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Abstract

An important goal in genomic research is the reconstruction of the complete picture
of temporal interactions among all genes, but this inference problem is not tractable
because of the large number of genes, the small number of experimental observations
for each gene, and the complexity of biological networks. We focus instead on the
B cell receptor (BCR) signaling pathway, which narrows the inference problem and
provides a clinical application, as B cell chronic lymphocytic leukemia (B-CLL) is
believed to be related to BCR response. In this work, we infer population-dependent
gene networks of temporal interaction within the BCR signaling pathway. We de-
velop simple statistical models that capture the temporal behavior of differentially
expressed genes and then estimate the parameters in an Expectation-Maximization
framework, resulting in clusters with a biological interpretation for each subject pop-
ulation. Using the cluster labels to define a small number of modes of interaction
and imposing sparsity constraints to effectively limit the number of genes influencing
each target gene makes the ill-posed problem of network inference tractable. For both
the clustering and the inference of the predictive models, we have statistical results
that show that we successfully capture the temporal structure of and the interactions
between the genes relevant to the BCR. signaling pathway. We have confirmatory
results from a biological standpoint, in which genes that we have identified as playing
key roles in the networks have already been shown in previous work to be relevant to
BCR. stimulation, but we also have results that guide future experiments in the study
of other related genes, in order to further the long term goal of a full understanding
of how and why B-CLL cells behave abnormally.
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Chapter 1

Introduction

One of the fundamental problems in biology is understanding genomic function. While

advances in experimental technology have made it possible to monitor the expression

levels of tens of thousands of genes in parallel, interpretation of data on this scale

requires sophisticated computational methods in order to gain insight into the inner

workings of cells. Ultimately, the goal is a complete picture of the temporal interac-

tions among all genes, but this is an inference problem that is not tractable because

of the large number of genes, the small number of experimental observations for each

gene, and the complexity of biological networks. We focus instead on the network of

temporal interactions in a single signaling pathway which is initiated by stimulation

of the B cell receptor (BCR). Not only does this narrow the inference problem, but

it also has a clinical application, as B cell chronic lymphocytic leukemia (B-CLL) is

believed to be related to BCR response.

B-CLL is the most prevalent leukemia affecting the aging Caucasian population.

Not only is B-CLL currently incurable, but patients suffering from B-CLL often fol-

low divergent clinical courses, with some patients living decades after diagnosis while

others decline and die relatively rapidly, despite chemotherapy [16]. It is thus difficult

to justify an aggressive treatment regimen early in the disease because it is not nec-

essary for the indolent form and is not successful for the aggressive one. In order to

do accurate diagnosis and eventually, targeted treatments, the goal is to understand

as much about the underlying disease process as possible. In terms of recent B-CLL



research, many genomic studies focus on gene-specific changes that are related to

prognosis, as in [13, 17, 19, 24], but a global picture of how and why the differences

in cellular behavior occur does not exist. The key to distinctive B-CLL behavior

appears to relate to the differential ability of the B cell receptor (BCR.) to respond to

stimulus [67]. Therefore, in this work, we infer population-dependent gene networks

of temporal interaction within the BCR signaling pathway.

An important question is how to acquire the data used for model inference. Ideally,

we would measure the levels of expression of proteins and their physical interactions

in the cell, but there is currently no systematic way to directly measure protein

expression levels or biochemical activity of gene products. Expression patterns of the

corresponding mnRNA sequence, however, provide an indirect measure [9], and though

they contain a large amount of noise [39], DNA microarrays measure the transcripts

of tens of thousands of genes simultaneously. Although the time scale of cellular

reactions is on the order of seconds to minutes, acquisition of microarray data at

that rate is not feasible because time series experiments require multiple arrays and

large quantities of biological material. Based upon a pilot study [78], four time points

(60, 90, 210 and 390 minutes) appear to capture the vast majority of the trends in

temporal expression. While it is possible that important events in regulating the

signaling pathway are missed because of restricting analysis to these time points, this

is a necessary practical choice. Another practical choice was made in the number

of subjects to include in the study, so in addition to 6 healthy subjects, 11 patients

were selected on the basis of B-CLL prognosis and response of the cells to BCR.

stimulation. The entire data set, shown in Figure 1-1, is comprised of differential

expression measurements for 54,613 genes, 4 time points, and 17 patients.

The scale of this data set and microarray data in general raises new challenges

and new opportunities. Where it was previously possible to analyze the experimental

results virtually by hand, microarrays provide an overwhelming amount of informa-

tion. Keeping in mind the overall goal of interaction networks, we first identify and

classify genes that are differentially expressed under BCR stimulation. Measuring

stimulated expression with respect to a control distinguishes the genes affected by



Figure 1-1: Log ratios of stimulated to unstimulated expression data. Each row

of the image corresponds to a given gene (N = 54,613). There are four columns,

corresponding to time points, which each include data from the 17 subjects.
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the BCR. paathway from those that are expressed in the cell generally, and BCR stim-

ulation essentially "resets the clock" on the cells, beginning the cascade of reactions in

the BCR. signaling pathway in a synchronized way. Because B-CLL is believed to be

related to genetic differences in BCR. signal competence, having subjects from healthy

and B-CLL populations allows us to combine subject information into cluster label-

ings that are specific to the three subpopulations. Data from different patients and

different time points are generally treated simply as more experimental conditions,

so our approach to clustering temporal expression profiles is unique.

We develop simple statistical models that capture the temporal behavior seen in

the pilot study, and then estimate the parameters in an Expectation-Maximization

framework, resulting in clusters with a biological interpretation. We model genes

that peak at localized time points, i.e. those that have large positive deflections at

tl,t ,t3, or0 t4. Those that are not differentially expressed under BCR stimulation

in that way are classified as the "background" genes. In Figure 1-2, we reorder the

genes for each subject group according to the cluster labels and then, within a cluster,

according to the maximum a posteriori assignment value (i.e. how well the gene fits

the cluster). Visual structure is evident, as high values in yellow or red start at the top

left (first wave, t1) and move down the diagonal to the bottom right (fourth wave,

t 4). Because individual validation experiments are simply not practical for 50,000

genes and would not be generalizable to multiple subjects or different experimental

conditions, we use other measures to determine the success of the clustering, such as

significance, robustness to noise and initialization, and quantification of how well the

data is predicted by the models.

For the inference of temporal interaction networks, there are many times more

samples (genes) than there are observations (time points and subjects), even given

the small subset of genes identified as relevant to BCR. stimulation by the clustering

procedure. Therefore, modeling interactions between every possible pair of genes is

not possible. For example, linear models would require inference of N2 T2 parameters

(where N is the number of genes and T the number of time points) from N x T x P

data points (where P is the number of patients). Because we only have 5 or 6 subjects



Aggressive

Figure 1-2: Log ratios of stimulated to unstimulated expression data, reordered ac-

cording to wave clustering results. Only the 500 genes for each subject group with

the highest a posteriori values for cluster membership are included.
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per group, this inference problem is severely ill-posed. Thus we use the cluster labels,

which have a consistent biological interpretation, to define a small number of modes of

interaction between the genes. We also impose sparsity constraints which effectively

limit the number of genes influencing each target gene. Both of these choices are

made in order to make inference tractable, but they are also supported biologically.

In order to represent the dynamic networks of temporal interaction statically, we

show in Figure 1-3 the progression through waves of expression, which is related to

time. Though a single node still represents the expression profile over 4 time points

for that gene, we use the cluster labels of the genes, which correspond to the time

point at which they peak, to show which genes and which interactions dominate at a

given time. From these figures, we make two observations about the networks, which

are confirmed quantitatively in Chapter 5. While sparsity constraints imposed during

inference of models of interaction limited the number of incoming edges to any one

gene, the number of outgoing edges was not constrained. The networks, however,

have a scale-free structure, where a small number of genes have a very large number

of outgoing edges. This is consistent with what has been found in protein interaction

networks [8], where a small number of proteins serve as hubs for very large numbers

of interactions and the others participate in very few interactions. Of the 15 genes

we identify as hubs in the three networks, EGR1, NR4A1, and ZFP36 are already

known to be expressed after BCR stimulation [64, 52]. Those three genes, in addition

to the hubs BTG2, CXXC5, and NR4A3, are transcription factors [51]. It confirms

the expectation that transcription factors would be expected to act as hubs in the

network. The second observation is that "red" edges (those between adjacent waves)

appear to dominate the network, which is consistent with the assumption that genes

are most likely to affect genes in the immediately following wave, even though this

was also not an explicit constraint.

In addition to visualizing the networks, we perform analysis of network structure,

leave-one-out cross validation, and tests of robustness and statistical significance.

These show that the modeling choices we have made are not arbitrary but successfully

capture the relationships between genes. An obvious next step after the networks have
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Figure 1-3: In the leftmost column, wave 2 genes are highlighted in yellow. They are

influenced by wave 1 genes only. These connections are shown in red. In the center

column, wave 3 genes are highlighted, and inputs that are direct (those from wave 2,

which is only one time step removed) are shown in red, while inputs that are from

wave 1 to wave 3 are shown in blue. Finally, in the rightmost column, wave 4 genes

are highlighted, with direct connections from wave 3 genes in red, inputs from wave

2 in blue, and inputs from wave 1 in green.



been inferred and validated mathematically is testing the predictions biologically.

One way to do this is to manipulate the expression levels of a single gene, either by

silencing or overexpression, in an intervention experiment. This is the only way to

distinguish between relationships of causality versus correlation in the local regions of

the network. Because intervention experiments are expensive and time-consuming to

perform, particularly for time series acquisitions, much thought must go into selecting

the target gene. It should peak early in the BCR activation response, so that it will

have downstream effects in the cascade of reactions that can be measured in the time

course of the experiment. It also should be expected to influence many other genes, so

model predictions can be compared to actual measurements. Identification of genes

with these two properties are precisely what wave cluster labeling and the inference

of the predictive models provide. First wave genes are, by definition, those that peak

early in the response. By propagating the effects of a change in a first wave gene to

all the remaining genes in the network via direct and indirect connections, we identify

those genes that appear to play important roles. In Figure 1-4, we show an example of

this type of sensitivity analysis for all the first wave genes in the Aggressive network.

We see qualitatively that a few of the first wave genes have the most prominent

effects on the genes in the network. Over the three subject groups, four genes (FOS,

IER2, JUN, EGR1) identified as potential target genes were found previously to

be expressed by inducing early response genes with BCR, activation [52]. For the

Aggressive network, column i of Figure 1-4 corresponds to the probe set label for

DUSP1, which was selected for the first set of intervention experiments on the basis

of its expression profile and its role in cell cycle regulation [45] and apoptosis [53]. We

examine the consequences of silencing of DUSP1 using small interfering RNA after

BCR activation in a patient with the aggressive form of B-CLL. In the Aggressive

network, DUSPI is directly connected to 37 genes and indirectly connected to an

additional 136. This subnetwork is shown in Figure 1-5, where DUSP1 is white,

second wave genes are red, third wave genes are blue, and fourth wave genes are

green.



Wave 1

Wave 2

Wave 3

Wave 4

a b c d e f g h i j k I mn o p q r s t u v

Figure 1-4: For the Aggressive network, the effects of uniformly perturbing each of

the first wave genes on all other genes in the network over time. The leftmost column

corresponds to the wave label.
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Figure 1-5: DUSP1 subnetwork for the aggressive patient group. DUSP1 is white,

second wave genes are red, third wave genes are blue, and fourth wave genes are

green.



To evaluate the predictive ability of the network, we compute scores for each gene

at each time point based on whether the network is able to correctly predict the

direction of change (increase or decrease) from the control experiment to the DUSP1

silencing. For genes in the DUSP1 subnetwork, the model predictions are correct

nearly 70% of the time. Those genes that are unrelated to DUSP1 should, in theory,

have the same expression levels in both the silencing and the control experiments. Any

differences that are seen in the data would be due to noise, which the model should be

unable to predict. The direction of change for these genes is correctly predicted only

approximately 40% of the time. This strengthens the results with respect to those

genes that are related to DUSP1, as the model is uniquely able to predict changes

due to gene silencing. In summary, for both the clustering and the inference of the

predictive models, we have statistical results that show that we capture the temporal

structure of and the interactions between the genes relevant to the BCR signaling

pathway. We have confirmatory results from a biological standpoint, in which genes

that we have identified as playing key roles in the networks have already been shown in

previous work to be relevant to BCR. stimulation, but we also have results that guide

future experiments in the study of other related genes, in order to further the long

term goal of a full understanding of how and why B-CLL cells behave abnormally. In

this chapter, we have motivated the problem of inferring temporal gene interactions,

introduced our approach, and shown a few sample results. We now provide a roadmap

for the remainder of the thesis.

In Chapter 2, we begin with a basic overview of the background necessary to

understand the biological context of the work in this thesis. We briefly describe

how genes are expressed in the cell, and how these expression levels are measured

with microarray technology. We also include a short introduction to B-CLL and its

relationship to the BCR signaling pathway. Finally, we summarize the experimental

procedure used by Vallat et al. [78] to acquire the microarray data set, including the

selection of subjects from both healthy and B-CLL populations and the selection of

time points that capture the behavior of genes differentially expressed under BCR

stimulation.



In Chapter 3, we present a clustering technique that, is able to incorporate prior bi-

ological knowledge and multiple subjects in an Expectation-Maximization framework.

These results are compared to a na'ive approach in terms of statistical significance,

stability, and cluster structure. We show that a small number of representative tem-

poral expression profiles, corresponding to waves of expression that peak at each time

point, are able to successfully capture the underlying structure of the data. Addition-

ally, for our application, clustering serves as a first step in order to make predictive

modeling, as described in Chapter 5, tractable.

We then extend in Chapter 4 the EM formulation from Chapter 3 into a hierarchy

comprised of two layers: an underlying distribution of subjects, which each have an

underlying distribution of genes. This is analogous to a common challenge in microar-

ray data analysis, referred to as biclustering, where the genes and the experimental

conditions (in this case, healthy subjects and B-CLL patients) are simultaneously

clustered in order to identify subsets of genes that behave similarly under a subset of

the conditions. We apply the algorithm to a synthetic data set to show that it can,

in fact, identify clusters embedded in the data, and then to our actual data set to

evaluate the results of simultaneously clustering subjects and genes.

In Chapter 5, we model the interactions between the genes relevant to the BCR

signaling pathway by inferring disease-dependent temporal interaction networks. Be-

cause of the number of subjects that we have available, inferring a network of all

possible interactions is ill-posed. We therefore impose sparsity constraints that are

consistent with biological expectations. We take advantage of the results of the clus-

tering in Chapter 3 in order to infer networks from only those genes that were clustered

as waves of expression, meaning that we reduced the number of genes from more than

50,000 to 500 per subject group. We also use these cluster labels to limit the modes

of interaction possible between genes. Finally, we impose sparsity in terms of the

number of genes that can influence any one output gene. In addition to network

visualization, we provide quantitative analysis of statistical significance, robustness

to noise, and cross validation.

In Chapter 6, we interpret the results from Chapters 3 and 5 from a biological



standpoint and provide a way to use the networks to design future experiments.

We discuss how the structure of the networks corresponds to what is already believed

about networks of protein interaction, despite the fact that these were not constraints

that were imposed. We describe genes that play key roles in the network, and show

experimental results on the DUSP1 silencing experiment which confirms the ability

of our models to predict changes in genes in the DUSP1 subnetwork.

We summarize the work of the thesis in Chapter 7 and briefly discuss the broader

implications of combining machine learning and large-scale biological experiments to

better understand the inner workings of cells and disease processes.



Chapter 2

Biology

2.1 Background

In order to understand the clinical motivation of the work in this thesis, we provide

a brief introduction to the biological context of the data set and the disease. We

describe how microarrays measure gene expression levels and how gene expression

levels relate to cellular function. We also discuss what is known currently about B

cell chronic lymphocytic leukemia (B-CLL), the genomic differences between patient

subgroups, and the relationship to the B cell receptor (BCR.) signaling pathway.

2.1.1 Microarrays

With the advent of DNA microarray technology, the goal of a global understanding

of the inner workings of transcriptional regulatory networks is becoming feasible.

Instead of performing experiments on single genes, it is now possible to measure

expression levels from tens of thousands of genes in parallel. The large increase in

scale, however, raises new challenges and new opportunities. Where it was previously

possible to analyze the experimental results virtually by hand, microarrays provide

an overwhelming amount of information. The question is how to interpret the data

in a meaningful, principled, and useful way.

Treating microarray data as a large collection of traditional experiments that sim-



ply need to be processed in an automated way ignores one of the key advantages.

Global measurements allow us to search out patterns of expression and relationships

between genes. By combining confirmatory results, which simply show that microar-

ray analysis is consistent with previous biological experiments, and new results, we

begin to form a more complete picture of what is occurring in the cell. We dis-

cuss recent work in microarray analysis in the Background sections of Chapters 3, 4,

and 5, but first, a basic understanding of how gene expression works is necessary to

understand how microarrays are used to measure the behavior of the cell.

Central dogma of molecular biology

For a brief, oversimplified view of gene expression, we summarize the central dogma of

molecular biology [18]. DNA provides the genetic code for the cell, and transcription

is part of the method in which the genetic code is used to produce proteins. Proteins

have many important functions in the cell, such as catalyzing chemical reactions,

playing structural or mechanical roles, influencing immune response, and storing and

transporting various ligands. In transcription, a DNA sequence is copied to produce

a sequence of ribonucleotide bases that is referred to as messenger RNA (mRNA)

and carries genetic information to the ribosomes. The ribonucleotides are read by

translational machinery in sequences of triplets (codons) that specify amino acids,

which then make up the protein. Translation of mRNA to protein is followed by

folding, post-translational modification, and targeting.

While DNA microarrays enable measurement of the transcripts (or mRNA se-

quences) of every gene, we cannot measure protein expression levels or biochemical

activity of gene products. These are, generally, what are actually physically inter-

acting with one another and functioning in the cell. A comprehensive picture of the

transcriptional regulatory network would require direct measurements. There is, how-

ever, a sensible link between the expression pattern and function of the gene product

[9]. One reason we are able to infer chemical activity of the gene products is that

they may influence the transcription of other genes. Regulatory proteins are classi-

fied either as activators, which increase the rate of transcription, or repressors, which



decrease it. Also, assuming that cells behave efficiently, transcription of a DNA se-

quence occurs when the corresponding protein is necessary for the cell to function. As

more or less of the protein is needed, the amount of mRNA transcribed is adjusted as

well. Thus, for our purposes, we use mRNA expression levels as an indirect measure

of the behavior of the cell.

Measuring mRNA expression levels

For the data collected for this work, Affymetrix oligonucleotide arrays are used, but

other microarrays work along similar principles. We summarize the acquisition and

processing described by Lockhart et al.[46]. Arrays of thousands of discrete oligonu-

cleotide sequences are synthesized in situ on a slide. Each oligonucleotide relates

to a DNA sequence specific to a particular gene in the human genome. These are

referred to as probes because they serve to probe, or interrogate, the composition of

the population of RNA sequences.

The arrays contain collections of pairs of probes for each of the RNAs to be mon-

itored. Each probe pair consists of a short sequence that is perfectly complementary

(referred to as a perfect match, or PM probe) to a particular subsequence, and a

corresponding sequence that is identical except for a single base difference in a cen-

tral position. The mismatch (MM) probe of each pair serves as an internal control

for hybridization specificity. The analysis of PM/MM pairs allows low-intensity hy-

bridization patterns from rare RNAs to be sensitively and accurately recognized in

the presence of cross-hybridization signals. The target RNA population, which is

comprised of the samples we want to measure, is prepared by incorporating fluores-

cently labeled ribonucleotides in an in vitro transcription reaction and then randomly

fragmenting the RNA to an average size of 50 to 100 bases. After the samples are

hybridized to arrays, fluorescence imaging of the arrays is accomplished with a spe-

cially designed scanning confocal microscope. The resulting images are processed to

compute expression levels based on the amount of fluorescence at each grid cell in the

array.



2.1.2 B-CLL

CLL represents 30% of adult leukemias, with the median survival varying from 2.5 to

14 years depending on the clinical stage. This form of leukemia, despite advances in

treatment, is still incurable. It is characterized by the accumulation of CD5+ mono-

clonal B lymphocytes of mature cytological aspect, but the mechanism of the disease

remains unknown. The mutational status of the VH genes encoding for immunoglob-

ulin (Ig), constitutive of the B cell receptor (see Section 2.1.3), differentiates mutated

(M-CLL) or unmutated CLL (UM-CLL) and is the major prognosis factor of this

leukemia. There are two types of CLL: one with a better outcome, in which mutated

VH genes are expressed, and another with a poor outcome, in which unmutated VH

genes are expressed [20, 54].

The recent technological advances in gene expression analysis by microarrays allow

the description of many molecular differences and similarities between malignant and

healthy cells. Those analyses revealed for all the subgroups of CLL a distinguishable

gene expression pattern for healthy B cells and other lymphoid malignancies, con-

firming that CLL is a unique entity with heterogeneous aspects [33]. Nevertheless,

some genes are differentially expressed with respect to the mutational status that dis-

criminates UM-CLL with a poor outcome [42, 59]. Among them, ZAP-70 seems to

enhance the signaling of the BCR in the more aggressive form of CLL cells [14, 13]. We

hypothesize that downstream abnormality of the BCR signaling pathway conditions

a temporal genetic program specific for aggressive leukemia after BCR stimulation.

The inference of temporal transcriptional networks should provide insight into the

genetic program used by these different categories of cells.

2.1.3 BCR stimulation

The key to distinctive B-CLL behavior likely relates to the differential ability of the

B cell receptor (BCR) to respond to stimulus. Analysis of signal competence in vitro

reveals that unmutated CLL generally continues to respond, whereas mutated CLL is

anergized [67]. Therefore, in order to better understand the B-CLL disease process,



we investigate the B cell receptor and the reactions that comprise the BCR signaling

pathway.

B cells are lymphocytes that play a large role in the humoral immune response.

The human body makes millions of different types of B cells each day, and each type

has a unique receptor protein referred to as the B cell receptor (BCR) on its mem-

brane that will bind to one particular antigen. The BCR on mature B cells consists of

an antigen binding subunit, surface immunoglobulin, and a signaling subunit. Cross-

linking (which we refer to more generally here as stimulation) of the BCR initiates

a tyrosine kinase cascade. During this process, positive and negative feedback mod-

ulates the signal. Activators or repressors, which are mainly transcription factors,

arrive in the nucleus, and the output is the transcriptional program that defines the

cellular behavior. Regulation of the BCR signaling pathway determines whether BCR

engagement leads to activation, anergy or cell death by apoptosis [30, 50, 11], so the

goal is to understand the population-specific core transcriptional programs.

From an experimental standpoint, BCR stimulation provides two important ad-

vantages over most of the other microarray data that is collected. The first is that by

collecting data from stimulated and unstimulated samples simultaneously, we mea-

sure differential expression relative to a control. This should, at least to the extent

possible, distinguish between those genes that are part of the BCR pathway and those

that are expressed in the cell generally. It allows us to narrow our focus, and because

it is the BCR pathway that is expected to be most relevant to B-CLL, that focus will

be on the most important genes.

The second is that most gene expression data is collected at steady state, and

interaction networks that are inferred represent dynamic systems. Steady state be-

havior constrains the dynamic behavior of the network, but does not determine it.

Therefore, building a dynamic model from steady state data is a severely ill-posed

problem [25]. Because cells in the sample are at various stages of the cell cycle, it is

relatively easy to determine which genes are co-expressed, but not which genes have

temporal influence over one another. In contrast, with BCR stimulation, one can

essentially "reset the clock" on the cells, beginning the cascade of reactions in the



BCR signaling pathway in a synchronized way. Then, as data is collected at time

points following stimulation, we observe the patterns of transcription that occur.

2.2 Data collection

For the data set used in nearly all the analysis in this thesis, details of the experimen-

tal procedure are found in Vallat et al. [78]. These are complex and time consuming

experiments, but only a few points of particular importance to this work are presented

here. Peripheral blood was obtained from twelve previously untreated patients diag-

nosed with B-CLL, and six healthy blood donors. B cells were divided in two in

order to control for any effect of ex vivo handling of cells over the time period of the

experiment. One set was used as an unstimulated (US) control, and the other was

stimulated (S) by an antigen. The target cRNA was prepared in accordance with

the Affymetrix protocol and hybridized to the HG-HU133 plus2.0 microarray, which

contains 54,675 probe sets. Microarrays for the 18 subjects were analyzed. Data

were normalized with the invariant set method and the model based expression index

(MBEI) obtained by the pm-mm model using dChip software (dChip) [44].

We calculate differential expression by subtracting the unstimulated expression

level from stimulated expression level. For a clearer visualization, the log ratio of

stimulated to unstimulated is shown in Figure 2-1(a). Each row of the image corre-

sponds to a given gene. There are four columns, corresponding to time points, for

each of the 18 subjects. Neither the genes nor the subjects are in any particular or-

der, and it is difficult to see any kind of structure in the data. Most of the genes are

near zero, which means they are not differentially expressed under BCR stimulation.

For one patient, the expression at the third time point was uniformly higher than

the result of the data. In Figure 2-1(a), this is the bright yellow line marked with

an arrow. This was either a problem with the experiment or the processing, so this

outlier patient is removed from all further analysis. The new data set is displayed in

Figure 2-1(b).



(a) 18 subjects (b) 17 subjects, outlier removed

Figure 2-1: Log ratios of stimulated to unstimulated expression data. Each row of

the image corresponds to a given gene. There are four columns, corresponding to

time points, for each of the 18 subjects. Most of the genes are near zero (light green),

which means they are not differentially expressed under BCR stimulation.
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2.2.1 Patient selection

The role of BCR stimulation in apoptosis versus survival of CLL cells was evaluated

in 23 patients and compared to B cells from 9 healthy donors. For the detailed

microarray analysis, 12 patients were selected on the basis of their mutational status

(see Section 2.1.2) and on their response to BCR stimulation. The goal was to identify

patients who were mutated and unmutated, and also responders and non-responders.

For the analysis in the following four chapters, we use three patient subgroups,

which are assumed to have relatively homogeneous genetic backgrounds. These are

the six healthy subjects, five patients with the aggressive form of B-CLL, and six pa-

tients with the indolent form of B-CLL. The aggressive form generally corresponds to

UM-CLL and the indolent form to M-CLL, but the CLL patients can be subdivided

differently depending on mutational status, prognosis, or gene-specific differences. At

the basal level, without any stimulation, unsupervised clustering fails to discrimi-

nate between patient subgroups, but supervised clustering of Indolent and Aggressive

samples yields a set of genes do separate the two groups [42, 59].

2.2.2 Time point selection

Any gene expression profiling performed over time must first identify the critical

time points required for analysis. The goal is to best capture the trends in the data

while limiting the total number of chips being used. In a pilot study, CLL cells were

isolated and RNA extracted after BCR stimulation at nine time points (baseline,

20, 30, 60, 90, 150, 210, 390 min, and 24 hr). Three patients were selected on the

basis of their functional response to BCR stimulation: one low-responder, one median

responder and one high responder. Using a self-organizing map (SOM) [72], a type of

unsupervised mathematical cluster analysis, eight possible template patterns of gene

expression over time were selected. Based upon this analysis, four time points (60,

90, 210 and 390 minutes) were identified that appeared to capture the vast majority

of these trends. These time points were therefore selected for all subsequent analyses.

Even with only four time points examined and analysis of a relatively small number



of subjects, this experiment required analysis of 144 arrays. While it is possible that

important events in regulating BCR mediated signaling pathways are missed because

of restricting analysis to these time points, it is a necessary practical choice.



Chapter 3

Clustering

In general, clustering provides a method for analyzing the results of microarray ex-

periments, which are a substantial increase in experimental scale as compared to

previously available technology. While tens of thousands of measurements can now

be acquired simultaneously, the data is virtually useless until it can be summarized in

a meaningful way. Gene-based clustering groups together genes that are coexpressed

under various experimental conditions, and such coexpression is believed to indicate

cofunction and coregulation. Results of these clustering algorithms are characterized

by the existence of stable clusters, the shapes of the cluster expression profiles, and

the actual groupings of the genes.

The goal of clustering in this work is to identify and label genes that are differ-

entially expressed under BCR stimulation. From an experimental standpoint, BCR

stimulation of cells from multiple subject groups provides three important advantages

for clustering over much of the gene expression data that is collected. The first is

that we measure differential expression due to BCR stimulation relative to a control.

This should, at least to the extent possible, distinguish those genes affected by the

BCR pathway from those that are expressed in the cell generally. This focuses the

clustering problem to coexpression within the pathway. Second, BCR stimulation

essentially "resets the clock" on the cells, beginning the cascade of reactions in the

BCR signaling pathway in a synchronized way. Therefore, we cluster based on tem-

poral expression profiles instead of steady state response. Finally, because B-CLL is



believed to be related to genetic differences in BCR signal competence (see Section

2.1.3), having subjects from healthy and B-CLL populations allows us to combine

subject information into subpopulation-specific cluster labelings. Data from different

patients and different time points are generally treated simply as more experimental

conditions, so our approach is unique.

Our clustering provides the shape of the cluster profiles, which provides insight

into the structure of BCR response of the cell. We also obtain classifications for all

of the genes, which identifies those that appear to be relevant to BCR (and at what

time point they peak), those that are grouped together, and how the labelings change

depending on the subject group (see Section 6.5). For validation, there is no ground

truth of an exhaustive list of genes that are differentially active, nor which should be

clustered together, and for more than 50,000 genes, these individual experiments are

simply not practical and may not be generalizable to multiple subjects or different

experimental conditions. Thus we have to use other measures to determine the success

of the clustering, such as significance, robustness to noise and initialization, and

quantification of how well the data is predicted by the models.

Additionally, for our application, clustering serves as a first step in order to make

predictive modeling, as described in Chapter 5, tractable. This requires drastically

reducing the number of genes. There is no way to infer all relationships between

50,000 genes at 4 time points with only 17 patients. For linear models, this would

require inference of N2T 2 parameters from N x T x P data points. Even as N is

reduced by excluding genes not relevant to the BCR pathway ("background" genes),

allowing unconstrained interactions between all pairs of genes leads to a problem that

is still under-determined. Therefore, we use the cluster labels, which have a consistent

biological interpretation (as explained in Section 3.2.2) to define a small number of

modes of interaction between the genes. The details of this formulation are presented

in Section 5.2.



3.1 Background

Jiang et al. [39] provide a review of cluster analysis of gene expression data, present-

ing specific challenges pertinent to categories of clustering and several representative

approaches, as well as various methods to assess the quality and reliability of clus-

tering results. We discuss these challenges and how they relate to our application.

The first challenge is that prior knowledge of the structure of the data is usually not

available because cluster analysis is often the first step in mining the data. In this

work, we actually have some insight into the shapes of the cluster profiles because of

what is known about BCR activation, but we also use an approach that requires no

prior knowledge as a basis for comparison of the results. While our method may not

be as useful for a problem where nothing of the structure of the data is known, it

does allow us to obtain more consistent, meaningful clusters than the naive approach.

Second, because of the nature of microarray experiments, gene expression data often

contains a large amount of noise. This is a challenge that we cannot avoid and is

the reason that we present stability and significance results to show that the clusters

that are identified are more than random effects. Third, clusters may overlap one an-

other as genes may play more than one role under different conditions or for different

patients. For example, a set of genes may be involved in apoptosis and another set

in cell division. Some of these genes may be involved in both. We address this with

BCR stimulation, time series acquisitions, and clustering of each subject group inde-

pendently. Instead of having an expression profile which incorporates every possible

condition, we take advantage of the fact that we have labels on subject and stimula-

tion versus control in order to cluster based on disease-specific differential expression

profiles over time. Finally, it is difficult to present the results in a way that makes it

possible to interpret how clusters compare to one another and how genes within the

cluster are related. Graphical representations are suggested, which we have addressed

in several ways: cluster profiles, reordering of the original data, and affinity matrices

showing how often genes are clustered together. We also provide quantitative results

to confirm what is evident visually.



As would be expected, Jiang et al. found no single best algorithm which is the

winner in every aspect. There are also no existing standard validity metrics. In fact,

the performance of different clustering algorithms and different validation approaches

is strongly dependent on both data distribution and application requirements. There-

fore, as we made decisions in the design of the clustering algorithm, we investigated

several approaches. Clustering techniques such as K-means [23], nonnegative matrix

factorization [10], and factor analysis [84] have all been used as first steps in creating

networks of genes. Sturn et al. [70] implement software tools for standard, general

clustering methods such as hierarchical clustering, K-means, self-organizing maps,

principal component analysis, and support vector machines. What none of these

methods provide, often because they are the first steps in data mining, is a way to ef-

fectively incorporate prior knowledge about the expression profiles. However, Pan et

al. [55] use an Expectation-Maximization algorithm to identify differentially expressed

genes for model-based clustering. With a similar EM approach, we are able to design

models according to the previous biological experiments in a flexible framework.

The issue of how to best model time series data, as opposed to observations

under various experimental conditions, is still not addressed. Where time series data

is available, it is often comprised of very few data points, especially compared to

the number of genes. Time series experiments require multiple arrays and large

quantities of biological material, so although the time scale of cellular reactions is

on the order of seconds to minutes, acquisition of microarray data at that rate is

not feasible. Bar-Joseph et al. [2] present a unified model that uses statistical spline

estimation to represent gene time-series expression profiles as continuous curves. This

algorithm successfully models cyclical patterns of dynamic genetic behavior for a

relatively small number of genes, with a relatively high sampling rate (between 7

and 20 minutes between time points). We have only 4 time points, and even when

only two spline segments are used to estimate the curve, this algorithm requires the

estimation of five parameters for each gene in order to align the profiles, in addition

to the spline parameters for the class [26]. This would overfit our data set. Also,

our sampling rate is on the order of hours, and the reactions are triggered by BCR



stimulation, so we do not expect to see the cell-cycle related patterns that appear for

the steady-state acquisitions in yeast. Fleury et al. [27] implement a robust method

for detecting evolutionary trends of expression of mouse retinal genes acquired at

different points over the lifetimes of a population of mice. The temporal structure in

that analysis is relatively simplistic (i.e. monotonic increase in expression), whereas

the temporal structure we expect to encounter in the BCR pathway will be more

complex. Additionally, the time-scale of mouse development is on the order of months,

while the cascade of reaction in the BCR pathway is at a much finer scale. The most

closely-related approach to the one in this work addresses the problem of short time

series data by assigning genes to a pre-defined set of model profiles that capture

the potential distinct patterns that can be expected from the experiment [26]. It

does not address several key issues that we face: combining multiple subjects from

a group, incorporating priors on cluster profile shapes, and the classification of all

genes, instead of only those from statistically significant clusters.

3.2 Modeling expression profiles

We implement model-based clustering in two ways. The first is a general Expectation-

Maximization based clustering algorithm, not designed to take advantage of any of the

expected structure of the data. Wave clustering, however, is influenced by previous

work in biology, which provides a set of shapes for the expression profiles for relevant

genes. Both methods are set up similarly in an EM framework, where the primary

difference is in how the distributions at each time point are modeled. Section A.2 of

Appendix A provides very simple example of how the EM algorithm can be used for

clustering.

Genes are clustered on the basis of their differential expression profiles, which

are computed by subtracting the unstimulated expression levels from the stimulated

expression levels at each of the four time points. The data set X (containing N

genes, P patients, and T time points) is assumed to come from a finite mixture of

probability distributions, with each component corresponding to a different cluster.



The goal is to estimate the cluster memberships and the associated parameters E,

which maximize the likelihood:

M

L(8) = Ep(X; m, O)p(mlO), (3.1)
m=1

6 represents the set of parameters associated with all M clusters, and rm specifies

which parameters in O are used for a particular cluster. The mixture proportions for

each cluster are p(mlO). For a single subject, the conditional probability for a given

gene ,, in a given class is defined as:

T

p(an m, o) = P(Xnt lm, E) (3.2)
t=1

The subscripts on x specify the gene n and the time point t. The product model im-

plies that the time points are independent, which is reasonable given the low sampling

rate. In order to combine data from different subjects within a relatively homogeneous

group, we assume a common labeling of the genes that incorporates the expression

profiles of each of the subjects in that group. This common labeling means that for

every gene, each patient p is considered to be an independent draw from the same

model type, which is reasonable because the disease-related genetic backgrounds of

the subjects are expected to be consistent within a group. Therefore, we compute

the conditional probability for each gene as:

PT

p( Im, 0) =I17 17 pp m ) (3.3)
p=1 t=1

In order to estimate the parameters in O, we use the Expectation-Maximization

algorithm [22], which iterates between Expectation (E) steps and Maximization (M)

steps. In the E step, cluster memberships are conditionally estimated from the data

with the current estimate of O. In the M step, model parameters O are computed so as

to maximize the likelihood of complete data given the estimated cluster memberships.

When the EM algorithm converges, each gene is assigned to the cluster with the

maximum a posteriori probability. For details of the EM derivation, see Appendix

A.



3.2.1 Gaussian clustering

We consider a naive approach to clustering in order to investigate the underlying

structure of the data and to have a basis for comparison with the wave clustering.

We model the clusters as 4D Gaussian distributions, with each cluster having an

associated mean p and variance a2 in each of the dimensions, which here correspond to

time points. To compute the conditional probability assuming Gaussian distributions,

we define:

P(xpt m, 8)= 1 exp -(Zxpt - /mt) 2 ) (3.4)2r2t e2am2

where m specifies which of the parameters in O to use for that particular cluster.

EM iterations

On each iteration k, the current values of all the cluster parameters are Ok. For the

Expectation step, the posterior probability of a cluster, given a gene and the current

cluster parameters, is:

P(mP(n, ek)= )P((3.5)
=-m'=l P(Zm, Ek)P7oP(mlok)

= Wnm (3.6)

These are weights, Wnm, which are used in the Maximization step. Given these weights

at iteration k, we derive a closed form solution for the best estimate of the cluster

parameters for iteration k + 1. The derivation for a, simple example is in Appendix

A. Solving for mtit:

AImt =  EP 1 (3.7)
p=1  n=1 nm

This is equivalent to taking a weighted average of the data, based on cluster mem-

berships, to compute the cluster means. In a similar way, the variance for a cluster

is
2 Epl n=1 Wnm(Xnpt - t) (3.)

X=mt -N (3.8)
Ep= n=l Wnm



using the value for tmt just computed. Finally, the mixture proportions for each

cluster are:
N

P(mlEk) = N E Wm (3.9)
n=1

Initialization

Because the EM algorithm is only guaranteed to converge to a local maximum, the

result is sensitive to the initialization. As this method is intentionally as general

as possible, we initialize by randomly assigning the genes to M clusters. The initial

cluster parameters are the Maximum Likelihood estimates of the means and variances

given those assignments. The mixture proportions are set to 1

3.2.2 Wave clustering

From a biological standpoint, it has been conjectured that important genes (e.g.

transcription factors) will peak at localized time points [78]. As was explained in

Section 2.2.2, time series experiments were designed to show waves of expression. A

pilot study was done to determine the time points at which data should be collected

in order to capture the maximum amount of information while limiting the total

number of chips. Significant time templates of BCR stimulated effects identified four

time points: 60, 90, 210 and 390 min that appeared to capture the vast majority of

these trends.

We develop simple statistical models that capture such behavior, resulting in clus-

ters with a biological interpretation. Given the templates of the differential expression

profiles from the pilot study, we intend to model genes that peak at localized time

points, i.e. those that have large positive deflections at tl,t 2,t3, or t4. Those that are

not differentially expressed under BCR stimulation in that way are classified as the

"background" genes. The EM formulation is extremely flexible as to incorporating

different types of models (exponential distributions, gamma distributions, etc.) de-

pending on the actual structure of the data. It is also possible to model large negative

deflections as well as large positive deflections, as well as genes that peak at more



than one time point. These particular models were chosen based on the template

shapes in the previously discussed pilot study and work well for this particular data

set, but are not the only ones possible for this clustering method. It is also a simple

matter to add additional clusters or re-adjust the cluster definitions to incorporate

different numbers of time points.

This type of modeling provides a basis for constraining the predictive model in-

ference step (see Chapter 5). The cluster labels first define the subset of genes that

comprise the models. Because only those genes that are differentially expressed under

BCR stimulation are expected to be relevant to the BCR pathway, all background

genes are excluded from further analysis. Selection of the relevant subset is necessary

because inferring predictive models of more than 50,000 genes is not tractable. Addi-

tionally, it is impractical to allow every possible pair of genes to interact in a unique

way, so the cluster labels are used to compute common modes of interaction between

classes of genes.

We define 5 classes of genes. Classes 1 through 4 are composed of the genes that

are predominantly differentially expressed at the corresponding time point and will be

referred to as waves of transcription, e.g. wave 1 genes have high expression at the first

time point and relatively lower expression at the other three time points. Expression is

modeled as a one-sided Laplacian distribution at the time point corresponding to the

genes class label and as a two-sided Laplacian distribution elsewhere. Having heavier

tails than a Gaussian, these distributions better model the considerable variation we

see in genes that are differentially expressed under BCR stimulation.

As in the previous section, we assume the time points are independent, and for

every gene, each subject in a group provides an independent draw from the same gene

model. The probability for a given gene n in a given class is defined by:

PT

p( Im, e) = j p(xnt m, ) (3.10)
p=1 t=l

Depending on the class, the formulation of p(nptn m, -) changes. For waves 1 through

4, the "dominant" time point is defined as being strictly positive, which corresponds

to an increase in gene expression at that time point due to the initial stimulation.



When m (the class label) corresponds to t (the time point), the equations are:

p(xnptm, 6) = Am, exp (-Amnpt) for xpt > 0 (3.11)

p(xnptrm, 8) = 0 for xnt <_ 0 (3.12)

At the other time points, because we expect negative deflections or small positive

deflections, two-sided Laplacians with different positive and negative deflections are

ulsed:

p(xptlm, -) = A exp (--Amt+xnpt) for Znpt > 0 (3.13)

p(xnptlm, ) = - exp (At-xnt) for zpt < 0 (3.14)

The parameters for the distributions at the non-dominant time points are Amt+, which

are unique to each model and are expected to be larger (thus modeling smaller de-

fiections) than Am,, and At-. The parameters for the negative deflections, At-, are

shared across the four wave models. Because these parameters are shared, the nega-

tive deflections will be equally likely under each of the models and will not have an

impact on the assignment of a gene to a particular class. Given the expression profile

templates in the pilot study described previously and the fact that we select genes

that are associated with BCR stimulation on the basis of increased response, we focus

on positive deflections. This is a modeling choice, which for other applications could

be easily changed.

The final class is the background, which is composed of genes that are not differ-

entially activated with BCR stimulation and are modeled by a zero-mean Gaussian

distribution at each of the four time points.

P(znpt m, 8) - 1 -X___ (3.15)

We use the EM Algorithm again to estimate the parameters of the distributions and

the class memberships of each gene.



EM iterations

In exactly the same way as the Gaussian clustering method, the Expectation step is:

P( Ijm, ()k)P(mek)
P(m n k ) =(m ) (3.16)

= nm (3.17)

In the Maximization step, given these weights that were computed, we again have

closed form solutions for the parameter values. Beginning with the background class,

the variance at each time point is:

at = Z Z WnmXipt (3.18)

p=1 E n= 1 Wnm

The remainder of the parameters are for the wave classes. For Am., the peak time

point, when m = t:

Am* = (3.19)
p=1 ZnExnp>O Wnm

Instead of summing over all N genes, only those with xrPt > 0 are included. Currently,

we impose a hard constraint on Am,, which guarantees large positive deflections at

the cluster's peak time point. For the non-dominant time points, when m $ t:

Amt+ =1 EnExnpt>O WnmXnpt (3.20)Xmt+= p (3.20)
p=1 nlEXnl;t>O nm

For the shared parameter At-:

At M (3.21)

Zrm=l p=1l ZnEXnpt<O Wnm

The summations are over the four wave classes (from m = 1 to m = M - 1) and the

summation over the genes is for all xnpt < 0. The formula for the mixture proportions

is also the same as it was previously:
N

n=1

Because the mixture proportion of the background class is expected to be much larger

than that of the other classes, one could add a prior here. However, because of the

initialization (described in the following section), and the constraint on Am., we have

found that p(mlek) converges quickly without a prior, as is shown in Figure 3-1.
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Figure 3-1: Mixture proportion for the background class as the EM algorithm con-

verges

Initialization

Instead of randomly assigning initial class labels, we initialize the parameters based

on the types of genes we expect to see in each class. We compute the ML-estimates

of each Amt+ from all the genes at that particular time point.

NPAmt+ NP(3.23)
Z'n=1 Is(npt.

The Am. are proportionally smaller (about 0.01Amt+) because smaller values of A allow

for larger deflections, which will correspond to genes that peak at that time point.

At- is set initially equal to the Am, at that time point, in order to allow for large

negative deflections at the non-dominant time points. In Figure 3-2, we show the

probability distribution functions for this initialization for the healthy subjects. The

flatter the distribution (smaller A), the more likely large deflections. For the initial

mixture proportions:

p(mlOe) = e for m < M (3.24)

p(mIO) = 1 - (M - 1) x E for m = M, (3.25)

where e is the approximate fraction of genes in each wave class.
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Figure 3-2: Probability distribution functions for the background class and four wave

classes at each of the four time points, given the parameter initialization (healthy

subjects)
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Figure 3-3: Number of genes selected as a function of MAP value threshold

Threshold selection

After the EM algorithm converges, each gene is assigned to the class according to its

maximum a posterior (MAP) probability under the model. We choose to threshold

based on this MAP value in order to include the top 500 genes from each subject

group. There are several reasons for this. In order to compare results across groups,

we work with a consistent number of genes per group. It also allows us to further

pare down the number of genes for visualization and predictive model inference in a

principled way. In Figure 3-3, we see that by varying the threshold, the number of

genes that would be included changes. As it becomes more practical to work with a

larger number of genes (or if one were working with a different data set altogether),

the threshold can be adjusted.

3.3 Model comparison

We first evaluate the quality of the clustering result quantitatively. In this section,

we compare the number of parameters for the models, cluster labelings, shapes of the

cluster profiles, likelihood scores, statistical significance, and stability. The biological

^



interpretation of the results is presented in Chapter 6.

3.3.1 Numbers of parameters

For the Gaussian clustering, there are 2 x T parameters associated with each of the M

clusters: a mean and variance corresponding to each time point. In Figure 3-4(a), we

vary the number of clusters, M, from 1 to 20, and record the log likelihood score of the

clustering. The scores of the three subject groups are separated consistently. While

this would appear to show a difference between the groups, it is an effect of using

the same set of patients over the trials. A random re-grouping of the subjects, shown

Figure 3-4(b) yields the same type of separation. Also, the score for the Aggressive

group is higher than that of the other two groups, but this is because it has only

5 patients, as compared to 6 in each of the other two groups. After we normalize

over the number of patients, time points, and genes, it actually has the lowest score

in Figure 3-4(c). The only conclusion to be drawn from these figures is the trend

we see in how the score changes with increasing M. It converges quickly, and at

approximately M = 4 or M = 5, there is little improvement in the score. All the

further analysis of the Gaussian clustering will use M = 5, in which 40 parameters

are estimated.

By definition, the wave clustering has T parameters associated with the back-

ground class, as there is a. zero mean Gaussian distribution with an associated vari-

ance, at, at each time point. For each wave class, there is one corresponding Am.,

which represents the distribution of the positive values for the dominant time point,

and T - 1 Amt+ parameters, which represent the non-dominant time points. Addi-

tionally, there is a shared parameter across the wave classes for the negative values

at each time point, At_. There are thus T x (M + 1) parameters, or specifically 24

in this case. The probability distribution functions for the parameters after EM has

converged are shown in Figure 3-5. Despite the fact that M = 5 for both types of

clustering, 16 more parameters are estimated in the Gaussian clustering.
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Figure 3-5: Probability distribution functions for the background class and four wave

classes at each of the four time points, after the EM algorithm converges (healthy

subjects)



3.3.2 Cluster labels

The purpose of the clustering was to identify the subset of genes that are differentially

active and have common structure out of the original data, which is shown in Figure

3-6. In this section, we compare the structure of the clusters resulting from both the

Gaussian clustering and the wave clustering.

For the wave clustering, we threshold the MAP values of cluster assignments to

select 500 genes for each subject group, as was explained in Section 3.2.2. We reorder

the genes for each subject group according to the cluster labels and then, within a

cluster, according to the MAP values. There is visual structure evident in the data

in Figure 3-7, as high values in yellow or red start at the top left (first wave, t - 1)

and move down the diagonal to the bottom right (fourth wave, t4 ').

Because the Gaussian clusters have no a priori interpretation, an analogous vi-

sualization would include all 50,000 genes. Because such a large percentage of these

genes are background, and in order to compare the results in a consistent way, we use

the same 500 genes selected by the wave clustering, but instead reorder them by the

Gaussian cluster labels and MAP values. This is shown in Figure "3-8, where for each

of the groups, the 500 relevant genes are separated into either two or three clusters. It

does not appear that the clusters correspond in any way to the patterns of expression

we see for the wave clustering.

We show quantitatively in Table 3.1 how the cluster labels differ. We compare the

cluster memberships for the Aggressive group given results from the wave clustering

and from a random trial of Gaussian clustering. Background genes comprise three

entire Gaussian clusters and a large proportion of the other two remaining clusters.

Nearly all wave 1 and wave 2 genes were in cluster 1, but the other two waves were

split between clusters 1 and 2. This result is similar to what was seen for other trials

and other subject groups. Additionally, larger values of M subdivided the background

class further, but did not change the classification of non-background genes.



Figure 3-6: Log ratios of stimulated to unstimulated expression data. Each row of

the image corresponds to a given gene. There are four columns, corresponding to

time points, for each of the 17 subjects.
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Figure 3-7: Log ratios of stimulated to unstimulated expression data, reordered ac-

cording to wave clustering results. Only the 500 genes with the highest a posteriori

values for cluster membership are included.
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Figure 3-8: Log ratios of stimulated to unstimulated expression data, reordered ac-

cording to Gaussian clustering results. Only the 500 genes selected by the wave

clustering are shown.
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Table 3.1: Comparison of labels for Gaussian clusters and wave clusters

Background

Wave 1

Wave 2

Wave 3

Wave 4

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

1056 2374 3742 13876 33065

16 1 0 0 0

37 3 0 0 0

194 48 0 0 0

106 95 0 0 0

3.3.3 Cluster profiles

For the Gaussian clustering, we show in Figure 3-9 several sample results for each

subject group because of the effects of the random initialization. The mixture pro-

portion for each of the clusters is included in the legend. There are generally two to

three clusters that are nearly zero-mean that comprise the vast majority of the genes,

which would correspond largely to the background class in the wave clustering (see

Table 3.1). The remaining clusters are a smaller proportion of the genes but have

larger differential expression. The cluster means for the non-background classes are

relatively unstable and though the majority of the background genes are grouped with

one another, many are included in the other clusters as well, which is why the means

have relatively small magnitude. Standard deviation error bars are not included in

the figure because they are, at each time point, several times as large as the mean.

We show this with the bar plots in Figure 3-11(a), where we compute a ratio of the

standard deviation at each time point to the maximum absolute value of each cluster

mean. We use the maximum value instead of the actual mean value at, each time

point because it better represents the scale of the cluster mean. Fobr example, at an

off-peak time point (usually tl) the mean value may be very small and that makes

the standard deviation ratio very large, even though what is most, important is the

ratio at the cluster's peak time point.

We compute the cluster means and standard deviations for wave clustering as
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Figure 3-9: Cluster means for four random trials of Gaussian clustering (M=5) for

each subject group. Because the results greatly depend on the initialization, cluster

means are not consistent across trials.
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Figure 3-10: For wave clustering, the cluster means for each of the three subject

groups.

well, showing the four non-background classes in Figure 3-10. The means have larger

magnitude as compared to the Gaussian clustering because fewer of the background

genes are included in these clusters. The wave clusters have consistent shapes for each

subject group, with comparatively smaller intra-cluster variance relative to the means

(see Figure 3-11(b)). For the background class, there is a very high ratio because the

means are essentially zero, and all genes that do not fit the wave models are assigned to

the background class. This includes genes that are not highly differentially expressed

at all and those genes that are not highly differentially expressed consistently across

subjects within a group. Forcing these two types of genes into a single cluster means

that this type of clustering does not effectively model these genes. However, because

the purpose of the background class is only to identify genes to be excluded from

further processing, it is not essential for them to well-represented by the cluster

parameters.

The standard deviation ratio results in Figure 3-11 are important because when

there is high variance relative to the mean, misclassification of genes is more likely. To

quantify the confidence in the cluster assignment, we show in Figure 3-12 histograms

of the MAP assignment values for the 500 selected genes under both clustering meth-
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Table 3.2: Log-likelihood scores

Wave clustering Gaussian clustering

Healthy -7.56e + 06 -6.59e + 06

Aggressive -6.83e + 06 -5.89e + 06

Indolent -7.40e + 06 -6.40e + 06

ods. The means are 0.9990, 0.9994, and 0.9993 for the wave clustering for each group,

and 0.9822, 0.9864, and 0.9733 for the Gaussian clustering. While these are all high

values, there is lower a posteriori probability for the Gaussian assignments.

3.3.4 Score comparisons

An obvious method to compare the performance of two EM-based clustering algo-

rithms is to compute the log likelihood scores, as that is the score that the iterative

EM algorithm is maximizing. This is the log of the likelihood of the data as a function

of the parameters of the model. In Table 3.2, for every subject group, the score for

the Gaussian clustering is superior to that of the wave clustering.

This result would imply that the Gaussian clustering does a better job modeling

the structure of the data. Though there are 16 more parameters estimated in the

Gaussian clustering for M = 5, this is not simply a case of a better fit because of

more parameters. From Figure 3-4(a), we see that even for M == 3, the scores are

still better when the number of parameters is the same for both clustering methods.

There are a few reasons for the difference in score. First, as explained in Section

3.3.3, background genes are not well modeled by the wave clustering. Because these

genes make up an extremely high percentage of the total and the score is an aggre-

gate value, it is greatly influenced by these genes. They could be better modeled if

we were to subdivide the background class further, which is exactly what happens

automatically in the Gaussian clustering, but that only adds unnecessary parameters

to the modeling. A more important consideration is that we only allow for four types
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of non-background genes, when there obviously would be some genes that would be

better represented by models that have high differential expression at multiple time

points. This is a limitation, but we make choices based on the pilot study to use the

smallest number of models (which is helpful for the predictive modeling) that capture

most of the structure in the data.

3.3.5 Significance results

One method for estimating the statistical significance of a clustering result is the

use of permutation statistics [56, 26]. Permutation methods for computing statistical

significance exploit the exchangeability in order to generate valid samples from the

null hypothesis. In our particular case, the null hypothesis states that the statistical

properties of our sample do not vary with time. Consequently, to generate samples

from this hypothesis, for each trial, we randomly permute the time points for each gene

independently (but consistently within a subject group). The clustering algorithm

is run on each of these permuted data sets and the log-likelihood score is stored.

The estimated p-value is defined as the fraction of trials from the null hypothesis

that result in a higher log-likelihood score than the original data. Comparisons of

log-likelihood scores here are within the same model distributions, so we avoid the

ambiguity that was an issue in 3.3.4 when we compared across different model shape

distributions. In Figures 3-13 and 3-14, we show histograms of the likelihood scores

for 100 trials. The distribution of the likelihood scores for the wave clustering over

the Indolent group appears to be bimodal, but the reason for this is still a.n open

question.

These distributions of permuted scores are compared to the scores for the actual

data in Tables 3.3 and 3.4. For wave clustering, the actual data has a better score in

each of the 100 trials, so our estimated p value is < 0.01 for each subject group. For

the Gaussian clustering, the actual data has a better score in each of the 100 trials

as well. Though the statistical significance results of the two clustering methods are

indistinguishable in terms of p-values, the distributions of the permuted scores are

closer to the actual scores. We quantify this difference by computing an upper bound



Aggressive

n
-7.62 -7.6195 -7.619 -7.6185 -7.618

x 10

n
-6.9625 -6.962 -6.9615 -6.961

Log likelihood score x 100

Figure 3-13: Histograms of log-likelihood scores for permuted data (Wave clustering)

Healthy Aggressive Indolent
20
18

16

14

S12

o n

8

6

4

2

n
-6.63 -6.62 -6.61 -6.6 -6.59

x 100

2

n fi I
-5 98 -5.96 -5.94

Log likelihood score
-5.92

x 10

-6.44 -6.43 -6.42 -6.41 -6.4

x 10

Figure 3-14: Histograms of log-likelihood scores for permuted data (Gaussian clus-

tering)

n L
-7.45 -7.4495 -7.449 -7.4485 -7.448

x 10

Healthy
r-'--

~

Indolent

EY -

Aggressive

0

Helh^"

r• I.- ' ------



Table 3.3: Significance for Wave clustering

Log-likelihood score p-value Chebyshev value

Healthy -7.56e + 06 < 0.01 < 3e -- 05

Aggressive -6.83e + 06 < 0.01 < 3e -- 06

Indolent -7.40e + 06 < 0.01 < le -- 04

Table 3.4: Significance for Gaussian clustering

Log-likelihood score p-value Chebyshev value

Healthy -6.59e + 06 < 0.01 < 0.09

Aggressive -5.89e + 06 < 0.01 < 0.03

Indolent -6.40e + 06 < 0.01 < 0.06

on the probability of a value higher than the actual score coming from the distribution

of permuted scores, assuming we can characterize the distribution with a mean and

variance. We use a one-tailed variant of the Chebyshev inequality, with k > 0, which

is:
1

Pr((X - /z) > ko) < 1 (3.26)1 + V
These values are included Tables 3.3 and 3.4. We see a difference of two to four orders

of magnitude, depending on the group, in favor of the wave clustering. Because the

Chebyshev value is only an upper bound, it provides the worst case for the probability

of the permuted distribution producing a higher value than the actual score, so it is

not equivalent to actually running the corresponding number of permuted trials.

We interpret the statistical significance of both methods of clustering as the algo-

rithms having captured the differences in the parameters of the distributions of the

data at each time point. While this does not imply temporal coherence, it does show

that the structure of the data is such that the order of the time-series is important.



3.3.6 Stability

As we recognize that there is inconsistency even within relatively homogeneous sub-

ject groups and that microarray data is noisy, it is particularly that important the

clustering algorithms be robust. Beginning with the Gaussian clustering, we inves-

tigate the effects of random initialization. Figure 3-15 is an image of how often two

genes are clustered together over 25 trials of Gaussian clustering. Because of the dif-

ficulty in displaying a 50, 000 x 50, 000 matrix, only the 500 genes per subject group,

selected by the wave clustering and re-ordered according to a random Gaussian trial

(as in Figure 3-8), are shown in the left column. There is clear structure, showing

that the 500 genes are subdivided into two or three fairly consistent groups. We see

in the right column of Figure 3-15, however, as we reorder according to the wave

clustering results, that these clusters do not correspond to the wave clusters at all.

Because the initialization is set for the wave clustering, there is no dependence on a

random initialization.

In addition to the random initialization, we know that microarray data is noisy.

We model this noise by adding zero-mean Gaussian noise (a = 40, about an order of

magnitude smaller than the positive deflections of wave 1 genes) to the input data, in

order to test the robustness of the clustering. We show in the left column of Figure

3-16 an image of how often genes are clustered together, reordered according to the

Gaussian cluster labels in the same way as the left column of Figure 3-15. The same

clusters appear, although they are now somewhat less stable. In the right column, as

they are ordered by wave type, there is once again little structure.

We compare the stability of the Gaussian clusters to the results of having per-

turbed the input data (a = 40) for the wave clustering, shown in Figure 3-17. The

genes that have the same label are generally clustered together in most of the trials.

This comparison is shown quantitatively in Figure 3-18, where we compute the mean

fraction of trials a gene is clustered with the genes in the same wave (excluding it-

self) and the mean fraction of trials a gene is clustered with other genes in the three

remaining waves. For the Gaussian clustering, with the exception of wave 1 genes for



(a) Healthy (Gaussian ordering)

(c) Aggressive (Gaussian ordering)

(b) Healthy (Wave ordering)

(d) Aggressive (Wave ordering)

(e) Indolent (Gaussian ordering) (f) Indolent (Wave ordering)

Figure 3-15: Cluster stability for random initializations for Gaussian clustering



(a) Healthy (Gaussian ordering) (b) Healthy (Wave ordering)

(c) Aggressive (Gaussian ordering) (d) Aggressive (Wave ordering)

(e) Indolent(Gaussian ordering) (f) Indolent (Wave ordering)

Figure 3-16: Cluster stability for perturbed input data for Gaussian clustering



(b) Aggressive

(c) Indolent

Figure 3-17: Cluster stability for perturbed input data for wave clustering
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Figure 3-18: Blue is the mean fraction of trials a gene is clustered with other genes

in the same wave, red is the mean fraction that a gene is clustered with other genes

in the three remaining waves.

the healthy subjects, these values are nearly equal, which means there is no differen-

tiation between waves of genes. The wave clustering, however, consistently clusters

genes in the same waves together and in different waves separately.

3.4 Summary

We have shown with our clustering that we can represent the temporal structure

of the BCR stimulation response with few models which correspond to waves of

expression that peak at each of the four time points. We obtained classifications for

all of the genes, identifying those that appear to be relevant to BCR and at what

time point they peak. The effect of subject group on the labelings is discussed in

I



Section 6.5. Compared to the Gaussian clustering, the wave clusters have consistent

shapes for each subject group, with smaller intra-cluster variance relative to the

means. Genes are also consistently clustered in the same waves together and in

different waves separately, despite perturbations of the input data with noise. Both

clustering procedures show that there is statistically significant temporal structure

that can be extracted from the data. We have shown for our application that the

wave clustering produces stable, consistent and meaningful models of the differential

expression profiles of genes related to BCR stimulation. In addition to the results

presented in this chapter, wave clustering serves as a first step in order to make

predictive modeling, as described in Chapter 5, tractable.



Chapter 4

Hierarchical Clustering

In much of the genetic research in B-CLL, the focus has been on classifying patients

into subgroups to more effectively plan a course of treatment. These approaches gen-

erally consist of identifying a single gene or small number of genes that are useful in

discriminating between the aggressive and indolent forms of the disease and do not

explain why or how those genes are behaving differently and what effect they have oil

the resulting regulatory network. Without a more global picture of the differences in

cellular behavior, designing targeted treatments is virtually impossible. On the other

hand, combining information from all genes for a patient clustering approach is a

challenge because there are thousands more features (genes) than samples (patients).

These difficulties are well summarized by Xing and Karp [82]: samples may be clus-

tered accurately in many different ways, most of which are not necessarily biologically

meaningful; a large number of features are not relevant; and generalization is difficult

because clustering on the large feature space tends to overfit the data.

This is exactly the case for our B-CLL data set as we have measurements from

more than 50,000 genes but only 17 subjects. We use BCR stimulation to attempt

to identify those genes that are relevant to the BCR signaling pathway, but this

may not necessarily be the same subset of genes that will accurately discriminate

between patient populations. Some differentially expressed genes will behave similarly

across all patients, and some, which are useful for patient classification, will behave

differently. Because we ultimately intend to infer models of temporal interaction that



show where similarities and differences occur, both of these types of genes should be

included in further analysis.

In this chapter, we formulate an integrated approach for combining clustering of

patients with classification of genes, such as the method in Chapter 3. The result will

provide a breakdown of relatively homogeneous subject groups, which is necessary

for the implicit assumption of consistent expression behavior in predictive modeling

(see Chapter 5).

4.1 Background

The simultaneous clustering of both genes and samples is a common challenge in

bioinformatics. Current thinking in molecular biology holds that only a small subset

of genes participate in any cellular process of interest, and that a cellular process

takes place only in a subset of samples. Therefore, biclustering applies to virtually

any problem where data from any different experimental conditions (disease category,

immune response, temperature, time, etc.) has been acquired. The first part of this

section will address current work in biclustering, but because our samples are not

simply a value for each gene for each patient, but an entire temporal expression profile,

we can take advantage of the extra, dimension of data in an interesting way. In the

second part of this section, we discuss related problems in other fields which utilize

hierarchical EM algorithms and actually better address the goal for our application.

4.1.1 Biclustering

Cheng and Church [15] were the first to apply biclustering to gene expression data,

simultaneously clustering both genes and conditions in order to identify groups of

genes that are co-regulated under a subset of conditions. Their algorithm identifies

biclusters with low mean squared residue, defined as the variance of the set of all

elements plus the mean row variance plus the mean column variance. Because this

problem is NP-hard, an efficient node-deletion algorithm is presented. Similar meth-

ods have been proposed more recently which extend the original algorithm by using



a probabilistic algorithm to discover sets of possibly overlapping biclusters [83] or by

iteratively refining the biclusters by adding more genes and/or conditions [87].

Coupled Two-Way Clustering (CWTC) [31] looks for pairs of a relatively small

subset of features (either genes or samples) and of objects (samples or genes), such

that when the objects are represented using only those features, clustering yields

stable and significant partitions. Finding such pairs of subsets is also computation-

ally hard; the CTWC method produces such pairs in an iterative process. Other

algorithms use bipartite graph representation [73], hyperplanes in the data [29], pre-

processing combined with linear algebra [74], probabilistic models[66], feature filtering

[82], and block mixture modeling [32]. For a more complete summary, Madeira and

Oliveira [47] survey recent work in biclustering. Time series data is also relatively

rare, and when it is available, it is often treated as simply additional experimental

conditions. This is addressed by Zhang et al. [86], where the typical mean residue

score measure is used, but deletion from a bicluster is only allowed at the starting

and ending points of the time interval.

For all of these techniques, as for clustering in general, evaluating the quality and

validating the results is difficult. One common approach is to embed synthetic biclus-

ters in the data and then retrieve them with the clustering algorithm. Additionally,

there are data sets available for simple model organisms, such as yeast, where much

of the transcriptional regulatory network is well-understood. Finally, data sets from

diseases, where the patient subgroups and many of the key genes are known, are also

available. There is, however, no other immune response time series data set similar

to the BCR acquisition we analyze here.

4.1.2 Hierarchical EM

Our application is dissimilar to other biclustering approaches because we are not

simply looking for genes that make up significant biclusters. We do not want to

solely identify those genes that discriminate patient populations. As in Chapter 3,

the clustering is not only intended to be a result in and of itself, but also as a first step

in the predictive modeling discussed in Chapter 5, so a complete classification of genes



for each patient cluster is necessary. Also, because we are trying to model all subjects,

we do not want to ignore those that do not have perfectly consistent behavior. In

other words, instead of isolating subsets of the data that form biclusters, we intend to

label the entire matrix of data. The problem is therefore better described as clustering

a data set that is comprised of patients that can be divided into subgroups, which in

turn are comprised of genes that can be divided into subgroups as well. This is closely

related to probabilistic Latent Semantic Analysis [37], where a collection of documents

(or subjects) contains topics (or waves) which are comprised of terms (or genes),

though there are important differences. We assign subjects to subpopulations based

on the wave to which each gene, which would correspond to classifying a document

based not on which topics are present, but on which terms belong to which topics

(i.e. how their meanings change depending on the context). Additionally, terms

are often repeated in documents exactly, while microarray data is noisy and would

require considerable pre-processing to attempt eliminate what would be equivalent

to inconsistent spelling. Despite differences in the details, the formulation is similar.

It is also analogous to work done in image classification [12, 76], word segmentation

[57], and learning object maps for robot environments [1], in which EM is used to

learn parameters at multiple layers of a hierarchy.

4.2 Patient clustering

We begin by temporarily ignoring the hierarchy and simply clustering the patients.

We treat each patient as a sample and each gene as a feature, which is a natural

alternative to the clustering approach presented in Chapter 3, where we treated each

gene as a sample and each patient as a feature. To model this, we assume that subjects

come from a finite mixture of probability distributions. The likelihood function, where

c represents the hidden patient class label, is defined as:

C

L(O) = Ep(X; c, O)p(cle) (4.1)
c=1



We use EM (see Chapter 3 and Appendix A) to cluster by combining the data for

each patient into an NT x 1 feature vector x, where N is the number of genes

and T is the number of time points in the expression profile. Each cluster has N x T

independent Gaussian distributions, each with a mean 'c and variance 6 . Ek includes

all parameters of all the clusters at iteration k. Because we believe there are three

main subgroups (Healthy, Aggressive, and Indolent), we set C = 3. In the Expectation

step, we compute the P x C matrix of weights, where each entry is defined as:

P(x Jc, k)P(c ) (4.2)P(cI,, Ok) = (4.2)e ·c=1 P(p(Ic, ek)P(ClEk)

=wpc (4.3)

where, for a mixture of Gaussians, P(x• c, Ok) is:

NT
N- Il l N -(xT - X ic_ )2  (4.4)P( lc, k)= exp 2o ic

In the Maximization step, we solve for 'c:

c pP1 pc P (4.5)
Ep=1 Wpc

This is equivalent to taking a weighted average of the data to compute the cluster

mean. Similarly, the variance for a cluster is (using the value for [c just computed):

62 pP1 pc - tc)2 (4.6)
p-p=1 WP

c

Finally, the mixture proportion for a given class, P(clOk), is computed as:

P(clek) = PC (4.7)
n=1

In clustering samples (patients), many of the genes are irrelevant, i.e. they do not

contribute to a meaningful, consistent clustering [82]. To reduce the dimensionality

of the feature space, we use the gene classification results in Section 6.5 to obtain

a subset of genes believed to be relevant to the BCR signaling pathway. While

not all of these are necessarily useful to differentiate across subject groups, it does
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Figure 4-1: Affinity matrix for the 17 subjects, showing how often each subject pair

was clustered together over the 1000 trials

provide a more reasonable size set of genes with which to cluster. There are a total

of 1028 genes (see Figure 6-18) as compared to 54,613. Also, EM only guarantees

convergence to a local maximum, so the final clusters depend on the initialization.

Over the k = 1000 trials, we randomly assign each of the subjects to a cluster, compute

the resulting means and variances, and then iterate between the Expectation and

Maximization steps described above until the cluster memberships are stable. Given

the cluster assignments for each trial, we compute an affinity matrix in which each

entry represents the number of times any pair of subjects were clustered together. In

Figure 4-1, this matrix has been reordered to best show the structure in the results.

The Aggressive patients separate out from the other two groups, which confirms

our intuition, given that their prognosis is so different from Healthy subjects and

Indolent patients. Indolent and Healthy, which are expected to be more closely re-

lated, are often clustered together. This provides some basis for believing that there
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Figure 4-2: Hierarchical clustering, where the the data is comprised of subpopulations

of subjects, which in turn are comprised of waves of genes

are differences among the subject groups that can be identified, but is not entirely

satisfactory because the subset of 1028 genes used for clustering were selected based

on consistent within-group behavior. Addressing this issue requires simultaneous

clustering of genes and patients.

4.3 Hierarchical formulation

Combining patient clustering and gene classification into an integrated approach is

accomplished by adding an additional level of hierarchy into an EM formulation,

which is shown in the diagram in Figure 4-2. We assume that there is an underlying

distribution of patients, which each have an underlying distribution of genes. The first

layer of the hierarchy remains the same as the clustering of subjects in the previous

section, but p(XIc, 8) becomes:

MN

p(X c, E) = p( I p ( m, O)p(mr n, c, E), (4.8)
m=1 n=l

where n specifies the gene and m specifies the gene model. Therefore, the complete

data likelihood function is now:

C P MN

L()) = 5 1 p(c p, E)) H p(XnpIm, E)p(m n, c, o) (4.9)
c=1 p=l m=1 n=1
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The probability for a given gene F, in a given class is defined by:

T

p(Iplm, ) = f p(Xnptlm, ) (4.10)
t=1

Unlike the formulation in 3.2.2, it is no longer necessary to take a product over patients

because the patients are combined in the first, level of the hierarchy. However, the

rest of the formulation is almost identical. We also assume for now that the gene

model parameters are shared across patient clusters, which means that the size and

shape of the expression profiles are the same, and it is the wave labels that differ. For

waves 1 through 4, the "dominant" time point is defined as being strictly positive,

which corresponds to an increase in gene expression at that time point due to the

initial stimulation. When m (the class label) corresponds to t (the time point), the

equations are:

p(xnptlm, O) = A,m exp (-Am,,npt) for xnpt > (1 (4.11)

p(Xnpt m, ) = 0 for znpt < 0 (4.12)

At the other time points, the two-sided Laplacians are defined by:

p(xnpt m, -) = exp (-Amt+xnpt) for Xt > 0 (4.13)

p(xnptm, 8) = exp (At-xnpt) for npt < 0 (4.14)

The parameters for the distributions at the non-dominant time points are Amt+, which

are unique to each model and expected to be larger (modeling smaller deflections)

than A,,m., and At-, which are shared across the four wave models. Because these

parameters are shared, the negative deflections will be equally likely under each of

the models and will not have an impact on the assignment of a gene to a particular

class. The final class is the background, which is composed of genes that are not dif-

ferentially activated with BCR, stimulation and are modeled by a zero-mean Gaussian

distribution at each of the four time points.

P(xnpt m, ) = ex1 -xnt (4.15)V`2r ep ,2



The difference between this formulation and the one for the wave clustering presented

in Chapter 3 is in how the information across subjects is combined. Instead of a fixed

assignment of a patient to a group, where each patient is assumed to be an indepen-

dent draw, the patient cluster assignments are iteratively adjusted depending on the

consistency of the wave labels of their genes. In the Expectation and Maximization

steps, we show how the parameters of the distributions and the class memberships of

each gene and patient are estimated.

4.3.1 EM iterations

In the Expectation step, we define:

Wnmpc = p(c, m| np, )k) (4.16)

This is the joint posterior probability for a gene model m and patient class c for a

given gene n for a given patient p. It is computed by:

p(x np c, m, Ok)p(c, m n, p, ek)
Wnmpe pC n(4.17)c/=1 Em'=l p(c', m'Jn, p, O k)

In the Maximization step, the update equations for parameters are very similar to

those in Chapter 3.
C P -kN 2

r2 _ C=1 Z= 1  =1 Wnmpcxnpt (4.18)
C- = 1 p=l n= Wnmpc

The remainder of the parameters are for the wave classes. For Am., the peak time

point, when m = t:

A2-- E c=1 c  =1 EnEx7 ,pt>O WnmpcXnpt (4.19)
Ec=1 Ep=1 ZnExpt>0 Wnmpc

Instead of summing over all N genes, only those with xpt > 0 are included. Currently,

we impose a hard constraint on Am., which guarantees large positive deflections at

the cluster's peak time point. For the non-dominant time points, when m Z t:

•2=l p=l =1 nEnpt>O Wnmpc np
t

mt+ ZI = n p >O nt (4.20)
c=1•=1 nExnpt>O nmpc



For the shared parameter At-:

C C=I Z• 1 EP nExnpt<O Wnmpc Xnpt
A- C M-1 P (4.21)

c=1 Zm=1 p=1 nnEXnpttO Wnmpc

It is important to note that because we sum over C, the model parameters A

and a are shared across the patient classes. This implies that the shapes of the

genes are expected to be relatively consistent across patient classes, which given

the cluster means shown in Figure 3-10 is a reasonable assumption. With shared

parameters the discrimination between patient classes occurs with which model the

genes were assigned, not the shapes of the models. If the model parameters were

different depending on the patient cluster, the only difference in the formulation would

b)e that there would be no summations over C and parameters would be computed

indep)endently for each class.

In computing the mixture proportions, we weight each gene's contribution to the

model as before, but we also weight the contribution of the patient, according to its

patient cluster membership. For these updates, p(c, mjn, p, ek) can be reduced to:

p(c, mjn, p, (k) = p(m- n, c, Ek)p(clp, Ek). (4.22)

Each of those is computed by:

N 1 IM

p(cJp, ek) Zn=1NZ m=1 Wnmpc (4.23)
c/=1  ,n=1 4m=1 Wnmpc

and

p(mln, c, o()k) P=1 Wnmpc (4.24)
m'= 1 Ep= 1 Wnmpc

These are two extremely useful values in understanding the clustering results. The

first, p(clp, Ek), provides the posterior probability for a cluster given a patient and

the current parameter settings, which is used for the MAP assignment of a patient

to a cluster. The second, p(mln, c, gk), is used for each gene's MAP assignment to a

gene model within a patient cluster. It is represented by a M x 1 vector that is the

mixture proportion for each gene model. When there is only one non-zero value in

that vector, that gene has the same label for every patient in the patient cluster. If



all the values were equal, the wave label would be completely inconsistent within the

cluster. Therefore, the maximum of p(mln, c, -) for a given gene and cluster provides

measure of consistency that ranges from L to 1. As we evaluate the quality of the

clustering, measuring consistency of the labelings within the cluster is key.

4.3.2 Initialization

Cluster parameters are initialized in the same way as in 3.2.2, using an ML estimate

of the parameters for an appropriate subset of the data at each time point. For the

mixture proportions:

p(cIp, W0 ) -= 1, (4.25)

where e1 is a small random perturbation.

p(mJn, c, 90 ) = E2  for m < M, (4.26)

p(mln, c, 0° ) = 1 - (M - 1) x C2 for m = M (4.27)

where 62 is the approximate fraction of genes in each wave class.

4.4 Results on synthetic data

We first test the ability of the algorithm to label genes and patients simultaneously

where the underlying structure of the data is known and is similar to that of the BCR

data. In this toy example, we generate expression profiles over 4 time points for 100

genes and 8 patients. The distributions from which the expression profiles are drawn

are parameterized by the variance, a2t for zero-mean Gaussians, defined at each time

point so the shapes roughly correspond to a background class and four wave classes.

To divide the data into two relatively consistent patient groups, the genes for

half the subjects are randomly reordered. Now, for example, gene 1 could have been

drawn from the wave 1 distribution for half the patients and drawn from the wave 2

distribution for the other half. The resulting data set is shown in Figure 4-3, and no

visual structure is evident.
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Figure 4-3: Synthetic data for 100 genes and 8 subjects, grouped by time point
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Cluster 2

Timel Time2 Time3 Time4 Timel Time2 Time3 Time4

Figure 4-4: Reordering of the synthetic data given the clustering results. The order

of the genes is different for clusters 1 and 2.

4.4.1 Cluster structure

We run the hierarchical clustering with the update equations formulated to estimate

the oa, of the zero-mean Gaussians. Given the MAP assignments of the patients to

patient classes, and the MAP assignments of the genes to gene models, we reorder

the data to show the cluster structure in Figure 4-4.

This shows, for a small example, that hierarchical clustering successfully recovers

the structure of the data. Visually, it appears the the patients have been divided

into two clusters in which all the genes have been labeled in a meaningful way. In

order to confirm the intracluster consistency quantitatively, we compute the maxi-

mum p(mln, c, Ok) for each gene in each cluster. As previously discussed, this ranges

from 1 (uniform distribution over all possible labels) to 1 (completely consistently

Cluster 1
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Figure 4-5: Histograms of the maximum p(mln, c, 6) values for each gene in each

cluster

labeled). Histograms for the two clusters are shown in Figure 4-5. For nearly all the

genes, the labeling is completely consistent within a cluster. The mean values for the

distributions of each of the two clusters are 0.9761 and 0.9663, respectively.

4.4.2 Cluster separability

In the actual data, we expect some number of genes to be at least as consistent

across groups as they are within groups. Not all genes would be expected to behave

abnormally in the B-CLL patients, and microarray data is noisy. If the number

of genes important to B-CLL is small as compared to the number responding to

BCR stimulation, then one would not expect a hierarchical approach to necessarily

correspond to clinically relevant subpopulations. In order to determine how separated

two groups have to be in order for the clustering to converge to a consistent, accurate

result, we vary the fraction of genes that are reordered for the second patient cluster.

That is, when we only reorder 10% of the genes, 90% are drawn from the same

distribution and should be labeled in the same way in both patient groups. This is

obviously a more difficult clustering problem than the previous one in which all the

genes were reordered. To measure the success of the clustering, we record the number
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Figure 4-6: Iterations required for hierarchical clustering to converge as a function of

the fraction of genes reordered to separate the two clusters

of iterations required to converge to a set criterion. At each fraction, we re-run the

algorithm multiple times to average out the effects of initialization.

Figure 4-6 shows that as the fraction of genes reordered increases, the number of

iterations required decreases. As expected, as clusters are more separated by increased

amount of reordering, the algorithm is able to converge more quickly to the correct

result. It is interesting to note, however, that even for as few as 5-10% of the genes

differing across clusters, the patient groups are still accurately identified. This means

that the algorithm is able to ignore the irrelevant information, and while the actual

data is still much more challenging, it does show that this layered approach works

when we know that our initial modeling assumptions were correct.
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Figure 4-7: Affinity matrix for 17 subjects showing how often each patient pair was

clustered together over the 20 trials of hierarchical clustering

4.5 Results on BCR data

To cluster the data from the BCR data set of 17 subjects, we set C = 3, expecting to

recover clusters similar to those in 4.2. With shared model parameters and random

initialization over 20 trials, we compute how often pairs of patients were clustered

together. This is shown in Figure 4-7, where the affinity matrix has been reordered

according to pairwise similarity. There is structure; however, as was pointed out in

[82], a "successful" clustering result is not necessarily biologically meaningful. In the

image, we see a mix of subjects from each of the patient groups in each block of

structure. This suggests that the hierarchical clustering found structure in the data

that corresponds to these unexpected groups. By looking at the histograms in Figure

4-8(a), we see that there is a reasonable amount of consistency in the gene labels

within a cluster. The means are values are 0.6742, 0.8866, and 0.6356 for each of the

three clusters. To have a basis for comparison, we re-ran the hierarchical clustering



algorithm with the patient assignments fixed to the Healthy, Aggressive, and Indolent

clinical labelings. We then compute p(mln, c, Ok ) again, and these histograms, shown

in Figure 4-8(b), are shifted slightly left compared to the hierarchical results, with

mean values of 0.6430, 0.7076, and 0.6469.

Of particular interest here is that the "actual" assignments show labelings that

are no more consistent than the hierarchical clustering. It appears that multiple

subdivisions of the subject populations are relatively consistent, and that the results

for each trial vary, depending on the initialization. There are several potential reasons

that the clinical breakdowns do not show greater consistency across subjects. The

first is that the microarray data is too noisy, and there are simply too few subjects to

accurately determine what each gene should be labeled. The second is that the groups

actually are heterogeneous, i.e. more patient clusters are necessary to represent the

data well. Finally, perhaps group differences are not captured by the differences

in gene labeling but in difference in the wave model parameters. Unfortunately,

again given the very limited number of subjects, when the model parameters are not

shared across patient clusters, there is not enough data to support the number of free

parameters and clustering fails entirely. For the purposes of this work, this is the only

data set of its kind available, and until more subject data is collected, it is impossible

to identify which of these potential issues is the reason for the unexpected clustering

results. Therefore, in the analysis of the clustering in Chapter 3 and the inference of

the predictive models in Chapter 5, we continue to use the clinical labelings.

4.6 Summary

In this chapter, we have presented a hierarchical EM approach to a biclustering prob-

lem, in this case the simultaneous assignment of genes to wave classes and subjects to

patient clusters. While clusters embedded in a synthetic data set are successfully re-

covered, even with a small fraction of genes that differentiate between the two patient

groups, it is less successful for the BCR data set. It does classify subjects into groups

that show consistency wave labelings across genes, but these do not correspond to
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the Healthy, Aggressive, and Indolent subgroups. For that reason, we do not use an

integrated approach in the clustering of the genes or the inference of the predictive

models described in Chapter 5.



Chapter 5

Predictive Modeling

A key goal in understanding the behavior of cells and the effects of genetic differences

is the reconstruction of networks of interaction. This has become more practical

as recent DNA microarray technologies have made it possible to monitor transcrip-

tion levels of tens of thousands of genes in parallel. Treating mi:croarray data as a

large collection of traditional experiments that simply need to be processed in an

automated way ignores one of the key advantages. Global measurements allow us

to search out patterns of expression and relationships between genes. By combining

confirmatory results, which simply show that microarray analysis is consistent with

expected behavior from the literature, and new results, we begin to form a more

complete picture of what is occurring in the cell. Due to the complex procedures

of microarray experiments, gene expression data often contains a large amount of

noise. Additionally, while DNA microarrays enable measurement of the transcripts

of every gene, we cannot measure protein expression levels or biochemical activity of

gene products. These are, generally, what are actually physically interacting with one

another and functioning in the cell. A comprehensive picture of the transcriptional

regulatory network would require direct measurements. There is, however, a sensible

link between the expression pattern and function of the gene product [9]. Therefore,

while predictive models may show relationships between mRNA expression levels,

these do not necessarily correspond to actual, physical interactions of RNA sequences

or proteins.



There are three major challenges in inferring the predictive networks. The first

is that even given the subset of the original data, clustered in Chapter 3, there are

still many times more samples (genes) than there are observations (time points and

subjects). We address this by imposing sparsity on the networks in several ways.

The second is that it is not clear how to take into account temporal interactions,

which we are able to do because of BCR stimulation and the acquisition of time

series data. Finally, evaluating the quality of the resulting models is difficult. In

addition to simply visualizing the networks, we perform leave-one-out cross-validation,

analysis of network structure, and tests of robustness and statistical significance. Once

the models are inferred, we identify genes for literature comparisons and biological

validation experiments, which are discussed in Chapter 6.

5.1 Background

The most popular method for inferring the relationships between genes is to build

coexpression networks. A variety of experimental conditions, gene deletions, or even

species profiles [68] are used to determine which genes behave in similar ways. Prob-

abilistic graphical models and Bayesian methods [28, 35, 38, 41, 60] are common.

One drawback for much of this work is that while it is effective for small numbers of

genes [4, 88, 89] or when the transcription factors are already known [63], it becomes

computationally impractical as the number of genes increases. The complete tran-

scription regulatory network has been built for yeast [3, 75], but even for a relatively

simple organism like Xenopus, networks are still largely unknown [43].

More importantly, a coexpression network as typically viewed is not our goal. In-

stead of linking genes that behave similarly under set experimental conditions, we

attempt to link genes that influence one another across time. Relationships between

transcription factors and targets are more complex than coexpression. These relation-

ships may be inverted or time-shifted [85]. Bickel et al.[6] introduce the concept of lag

in time to the co-expression network, and more complicated temporal relationships

are explored by Guthke et al.[34] and Tabus et al.[71].



Relevance networks inferred by Reis et al. [58] utilize dynamics in gene expres-

sion data in addition to static coexpression in order to take into account effector

(enhancer/suppressor) type relationships. Darvish et al. [21] relate future expression

levels of prototypes of gene clusters to past expression levels of each of the prototypes

of each of the clusters to each other. Both of these methods use a yeast gene expres-

sion data set with a relatively high sampling rate in time. Yeast is often used as a

model organism for studying transcriptional networks because it is easy to manipu-

late experimentally and has a relatively small number of genes, most of which are

functionally annotated. Our BCR data set, however, includes an order of magnitude

more genes and subjects from a variety of genetic backgrounds.

5.2 Inferring models of interaction

Ideally, we would like to infer relationships between every possible gene pair as:

N

j +j ( (5.1)
i=1

where 'j is the vector of differential expression levels (each element corresponding

to a time point) for the jth gene, ijo() is a function which models the influence of

gene i on gene j, and 77 is an additive noise term. Given limited data, care must

be taken in the parameterization of such a model. Even for linear models, allowing

independent relationships between every possible gene pairing would require inference

of N2T2 parameters from N x T x P data points. We therefore specify a number

of simplifying constraints resulting in a tractable inference procedure. While it is

reasonable to question any of these choices, they are supported by the subsequent

empirical results.

In our model, we divide interactions, represented above by ij(), into two pieces.

The first is the mode of interaction Fk(i)k(j), which models relationships of excitation,

inhibition, and differences in scale between input and output genes. Because the

wave assignments (as described in Chapter 3) classify genes according to temporal

structure, we use those labels to limit the number of modes of interaction. We describe



the additional structure of the Fk(i)k(j) matrices in detail in Section 5.2.1. Second,

wij represents the relative weight (between 0 and 1) of a prediction for a particular

predictor on an output gene.

N

= w FikO(i) (5.2)
i=l

The weight wij is re-parameterized as aij by:

w~ai (5.3)
I i=1 aij

in order to define the global optimization:

sj*, {F}* = arg min Zj N Fij i (5.4)
j,{F} Ei= 1 i 2

subject to the constraints:

a > 0 (5.5)
N

iE • 1 (5.6)

The reason for the constraints on a is that we expect that there are a limited number of

"input" genes that influence the expression of any one "output" gene, consistent with

biological literature. As the Fk(i)k(j) matrices already describe the type of relationships

over time between genes, e.g. inhibition, excitation, relative scaling, a values are

only used to define how strong are those relationships in comparison to all the other

possible input genes, so a negative connection would not be defined. The second

constraint serves as an L1 penalty imposing sparsity on the number of incoming edges.

The most important advantages of L1 penalization schemes are their convexity, and

the strong sparsity of the results, in that most indices of the result are set exactly to

zero [49]. An equivalent form of these constraints on a is provided in Section 5.2.2.

Global optimization of a and {F} simultaneously is non-convex; however, opti-

mizing the two sets of parameters is conditionally convex. If all the aij are known,

solving for Fk(i)k(j) requires a straightforward least squares calculation, and when the

set of F matrices is known, a solution for a is found using quadratic programming,



as implemented in MATLAB with the SeDuMi toolbox[69]. We therefore use coordi-

nate descent, a commonly used optimization technique, in order to iteratively solve

for {F} and a. Coordinate descent guarantees improvement of the objective criterion

on each iteration, and is guaranteed to converge to a stationary point [5]. In Sections

5.2.1 and 5.2.2, we further explain the two steps of the iterative procedure. For this

particular application, we found that for all three subject groups, this occurred after

approximately 6 iterations, which is what we used for all the analysis described here.

Upon completion, we have as output a connectivity matrix [a a2 1 ' . -N], which gives

us the strength of connection between genes, most of which are zero.

5.2.1 Wave interaction matrices

Using the labels assigned to each gene via wave clustering (see Section 3.2.2), we

limit the types of interactions between genes by computing common linear predictor

models indexed by wave type rather than allowing unique models for each gene-gene

pair. The intuition is that temporal structure as defined in the previous section is

a predictor of the way in which genes might interact. Consequently, wave 1 genes

are not predicted by anything, but are able to influence waves 2, 3, and 4. Similarly,

wave 4 genes do not predict any other waves, but are influenced by all other previous

waves. These relationships are characterized by six 4 x 4 matrices, F12, F13, F14, F23 ,

F24, and F34, where the first index represents the input wave type and the second

represents the corresponding output wave type.

Regardless of which wave the gene belongs to, all F matrices are lower triangular,

enforcing temporal causality. Dependencies that span the same number of time steps

have the same coefficient. This is equivalent to saying that the effects of a given

gene will be stationary, influencing other genes in a consistent way over time. For

example, if the gene excites the expression of the output at the immediately following

time point, this will be true for t1-t 2, t2-t3, and t3-t4 . The gene may, however, have a

longer term inhibitory effect for other time point pairs. Because the time points for

this data set were not evenly sampled, these are not quite stationary relationships, but

these requirements balance simplicity of the model and our reasonable expectations of



protein and gene interactions with the flexibility required to represent more complex

relationships. For a single input-output pair of genes F and ', which are each a 4 x 1

vector, the F matrix is the linear transformation:

Y1 0 0 0 0 xl

Y2 a 0 0 0 x2
+ (5.7)

Y3 b a 0 0 X3

Y4 c b a 0 x4
As an initial estimate of the models, we group genes by wave type. Given Ninput

genes of the input type and Noutput genes of the output type, there are Ninput x N tput

possible combinations of these genes that need to be accounted for enumerated as:

Y11 Y12 .'" Y1No.utput 0 0 0 0 X1 1  11  "" XlNi,,pUt

Y21 Y22 "'. Y2Noutput a 0 0 0 x21 x21 ... X2Ninput

Y31 Y32 "'" Y3Ntpt b a 0 0 x31  X31 1 X"" 3Ni•put

Y41 Y42 "" Y'4Nout,pt c b a 0 X41 X41 X' • 4Ninput

Fk (input) k (output)

(5.8)
where X, Y E C x(Nipu, xNoutput) with the genes ordered in such a way as to enumerate

every possible pairing. The parameters a, b, and c are estimated by minimizing the

following least squares criterion:

{a, b, c} = arg min lY - Fk(input)k(ouput)(a', b', c')X11 2  (5.9)
al,b',d'

after reshaping the data into vectors and computing each element of Fk(input)k(output)

independently. This is equivalent to having all connection strengths aij set equal to

one another, which is used only for the initialization. After the first iteration, using the

a vectors resulting from the optimization in Section 5.2.2, we re-weight the matrices

according to the strength of the connections, then re-estimate the Fk(input)k(output)

matrices as:

{a, b, c} = arg min IY' - Fk(input)k(output)(a', b', c')X' 1 2  (5.10)
a',b',c'

where Y' and X' include all possible input and output pairings, scaled by the corre-

sponding aij.



5.2.2 Combining predictions

For a given output gene xj, we use a weighted combination of the predictions, repre-

sented as:
di = arg min - Z ,Fk( kJ (5.11)

subject to the constraints:

ai > 0 (5.12)
N

Saj • 1 (5.13)
i=l

where k(i). k(j) are the wave labels of gene i and gene j, respectively, and aij > 0 is

their connection strength. An equivalent form would include the L 1 penalty on 'j in

the minimization as:

; = arg min -Z Fk(i) + ai (5.14)
ad Ei=1 2j

still subject to the constraint:

aij > 0 (5.15)

The relative weighting A of the L1 norm and the L2 norm of the prediction error can

also be varied to adjust sparsity as the two are minimized simultaneously. This would

be similar to adjusting the threshold on the L1 constraint in the equivalent form in

Equation 5.13. For either of these forms, we solve for a using quadratic programming,

as implemented in MATLAB with the SeDuMi toolbox[69].

5.3 Visualization

Visualization of inferred networks is difficult because of the number of genes and the

dynamic nature of the expression profiles and the interactions. We use Cytoscape

software [65], and in Figures 5-1, 5-2, and 5-3, we show a default layout in which

edges of the graph correspond to springs, creating an attractive force between nodes

that are far apart, and a repulsive force between nodes that are close together. Each



node actually represents the entire temporal expression profile of the gene, and each

edge represents a 4 x 4 matrix Fk(input)k(output) and the connection strength aij between

the two genes. As the nodes in the network are arranged in this way, we see that there

a small number of genes in each network that have a very large number of outgoing

edges. The network structure is described in more detail in Section 5.4.1.

In order to represent the dynamic networks statically, we show in Figure 5.3 the

progression through waves of expression, which is related to time. Though a single

node still represents the expression profile over 4 time points for that gene, we use the

cluster labels of the genes, which corresponds to the time point at which they peak,

to show which genes and which interactions dominate at a given time. In the leftmost

column Figure 5.3, the wave 2 genes are highlighted in yellow. They are influenced

by wave 1 genes only, via F12. These connections are shown in red. In the center

column of Figure 5.3, wave 3 genes are highlighted, and inputs that are direct (those

from wave 2, which is only one time step removed) are shown in red, while inputs

that are from wave 1 to wave 3 are shown in blue. Finally, in the rightmost column

of 5.3, wave 4 genes are highlighted, with direct connections from wave 3 genes in

red, inputs from wave 2 in blue, and inputs from wave 1 in green. Red connections

appear to dominate the network, consistent with the assumption that genes are most

likely to effect genes in the immediately following wave, even though this was not an

explicit constraint. This is shown qualitatively here, but is confirmed quantitatively

in Section 5.4.1.

5.4 Analysis

As explained in Section 5.1, inferring the networks, while challenging, is merely a

starting point. From a mathematical standpoint, the network results can be evaluated

in several ways. The first is the structure of the network, which includes the number

and types of edges, as well as the parameter values. In addition, we evaluate the

robustness of the edges of the network to input noise. Finally, using accuracy with

respect to prediction error, we compute statistical significance and leave-one-out cross



Figure 5-1: Network inferred for healthy subject group
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Figure 5-2: Network inferred for aggressive subject group
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Figure 5-3: Network inferred for the indolent subject group
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validation. None of these depend on local validation of the networks from biological

experiments, which will be discussed in Chapter 6.

5.4.1 Structure

Each edge represents the link between two genes: there is the Fk(input)k(output) matrix,

which depends on the wave labels of the input and output genes, defining the pre-

dictive relationship over time, and there is the a weighting that defines the strength

of the connection. We first describe the effects of the iterative method for adjusting

the interaction matrices, then quantify the types of interaction matrices that make

up the networks, and finally discuss the effects of varying the sparsity constraint on

aj, the number of edges present.

Wave interaction matrices

As described in Section 5.2, there are two methods for computing the Fk(input)k(output)

matrices, which are wave-specific modes of interaction. The first computes the least

squares estimate of the matrix elements weighting all possible input/output pairs

equally. The second iteratively adjusts Fk(input)k(output) and a according to a coordinate

descent method that decreases the prediction error. The prediction error for the

network converges with the re-weighting of the input/output pairs according to a in

the computation of Fk(input)k(output) at each iteration. For all three subject groups, the

error stops decreasing after approximately 4 to 6 iterations. There is some variation

in when this happens, depending on the subject group, but because of computation

time considerations and in order to have a set number of iterations for all further

analysis, we use the adjusted Fk(input)k(output) matrices and a values after 6 iterations.

We compare the error in Table 5.1. As the Fk(input)k(output) matrices are optimized,

there is guaranteed to be an improvement in the prediction error scores. For each

network, we see about a 15% to 20% decrease in the prediction error. In Figure

5-5(a) and 5-5(b), we compare the values in the Fk(input)k(output) matrices before and

after the optimization. In the adjusted matrices, a, b,and c are generally higher than
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Table 5.1: Prediction Error with adjusted and unadjusted F matrices

Unadjusted F Adjusted F

Healthy 167 139

Aggressive 140 108

Indolent 170 135

their unadjusted counterparts because the unadjusted values are influenced by input-

output pairs of genes that are not related to one another. These pairs will, in general,

average one another out, leading to no clear activation or inhibition relationships.

During optimization, these gene pairs have less of an impact in the estimation of

Fk(input)k(output) because of their low connection strengths. Therefore, the larger values

of a, b, and c are from the consistent relationships between the waves. The reason for

the very high value of c in F24 for the Healthy subject group is unknown.

Edges

We see qualitatively in Figure 5.3 that there appear to be many "red" edges. These

edges correspond to F12, F23 , F34, which represent connections between adjacent

waves. We present this numerically as edge counts in Table 5.2, which shows that

the connections between adjacent waves (the first three columns of the table) do

in fact dominate the network. They comprise 80%, 78%, and 69% of the edges

in the Healthy, Aggressive, and Indolent networks, respectively. Interactions are

temporally local, which provides evidence of global waves of transcription in the

context of synchronized, isolated pathway stimulation.

A second element that was visually evident was the appearance of a small number

of genes with a large number of outgoing edges. In Figure 5-6, we show histograms

of the number of outgoing edges on a per gene basis. We define these as "hub" genes.

While the sparsity constraints on a are imposed to limit the number of incoming

edges to any one gene, the number of outgoing edges was not constrained. A total

of 18 genes (5 for Healthy, 7 for Aggressive, and 6 for Indolent) have more than 50
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Figure 5-5: Comparison of the adjusted and unadjusted F matrix parameters

Table 5.2: Edge counts

F12 F23 F34 F13 F24 F14

Healthy

Aggressive

Indolent

144 469 380 126 52

117 647 416 88 228 24

174 478 410 55 289 138
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Figure 5-6: Histograms of the number of outgoing edges on a per gene basis

outgoing edges. More than 90% of the genes have fewer than 10 outgoing edges.

In Chapter 6, we discuss what is known biologically about these genes and their

targets, as well as further experiments to validate the related parts of the networks.

This scale-free structure, however, is consistent with has been shown previously for

B-cell networks [4] and for transcriptional regulatory networks in general [8].

Varying sparsity constraints on alpha

We set the sparsity constraint on aj such that the L 1 norm was < 1 in Section 5.2.

We made this choice because we assume that all inhibition, excitation, and scaling

effects between input and output pairs are modeled with the Fk(input)k(output) matrices,

and aij values simply provide connection strengths. These connection strengths can

also be thought of as weighting the average contributions of the input genes. For

example, if one gene i is able to perfectly predict another gene j through the Fk(i)k(j)

matrix, without any contribution from any other input genes, then aij = 1 and all

other values in the aj are zero. In this case, a stronger constraint on the L 1 norm

(a lower threshold) would erroneously favor input genes that have larger predictions,

instead of those predictions which are on the same scale as the output gene.

We have, however, effectively adjusted this sparsity constraint up and down using
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Table 5.3: Significance

Prediction Error Min error p-value

Healthy 139 163 < 0.01

Aggressive 108 129 < 0.01

Indolent 135 167 < 0.01

the equivalent form in the optimization. As expected, as a more severe constraint is

imposed, the number of edges decreases. It would allow for greater control over the

sparsity of edges in the network if that is what is desired for another application.

5.4.2 Significance results

We test the statistical significance of the models that have been inferred using per-

mutation tests [56] in a method similar to the one in [6], where the false detection

rate of a connection between two genes in the model is calculated. We first define

a null hypothesis: there is no temporal structure in that data that can be repre-

sented with predictive models. To generate samples from this hypothesis, for each

trial, we randomly permute the time points for each gene independently (but con-

sistently within a patient group). Accurate p-values necessitate re-running the full

optimization (including wave clustering) because wave labels depend on the temporal

structure as well. While estimating a for the predictive models, the L2 norm of the

prediction error is minimized for each output gene. We sum over all the genes to get

an aggregate score for the network and the current data set for the patient group.

The statistical significance of our hypothesis that there is temporal structure in the

data is defined as the fraction of trials in which the permuted data has a better score

than the actual data.

In Table 5.3 and Figure 5-7, for all three subject groups, the error is lower in

all 100 trials given the original data for a p-value of < 0.01. This demonstrates

that labeling, model constraints, and connectivity constraints are not arbitrary. We
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Figure 5-7: Permutation histograms of prediction error for networks

conclude therefore that temporal structure exists and that it can be captured to some

degree by a small number of temporal structures and interaction types.

5.4.3 Stability

We test the stability of the edges in the network in order to show the robustness of the

inference procedure to noise for the networks in general and for specific subregions.

We model the effects of noisy microarray data by adding zero-mean Gaussian pertur-

bations (ranging from a=10 to a = 40, about an order of magnitude smaller than the

positive deflections of wave 1 genes) to the input data. For 25 trials, the networks

are re-estimated using the same subset of genes that had been previously identified

and labeled by the wave clustering. In Figure 5-8, we show "survival curves" for

consistent edges. As a function of the number of trials, these curves are computed

from the fraction of edges in the original network that are present. Virtually 100%

of the edges each of the original networks are present in at least 1 trial. However,

anywhere from 15% (Healthy, a = 40) to 80% (Aggressive, a = 10) are present in all

25 trials. The Aggressive subject group seems to be more consistent than the other

two groups, likely because there are only five patients in the group as opposed to six

for the other two groups.
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Figure 5-8: Stability of the edges for all three networks with differing levels of noise

added to the input data.

We show these figures to give a general context for how the entire networks behave,

so we can compare these results to those for subnetworks. We identified in Section

5.4.1 a small number of "hub" genes that have a large number of outgoing edges,

which we expect to play an important role in the networks. In Figure 5-9, we display

survival curves for the outgoing edges of the hub genes compared to the average curves

for the networks (a = 20, which is a representative result for the other values of a).

In nearly all cases, the outgoing edges of the hub genes are more consistent than the

averages. Because the outgoing edges associated with the hub genes are more stable

than the networks as a whole, they are less likely to have been produced at random,

and therefore provide a starting point for biological validation of the networks.

5.4.4 Cross validation

In this section, we perform leave-one-out cross validation to test the consistency of

the networks within and across subject groups. We use a single subject from the

original data set as the testing data, and the remaining observations as the training

data. We repeat this such that each subject is used once as the testing data, held out

from the inference of its own type of network (healthy, aggressive, or indolent). For
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Figure 5-9: Stability of the edges for the hub genes as compared to the non-hub genes.

example, for subject Healthyl, the Healthy network was inferred using the data from

subjects Healthy2 through Healthy6. Using the input data for Healthyl, we compute

the aggregate prediction error for that network as well as the prediction error for the

network inferred from all the Aggressive subjects and the network inferred from all

the Indolent subjects. The results are shown in a bar plot in Figure 5-10.

For four of the six healthy subjects, the healthy network has the lowest prediction

error. For three of the five aggressive subjects, the aggressive network has the lowest

prediction error. For five of the six indolent patients, the indolent network has the

lowest prediction error. If we were to use the cross validation results to classify

subjects into groups, it would be marginally successful. This implies that even within

groups, there is inconsistency across patients. Some of the inconsistency can be

attributed to the noisiness of the microarray data, but we also expect that genetic

differences play a role. Particularly for the B-CLL patients, as was explained in

Section 2.1.2, groupings based on disease outcome or on various genetic mutations

yield different results. Because our data set includes such a small number of patients,

outliers are not only not well-classified but also bias the networks in which they are

included.
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Figure 5-10: Error measures for leave one out cross-validation, as well as for the error

across the other two models

5.5 Summary

In this chapter, we have introduced a method for inferring sparse models of temporal

interaction for genes relevant to the BCR signaling pathway using the wave cluster

labels from Chapter 3, which have a consistent biological interpretation, to define a

small number of modes of interaction between the genes and by effectively limiting

the number of genes influencing each target gene. In order to represent the dynamic

networks statically, we show in Figure 5.3 the progression through waves of expression,

which is related to time. We first describe the effects of the iterative method for

adjusting the interaction matrices, then quantify the types of interaction matrices

that make up the networks, and finally discuss the effects of varying the sparsity

constraint on 5a the number of edges present. We test the statistical significance

of the models that have been inferred using permutation tests. This demonstrates

that labeling, model constraints, and connectivity constraints are not arbitrary. We

conclude therefore that temporal structure exists and that it can be captured to

some degree by a small number of temporal structures and interaction types. Also,

in nearly all cases, the outgoing edges of the hub genes are more stable than the
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averages of the networks as a whole. We perform leave-one-out cross validation to

test the consistency of the networks within and across subject groups.
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Chapter 6

Biological Implications

In Chapters 3 and 5, we presented the results of clustering and predictive model infer-

ence from a mathematical perspective. We have shown that the temporal structure

of the data has been successfully captured, but the purpose of the modeling was also

to provide insight into the genetic program of the B cell receptor signaling pathway.

The ultimate objective is to use the network to design different approaches for affect-

ing the evolution of the gene activity profile of the network [25]. In a disease-specific

sense, analysis of the differences in the networks between healthy subjects and B-CLL

patients could eventually guide potential treatments.

Therefore, from a biological standpoint, we first validate the networks that were

inferred and then use the networks to design future experiments. Validation is done

in three ways: 1) comparisons of the genes that play important roles in the network

to those that have been previously determined to be relevant to BCR activation or

B-CLL, 2) comparisons of the links in the network to known physical interactions,

and 3) most importantly, intervention experiments that test network predictions by

overexpressing or silencing a gene. This third method distinguishes between causality

and correlation in local regions of the network. For example, if two genes are regulated

by a common factor, with its effects on one lagging in time as compared to the other,

the former may appear in the network as having been influenced by the latter (either

in addition to or instead of the common factor). Intervention experiments tease out

these differences, as only genes that are actually influenced by the manipulated gene,
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either directly or indirectly, will show substantial and predictable changes as compared

to the control. Because of the relatively large number of genes in the networks (500

per subject group), one important issue is still gene selection and the question of

how we can take advantage of the structure of the networks and the cluster labels to

identify genes to target.

We also compare the clustering results across the three subject groups. As was

explained in Chapter 4, there is not adequate consistency within the current subject

groups to combine clustering of genes and subjects in an integrated approach, which

was the reason we used the known clinical labelings (Healthy, Aggressive, Indolent).

We do, however, analyze aspects of the clustering results to determine how cluster

labels relate to subject group and to combine the networks into a single visualization.

6.1 Network structure

While sparsity constraints imposed during the predictive model inference procedure

(see Section 5.2.2) limited the number of incoming edges to any one gene, the number

of outgoing edges was not constrained. In Figure 6-1, histograms of the number of

outgoing edges per gene show that the inferred networks have a scale-free structure.

This is consistent with what has been found in protein interaction networks [8], where

a small number of proteins serve as hubs for very large numbers of interactions. A

transcriptional regulatory network, which was inferred from a large set of expression

profiles that represented perturbations of B cell phenotypes, shows similar structure

[4].
For each of the three subject groups, more than 90% of the genes have fewer than

10 outgoing edges, and 18 genes (5 for Healthy, 7 for Aggressive, and 6 for Indolent)

have more than 50. We define these as "hubs". From Section 5.4.3, when perturbing

the input data with noise, the edges related to hub genes are more consistent than

those in other regions of the networks. These hubs appear to not only be important to

the network predictions, but their connections to their targets are relatively stable as

well. They therefore provide a starting point as candidates for literature comparisons
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Figure 6-1: Histograms of the number of outgoing edges on a per gene basis

and for further experiments. In the following section, we investigate these highly

connected genes.

6.2 Hub genes

The probe set labels for the 18 network hubs represent 15 known genes. Of these,

EGR1, NR4A1, and ZFP36 are already known to be expressed after BCR stimulation

[64, 52]. Those three genes, in addition to the hubs BTG2, CXXC5, and NR4A3, are

transcription factors [51], which by definition are genes that influence others. Each

transcription factor stimulates the transcription of target genes through the binding

to specific DNA regulatory element located at the beginning of each target gene. The

number of possible binding sites through the genome is different for each transcription

factor, ranging anywhere from fewer than 200 to more than 10,000, depending on the

network [79]. It is important to note that because the networks are only inferred

relationships and not necessarily actual physical interactions, identification of hubs

in the network that are known transcription factors is a confirmatory result.

Table 6.1 shows the complete list of the probe set labels for the hubs identified

in the networks, with the threshold on the minimum number of outgoing edges set

at 50, for each of the three subject groups. We also include the gene name [80], if
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it is known. In addition to the transcription factors (in bold), these genes code for

motor proteins (DNAH3), ribosomes (RPL1OA, RPL15, RPL27A, RPL37A, RPS27),

transport proteins (SLC2A3), and enzymes (SAT) [48].

As we have established that a number of the network hubs are transcription fac-

tors which could potentially have influence on target genes, we compare individual

links in the network to potential physical interactions. For other BCR-related subnet-

works, Basso et al. [4] validate around 40% of inferred connections using chromatin

precipitation (chIP-chip) experiments, so we do not expect perfect correspondence.

In our case, the links in the network could be a result of the modeling decisions

made to make inference tractable, artifacts of noise in the data, or could appear to

be direct connections when the gene actually acts on the target indirectly through

an intermediate transcription factor. As there is not yet ground truth for all possible

interactions, regions of the network are analyzed manually. We begin with the sub-

network associated with EGR1, a hub in the Healthy network with 93 outgoing edges.

The probe sets corresponding to these edges represent 76 different known genes. We

compare the inferred links in the network to actual potential physical interactions by

searching for the EGR1 binding site in the promoter region of these putative target

genes using the TESS database [62]. Of the 93 potential target probe sets, 37 have a

binding motif for EGR1. This confirms that EGR1 may in fact be acting directly on

some of the targets to which it is linked in the network, despite having inferred the

relationships based on only the mRNA expression profiles.

As this analysis is completed for the remaining hub genes, we will lower the thresh-

old for outgoing edges in order to identify more genes for further research and experi-

mentation. Figure 6-2 shows how the number of genes that would be selected changes

as a function of the threshold. Gene selection is an important problem in microarray

analysis, given that it is simply not possible to test every possible interaction exper-

imentally, so our results guide experimental design based on which genes appear to

be related statistically. For the hubs in particular, we have greater confidence in the

stability of those local regions of the networks and the potential for physical interac-

tions, which we can then provide to the biologists to investigate in a systematic way.
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Table 6.1: Hub probe set labels and corresponding gene names (transcription factors

in bold)

Probe Set

220725x at

201693_sat

216236-sat

229563-sat

230333_at

Name

DNAH3

EGR1

SLC2A3

RPL1OA

SAT

200741_sat

201236_sat

203034s_at

214041 xat

222145_at

224516_sat

227404_sat

216979 at

227224_at

221475s-at

201531 at

202340_x-at

238276_at

RPS27

BTG2

RPL27A

RPL37A

unknown

CXXC5

EGR1

NR4A3

R.ALGPS2

RPL15

ZFP36

NR4A1

unknown
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Figure 6-2: Number of hub genes selected given the threshold on the number of

outgoing edges

6.3 Sensitivity analysis

Once the networks have been inferred, testing the predictions is the obvious next

step. One way to do this is to manipulate the expression levels of a single gene, either

by silencing or overexpression, in an intervention experiment. These intervention ex-

periments are expensive and time-consuming to perform because as we test temporal

interactions, time series acquisitions are necessary. Therefore, much thought must go

into selecting the target gene. It should peak early in the BCR activation response, so

that it will have downstream effects in the cascade of reactions that can be measured

over the time course of the experiment. It also should be expected to influence many
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other genes, so model predictions can be compared to actual measurements. Identi-

fication of genes with these two properties are precisely what wave cluster labeling

and the inference of the predictive models provide. First wave genes (as labeled in

Cha~pter 3) are, by definition, those that peak early in the response. Hub genes in

the networks (as inferred in Chapter 5) have many direct connections, presumably

to target genes they influence. However, in order to be more general, we take into

account both the direct and indirect connections in this section.

In order to identify potential target genes, we propagate the effects of manipulation

of each of the first wave genes for all three of the networks. This is more complex

than simply computing all the predictions, as we also include the indirect effects. For

example, a first wave gene may influence second, third, and fourth wave genes directly,

but the second and third wave genes that it influences may also have connections to

other third and fourth wave genes. More precisely, for a first wave gene xi, second

wave genes xj are connected only directly:

Mx = ajjF12 i (6.1)

Third wave genes Xk are connected directly to -4 via the interaction matrix F1 3 and

indirectly through second wave genes:

Xk = aik F13 i (6.2)

+ Z ajkF23aijFl2xi (6.3)
jEw2

Fourth wave genes Yz are connected directly to £x via F14 and indirectly through

second wave genes, third wave genes, or both:

x1 = ali F 14 i (6.4)

+ E aliF 24ajF 12 'i (6.5)
jEw2

+ E akIF 34aikFl3Xi (6.6)
kEw3

+ 1 aklF34 j okF23 FijF12i (6.7)
kEw3 jew2
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Given these equations, we predict the effects on all 'j, Xk, and x as 4i is manipulated.

In the intervention experiments, there is little control over how the target is manip-

ulated beyond overexpression (an increase) or silencing (a decrease) for the entire

time course, so we model this simply as unit change 'i = [1111]T. The results of the

changes in all the genes in the network are calculated, and we display the predicted

change in the expression profiles over time in Figures 6-3, 6-4, and 6-5.

In a qualitative way, we select those genes to which the network is most sensitive to

changes. These are the probe sets corresponding to the columns in Figures 6-3 through

6-5 which have the largest effects, either in terms of numbers of genes influenced or

magnitude of change. These are listed in the Table 6.2. While there is some overlap

with the previously identified hubs (identified with asterisks), not all hubs are first

wave genes and not all genes to which the network is sensitive have > 50 outgoing

edges. Three of these genes (FOS, IER2, JUN) were found previously to be expressed

by inducing early response genes with BCR. activation [52], which shows that the genes

that play an important role in the interaction networks also are relevant to the BCR

signaling pathway. The results of the sensitivity analysis, which identify those genes

that peak early in the time course and affect many downstream genes, guide the design

of intervention experiments to test the predictive ability of the networks. We provide

a visualization of a small set of genes for the biologist to evaluate and then to select

for the time-consuming and expensive gene silencing or overexpression. Much like

the testing of binding sites and potential physical interactions related to hub genes,

the selection of targets for intervention is a key step in the process. Though these

results are specific to BCR stimulation and B-CLL, this type of analysis could be used

for other applications in order to systematically analyze the effects of manipulating

regions of a network. In the following subsection, we evaluate the results of one

intervention experiment, the silencing of DUSP1.

6.3.1 DUSP1 Silencing

After BCR stimulation, we identified increased expression of DUSP1 (MKP1), known

to be involved in cell cycle regulation [45] and the inhibition of which potentiates JNK-
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Figure 6-3: For the healthy network, the effects of uniformly perturbing each of the

first wave genes on all other genes in the network over time. The leftmost column

corresponds to the wave label.
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Figure 6-5: For the indolent network, the effects of

first wave genes on all other genes in the network

corresponds to the wave label.
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Table 6.2: Genes for potential intervention experiments (* hubs)

Column Probe Set

c 220725.x_at

f 209189_at

g 202081_at

j 229563_s_at

e 211998_at

i 201041_s_at

1 205967_at

m 214290_sat

o 224516-sat

a 201041_sat

b 227224_at

d 201044_xat

i 201464_xat

ni 209685_sat

t 226227.xat

H3F3B

DUSP1

HIST1H4C

HIST2H2AA

CXXC5*

DUSP1

R,ALGPS2*

DUSP1

JUN

PRKCB1

TALDO1
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DNAH3*

FOS

IER2

RPL10A*



related apoptosis [53]. We examine the consequences of down-regulation of DUSP1

using small interfering RNA after BCR activation in a patient with the aggressive

subtype of B-CLL in experiments described in detail by Vallat et al. [77]. By silencing

DUSP1, a first wave gene, the effect of the intervention is more local to the peak at

tl than overexpression, which would yield expression that is uniformly high, and the

shape of DUSP1 profile would be lost. Though the shape is not key to the analysis

here where we test the predictive ability of the network, it is important for future

experiments where more control over the expression profile is necessary.

In the Aggressive network, DUSP1 has direct connections to 37 genes. This

subnetwork is shown in Figure 6-6(a). It is important to remember that these do not

necessarily correspond to actual physical interactions, and microarray experiments

cannot provide this information because they only measure mRNA expression levels.

The intervention experiment described in this section, however, will help to identify

which genes are actually influenced as compared to ones that are simply correlated

with DUSPI. In the subnetwork, 25 of the 37 connections are to second wave genes via

F12 (in red), which confirms what was evident globally in the networks in Chapter

5. Most of the interactions are temporally local, despite not having imposed such

a constraint on the inference procedure. One of these connections is to a hub in

the Aggressive network, EGR1, a second wave gene. There are also 136 indirect

connections, many of them through EGRI, which explains in part why DUSPI was

identified as one of the potential target genes to manipulate in the previous sensitivity

analysis. The combination of direct and indirect connections is shown in Figure 6-

6(b).

Experimental Procedure

For the data set used for the DUSP1 experiment, details of the experimental proce-

dure are found in Vallat et al. [77]. While these experiments allow for greater control

over changes in expression, they are difficult to perform. In addition to identifying

the gene targeted for silencing, the RNAi with the correct action must be obtained,

and then it must be delivered inside the primary leukemia cells. It is extremely rare
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(a) Direct connections

4

4

(b) Direct and indirect connections

Figure 6-6: DUSP1 subnetwork (Aggressive network). DUSP1 is white, second wave

genes are red, third wave genes are blue, and fourth wave genes are green.
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to combine silencing, receptor stimulation, and collection of microarray data over

time in a systematic way. Therefore, we have a, unique opportunity to validate the

temporal interaction networks by testing their predictive ability of changes due to

silencing.

In the experiment itself, B cells were isolated from one UM-CLL patient (corre-

sponding to the Aggressive subtype) previously included in the microarray experiment

as described in Section 2.2. Cells were transfected with DUSP1 siRNA or siCON-

TROL non-targeting siRNA. Half of the cells were BCR. stimulated as described

previously, and RNA was collected at the same four time points. After reverse tran-

scription, real time quantitative PCR was performed to assess the silencing effect

observed on DUSPI to confirm that its expression level had been decreased as com-

pared to the control. DUSP1 mRNA expression was analyzed over four time points

and the six experimental conditions (DUSP1 silenced (US/S), siCONTROL non tar-

geting siR.NA transfected (US/S) and control non transfected B cells (US/S)). cRNA

was then hybridized to the HG-HU133 plus2.0 microarray as described previously.

Results

For each gene, we compute differential expression (stimulated minus unstimulated)

for the original patient data, the control, and the silencing. Because of the noisiness

of microarray data, the limitations of the models, and the other patients that were

included in the clustering of the genes and the inference of the predictive models,

we do not expect perfect quantitative predictions. For that reason, we evaluate the

quality of the predictions by whether or not for a given gene, the models correctly

predicted an increase or decrease due to the silencing relative to the control. We

do not predict the value at the first time point because of the temporal causality

constraints, i.e. changes at t1 do riot propagate to the rest of the genes until t2 . This

means that for every gene in the subnetwork, there is a maximum possible score of

three, which corresponds to correct predictions in direction of change at t2, t3, and t4.

Figure 6-7 shows a histograms of these prediction scores on a per gene basis, where

Figure 6-7(a) shows the scores for the 37 genes directly connected to DUSP1 in the
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network and Figure 6-7(b) shows the scores for the 136 indirectly connected genes.

The average prediction scores are 2.05 and 2.15, respectively. Thus for genes that are

expected to be influenced by DUSP1, the model predictions are correct nearly 70%

of the time, considerably better than chance, which would be 50%. Also, in addition

to noise effects, some of the genes would be expected to be simply correlated with,

not influenced by, DUSP1 and would not change predictably.

In Figure 6-7(c), the scores for genes that are linked to DUSP1 neither directly

nor indirectly are shown. These have an average score of 1.21, or correct predictions

approximately 40% of the time. These genes that are unrelated to DUSP1 should, in

theory, have the same expression levels in both the DUSP1 siRNA and the siCON-

TROL trials. Any differences that are seen in the data would be due to noise. The

model is obviously unable to predict these noise effects, so it should do no better

than chance, which is exactly what occurs. This strengthens the results with respect

to those genes that are related to DUSP1, as the model is uniquely able to predict

changes due to gene silencing.

In addition to the aggregate scoring results, we show in Figure 6-8 the actual data,

the predictions, and the input genes for EGR1 (a hub in the Aggressive network).

In the upper left, the differential expression profiles for EGR1 in the original data,

the DUSP1 silencing and the silencing control are shown. We display the network

predictions for each of those three cases in the upper right, and the model predicts

the direction of change correctly at time points t2 and t3. The three smaller plots

consist of the three input genes in the Aggressive network for EGR1, with DUSP1 on

the left. The effect of the silencing on the DUSP1 profile is most evident at tl, where

the differential expression decreases approximately five-fold.

The dominant input to EGR1 is DUSP1, with a connection strength of a =

0.77. While there is no confirmed interaction between EGR1 and DUSP1, these two

genes belong to the same functional group, according to the graph of the MAPK

signaling pathway presented in the KEGG PATHWAY database [40]. DUSP1 is also

known as MKP, and it regulates JUN and FOS transcriptional activity, and thus the

transcription of EGR1. We also show example results for specific genes in Figures 6-9
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through 6-13, with a mix of successful and unsuccessful predictions and genes from

waves 2, 3, and 4. These are the same style as Figure 6-8, where the actual data is

in the upper left, the prediction in the upper right, and the expression profiles of the

input genes are shown below. For those genes with prediction scores of 3 (Figures 6-9

and 6-10), the connection strengths between the targets and DUSP1 are a = 0.55

and a = 0.49, respectively. Because DUSP1 is the gene with the largest connection

strength for each of the targets, it is reasonable to expect the network to successfully

predict changes. Two genes with lower connection strengths, or less confidence in

the DUSP1-target relationship, are shown in Figures 6-11 and 6-12. Their prediction

scores are zero. Finally, the fourth wave gene shown in Figure 6-13 has a score of

2 and a connection strength of a = 0.4. These results are typical of those from the

remaining 30 genes directly linked to DUSP1.

6.4 Literature comparisons

In the previous two sections, we identified genes that appear to play important roles

in the genetic program of the BCR. signaling pathway by using the structure of the

networks and sensitivity analysis. From previous work in B cells, other genes have

been identified as well. In the following section, we discuss two well-characterized

examples of these, NF-kB and MYC.

6.4.1 NF-kB

The transcription factor NF-kB is believed to play a role in lymphoid tissue devel-

opment, immune, inflammatory, and environmental stress responses, and neuronal

signaling [61, 81]. As the experiments in this work are based on immune response

(activation of the B cell receptor), differences in the signaling response across subject

groups could be related to changes in the NF-kB expression profile or in the genes

that it influences. We investigate NF-kB in the temporal interaction networks and

compare the outgoing edges to known biological interactions.

In the subset of genes selected by the clustering, probe sets corresponding to NF-
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Figure 6-8: EGR1, a network target of DUSP1, prediction score is 2. Top left is the

actual expression profile, top right is the prediction, and the remaining plots are the

input genes.
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Figure 6-9: Network target of DUSP1, prediction score is 3. Top left is the actual

expression profile, top right is the prediction, and the remaining plots are the input

genes.
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Figure 6-10: Network target of DUSP1, prediction score is 3. Top left is the actual

expression profile, top right is the prediction, and the remaining plots are the input

genes.
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Figure 6-12: Network target of DUSP1, prediction score is zero. Top left is the actual

expression profile, top right is the prediction, and the remaining plots are the input

genes.
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Figure 6-13: Network target of DUSP1, prediction score is 2. Top left is the actual

expression profile, top right is the prediction, and the remaining plots are the input

genes.

kB are present for the Aggressive and Indolent groups. For the Aggressive network,

NF-kB has no outgoing edges. This does not necessarily mean that it does not

influence any other genes, only that it dos not provide the best predictions, either due

to subject inconsistency, noise, or modeling choices, for those genes that it is believed

to target. For the Indolent network, NF-kB has 3 outgoing edges which correspond

to relationships with PIM1, TNIP1, and HLA-F. At least one of these connections,

the edge to HLA-F, has been confirmed biologically as HLA-F is a direct gene target

of NF-kB [61]. TNIP1 [36] and PIM1 [90] are related to NF-kB, but there is not yet

evidence of a direct interaction. Because many of the genes are not annotated and

all interactions are certainly not yet know, verification of local regions of the network

is difficult, but these results show that the inferred links may correspond to physical

interactions in this case.
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6.4.2 MYC

The MYC proto-oncogene is believed to encode a transcription factor and emerged

as one of the top 5% of largest cellular hubs in a transcriptional regulatory network

inferred by Basso et al. [4]. Because MYC is extensively characterized as a transcrip-

tion factor, the inferred interactions were compared to those previously identified

by biochemical methods. In the networks that we inferred in Chapter 5, MYC was

present in all three subject groups (labeled as wave 2 in Healthy and wave 3 for

both Aggressive and Indolent). The expression profiles for each of the subjects are

shown in the top row of Figure 6-14. However, it had no outgoing edges in any of

the networks, which was unexpected. The first possible reason for this was that it is

much larger in magnitude than the cluster means for the waves to which it belongs,

which are shown in the bottom row of Figure 6-14. Because the interaction matrices

(Fk(-,(nput)k(ouput)) are based on the overall mode of interaction between pairs of waves,

the predictions of outlier genes such as MYC are not necessarily well represented.

This modeling choice did not appear to have affected known transcription factors in

the earlier waves but is an issue here.

A second reason for the lack of outgoing edges for MYC is that other genes better

predict the expression profiles of its known targets. We show examples from each

of the three subject groups in Figures 6-15, 6-16, and 6-17. The network inputs for

these genes actually appear to be less consistent than MYC, so either there are inter-

subject differences or noise effects that cause these genes to more accurately predict

the targets.

6.5 Comparisons across subject groups

From Chapter 2, we expect that some genes behave similarly across subjects. Many

of these will be non-BCR pathway related, and there will be no expression difference

in stimulated and unstimulated results. These were intentionally filtered out as part

of the background. Some genes that are be expected to be active in the BCR pathway

may still behave in similar ways across groups, while others will behave differently
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Figure 6-14: The top row has the expression profiles for MYC for each of the subjects,

divided by subject group. The bottom row has the cluster means of the wave class

for MYC.
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Figure 6-15: Prediction and network inputs of an example known target of MYC for

the Healthy group.
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Figure 6-16: Prediction and network inputs of an example known target of MYC for

the Aggressive group.
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Figure 6-17: Prediction and network inputs of a known target of MYC for the Indolent

group.
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Figure 6-18: Overlap of genes selected by wave clustering (500 per group)

either because of genetic differences, which may be related to the disease.

While the clustering is currently done independently within each subject group,
we compare the results across groups. In Figure 6-18, a Venn diagram displays a total

of 1028 genes that are included when all 3 groups are combined. Table 6.3 shows the

consistency of the labeling of the genes in this group. Interestingly, the Aggressive

and Indolent groups are the most similar in terms of the wave labels while in general,
it is the Aggressive group that is most dissimilar from the other two (see Chapter 4).

We can speculate that perhaps the differences between the two B-CLL groups that

cause the drastically differing prognoses is more due to magnitude and not shape of

the relevant gene expression profiles.
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Table 6.3: Wave label comparison across subject groups

Wave 1 Wave 2 Wave 3 Wave 4 Total

Healthy-Indolent 0 31 40 53 124

Healthy-Aggressive 0 20 61 40 121

Aggressive-Indolent 3 31 87 93 211

Healthy-Agg-Ind 0 19 27 28 74

6.5.1 Cross validation

We p)erform leave-one-out cross validation to test the consistency of the clustering

within and across subject groups. As in Section 5.4.4, we use a single subject from

the original data set as the testing data, and the remaining observations as the train-

ing data. We repeat this such that each subject is used once as the testing data,

held out from the clustering of its own type of network (Healthy, Aggressive, or Indo-

lent). For example, for subject Healthyl, the cluster parameters, memberships, and

log-likelihood scores were computed using the data from subjects Healthy2 through

Healthy6. Using the input data for Healthyl, we compute the log-likelihood score for

the data under the cluster parameters estimated from all the aggressive subjects and

the parameters estimated from all the indolent subjects. The results are shown in a

bar plot in Figure 6-19. If we were to use this method to classify subjects into groups

based on the maximum log-likelihood score, only 1 of 6 Healthy subjects are correctly

labeled as Healthy, 4 of 5 Aggressive subjects as Aggressive, and 6 of 6 Indolent sub-

jects as Indolent. The log-likelihood scores corresponding to evaluation under the

cluster parameters for the Healthy and Indolent groups are close to one another in

most cases, which is expected because of the the similarities in cellular behavior for

those two subject groups. Still, this does not separate the subjects successfully. As

we compute the log-likelihood score only based on the 1028 genes (those represented

in Figure 6-18), the classification results are even less successful.

For every subject, evaluation under the Aggressive parameters yields the best log-
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Figure 6-19: Log likelihood scores for leave one out cross-validation, as well as the

scores under the other two sets of cluster parameters

Hel He2 He3 He4 He5 Heb AgI Ag2 Ag3 Ag4 Agb Inl In2 Ind In4 Inb Inb
Subjects

Figure 6-20: Log likelihood scores for leave one out cross-validation, as well as the

scores under the other two sets of cluster parameters, for the 1028 selected genes
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Figure 6-21: Match scores for leave one out cross-validation, as well as the scores for

the other two subject groups.

likelihood scores. The reason for this is, in general, that the Aggressive group has

the largest magnitude differential expression, and the cluster parameters reflect these

large deflections. As we select only the top 500 genes (based on maximum a posteriori

values) from each group, these tend to have larger deflections compared to the re-

maining genes in the same waves, so they fit better under the Aggressive parameters.

Similar to the results in Chapter 3, log-likelihood scores do not necessarily capture

the quality of the clustering. The only thing that it provides here for discrimination

between subject groups is the shape of the expression profiles as opposed to the label

of the gene. For example, a gene may be classified as a second wave gene in the

Healthy group and as long as it fits the second wave cluster parameters for the Ag-

gressive group, the score will be high, even if the same gene is classified as third wave

for the Aggressive group. Therefore, instead of log-likelihood scores, we compute a

"match score," where we count the number of cluster label matches for the left-out

subject and each subject group. For all genes, the results are shown in Figure 6-21.

Under this criterion, 4 of 6 Healthy subjects are classified as Aggressive, and the

other 2 are classified as Indolent. The 5 Aggressive patients are classified correctly. 3
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Figure 6-22: Match scores for leave one out cross-validation, as well as the scores for

the other two subject groups for the 1028 selected genes.

of 6 Indolent patients are classified correctly, as 1 is classified as Healthy, and 2 are

classified as Aggressive. We have already established that there are a considerable

number of genes unrelated to the BCR pathway and likely unrelated to B-CLL that

would be included in the computation. Therefore, we again compute the match score

based only the 1028 genes previously selected (see Figure 6-22).

This correctly classifies 4 of 6 Healthy, 4 of 5 Aggressive, and 6 of 6 Indolent.

One interesting note is that Aggressive5 was actually originally classified in [78] as

a Mutated/Indolent patient, and that is the one that is misclassified here as well.

Regardless, this method correctly classifies 14 of 17 subjects, and while this is not

perfect, it does serve to show that some number of the 1028 genes behave differently

across subject groups.

6.5.2 Network overlap

The network clusters were computed and the predictive models inferred independently

for each subject group, and part of the long term goal of this work is to determine how

to target and treat local differences that occur in a disease-specific sense. A logical
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Table 6.4: Edges in common in the interaction networks

Number of Edges

Healthy-Indolent 9

Healthy-Aggressive 11

Aggressive-Indolent 37

Healthy-Agg-Ind 1

step would be to visualize the networks simultaneously. First, this requires placing

1028 genes and more than 4000 edges in the image, which is shown in Figure 6-23. We

use the colors from the Venn diagram in Figure 6-18 to show which genes are common

across which subject groups. For example, red corresponds to Aggressive only, green

to Indolent only, and yellow to both Aggressive and Indolent. The genes in white are

those that are common to all three subject groups. The wave cluster labels are also

not consistent across subject groups, as was shown in Table 6.3. Therefore, not only

is there a limited subset of genes that are present in more than one subject group, but

those that are may have different labels, so the networks have a very small amount

of overlap with respect to their edges. The number of edges that are in common are

shown in Table 6.4. As before, there is the most overlap between the Aggressive and

Indolent groups, likely because of the greater similarity in wave labels. Because these

common edges comprise only about 1% of the total edges in the combined network

in Figure 6-23, the visualizations that best show the network structure are those that

separate the subject groups completely, as in Figure 5.3.

Ideally, we would infer a combined network by adjusting the formulation described

in Chapter 5 by combining information for all subjects in common parts of the net-

work, those that correspond to general B cell response. It would take advantage of the

additional subject data available for those regions, averaging out non-disease-related

inconsistency and noise. Population or disease-specific differences would then allow

analysis of the relatively small number of genes that discriminate between groups. A

combined network would take us one step closer to determining where exactly the
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Figure 6-23: Combined network, where the node colors correspond to the colors in

Figure 6-18.
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differences between B-CLL patients and healthy subjects occur, as well as how to

manipulate the cell to repair those differences.

One part of inferring a combined network is determining how to combine subjects

across groups in the assignment of cluster labels. As was discussed in Chapter 4,

given our extremely limited number of subjects, a consistent, meaningful breakdown

of subject groups and genes is not yet possible in our data set. An additional opportu-

nity for future work is in not only combining the subject groups but also in combining

the clustering of the genes with the how they predict their targets. Because of the

simplifying assumptions made in the predictive model inference step, how genes in-

teract is largely determined by which wave class they have been assigned. It is likely

that not all wave 1 genes interact with all wave 2 genes in the same way, for example.

While this could be addressed by allowing predictions to be drawn from a distribution

around the limited modes of interaction, it could also be solved by integrating the

clustering and predictive model inference.

6.6 Summary

In this chapter, we have presented the biological implications of the clustering and the

predictive modeling, providing both confirmatory results and insight into the design

of future experiments. Given the scale-free structure of the temporal interaction

networks, we identified a small number of genes with a large number of outgoing

edges as network hubs. Also, with sensitivity analysis, we propagated the effects

of manipulation of first wave genes to the remaining genes in the network. These

techniques allowed us to select genes that play important roles in the network and

served as starting points for literature comparisons in terms of gene function (e.g.

known transcriptions factors that had been labeled as hubs) and physical interactions.

Guided by previous biological results, we also investigated the behavior of NF-kB and

MYC and their targets. In addition to comparisons to previous work, the results of

anl intervention experiment, the silencing of DUSPI show the predictive ability of the

network. In order to test the network further, and to differentiate between causal
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and correlative relations, similar intervention experiments could be performed based

on the results of the sensitivity analysis.

For the clustering, which has been performed independently within each subject

group, we compared wave labels across subject groups. Leave-one-out cross validation

showed that label match scores based on the subset of genes identified as differentially

active as a result of BCR stimulation are successful in classifying 14 of 17 subjects.

Finally, we combine the genes identified into a single visualization of the interaction

network, address the reasons for presenting the networks separately, and suggest

potential paths for future work.

146



Chapter 7

Conclusions

In this work, we recognized that for B cell chronic lymphocytic leukemia (B-CLL),

understanding the underlying disease process is a vital component in making progress

toward effective diagnosis and targeted treatment. Little is known thus far, except

that the response to B cell receptor stimulation appears to be related to key differences

between the B-CLL patients and healthy subjects, as well as the aggressive and

indolent forms within the B-CLL patient population. We therefore inferred predictive

models of temporal gene interaction for the B cell receptor (BCR) signaling pathway.

To that end, we took advantage of the advances in microarray technology to

collect differential expression data of more than 50,000 genes for 17 subjects (both

healthy and suffering from B-CLL), coarsely sampled with 4 time points over 390

minutes. This large amount of data led us to consider clustering techniques to iden-

tify which genes were most relevant to the BCR signaling pathway and at what times

they were most active. We designed simple statistical models in order to capture

the temporal behavior seen in the pilot study, and estimated the parameters in an

Expectation-Maximization framework, resulting in clusters with a biological interpre-

tation. Compared to a naive approach that did not require any prior knowledge of

the cluster structure, the wave clusters have similar shapes for each patient group,

with smaller intra-cluster variance relative to the means. Both clustering procedures

show that there is statistically significant temporal structure that can be extracted

from the data, but the wave clustering also consistently grouped genes in the same
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waves together and in different waves separately, despite perturbations of the input

data with noise. We have shown for our application that, the wave clustering proce-

dure produces stable, consistent and meaningful models of the differential expression

profiles of genes related to BCR stimulation. In addition, wave clustering serves as a

first step in order to make predictive modeling, as described in Chapter 5, tractable.

Because of the extremely limited number of subjects, the inference problem for

temporal gene interaction is severely ill-posed. Therefore, we used the cluster labels,

which have a consistent biological interpretation, to define a small number of modes

of interaction between the genes. We also imposed sparsity to limit the number of

genes influencing each target gene. Both of these choices were made in order to

make inference tractable, but they are also biologically supported. We tested the

statistical significance of the models, demonstrating that labeling, model constraints,

and connectivity constraints are not arbitrary. We conclude, therefore, that temporal

structure exists and that it can be captured to some degree by a small number of

temporal structures and interaction types.

We showed that the scale-free network structure is consistent with what has been

found in protein interaction networks [8], where a small number of proteins serve

as hubs for very large numbers of interactions. We addressed the issue of distin-

guishing relationships of causality from those simply of correlation with intervention

experiments. Because intervention experiments are expensive and time-consuming to

perform, selection of potential target genes by combining wave cluster labeling and

sensitivity analysis of the networks is an important contribution of this work. The

results of one of these intervention experiments, the silencing of DUSP1 in an pa-

tient with aggressive subtype of B-CLL, showed the models of gene interaction are

uniquely able to predict changes due to gene silencing. This type of biological exper-

iment provides a confirmatory result, but identification of other potential targets of

genetic intervention also guides future experiments.

Though our application here is specific to B-CLL and BCR stimulation, similar

techniques could be applied to virtually any type of experimental conditions because

one of the fundamental problems in biology is understanding genomic function. In
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addition to the purely scientific value, this knowledge can be applied to investigating

the mechanisms of human disease. Predictive models will permit us to investigate the

underlying cause of diseases and help us to develop targeted therapies. While DNA

microarray technology has made it possible to monitor the expression levels for tens

of thousands of genes in parallel, the large number of genes and the complexity of

biological networks greatly increases the challenges of comprehending and interpreting

the data for this purpose. The scale of the experimental data available has increased so

rapidly that it is simply not possible to reconstruct networks manually, and therefore,

interpretation of gene expression data requires sophisticated computational methods

to gain insight into the inner workings of cells. This means that the collaboration in

this work is but one example of how machine learning can provide insights into the

global patterns and relationships of expression in cellular behavior.
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Appendix A

Derivation of the EM Algorithm

In Chapters 3 and 4, we use the Expectation-Maximization algorithm to cluster genes,

subjects, or both. This appendix shows the derivation of the algorithm originally

presented by Dempster, Laird and Rubin [22], with the aid of details in intermediate

steps from a tutorial by Borman [7]. We also provide a simple example of a Gaussian

mixture model and derive the parameter update equations.

A.1 Derivation

The data X is a random vector which results from a parameterized family, and the

goal is to find the values of the parameters e, such that P(XIO) is a maximum, in

the presence of missing or hidden data. The EM algorithm is an efficient iterative

procedure to compute the Maximum Likelihood (ML) estimate by maximizing the

log-likelihood function, which is defined as:

L(8) = In P(XI-) )  (A.1)

At each iteration, we intend to compute an updated estimate of E such that:

L(O) > L(Ok) (A.2)

where the superscript k denotes the value at the current iteration. We therefore

maximize the difference:

L(o) - L(Ek) = ln(P(XIE) - In(P(Xl) k) (A.3)
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We now incorporate the hidden variable, which, in the case of clustering, is the class

label. If the hidden data (labels) were known, we would easily be able to compute

the parameters for each of the classes.

M

P(XIO) = P(Xm', e)P(mlO) (A.4)
m=~

Substituting back in to Equation A.3:

M

L(O) - L(8k) = In E P(Xlm, O)P(ml8) - In P(XIEk) (A.5)
m=1

At this point, we introduce Jensen's Inequality, which states:

N N

In E Anxn An In xn (A.6)
n=1 n=1

where:

An 0 (A.7)
N

SAn = 1 (A.8)
n=1

In this case, P(mIX, Ok), the posterior probability of a given class, fulfills both of

these conditions for An. We substitute back into A.3 again, this time using Jensen's

Inequality to move the summation outside the log:

L(-)) - L(ok) = In E P(XIm, E)P(m E) - In P(X)( k) (A.9)
m=1 P(mJX, Ek)

M1

Our objective is to choose values of O so that L(8) is maximized, so we define the

function Q(08|k) that is guaranteed to be less than or equal to L(O):

Q(H Gk) = L(ek) + i P(m X, Ok)n P(Xjm, e)P(m e) (A.11)
m=1

In the Expectation Step, we compute P(mIX, ek) based on the current parameter val-

ues, and then in the Maximization Step, we use that compute Ek+1 which maximizes
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Q(elok):

Ek+l = arg max Q(El k) (A.12)
e

M P(Xim, H)P(mjE)
= arg max L(Ek) + E P(mlX, e k) n P(Xm,e)P(mlk)) (A.13)

e m=lP(mlX,k)P(X k)
M

- arg max P(mlX, Ok) In (P(Xlm, O)P(mle)) (A.14)
m=1

A.2 EM Example

We provide a very simple example of how the EM algorithm can be used for clustering.

The EM equations are derived for the case of a mixture of Gaussians, in which the

class label is the hidden data. The derivations are similar for the more complicated

clustering in Chapters 3 and 4.

A.2.1 Generative Model

The data X is an Nxl vector, which we assume has been generated from a mixture

of M Gaussians, each with a mean /p and variance u 2. Ok includes all parameters of

all the clusters at iteration k.

M N

P( (9) = E J P(x,, , (9) (A.15)
m=1 n=1

A.2.2 Expectation Step

PP(xnm, (k)k)P(mjOk) (A.16)
P(ml , k) = M Ok(A.16)k)

EM,=1 P(xnM, k)P( k)

= Wnm (A.17)

This provides an NxM matrix of weights that will be used to compute the parameters

in the Maximization Step. Specifically for the mixture of Gaussians:

P(x,Im, k)= 1 exp 2 (A.18)
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where P(m ()k) is the current mixture proportion for class m under the parameters

8k.

A.2.3 Maximization Step

We first assume a product model, in which each element of F is an independent draw:

P(£lm, ) = (A.19)
N

H P(x m', O)
n=l

and by taking the log of both sides:

N

In P(Alm, E) = In P(xzlm, ))
n=1

(A.20)

(A.21)= In P(x,lm, 6)
n=1

The expectation over all possible models is then:

(A.22)

(A.23)

m=1
M N

= E Wnm
m=1 n=1

Therefore, the computation of Q((-)Ok) reduces to:

M N

Q(k 0k) = L()k) + Z
m=1 n=1
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M N

ZE 1 P((j.n, Ok)
m=l n=l

P(mlI, ek) k

wnm In(P(xn lm, 8)P(m ))



We begin with /t for a given class m and drop all the terms that do not depend on M

as we simplify:
N

arg max E wnl I(P(x Im, e)P(mle)) (A.25)
n=1

N

arg max E wnm(ln P(xnIm, 8) + In P(m 8)) (A.26)
n=1

N

arg max E wnm(ln P(xnlm, 0)) (A.27)
n=1N

N 1 -(x - _t)2 (A.28)
arg max E Wnm(n exp 2 8)

E n=1 r22or

arg max Wnm- I2  2  (A.29)g n n=1 2'2

(A.30)

Taking the derivative with respect to [L and setting it equal to zero gives us:
N

SWnm(Xn - ) = 0 (A.31)
n=1

Solving for up:

N-n=1 WnmXn (A.32)
n=1 Wnm

This is equivalent to taking a weighted average of the data to compute the cluster

mean. In a similar way, the variance for a cluster is (using the value for /t just

computed):

a2 _ E 1 Wnm(n - )2 (A.33)
En=l Wnm

Finally, the mixture proportions require the addition of an additional constraint be-

cause they must sum to one:
N M

arg max w,, In(P(xn m, 8)P(mO)) - A( P(mle) - 1) (A.34)
n=l m=1

N M

arg maxE wnm(ln P(xn m, ) - In P(mle)) - A( P(mlI)) - 1) (A.35)
n=1 m=1
N M

arg max wnm(lnP(m|E)) - A( P(ml) - 1) (A.36)
G n=1 m=1
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Taking the derivative with respect to P(m|O) and setting it equal to zero gives us:

En=Wnm -A = 0 (A.37)
P(mle)

Rearranging to solve for P(mlO) yields:

N
P(nml) = E Wnm (A.38)

n=1

To solve for A, we sum both sides over M:

M MNSP(ml-e)= Wnm (A.39)
m=1 m=1 n=1

By definition, the left side is equal to 1, so:

MN

A : EWnm (A.40)
m=1 n=1
NM

E EWnm (A.41)
n=1 m=1
N

= 1 (A.42)
n=1

=N (A.43)

Finally, substituting in the value for A:

P(mle) = - Wnm (A.44)
n=1
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