) = 17r,(a j)p(1•j,a)(QI,j,a + /V(Nj,a))
aEA

S 71(r, (a 1j) sup l4,j,a(Pj,a) - ýj,a (Pj,a) + 0E P(k|1, j, a)V(k)
aEA PjaEP'eL kEX

In undiscounted cost problems, we assumen that there is a special "termination"

state o E X in which the system is eventually absorbed at no cost so that the total

cost is finite. For undiscounted cost problems, we will need the subspace V := {V C

RxI V(a) = 0}, and the operator T,, : V -- V defined by (T, V)(a) = V(a), and

for j ý- a,

(T,, V)(j) = r1 (ajj)p(1,j,1)(Q 1,j,a + V(NI,j,a))
aEA

= Zr,(alj) sup (q,j,a(jia) - ,jc,a(PI,a)) + P(k1, j,a)V(k)]
aEA P L,. kEX

Define also the operators T and TO respectively by TV = inf,,Eri Aj (T,, V) and

TOV = inf,, El~ A (TI, V).



The following properties of these operators have classical proofs.

Lemma 3.3.12.

(a) The operators T,, TO, T, and TO are monotonic, i.e., if V < V' component-

wisve, then TV < TV', etc.

(b) Let e E RX be the vector 'with all components equal to one, except that e(a) = 0,

and k > 0. For all V E V, T,(V + ke) < T,(V) + ke and T(V + ke) <

T(V) + ke.

(c) The operators TO and TO are /3-contractions under the sup-norm on R x , i.e.,

for all V, V' E R'

(TOV) - (TOV') j1 5 IIV - V'|oo.

(d) The operators T, and T are 1-Lipschitz for the sup-norm on R x , and thus

continuous, i.e.,

II(TV) - (TV')|II < I V - V']l0.

Now, we have the necessary framework and definitions to tackle, in Sections 3.4

and 3.5, the problem of finding a Markovian policy that minimizes a dynamically

consistent Markovian convex multi-period risk measure of the sample cost.

3.4 Risk minimization over a finite horizon

In this section, we assume that the time horizon length T is finite. Without loss of

generality, we let the discount factor 0 be equal to one. We will show that we can

efficiently compute the minimum of a convex dynamically consistent Markovian risk

of the sample cost C' over the policy space Ilm,r and find a deterministic Markovian

)olicy 7r E HIm,d that achieves the minimum risk. We will also establish that mini-

mizing the risk amounts to solving the zero-sum sequential Markov game described

in Subsection 3.3.4.



The next proposition shows how to evaluate efficiently the risk associated with a

Markovian policy.

Proposition 3.4.1. Let p be a convex dynamically consistent Markovian multi-period

risk measure on L'(~2, F, • ) and fizx 7r (7rl,..., rT) E HIm,,.. If Assumptions 3.3.1

and 3.3.8 hold, then the backward recursion in in RU { +oo }

V'(T,j) = E 7rT(ajj)p(Tj,a)(QT,j,a), j E X,
aEA

V"'(t,j) - Zwrt(alj)p(t,j,a) [Qt,j,a + V7(t + 1, Nt,j,a)], j E X, 1 < t < T - 1,
aEA

yields p(C Isl) = Vr(1, si) for' all sl E X.

Proof. We will show by induction that V'(t) is well-defined and

Vr(t,j) = rt(alj)p(C,,a tj,a),
aEA

for all time t, 1 < t < T, and all states j E X.

At time T, QT,j,a E 9 T,j,a so that V'(T, j) is well-defined for all j E X. Also, in

light of the first identity of Lemma 3.3.10, it is clear that

V'(T,j)= E 7rT(alj)p(C,3,a T, j, a), Vj E X.
aEA

Assume V"(T, j) verifies the claimed recursion for all r > t + 1 and j E X. Since

Qt,j,a + Vr(t + 1, Nt,j,a) E Gt,j,a, the expression for V'(t) is well-defined.

Combining the two identities of Lemma 3.3.10 yields for all j E X

V·(t, j) = ZE rt(aIj)p(t,j,a)[Qt,j,a + P(Ct++,N,,j,, It + 1, Nt,j,a)].
aEA

Replacing p(Ct'+,Nt.j,,, It 4 1, Nt,j,a) by V'(t + 1, Nt,j,a) concludes the proof. O

When the multi-period risk measure p is dynamically consistent, Markovian, and

convex, Proposition 3.4.1 shows that p is completely specified for the positions of the



form Ct" through the single-period risk measures P(t,j,a) for all t, j, a, instead of p(- & ')

for all w' E Q'.

The recursion in the previous proposition is actually the Bellman recursion for

the MDP induced by p (cf. Subsection 3.3.4) when the controller uses a fixed policy

7 E IIm,r, as we show now.

Proposition 3.4.2. Let V' (t, j) the maximal reward secured by nature on the MDP

induced by p and initialized at state j at time t. Then, V (t,j), the risk of the tail

sample cost under policy ir E IIm,r, satisfies V'(t,j) = V7(t,j) for all j E X and

t := 1,...,T.

Prof. From Proposition 3.4.1, we have

V7(T,j) = E 7rT(alj)P(T,j,a)(QT,j,a), J E X,
aEA

V'(t,j) = Zlrt(alj)p(t,j,)[Qt,j,a + VY(t + 1, Nt,j,a)], j E X, 1 < t < T - 1.
aEA

In subsection 3.3.4, we associated with the risk mapping P(t,j,a) an uncertainty set

Pt,j,a and penalty functions Ot,j,a, for all t, j, a, such that

P(t,j,a)(X) = sup (E[X] - t,j,a(P)),
pEpt.j,a

for all single-step positions X E gt,j,a. Consequently,

P(t,j,a) [Qt,j,a+V'(t+l, Nt,j,a)] = sup (Ept., [Qt,j.a + V"(t + 1, Ntj,a)] - ýtj,a(Pt,j,a))
Pt.j,,,aEp-". ,

Hence, the recursion of Proposition 3.4.1 becomes

V'P(T,j) = E rT(a j) sup (EPTrj,,,[QT,,a] - Ot,j,a(PT,j,a)) ,
aCA PT.ja Ep-J"

VT"(t,j) = 7rt(a j) sup (EPtj, [Qt,j,a + V+ (t + 1, Nt,j,a)] - t,j,a(Pt,j,a)),
aEA Pt,jaEP

'
j,

'
a



or equivalently,

V"(T, j) = sup I Z TT(alj) [EPT,j,a[QT,j,al - t,j,a(PTj,a)] ,
(PT,a)aElla 7Tj, aEA

VT(t,j) = sup 7 irt(a j) [Ep,, [Qtj,a + V7(t + 1, Nt,j,a)] - t,j,a(Pt,j,a) .
(Ptj,.)aE W P'Ja aEA

These are the Bellman equations for the nature's MDP induced by p, when the

controller's policy is 7r. Hence, the solution to this recursion is the maximal reward

for nature in the MDP, and V'(t,j) = V'(t,j), for t = 1,... ,T. O

Theorem 3.4.3. Let p be a convex dynamically consistent Markovian multi-period

risk measure on L1(2, Y, p), and let Assumptions 3.3.1 and 3.3.8 hold. Consider the

backward recursion:

V(T,j) mmin sup [qT,j,a(PT,j,a) - ýT,j,a(PT,,a)] , E X
aEAj Prj.aETTja

V(t, j) = min sup [t,j,a(Pt,j,a) - t,j,a(Pt,j,a) + E P(klt, j, a)V(t + 1, k) , jE X,aE.A Pt 1,aEpt.jra 
kEX

(3.4.1)

fort= 1,...,T-1.

Then infErI,,, p(C"lsl) = V(1, s1) for all si E X.

Let a*(t,j) E A• be an action achieving the minimum in Equation (3.4.1). The

deterministic policy 7r* selecting action a*(t, j) when the system is in state j at time

t, achieves the minimum sample cost risk.

Remark 3.4.4. This theorem rely heavily on the fact that the risk mapping p(t,j,a) is

fixed over Gt,j,a, and thus does not depend on the policy 7r.

Proof. First, an immediate induction using the recursion of Proposition 3.4.1 shows

that V(t,j) • Vr(t,j) for all t,j and all 7r E Hm,r. Equivalently, we have V(t,j) <

p(CtI t, j) for all 7 E [Im,r.

Now, we can apply Proposition 3.4.1 to the policy 7r* E Hm,d defined in the

theorem. The recursion defining V and V' * are identical. Thus, V = V' *.



Finally, we conclude by observing

p(C r*181) = V'*(1,81) • VI(1, 81) = p(C|lsl), Vr E IIm,r,

where the first equality follows from Proposition 3.4.1 and the inequality is proved at

the beginning of the proof. O

Observe that we made almost no assumption on the dynamical system itself;

in particular, we (lid not have a probabilistic model for the system (except for the

reference probability space (Q, , y, ), which is needed essentially for technical reason).

All the results presented so far, including the ones indicating that the system behaves

like a stochastic Markov game from the controller's perspective, are obtained as a

consequence of properties of the controller's risk aversion.

Similar to dynamic programming for MDP control, the controller's risk objective

can be minimized over a "very large" policy space (exponential in the time horizon

T) by an algorithm with a complexity linear in T.

To the best of our knowledge, the only dynamic decision problem investigated in

the risk literature is the pricing of a derivative product in an incomplete market [72].

In that paper, some assets are traded on a finite horizon by a decision maker who

minimizes a, coherent risk measure of his portfolio position. The asset prices take

values in a finite set of price levels, with a distribution independent of the investor's

decisions, and are observed at each trading period. The authors establish a recursion

similar to the one in Theorem 3.4.3. However, without the Markovianity of the risk

measure, they need to keep track of the conditional risk measure for all possible

market histories, so that the complexity of their recursion grows exponentially with

the horizon length. In contrast, if the risk measure has the Markov property with

respect to the state space X, Theorem 3.4.3 establishes that the solution can be

found with only O(TIXI) updates of the form V(i, t) = Iin1aEAi P(t,i,a)[Q(i,a(t) +

V(t + 1, Nt,i,a)].

Before we deal with the more technical infinite-horizon problems in the next sec-

tion, let us illustrate our system model and our results on an inventory management



problem.

An example in inventory management

Let us illustrate our framework with an example. We consider a multi-period newsboy

problem [66] with a spot market and no back-orders. Fix a finite time horizon T and

the discount factor 3 = 1. Consider an inventory of a non-perishable commodity

traded on a spot market. We assume that the inventory can hold a maximum of N

units of the commodity. Hence, the inventory level is represented by the number i of

units in the inventory, where i E I = {0, 1,..., N}, and N is a positive integer. Let

h be the inventory holding cost per unit of stock at each period.

At each time period, there is an uncertain demand in {0,..., D} from customers,

which drives the revenue of the firm. Customers pay a fixed price i per unit. If a

customer's order is not fulfilled immediately, the order is lost and a penalty of c is

paid per missing unit.

The firm has access to a spot market from which it can replenish its inventory.

We assume that the market price of the commodity takes values in a finite set XP =

{Pl,..., Pm}. At the beginning of each period, the firm buys a units of the commodity

(a E A = {0,..., N}) at the current spot price in order to build inventory for the

demand in the current and future periods. Then, the current demand is observed.

Let I(t) be the inventory at the beginning of the period, A(t) be the quantity

purchased on the market at price P(t), and D(t) be the demand at time t for each

period indexed by t. In this problem, it is always better for the firm to meet the

current demand as much as possible, rather than leaving demand unsatisfied and

saving inventory for subsequent periods. Hence, we can write the dynamics of the

inventory level as

I(t + 1) = mnax{I(t) - D(t) + A(t), 0},

and the associated immediate cost is

A(t)P(t) - p min(D(t), I(t)) + hi(t) + c max(O, D(t) - I(t) - A(t)).



This inventory management problem not only entails the supply of an uncertain

demnand, but also the management of price uncertainty. It fits our general model for

dynamical systems presented above, where we let X = I x Xp be the state space,

and A(rt,p) = {0,..., N - n} be the set of available actions in state (n, p) E X, where

there is already n units in inventory.

In contrast with standard formulations of newsboy problems, we do not specify a

probabilistic model for the demand or the market price. If the controller only uses

deterministic policies, we can model this problem with a finite sample space Q since

the only uncertainty is in the demand andl market prices (and there are only finitely

many of them to describe when T, m, D, and N are finite). In this case, the system

model (Q, 20, p) just specifies which events w E Q are possible (i.e., p(w) > 0).

Let us assume that the decision maker has a dynamically consistent Markovian

convex risk measure. Intuitively, this assumes that past demands and market prices

bear no influence on the current risk assessment given the current market price and

inventory level. For example, if the controller believes that the demand is indepen-

dent period by period, and that the market price evolution can be described by a

prol)bability law that is Markovian with respect to X, then its risk preference satisfies

this assumption. In this case, we saw earlier in the present section that the risk pref-

erence of the decision maker can be represented as a certain Markov game, described

in Subsection 3.3.4. In other words, the risk preference of the decision maker induces

a worst-case probabilistic model of the system.

When the firm seeks to minimize its risk over all possible Markovian policies, the

miain challenge is to deal with the exponentially large policy space. Theorem 3.4.3

shows how to efficiently compute the minimal risk over the Markovian policies, and

find an optimal deterministic policy by solving Shapley's equations for the associated

zero-sum Markov game.



3.5 Risk minimization over an infinite horizon

In this section, we minimize a convex dynamically consistent Markovian risk measure

of the sample cost of Markovian policies over an infinite horizon T = +oo. We show

that a risk minimizing policy can be chosen deterministic and stationary and that it

can be computed efficiently.

Definition 3.5.1. For a policy r E IIm,r and a time delay t > 0, define the delayed

policy irt E IIm,r by •rt = 7r+t. A multi-period Markovian risk measure is stationary

if for all policies 7r E IIm,r, and all i, t,

p (Ctlt, St7 = i) = p(/t-1C"' 1, S1 = i),

where 0f is the discount factor.

3.5.1 Coherent risk measure of discounted sample cost

We assume in this subsection that the discount factor is less than one and that the

risk measure is coherent.

Theorem 3.5.2. Let p be a coherent dynamically consistent stationary Markovian

multi-period risk measure, and denote V'(sl) = p(C7jsl) for 7r E flm,r, and V*(i) -

infEnEn .n V(i). Assume that the discount factor 0 is in [0, 1) and that Assumptions

3.3..1 and 3.3.8 hold.

(a) If a stationary policy 7r E s,r, satisfies V' < +oo, the vector V' is the unique

fixed point in Rx of T .

(b) If there is a Markovian policy 7r E HIm,r such that V' < +oo and V* >

-oo, then V* is the unique fixed point in R x of TO: V* = TOV* (Shapley-Bellman

equations).

(c) Furthermore, for all V E Rx, II (TO)k V - V* l, /3kllV - V* K. so that

(TO) k V _ V * for all V E Rx (value iteration).

(d) There is a deterministic stationary Markovian policy 7r* E Hs,d such that

T~.V* = TfV*. Moreover, the policy 1* achieves the minimum risk V' * = V* and

100



does not depend on the initial state.

Remark 3.5.3. If all the immediate costs are bounded in absolute value by M with

pI-probability one, then there holds V17 < +00 for all r E IIm,r

On the other hand, the condition V r < +oo for 7r E IIm,r is not a consequence

of Assumption 3.3.1, which states that the sample cost of any Markovian policy is

integrable. The assumption that E,[ CI] < +oo implies that Ep[ CfI] < +0o for all

P E L"(Q, T , p), but it does not necessarily imply that su)pPE Ep[jCfl] < +Ao when

P C L (Q,, p).

Proof. (a) For 7 E Hm,r,, the decomposition lenma 3.3.10 specialized to t = 1 yields

V,(sO) = p(C'I1, S1) = E 77(a sj)p(1,s, a) [Q' + p(Cj12, S2)].
aEA

Since p is stationary and coherent, p(CO22, S2 = j) = p(PC 11, S = j)

/3V* (j), and the previous equation becomes V" = TI V*'. If the policy 7w is station-

ary and satisfies V' < +oo, then 7r = nl. Hence, V' is finite and is a fixed point of

To in R x . Since TO is a, -contraction for the sup norm on R x (Lemnma 3.3.12), for

all V E R x , (T)k V -V V" as k -+ +oo, and V7 is the unique fixed point of T.

(b) By monotonicity of TO, VP = T3 V* > T~ V* > TOV*. Taking the infinum

with-respect to ir E Im,r yields V* > T V *.

If there exists r E II,,, such that Vr(j) < +Ao for all j E X, then V* < V7 < +co.

Since V* > -oo, V* E Rx is finite.

Consider a deterministic stationary Markovian policy 7r* E IIs,d such that TOV* =
T V*. Since T V* = V*, we have V* TV*. By onotonicity of T, V*

T . = TLV~'. By monotonicity of T;, 17*>

T( k V* for all positive integers k. Since T ko V* > V* we have V'* -

1V* = T V *.

(c) Since TO is a 0-contraction on R x , this part is straightforward.

(d) This part was proved along the way in (a). O
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3.5.2 Convex risk measure of undiscounted sample cost

To guarantee that an infinite horizon undiscounted sample cost is well-defined, we

will assume that there is a special "termination" state a E X. Hence, infinite horizon

undiscounted cost problems can be thought as finite horizon problems with uncertain

time horizon length, where the time horizon is the time until absorption by state a.

This set up generalizes the analysis of stochastic shortest path problem by dynamic

programming when the discount factor /3 is one. Also zero-sum Markov games have

been studied in this setting [60].

For infinite-horizon undiscounted cost problems, we can analyze the more general

case of convex risk measure. We will establish resutls analogous to the finite-horizon

case under the following additional assumption.

Assumption 3.5.4. (a) There is a special state a E X, which has zero-cost and is

absorbing with pi-probability 1, i.e.,

Ip (Nt,,a = a, t,,a = 0,() Va E A, t Ž> 1) = 1.

(b) Recall that for any fixed policy 7r E Hs,r, the Markov game defined in Subsection

3. 3.4 becomes an MDP controlled by nature. We require that for every stationary

policy 0 of nature either there exists an initial state state i E X from which the

expected reward of nature goes to -oo or 0 is a proper policy. Recall that a

stationary policy 0 is proper if for all initial states si, the limit as t --+ +oo of

the probability under 9 that the state at time t is a is equal to one.

Remark 3.5.5. Assumption 3.5.4 generalizes two usual assumptions in deterministic

shortest path problems: 1) that every node is connected to the destination node a, and

2) all cycles have positive length.

Theorem 3.5.6. Let p be a dynamically consistent stationary Markovian convex risk

measure verifying Assumptions 3.3.1, 3.3.8 and 3.5.4. Moreover, assume that for

w' E Q' p( .w') has a subdifferential everywhere on its domain, i.e., for all X E FI
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such that p(Xlw') < +oo, we have Op(X(w') # 0. Let V'(j) = p(C'lj) be the risk of

the sample cost under policy 7r E m,r.

(a) If a stationary policy E HE s,r is such that V'(j) < +oo for all j E X, then

V' is the unique solution in V = {V E RX V(a) = 0} of T,,V'= V' (Bellman

equation). Moreover, V~ = liInk,+, T'o V for any V E V (value iteration).

(b) Assume that for all deterministic stationary Markovian policies W E 1Is,d,

V" < +-oo and that V*(j) = inlfrnlm,, V'(j) > -oo. If V*(j) > -oC for all j E X,

then V* is the unique fixed point in V of T (Shapley-Bellman equation). There is

a deterministic stationary Markovian policy 7r* E Hs,d, 7r* - (7r, 7r -,...), such that

T,;V* := TV*. Furthermore, the policy 7r* is optimal, V` * = V*, and does not depend

on the initial state.

(c) Finally, link_+,, TkV = V* for all V E V (value iteration).

Remark 3.5.7. In contrast to the discounted case, T, need not be a contraction

with respect to any norm, as in [13]. However, in contrast to the results in [13],

this theorem does not provide a tool to evaluate the risk associate with non-stationary

Markovian policies.

Remark 3.5.8. The assumption that the convex risk measure p is subdifferentiable on

its domain is mild since p is already a proper lower-semicontinuous convex functional.

Hence, it is subdifferentiable on the relative interior of its domain. Essentially, the

assumption that p is subdifferentiable on its domain rules out the possibility of p

having "vertical derivatives," that is positions around which the risk perception of the

d(ccision maker changes "infinitely fast."

It is not clear whether the assumptions that V' < +oo for all 7r E 1Is,d and

V* > -oo are not redundant, because before proving that Bellman's equations hold we

do not know whether the test probability measures associated with p have the Markov

property. If we knew this, we could use stronger properties of MDPs to by-pass these

assumrnptions.

Proof. (a) Fix a stationary policy 7r E rs,r such that V7 < +oo. By mimicking the

proof of Theorem 3.5.2, we have that V' E V = {V C RX I V(u) = 0} is a fixed point
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of T,.

Now, we will prove that (T,,)k V -, V' as k -+ +00. This property will follow

from the analysis of Bertsekas and Tsitsiklis in [13]. Indeed, the operator T,, can be

interpreted as the classical dynamic programming operator for the MDP controlled

by nature that is obtained when the decision maker uses policy 7r in the Markov game

defined in Subsection 3.3.4. We will apply the results of [13] to this MDP.

For the reader's convenience, the main result of [13] is re-stated here with the set

up and notations adapted to our situation, where nature maximizes her reward.

Assumption 1

State o is absorbing and cost-free. Furthermore, there exists at least one proper

stationary policy, and each improper stationary policy yields a reward to nature of

-oo for at least one initial state.

Since V' = T,, V, Lenmma 1(b) in [13] guarantees the existence of a proper

policy for nature when the stationary controller's policy 7r is fixed. This together

with Assumption 3.5.4 imply that Assumption 1 is satisfied.

Assumption 2

For all states j, nature's action set l ',j,a is compact, the immediate cost functions

(ql,j,a(Pj,a) - 1,j,a(P,a)) are upper-semnicontinuous in Pj,a E pl,i,a, and the marginal

distributions P(klj, a) of Pj,a on X are continuous in Pj,a E p wi',a

Observe that Assumption 2 is not satisfied in general in our set up because the

sets pi3j,~ need not be compact. This assumption is needed for two reasons: 1) it

guarantees that the supremum in Bellmnan equation is achieved and 2) it is used in

[13] to show the existence of a fixed point to T,,. Since in our case, we know that

V' is a fixed point, we could replace Assumption 2 by the weaker assumption that

the supremum in the definition of T,, V, i.e.,

(T, V) (j) = E 7r(aj) sup (qI,j,a(Pj,a) - l,j,a(Pj,a)) + E P(kl1,j,a)V(k) ]
aEA PjL E ' J kEX I

is achieved for all stationary policies 7 E IIs,r and all V E Rx. Since we are as-

suming (in Theorem 3.5.6) that the conditional risk measures of p have a non-empty
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subdifferential on their domain, Proposition 3.2.8 implies that the supremum in the

representation of p(- 1, j, a) is achieved for all j, a; thus, the supremum in the defini-

tion of T,, V is also achieved.

Proposition 3.5.9 (Proposition 2 in [13]). Let Assumption 1 and 2 hold. Then:

(i) The optimal cost vector V' is the unique fixed point of T,, 1 in V.

(ii) For every V E V, there holds limk-.+, T k, V = V".

This proposition implies that (T,,)k V -+ V r and that V' is the unique fixed

point of T7, in V, which concludes the proof for point (a).

(b) By following again the proof of Theorem 3.5.2, we have that V* > TV*. Let

r* = (ir, ir1,...) E Hs,d be a stationary deterministic policy such that TV* = T,*V*.

By applying TVk on both sides, we have V* > (TW) k V* -+ V"' as k -- + oc, by

(a). Since V* < Vr *, there holds V* = TV* = V' *, and the deterministic stationary

policy 7r* is optimal and does not depend on the initial state.

In fact, there is a unique fixed point of T in V. Assume V1, V2 E V are fixed

p)oints of T. Let 7r', 7r2 be two policies such that Ti V = TV i, i = 1, 2. We have

V 1 = TV 1 < TV 1. Iterating this inequality, we obtain V1 < Tk V 1 -+ V 2 . The

synmmrntric argument yields V 2> V2. Hence, V 1 = V 2, and V* is the unique fixed

point of T in V.

(c) Now, we prove that limk_,+, TkV = V* for all V E V. Recall the definition

of e E Re" as the vector with all components equal to one, except for e(a) = 0. For

a fixed 6 > 0, define T6 the operator on V by T6V = T,. V + 6e. Note that T

is the dynamic programming operator for a modified MDP where all the immediate

transition costs, at states other than a, have been increased by 6 > 0. First, we show

that there exists V6 E V such that TsV6 = Va. This MDP verifies the assumptions of

Proposition 2 in [13], which states that T3 has a unique fixed point in V, namely V6.

Moreover, since all the costs have been increased, V6 > V7 * .

Now, we can write V7" = TV"* < TV6 < T,*V6 = Va - 6e < Vs. Applying

the operators T < T,* to these inequalities yield V" * < TkV3 < Tk-1lV • V.

Consequently, (TkV6)k is a decreasing sequence lower-bounded by V~' . Since T is
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continuous on (Rx, I-1) (Lemma 3.3.12, (d)), the sequence converges to the unique

fixed point of T, V*.

On the other hand, we can write V' * - 6e = TV'* - 6e < T(Vr* - 6e) < TV"* =

V" *. Applying T to these inequalities imply that Tk (V ' * - 6e) is an increasing

sequence, which is upper bounded by Vr *. Hence, it converges and its limit is the

unique fixed point of T.

Since the state space X is finite, for all V E V, we can find 6 > 0 such that

Vr * - 6 < V < V&. Applying T on each side yields Tk(v * - ) _ TkV < TkV.

Taking the limit when k goes to -Foo shows that TkV -+ V*. O

3.5.3 An illustration: minimization of exponential utility func-

tion

We have seen in Section 3.2 that the functional p(X) = log E. [exp(QX)] with Y > 0

is a convex risk measure on L`(Q, F, p) for any probability space ( /, F, ip). Under

an additional assumption on IL, we will show that the risk mneasure p is Markovian

and dynamically consistent, and (an adaptation of) Theorem 3.5.6 will apply. This

subsection is meant to be an illustration of Theorem 3.5.6 since we will restrict our-

selves to systems where the infinite horizon undiscounted cost belongs to L(Q, F, , p).

Moreover, the results obtained in this subsection are already known in the literature

(e.g., [61]) but they were derived differently.

As detailed in Subsection 3.2.2, the risk measure p is convex only on L*(Q, F, /F),

and not L'(•2, F, p). Since the results of this chapter have been derived for risk

measures on L'(Q, F, p), we would need to adapt all the definitions and re-derive all

the results to deal with L"c(Q, , , p). For the sake of brevity, we will not do it; recall

from Theorem 3.2.11 that if a convex risk measure on L'(Q, F, tp) satisfies the Fatou

property, then the representation theorem holds with the role of L1 and LO switched.

As a result, all the definitions and results exposed so far can be adapted by:

(i) replacing "convex risk measure" by "convex risk measure with the Fatou prop-

erty,"
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(ii) switching the role of L1 and L'.

Until the end of this section, we will assume that the probability law p has a

product form, i.e.,

I = 11, fIR . II •'P'R,2  JJ (3.5.1)
t=1 X (j,a)EXA

In other words, all the components of a sample point w are generated independently

of each other, including the cost Qt,j,a and the state Ntj,a that follows state-action

pa.ir (j, a) at time t. In particular, the trajectories distributed according to p have

the Markov property. This assumption is more restrictive than before because in

the present context / is supposed to represent the subjective probabilistic model for

the system with respect to which the decision maker is basing its expectations (as

opposedi to the earlier situation where the support of p mostly mattered).

Wre note that the risk measure p(.) = log E,[exp(7-)] is dynamically consistent.

Indeed, let w' be a partial history, and X,Y two positions. If for all v E S(c')

E,M[exp(-yX) w'v] < E,[exp(yY)Jw'v], then EM[exp(yX)lw'] < E,[exp(-yY)cw'], since

EO[exp(yX) cw'] = E,,gE[exp(YX) J'v].

For a product form p., the conditional risk measure p(.) = log EM(exp(y-)) is

Markovian. Indeed, let w E Q such that St(w) = j and Ar(w) = a, then, by

conditioning on the subsequent state,

log E,[exp("Ct) Iwt] = log P PN,j.a(k)E1,[exp(YQt,j,a). exp('C+"G ) I Wt, St+l = k]
kEX

= log E PNtj, (k)Ep(,,. ([exp(QyQt,j,,a)].E [exp(,yC~ 1) I S•, = k],
kEX

= log Epg,,. [exp(~yQt,j,,)] + log ]N,,j,. (k).E, [exp(SC+• 1) I SF = k],
kEX

where the second equality uses the independence between the immediate transition

cost and the next occupied state as well as the Markov property of the state process.

Since the right-hand side depends on w only via St(w) and A"(w), the risk measure
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p(.) = log E,(exp(-y.)) satisfies condition (a) of the definition of a Markovian risk

measure. A similar argument shows that condition (b) is also satisfied.

Now, we can rewrite Theorem 3.5.6 for the risk measure p(X) = log E,(exp(yX)),

y > 0, associated with the exponential utility fmnction.

Proposition 3.5.10. We assume that the probability law pt has the product form of

Equation (3.5.1), is such that Assumption 3.5.4 holds, and that for all 7r E Hm,r and

t > 1, the sample cost Ct is in L7(F(w'), .F(w), p,1 ') for all w' E 2Y'U{0} (adaptation

of Assumption 3.3.1).

Let V'(j) = 1 logE,[exp(yCf) IS = j] and V*(j) = inf,'nm., V'(j) with 7 > 0.

Then, the following statements hold:

(a) V 7 is the unique solution in V of

(j) = log EpQ,,,.o [exp(yQi,j,a)] + - log ~ N,,, (k) exp(7V'(k))
aEAj Y kEX

(b) The limit limk-+o Tkv is V'1 for all V E V (value iteration).

(c) If V*(j) > -oo for all j E X, V* is the unique solution in V of the equations

V*(j) = min log Ep, [exp(NQ1,a, , ) + log Pj,, (k) exp(-V*(k)) .
aEAj j•a kEX

(d) If V*(j) > -oo for all j E X, there exists an optimal deterministic stationary

Markovian policy 7r* that satisfied T, V* = TV* and that does not depend on

the initial state.

(e) If V*(j) > -oo for all j E X, the limit limk_+o TkV is V* for all V E V (value

iteration).

Remark 3.5.11. This proposition is not entirely contained in [61], which assumes

that the immediate costs are positive (Assumption 1 (i)).
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Proof. Since the functionals p(. w') = log E, [exp(7- ) w'], w' E Q', form a dynami-

cally consistent Markovian convex risk measure, this proposition is an application of

(an adaptation of) Theorem 3.5.6, so we simply need to verify that its assumptions

are satisfied.

Without any assumption on the probability space (Q, T, p), let (X,) be a uni-

formly bounded sequence in L(Q•(, F, p) such that X, I X pI-almost surely. By the

monotone convergence theorem, E,(exp(-yX,n)) I E,(exp(-X)), and p(X,) -+ p(X).

Hence, p(X) = -log E,(exp('yX)) with y > 0 has the Fatou property (Definition

3.2.9 (c)).

Assumption 3.3.8 is easily verified in our present case.

Since C7 E LOO(F(w'), F(w'), pu,,) for all w' E Q', there exists M < +oo such that

o1(C') < M p-almost surely, and thus p(Cflj) < M < +oo.

Trhe functional p defined by p(X) = log E,[exp(TX)] is a risk measure on

L"(Q, F, [), but not on LP(Q, F, •) for p E [1, +oo). Intuitively, condition (5) in

the. definition of convex risk measure is not satisfied when the tails of the functional

space 7-i do not dlecrease at least exponentially. In order to have a result of the form of

Proposition 3.5.10 that is more practical, one could consider a fiunctional space whose

elements have exponentially decreasing tails and use the representation theorem for

convex risk measures on general functional spaces in [77]. We did not investigate this

avenue because it does not serve our main research objectives.

In summary of the last two sections, we established new representation theorems

for dynamically consistent Markovian convex risk measures of the sample cost, and

showed that their minimization is equivalent to solving a zero-sum sequential game

with nature.

In the rest of this chapter, we will take the converse approach of starting from

uncertainty sets and penalty functions to define well-behaved risk Imeasures.

109



3.6 From robust control to risk minimization

In this section we still deal with systems of the form described in Section 3.3, but

we take a converse approach to that of Sections 3.4 and 3.5. Now, instead of repre-

senting risk measures as worst-case penalized expectations, we will construct dynain-

ically consistent Markovian convex risk measures starting from uncertainty sets and

penalty functions. The minimization of the coherent risk measures of this class of

risk corresponds to the worst-case robust control of uncertain MDPs of [54, 38]. Fur-

thermore, the convex risk measures of this class of risk allows us to motivate another

-- potentially less conservative -- robust formulation in which nature is penalized for

choosing "unlikely" parameters. Together with Theorems 3.4.3, 3.5.2 and 3.5.6, this

establishes the equivalence of minimizing dynamically consistent Markovian convex

risk measures of sample costs (which is well-motivated from the perspective of risk-

averse decision theory) and of solving zero-sum games between the decision maker

and nature (which are computationally "tractable"). This gives us two ways to think

about robust. control of MDPs. Finally, we generalize the aforementioned construc-

tion of multi-period risk measures to define multi-period risk measures with desirable

properties (dynamical consistency, Markovianity) starting from single-period convex

risk measures.

In the sequel, we deal with technicalities from measure theory and functional

analysis to cope with systems as general as the ones defined in Section 3.3, but the

reader is encouraged to consider a finite sample space Q to focus on the heart of the

matter.

Our model for dynamical systems is still the one described at the beginning of

Section 3.3, with the reference probability space (Q, F, it). Denote lit the single-

step marginal probability measure of [t_, + on (Rt,i)iEx. Recall that we have assumed

that each random number Rt,i is generated independently of everything else so that

At , does not depend explicitly on wt-1. For a given partial history wt, we denote by

Pt the one-step marginal distribution on E(wt) of any probability measure P on the

measurable space (F(wt), .(wt)), and by pt,3,a the marginal of P over (Nt,j,a, Qt,j,a).
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Also denote Pl, a version (they are all equal with P-probability one) of the conditional

probability distribution of P given wt and v E S(wt).

3.6.1 A multi-period risk measure induced by uncertainty

sets and penalty functions

In this subsection we construct dynamically consistent Markovian convex multi-period

risk measures starting from uncertainty sets and penalty functions. This construction

provides a converse to the representation results of Proposition 3.4.1 and of Theorems

3.5.2 and 3.5.6.

Let Pt,j,a be an (uncertainty) set of probability measures on (X x R), absolutely

continuous with respect to p•t•, for all w E Q~, and such that all the derivatives

are in L"(F(wt), 7's(wt), tl,,~) . (A given probability measure can be continuous with

resp)ect to several different measures and have different derivatives with respect to

each of them. Therefore, in this subsection, we will deal directly with probability

measures, not with their derivatives. For example, the uncertainty sets Pt.j,a are

now sets of probability measures, not of derivatives with respect to some reference

p)robability measure.) Observe that the uncertainty set Pt,j,, contain test probability

measures for both the next state occupied at time t + 1 after the state-action pair

(j, a) and the associated transition cost. Given the uncertainty sets Pt,j,a, we can

define the sets of probability measures P(w') on (F(w'), .(w')), w' E 2' by

and

T-1
t- Z with Z., E -I Pr,j,a, T Ž4t

\ r=t (j,a)EXA

Observe that these sets are "rectangular" across time and state-action pairs. Intu-

itively, the knowledge of some components of an element of these sets does not provide
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information on the values of other components.

Let Ot,j,a be non-negative measurable (not necessarily convex) penalty functions

on the uncertainty sets Pt,j,a. These penalty functions do not appear in the worst-

case control of uncertain MDPs, but they will be important for our extension. To

guarantee normalization of the risk measure, defined later by Equation (3.6.1), (i.e.,

p(0 w') = 0 for all w' E Q'), we assume that for all t, j, a, there is some Ptj,a PE t,j,a

such that t,j,a,(Pto,a) = 0. For r > 1, define penalty functions from P(w•) into

RU {+oo} by

Ow, (P) = Ep E Ct,,P,a (P " a
t=r (j,a)EXA

Similarly, define the penalty function W, i (P)= Ep [E••T E(,a)EXA t,j,a(p , a)] for

P E P(wr-l, ). The following lemma guarantees that these objects are well-defined.

Lemma 3.6.1. For T finite or infinite, the penalty functions 0,, and 0,+ are mea-

surable functions respectively from P(Wr) and from, P(Wr-) to R U {+oo}. In par-

ticular, their value do not depend on the choice of the conditional probabilities of

P.

Furthermnore, 0,_ (P) = Epr [ l v(Pv)] and wd,,(P) = E(3,a)EXA Or,a ,(Prjia)+

Epr [Ow,v(PV)]I

Proof. First, observe that the expressions ,., and _i, are sums of measurable and

non-negative terms.

Now we show that ,, (P) does not depend on the choice of the conditional distri-

butions of P E P(Wr). For t > r + 1, let Z, Z,', be versions of the conditional prob-

ability measure of P,,. They agree with P-probability one and Ep [Ot,j,a(Z, a)] =

Ep [Ot,j,a(Z't,'a)] for all t > r, (j, a) E XA. This implies that

E t=r (j,a)EXA o

does not depend on the versions of the conditional distributions of P.
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A similar argument shows that the penalty functions o 1 do not depend on the

version of the conditional probability measures of P.

By the law of iterated expectation, we have for P E P(w-L) that

_ (P) = Ep EPI tJ,a t 1,
t=r (j,a)EXA•4

where PIV is a regular conditional probability measure of P given V E (wo+ 1 ) [16].

More precisely, we can pick a version PI, of the conditional probability measure of

P such that P,, the restriction of Pi, on the measurable subspace (F(wtv), F(wtv)),

belongs to P(wr-iv) for all v E (wr_-J), and write 0 (P) = Ep [ (y )]

The decomposition of 0,, follows a similar argument. O

Now, we can define a convex risk measure p(-Iw') on L'(F(w'), F(w'), I') associ-

ated with the uncertainty sets Pt,j,a and the penalty functions Ot,jja:

p(Xjw') = sup (Ep[Xlw'] - 0,,(P)). (3.6.1)
PEP(w')

When the penalty functions Ct,j,a are all zero, the conditional risk measure p(- lw') is

co)herent.

Remark 3.6.2. Equation (3.6.1) suggests that nature pays some penalty even for

parameters "outside of the trajectory." But since nature picks the probability measure

P E P(w') after she observes the partial history wt, she knows the current state-

action pair, and can pick the parameters Pt',ja = Pjt for all the state-action pairs

(j, a) that are not the current state-action pair. Hence, our proposed form for the

penalty function works similarly as in the MDP introduced in Subsection ?.3.4.

Proposition 3.6.3. The mapping that associates to w' E Q' the convex risk mea-

sure defined by (3.6.1) is a dynamically consistent and Markovian multi-period risk

mcasure on L1(Q, .T, ti), which satisfies Assumption 3.3.8 (i.e., controller risk-neutral

uwith respect to the uncertainty of the random number generator).
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Proof. First, let us show that it is dynamically consistent. To verify condition (a) of

Definition 3.3.6, it is enough to show that p(Xlw') = p,, [p(Xfw'-)] for all w' E Q' U 0.

Indeed, if p(Xlw'v) < p(Y w'v) for all immediate continuations v E 8(w'), we have by

monotonicity of p,, that pL,[p(X w'v)] = p(Xlw'v) • p(Ylw'v) = p,,[p(Yjw'v)], and

thus p(Xlw') < p(Ylw').

For P E P(wt) and X E L'(F(wt),.'(wt),jzl,, ),

Ep[XIWt] - wt(P) = Ep, [Ep[X wtV]] - 0,(P)

= Ep, [Ep[X wtV] - 4,v(P)]- ,t,j,a (pt,,ja)
(j,a)EXA

< Ept [p(XlwtV)] - Ot,j,a(Pt,3a)
(j,a)EXA

< sup [Epp(XlwtV) - O t(j,a (P1a)
PEHI(j,,1)EXA P,.J.a[ (j,a)EXA

Hence, taking the supremum of the left-hand side with respect to P E P(we),

p(X lw) • sup [Epp(XlwtV) - Otj,a(Pj'a)
PE[I(j,,)EXA ptJ.,, (j,a)EXA

A similar computation yields for X E L1 (F(w'- 1), Y(w+•1 ), j1,+_ )

p(Xlwt+ 1) sup Ep [p(XIwct)].
PEH1(jma)EXA Pt-jý('

To show that in fact equality holds, we will show that the left-hand side of the

above expression is arbitrarily close to Ep [p(XIwt)] for any given P E H(j,a)CxA Pt,j,a

Let P E H(j,a)EXA Pt,,a and E > 0. For all v E (Lot), there exists P, E P(wtv) such

that p(Xlwtv) > Ep,,[XIv] - 0,,((P,) - E. Since P(wt) is "time-rectangular", we can

choose P E P(wt) such that Pt = P and P, = P, for which we can write
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p(Xlwt) Ž Ep[Xlwt] - Ow,(P)= Ep [Ep[XIwtV] - 0,,v(P)] - t,j,a(p t a)
(j,a)EXA

> Ep([p(XwYV) - ]- Z t,j, (Pt' j 'a)
(j,a)EXA

Since this inequality holds for all P E H(j,a)EXA Pt,j,a and all c > 0,

p(XIwt) sup Ep [p(XLIwtV)] - Ot,j,a(pja
PeH(j~a)EXA Pt'. L[ (j,a)EXA

Consequently, p(Xwt) = p,, [p(X wt-)].

A similar argument holds to show that p(Xiwtl 1) = Pýt- [p(X -.)]. Conditioin

(b) of Definition 3.3.6 is satisfied. Consequently, the mInulti-period risk measure p

(defined by Equation (3.6.1) is dynamically consistent.

Now, we show that the risk measure p is Markovian. Fix 7r E IIm,r and consider

w'. E Q such that St(w)- St(") and A(w) = AX(O ) .

By definition, p(CGIwt) = s u p p•(7,,) (Ep[CtY] - p, (P)). Here, VP(wt) (resp. P(ot))

is a set of probability measures on the measurable space (F(wt), J(w•)) (resp. (F(Ot), F(7t)l))).

Although P(w,) and P(Ot) live on distinct probability spaces, we will see that they

(liffer only by the prefix up to time t - 1 of the sample point and that we can

identify them with each other by ignoring the prefix. Indeed, write P E P(wt)

as P ( Tirt ZI•p) ZWT and P E P(Ot) as P = (T1 ZIl•) ZWT, where

Z,, Z,, are in H(j,a)ExA p T,j,a for r > t. When w, and 0, differ only by their

prefix, we can let Z,, = Z, for 7 > t. Also recall that the distribution of the

random numbers (Rt,), / l., does not depend explicitly on w+ since each random

number is generated independently of the rest. Given this warning, we can write

with a slight abuse of notation, P(wjt) = P(Ot) and ,,(P) = O-,(P). Therefore,

p(C71 Ut) = p(C,7 jt).

The samne argument holds for the case of w 1+. This concludes the proof that p is

Markovian.
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Finally, from the definition of the uncertainty sets P(w') and penalty functions

',, Assumption 3.3.8 is satisfied. O

The single-period risk measure associated with p(-I t) applied to a single-period

position XS E L'(F(wt), TS(w0t), upw,) takes the form

Pw, (X') = sup (Ep[XS ] - O,, (P)) (3.6.2)
PEP

=sup E(P, 1 ,)[X'] - ta(Pta)
(Ptja)(ja) EH'(ja)EXAPtj,,,- (j,a)EXA

Indeed, we do not lose anything by letting P t = (,a)xA Pj,a for all time r > t+1

in the supremum of Equation (3.6.1). This observation closes the loop in the following

way: from the uncertainty sets Pt,j,a and penalty functions kt,j,a we defined a dynam-

ically consistent Markovian convex risk measure p to which we can apply the analysis

of Sections 3.4 and 3.5. The theorems therein lead to test probability measures and

penalty functions associated with p, but these are essentially the uncertainty sets and

the penalty functions we started with.

For the sake of illustration, consider a finite time horizon T. According to Theorem

3.4.3, the minimal risk inf~nr,,,.,. p(C'jsl) = V(1, sl) is given by Bellman recursion,

which has the form

V(T, j) = mmin sup ETj,a[QT,j,al --T,j,a(PT,j,a), j E X
aEAj PrTj,(

V(t, j) = min sup Ep,,tj,, [Qt,j,a - qt,j,a(Pt,j,a) + 3V(t + 1, Nt,j,a)], j E X, t = 1,...,T - 1.
aEAj Pt,ja

Observe how the penalties Ot,j,a appear in a natural way in Bellman's equations, even

though the formal penalty function 0,,.(P) = Ep [•t=r E(j,a)EXA t,j,a(P ,s,a)t seems

intricate.
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3.6.2 Connection with robust control formulation of MDPs

III this subsection, we point out a connection between the worst-case robust control of

Iuncertain MNIDPs and risk-sensitive control of MDPs. Then, we propose an ini)roved

rolbust forimulation for the control of uncertain MDPs based on the rninimization of

ai certain convex risk measure of the sainple cost.

When the nmulti-period risk measure p is defined by Equation (3.6.1) with c0, = 0

for all 2' E Q', the probleim inin, p(C7lsl) is equivalent to the robust control problern

foiirmulatioin of [78, 54, 38] with uncertainty sets Pt,j,a. Actually, their robust control

folrmulation does not explicitly allow for uncertain transition costs (while ours does),

ibut this cani be easily accommodated. Since their robust control forinulation amiounts

to mlinimizing a dynamiically consistent Markovian coherent risk measure, Theorerms

3.4.3 and 3.5.2 apply and recover mrost of their results, while Theorem 3.5.6 analyzes

the case of undiscountled samnIple costs over an infinite horizon.

The papers [78, 54, 38] assunie that the uncertainty sets are rectangular, )but do

not study, neither fromi a comnputational, nor from a decision theoretic perspective,

what happens if this assumption fails to hold. In these papers, the uncertainty sets

are not updatedt as new infornimation comres in during the control phase. They propose

to design uncertainty sets based on probabilistic models, e.g., relative entropy or

likelihood level sets. In these cases, we may consider updating the uncertainty sets

on the basis of new observations, for example using Bayes rule.

This suggests that the controller could decide at some time point to refine the

uncertainty sets and solve again the corresponding robust control problem. However,

the subsequent exa.miple will show that this procedure can lead to severe tirme inconsis-

1l.(ncy in the decision nimaker preferences, when the uncertainty sets are not rectangular.

This pitfall adds to negative comiputational complexity results established in Chapter

2, where we showed that the worst-case optinimal control of uncertain MDPs becomnes

at least NP-hard when the uncertainty sets are not rectangular.

Example The following examniple is inspired from [72] and illustrated in Figure

3-2. Consider a two-period economy with two outcoimes per period, where the imarket
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a: 0
b: 10

a: 100
b: 10

a: 100
b: 10

a: 0
b: 10

Figure 3-2: Simple model of a two-period market

goes either up (u) or down (d), but has uncertain dynamics. To model this situation,

let us consider two possible MDPs, parameterized by an (uncertain) probability p, E

{0.01, 0.99}, on the state space X = {0, u, d, uu, dd} and action space {a, b}. In both

MDPs, the initial state is 0 and there are two time steps. In the first period, there is

no control and no cost, and the system moves from state 0 to state u with probability

pu, and to state d with probability 1 - pu. In the second period, the system state

transition is still exogenous: state u is followed by state uu with probability p,, and by

state ud with probability 1 - pu; and state d is followed by state du with probability

pu, and by state dd with probability 1 - pu. However, in the second period, the

controller chooses between actions a and b as a function of the current state. Action

a in state u has cost 100 if the system moves to state ud and zero otherwise; action

a has cost 100 in state d if the next state is du and zero otherwise. Action b always

costs 10. Observe that the uncertainty set is not "rectangular" since Pu = 0.99 in the

first period cannot be followed by p, = 0.01 in the second period.

For w' E {0, u, d, uu, ud, du, dd}, define

p(C'~w') = max Ep, [C7rw'], (3.6.3)
i=1,2

where P1 (resp. P2) refers to the MDP with p, = 0.99 (resp. pu = 0.01). Then, p

is a coherent multi-period risk measure, but we show now that it is not dynamically

consistent. In this simple model, there are only four deterministic policies 7r (since

118



there are two possible actions in the two states u and d), and their respective worst-

case costs p(Tr) are listed in the following table, where the rows (resp. columns) are

indexed by the action chosen in state u (resp. v).

a b

a 2 x 0.01 x 0.99 x 100 = 1.98 0.99 x 10 + 0.01 x 0.99 x 100 = 10.89

b 0.99 x 10 + 0.01 x 0.99 x 100 = 10.89 10

Therefore, the policy that chooses action a in both states u and d mininmizes

p(C7I0) over all Markovian deterministic policies 7r.

To compare the actions a and b given a first period outcome, we need to specify

how the uncertainty about pu is updated as new information is available to the de-

cision maker. The definition of p by Equation (3.6.3) assumes that the uncertainty

is unchanged, i.e. pu can be either 0.99 or 0.01. In that case, the worst-case cost of

action a in the second period given that the system is in state u increases to 99, which

is worse than the cost of b. Similarly, if the system goes to state d, X also becomes

worse than Y. Hence, the decision rule based on p is not dynamically consistent.

In addition to the dynamic inconsistency highlighted by the above example, an-

other criticism of the robust control formulation that solves

inf sup Ep[C'],
7r El-l.r PEP

without penalty functions, (as in [54, 38]) is as follows. When 0t,j,a = 0, Theorems

3.4.3, 3.5.2, and 3.5.6 show that nature's optimal move lies on the boundary of the

uncertainty sets Pt,j,a. Hence, nature's policy is strongly dependent on the design of

these sets. Furthermore, the uncertainty sets are often obtained from a probabilistic

inodel of the uncertain parameters (e.g., derived statistically from historical data)

that allows for all "likely" values of the parameters (see, e.g., [92, 54, 38]). Typically,

the more unlikely values lie at the boundary of the uncertainty set. As a result, the

decision maker ends up assuming pessimistically that nature will choose very unlikely

paramneter values, leading to potentially conservative policies.

The construction in the previous subsection can mitigate both types of problems
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(namely, dynamic inconsistency and conservatism) and serve as the basis for a better

and more general robust control formulation than the one of [78, 54, 38]. When

we consider non-zero penalty functions Ot,j,a, Equation (3.6.1) defines a dynamically

consistent Markovian convex risk measure, which we can optimize efficiently over the

set of randomized Markovian policies, and for which we have appealing structural

results, when either the time horizon is finite, or when the discount factor d is one

(cf. Sections 3.4 and 3.5). Tilhe problem

inf p(C'sli) = inf sup (Ep[C'Isl] - 1s,(P))
tEIImn.r 7rEr m.r PEP(s,)

can be interpreted as a robust control formulation where the uncertain parameters

are penalized, for example according to their "unlikeliness." In contrast to the case

where Ot,j,a = 0, nature's optimal parameter choice need not be at the boundary of the

uncertainty sets Pt,j,a. As a result, the controller's policy could be less conservative.

In the practical setting where only a prior distribution Pj,a on the probability dis-

tribution Pt,j,a over (Nt,j,a, Qt,j,a), is available, natural candidates for the penalty func-

tions Ct,j,a could be Ot,y,a (Ptj,a) = -ioj,a(P,j,P,), or Ot,j,a(Pt,j,a) = - log ]t,j,a (Pt,j,a).

3.6.3 From single-period risk measures to dynamically con-

sistent Markovian multi-period risk measures

At the beginning of this section, we started from uncertainty sets Pt,j,a and penalty

functions Ot,j,a to construct dynamically consistent Markovian convex risk measures.

The same procedure allows us to define dynamically consistent Markovian convex risk

measures starting from single-period convex measures Pt,j,a since these risk measures

can be associated with sets of test measures Pt,j,a and penalty functions Ot,j,a, thanks

to the representation theorem 3.2.6. We will analyze such multi-period risk measures

and argue that they are desirable counterparts to the single-period risk.

Proposition 3.6.4. Let Pt,j,a be convex risk measures on L'(X x R, -a (wt), pta)

for all w E Q, where -,•a( t) is the a-field obtained as the restriction of the a-field
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.P (wt) to the component (vt,j,a, qt,j,a) of w. Let Pt,j,a and Ot,j,a, respectively, be test

probability measures and penalty functions associated with fit,j,a by Theorem 3.2.6,

pt,j,a(X) = sup (Ep[X] - bt,j,a(P)).
PEPt.ja

Then Equation (3.6.1) defines a dynamically consistent Markovian convex risk mea-

sure p on L' (Q, F, bp). If the risk measures t,j,a are coherent, so is p; and if they do

not depend on t. i.e., for all t > 1, pt,j,a = Pj,a, P is a stationary multi-period risk

measure. Furthermore, if V(j) = p(Crjj), then the following results hold:

(a) When the time horizon T is finite, and the assumptions of Theorem 3.4.3 sat-

isfied, the recursion therein becomes

V(T, j) = min fT,j,a (QT,j,a), j E X
aEAj

V(t,j) = minmt,j,a [Qt,j,a + OV(t + 1, Nt,j,a)], j E X, t = 1,...,T - 1.
aEAj

(b) When the time horizon is infinite, the discount factor 3 is one, the single-period

risk measures Pt,j,a are constant equal to Pj,a for all t, and the assumptions of

Theorem 3.5.6 are satisfied, Bellman-Shapley equations therein take the form

V(j) = in Pj,a(Qt,j,a + V(NI,j,a)).
aEAj

(c) When the single-step risk measures Pt,j,a are coherent and equal to fj,a for all t,

and the assumptions of Theorem 3.5.6 are satisfied, Bellman-Shapley equations

therein take the form

V(j) = min j,a(Qt,j,a + ,V(Nl,j,a)).
aEAj

Proof. The first p)art of the proposition is essentially Proposition 3.6.3.

If the ft,,a are coherent (¢t,j,a = 0) for all t, j, a, then the global penalty function

S= 0 and the induced risk p is coherent.
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It is easy to see that p is stationary if the risk measures t,j,a are constant over

time.

The final part of the proposition amounts to checking that essentially p(t,j,a) = ft,j,a

for all t, j, a. Formally, these functions are defined respectively on L1 (F(wt), Y8 (wt), /-I,)

and L1 (X x R, aWt), ,t'J•,a), which are different spaces. But they coincide on the

single-step position that depends only oil (Nt,j,a, Qt,j,a). O

This proposition suggests a "risk averse" or "robust" formulation based on a

modification of Bellman's equations. Fix a dynamical system with finite state and

action space, and let p be a probability measure describing the likelihood of the

trajectories of an MDP. To simplify the exposition, we will assume that the time

horizon T is finite in this paragraph, but the infinite horizon case can be handled as

well. The MDP whose probability law at time t from state-action pair (j, a) is given

by the marginal pt,j,a has a value function V, which satisfied Bellman's equations [12]

V(t,j) = min E,T.j. [QT,j,a]], j E X,
aEAj

V(t,j) = min E,,,ita[Qt,•,a + V(t + 1, Nt,j,a), j E X, t = 1,... ,T - 1.
aEAj

The value function gives the minimal expected cost of Markovian policies over the

MDP described by p. If the expectation operators E,,,,j., in these equations are

replaced by convex risk measures Pt,j,a oni X X R, i.e.,

V(T, j) = min PT,j,a[QT,j,a], jE X,
aEAj

V(t,j)= inin t,j,a(Qt,3,a + V(t + 1, Nt,j,a)), j E X, t = 1,...,T - 1,
aEAj

then V(1,j) is the minimal risk p(C'lj) over the Markovian policies, where p is a

dynamically consistent Markovian convex induced by the single period risks Pt,j,a.

A risk minimizing policy is obtained (as usual) by selecting deterministically the

minimizing actions in the above recursion.

Illustration with the conditional value at risk
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As an illustration of the result of this subsection on an infinite horizon discounted

cost problem, let us consider a popular coherent risk measure conditional, namely the

conditional value at risk (CVaR). It is well-known that CVaR, when considered as a

multi-period risk measure, is not dynamically consistent.

Given (known) probability distributions Pt,j,a of the next state and associated

transition cost (Nt,j,a, Qt,j,a) given the state-action pair (j, a) at time t, together with

parameters aj,a E [0, 1], we can define the aj,a-CVaR, of functions of (Nt,j,a, Qt,j,a),

denoted here by CVaRj,a for the sake of notation. Let them play the role of the single-

period risk measures, that is, pt,j,a = CVaRj,a. As explained in Proposition 3.6.4,

these single-period risk measures can be combined to define a dynamically consistent

Markovian stationary coherent risk measure p on L1 (Q,F, p). The multi-period risk

measure p is the natural multi-period counterpart of the single-period CVaRs.

Under the assumptions of Theorem 3.5.2, V'(si) = p(C Isl) is the unique solution

in R x of Bellman's equations,

V'(j) = E 7r(ajj)CVaRj,a(Qt,j,a + 3V'(Nt,j,a)).
aEA

Furthermore, V*(j) = infEn,,., V'(j) is the unique solution in Rx of Shapley-

Bellman's equations, that is,

V*(j) = miin a%,a-CVaR [Qt,j,a +- PV*(Nt,j,a)].
aEAj

3.7 Conclusion

In this chapter, we motivate and define the notion of Markovian multi-period risk

measure. This concept is key to finding a risk-minimizing policy when the time

horizon is large, or even infinite. Moreover, it allows us to minimize a Markovian

dynamically consistent convex risk measure of the sample cost by solving a zero-sum

Markov game between the controller and nature. This correspondence can be further

exploited to transfer results from game theory, in particular large-scale games, to the
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problem of risk minimization.

We also show how to build multi-period risk measures that are dynamically con-

sistent, Markovian, and convex, from single-period convex risk measures. This con-

struction has better properties than the straightforward application of single-period

risk measure to multi-period sample space, as illustrated with the conditional value

at risk.

This chapter points out that the worst-case control of uncertain MDPs with rec-

tangular uncertainty sets amounts to minimizing a Markovian dynamically consistent

coherent risk measure of the sample cost, and thereby guarantees that the robust poli-

cies are sound from a decision-theoretic perspective. It also proposes an extension of

the worst-case robust control of uncertain MDPs by adding a penalty to "unlikely"

parameters in a principled fashion. This formulation has analogous structural and

computational results, and it has the potential of generating less conservative policies.

An interesting research direction would be to come up with specific penalty func-

tions that are well-motivated statistically and appealing to decision makers, and to

study numerically the benefits of using penalized worst-case formulation in practical

problems of sequential decision under uncertainty.

3.8 Glossary

3.8.1 Definitions

Convex risk measure Definition 3.2.1, p. 68

Fatou property Definition 3.2.9, p. 76

Multi-period risk measure Definition 3.3.3, p. 85

Dynamically consistent multi-period risk measure Definition 3.3.6, p. 86

Markovian multi-period risk measure Definition 3.3.9, p. 88

Stationary Markovian risk measure Definition 3.5.1, p. 100
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3.8.2 Notations

Notations related to the model description in Subsection 3.3.1

ut, E 2 Xrt < R7 (w')

]2 (w')

1t,i,a EI

(rti R R

- hR

T7,

tA,

Aj E A

C( E:

t,j ,a

Ot,j,a

Notations for risk measures

p(X) risk mieasure of position X

O(P) pernalty associated with the parameter P

p (- w') risk mleasure conditional on the partial history w'

p/ (-) risk measure conditional on the partial history w' on single-step p)ositions

p(X •w') single-step position taking the value of the conditional risk p(X w'V)
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sample point in sample space

partial history in set of partial histories

partial history of w, of length t, up to rt,i

partial history of w, of length t, up to (Vt,i,a, qt,i,a)

set of possible single-step continuations after the partial history w'

set of sample points starting with partial history 2'

cr-field on F(w')

u-field, on F(w'), of events realized with the innmmediate continuation of w'

reference prob)ability measure on (2, -F)

state following the state-action pair (i, a) at tinme t

cost associated with state-action pair (i, a) at time t

number to randoIlize action choice in state i at time t

policy

set of available action in state i

probability simplex over Ai

random state occuplied at time t ulnd•er policy 7

randln) action chosen at tinme t by policy 7

randomn cost incurred b)y policy 7 at time t

tail sample cost starting at time t of policy 7

tail sample cost starting at time t of policy 7 from the state-action pair (j, a)

Trajectory of the system following p)olicy 7 and initialized in (j, a) at time t.

Set of positions of the form f(T7'j,a) for policy 7 E II m,r.
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Chapter 4

Data-driven approach to Markov

Decision Processes

4.1 Introduction

When the dynamic aspect of a decision problem plays a.i important role, MDPs of-

fer an appealing modeling framework. If an underlying MDP model was given or

if there were enough data available to calibrate accurately such a model, dynamic

programming methods could compute the optimal expected performance and an op-

timnal decision rule. However, in many practical applications, there is no accurate

MDP model available to the decision maker. This situation is very common in the

social and medical sciences where, oftentimes, experts have little mechanistic insight

about the phenomenon of interest. (We will see specific examples in the next sub-

section). On the other hand, building an MDP model from data, and a fortiori an

uncertain MDP model, requires a fair amount of observations. In order to avoid the

curse of uncertainty of uncertain MDPs (cf. Chapter 2) and in order to deal with the

case where there is insufficient data to even attempt a model estimation, quantitative

methods have to exploit directly system observations in order to gain insights into

the problem. In the present chapter, we will tackle the problem of estimating the ex-

pected performance of a given policy (and its gradient) from a training set comprising

observed trajectories sampled under a known policy. We will seek good estimators,
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in the sense that they should be unbiased and have the lowest possible training set

to training set variance 1

4.1.1 Motivating examples

The following two examples, one from marketing and one from medical decision mak-

ing, will serve as motivation for our work in this chapter. We introduce them briefly

niow, but we will come back to them in this chapter's conclusion to see how our find-

ings apply to them. These examples have three features that are fundamental for our

approach:

1. the sampling policy under which the observations were made is known to the

estimator,

2. the sampling policy explores different actions by randomizing its action choice,

3. the number of observed trajectories is sufficient for a "good" estimator to have

low training set to training set variance.

Catalog mailing problem

In his dissertation on the catalog mailing problem [86] and subsequent work [83], Sun

observed that: "catalog firms mailed ahnost 17 billion catalogs in 2000. Printing

and mailing these catalogs is the second largest expense in the industry (behind the

cost of the goods), representing approximately 20% of net sales. As a result, catalog

managers view improving their policies for deciding who should receive mail catalogs

as one of their highest priorities."

The catalog mailing policies of firms are mostly myopic: they mail catalogs to

customers who they believe will be profital)le in the short-term, neglecting the long-

term effect on customer relationship of advertising. In the references [86, 83], an

optimal dynamic catalog mailing policy that factors in the long-termi dynamic effects

1An estimator maps an observed training set to an estimate. The training set to training set
variance of an estimator is the variance of the estimate for a randornly choseni training set. Intuitively,
anl estimator with a low training set to trainining set variance yields estimates that typically vary little
from one random training set to another.
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of the mailing decisions is estimiated from mailing companies' data. Specifically, an

MDP inodel was constructed from the historical data of a catalog mailing coInpany.

The MDP states capture the custonmer's status, an(l the actions at each period are

either to rnail a catalog or not. First, a state space comprising 500 states was built by

segmenting the customer status according to recorded customer characteristics that

are widely recognized by the industry to influence customer behavior. For example,

these characteristics include the purchase recency, frequency, anmd monetary expense

of a (custo()er.

Subsequently, an MDP moldel was calibrated under the key assunmItion that the

catalog mnailing company did not use any information that is not ca)tmured in the

available (lata when choosing its mailing decisions. Otherwise, the results coul(d be

plague(l by att'ribution bias (cf. the medical example for more ldetails on attribution

bias). The dynamiics and reward parameters of the nmoldel were estimated using a

rald(loin samnple of 100,000 custonmers.

Finally, a dlynamic mailing policy was optimized( by dynamic progranimning using

the estinmated MDP model and was implemented in a field test. The field test revealed

that the )re(licte(l value of the optimized mailing policy suffered from some bias and

variance [44].
Assuming that the historical mailing policy of the company is known, the approach

p)ropose(t in this chapter has the promise of p)roviding unbiased an(l lower variance

estimators of the value of different catalog mailing policies. Thus, our work may

enable a b)etter use of the available data to design imore profitable (lynamnic mailing

po)(licies.

Medical decision making

Since the semininal paper of Beck and Paucker [10] in 1983, Markov chains have been

used in the med(iical decision miaking literature to model the dynamiic effects of umedical

treatments. They are particularly useful in modeling health conditions where the

tinming of events is important and( when inportant events imight happen at randonm

tiimes or mnultiple tinmes. For example, Markov immodels are very convenient to immodel
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chronic diseases like depression [63, 62, 64], or to model on-going risks such as the risk

of hemorrhage while on anticoagulant therapy, the risk of rupture of aortic aneurysm,

or the risk of mortality (cf. the review [84] and references therein). Since the early

eighties, Markov processes have been widely used to model diverse outcomes such as

life expectancy, quality-adjusted life expectancy (e.g., [17, 85]), or cost-effectiveness

(e.g., [35, 105]). Markov Decision Processes have also been suggested as an approach

to optimize sequential medical decisions (cf. [80] for a review and references therein).

In many cases, the Markov models are simple, comprising a handful of states,

and calibrated from experts' opinions and the medical literature; yet they have gen-

erated valuable medical insights. When models are calibrated using past system

observations, the analysis can suffer from significant attribution bias [19], especially

in the medical context. Indeed, most of the data are obtained from clinical data, in

which health experts have selected aniong different treatment alternatives based on

potentially unrecorded characteristics of the patient's health condition. For example,

consider a practice that gives treatment A to the acute cases of a medical condition,

while treatment B is given to the milder cases. If the condition acuteness of patients

is not recorded, a data analysis might suggest that treatment B yields better health

outcomes than treatment A, although this outconme need not be explained by the

relative effectiveness of the two treatments, but by the biased allocation of patients

to the two treatment options.

Randomized experiments, a.k.a. randomized controlled trials (RCT) in the bio-

medical literature, offer a solution to attribution bias. The experimental protocol of

RCT studies makes sure that the patients are randomly assigned different treatments

in order to avoid attribution bias, and thus RCTs are recognized as the premier objec-

tive comparison of treatments in medicine. There are hundreds of RCTs documented

in the medical literature, but, most important; for the motivation of our work, there

are a growing number of multi-period RCTs. For example, the Clinical Antipsychotic

Trials of Intervention Effectiveness (CATIE) study is a multi-period RCT comprising

1600 patients with schizophrenia to evaluate the clinical effectiveness of the com-

bination/succession of nine potential drugs in the treatment of schizophrenia and
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Alzheimer's disease (http://www.catie.unc.edu/). We will now describe in more de-

tail an important multi-period RCT for depression treatments.

A multi-period Randomized Controlled Trial for depression - STAR*D

The Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Study [55,

56, 57, 96, 95, 75] (http://www.edc.pitt.edu/stard/) is a 4000-patient randomized

clinical trial to evaluate the effectiveness of different treatments for people with major

depressive disorder.

Major depressive disorder is a recurring and chronic illness affecting each year 9.5

percent of the American population, or about 20.9 million adults, according to the

National Institute of Mental Health [55]. "About 10 percent of men and up to 25

percent of women will experience depression in their lifetime. Depression is currently

the fourth most disabling illness worldwide and is responsible for up to 70 percent of

psychiatric hospitalizations and about 40 percent of suicides. As a result, the cost of

d(epression in the United States was estimated to be $83 billion in the year 2000."

Since only one third of the patients treated with a. standard antidepressant become

symptom free, some combination or succession of treatments is needed. The main

goal of the STAR*D study was to identify the best next steps for those people with

depression who need to try more than one treatment. That is, which treatment

strategies are the most effective for people that do not become symptom-free after

(.one or more treatments?

The STAR*D study comprises four stages, out of which we will describe the

first two in some detail, to give a concrete illustration of the study's protocol and

results. In the first stage [96, 56], 2,876 patients with depression were treated with

the antidepressant citalogram for approximately three months. At the end of the

first stage, about one third of the participants became symptom free ("remission"),

while nine percent of participants stopped the medication because of intolerable side

effects. Out of the two third of unsuccessfully treated patients in the first stage, 1,439

participated in the next stage. In the second stage [95, 75, 57], one of three options

was selected:

1. switch the medication to other antidepressants (buproprion, sertraline, or ven-
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lafaxine),

2. augment the current intake of citalogram with buproprion or buspirone,

3. switch to cognitive therapy, or add it to citalogram.

Depending on the outcome of the second phase treatment, patients went through

a third and sometimes a fourth phase. But there were so few patients left in the

fourth phase that we can focus on the outcome of the first three phases.

An accurate probabilistic model of the STAR*D study is beyond the scope and

focus of this chapter, especially because of the censoring of some participants and

their rejection of some treatments. Nonetheless, a stylized model of the STAR.*D

study provides a sufficient motivation for our work. We could model a patient's

mental health status by an MDP. Its states are the patient partial histories and its

actions are the available treatments in each state. Since all patients receive the same

treatment in the first phase, the outcome of the first phase can be modeled as the

initial state for the decision making problem. Hence, if we focus on Phases I to III of

the study, we are dealing with a two-period MDP problem.

As a result, assessing the effectiveness of specific dynamic treatment regimes for

depression in STAR*D amounts to evaluating its value on a two-period MDP for

which we observed approximately 1,500 trajectories.

4.1.2 Literature review

In the absence of a model of the system at hand, the performance of a candidate policy

needs to be estimated from observed trajectories, which might have been sampled

under another policy. Importance sampling, a.k.a. likelihood ratio estimation, (e.g.

[30]) is a well-suited approach for such off-policy estimation. Importance sampling

has been used to reduce the variance of simulation-based estimation by optimizing the

sampling policy (e.g., [81]), and to estimate efficiently the gradient by simulation (e.g.,

[42, 29] and the references therein). When the sampling policy is adaptive, further

variance reduction can be achieved, sometimes yielding a zero variance estimator [39,
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33]. In our case, the sampling policy is not adaptive and not subject to optimization.

Hence, importance sampling is simply a way to obtain unbiased off-policy estimators

of the system's performance [103, 65].

In this chapter, we use a general control variate approach [41, 43, 52] to reduce the

variance of our importance sampling estimator and obtain new optimized estimators

for a policy's value and value gradient. Interestingly, this approach also sheds light on

various variance reduction techniques found in reinforcement learning, especially in

the context of value gradient estimation, as in Greensmith et al [31]. We will compare

thoroughly our approach and the ones described in their paper, in Section 4.5.

The two problems of value and value gradient estimation, in the absence of an

MDP mnodel, are thoroughly investigated in the reinforcement learning literature.

Most value estimation methods rely on Bellman's equations. Q-learning [100, 101]

estimates the value function using system trajectories, instead of a model. The related

ap•proach of temporal differences, TD(A), was first proposed by Sutton [87] and then

extensively studied. The aforementioned approaches were subsequently combined

with value function approximation in order to cope with the curse of dimensionalitty.

In some cases, these methods (or adaptations of them) have been proved to converge

and have some desirable approximation properties, e.g., [73, 98, 8]. In this chapter,

we will also rely on function approximation methods and even temporal difference

algorithms, but rather as a way to regularize the estimation of high-dimensional

quantities compared to the size of the training set. Unlike temporal difference methods

with function approximation, our estimators are always unbiased, even when the

aIpproximation architecture is poor.

The estimation of the value gradient has been extensively studied in the context

of policy search methods [104, 45, 31, 103, 88, 14]. In this body of work, it has been

observed that the estimation of the performance gradient can have high variance. A

suggested approach to reduce its variance is to add to the gradient estimate a baseline,

which does not add bias but impacts the estimator's variance (e.g., [104, 45, 31, 88]).

Another class of methods that aim to reduce the variance of gradient estimates in

policy search are the so-called actor-critic methods, where an estimate of the value
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function is used to reduce the variance of the performance gradient [9, 40, 14, 103,

31, 89]. If the value function approximation belongs to an appropriate space tai-

lored to the policy space, actor-critic methods provide an unbiased estimate of the

performance gradient. However, it is not possible in practice to guarantee that the

approximation architecture is adequate, and thus that this method does not introduce

bias.

In a similar fashion to actor-critic methods, Henderson and Meyn [33] use ap-

proximate solutions to the Poisson equation (obtained from a quadratic and a fluid

approximation of the value function) to reduce the variance of the estimated steady-

state performance of queueing networks, without introducing a bias. However, their

approach requires the knowledge of the underlying Markov model. (cf. Subsection

4.3.1 for further discussion on this paper).

Generally, the variance reduction techniques from the reinforcement learning lit-

erature exploit ad hoc ideas. Our approach, in Section 4.3, will allow us to unify and

generalize some ideas seen in reinforcement learning.

In the biostatistics community, Robins studied how to evaluate the effect of a dy-

namic treatment regime (i.e., policy) from observational data (in the statistical liter-

ature, observational data refer specifically to data obtained from a possibly "biased"

sampling policy) [69, 70]. He also uses importance sampling to perform off-policy

value estimation, while controlling for attribution bias.

In order to estimate the mean response to dynamic treatment regimes using ob-

served trajectories without dealing with attribution bias, the assumption of no un-

measured confounders (or sequential randomization (SR,)) is handy [51, 68, 48]. Intu-

itively, this assumption says that the patients who receive a treatment at some time

point conditional on some recorded information are not statistically different from

other patients in terms of unobserved determinants of their conditions. Thus, this

assumption is fundamental to justify the use of Markov models in conjunction with

observational data. However, the assumption SR, cannot be checked from observa-

tional data. Nonetheless, it can be enforced by experimental design, for example if

the treatments are sequentially randomized during data collection. Under the as-
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sumption SR, the estimation of the mean response to a dynamic treatment regime is

equivalent to our problem. Similar to our unconstrained optimal estimator, the paper

[51] provides a minimum variance estimator for the value of a given policy under the

assumption SR..

Murphy [48] went further by showing that an optimal dynamic treatment regime

can be estimated from observed trajectories under the assumption SR. provided that

the form of the "advantages" (as this word is used in reinforcement learning) is known,

and Robins [68] identified a minimum variance estimator of the optimal policy under

the same assumptions.

4.1.3 Contributions

In order to estimate a given policy's value (or value gradient) from a training set

comprising trajectories observed under a known sampling policy, we combine an irn-

portance sampling estimation method and a control variate approach to variance

reduction. Our estimation procedure is based on estimators with the lowest training

set to training set variance in two broad classes of unbiased estimators, namely an

unconstrained and a constrained class.

In the unconstrained case, a mininum variance estimator can be characterized as

the projection of a naive estimator on the set of random variables with zero action

innovations. Alternatively, we provide an algebraic expression for the optimal esti-

inator. In the case of value estimation, our estimator is the samne as the minimum

variance value estimator (5.3) from [51].

Similarly, in the constrained case, we characterize theoretically the optimal con-

strained estimators for the value allnd value gradient.

Our optimal value estimators require the knowledge of the "advantage" of a state-

action pair, and not its Q-factor - an important nuance in some applications. Unfortu-

nately, the advantages are unknown in practice and the advantages (or the Q-factors)

need to be guessed( or estimated. A salient feature of our approach is that the esti-

mators remain unbiased for any guess and for all possible underlying MDP models

(unlike the related papers [48, 68], which have to know the true form of the advantages
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in order to estimate the optimal policy).

Since the constrained class of estimators is a subset of the unconstrained one, the

best constrained estimator has higher variance than the best unconstrained estimator

in theory. However, they are valuable in practice when the Q-factors need to be

approximated, in particular when

* the Q-factors cannot be handled efficiently by a computer because of the exces-

sive size of the state-action space (the curse of dimensionality in reinforcement

learning),

* the training set is insufficient to build accurate estimates of the Q-factors so

that regularized estimates are better.

Our approach can be expected to outperform standard reinforcement learning

methods in the latter case, because the sound statistical principles of our approach

exploit the available data more efficiently. In addition, our approach is less affected by

the choice of a poor approximation architecture than Temporal Difference methods.

We corroborate these claims by comparing numerically the practical performance of

our different approaches for value estimation with competitive algorithms from the

literature.

4.1.4 Chapter structure

This chapter is organized as follow. In the next section, the mathematical formulation

of the estimation problem is given. In Section 4.3, we introduce the concept of

innovations, which is useful for our subsequent analysis. In Sections 4.4 and 4.5, we

respectively characterize the optimal estimator for the value and the value gradient.

4.2 Problem formulation

In this section, we introduce the mathematical problem formulation, starting with

a generative model for the underlying system and the observation mechanism, and

concluding with the problem of efficient estimation.
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4.2.1 Probabilistic model of the system

To avoid technicalities, we will assume that the true underlying model is an MDP with

finite state and action spaces. Let S be a finite state space and A be a finite action

space, and define the sample space Q = (S x A x R)T where T is a finite time horizon.

We endow Q with the product sigma-algebra F generated by (2S x 2A x B) T , where

B is the Borel a-field of R.

We will denote random variables with upper-case letters and their realizations

with lower-case. Let St be the random state in S occupied by the system, At

the random action in A chosen at time t, and Rt the associated random reward.

A random trajectory of the system is realized sequentially in the following order:

S1, A 1, R 1, S 2 , A 2 ,..., ST, AT, RT.

We assume that the controller selects its actions according to a known Markov-

ian sampling policy v. It is characterized by the conditional probabilities vt(als) of

choosing action a in state s at time t. We assume that the sampling policy v gives

nion-zero probability to all actions in all states, i.e. ut(als) > 0 for all a E A, s E S.

Alternatively, we could restrict the action space to the actions that are selected with

non-zero probability by the sampling policy v or that are observed in the data.

The initial state distribution q7, the true MDP model K, which comprises the

probabilistic description of the state dynamics Kd and of the reward K r , and the

sampling policy v induce a probability measure p on the sample space Q that describes

the likelihood of each trajectory (S 1, A 1, R 1, S 2, A 2 , ... , ST, AT, RT) by

1p (Si = s1 , A 1 = al, R 1 EC 1,..., ST = ST, AT - at, RT E 91T)

T

?= (Si) f v (atist) Kd (st+lit, st, at) Kr (Rt E 91t it, st, at, st+l).
t=1

We assume that Kr(.lt, st, at, St+l) has finite second moment for all t, st, at, st+l, i.e.,

E[R ] < +oo.

Remark 4.2.1. The above factored form of p implies that the reward Rt at time t is

independent of the past, given the state-action pair (St, At, St+l). This assumption can
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be enforced by redesigning the model's state space so that it includes all the information

that influences the reward.

More generally, the state space design includes all the relevant information to the

system so that the future of the system's trajectory is independent from its past given

its current state. In some cases, it is necessary to include all the past history of

the system in the state space. In particular, wc can model a partially observed MDP

(POMDP) as an MDP with the the conditional state occupation probability given the

past history as state.

The initial state distribution r7 and the underlying MDP model K are unknown

to the decision maker but are assumed to be fixed. Hence, when we talk about the

performance of any policy, we will always refer to its performance oil the MDP model

K with initial state distribution rq. We will denote by E, the expectations with respect

to p to highlight the dependency on policy v, in contrast to Ee, which denotes the

expectation with respect to the probability measure induced by r7, K and policy 0.

When the context is clear, we might write E instead of E, for conciseness. We define

the value of policy 0 as Vo = Ee [R1 + - - - + RT].

4.2.2 Observed data

A training set T = {(st a, a , .r ... , k, a ), ), k = 1,..., n} comprising n IID trajec-

tories observed under the sampling policy v is an element of Qfn sampled according

to the product probability measure p" defined by

n

/- (1(Sk, k , ak,, a kT ),k = 1,... ,h ) = - (sk  a, k'9jk ''" '8k a k, ik) "

k=1

The expectation with respect to pn of an integrable function of the random train-

ing set T will also be denoted E, or E. For conciseness, we will use bold letters,

S, A 1, R 1,..., ST, AT, RT, to refer to the vector of the n copies in the training set

7 of S1 , A 1, R1,..., ST, AT, RT, respectively. For example, we have Sl = (S1,..., S1).

Let S be the space of measurable and square integrable functions of the variables

(Si, A,, R 1,..., ST, AT, RT) and £t be the space of square integrable measurable
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functions of the variables (S 1, A1, R 1, ... , St, At), which we will identify with a subset

of 9. We endow 9 with the Euclidean norm induced by the scalar product defined,

for all f,g E S, by

(f, g) = E,[fg] = f(wl,...Wn)g(·" u,...,wn)d

For any event F E F, we let NF be the random number of times that the event

F is observed in the training set T, e.g., we will denote by Ns, = X-= 1 lsk=slI

the number of times the initial state of the trajectories of T is sl. Given a training

set T = {1(s , a1, r, ., , a, rT), k = 1, ... ., n}, we define an empirical probability

measure Pn by

IPn (S1 = si, A = al, R1 E 11,...,ST = ST, AT = at, RT E 9T)
T

= (si) ji-t (at I st) K, (st+1 It, st, at) K[ (Rt E 9% It, st, at, st+i),
t=1

where

Ns,,
n

£t (At = at I st) - Ns,

Kd (St+1 = st+1 t, st, at) = Nst,at,s+ ,
Nst,at

K r (Rt E 9Rt I t, st, at, st+i) Ns,,at,9,st-i ,
Nst,at,st+ +

When the denominator in the right-hand side of these equations is zero for some

(t, st, at, st+l), we let the left-hand side be an arbitrary probability distribution. Any

clhoice yields the same joint probability distribution P, with probability one, namely
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Pn (S1 = si, A1 = al, R E 91,..., ST = ST, AT =- aT, RT E T)

SN 1  N otherwise

This definition of Pn ensures that it has the Markov property with respect to S. We

will denote E,[X] = f XdP,n the empirical expectation of a random variable X on

(Q, Y), when it is well-defined.

Remark 4.2.2. Observe that we form an empirical estimate it (At = at st) of the

known sampling probability vt(atlst) to define Pn. If we replace Lt (At = atIst) by

vt (at Ist), the probability measure Pn is more arbitrary. Indeed, if an action chosen with

positive probability by v is not observed in the data, the resulting empirical distribution

Pn would be arbitrary. As a result, Pn(F) would not provide unbiased estimates of

p(F) for all events F, as we will prove in Lemma 4.2.4, but only an asymptotically

unbiased estimator.

Remark 4.2.3. Observe that we do not define the empirical distribution to be

IN (S1 = si, A1 = al, R1 E 91,...,ST = ST, AT = at, RT E 9T)

Sn

k=l

which is non-Markov. Nonetheless, most of the analysis of this chapter applies directly

to the case where the empirical measure is Pn. When relevant, we will discuss how

the results would be modified if the empirical measure was Pn, instead of Pn. We will

also compare these two possible definitions of the empirical distribution shortly.

The following lemma justifies the use of ?,, as an empirical distribution approxi-

mating p.
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Lemma 4.2.4. Let f be a square integrable function on (Q, F, p) and let

Z(S 1 , A 1,R 1 ,..., ST, AT, RT) = En[f (S 1 , A, R 1,..., ST, AT, RT)].

Then, Z is in E and its expectation is

E [En[f(S 1, A, R 1,. .. , ST, AT, RT)]] = E[f (S, A, R,. . . , ST, AT, RT)].

Furthermore, if the function f is only a function of the state-action pair (St, At)

at time t,

1
E [En[f(St, At)] 2] = E[f(St, At)]2 +- -var(f(St, At)), (4.2.1)

n
1

var (En [f(St, At)]) = -var(f (St, At)).
n

Proof: For any finite n, it is easy to see that En[ f] E E. Thus, the integral of En [f]

is well-defined and finite.

We will show that E[En[f]] = E[f] by a classic approach of proving the results for

the indicator function of all sets in a 7-system of (Q, F). Then we will conclude by

the monotone class theorem ([102], Theorem 3.14) that it is true for all measurable

fulnctions.

First, fix a measurable set F of the form F = (sl, a, 9 1,.. . 8ST, aTT, iT) E F,

where the sets 9t are Borel sets in R for t = 1,..., T. Since the system model and

the sampling policy generating the training sets are Markovian, we have

E [Pn (F)]

t=1

t=1
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To conclude that E[P,(F)] = [u(F), it suffices to show that

E [ý (sa)] = n(sl),

E [t (At = at I st) I St] = vt (At = at I st) ,

E [Kd (St+ I t, St, at) I St, At] = Kd (st+l t, at, at),

E [IKr (9t It, St, at, St+i) I St, At, St+l] = Kr (1t I t, st, at, st+i).

There are two cases to consider. When, given the conditional information, Ns, > 0,

Nst,at > 0, and Nst,at,,s,t > 0, respectively, we have

S[it (At = at I st) I St] = E I N, ISt = vt (At = at I st),

E [Kd (sat+ s t, at) ISt, At] =E Ns ,astj St, At = d(St+1 I st, at),

E [Kr (9 t t, st, at, st+) I St, At, St+l] = E Ns, I St, At, St+l =K (9  t, st, at, st+).
nA stat,st I

When a denominator in the above expressions is zero, the corresponding empirical

conditional probability is in fact arbitrary, as we observed earlier. Since this arbitrary

choice has no effect on the empirical probability Pn(F), it has no effect on E[Pn(F)].

Therefore, we can assume in this proof that these (arbitrary) empirical conditional

probabilities are equal to the true conditional probability. For example, if N , = 0,

then 'te (At = at I st) can be chosen (arbitrarily) to be equal to vt(atlst). This concludes

the proof that

E [Pn (Sz, al, 9i,. .. T, aT, ~T)] = -T (s, al, ,,... ST, aT, T).

Now, we verify that the assumptions of the monotone class theorem ([102], The-

orem 3.14) are satisfied with the set

'H = {f E L2 (2,. F, A) I E[E,n[[f]] = E[f]}.
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* It is easy to see that 7-I is a vector space, which contains the constant 1.

* If fk E R/ are such that fk T f with f bounded, then En [fk] T E, [f] for all

training sets by the monotone convergence theorem. Moreover, E[En[fk]] T E[f]

and( E[fkI T E[f]. Consequently, we have f E XI.

* Finally, we proved above that 1F E - for all F of the form F = (si, a,, •1, ..., ST, aT, 91T) E

F, where the sets 9t are Borel sets in R for t = 1,..., T. These sets form a

7r-systemn for (Q, F), i.e., the a-field generated by these sets is F.

As a result, the monotone class theorem applies and states that L2 (, T, P) = R-,

which concludes the first claim of the lemma.

Now, let us prove the last claim of the lemmna. Observe that for any state-

action pair (t, st, at), the marginal distributions satisfy I,(St = st, At = at) =

PI,(St =: st,At = at). Hence, if the function f is only a function of (St, At), we

have E,[f(St, At)] = E, [f(St, At)]. For the probability maeasure IP,, it is easy to see

that
[ ] 1

var(E[f]) = EE 2 - E = -var(f).
n

As a result,

[En[f]2] =E [En[f]2 = E[f]2 + -var(f).
n

Comparison of the two empirical probability measures The Markovian

and the non-Markovian empirical probability measures are both viable choices, but

we will argue in favor of the Markovian one.

Notice that for a state-action pair (t, st, at) observed in the training set T, the con-

ditional marginal distributions satisfy In(St+1it, st, at) = Pn(St+l It, st, at). Similarly,

there holds PC(Rt E 9tIt, st, at, st+l) = I Cn(Rt E 9tt, st, at, st+i).

Although the distribution P• is an unbiased estimator of the true distribution [,

using P,, as an empirical distribution would be an inefficient use of the observations

since we know that the true probabilistic model is Markovian with respect to the
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state space X. Let us illustrate this point with a simple example. Consider an MDP

model such that T = 2, S = {A, B} and A - {u, d}, where the state transitions and

immediate rewards are deterministic. Assume that we observe only two trajectories,

reported in the following table

S1 A1  R1  S2 A2  R2

A u rl,A,u A u r2,A,u

B u rl,B,u A d r2,A,d

Let 0 be the policy that chooses first the action u and then d. With the two above

observed trajectories, the distribution ]Pn does not give an estimate of the value of

policy 8, from the initial state A. In contrast, the empirical distribution P,, combines

the first transition of the first trajectory with the second transition of the second

trajectory, to obtain a trajectory that can be used to estimate the performance of

policy 0.

Let us consider another situation to compare the two empirical probability mea-

sures. Two biased coins are tossed independently in a sequence. Denote respectively

by p and q the probability of heads for the first and second coin. The empirical proba-

bility of seing two heads is P,,(HH) = - and has mean pq and variance 'pq(1-pq).

On the other hand, the Markovian empirical probability of the same event, 1P(HH) =

NH1 NH, is also an unbiased estimator since E [PI(HH)] = E [I ] E [N] = pq.

Moreover, its second moment is the product of the second moments of Binomial

random variables, divided by n4, that is

[IP(HH)2] = 1E [NH] E [N 12

= rp(l - p + np) -nq(1 - q + nq)/n
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Hence, the variance of Ps(HH) is

var (P,(HH)) = E[P,(HH)2 ] - E[P,(HH)]2

1 1
= -pq (q(1 - p) + p(l - q)) + -pq(1 - p)(1 - q).n n

If we replace the factor 1/n 2 by 1/n, the above expression would becolme equal

to the variance of P~(HH) since (q(1 - p) + p(l - q)) + (1 - p)(1 - q) = 1 - pq.

Hence, the variance of P,(HH) is always smaller than the variance of P.(HH), in this

example. Furthermore, we can compare the leading term of each variance expression,

that is the coefficient of 1/n. For the sake of illustration assume that p = q = 0.1

(which makes the probability of observing the event HH rather unlikely), then the

coefficient associated with Pn(HH) is 0.01(1 - 0.01) _ 0.01. Comparatively, the

coefficient associated with P~(HH) is 0.01(0.09 + 0.09) - 0.002, which is five time

less than the variance of PI(HH).

4.2.3 Estimation problem

The, controller considers a set of policies indexed by a parameter 0 E 6. We assume

that the policy space E contains only policies that are Markovian with respect to

the state space S. This condition can sometimes be enforced by redesigning the state

space S so that each state contains the information required by every policy of interest.

Any Markovian policy 0 E 8 can be identified with the mapping (t, s) ý- 7rt(als, 8),

where 7rt(als, O) is the probability that policy 0 chooses action a E A in state s E S

at time t E {1,...,T}. It will be handy to introduce the notational convention

i-o(Ao|So,0) = vo(AoISo) = 1 for all So,A o , . Furthermore, we require that each

policy 0 E 8 is such that (rt(als, 9) > 0 == vt(aIs) > 0).

In Section 4.5, we will add some regularity assumptions on the set 0 and on the

mapping 0 E ( '-4 (irt(als, ))sEX,aEA so that the performance gradient is well-defined

on the policy space 0.

An estimator is a random variable in S. Note that this includes random variables

given by formulas that involve the unknown model parameters. Clearly such esti-
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mators are not practical. An estimator 'o is an unbiased estimator of Vo if V0 E 9

and E[7o] = 1V. An estimator 1 o is an• asymptotically unbiased estimator of Ve if

V0 E 9 and E[Vo] converges to VO as the number n of trajectories in each training set

increases to infinity.

Consider an unbiased estimator V0 of the value Ve. Every training set T =

(S 1, A1, R 1, ... , ST, AT, RT) maps to a different estimated value Vo(T), with an

expectation equal to Ve (since the estimator is unbiased). The training set to training

set variance (in the sequel, we will say training set variance) var (O(T)) captures

the variability of the estimated value V0 (T) when the training set T is randomly

chosen. In this chapter, we would like to find unbiased estimators of the value V0 and

the value derivatives 8vO for any fixed policy 0 E ., with low training set variance.

4.3 Method of control variates, innovations of a

random variable and geometry

In this section, we introduce some well-known statistical methods, which we tailor

to our problem. First, we explain briefly the method of control variate, which is the

method that we will use to find low variance estimators. Then we define the notion

of action innovation of a random variable on a multi-period sample space. Finally, we

characterize minimum variance estimators of the mean of a random variable in 8 (with

the action innovations as control variates) as orthogonal projections. These results

will be specialized in Sections 4.4 and 4.5 to yield minimum variance estimators for

the value and value derivative, respectively.

4.3.1 Method of control variates

The method of control variates is a well-known method to reduce the variance of

simulation estimates (e.g., [41, 43, 52] and references therein).

Consider a random variable Y with finite mean and variance, which we can sim-
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ulate. The empirical mean Yn of n independent samples Y1,..., Yn of Y, i.e.,

Yn= 1 Yi,
n

i=1

is an unbiased estimator of the mean E[Y] of Y, with variance var(Yn) = ±var(Y).

Let Z be another random variable on the same probability space with finite mean

and variance. By subtracting from Z its mean, we can assume without loss of gen-

erality that Z has zero mean. From n samples (Y1, Z1),... , (Y, Zn), we can form an

unbiased estimator of E[Y] by

1
Y+ -Zn Z (Y + Zi).

i=1

Its variance is var(Y Z) = var(Y + Z) = [var(Y) + var(Z) + 2 cov(Y, Z)].

Hence, if Y and Z are negatively correlated, the estimator Y + Zn has the potential

to have lower variance than the empirical mean ýY. We refer to Z as a control variate.

In general, the objective is to identify a control variate Z that will minimize the

variance, of the estimator Y + Zn.

The idea of control variate is used by Meyn and Henderson [33] in order to re-

duce the variance of simulation-based estimate of the steady-state mean number of

customers a in multi-class queueing networks. In their paper, the samples Yn, which

represent the number of customers in the system at time n, are generated from the tra-

jectories of a Markov chain, in contrast with the simpler situation mentioned above

where the samples were independent and identically distributed. Nonetheless, the

principle is the same.

They start from a simple estimator a(n) = i= YI, which is the mean number

of customers in the network up to time n - 1. They consider control variates that

are inspired from the Poisson equation (and also bear resemblance to the control

variate of the baseline approach, which is detailed in Subsection 4.5.2). Specifically,

for an arbitrary measurable real-valued function h, they define Ah(y) the difference

in expectation between the current value h(y) and the subsequent value h(Yn+1)
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given that Y, = y. In order to compute Ah, the transition kernel of the underlying

Markov chain needs to be known. When Y, is distributed according to its steady-state

distribution, Ah(Y,) has zero expectation for all h. Thus, they introduce the control

variate Z, = Ah(Yn) and define the estimator ac(n) = a(n) + O/nE 0-Y Ah(Yi)

If h is a solution to the Poisson equation and /3 = 1, then ac(n) = a with

probability one. Inspired by this observation, Meyn and Henderson investigate how

to obtain an approximate solution of the Poisson equation by fluid and quadratic

approximations, and how to choose the parameter 1 in order to have a low variance

estimate of a. They illustrate their algorithms with numerical experiments, but do not

provide any theoretical results linking the quality of the approximation of a solution

to Poisson's equation with the estimator variance.

In this chapter, we also tackle an estimation problem based on Markovian systems

using the method of control variates. However, we use a different family of control

variates, which are based on action innovations - a notion that we introduce in the

next subsection. This family of control variates is better suited to our setting since

we do not known the underlying MDP model K, but we know the sampling policy v.

Similar to [33], the optimal control variate is related to the Q-factors, the solution to

Bellman's equations. In addition, we characterize the variance of the estimators that

use a suboptimal control variate.

4.3.2 Innovations of a random variable

We define the notion of action and dynamics innovations of a random variable in 8

and establish basic properties of innovations.

This concept is not new in the field of probability and statistics. It is closely

related to the notion of martingale increments.

We can write any random variable Z E E as

Z = E[ZIS1] + (E[ZISI, A1 ] - E[ZIS 1]) + (E[ZIS 1, A1 , S2] - E[ZISI, A1 ]) (4.3.1)

+ ---+ (Z - E[ZIS1,A1,...,ST, AT]).
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This expression for Z inakes apparent the information that is revealed progressively

as the trajectory gets realized. Formally, let

It [Z] = E[ZS,...,St, At ] - E[Z IS1, . . . , St] C St, t = 1,...,T,

lbe the action innovation, which is associated with the realization of the actions At

and1(

I [Z] = E[ZSI,..., St,At, St+] - E[Z S1 ,..., St, At] E Et+i, t

he the dynarmics innovation, which is associated with the realization of the new states

St+l. We also let

I [Z] = Z- E[Z SI,... , ST, AT] G

land(

I [Z] = E[Z S1] E S1.

()Oserve that all the innovations I"[-] and Id[.] are linear functionals from S into St.

Flrtherrlore, they allow uis to write succinctly the decomposition (4.3.1) of Z as

z = ZIf[z] + ZI [Z]. (4.3.2)
t=O

The innovations have interesting properties summarized in the following lemmna.

Lemma 4.3.1.

(a) All the innovations of Z E S arc uncorrclated.

suim of thc variances of its innovations, i.e..

Thus, the varianc( of Z is the

var(Z) - var(I [z]) + var (Ita[z]).
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(b) For all random variable Z E S and t, r = 1,..., T, there holds

Ia [It[Z]] = {ItJa[Z]
t

if t

other'wise

(c) For t = 1,...,T, 7 = 0,...,T and Z E C, we have

IT [If1[Z]] = 0.

(d) For any Y, Z E E, t 1, . . . , T and = , . . . , T, the innovations It[Z] and

I~ [Y] arc( uncorrelated.

(c) For any X, Y E S and t # rT, the action innovations Ia[X] and Ia[Y] are

uncorrelated.

Proof: (a) It is easy to check that all the innovations in (4.3.1) are uncorrelated

(orthogonal) to each other. For example,

cov(E[Z Sl]; E[Z Sl, Al] - E[ZISi])

- E E[[Z S] E[E[Z|SI, A1 ] - E[Z|S1]S,] - E[E[Z Si]] E[E[Z|SI, A,] - E[Z S,]

= E[ E[ZIS 1] -O1 - E[E[ZIS,]] 0 =- 0.

(b)

* If t = 7, we have

Ia [*I[Z]] = E[f[Z]S1, ..., St, At] -E[a[Z] S ,..., St]= I [Z].

* If t < 7r, we have
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* If t > T, we have

IT [I, [Z]] = E[Ia[Z]IS1, ... ,S, , A,] - E[Ita[Z] S1,..., S,] = 0- 0 = 0.

(c) Fix t E { 1,..., T}. By definition, we have Iod[It [Z]] = E[I" [Z]IS 1 ] = 0. The ac-

tion innovation at time T, Id [It[Z]], is zero since Ia [Z] is a function of (S1 ,..., St, At).

To conclude the proof, we show that, for T = 1,..., T - 1, we have

d- [It [Z]] = E[ Ia[Z] Sl, Ai,... ,S, A,, Sr+i] - E[It [Z]ISx, A 1 ,..., S,, A,] = 0.

For all - < t, we have

E[lf [Z]IS1, Al,..., S,, AT] = E[Ita[Z] S1,A1,..., S,, A,, ST+ 1] = 0.

On the other hand, for T > t,

E[1 [Z] S1, A,..., S,, AT] = I, [Z] = E [Ita[Z] Sj, A,,..., S,, A,, S+x] .

Therefore,

Id [I[Xt]] = E[Ita[Xt]IS1, A1,..., S,, A,, S7+ 1 ] - E[Ita[Xt] S 1, A 1,... S, AT,] = 0.

(d) Since all the action innovations Ia[Z] and Id[Y] have zero expectation for

t = 1,... ,T, it suffices to show that E [It[Z]Id[Y]] = 0. There are four cases to

consider.

* If 7 = 0, E [Ita[Z]Id[Y]] = E [E[Ia[Z] S]Is d(Y)] = 0.

* If = T, E [Ia[Z]Id[Y]] = E [Ita[Z]E[IT[Y]ISx,...,AT] = 0.

* If t > 7 > 0, E [I~[Z]Igd[Y]] = E [E[Ita[Z] SI,..., ST+l]Id[Y]] = 0.

* If t < T < T, E [Ia[Z]Id[Y]] = E [Ita[Z]E[I.d[Y]JSl,..., AT] = 0.
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(e) Since all the action innovations have zero expectation, it suffices to show that

E [II [Z]Ia [Y]] = 0. Without loss of generality, assume t < r. We have

E [Ita[Z] I,[]] = E [Ita[Z]E[Ia [Y] IS,..., S]] = 0.

Definition 4.3.2. Starting with the random variables Z E C, Xt E St, t = 1,..., T,

we define the random variable Z[X 1,..., XT] by

T

Z [X,..., XT] = Z - E I [Xt]. (4.3.3)
t=1

Note that Z [0,...,0] = Z.

Notice that Z and Z [X1,..., XT] have the same expectation so that the random

variable Z [Xi,... ,XT] can be thought of as an unbiased estimator of E[Z] for any

choice of Xt E 8, t = 1,..., T.

4.3.3 Minimum variance estimator: the unconstrained case

In this subsection, we will show that a minimum variance element in the family

{Z [X, ... , XT] , Xt E St } is the orthogonal projection of Z on a suitable space.

This characterization will be central to the identification of optimal unconstrained

estimators of the value and value gradient in Sections 4.4 and 4.5.

Define the projection operator H on the linear subspace Ed = {Z E Ita[Z] =

0, t= 1,..., T} by
T

ZE 8• H(Z)= Itd[Z].
t=O

Equivalently, from Equation (4.3.2) we have

T

II(Z) = Z -Z Ja[Z]. (4.3.4)
t=1
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Intuitively, 11(Z) is an approximation of Z on Ed, in the sense that its dynamics

innovations match those of Z at all time, i.e., Id(II(Z)) = Id[Z] for t = 1,... ,T, but

HI(Z) has zero action innovations, with probability one.

The next proposition shows that the projection 11(Z) of the random variable Z

has minimum variance among the random variables of the form Z [X 1,..., XT] with

Xt E St. But first we establish two useful lemmas.

Lemma 4.3.3. The operator H is an orthogonal projection 0on d for the natural

scalar product on S. As a result, the variance of any Z E E decomposes as

var(Z) = var(H(Z)) + var(Z - IH(Z)).

Proof. First., thanks to Lemma 4.3.1 there holds Ita[Id[Z]] = 0 for all 7 = 0,... ,T

and all t = 1,... ,T. Thus, we have I [1I(Z)] = 0. Consequently, HI(Z) C Ed for all

Moreover, it is easy to verify that H is linear and HI2 = 11. Hence, we have

checked that HI is a linear projection operator on Ed.

Now, we show it is an orthogonal projection.

Since the image HI(Z) of Z is simply the sum of all the dynamics innovations,

H(Z) and Z - H(Z) are uncorrelated. Consequently, the variance of Z is the sum of

their variances. F

Lemma 4.3.4. For any Z E C and Xt E St, t = 1,..., T, we have

H (Z [Xl,...,XT])= I(Z).

Proof. We have

T T

H (Z [x, ..., XT]) = (Z) -E Y Id [I [Xt] .
t=1 r=O

We conclude the proof by observing that the last term is zero by the part (c) of

Lemma 4.3. 1.
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Proposition 4.3.5. For any given Z E $, the random variable HI(Z) can be written

as

Hn(Z)= Z [Xl,...,X;],

with Xt(Sx,..., St, At) = -E[ZS 1, Ax, ... , St, At] E Et. Alternatively, we can let

xt - It[Z].
Moreover, HI(Z) has the minimum variance in the set {Z[Xx,...,XT], XI E

l,...,XT ESi}.

Proof. By definition, we have

T T

n(Z) - It [Z] = z - ilz z] = Z[X,..., X~],
t=O t=l1

with X* = It[Z]. It is easy to check that we can also let Xt(Sx,...,St, At) =

-E[ZISI, Ax,..., St, At].

By Lemma 4.3.3,

var(ZI[XI,..., XT,])= var (H (Z X,..., XT]) + var(Z [XI, .. ., XT,] -- (Z [Xi,..., X,]))

From Lemma 4.3.4, there holds HI (Z [X1,... ,XT]) = 11 (Z) so that the first term

in the expression of the variance does not depend on X1,..., XT.

The second term is non-negative and equals to zero when Xt = Xt. O

4.3.4 Minimum variance estimator: the constrained case

Similar to the unconstrained case, we show that a minimum variance element in the

family {Z [X1,..., XT], Xt E Xt} is obtained by the orthogonal projection of Z

on a suitable space. The result of this subsection will be useful to characterize the

optimal constrained estimators of the value and value gradient in Sections 4.4 and

4.5, respectively.
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Let X,:t be a closed linear subspace of St for t = 1,..., T, and define

Et = { I[Xt], Xt c Xt } C t,.

The set Zt is a non-empty linear subspace of S. Since the state and action space

are finite, It, which contains only functions of Si,...,St, At, is finite-dimensional,

and thus closed in S.

Let HUt be the orthogonal projection from & onto Zt, and let ~C { Z E C IHt (If [Z]) =

0, t= 1,...,T}. Define the operator IIF on 9 by

T

Z E H • (Z) = Z - n, (I [Z]).
t=1

Lemma 4.3.6. The operator IF is an orthogonal projection fr'om S onto S..

Proo(f. Let Z E C. There holds

T

Hn (Hn(Z))= C(z) - H•r•(IT [n(z)])
7=1

= HC(Z) - 5H, I _ I:[Z] + (I - n•)(I [Z])
r=1 t=l t=l

The last equality follows by replacing

T

In(Z) = Z - • H (It[Z])
t=1

T T T T

- I •[z] + (I -_n) (Ita[Z]) + E ,t (I [z]) - H•E (It[Z])
t=l t=l t=l t=l

T T

= ~~ I[Z] + E(I - an) (Ipa[Z]).
t=1 t=1

Notice that the terms Ia [Ij [Z]] = 0 by Lemma 4.3.1. Let us look at the last terms

Ia ((I - HII) [Ita[Z]]). Since It (Igt[Z]) E It, there is, by definition of Zt, Yt E Xt such

that -It (Ia [Z]) = Ita[Yt]. Hence, Ia [-It (It [Z])] = If [I [Yt]]. By Lemma 4.3.1, we

conclude that for t $ r, I, (Hl (Ift[Z])) = 0, and for t = T, Ia (It (Ift[Z])) = Ita[Yt] =
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IIt (Ita[Z]). Consequently, we have, for all t, T,

If [(I - e,) (I [Z])] = ItI [It[z]] - Ia [ (It[Z])] = 0.

This implies that IlC (Hc(Z)) = IIc(Z). This concludes the proof that HI is a pro-

jection on Sc

It is easy to see that the projection IIc is orthogonal. O

The following proposition generalizes Proposition 4.3.5 to the constrained case.

Proposition 4.3.7. Let X -= It[Z] E St, and let Yt E St. The variance of the

estimator of E[Z] defined by Z [X - YI,...,X 5 - YT] decomposes as

T

var(Z [(X - YI,... , X - YT])= var(H(Z)) + var (Ii[Yt]).
t=1

A minimum variance element in the set {Z[X 1,..., X] IXt E Xt, t = 1,..., T}

is

e(Z) = Z [W),..., WT],

where Wt1 = arg minwtEx, E [(Xt - I~[Wt]) 2].

Proof. We have

T

Z[X; - Yl,... ,X -Y] Z -YI[X -Yt]

t=1
T T

S It[Z] + EI [Yt]
t=0 t=1

T

= n(Z) + [Y].
t=1

All the terms of this expression are uncorrelated from Lemma 4.3.1. Hence, the

variance of the left-hand side is the sum of the variance of the terms in the right-hand

side. This shows the first claim of the proposition.

We would like that Yt E St minimize the variance var(Igt[Yt]) under the constraint
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that Xt - Yt E X t . Using the variable Wt = X* - Yt, a variance minimizing choice

corresponds to

WtC = arg min E [I [X{ - W2]2 = arg min E [(X - I[Wt])2]
Wt E Xt Wt Et

In the second part of the proposition, it remains to show that HIe(Z) = Z [We, ... , Wi].

By definition of WTt, we have It[Wt] = IH(Xt*) = H,(It[Z]). On the other hand,

T

z [wIC,..., W] = z - tI [Wt]
t=1

T

= z - 1t (I [Z])
t=1

= nH(Z).

The next two sections exploit the results established in this section in order to

characterize optimal estimators for the value and the value gradient.

4.4 Estimation of the value of a policy

In this section, we define two classes of unbiased estimators of the value of policy 0 E

8, which are based on trajectories observed while following a known sampling policy v:

the unconstrained and the constrained estimators. Using the concepts of Section 4.3,

we identify estimators in these classes with minimum training set variance and propose

algorithms that take advantages of these theoretical insights. In practice, the best

algorithmn relies on the optimal unconstrained or constrained estimator, depending

on the availability of observations compared to the dimensionality of the underlying

MDP.

Recall that the training set T comprises n IID trajectories sampled according

to the probability measure Pn, which depends on the initial state distribution r7, on

the unknown transition kernel K of the MDP and on the sampling policy v. But we
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would like to estimate the expectation of the total reward according to the probability

measure associated with r7, K and policy 0. This difference can be overcome using

the idea of importance sampling.

The probability measure associated with policy 0 has a Radon-Nikodym derivative

with respect to gnl, since the sampling policy v gives non-zero probability to all actions.

Furthermore, its derivative (called the likelihood ratio in the importance sampling

literature) is

•1(A1 S8,0) rT(ATIST,0)
L0(Sl, Ah, R1,..., ST, AT, RT) = .

V•(AIJS 1 ) VT(ATIST)

where 7rt(At St, 0) = I=1 7rt(Aý I St, 0) and vt(at St) = H=1 Vt(a kIStk). Thus, the

Radon-Nikodym derivative Lo(S 1, A1 , R 1,..., ST, AT, RT) does not depend on the

transition kernel K, nor on the initial state distribution r7. Define also the likelihood

ratio for one trajectory by Lo(S 1 , A 1 , R 1,..., ST, AT, RT) =- 7(A1SA) T(ATIST)

Remark 4.4.1. In the case where the true model is non-Markov, i.e.,

p (S1 = s1, A1 = al, R1 E 91,..., ST = ST, AT = at, RT E ~T)

T

=- (81) 1 v (atjst) Kd (St+1 81t, S .. , st, at) K r (Rte •E tlt, s81, .. , 8t, at, st+i) )
t=1

the likelihood ratio between trajectories generated by policies 0 and v is the same as in
the Markovian case, that is, L0 (S 1, A 1, R 1 ,..., ST, AT, RT) =- v(Al S) ... T(ATIST)

However, we will need the true model to be Markovian in the sequel - for example to

have well-defined Q-factors.

The value V1 of policy 0 given the initial state distribution rq and MDP model K

can be written as an expectation with respect to p:

Vo = Eo[Ri + - - - + RT] = E,[Lo(Ri + ---+ RT)]

E vi(A|ISi) vt(AtISt)
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As established in Lemma 4.2.4, we can approximate the true expectation with

respect to pt by the (random) empirical expectation En to obtain an unbiased estimator

WV of V9 defined by

v1(A1S1,) Vt(AtlSt) (4.4.1)

Indeed, under our assumptions, (A ) " ~ R(AtIt,e) 6 L2(F, F, p) and by

Lemma 4.2.4, the estimator V9 belongs to S and has expectation

Fr F [ (A, ISi, 0) t (AtlSt, 0) [ (AI S', 9) rt (At St, 8)Ev, En R. = E. R
t= vi (AllS 1) vt(At|St) 1R v(A, 1S1) vt(AtISt) V

Observe that the estimator TV is random only through the empirical measure, which

depends on the random training set T.

On the downside, the estimator Ve can have a large training set; variance, especially

if the number of samples n is small compared to the number of states IXi. Hence, we

would like to reduce the variance of V9 using a control variate approach.

Remark 4.4.2. When the likelihood ratios take very large values, the variance of the

estimator Vo could become particularly large. This situation might occur if the time

horizon :is very long, or if the sampling policy v picks some actions with very little

probability, where'as policy ir selects them with higher probability.

On the other hand, observe that a large state space does not affect directly the scale

of the likelihood ratios.

For all Xt E Et, the law of iterated expectations states that

-E,[XtIS, A 1 ,..., St] -= vt(atISt)E,[XtIS1, A 1,... ,St, at],
at

or equivalently E[ItI[Xt]] = 0. Consequently, the estimator

T

0[X 1,. . . , XT] = 7 - E I [Xt] (4.4.2)
t=1
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is an unbiased estimator of the value V0 of any policy 0 E O for all X 1 E 61,..., XT E

ET .

Remark 4.4.3. Since we consider the situation where the sampling policy v is known,

the action innovation at time t of a known function Xt(S 1,. . . , St, At) can be com-

puted. In contrast, evaluating dynamic innovations requires the knowledge of the

marginal distribution of the next state, which is unknown. Therefore, we only use

action innovations as control variates, and not dynamics innovations.

The concept of innovations provides insights in the value estimator V [X1,..., XT]:

according to Lemma 4.3.1, Vl [Xi,..., XT] has the same dynamics innovation as the

naive estimator Ve, but its action innovations are I,[Ve [X1, ... XT]] = I I[Vo]-Ia [Xt].

This chapter focuses on this class of estimators only, but this class is quite rich and

includes many of the estimators proposed in the reinforcement learning literature, as

we will see later.

Now the question is: what choice for X1,..., XT minimizes the training set vari-

ance of the unbiased estimator V [X1,... ,XT] given a known sampling policy v? We

will identify the optimal value estimator when the functions Xt can be arbitrary el-

ements of St (unconstrained case), and when Xt is constrained to belong to a closed

convex subspace Xt C St for t = 1,..., T, in Subsections 4.4.1 and 4.4.2, respectively.

4.4.1 Unconstrained value estimator

Now, we will find a value estimator of the form Ve[Xi,..., XT] with minimum vari-

ance. Geometrically, we will show that the projection of the naive estimator eo by H1

is such an optimal estimator and we will provide an algebraic expression for it.

Characterization of the optimal unconstrained value estimator

Define the tail cost of policy 0 on the trajectory (Si, A1, R1 ,..., ST, AT, RT) by

Ct- Rt + rt+l(At+ St+,0) + 7rt+l(At+l St+l, 0) 7rT(ATIST, 0)

vt+i(At+llSt+1) Vt+t+(At+iISt+l) vT(ATIST)
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The conditional expectation of Co with respect to p given a state-action pair is known

as the Q-factor Q' of policy 0 at time t in the MDP model K, i.e.,

E,[C, I St = s, At = a] = Ee[Rt + ... + RT I St= s, At = a] = Qt(s, a),

while its expectation given a state is known as the value VJt of the state, i.e.,

Vet(s) = Ev,[CO I St = s] = Ee [Rt + ... + RT I St = s] `= Vot(s).

For t = 1,..., T, denote by Bt E 9 the (random) Bellman error at time t, that is

B t = Rt + 7rt-+l(at+l ISt+l)Q+l(St+l, at+l) - Qt(St, At),
at-1

where QI'+l = 0. Notice that it is a function only of St, At, St+1 , and Rt.

Proposition 4.4.4.

(a) The minimum variance estimator of Ve in the family

{ fV[X 1,... ,XT], Xt• StC

(4.4.3)

7rt(AtlSt, 0)
vt (At I St) I •

+ t E 1 (AJ )t=1 vI(AllS)

(b) Given the Markovian sampling policy v, the variance of the optimal estimator

1o* satisfies

var,(*;) =
1 1
-var,(Ve(Si)) + -
n n

t

(4.4.4)

Proof (a) ]Thanks to Proposition 4.3.5, a minimal variance estimator of the form
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I[Xi,..., , ] with Xt St is 1 (0)
Furthermore, we know II (v) = l'e[X*,..., ,X] with

Xt = -E[Vol S1, A 1, ... , St, At]

- [-[Zin1((AijSI,0)= -E En Tr(AlIS1)

E =1 n(A1|SO)T=-1

= -En .r=i(Al IS1,
=1T(AI S )

[nir(AijS1, ) 7rt(Atl
- E•En(Aj•j) -j (A

[7rl(AlIS, 0) rt(At

- I Vl(AIlS1) -' vt(At

vT (AT|S,)7r -(ATIS,, 0)

E[RT
v,(A, IS,)

t E[C~IS, A1,
fIst)
••r(A IS•,, 0) E[R

vT(AT|IST)

St, e)
ist)

S1, A ... , St, At]]

... , St, At]]

ST, A,, S T+ ,]]

At)].

Indeed, the third equality is justified since we have

r, (A I S, 0)
vi(AIISi,)

L'7(A7 IS7)7)
v,(A,-IS,)

7rt(At St, 0) [En
vt(AtlStI)

vt (At I St)

And the last equality follows from the independence of the reward Rt from the past,

conditional on (St, At, St+l), and the Markovianity of policies 0 and v.
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Consequently, for t = 1,..., T,

I[Xt] =-- E[X; S1,A1,..., St, At]- - vt(atlSt)E[Xt*IS,, Al,. .. ,St, at]
at

[-o(Ao So,0)
1vo(Ao So)

r7t-1(At-1|St-l,0) X(rt (At St, ) Qt t)
V"-1(At--|Stj) vt(At St) - Z t (at I St,

at.Er1(A1S S1,0)
vi(A|ISi)

.rt(AtSt, 0)
Vt (At St)

- vt(at St)E [-En
a t

Er w(A | Si1, 0)
vi(A1|Si)

rt(At St, O) Qt
vt(At St)

I -I (-Enr (A|ISi,0)
V i(A, SI)

.rt(At St, 0)
vt (At ISt) 1

Therefore, letting Xt = -En [ vi(A1 IS1.) * rt(AtS Qt(St, At) E St for t = 1, ... ,T,

also minimizes the variance of the estimator V9 [X1,..., XT].

Plugging these optimal values in (4.4.2) yields

T

V [Xi , ... X' ] = E En [ i(A IlSI,0) 7rt(
vi(AIISi) vt

7rt-1(At-1 St- 1,0)

v•-1(At- - St-j)

At St, ) t]
(At St) I

71(A1 S1,0)
Vi (A SI) S

rt (At St, )Qt (St
vt(At ISt)

At) - E 7t (at St, )Qt (St,
at

+T [E r (A1 S1, 0)
1, 1(A1 IS1)

7rt(At St, 0)"'... vt(AtISt)

(b) Now, we show that the minimum variance has the form claimed in the propo-

sition.

From Lemma 4.3.4, the variance of the optimal estimator V,* is the sum of the

variances of the dynamics innovations of the naive estimator VI, i.e.,

T

var(Vo*) = E var (Id[V1]) .
t=O
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T

- SE
t= 1

at))]

Rt + at+-j1) - Qt (St, At)

A, ... , St, At]

St, At)] IS, A,,

S7rt+l(at+| 1St+l) Qt+ (St+1,
at+l

O)Qto (St, at)

=- En 7 (a, S,,)Q1(SI,a,



For t = 0, we have I[Vo] = E[V0 S1] = En [Vo(S 1)], which does not depend on

the sampling policy v. Moreover, we have

1var (En [V0(S 1)])= -var (1 (Si)).
n

On the other hand, for t = 1,..., T - 1,

Itd[Ve] = E[OIS1,..., St, At, St+,] - E[VjS l ,..., St, At]

_(A_ |S_,_ 0) 7rt(AlSt, 0)
SEn . t(At) (E[Rt St, At, St+l]

I l (A |IS- ) -' vt(At|St) + Vot+'(St+1) - Qo(St,

The dynamics innovations for t = 1,..., T - 1 have zero mean and their variance is

var [IV] = E [E 1[(A ISi, 0)var [It En I i(Al Sj)
7rt(At ISt, 9)

"' vt(AtISt) (E[Rt ISt, At, St+,] + Vet+'(St+l)

For t = T, we have

[•] = o - E[~ eS1,...,ST, AT]

-_En T-7r,1 (A IS1,0) rt(At ISt,) )
7rt(A.t , O) (Rt - E[RtISt, At, St+,])vt(AtlSt)

Since the terms Rt - E[RtlSt, At, St+,] have zero expectation and are uncorrelated,

we have

T [ [ v(A 1jS1,0)

= Ez En I "

wrt(AtISt, 0)
vt(AtlSt)

7rt(AtlSt, 0)
vt(AtlSt)

(Rt - E[RtISt, At, St+]) 2]

(Rt - E[RtISt,

Since the rewards Rt are independent from the systeml dynamics given (St, At, St+l),

we have
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Ev E l(AESn,) _t(Ae•St) (E[RtISt, At, St+,] + Vt+(St+) - Q(St, A 2[ vi(A ISj) vt(At St) A )

+ [i[(A I S 1i) . vt(AtISt)

Er (A,, rt(At St (R - V St+,) - Q(S t .) i ... St, As,Iv(A IISO) vt(AtIS,)

-R(AI|S1,0) rt(AtSt,)0)
= En E [ 1i(A(S+) v) -(Atj() At)) SS,.. ., St, AtS , St+i

Collecting all the terms of var(ýV*) using the above identity yields

Ivar) [7(A IS,0) t(At ISt,0)B 21
n vi(AI SI) vt,(AtISt)

Since the last terms have zero mean, we can replace their square mean with their

variance. Finally, the result (b) of Lemma 4.2.4 yields the desired expression. O

The variance of the optimal estimator II(VO) comprises the variance of the imme-

diate rewards and of the system's state dynamics, but does not include the variance

of the action innovations, which is var ( - II(). If a suboptimal choice X; - Yt

of the variate Xt is made, the action innovation variance of the estimator Vo is not

zero and the estimator variance is (cf. Proposition 4.3.7)

T

var,(ýo[XiX -Yi,..., X - YT]) = var, (19*) + t E, [I[[Y]2]
t=1

For example, the naive estimator has an additional variance compared to the

optimal estimator amounting to lt=l E, [Ia(V)2].

Algorithm

We cannot use directly the expression (4.4.3) for the optimal estimator found in

Proposition 4.4.4, because we do not know the Q-factors of policy 0 in the underlying
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MDP model K. Nonetheless, a salient feature of our approach is that we can use

any guess for the value of the Q-factors without introducing a bias in the estimator.

Indeed, 0 [E )(A S ) i  ( S A )A, [ ,) ... r-(ATJST,O)j Qt(ST AT)]] is

an unbiased value estimator for any Q-factor guess Q0. For example, say in medical

applications, experts could help design a good guess of the Q-factors from their quan-

titative and qualitative experience of different treatments. Another approach would

be to approximate the Q-factors Qo by the Q-factors of a related MDP, which is

better known. For example, the infinite-horizon value is sometimes easier to assess

and approximate. Also, in a queueing network, the analysis of its fluid limit can be

used as an approximation to its high-load performance [33].

A general approach to approximate the Q-factors from observed trajectories is to

solve the empirical Bellman equation, that is to solve recursively for the look-up table

Qt(s, a) the following system of equations

Q T(sT, aT) = En[RTI ST = ST, AT = aT],

Qo(st, at) = En [Rt + rt+1(at+1 St+1, 0) Q +(St+1, at+1) St -- st, At= at]
L t. 1

When Qo is used, instead of Qe, in the expression of the optimal value estimator

(4.4.3), we obtain

[7 l_(A, S, 0) ^ l 7r (A, IS, 0) 7rT (AT J ST, 0) ]

[Q0 ... I 7r, =(aIsi, 0)Q (s1,a,)
v1 (A,1 Si) '  IV1(AI Si) VT(AT ST) Ea 0

ai

which is a standard estimator based on Bellman equations. Indeed, by the Marko-

vianity of the empirical probability measure Pn, the term corresponding to time t in
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Equation (4.4.2) is zero since

E 7 r1(A, S1,0) .. rt(At ISt,) R + rt+1(at+1ISt+1)Q +(St+1, at+,) - to(St, At)VEn i (AIS1) 'vt(AtISt) Rt +a E t+(at/l t l

SE ri (A IS1, 0) rt (At St,) E R rt+ (at+, St+i)Qt+1(St+, at+,) - (StAt) StAtEn (1l -l to+St, At) St, At

SO.

In this case, our analysis does not yield a new estimation method, but it provides

a new interpretation for the very common estimator ra1 ri(a, 1s, 8O)' (sl, a,).

Remark: 4.4.5. Interestingly, this estimator need not have a lower variance than V70

as illustrated in Subsection 4.4.4, because it is not the optimal estimator of Proposition

4.4.4 since the true Q-factor Qe has been replaced by estimates Qe.

Remark 4.4.6. Our analysis does not prove that this estimator is unbiased, because

Qe is not a fixed function since it is chosen from the training set. However, as the

number of obserlved trajectories increases to infinity, the estimates Qe converge with

probability one to Qe. Hence, our analysis implies that this estimator is asymptotically

unbiased and its training set variance converges to the training set variance of the true

optimal estimator.

This estimator of the value from state sl requires the observation of at least one

trajectory for all actions al that are selected with positive probability in state s1 .

Otherwise, the corresponding Q' (si, a,) and consequently the value estimator are

not even defined. We will see in Subsection 4.4.4 that this estimator requires a fair

amount of observed trajectories to yield good value estimate.

Optimal sampling policy

We assumed that the sampling policy v is given, but in this part we make a short

digression to assess what would be a good sampling policy. Proposition 4.4.4 allows
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us to characterize a fixed Markovian policy v* yielding the optimal estimator Ve* with

the minimum variance when using our optimal estimators. Notice, however, that we

are not considering adaptive sampling policies (i.e., sampling policies that change as

realized trajectories are observed), even though they could reduce the variance of

our estimate further - even sometimes make the variance of the estimation procedure

equal to zero [39] (provided that some typically unknown characteristics of the system

are available to the sampler).

Let Vt,8 be a non-empty closed set of probability distribution over A. If we con-

strain the sampling policy v to be such that vt(-ls) E Vt,8 for all t, s, the optimal

sampling policy v* can be found by dynamic programming as shown in the next

proposition.

Proposition 4.4.7. Define recursively A(t, s) for t = 1,..., T and s E S by

A(T, s) = min EK T(A tS T ST = s] svEVLr I v(AT)

= min E rT(als, 8)2 E[(RT - E[RT Is, a]) 2 ST = S, AT = a]
aEVT.A v(a)

A(t, s) = minE AS )) St = 8(At) (B t

= min t(a, )2 EK [B2 + A(t + 1, S+) S =s, At=a
aEA

Then A(1, s) = n -var,(Ve*) - var(Ve(S1)).

Furthermore, let v* be a Markovian policy such that vt*(-.s) achieves the minimum

in the above recursion. The policy v* is a sampling policy in the constraint set that

yields the optimal estimator V1* with the minimum training set variance.

Proof. From Proposition 4.4.4, we know that the variance of the optimal estimator

for a given Markovian sampling policy v is

var,(Ve*)= -var(Vo(Si)) +-E •  vr(AI S lI ) trt(At St)B 2n n v7(AIS1) Vt(AtjSt)t=1
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It is immediate to check by induction that

A (7, s) = E,, 7r(ArIS,0) .rt(AtISt,)) B 2 S = 1
t=T (ATST) vt(AtSt) t

Thus, the rest of the proposition follows from a classical dynamic programming

argument. O

However, this result is not quite practical as is, because it requires the knowledge

of the underlying MDP.

To summarize this subsection, Proposition 4.4.4 characterizes the minimum vari-

ance value estimator as a function of the Q-factors, which are unknown in practice.

This result suggests to use an educated guess for the Q-factors to achieve a low vari-

ance estimator. Oftentimes, this guess is an estimate of the Q-factors. Such estimates

are mneaningful only if there are enough observed data compared to the model com-

plexity. When the state space is intractably large, or when there are few observed

trajectories compared to the state space's size, a good estimate of the Q-factors will

not be available. In this case, it makes sense to estimate more accurately a low-

dimensional approximation of the Q-factors than to use a poor estimate of the exact

Q-factors. This approach is investigated in the next subsection through the concept

of constrained value estimators.

4.4.2 Constrained value estimator

As nmentioned in the paragraph above, there are some situations where it is beneficial

to restrict the family of estimators under consideration in order to have an algorithm

that performs better in practice. In this subsection, we show that the projection

HIC(10) of the naive estimator has the minimum variance among value estimators of

the form ~e[X1 ,..., XT] with Xt E Xt, and we characterize it algebraically.

The following proposition is the analogous of Proposition 4.4.4 in the constrained

case.

Proposition 4.4.8.
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(a) The estimator VC = fHC(eo) belongs to the family of estimators

(4.4.5)

Furthermore, it has the minimum variance in this family.

(b) Let Qt be a linear subspace of St of measurable functions of (St, At) for t

1,..., T. Then a minimum-variance estimator in the set defined by (4.4.5) with

rt(AtlSt,0)t(t, At)
v t(At|St) Yte Q

is the projection by IIC of the naive estimator Ve, that is,

i En 7E rl(alS Si, 0) (Si, ai )
a1

(4.4.6)

1r(AI ISI, 9)
vi(AiISi)

7rt(AtISt, 9)
vt(At ISt)

Rt + E rt+l(at+l ISt+i)Qt+ (St+i, at+l) - Qt (St, At)
at+i

arg min E En
QE [

ro(AojSo, 0)
vo(Ao I So)

Proof. (a) This is a direct application of Proposition 4.3.7.

(b) It is clear that Xt defined in the second part of the proposition is a closed

linear subspace of St. From Proposition 4.3.7, we have

T

V, _ V [•1 ·, w•] = Izgrw•ta
t=1

where Wt is defined by

Wt = arg min E [(It[l] - It[Wt])2].
Wt E Xt L [
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T

t=1

with Qt defined as

7rt-1(At- iISt-1, 0)
It-1(At-lSt-1) "

(4.4.7)

[ rt(Atl St, 0)( S,(At (StI At)

Vo [Xi, .... XT], Xt E Xt

, '1t : lE n [ 7(r, (A1I S , 0 )V i(A, 1 Ii)

- Q(St, At))]]21.



Observe that

E [ AE I ( Si,) r (AtISt, 1 0)It [V'ý] =E En Q'(St, At) S, ....I St, AtVI(A I IS) vt(AtISt)
SE [11(A1 S1,0) 7rt(AtlSt,0)Qt(A) S ... St

Lvi(A1IS1) vt(At St) "
[Ero(AoJSo, 0) 7rt.i(AtiISt±1O) _ [rt(AtjSt, 0) 11

SE ... IS QA(St, A)
vo(Ao So) 'v (A(A IS v(ASt) I'

Since T~ E Xt, there exists a function Qt E Qt such that

ui[ (ro(Ao So, 0) -1(AtSt-1, t (iAtSt, 9) 121a4 = arg minE En [ (AoSo) t-(AtSt ) a [E (Qt(St, At) -Q(St, At))
QEQt vo(AolSo) vt-i(At-l St-1) vt(AtlSt)

and such that Wt defined above takes the form

7r, (AIS1,_0) 7rt(At StO) A
WT E ! = En ...9 Qt (St,At)]

n vi(A1 S1) v (At St)

Rearranging the terms of V~[Wf, ... , WV] yields the expression (4.4.6) for the optimal

c:onstrained estimator. O

4.4.3 Algorithms

Now, we leverage Proposition 4.4.8 to propose practical algorithms for value estima-

tion. To simplify the notation and to ease the comparison with alternative approaches,

we consider the on-policy case, i.e., the sampling policy v = 0.

Furthermore, we will use a linear approximation architecture for the subspaces

Qt, i.e.,

Qt={ (s, a) O, Ot EC Rm
where ¢ = ( 1, ..., r) is a row vector of features, which are functions from S x A into

JR. Here, we assumed for the notation's clarity that the features are time independent,

but the subsequent analysis extends readily to the case where the features depend on

time.
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When 0 = v, the optimal on-policy estimator of Proposition 4.4.8 is

+ EE n Rt + V Et+il(at+1 St+1)Qt (5t+1 at+) - t (StAt)
at=1 atAt+1

where Equation (4.4.7) becomes

(t arg min E, [En [Qt,(St, At) - Q(St, At)]] 2]

Since It,[Q] = Q(St, At) - E[QISt] = Q(St, At) - Eat irt(atlSt)Q(St, at) is only a func-

tion of (St, At) and has zero expectation, we can invoke Equation (4.2.1) in Lemma

4.2.4 to define Q, equivalently as

Q r = arg min 1 [E I [QI (St, At) - Q(St, At)]2] . (4.4.8)QEQ, nI

In practice, we know neither E,, nor the true Q-factors Qt so that they need

to be estimated/approximated. The method of Temporal Differences (TD) (cf. [73]

for an introduction to TD) provides a natural method to approximate Qt•(s, a) from

Equation (4.4.7). In this section, when we refer to the method of TD or Q-learning,

we always refer to the version of these method with function approximations by a

linear combination of the features 0(s, a)3t.

Even though the method of Temporal Differences TD(A) depends continuously on

a parameter A that trades-off the bias and variance of the approximate Q-factor, we

will consider the two extreme cases of TD(O) (Q-learning) and TD(1) in this chapter

because they capture the full extent of the spectrum. (Of course, TD(A) could also

be used to approximate the Q-factors.)

(a) TD(1) is a smoothing of the empirical Q-factors QG. More precisely, TD(1)
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solves for the weights P1 such that

= arg min En [(^)(S, A1 ) - (S, (4.4.9)

Thus, our constrained estimator becomes

Vjci = En ,IY 7rl(alS1,0)O(Si,al)/3,

+ 1E, R ~+ 2(a 2 S2 , ')Q^) (S2, a2 ) -a(S, AI)13

In the sequel, we will denote Q1,1 = , 3Pt, where /t is obtained by TD(1).

(b) Q-learning (TD(O)) in a finite horizon problem [98, 49] computes the weights

/t by solving recursively

(4.4.10)P3 = arg min E, [(RT --(ST, AT)P) 2]E.Rm"

f3t := airg rnin E,
,6ER. ..

Rt + E 7rt+i(at+l St+l,O)(St+i,at+1)3t+I - ¢(St, At)1
at4 1

In the sequel, we will denote Q,o = O€t, where 3t is obtained by TD(1). Using

the weights ,t computed by Q-learning, we obtain a practical estimator

I7 o = En 7rl(aiSl,O)O(Sj,ajl),l
al1

+ EEn + E7rt+ (at+ISt+1, 0) (St+1, at+1)3lt+ - (St, At)•t
t=1 at + 1

There are two interesting points to observe about these algorithms:

1. The empirical probability provides a natural weighting of the states so that the

approximation focuses on the more likely states.

2. The approximation error of Q-learning with function approximation grows as
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the square root of the time horizon, instead of exponentially for arbitrary for

arbitrarily loss function. [98].

Remark 4.4.9. Since the control variates are chosen as a function of the training set,

our theoretical analysis does not prove that the estimator VC ', and Vp,1 are unbiased.

However, in the limit of large training set, the recursions (4-. 10) and (4.4.9) converge

with probability one to some approximate Q-factors. Consequently, our theoretical

results imply that the estimators V,,o and VC,l are asymptotically unbiased.

Remark 4.4.10. Proposition 4.4.8 shows that the optimal constrained value es-

timator calls for an approximation of I, [le]. But the innovation Ig[Qt](s,a)

Qt (s, a) - E 7rt(als, O)Q (s, a) can be interpreted as the advantage At(s, a) of action

a in state s compared to the other actions on average. Thus, it is slightly different

from the Q-factor of the state-action pair (s, a). Some work has been dedicated to

estimating and/or approximating the advantages [7, 32] and to illustrate the benefit

of looking at the advantages rather than the Q-factors. At a general level, there is

little difference between learning the Q-factors and the advantages since Bellman's

equations for the advantages also involve the value functions. However, in specific

applications, there can be a substantial benefit of working with the advantages (e.g.

[ 32]).

As long as the Bellman error term (i.e. the second term in the above expressions)

can be computed, these estimators are practical. This is possible when the number n

of observed trajectories in the training set is not too large, which is the regime this

chapter is mostly focused on.

The following lemma studies the computational complexity of our estimators.

Lemma 4.4.11. (a) The computation of the optimal weights Ot, t = 1,... , T in

TD(O) (resp. TD(1)), can be done O(Tm3 + Tm3nIAI) time.

(b) Given the weights @t, the evaluation of the estimator V',o (resp. Vc,'1) takes

O(TAmn) time.

Proof. In the proof, we consider the case of TD(O). The case of TD(1) can be done

similarly.
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(a) For each time index t = 1,..., T, we solve a linear system that corresponds to

letting the derivative with respect to 0 of (4.4.10) equal to zero in order to find the

optimal weight Qt E Rm. To form the corresponding m x m matrix, it takes O(nIAIm)

time to comnpute each of the m2 coefficients. Considering that the inversion of the

m x m matrix can be done in O(m3) time concludes the proof.

(b) For each time t = 1, ... , T, the expression of the term of C1 ,O corresponding

to time t is done in O(nmIAI). The claim result follows easily. O

4.4.4 Numerical experiments

In this subsection, we compare the on-policy estimation accuracy of our approach with

temporal difference methods, namely TD(O) (Q-learning) and TD(1). Specifically, we

will consider seven estimation methods:

* "Naive estimator:" the importance sampling value estimator VO, which reduces

to the sample mean of the trajectory rewards in the on-policy case,

* "Optimal estimator:" the true optimal unconstrained estimator Vo* = VO[Q,, Q ,

(which knows the true factors Q'),

* "Empirical Q estimator:" the optimal unconstrained estimator where the Q-

factors are approximated by the empirical Q-factors Q0, i.e.,

* "Q-learning estimator:" the estimator

iv = En [•l(ad Sl,0) ,o(Sia1) ,

where Q',0 are approximated Q-factors obtained from Q-learning (TD(O)) by

(4.4.10).

175



* " TD(1) estimator:" the estimator

where QI,, are approximated Q-factors obtained from TD(1) by (4.4.9),

* "Q-learning control variate:" the optimal estimator where the Q-factors are

replaced by the approximated Q-factors Q0, of Q-learning, i.e.,

= Vo[Q ,o, ... Qoo

" TD(1) control variate:" the optimal estimator where the Q-factors are re-

placed by the approximated Q-factors Qt, of TD(1), i.e.,

^0C,1  - I -T

The performances of the different estimators will be compared numerically as a

function of the cardinality of the training sets on two simple MDP models described

thereafter. Unless specified otherwise, the p)erformance of a value estimator is judged

on the basis of the empirical mean squared estimation error evaluated from many

training sets. Thus, both bias and variance are penalized.

We will illustrate three points:

When there are enough observed trajectories, the variance of the naive estimator

7 is significantly larger than the variance of the estimators QV[Q .,..., Q],

where Q' is some estimate of the true Q-factors Q' (e.g., the empirical Q-factors

Q , or the approximated factors Qt,o or QO,1 obtained from TD(O) and TD(1)).

Whereas Proposition 4.4.4 shows that the optimal estimator Vo[Q1,..., Q0] has

lower variance than the naive estimator V~, the unknown Q-factors Qt need

to be estimated, and the noise in their estimation could worsen the estimation

error of o[ 1,..., ,Q]. In fact, we will see examples where the estimates Qt of
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the Q-factors are so noisy that the resulting estimators [ [Q,..., , ] are worse

than the naive one, but this situation occurs when there is little data available

to estimate the Q-factors.

* When the number of observed trajectories is small, it is more efficient to estimate

approximate (regularized) Q-factors than to estimate less accurately a look-up

table estimate of the Q-factors (provided the approximate space is not poorly

chosen). Thus, the constrained estimator can add value in practice when the

training set is small.

* The temporal difference methods TD(A) with function approximation, a fortiori

Q-learning and TD(1), can estimate the Q-factors with few observed trajecto-

ries, but they achieve this by trading-off a lower variance with potential bias.

In fact, if the features 0 are not appropriately chosen, the TD(A) estimators

can have an arbitrarily large bias. Hence, TD(A) with function approximation

is not appropriate for accurate value estimation. In contrast, our constrained

estimators can take advantage of the biased estimates of the Q-factors gener-

ated by TD(A) to yield an unbiased value estimate with smaller variance than

the naive estimator, even when there is little available observations.

Line MDP

Let us consider a "linear" MDP comprising (S + 1) states, S {0, 1,... ,S}. The

state S is absorbing. In state k = 0,..., S - 1, the controller can either choose the

action I and stay in state k with probability one or choose the action M to move to

the state k + 1 with probability one. All actions have a reward of one, except the

actions in the absorbing state S, which have zero cost. In addition, the system is

initialized at state 0. A graphical illustration of the MDP with S = 3 is shown in

Figure 4-1.

Let 0 = v be the policy that chooses action I and M with probability 1/2 in all

states.

In our experiments with the line MDP, we used two features. The first is 1 (k, a) =

177



I,M

Figure 4-1: Graphical representation of the line MDP with S = 3.

S - k and the second is 02(k, a) = (-1)1{ '}. When the time horizon is large, the

finite horizon value functions are well-approximated by the infinite horizon ones. By

solving Bellman's equations, we obtain the infinite-horizon value functions V,(k)

2(S - k) for k E S. We deduce that the corresponding advantages are A(k, I) = 1

and A(k, M) = -1 for k = 0,..., S - 1. As a result, the proposed features allow a

good linear approximation of the Q-factors.

In this example, the optimal estimator V~ [Q.,...,Q ], which uses the unknown

Q-factors Q', is equals to the value VI with probability one since the state dynamics

and the rewards are deterministic given the current state-action pair (and thus, all
Bellman errors Re + ZEati irt+l(at+lISt+1, ))Q +l(St+i, at+i) - Qt(st, at) are zero with

probability one). Consequently, it has zero squared error independently from the

number of trajectories in the training set. Hence, the estimation error of our algo-

rithms needs to be entirely explained by the noise in the estimation of the Q-factors.

When the time horizon T = 6 and S = 2, Figures 4-2 and 4-3 compare the

empirical squared error between different unbiased value estimates and the true value

for different numbers of observed trajectories in the training set.

When there are few observed trajectories (illustrated by Figure 4-3), Q-learning

provides a reasonable estimate ýQ, 0o of approximate Q-factors the fastest. As a result,

the mean squared estimation error of the value estimator V Qo - decreases

very quickly. In the present example, this estimator using 6 trajectories has two

times less variance than the naive estimnator, and with 20 trajectories it has five times

less variance. On the other hand, the estimator Vo[Ql,..., Q] without Q-function
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approxim[ation requires at least 30 trajectories in order to have a lower mean squared

error than the naive estimator. However, as the number of trajectories in the training

set increases, Figure 4-2 shows that the look-up table estimation of the Q-factors

improves and eventually (for n > 75) yields a better estimate than the other methods

that rely on approximated Q-factors.

0.04

0.035
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()
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0o- 0.025
E

0.02
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o- 0.015
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r 0.01
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0
40 60 80 100 120 140

Number of observed trajectories in the training set

Figure 4-2: Empirical squared error between different value estimators and the true
value on the line MDP, as a function of the number of observed trajectories per
training set, estimated with 1000 ranldoin training sets. The true value function is
V0 = 4.5625 for T = 6 and S = 3.

Now, we illustrate with the line MDP that the estimator based on Q-learning

and TD(1), namnely 0 and i', can have arbitrarily large bias. In order to make the

shortcomings of TD(A) obvious, we restrict the approximate Q-factors computed to

be a linear function of 02. Since the policy 0 selects action I and M with equal

probability and that 02(k, M) = -0 2(k, I), the TD(A) estimators will always yield
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Naive estimator
- Empirical Q estimator

-- *--- Q-learning control variate
............... TD(1) control variate
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Number of trajectories in the training set

Figure 4-3: Empirical squared error between different value estimators and the true
value on the line MDP, as a function of the number of observed trajectories per
training set, estimated with 1000 random training sets.

zero for all training sets, e.g.,

1 1
= 2(0, I)0 - 12(0, I)03 = 0.2 2

while the true value is V/ = 4.5625. In contrast, our estimators are unbiased and

eventually converge to the true value V8 as the training set increases to infinity.
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Inventory problem

The second MDP we consider models a simple inventory problem over a finite time

horizon T = 5. A distributor sells a single product at a fixed unit price, p = 2.

The numbers of units demanded at each period are random III), with an unknown

distribution with support {0,..., D}. Demand is satisfied by the distributor as long

as lie has inventory, which is replenished at the beginning of each period at a unit cost

c - 1. If a demanded unit cannot be supplied by the distributor, then the demand

is lost. Let M = 5 be the maximum inventory the distributor can store. This multi-

period newsvendor problem can be modeled by an MDP, where the state in {0,..., M}

is the inventory at the beginning of the period and the action in {0,..., D} is the

retplenishment order size.

In the numerical experiments, the demand is 0, 1, 2, or 3 with probability 0.1, 0.5, 0.35,

and 0.05, respectively. We let the policy 0 = v choose all actions with equal proba-

bility (or ulp to the inventory capacity M if the order is too large). The initial state

has zero inventory. The value is VO = -6.6739. Furthermore, we use the two features

1 (s, a) =:= -a and 0 2(s, a) = M - s to approximate the Q-factors.

Figure 4-4 compares the empirical squared error of our different estimators as a

function of the number of trajectories in the training set.

The optimal estimator Vo[Qo, ... , Q'], which knows the true Q-factors, reduces

dramatically the estimation error, but the unconstrained estimator To[Q ,..., Q] =

Sa=O 1(a 0)Q(' (0, a), which uses the empirical Q-factors Q , has the highest es-

timation error, even much higher than the naive importance sampling estimator.

The unconstrained estimator requires at least 200 trajectories per training set

to have a similar estimator error as the naive estimator.

* Our constrained estimators using the estimates of approxinmate Q-factors from

Q-learning and TD(1) have a much lower error than the naive estimator. Since

the true Q-factors are close to the approximation space, the constrained esti-

mators perform almost as well as the optimal estimator.
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Figure 4-4: Empirical squared error betwe(en different value estimators and the true
value of the inventory problem, as a function of the number of observed trajectories
per training set, estimated with 1000 random training sets. By comparison, the true
value is Ve = -6.6.

Figure 4-5 plots the Q-learning and TD(1) estimators in addition to the other

estimators plotted in Figure 4-4. We can see that they perform quite poorly: the

Q-learning estimator performs similarly to the naive estimator, while the TD(1) esti-

mator follows the unconstrained estimator, which is the worst by far in these experi-

ments. Interestingly, our constrained estimators, which relies on the Q-learning and

TD(1) estimation of approximate Q-factors, are performing much better.

Nonetheless, the Q-learning and TD(1) estimators have a squared estimation error

decreasing to almost zero because the true Q-factors are well approximated by our

features. When we use only the feature ¢1 to approximate the Q-factors, the bias

introduced by the inexact approximation architecture becomes more apparent as seen

on Figure 4-5. The mean squared estimation error is lower bounded by the bias
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squared. The squared bias of Q-learning (resp. of TD(1)) is approximately 1.2 (resp.

0.75) in this example.

1.5

20 40 60 80 100 120 140 160
Number of observed trajectories in the training set

180 200

Figure 4-5: Empirical squared error between different value estimators and the true
value of the inventory problem, as a function of the Inumber of observed trajectories
per training set, estimated with 1000 random training sets. In this experiment, the
Q-factors are approximated only using the feature 01.

In this section, we characterized theoretically optimal value estimators in the un-

constrained and constrained cases. When there is little data available, we illustrated

numerically that our constrained estimators outperform competing approaches by

taking advantage of regularized estimates of the Q-factors to yield lower variance

value estimate without being biased.

4.5 Estimation of the gradient of policy value

In this section, we define an unconstrained and a constrained class of unbiased esti-

mators of the value gradient and we identify a minimum-variance estimator in each
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class. In addition, we compare our approach with other ones from the reinforcement

learning literature.

We will consider the estimation of the derivative of policy value with respect to

one real-valued parameter 0. The results of this section are also relevant for problems

where the policy depends on more than one parameter, because they can be applied

to estimate component-wise or directional derivatives. However, our setting will not

capture the covariance between derivative estimates component by component.

We add the following technical assumptions in this section. Among others, these

assumptions ensure that the value function is continuously differentiable on O.

Assumption 4.5.1.

1. The set e = (0o, 01), Oo < O1 is an open interval of the real line R.

2. The functions log 7rt(als, 9) are continuously differentiable for all t, s, a, as a

function of 0 E 8. Consequently, for all fixed training sets, Ve is continuously

diferentiable as a function of E 8.

3. The random function 8 of the training set is integrable for all 9 E 0, and

E, [% is a continuous function of (-), so that 'we have

( E, E 9) = Es .

In addition, there holds

E,I d <o+0.

We will assume that the same holds for the conditional expectations E,[. Isi,..., st]

and E,[-Isl,..., st, at], for all t and sl,..., ST, aT.
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4.5.1 Characterization of optimal gradient estimators

Under the assumptions stated at the beginning of the section, the estimator Vo defined

in Equation (4.4.1) is continuously differentiable for all training sets. Hence, we can

define the estimator of the value derivative -0 by

(4.5.1)
80 90

S[~ 7rl(A IS1, ,) 7rt(AtISt, 0) o(logir l (Al IS1, ,0) logwrt(AtlSt, 9) ]
L1 vi (A ISI) v (At St) 09 as

The estimator is an unbiased estimator of the value gradient - for all 0 E 8.

Indeed, by Fubini's theorem (under Assumption 4.5.1), we have

/ 0 [oe V 1 '
El, L-- dO = E, d = E .(4.5.2)

Consequently,

Dy8 V 0Ej[V9 ] = 0 V__o -E] LVi(-- f- E,[ dO) = E,, = E19
80 9 "a a 00 0 9 80

where the first equality follows from the unbiasedness of the value estimator V~, the

second fromn (4.5.2), and the fourth from the definition of the gradient estimator -.

Nonetheless, the gradient estimator 0 might have large variance and we would

like to reduce it using control variates. Similar to the previous section, we want to

find an estimator of the derivative of the value function with minimal variance, within

the set of unbiased estimators

[X . XT], Xt E Et or -[Xi, .,XT], Xt E- xt (4.5.3)

for the unconstrained and constrained case, respectively. We assume that the set

Xt C St is a closed linear subspace of £t, for t - 1,..., T, in the constrained case.

Remark 4.5.2. In this section, we still use the notations Z[XI,...,Xt] introduced

185



in Section 4.3. Now, the random variables are often defined as derivatives of other

random variables, making the notations more prone to confusion. Sometimes, we will

use parenthesis to ease the parsing of the expression,

Proposition 4.5.3. In both unconstrained and constrained cases, the optimal esti-

mator of the value gradient is the gradient of the optimal value estimator.

In the unconstrained case we have

where (Xt) 1<t<T are such that H (VO) - V[X;, ... , Xl].

In the constrained case, if the constraint sets Xt are independent of 0, we have

aoe· oo )]''k= eo -

where (Xtc)1<t<T are such that Hl•(Vo) = ~~[X,... , XX].

Proof. From Propositions 4.3.5 and 4.3.7, we deduce that the optimal estimators exist

and are obtained as the image of the naive estimator -v by the projection Hl in the

unconstrained case and by the projection i e in the constrained case.

First, we prove that

n(a -)

and

90 809

It is enough to prove that we can interchange the projection and differentiation op-

erators.

Recall that the operator Hl is defined by HI(Z) = Z- ET(E[ZISI,... ,St, At] -

E[ZIS 1 ,..., St]). Using Fubini's theorem as we (lid at the beginning of the subsection,

we can interchange the conditional expectations and the differentiation with respect
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to 0. Thus, it follows that we can interchange the operators HI and 2 evaluated on

In the case of the constrained operator IC , the argument needs to be adapted

slightly. Recall that HIC(Z) = Z - ET, Ht (E[ZIS1,..., St, At] - E[ZISI,..., St]).

We establish now that

an, (E[V 9s ,,..., St, At]) aE[Pe|S1,... St, At]
0  -- It( 0

The orthogonal projections fIt are non-expansive for the L2-norm and a fortiori they

are continuous for the L2-norm. Hence, if we have for the L2-norm that

E[VS 1 .., S, A lir 1 (E[V ., St, At] - EI E[ Sl1,..., St, At])

(4.5.4)

then we can conclude by L 2-continuity of fIt that

lt (E[W|Sl,... St, At] ( 1 )Ht ( s = lit lim- E[V0+j Sl,..., St, At - E[V 0IS1,..., St, At]

= limrn IIt (E[o+C IS I ,..., St,At -E[VIS,.... St, At]))

it (E[V I|S1, ... , St, At])

00

Under Assumption 4.5.1, Equation (4.5.4) holds with certainty, i.e., for all s 1, . . ., st, at.

Since the state and action spaces are finite and the training set as a finite nunm-

ber of trajectories, the random variable E[V0 S1,...,St, At] belongs to the finite-

dimensional subspace of C of functions of S ,..., St, At alone. rherefore, the limit

in Equation (4.5.4) also holds in a L2-sense oil this subspace, and thus we can inter-

change differentiation and -It on this subspace.

As a result, we can also interchange the operators fIC and - evaluated on V0.

Now, we show that (, , =0 H •0 where the functions
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X* are such that II(Vo) = Ve[X',... ,Xf]. We have

II -
0(ao

iH (e)
09

T

Ve t=t=1

aIa 1[xX;]
09aox; t=1

It' -0
80ax

( 8~a T1\ a /;3

A analogous argument takes care of the constrained case. O

Corollary 4.5.4. In the unconstrained case, the optimal estimator for the gradient

of the value is

(4.5.5)= E E,, [ rt(at St, 8) lotS9) Q)t(St, at)I S
t=l ato011

rt(At St, 0)
vt(At St)

En 7r(,Sl0
I vi(AISli)

En 7L, (AIS,)I1v(AllSi)

0 log 71(A IS1,0)
0 0

7t(AtlSt , 9)
vt(AtlSt)

( Z t rt+l(at+l St+1,0)Eu [Z 7rr(ar IS,
T--=t+1 at+. a-

- E, xr, (a I ) loS g , S,,9) Q (Sr,,a) St, At
r=t+l ar

Remark 4.5.5. The first term in (4.5.5) approximates direclty the derivative of the

value function Vo, which is

-0 = Ee E rt (at s o St, 0) Qt (St, at)

e t=1 at

The other terms have zero mean when the Q-factors are known and by Lemma 4.2.4

their variance is order of O(1/n). Thus, as n increases to infinity, these terms con-

verge to zero.
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Proof. Differentiating Equation (4.4.3) yields

=1 [Z(a, (IS,,lo0 9rl(alS,) + Q(Sial))
E n E 7 , ( ,I11 O o+ a

(0 log wr (A ISi, 9)
08

Differentiating Bellman's equations

Rt + E Zrt+i(at+l St+, O)Qt+l(St+, at+,) St
at+1

yields, since the expectation EV,[Rt St, At] is independent of 0,

-Qt(s=), aE

+Q+ 1 (St+ 1, at+,))+ 100

By induction, this expression yields

AQt(s, a)0i~\ J 'o ToE9l [ rT(ass )Olog 7r, (a, IS, 0)
r=t+l (S, a.) St = s, At =

Substituting this expression in the derivative of the Bellman error Bt, which is

E- > t+ 1(at+ S 1, 6)
at. .1

OQt (St, At)

yields the claimed result.

Furthermore, when we approximate the expectation with respect to M in (4.5.5)

by the Markovian empirical expectation E, the last term is equal to zero (in contrast

to case of the non-Markovian empirical distribution P,,) so that the optimal estimator
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ao

T
+ tEn

t=1

" (AiS 1 )
v(At SO)

7rt(At St, 0)
vt(AtISt)

+0 log 7t (At St, 0) Bt +

Qt (s, a) = E,

aB,)](90/

= S, At = a

ISt = S, At = a]

at+lO0 '
at+1(ti | t1,8 log ~rt+l(at84 ISt+1, 8) q+(t1 t£+1

1 log it+1(at+llSt,1 0) t+, Sa
(9000

OQt1 (St+l, at+, )
a~t+l) + .0



En EE (rt(at| St, 0)log ttSt, )Q(St, at) S 1
t=1 at

T 7r1,(A_• S1I, )  7rt(AtlSt,O) (Olog r(AZlSl,O) a log rt(At ISt, 8))]
+ E En . + + • + Bt

t=1 vi(AI SI) vt(AtlSt) 90 O

In the next two subsections, we will specialize our results to the on-policy case,

that is 0 = v, in order to be in the same setting as the paper of Greensinith et al [31],

which will serve as a benchmark for our approach.

4.5.2 Comparison with the baseline approach

The baseline method is also a control variate method to reduce the variance of the

gradient estimates (cf. [31] and references therein). It relies on the observation that,

since the probabilities irt(a s, 0) add to one for all states s E S,

[ a logrrt(AtSt,) ] (a ) rt(a St, 0) -t E art(a St, 0)
a

As a result, one of the approaches in [31] uses a1og lt(AtSto)3t(St) as a control variate

for the on-policy estimation of the value gradient

VVE = E T rt (At S t ,0 ) alog Trt(A StI ) Q(St'7At)

and they refer to /t as the baseline. In this subsection, we show that the baseline

method is essentially a special case of our control variate approach to reduce the

variance of gradient estimators; yet the baseline method suffers from two unnecessary

limitations:

(a) the baseline variate has a restricted form of dependency on the current action

At compared to our control variate,
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(b) the initial gradient estimator in [31] is

ave
ao = Eo t(At St, O) Qa(St, At )

t=1

which can be biased when the unknown Q-factors are not properly guessed.

Now, let us look more closely at these two points.

(a) For all baselines Ot we can write

0 log 7rt (At St, 8)

with Yt(s, a) = alogrtals,O) t(s). Indeed, Yt has zero conditional expectation given St,

since we have for all s E S and for all t, by conditioning on At,

E[Yt(St, At) ISt = s] = 7rt(a s, 0) ologta , ) (s) = t (s) .0 = 0.
a

Consequently, Ita[Yt] = E[YtISt,At] - E[Yt|St] = Yt = alog a IsO)3t which is the

control variate induced by baseline 3t. Thus, the baseline approach is a special case

of our control variate approach with a dependency on the action that is proportional

to logrt(At St.,8)

(b) The basic estimator of the value gradient used in [31] is

En t(A t0)Q(St,At)

Within our class of estimators, (0 1) [W1,... , WT] with

7 r == (log 7rl(AIS, 0)\e
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differs from the expression (4.5.6) only by a Bellman error term, since we have

a-N - ..il. W T -. E n T at (a tISt, 0) Q (S t , )

( ) Tt=1 at

+ En[•-• log 7rt(At St, ) Bt

When the unknown Q-factors Qt are improperly guessed, the estimator (4.5.6)

can be biased. In contrast, the Bellman error term makes sure that our estimator

( ) [WI,..., WT] is always unbiased. In the subsequent discussion, we will infor-

mally "equate" the naive estimator (4.5.6) with the estimator -• [W1,..., WT] where

lVt is defined in Equation (4.5.7) so that we can focus on the difference of the op-

timal estimators between the baseline control variate and our more general variance

reduction technique.

Now, we can compare the baseline method to our control variate approach. When

the baseline in unrestricted, Theorem 8 in [31] asserts that the best baseline Ot to be

used in the estimator of the value gradient

En [K- (97rt(AtISt, 0) Q log rt(AtISt, 9) )
tE l "  

0-'0Q i (St, At) - 0t(St)

is given by

F0 [(aogtAtsteo ) 2 Qt (s, At) St = s
t* (s) -

Eo a loo rt(AtlSt,0 )2 ISt=

In contrast, we know from Proposition 4.5.3 that the minimum variance uncon-

strained gradient estimator is

a* _ 'af 8ax* ax
0 o0 8 oo " oo '
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where

a.x* 49log ri (Al S1, 0) o9log7rt(At ISt, 0) Q_ (St,_ At)O = -En +"" +  Qt (St, +t)
0  1 0 80 J ao

Equivalently, we have

08VO a8 8O9Q'(Si, A,) Q(T , A )S =- W + ... W +

When the term 8Qot(StAt) cannot be written in the form of a baseline, that is, in

the form a1o srt,(AtStO (St) for some function ,3t, the baseline approach has a higher

variance compared to our method.

4.5.3 Comparison with actor-critic approaches

Actor-critic imethods use a "value function" to generate a better estimate of the value

gradient. This function is typically chosen so that the gradient estimate is unbiased

and has low variance. Furthermore, it is often constrained to lie in a low-dimensional

subspace when the state space is large.

Recall that the gradient of the true value V0 is

av = E a log rt (At ISt), 0) Qt lA
= Eo Q (St, At)

t=1

where Q t(s, a) is the Q-factor of policy 0 at time t in state-action pair (s, a). If we use,

instead of the Q-factors Qo(s, a), the functions (Qt - Zt) in the gradient expression,

we obtain an estimator of the value gradient with a bias equal to

This bias can be zero if the functions Zt are cho(St, Atproperly; for example if for

This bias can be zero if the flnctions Zt are chosen properly; for example if for
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t = 1,...,T, there holds

Eo [ log ET (A t|St, )]E 0 0 Zt(St, At) =0.

Intuitively, actor-critic methods (e.g. [40]) require that the value function approxi-

mation is tailored to the policy parametrization so that there is no bias introduced

in the gradient when using the functions (Qt - Zt), instead of the true Q-factors

Qt in the gradient formula. However, since the generative MDP model is unknown,

it is usually not possible to guarantee that approximated Q-factors do not bias the

gradient.

By comparison, we suggest to use as a gradient estimator

E 0 7r t(at St,0) logt QtQ(St,at) S1,

[( )Btl
+TE, •  a, log ir,(A, S1, 0) + a log 7rt(At ISt, 8) Bt

t=1

This estimator is unbiased even if the Q-factors are replaced with an erroneous guess,

thanks to the Bellmnan error terms. Provided that the size n of the training set is not

too large (which is the regime of interest in this chapter), the Bellman error term can

be computed in practice.

4.6 Conclusion

4.6.1 Key findings

In this chapter, we characterized minimum variance estimators in a general class

of unconstrained and constrained estimators of the policy value and policy value

gradient. Our main findings are:

* Even though our optimal estimators are characterized in terms of the unknown

Q-factors, wrong guesses for some unknown characteristics of the system still

correspond to estimators in our class, which are unbiased, unlike many methods
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in reinforcement learning whose unbiasedness relies on conditions that cannot

be verified in practice. Our estimators bear resemblance with some classic

approaches from reinforcement learning, but a key feature of our estimators

that guarantees their unbiasedness is the presence of an emtpirical Bellman error

term in the expressions (4.4.3) and (4.4.6). Since our work is precisely motivated

by applications with a small number of observations, the computations of the

Bellman error term is not time-consuming.

* Our value estimators with low variance hinge on the estimation of the advan-

tages of the state-action pairs, not their Q-factors. In some applications, it may

be possible to exploit this difference to our advantage.

* When there are few observed trajectories in the training set compared to the

cardinality of the state space, it is better (in the sense that we obtain lower

variance estimators) to estimate more accurately approximated (regularized)

Q-factors rather to estimate loosely the full look-up table for the Q-factors, as

we illustrated numerically in Subsection 4.4.4.

4.6.2 Discussion of the motivating examples

Now we comment briefly on how this chapter's results could be applied to the two

motivating examples described in the introduction.

Catalog mailing problem

The MDP model for the catalog mailing problem that was mentioned in the intro-

duction comprises approximately 500 states with two actions per state (namely mail

a catalog or not). On the other hand, some catalog mailing companies observe the

behavior of mnore than 100,000 customers over time. This suggests that the catalog

mailing problenm is rich in observations compared to the size of the underlying MDP

(provided that attribution bias does plague the study in [86]).

However, if the samIpling policy explores too little, that is if the selection proba-

bility of an action a in some state s is small, it is possible that there are only a few
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observed trajectories such that action a has been selected in state s, despite a large

training set.

Besides, even though the numerical analysis of the bias and variance of value

estimator of the catalog mailing problem in [44] suggests that the available data

allows for reasonably accurate estimate of the value function, the use of empirical

Q-factors might not yield an accurate estimate of the advantages, which are critical

to obtain a good value estimate. The use of method focused on advantages [7, 32, 8]

or the use of the constrained estimators ,cO or VC,1 of Subsection 4.4.2 with an

approximation architecture for the Q-factors that will capture well the advantages

could potentially improve on the value estimates obtained by previous approaches to

the catalog mailing problem.

STAR*D clinical trial

Unlike the catalog mailing application, inulti-period randomized clinical studies tend

to lack observations compared to the underlying MDP's dimensionality. Nonetheless,

medical experts have some good insights about the features of patients' health status

that are relevant for depression. Consequently, the constrained estimator approach

of Subsection 4.4.2 is well suited to the analysis of the STAR*D clinical trial.

In the STAR,*D trial, only 1,500 patients stayed in the study after the first phase.

At each patient's visit there are tens of recor<ded variables (discrete or continuous).

In addition, since the patient's history is presumably important, the state definition

should encode the past history over the two or three periods. As a result, an MDP

model might require a very large number of states, at least a few thousands. Notwith-

standing, psychiatrists think that the effectiveness of a depression treatment could be

well-approximated by only 20 features [50]. Hence, the algorithms "Q-learning control

variate" and "TD(1) control variate", proposed in Subsection 4.4.3, would estimate

only 40 weights (one for each of the 20 features and for each of the 2 periods) with

1,500 trajectories - a ratio that seems within reason to obtain meaningful estimates.
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4.6.3 Concluding remarks

In situations where it is difficult or costly to collect data, as in many marketing surveys

or clinical trials, using estimators with minimum training set variance, instead of naive

estimators, can make the difference between a meaningful and an irrelevant estimate.

We expect the results of this chapter to be most relevant in these situations.

Finally, this chapter (lid not focus on the search of good policies using a training

set of observed trajectories. Nonetheless, the potential benefits of using the better

estimators exposed in this chapter in policy search is a promising direction of inves-

tigation t;o estimate policies with high true value. More precisely, we could estimate

a p)olicy given a training set by solving

sup WV*.
OEO

If 0 is a policy maximizing 7o *, it should be a good candidate to have a high true

value Vb, although this chapter (lid not investigate this question.
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Chapter 5

Concluding remarks

In this thesis, we investigate three important questions about the control of MDPs

when the underlying MDP model is unknown or uncertain.

In the first part of this thesis, we draw a comprehensive picture of the com-

putational complexity of different formulations for the control of uncertain MDPs.

Specifically, we account for the model uncertainty with three approaches: the ex-

pected utility, the worst-case model, and the maximum regret approach; in addition

we consider different objective functions and types of uncertainty. We show that

most formulations are plagued by the curse of uncertainty: out of the sixty analyzed

problems, forty-four are at least NP-hard. Considering our complexity assessment,

the worst-case model formulation with state-rectangular uncertainty seems attractive

for its computational "tractability" and its hard performance guarantees.

In the second part, we motivate and define the notion of Markovia.n dynamically

consistent convex risk measure, and we show that finding a risk-minimizing policy

is equivalent to solving a zero-sum Markov game. Thus, our notion of Markovian

risk allows to deal efficiently with sequential decision problems with large or even

infinite time horizon. Our perspective not only guarantees that the robust control of

MDPs proposed in the literature is sound from a decision-theoretic perspective, but

it also suggests to mitigate the conservativeness of the worst-case robust control of

uncertaiin. MDPs by adding a penalty to "unlikely" parameters in a principled fashion.

An interesting direction for further investigation is to suggest penalty functions that
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are both meaningful to decision makers and well-motivated statistically.

Finally, we take a different perspective in the last chapter. Instead of separating

model estimation and decision making, we exploit system's observations to estimate

directly the value (resp. the value gradient) of policies on an unknown MDP. We define

a broad class of unbiased estimators of the value (resp. the value gradient) and identify

an estimator in this class with the lowest training set variance. Such an optimal

estimator is characterized in terms of unknown characteristics of the system, which we

need to estimate in order to use our theoretical characterization. We discuss different

approaches to do so and we compare numerically the resulting algorithms with usual

approaches from the literature. In the numerous applications where there a few

observations compared to the MDP size, our constrained estimators outperform the

other algorithms by reducing substantially the estimation variance with regularized

estimates of Q-factors, while being unbiased.

A major research effort on MDPs is to cope with the curse of dimensionality,

which plagues many engineering applications. This thesis suggests another research

direction focused on the curse of uncertainty, which is even more debilitating than

the curse of dimensionality as we showed in Chapter 2. We believe that MDPs could

have more impact, notably in social and medical sciences, if there were data-driven

approaches to MDP control that would exploit efficiently the available information

(typically in the form of observed system trajectories), rather than rely exclusively on

models. An interesting prospect for future research is to investigate practical ways to

exploit both structural and observational information in order to recommend better

policies for practical applications.
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