
408

JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

A SYSTEMATIC READING IN STATISTICAL TRANSLATION: 
FROM THE STATISTICAL MACHINE TRANSLATION TO THE 

NEURAL TRANSLATION MODELS.

Zakaria El Maazouzi, Badr Eddine El Mohajir & 
Mohammed Al Achhab

N2T Laboratory, National School of Applied Sciences
University Abdelmalek Essaadi, Morocco

z.elmaazouzi.ma@ieee.org; b.elmohajir@ieee.ma; alachhab@ieee.ma

ABSTRACT

Achieving high accuracy in automatic translation tasks has been  
one of the challenging goals for researchers in the area of machine 
translation since decades. Thus, the eagerness of exploring new 
possible ways to improve machine translation was always the 
matter for researchers in the field. Automatic translation as 
a key application in the natural language processing domain 
has developed many approaches,  namely statistical machine 
translation and recently neural machine translation that improved 
largely the translation quality especially for Latin languages. They 
have even made it possible for the translation of some language 
pairs to approach human translation quality. In this paper, we 
present a survey of the state of the art of statistical translation, 
where we describe the different existing methodologies, and we 
overview the recent research studies while pointing out the main 
strengths and limitations of the different approaches. 

Keywords: Neural networks, recurrent neural networks, natural language 
processing, neural language model.

INTRODUCTION

Automatic translation of natural languages or machine translation framework 
refers to making use of computing power to build sophisticated data models 

Received: 3 July 2017         Accepted: 28  August 2017



JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

409

to translate one source language into another. Since the beginning through 
the late 1960s, many researchers have focused on presenting new techniques 
and improving the performance of automatic translation systems. Through 
all the past years, the machine translation research community has proposed 
different approaches, namely the phrase-based statistical machine translation, 
the most widely used. The core of the SMT approach refers to using count-
based probability models which estimates the probabilities of units based on 
the analysis of the monolingual and bilingual corpora. Statistical machine 
translation has exponentially improved since IBM pioneered its word-based 
model in the late 1980s and early 1990s (Brown et al., 1990, Brown et al., 1993, 
Berger et al., 1994). Also with the introduction of phrase-based translation 
(Och et al. 1999, Marcu and Wong 2002, Kohen et al., 2003, Ochand Ney, 
2004). 

Recently researchers have proposed a novel approach for automatic translation 
completely based on artificial neural networks known as neural machine 
translation or encoder-decoder models. Intuitively, neural machine translation 
conducts an end-to-end translation, using a source language encoder and 
a target language decoder. This technique showed interesting results and 
improvement in the state of the art results in the field of statistical translation 
(Sutskever et al., 2014; Bahdanau et al., 2014; Luong et al., 2015; Gulcehre 
et al., 2015).

To the best of our knowledge, no previous work presenting a survey of the 
novel methodologies of neural machine translation have been published lately. 
Moreover, surveys studies used to be a solid source of ideas and information 
for interested individuals with no prior knowledge in a given field. For all 
these purposes, in this endeavor, we capitalize on the findings of the relevant 
published studies addressing the neural machine translation to present a 
document that summarizes the different aspects and advances in this topic. To 
ensure a good understanding of the discussed concepts, we will go through a 
detailed reading in machine translation, starting with an extended introduction 
to statistical and neural machines translation. This is followed by a survey of 
a selection of empirical studies recently published and concerning particularly 
with neural machine translation. A discussion section to analyze the advances 
and point towards the open lines of research that still requires more work in 
the area of neural machine translation.



410

JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

GENERAL FRAMEWORK OF STATISTICAL TRANSLATION 

Figure 1. Simplified machine translation architecture.

The statistical machine translation in Figure 1 involves two distinct processes, 
generally following the machine learning workflow: training and decoding (or 
test), in order to train probabilistic models to search for  the best translation. 
Training being a core part of the learning process, it refers to using count-
based probability calculations on the dataset to train two statistical models; 
the first known as a translation model trained on a parallel corpus of the 
source and target datasets, and a language model extracted from training 
on a monolingual corpus. In statistical machine translation, a single source 
sentence could be mapped to many possible translations, i.e. the translation 
function is a conditional probability distribution P(T S) over a target sentence 
T, given the source sentence S. Thus the statistical machine translation core 
idea is to search for the  translation that maximizes the former probability, 
i.e. the most appropriate for a given input sentence. Here the search problem 
might be addressed via two models used to score the candidate’s translation, 
the noisy channel and the log-linear models. In what follows, we will give a 
definition of these two models and other important concepts of the statistical 
machine translation.



JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

411

Noisy channel model. The noisy channel is a generative statistical model 
traditionally used in literature in statistical translation. It involves the product 
(3) of two features referring to the translation and language models P(ST) and 
P(T). The former, presents the likelihood that the source sentence S and the 
candidate translation T are translationally equivalent, i.e. a stochastic process 
that corrupts the target language to produce source language sentences while 
the second is a stochastic model trained on a monolingual corpus of the target 
language to generate target language sentences and asses the validity and the 
fluency of the candidate translation T in the target context. The main intuition 
behind the noisy channel model is to predict the target sentence equivalent for 
a given source sentence, via maximizing the probability P(TS):

							               (1)

Then by applying the Bayes rule, we get:

As for a different E, P(S) is always constant we get:

								             (2)
	
Log-linear model. The log-linear model refers to the use of a discriminative 
model as a generalization of the noisy channel model, which brings more 
context into the modeling process. Log-linear is based on the maximization of 
the sum of several weighted features hm, where the weights or model scaling 
factors λm are used to determine the contribution of a single feature to the 
overall model. Here as the model’s name indicates, log probabilities are used 
to express the translational, language models, distortion and other features.

								             (3)

Translational model. The main purpose of the translation equivalence model 
is to estimate the lexical correspondence between the source and the target 
sentences. This model is trained to learn to model the translation of the input, 
the number of words in the output, the order of the translation within the 
output sentence, and the number of words to be generated. Features which are 
statistically referred to are : 

𝐸𝐸  =  argmax𝐸𝐸 𝑃𝑃(𝑇𝑇|𝑆𝑆)  (1) 

Then by applying the Bayes rule, we get: 

𝐸𝐸 =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)
𝑃𝑃(𝑆𝑆)    

As for a different E, P(S) is always constant we get: 
 

𝐸𝐸  =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)  (2) 

 
 

𝑇𝑇  =  argmax
𝑇𝑇 

∑ λ𝑚𝑚
𝑀𝑀

𝑚𝑚=1
.ℎ𝑚𝑚(𝑇𝑇, 𝑆𝑆)  (3) 

 

𝑃𝑃(𝑆𝑆) =  𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  (4) 

 

𝑃𝑃(𝑤𝑤1, … ,𝑤𝑤𝑤𝑤) =  ∏𝑃𝑃(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−(𝑛𝑛−1), … . ,𝑤𝑤𝑖𝑖−1) (5)
𝑛𝑛

𝑖𝑖=1
 

𝑃𝑃(𝑆𝑆) =  𝑃𝑃(𝑗𝑗𝑗𝑗|Ø).𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗).𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

Where for each factor:  𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝑁𝑁(𝑗𝑗𝑗𝑗 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)
𝑁𝑁(𝑗𝑗𝑗𝑗)

 

By implementing the linear interpolation we get: 

𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝜆𝜆2
𝑁𝑁(𝑗𝑗𝑗𝑗,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

𝑁𝑁(𝑗𝑗𝑗𝑗)
+ 𝜆𝜆1

𝑁𝑁(𝑗𝑗𝑗𝑗)
𝑁𝑁(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)

+ 𝜆𝜆0 

 
ℎ𝑡𝑡 =  𝐹𝐹𝜃𝜃(𝑥𝑥𝑡𝑡 ,ℎ𝑡𝑡−1)(6) 

𝑝𝑝(𝑋𝑋) to be written as a recurrence, i.e. first it is rewritten as a probability of all the sequences 
composing it, 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). Then by applying the definition of conditional probability 

𝑝𝑝(𝑋𝑋|𝑌𝑌) =   𝑃𝑃(𝑋𝑋,𝑌𝑌)
𝑃𝑃(𝑌𝑌)   on the integrity of the words we get: 

 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1)𝑝𝑝(𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑥𝑥3|𝑥𝑥1, 𝑥𝑥2) …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1)(7). Consequently, a recursive formula 
could be formulated as 𝑝𝑝(𝑋𝑋) =  ∏ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) (8)𝑇𝑇

𝑡𝑡=1  with: 

- 𝑠𝑠𝑡𝑡: A sequence at time 𝑡𝑡.  
- 𝑠𝑠<𝑡𝑡: Refers to all the sequences before time 𝑡𝑡.  

By introducing an RNN language model 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) at each time 𝑡𝑡 we get: 

{ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) =  𝑔𝑔𝜃𝜃(ℎ𝑡𝑡−1) (9)
ℎ𝑡𝑡−1 = ∅𝜃𝜃(𝑥𝑥𝑡𝑡−1,ℎ𝑡𝑡−2) (10)  

𝐸𝐸  =  argmax𝐸𝐸 𝑃𝑃(𝑇𝑇|𝑆𝑆)  (1) 

Then by applying the Bayes rule, we get: 

𝐸𝐸 =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)
𝑃𝑃(𝑆𝑆)    

As for a different E, P(S) is always constant we get: 
 

𝐸𝐸  =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)  (2) 

 
 

𝑇𝑇  =  argmax
𝑇𝑇 

∑ λ𝑚𝑚
𝑀𝑀

𝑚𝑚=1
.ℎ𝑚𝑚(𝑇𝑇, 𝑆𝑆)  (3) 

 

𝑃𝑃(𝑆𝑆) =  𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  (4) 

 

𝑃𝑃(𝑤𝑤1, … ,𝑤𝑤𝑤𝑤) =  ∏𝑃𝑃(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−(𝑛𝑛−1), … . ,𝑤𝑤𝑖𝑖−1) (5)
𝑛𝑛

𝑖𝑖=1
 

𝑃𝑃(𝑆𝑆) =  𝑃𝑃(𝑗𝑗𝑗𝑗|Ø).𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗).𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

Where for each factor:  𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝑁𝑁(𝑗𝑗𝑗𝑗 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)
𝑁𝑁(𝑗𝑗𝑗𝑗)

 

By implementing the linear interpolation we get: 

𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝜆𝜆2
𝑁𝑁(𝑗𝑗𝑗𝑗,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

𝑁𝑁(𝑗𝑗𝑗𝑗)
+ 𝜆𝜆1

𝑁𝑁(𝑗𝑗𝑗𝑗)
𝑁𝑁(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)

+ 𝜆𝜆0 

 
ℎ𝑡𝑡 =  𝐹𝐹𝜃𝜃(𝑥𝑥𝑡𝑡 ,ℎ𝑡𝑡−1)(6) 

𝑝𝑝(𝑋𝑋) to be written as a recurrence, i.e. first it is rewritten as a probability of all the sequences 
composing it, 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). Then by applying the definition of conditional probability 

𝑝𝑝(𝑋𝑋|𝑌𝑌) =   𝑃𝑃(𝑋𝑋,𝑌𝑌)
𝑃𝑃(𝑌𝑌)   on the integrity of the words we get: 

 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1)𝑝𝑝(𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑥𝑥3|𝑥𝑥1, 𝑥𝑥2) …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1)(7). Consequently, a recursive formula 
could be formulated as 𝑝𝑝(𝑋𝑋) =  ∏ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) (8)𝑇𝑇

𝑡𝑡=1  with: 

- 𝑠𝑠𝑡𝑡: A sequence at time 𝑡𝑡.  
- 𝑠𝑠<𝑡𝑡: Refers to all the sequences before time 𝑡𝑡.  

By introducing an RNN language model 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) at each time 𝑡𝑡 we get: 

{ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) =  𝑔𝑔𝜃𝜃(ℎ𝑡𝑡−1) (9)
ℎ𝑡𝑡−1 = ∅𝜃𝜃(𝑥𝑥𝑡𝑡−1,ℎ𝑡𝑡−2) (10)  

𝐸𝐸  =  argmax𝐸𝐸 𝑃𝑃(𝑇𝑇|𝑆𝑆)  (1) 

Then by applying the Bayes rule, we get: 

𝐸𝐸 =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)
𝑃𝑃(𝑆𝑆)    

As for a different E, P(S) is always constant we get: 
 

𝐸𝐸  =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)  (2) 

 
 

𝑇𝑇  =  argmax
𝑇𝑇 

∑ λ𝑚𝑚
𝑀𝑀

𝑚𝑚=1
.ℎ𝑚𝑚(𝑇𝑇, 𝑆𝑆)  (3) 

 

𝑃𝑃(𝑆𝑆) =  𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  (4) 

 

𝑃𝑃(𝑤𝑤1, … ,𝑤𝑤𝑤𝑤) =  ∏𝑃𝑃(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−(𝑛𝑛−1), … . ,𝑤𝑤𝑖𝑖−1) (5)
𝑛𝑛

𝑖𝑖=1
 

𝑃𝑃(𝑆𝑆) =  𝑃𝑃(𝑗𝑗𝑗𝑗|Ø).𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗).𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

Where for each factor:  𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝑁𝑁(𝑗𝑗𝑗𝑗 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)
𝑁𝑁(𝑗𝑗𝑗𝑗)

 

By implementing the linear interpolation we get: 

𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝜆𝜆2
𝑁𝑁(𝑗𝑗𝑗𝑗,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

𝑁𝑁(𝑗𝑗𝑗𝑗)
+ 𝜆𝜆1

𝑁𝑁(𝑗𝑗𝑗𝑗)
𝑁𝑁(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)

+ 𝜆𝜆0 

 
ℎ𝑡𝑡 =  𝐹𝐹𝜃𝜃(𝑥𝑥𝑡𝑡 ,ℎ𝑡𝑡−1)(6) 

𝑝𝑝(𝑋𝑋) to be written as a recurrence, i.e. first it is rewritten as a probability of all the sequences 
composing it, 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). Then by applying the definition of conditional probability 

𝑝𝑝(𝑋𝑋|𝑌𝑌) =   𝑃𝑃(𝑋𝑋,𝑌𝑌)
𝑃𝑃(𝑌𝑌)   on the integrity of the words we get: 

 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1)𝑝𝑝(𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑥𝑥3|𝑥𝑥1, 𝑥𝑥2) …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1)(7). Consequently, a recursive formula 
could be formulated as 𝑝𝑝(𝑋𝑋) =  ∏ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) (8)𝑇𝑇

𝑡𝑡=1  with: 

- 𝑠𝑠𝑡𝑡: A sequence at time 𝑡𝑡.  
- 𝑠𝑠<𝑡𝑡: Refers to all the sequences before time 𝑡𝑡.  

By introducing an RNN language model 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) at each time 𝑡𝑡 we get: 

{ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) =  𝑔𝑔𝜃𝜃(ℎ𝑡𝑡−1) (9)
ℎ𝑡𝑡−1 = ∅𝜃𝜃(𝑥𝑥𝑡𝑡−1,ℎ𝑡𝑡−2) (10)  

𝐸𝐸  =  argmax𝐸𝐸 𝑃𝑃(𝑇𝑇|𝑆𝑆)  (1) 

Then by applying the Bayes rule, we get: 

𝐸𝐸 =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)
𝑃𝑃(𝑆𝑆)    

As for a different E, P(S) is always constant we get: 
 

𝐸𝐸  =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)  (2) 

 
 

𝑇𝑇  =  argmax
𝑇𝑇 

∑ λ𝑚𝑚
𝑀𝑀

𝑚𝑚=1
.ℎ𝑚𝑚(𝑇𝑇, 𝑆𝑆)  (3) 

 

𝑃𝑃(𝑆𝑆) =  𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  (4) 

 

𝑃𝑃(𝑤𝑤1, … ,𝑤𝑤𝑤𝑤) =  ∏𝑃𝑃(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−(𝑛𝑛−1), … . ,𝑤𝑤𝑖𝑖−1) (5)
𝑛𝑛

𝑖𝑖=1
 

𝑃𝑃(𝑆𝑆) =  𝑃𝑃(𝑗𝑗𝑗𝑗|Ø).𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗).𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

Where for each factor:  𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝑁𝑁(𝑗𝑗𝑗𝑗 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)
𝑁𝑁(𝑗𝑗𝑗𝑗)

 

By implementing the linear interpolation we get: 

𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝜆𝜆2
𝑁𝑁(𝑗𝑗𝑗𝑗,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

𝑁𝑁(𝑗𝑗𝑗𝑗)
+ 𝜆𝜆1

𝑁𝑁(𝑗𝑗𝑗𝑗)
𝑁𝑁(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)

+ 𝜆𝜆0 

 
ℎ𝑡𝑡 =  𝐹𝐹𝜃𝜃(𝑥𝑥𝑡𝑡 ,ℎ𝑡𝑡−1)(6) 

𝑝𝑝(𝑋𝑋) to be written as a recurrence, i.e. first it is rewritten as a probability of all the sequences 
composing it, 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). Then by applying the definition of conditional probability 

𝑝𝑝(𝑋𝑋|𝑌𝑌) =   𝑃𝑃(𝑋𝑋,𝑌𝑌)
𝑃𝑃(𝑌𝑌)   on the integrity of the words we get: 

 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1)𝑝𝑝(𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑥𝑥3|𝑥𝑥1, 𝑥𝑥2) …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1)(7). Consequently, a recursive formula 
could be formulated as 𝑝𝑝(𝑋𝑋) =  ∏ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) (8)𝑇𝑇

𝑡𝑡=1  with: 

- 𝑠𝑠𝑡𝑡: A sequence at time 𝑡𝑡.  
- 𝑠𝑠<𝑡𝑡: Refers to all the sequences before time 𝑡𝑡.  

By introducing an RNN language model 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) at each time 𝑡𝑡 we get: 

{ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) =  𝑔𝑔𝜃𝜃(ℎ𝑡𝑡−1) (9)
ℎ𝑡𝑡−1 = ∅𝜃𝜃(𝑥𝑥𝑡𝑡−1,ℎ𝑡𝑡−2) (10)  



412

JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

-	 Lexical equivalence probability that relates to the likelihood that the 
source word S is translated into the target word T.

-	 Fertility models the probability that the word S generates a number of 
new words.

-	 Distortion d(j i, m, n) relates to the probability that the word in the j 
position generates a word in the i position given the length of the source 
and the target sentences m and n respectively.

-	 The probability that a target word is generated from ԑ.

Language model. It is an assessment model that estimates how probable a 
sentence is correctly translated into the target language. A naïve estimation 
on a monolingual corpus with N sentences is extracted from the frequency 
calculation of a unit s (4):

								             (4)

This formula is obviously underperforming when dealing with long sentences 
or unseen units in a corpus, as it is difficult to get a reliable estimation for 
sentences which are not occurring in the dataset, i.e. the use of naïve estimation 
in those cases would result in a zero probability. From this perspective, 
researchers have investigated the use of the n-gram approach to extract the 
language model estimation. So what is n-gram?

N-gram. The n-gram approach as derived from the Markov assumption. 
It emphasizes that only the previous n − 1 words matter to predict a word 
at a position i. Basically, n-gram refers to breaking a given sentence into 
smaller sequences to simplify the process. This technique helps in calculating 
the probability distribution of the full configuration as the product of the 
probability of each word wi conditioned on the n previous words referring to a 
predefined window size e.g. unigram, bigram, trigram… (5). 

								             (5)

To not discard infrequent units, a linear interpolation technique is implemented 
to smooth the conditional probabilities and prevent resulting in zero probability, 
e.g. for an input sentence “je voyagerai demain,” if we use a bigram model 
we get:

𝐸𝐸  =  argmax𝐸𝐸 𝑃𝑃(𝑇𝑇|𝑆𝑆)  (1) 

Then by applying the Bayes rule, we get: 

𝐸𝐸 =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)
𝑃𝑃(𝑆𝑆)    

As for a different E, P(S) is always constant we get: 
 

𝐸𝐸  =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)  (2) 

 
 

𝑇𝑇  =  argmax
𝑇𝑇 

∑ λ𝑚𝑚
𝑀𝑀

𝑚𝑚=1
.ℎ𝑚𝑚(𝑇𝑇, 𝑆𝑆)  (3) 

 

𝑃𝑃(𝑆𝑆) =  𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  (4) 

 

𝑃𝑃(𝑤𝑤1, … ,𝑤𝑤𝑤𝑤) =  ∏𝑃𝑃(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−(𝑛𝑛−1), … . ,𝑤𝑤𝑖𝑖−1) (5)
𝑛𝑛

𝑖𝑖=1
 

𝑃𝑃(𝑆𝑆) =  𝑃𝑃(𝑗𝑗𝑗𝑗|Ø).𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗).𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

Where for each factor:  𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝑁𝑁(𝑗𝑗𝑗𝑗 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)
𝑁𝑁(𝑗𝑗𝑗𝑗)

 

By implementing the linear interpolation we get: 

𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝜆𝜆2
𝑁𝑁(𝑗𝑗𝑗𝑗,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

𝑁𝑁(𝑗𝑗𝑗𝑗)
+ 𝜆𝜆1

𝑁𝑁(𝑗𝑗𝑗𝑗)
𝑁𝑁(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)

+ 𝜆𝜆0 

 
ℎ𝑡𝑡 =  𝐹𝐹𝜃𝜃(𝑥𝑥𝑡𝑡 ,ℎ𝑡𝑡−1)(6) 

𝑝𝑝(𝑋𝑋) to be written as a recurrence, i.e. first it is rewritten as a probability of all the sequences 
composing it, 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). Then by applying the definition of conditional probability 

𝑝𝑝(𝑋𝑋|𝑌𝑌) =   𝑃𝑃(𝑋𝑋,𝑌𝑌)
𝑃𝑃(𝑌𝑌)   on the integrity of the words we get: 

 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1)𝑝𝑝(𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑥𝑥3|𝑥𝑥1, 𝑥𝑥2) …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1)(7). Consequently, a recursive formula 
could be formulated as 𝑝𝑝(𝑋𝑋) =  ∏ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) (8)𝑇𝑇

𝑡𝑡=1  with: 

- 𝑠𝑠𝑡𝑡: A sequence at time 𝑡𝑡.  
- 𝑠𝑠<𝑡𝑡: Refers to all the sequences before time 𝑡𝑡.  

By introducing an RNN language model 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) at each time 𝑡𝑡 we get: 

{ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) =  𝑔𝑔𝜃𝜃(ℎ𝑡𝑡−1) (9)
ℎ𝑡𝑡−1 = ∅𝜃𝜃(𝑥𝑥𝑡𝑡−1,ℎ𝑡𝑡−2) (10)  

𝐸𝐸  =  argmax𝐸𝐸 𝑃𝑃(𝑇𝑇|𝑆𝑆)  (1) 

Then by applying the Bayes rule, we get: 

𝐸𝐸 =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)
𝑃𝑃(𝑆𝑆)    

As for a different E, P(S) is always constant we get: 
 

𝐸𝐸  =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)  (2) 

 
 

𝑇𝑇  =  argmax
𝑇𝑇 

∑ λ𝑚𝑚
𝑀𝑀

𝑚𝑚=1
.ℎ𝑚𝑚(𝑇𝑇, 𝑆𝑆)  (3) 

 

𝑃𝑃(𝑆𝑆) =  𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  (4) 

 

𝑃𝑃(𝑤𝑤1, … ,𝑤𝑤𝑤𝑤) =  ∏𝑃𝑃(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−(𝑛𝑛−1), … . ,𝑤𝑤𝑖𝑖−1) (5)
𝑛𝑛

𝑖𝑖=1
 

𝑃𝑃(𝑆𝑆) =  𝑃𝑃(𝑗𝑗𝑗𝑗|Ø).𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗).𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

Where for each factor:  𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝑁𝑁(𝑗𝑗𝑗𝑗 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)
𝑁𝑁(𝑗𝑗𝑗𝑗)

 

By implementing the linear interpolation we get: 

𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝜆𝜆2
𝑁𝑁(𝑗𝑗𝑗𝑗,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

𝑁𝑁(𝑗𝑗𝑗𝑗)
+ 𝜆𝜆1

𝑁𝑁(𝑗𝑗𝑗𝑗)
𝑁𝑁(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)

+ 𝜆𝜆0 

 
ℎ𝑡𝑡 =  𝐹𝐹𝜃𝜃(𝑥𝑥𝑡𝑡 ,ℎ𝑡𝑡−1)(6) 

𝑝𝑝(𝑋𝑋) to be written as a recurrence, i.e. first it is rewritten as a probability of all the sequences 
composing it, 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). Then by applying the definition of conditional probability 

𝑝𝑝(𝑋𝑋|𝑌𝑌) =   𝑃𝑃(𝑋𝑋,𝑌𝑌)
𝑃𝑃(𝑌𝑌)   on the integrity of the words we get: 

 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1)𝑝𝑝(𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑥𝑥3|𝑥𝑥1, 𝑥𝑥2) …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1)(7). Consequently, a recursive formula 
could be formulated as 𝑝𝑝(𝑋𝑋) =  ∏ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) (8)𝑇𝑇

𝑡𝑡=1  with: 

- 𝑠𝑠𝑡𝑡: A sequence at time 𝑡𝑡.  
- 𝑠𝑠<𝑡𝑡: Refers to all the sequences before time 𝑡𝑡.  

By introducing an RNN language model 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) at each time 𝑡𝑡 we get: 

{ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) =  𝑔𝑔𝜃𝜃(ℎ𝑡𝑡−1) (9)
ℎ𝑡𝑡−1 = ∅𝜃𝜃(𝑥𝑥𝑡𝑡−1,ℎ𝑡𝑡−2) (10)  



JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

413

Where for each factor: 

By implementing the linear interpolation we get:

Alignment in statistical machine translation. Alignment in statistical 
machine translation is proportional to the statistical translation model used. 
Here we point to two main types of models in statistical machine translation, 
which are the word and the phrase- based models.

Word- based  IBM model. Word-based or IBM model  (Brown et al., 1993), 
is the starting model of statistical machine translation, and it claims that the 
words in a sentence are multiplied, translated separately and then scrambled 
around to form the target sentence. The main idea behind the word-based 
model is the use of single words as translation units. Thus each word is 
translated to its equivalent in the target sentence. Then using alignment and 
reordering models, the words are rearranged to form a valid composition in 
the target context.

Phrase-based model. In some cases where a sequence of words is naturally 
translated as a single unit, a word-based model translation does not offer a 
reliable translation. The study of Och and Ney (2004) showed that using 
phrases as translational units can achieve a more reliable translation compared 
to the word-based. The reason is that this approach allows the use of more   
local and short- range local contexts to translate a group of words as a single 
unit to counter to the word-based. Note that a phrase is a sequence of words 
consistent with word alignment (Figure. 2), that has nothing to do with the 
linguistic element. P(ST) probability can always be obtained via the same 
process as for word- based with some modifications:
-	 Suggested source sentence into phrases.
-	 Translate each phrase into the target language.
-	 Reorder and align the output.

𝐸𝐸  =  argmax𝐸𝐸 𝑃𝑃(𝑇𝑇|𝑆𝑆)  (1) 

Then by applying the Bayes rule, we get: 

𝐸𝐸 =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)
𝑃𝑃(𝑆𝑆)    

As for a different E, P(S) is always constant we get: 
 

𝐸𝐸  =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)  (2) 

 
 

𝑇𝑇  =  argmax
𝑇𝑇 

∑ λ𝑚𝑚
𝑀𝑀

𝑚𝑚=1
.ℎ𝑚𝑚(𝑇𝑇, 𝑆𝑆)  (3) 

 

𝑃𝑃(𝑆𝑆) =  𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  (4) 

 

𝑃𝑃(𝑤𝑤1, … ,𝑤𝑤𝑤𝑤) =  ∏𝑃𝑃(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−(𝑛𝑛−1), … . ,𝑤𝑤𝑖𝑖−1) (5)
𝑛𝑛

𝑖𝑖=1
 

𝑃𝑃(𝑆𝑆) =  𝑃𝑃(𝑗𝑗𝑗𝑗|Ø).𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗).𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

Where for each factor:  𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝑁𝑁(𝑗𝑗𝑗𝑗 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)
𝑁𝑁(𝑗𝑗𝑗𝑗)

 

By implementing the linear interpolation we get: 

𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝜆𝜆2
𝑁𝑁(𝑗𝑗𝑗𝑗,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

𝑁𝑁(𝑗𝑗𝑗𝑗)
+ 𝜆𝜆1

𝑁𝑁(𝑗𝑗𝑗𝑗)
𝑁𝑁(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)

+ 𝜆𝜆0 

 
ℎ𝑡𝑡 =  𝐹𝐹𝜃𝜃(𝑥𝑥𝑡𝑡 ,ℎ𝑡𝑡−1)(6) 

𝑝𝑝(𝑋𝑋) to be written as a recurrence, i.e. first it is rewritten as a probability of all the sequences 
composing it, 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). Then by applying the definition of conditional probability 

𝑝𝑝(𝑋𝑋|𝑌𝑌) =   𝑃𝑃(𝑋𝑋,𝑌𝑌)
𝑃𝑃(𝑌𝑌)   on the integrity of the words we get: 

 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1)𝑝𝑝(𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑥𝑥3|𝑥𝑥1, 𝑥𝑥2) …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1)(7). Consequently, a recursive formula 
could be formulated as 𝑝𝑝(𝑋𝑋) =  ∏ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) (8)𝑇𝑇

𝑡𝑡=1  with: 

- 𝑠𝑠𝑡𝑡: A sequence at time 𝑡𝑡.  
- 𝑠𝑠<𝑡𝑡: Refers to all the sequences before time 𝑡𝑡.  

By introducing an RNN language model 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) at each time 𝑡𝑡 we get: 

{ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) =  𝑔𝑔𝜃𝜃(ℎ𝑡𝑡−1) (9)
ℎ𝑡𝑡−1 = ∅𝜃𝜃(𝑥𝑥𝑡𝑡−1,ℎ𝑡𝑡−2) (10)  

𝐸𝐸  =  argmax𝐸𝐸 𝑃𝑃(𝑇𝑇|𝑆𝑆)  (1) 

Then by applying the Bayes rule, we get: 

𝐸𝐸 =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)
𝑃𝑃(𝑆𝑆)    

As for a different E, P(S) is always constant we get: 
 

𝐸𝐸  =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)  (2) 

 
 

𝑇𝑇  =  argmax
𝑇𝑇 

∑ λ𝑚𝑚
𝑀𝑀

𝑚𝑚=1
.ℎ𝑚𝑚(𝑇𝑇, 𝑆𝑆)  (3) 

 

𝑃𝑃(𝑆𝑆) =  𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  (4) 

 

𝑃𝑃(𝑤𝑤1, … ,𝑤𝑤𝑤𝑤) =  ∏𝑃𝑃(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−(𝑛𝑛−1), … . ,𝑤𝑤𝑖𝑖−1) (5)
𝑛𝑛

𝑖𝑖=1
 

𝑃𝑃(𝑆𝑆) =  𝑃𝑃(𝑗𝑗𝑗𝑗|Ø).𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗).𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

Where for each factor:  𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝑁𝑁(𝑗𝑗𝑗𝑗 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)
𝑁𝑁(𝑗𝑗𝑗𝑗)

 

By implementing the linear interpolation we get: 

𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝜆𝜆2
𝑁𝑁(𝑗𝑗𝑗𝑗,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

𝑁𝑁(𝑗𝑗𝑗𝑗)
+ 𝜆𝜆1

𝑁𝑁(𝑗𝑗𝑗𝑗)
𝑁𝑁(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)

+ 𝜆𝜆0 

 
ℎ𝑡𝑡 =  𝐹𝐹𝜃𝜃(𝑥𝑥𝑡𝑡 ,ℎ𝑡𝑡−1)(6) 

𝑝𝑝(𝑋𝑋) to be written as a recurrence, i.e. first it is rewritten as a probability of all the sequences 
composing it, 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). Then by applying the definition of conditional probability 

𝑝𝑝(𝑋𝑋|𝑌𝑌) =   𝑃𝑃(𝑋𝑋,𝑌𝑌)
𝑃𝑃(𝑌𝑌)   on the integrity of the words we get: 

 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1)𝑝𝑝(𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑥𝑥3|𝑥𝑥1, 𝑥𝑥2) …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1)(7). Consequently, a recursive formula 
could be formulated as 𝑝𝑝(𝑋𝑋) =  ∏ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) (8)𝑇𝑇

𝑡𝑡=1  with: 

- 𝑠𝑠𝑡𝑡: A sequence at time 𝑡𝑡.  
- 𝑠𝑠<𝑡𝑡: Refers to all the sequences before time 𝑡𝑡.  

By introducing an RNN language model 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) at each time 𝑡𝑡 we get: 

{ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) =  𝑔𝑔𝜃𝜃(ℎ𝑡𝑡−1) (9)
ℎ𝑡𝑡−1 = ∅𝜃𝜃(𝑥𝑥𝑡𝑡−1,ℎ𝑡𝑡−2) (10)  

𝐸𝐸  =  argmax𝐸𝐸 𝑃𝑃(𝑇𝑇|𝑆𝑆)  (1) 

Then by applying the Bayes rule, we get: 

𝐸𝐸 =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)
𝑃𝑃(𝑆𝑆)    

As for a different E, P(S) is always constant we get: 
 

𝐸𝐸  =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)  (2) 

 
 

𝑇𝑇  =  argmax
𝑇𝑇 

∑ λ𝑚𝑚
𝑀𝑀

𝑚𝑚=1
.ℎ𝑚𝑚(𝑇𝑇, 𝑆𝑆)  (3) 

 

𝑃𝑃(𝑆𝑆) =  𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  (4) 

 

𝑃𝑃(𝑤𝑤1, … ,𝑤𝑤𝑤𝑤) =  ∏𝑃𝑃(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−(𝑛𝑛−1), … . ,𝑤𝑤𝑖𝑖−1) (5)
𝑛𝑛

𝑖𝑖=1
 

𝑃𝑃(𝑆𝑆) =  𝑃𝑃(𝑗𝑗𝑗𝑗|Ø).𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗).𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

Where for each factor:  𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝑁𝑁(𝑗𝑗𝑗𝑗 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)
𝑁𝑁(𝑗𝑗𝑗𝑗)

 

By implementing the linear interpolation we get: 

𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝜆𝜆2
𝑁𝑁(𝑗𝑗𝑗𝑗,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

𝑁𝑁(𝑗𝑗𝑗𝑗)
+ 𝜆𝜆1

𝑁𝑁(𝑗𝑗𝑗𝑗)
𝑁𝑁(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)

+ 𝜆𝜆0 

 
ℎ𝑡𝑡 =  𝐹𝐹𝜃𝜃(𝑥𝑥𝑡𝑡 ,ℎ𝑡𝑡−1)(6) 

𝑝𝑝(𝑋𝑋) to be written as a recurrence, i.e. first it is rewritten as a probability of all the sequences 
composing it, 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). Then by applying the definition of conditional probability 

𝑝𝑝(𝑋𝑋|𝑌𝑌) =   𝑃𝑃(𝑋𝑋,𝑌𝑌)
𝑃𝑃(𝑌𝑌)   on the integrity of the words we get: 

 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1)𝑝𝑝(𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑥𝑥3|𝑥𝑥1, 𝑥𝑥2) …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1)(7). Consequently, a recursive formula 
could be formulated as 𝑝𝑝(𝑋𝑋) =  ∏ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) (8)𝑇𝑇

𝑡𝑡=1  with: 

- 𝑠𝑠𝑡𝑡: A sequence at time 𝑡𝑡.  
- 𝑠𝑠<𝑡𝑡: Refers to all the sequences before time 𝑡𝑡.  

By introducing an RNN language model 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) at each time 𝑡𝑡 we get: 

{ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) =  𝑔𝑔𝜃𝜃(ℎ𝑡𝑡−1) (9)
ℎ𝑡𝑡−1 = ∅𝜃𝜃(𝑥𝑥𝑡𝑡−1,ℎ𝑡𝑡−2) (10)  



414

JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

In a phrase-based model the calculated phrase’s probabilities should be placed 
together with their phrase pairs in a so- called translation table. The latter is 
then used as a reference when searching for the best translation that maximizes 
the translation scores and for the rest of calculations.

Figure 2. Example of phrase consistent with word alignment extraction.

Alignment. As corpora are generally not aligned at word level, the latter 
becomes tricky. Hence, the Expectation-Maximization algorithm (Figure. 3)  is 
introduced to learn the alignment at word level. IBM models define alignment 
as asymmetric since each target word corresponds to only one source word but 
with the introduction of the fertility, the same cannot be said.

Search as a main problem of translation. The decoding phase (Figure. 4) is 
referred to as search algorithm. In statistical machine translation, the intuition 
behind using a search algorithm is to look for possible translations and score 
them: then maximize the obtained scores to get the most probable one given 
both the language and the translation models.

In theory, decoding involves generating the full set of possible translations for 
a given input string. The translation process is simply about matching phrases/
words from the input sentence against the translation model and, where 
available, retrieving their translations, ordering the generated substrings and 
concatenating them to produce a full translation hypothesis. Those hypotheses 
are used by the decoding algorithm to select the best one which would have 
the lower cost, i.e. maximizing the product of the language and translation 
models.

It is not mandatory to proceed decoding on a strictly left-to-right basis. As for 
some language pairs, e.g. Arabic/French, the left to right decoding would not 
be the logically appropriate method with decoder being based on probability 



JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

415

calculations (1), selection of the best translation would always be made 
irrespectively of the nature of the source and target language.

Figure 3. Expectation maximization algorithm.

Figure 4. Decoding core algorithm with exhaustive search.



416

JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

Since the best translation is equivalent to the lowest cost hypothesis, the 
selection process should base its estimation on the cost of all the hypothesis to 
correctly select the lowest one. However, since the number of the hypothesis 
is exponential with the number of source words, decoding also becomes an 
optimization problem. In this context, several studies have proposed methods 
for optimal solutions. Berger et al. (1996) and Och et al. (2001) proposed such 
depth-first search methods as stack decoders. Also, Wang and Waibel (1997) 
and Tillmann and Ney (2003) developed breadth-first search methods, i.e. 
beam search. On the other hand, Germann (2001), and Watanabe and Sumita 
(2003) proposed greedy- type decoding methods.

The state of the art implementation of decoding for statistical machine 
translation is a beam search decoder (Kohen et al., 2007). A beam search is a 
comparison of the hypothesis that covers the same number of foreign words 
and a selection of the inferior hypotheses via the cost of each to prune them 
out. The pruning measure is not only about the cost, but also an estimation 
of the future cost. Beam size can be defined beforehand, so with a coast and 
future coast we can prune hypotheses that fall outside the beam; see stack 
decoding algorithm in Figure. 5.

Figure 5. Hypothesis expansion via stack decoding (Koehn 2007)

NEURAL MACHINE TRANSLATION

Recently, artificial neural networks have been successfully applied to many 
research endeavors that require a learning process, for instance, image 
processing and bioinformatics. Particularly, the marriage between natural 



JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

417

language processing and neural networks has shown remarkable progress in the 
results of many study cases; one could be the neural machine translation. The 
latter is a newly proposed framework leading the way for machine translation 
research based purely on neural networks. Fresh results outlined by Hang 
Luong, Kyunghyun Cho, and Christopher Manning (2016), Kalchbrenner 
and Blunsom, (2013), Sutskever et al. (2014), and Kyunghyun Cho et al., 
(2014), have demonstrated a significant improvement in the translation of 
many language pairs. Compared to the state of the art results achieved by the 
classical translation models, mainly the phrase-based and the syntax-based 
translation systems, the neural MT outperforms those existing thechniques. 

The core idea of neural machine translation involves an end-to-end trained 
model in both the learning and the decoding processes. In other words, via a 
single artificial network, a neural translation model designs a fully trainable 
model where every component is tuned based on training bilingual corpora to 
maximize its translation performance, i.e. it combines two neural networks 
(an encoder trained to compute a representation of each word in an input 
sentence, better known as word embedding, and a decoder which is a neural 
language model trained to generate one target word at a time t based on the 
source context and target history). Both jointly trained together to maximize 
the conditional probability P(XY) of translating a source sentence, x1,...xn 
to a target sentence, y1,...yn. 

Artificial neural networks. They are limited imitations of how our brains 
work. The  first created computational model for neural networks based on 
mathematics and algorithms was called threshold logic (Warren McCulloch 
and Walter Pitts, 1943). However, artificial neural nets have only had a big 
resurgence lately because of the advances in computer hardware, in particular 
after the introduction of the graphics processing units (GPUs), and with the 
appearance of deep learning. A neural network is an interconnected web of 
nodes and edges designed to perform complex tasks such as classification, 
regression and prediction. Neural nets are also highly structured networks and 
have three kinds of layers: input, output and so-called hidden layers, which 
refer to any layer between the input and the output layers and nodes which are 
intended to calculate different types of activation functions. 

Moreover, neural networks count a large range of types for instance and non-
exhaustively: 
-	 Feed forward neural nets, the simplest and basic version. Conventional 

neural nets, widely applied in image processing domain.
-	 Recurrent neural nets, the one commonly used in NLP.



418

JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

-	 Complex-valued neural nets based on complex numbers as entries, 
also successfully applied to embedding watermarks (Olanweraju et al, 
2010).

-	 Multilevel self-organizing MAP, systematically evaluated for clustering 
applications by Shamsuddin et al., 2008. 

As stated, the recurrent architecture is the one widely used in machine 
translation, due to its ability to handle and process sequential data, e.g. 
unfixed-length sentences. The intuition behind RNNs (Figure. 7) is their 
ability to maintain the internal state at a time t to be used in calculations at 
time t + 1. Each recurrent unit is classically composed from the input/output 
parts and a hidden unit connected via weighted connections, responsible for 
the  calculation of an activation/transition function modeled mathematically 
as follows: 

								             (6)

where Fθ  is a function parametrized by θ referring to a vector of weights 
and bias, and which takes as input the new element xt and the history ht−1 
up to the t −1 th input element. There’s a wide range of activation function 
types used to calculate the activation value at each node of the network 
given the weights, bias and input, namely sigmoid and hyperbolic tangent 
(Tanh) which are the ones usually used, especially in the case of a non-linear 
distribution. The Softmax function (13) is also used to estimate the conditional 
probabilities by modeling them as a multi-classification problem p(y = cǀx). 
RNNs are trained using the back propagation through time algorithm, which 
involves the calculation of loss function (LeCun, Chopra et al., 2006; Bengio 
et al., 2015) at the output level to perform updates on network parameters 
after each learned example using the stochastic gradient descent algorithm 
(Bottou, 2012). Despite that some studies have proposed better training 
technics such as Genetic Algorithm and Swarm Intelligence i.e. Artificial 
Fish Swarm optimization method (Shafaatunnur Hasan et al,. 2012) instead 
of backpropagation that tends to slow the convergence rate, the latter still the 
most common algorithm in the applications of neural networks in NLP.

Neural networks applied to language modeling. In NLP, a statistical 
language model is a conditional distribution on the identity of the ith word 
in a sequence, given the identities of all previous words. Language models 
also tend to estimate the distribution of natural language as accurately as 
possible. 

𝐸𝐸  =  argmax𝐸𝐸 𝑃𝑃(𝑇𝑇|𝑆𝑆)  (1) 

Then by applying the Bayes rule, we get: 

𝐸𝐸 =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)
𝑃𝑃(𝑆𝑆)    

As for a different E, P(S) is always constant we get: 
 

𝐸𝐸  =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)  (2) 

 
 

𝑇𝑇  =  argmax
𝑇𝑇 

∑ λ𝑚𝑚
𝑀𝑀

𝑚𝑚=1
.ℎ𝑚𝑚(𝑇𝑇, 𝑆𝑆)  (3) 

 

𝑃𝑃(𝑆𝑆) =  𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  (4) 

 

𝑃𝑃(𝑤𝑤1, … ,𝑤𝑤𝑤𝑤) =  ∏𝑃𝑃(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−(𝑛𝑛−1), … . ,𝑤𝑤𝑖𝑖−1) (5)
𝑛𝑛

𝑖𝑖=1
 

𝑃𝑃(𝑆𝑆) =  𝑃𝑃(𝑗𝑗𝑗𝑗|Ø).𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗).𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

Where for each factor:  𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝑁𝑁(𝑗𝑗𝑗𝑗 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)
𝑁𝑁(𝑗𝑗𝑗𝑗)

 

By implementing the linear interpolation we get: 

𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝜆𝜆2
𝑁𝑁(𝑗𝑗𝑗𝑗,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

𝑁𝑁(𝑗𝑗𝑗𝑗)
+ 𝜆𝜆1

𝑁𝑁(𝑗𝑗𝑗𝑗)
𝑁𝑁(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)

+ 𝜆𝜆0 

 
ℎ𝑡𝑡 =  𝐹𝐹𝜃𝜃(𝑥𝑥𝑡𝑡 ,ℎ𝑡𝑡−1)(6) 

𝑝𝑝(𝑋𝑋) to be written as a recurrence, i.e. first it is rewritten as a probability of all the sequences 
composing it, 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). Then by applying the definition of conditional probability 

𝑝𝑝(𝑋𝑋|𝑌𝑌) =   𝑃𝑃(𝑋𝑋,𝑌𝑌)
𝑃𝑃(𝑌𝑌)   on the integrity of the words we get: 

 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1)𝑝𝑝(𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑥𝑥3|𝑥𝑥1, 𝑥𝑥2) …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1)(7). Consequently, a recursive formula 
could be formulated as 𝑝𝑝(𝑋𝑋) =  ∏ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) (8)𝑇𝑇

𝑡𝑡=1  with: 

- 𝑠𝑠𝑡𝑡: A sequence at time 𝑡𝑡.  
- 𝑠𝑠<𝑡𝑡: Refers to all the sequences before time 𝑡𝑡.  

By introducing an RNN language model 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) at each time 𝑡𝑡 we get: 

{ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) =  𝑔𝑔𝜃𝜃(ℎ𝑡𝑡−1) (9)
ℎ𝑡𝑡−1 = ∅𝜃𝜃(𝑥𝑥𝑡𝑡−1,ℎ𝑡𝑡−2) (10)  



JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

419

Figure 6. The architecture of a recurrent neural network.

Recently neural networks have been successfully applied to language modeling, 
via the so called neural language models that approach language modeling as 
a single neural network trained to maximize a probability distribution over a 
given unit of a sentence. In the case of neural machine translation, the decoder 
plays the role of a neural language model, as it learns to predict a word in a 
configuration at  time t given a context that refers to the previously predicted 
word, history at time t-1 and a vector representation of the source sentence 
generated by the encoder. In addition the use of recurrent neural models in 
the translation task, forces the probability distribution of a sentence p(X) to 
be written as a recurrence, i.e. first it is rewritten as a probability of all the 
sequences composing it, p(X) = p(x1,..., xp). Then by applying the definition 

of conditional probability
                          

on the integrity of the words 
we get:                                                                                    . Consequently, a 
recursive formula could be formulated as  with:
-	 st: A sequence at time t 
-	 s>t : Refers to all the sequences before time t. 

By introducing an RNN language model p(st| s>t) at each time t we get:

Given the input sequences and the previous history, the RNN predicts the next 
symbol via the calculation of the probability distribution conditioned on the 
whole history up to the (t −1)th symbol.

𝐸𝐸  =  argmax𝐸𝐸 𝑃𝑃(𝑇𝑇|𝑆𝑆)  (1) 

Then by applying the Bayes rule, we get: 

𝐸𝐸 =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)
𝑃𝑃(𝑆𝑆)    

As for a different E, P(S) is always constant we get: 
 

𝐸𝐸  =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)  (2) 

 
 

𝑇𝑇  =  argmax
𝑇𝑇 

∑ λ𝑚𝑚
𝑀𝑀

𝑚𝑚=1
.ℎ𝑚𝑚(𝑇𝑇, 𝑆𝑆)  (3) 

 

𝑃𝑃(𝑆𝑆) =  𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  (4) 

 

𝑃𝑃(𝑤𝑤1, … ,𝑤𝑤𝑤𝑤) =  ∏𝑃𝑃(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−(𝑛𝑛−1), … . ,𝑤𝑤𝑖𝑖−1) (5)
𝑛𝑛

𝑖𝑖=1
 

𝑃𝑃(𝑆𝑆) =  𝑃𝑃(𝑗𝑗𝑗𝑗|Ø).𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗).𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

Where for each factor:  𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝑁𝑁(𝑗𝑗𝑗𝑗 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)
𝑁𝑁(𝑗𝑗𝑗𝑗)

 

By implementing the linear interpolation we get: 

𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝜆𝜆2
𝑁𝑁(𝑗𝑗𝑗𝑗,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

𝑁𝑁(𝑗𝑗𝑗𝑗)
+ 𝜆𝜆1

𝑁𝑁(𝑗𝑗𝑗𝑗)
𝑁𝑁(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)

+ 𝜆𝜆0 

 
ℎ𝑡𝑡 =  𝐹𝐹𝜃𝜃(𝑥𝑥𝑡𝑡 ,ℎ𝑡𝑡−1)(6) 

𝑝𝑝(𝑋𝑋) to be written as a recurrence, i.e. first it is rewritten as a probability of all the sequences 
composing it, 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). Then by applying the definition of conditional probability 

𝑝𝑝(𝑋𝑋|𝑌𝑌) =   𝑃𝑃(𝑋𝑋,𝑌𝑌)
𝑃𝑃(𝑌𝑌)   on the integrity of the words we get: 

 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1)𝑝𝑝(𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑥𝑥3|𝑥𝑥1, 𝑥𝑥2) …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1)(7). Consequently, a recursive formula 
could be formulated as 𝑝𝑝(𝑋𝑋) =  ∏ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) (8)𝑇𝑇

𝑡𝑡=1  with: 

- 𝑠𝑠𝑡𝑡: A sequence at time 𝑡𝑡.  
- 𝑠𝑠<𝑡𝑡: Refers to all the sequences before time 𝑡𝑡.  

By introducing an RNN language model 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) at each time 𝑡𝑡 we get: 

{ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) =  𝑔𝑔𝜃𝜃(ℎ𝑡𝑡−1) (9)
ℎ𝑡𝑡−1 = ∅𝜃𝜃(𝑥𝑥𝑡𝑡−1,ℎ𝑡𝑡−2) (10)  

p(X) = p(x1)p(x2| x1,) p (x3| x1, x2)...p (xn| x1,..., xn-1)(7)

𝐸𝐸  =  argmax𝐸𝐸 𝑃𝑃(𝑇𝑇|𝑆𝑆)  (1) 

Then by applying the Bayes rule, we get: 

𝐸𝐸 =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)
𝑃𝑃(𝑆𝑆)    

As for a different E, P(S) is always constant we get: 
 

𝐸𝐸  =  argmax
𝐸𝐸 

𝑃𝑃(𝑇𝑇).𝑃𝑃(𝑆𝑆|𝑇𝑇)  (2) 

 
 

𝑇𝑇  =  argmax
𝑇𝑇 

∑ λ𝑚𝑚
𝑀𝑀

𝑚𝑚=1
.ℎ𝑚𝑚(𝑇𝑇, 𝑆𝑆)  (3) 

 

𝑃𝑃(𝑆𝑆) =  𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  (4) 

 

𝑃𝑃(𝑤𝑤1, … ,𝑤𝑤𝑤𝑤) =  ∏𝑃𝑃(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−(𝑛𝑛−1), … . ,𝑤𝑤𝑖𝑖−1) (5)
𝑛𝑛

𝑖𝑖=1
 

𝑃𝑃(𝑆𝑆) =  𝑃𝑃(𝑗𝑗𝑗𝑗|Ø).𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗).𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

Where for each factor:  𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝑁𝑁(𝑗𝑗𝑗𝑗 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)
𝑁𝑁(𝑗𝑗𝑗𝑗)

 

By implementing the linear interpolation we get: 

𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣|𝑗𝑗𝑗𝑗) =  𝜆𝜆2
𝑁𝑁(𝑗𝑗𝑗𝑗,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

𝑁𝑁(𝑗𝑗𝑗𝑗)
+ 𝜆𝜆1

𝑁𝑁(𝑗𝑗𝑗𝑗)
𝑁𝑁(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)

+ 𝜆𝜆0 

 
ℎ𝑡𝑡 =  𝐹𝐹𝜃𝜃(𝑥𝑥𝑡𝑡 ,ℎ𝑡𝑡−1)(6) 

𝑝𝑝(𝑋𝑋) to be written as a recurrence, i.e. first it is rewritten as a probability of all the sequences 
composing it, 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). Then by applying the definition of conditional probability 

𝑝𝑝(𝑋𝑋|𝑌𝑌) =   𝑃𝑃(𝑋𝑋,𝑌𝑌)
𝑃𝑃(𝑌𝑌)   on the integrity of the words we get: 

 𝑝𝑝(𝑋𝑋) = 𝑝𝑝(𝑥𝑥1)𝑝𝑝(𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑥𝑥3|𝑥𝑥1, 𝑥𝑥2) …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1)(7). Consequently, a recursive formula 
could be formulated as 𝑝𝑝(𝑋𝑋) =  ∏ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) (8)𝑇𝑇

𝑡𝑡=1  with: 

- 𝑠𝑠𝑡𝑡: A sequence at time 𝑡𝑡.  
- 𝑠𝑠<𝑡𝑡: Refers to all the sequences before time 𝑡𝑡.  

By introducing an RNN language model 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) at each time 𝑡𝑡 we get: 

{ 𝑝𝑝(𝑠𝑠𝑡𝑡|𝑠𝑠<𝑡𝑡) =  𝑔𝑔𝜃𝜃(ℎ𝑡𝑡−1) (9)
ℎ𝑡𝑡−1 = ∅𝜃𝜃(𝑥𝑥𝑡𝑡−1,ℎ𝑡𝑡−2) (10)  



420

JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

Figure 7. The architecture of the neural machine translation system.

The encoder-decoder translation system. Neural machine translation as 
described in the previous sections is based on an end- to- end encoder-decoder 
approach that translates a given source sentence into its equivalent target. 
The encoder and decoder being two recurrent neural networks jointly trained 
together to find the best translation, each of them has clear-cut missions. The 
encoder has been identified as a smart compressor of the input sentence into a 
fixed-length vector numerical representation, also known as a context vector 
or word embedding vector that captures every single detail of the source 
sentence in some way that the distance between two configurations (Figure 8) 
could be significant (Mikolov et al., 2013).

Once encoded, the resulting context vector is then conveyed to the decoder. 
As a recurrent neural language model, the decoder tends to generate a single 
target word at each sequence of time, given the representation of the full source 
context and the previously generated word and history as the target context. It 
should be noted that the input configuration is injected to the encoder-decoder 
system as one-hot aka 1-of-k vectors. This encoding technique is used to 
convert words of a sentence into a numerical format, which is more suitable 
as data for neural networks. The one- hot encoding is the simplest technique 
for encoding words  in the  vocabulary. In a nutshell, the one- hot vector of 
a given word is a vector filled with zeros except for the one at the position 
referring to its ID in the vocabulary. 

In the rest of this section, we will outline both the encoder and decoder and the 
mathematic intuition behind them separately. 

The encoder. In Figure 7 on the left side  the encoding process is a 
straightforward application of the recurrent neural network. It takes the one-
hot vector of each word in a source sentence as an input. Then it projects a word 
vector at time t to a matrix that will contain the whole phrase representation 
with predefined row size and the number of columns depending on the number 



JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

421

of words in the source vocabulary. The resulting vector from the previous 
step is subjected to some calculations in the hidden state ht (11) at each time 
t until getting the final internal state of the actual network. Note that during 
the training phase each element of the continuous vector is updated shortly 
and jointly with the rest of the parameters of the network to maximize the 
translation performance. hiϵ[0,t] = Fɵ (hi-1,si) (11) with si the continuous vector 
representation at an iteration i.

Figure 8. The zoomed-in view of specific region (color–coded) 2–D 
embedding of the learned phrase representation (Kyunghyun Cho and al. 2014)

The decoder.  In Figure 7 on the right side tends to generate a target word 
at each step, by involving a weighted distribution over the encoded source 
sentence vectors. This process refers to calculating the network’s internal state 
zi by using the context vector ht obtained in the encoding process, the previous 
generated word and the previous internal state zi -1. Then, based on the internal 
state zi, the model scores (12) of each candidate target word is based on how 
likely it is to follow all the preceding translated words referring to the source 
sentence and by assigning a probability pi to it.

							             (12) 

with wk as the target word, zi the RNN’s calculated internal state and bk the bias 
vector.

𝑒𝑒(𝑘𝑘) = 𝑤𝑤𝑘𝑘
𝑇𝑇 𝑧𝑧𝑖𝑖 +  𝑏𝑏𝑘𝑘  (12)  

with 𝑤𝑤𝑘𝑘 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 target word, 𝑧𝑧𝑖𝑖 the RNN’s calculated internal state and 𝑏𝑏𝑘𝑘 the bias vector. 

Once the words are scored, they are subjected to a softmax normalization function (13), in 
furtherance of squashing the scores’ values into a [0, 1] interval, i.e. generating a probability 
distribution over the calculated scores. The latter is involved in selecting the best translation by 
using a simplification algorithm. We should mention that the word and the decoder’s internal state 
are proportional, as the more correctly they align, higher the score gets, i.e. the product 𝑤𝑤𝑘𝑘

𝑇𝑇  𝑧𝑧𝑖𝑖  gets 
large. 

𝑝𝑝 (𝑦𝑦𝑡𝑡  = 𝑘𝑘|𝑦𝑦1,  𝑦𝑦2,  … , 𝑦𝑦𝑡𝑡−1,  𝑐𝑐) =  exp(𝑒𝑒(𝑘𝑘))
∑ exp(𝑒𝑒(𝑗𝑗))𝑗𝑗

 (13) 

to form the full representation of a given word ℎ𝑗𝑗 = [ℎ⃗ 𝑗𝑗𝑇𝑇 , ℎ𝑗𝑗
𝑇𝑇⃖⃗ ⃗⃗⃗]. 

 

𝑝𝑝(𝑦𝑦𝑖𝑖|𝑦𝑦1, … , 𝑦𝑦𝑖𝑖−1, 𝑋𝑋) = 𝑔𝑔(𝑦𝑦𝑖𝑖−1, 𝑠𝑠𝑖𝑖, 𝑐𝑐𝑖𝑖)(14) 

The context vector 𝑐𝑐𝑖𝑖 is, then, computed as a weighted sum of the annotations ℎ𝑗𝑗: 

𝑐𝑐𝑖𝑖 =  ∑ ∝𝑖𝑖𝑖𝑖 ℎ𝑗𝑗
𝑇𝑇𝑇𝑇
𝑗𝑗=1  (15)  

given ∝𝑖𝑖𝑖𝑖=  exp(𝑒𝑒𝑖𝑖𝑖𝑖)
∑ exp(𝑒𝑒𝑖𝑖𝑖𝑖)𝑇𝑇𝑇𝑇

𝑘𝑘=1
(16) and 𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑎𝑎(𝑠𝑠𝑖𝑖−1, ℎ𝑗𝑗) (17). 

 𝑙𝑙𝑝𝑝−1
𝑓𝑓 , 

 
𝑝𝑝(𝑤𝑤𝑝𝑝|𝑎𝑎, 𝑙𝑙𝑝𝑝−1

𝑓𝑓 ) =  ∏ 𝑝𝑝(𝑤𝑤𝑗𝑗,𝑖𝑖|𝑤𝑤𝑘𝑘,0, … , 𝑤𝑤𝑗𝑗,𝑗𝑗−1, 𝑎𝑎, 𝑙𝑙𝑝𝑝−1
𝑓𝑓 ) (18)

𝑖𝑖∈[0,𝑦𝑦]
. 

 

𝑝𝑝(𝑦𝑦𝑡𝑡| 𝑦𝑦<𝑡𝑡 , 𝑥𝑥) =  exp (𝑤𝑤𝑡𝑡
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑡𝑡)

∑ exp (𝑤𝑤𝑘𝑘
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑘𝑘)𝑘𝑘:𝑦𝑦𝑘𝑘∈𝑉𝑉′

 (19). 

 



422

JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

Once the words are scored, they are subjected to a softmax normalization 
function (13), in furtherance of squashing the scores’ values into a [0, 1] 
interval, i.e. generating a probability distribution over the calculated scores. 
The latter is involved in selecting the best translation by using a simplification 
algorithm. We should mention that the word and the decoder’s internal state 
are proportional, as the more correctly they align, higher the score gets, i.e. the 
product           gets large.

						                         (13)

EMPIRICAL STUDIES IN NEURAL MACHINE TRANSLATION

In this section, we will survey the recent work relevant to the topic of neural 
machine translation, and conclude about the findings of those studies.

In the cutting-edge paper “Sequence to Sequence Learning with Neural 
Networks” by Sutskever, Ilya, Oriol and Quoc (2014), presented the results 
of their experiments conducted on neural networks for translation task. First, 
they proposed a general end-to-end approach to sequence learning based on 
a multilayered Long Short-Term Memory (LSTM) to map the input sequence 
to a vector of a fixed dimensionality, and another deep LSTM to decode the 
target sequence from the vector (Sutskever et.al 2014). In an other experiment, 
they used the LSTM to re-rank the 1000 hypotheses produced by a phrase-
based SMT system which is also used for comparison with the proposed end-
to-end approach. Finally, they also studied  the effect of reversing the order of 
words in source sentences on the performance of LSTMs.

As a result, Sutskev’s approach has achieved by far the best result of direct 
translation with large neural networks. According to the BLEU metric, the end-
to-end translation experiment obtained 34.81 BLEU score on the WMT’14 
English to French translation task, by directly extracting translations from an 
ensemble of 5 deep LSTMs (with 384M parameters and 8,000-dimensional 
state each) using a simple left-to-right beam search decoder. Compared to the 
SMT baseline used in the study, and which has trained on the same dataset, 
Sutskever’s method showed an advancement of +1.51 BLEU score. Moreover, 
taking a look the results of rescored the publicly available 1000 best lists of 
the SMT baseline on the same task. The approach presented in this paper 
improved the baseline by +3.2 BLEU points. One last finding of this study 
was the fact that the LSTM did not suffer on very long sentences, which is a 

𝑒𝑒(𝑘𝑘) = 𝑤𝑤𝑘𝑘
𝑇𝑇 𝑧𝑧𝑖𝑖 +  𝑏𝑏𝑘𝑘  (12)  

with 𝑤𝑤𝑘𝑘 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 target word, 𝑧𝑧𝑖𝑖 the RNN’s calculated internal state and 𝑏𝑏𝑘𝑘 the bias vector. 

Once the words are scored, they are subjected to a softmax normalization function (13), in 
furtherance of squashing the scores’ values into a [0, 1] interval, i.e. generating a probability 
distribution over the calculated scores. The latter is involved in selecting the best translation by 
using a simplification algorithm. We should mention that the word and the decoder’s internal state 
are proportional, as the more correctly they align, higher the score gets, i.e. the product 𝑤𝑤𝑘𝑘

𝑇𝑇  𝑧𝑧𝑖𝑖  gets 
large. 

𝑝𝑝 (𝑦𝑦𝑡𝑡  = 𝑘𝑘|𝑦𝑦1,  𝑦𝑦2,  … , 𝑦𝑦𝑡𝑡−1,  𝑐𝑐) =  exp(𝑒𝑒(𝑘𝑘))
∑ exp(𝑒𝑒(𝑗𝑗))𝑗𝑗

 (13) 

to form the full representation of a given word ℎ𝑗𝑗 = [ℎ⃗ 𝑗𝑗𝑇𝑇 , ℎ𝑗𝑗
𝑇𝑇⃖⃗ ⃗⃗⃗]. 

 

𝑝𝑝(𝑦𝑦𝑖𝑖|𝑦𝑦1, … , 𝑦𝑦𝑖𝑖−1, 𝑋𝑋) = 𝑔𝑔(𝑦𝑦𝑖𝑖−1, 𝑠𝑠𝑖𝑖, 𝑐𝑐𝑖𝑖)(14) 

The context vector 𝑐𝑐𝑖𝑖 is, then, computed as a weighted sum of the annotations ℎ𝑗𝑗: 

𝑐𝑐𝑖𝑖 =  ∑ ∝𝑖𝑖𝑖𝑖 ℎ𝑗𝑗
𝑇𝑇𝑇𝑇
𝑗𝑗=1  (15)  

given ∝𝑖𝑖𝑖𝑖=  exp(𝑒𝑒𝑖𝑖𝑖𝑖)
∑ exp(𝑒𝑒𝑖𝑖𝑖𝑖)𝑇𝑇𝑇𝑇

𝑘𝑘=1
(16) and 𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑎𝑎(𝑠𝑠𝑖𝑖−1, ℎ𝑗𝑗) (17). 

 𝑙𝑙𝑝𝑝−1
𝑓𝑓 , 

 
𝑝𝑝(𝑤𝑤𝑝𝑝|𝑎𝑎, 𝑙𝑙𝑝𝑝−1

𝑓𝑓 ) =  ∏ 𝑝𝑝(𝑤𝑤𝑗𝑗,𝑖𝑖|𝑤𝑤𝑘𝑘,0, … , 𝑤𝑤𝑗𝑗,𝑗𝑗−1, 𝑎𝑎, 𝑙𝑙𝑝𝑝−1
𝑓𝑓 ) (18)

𝑖𝑖∈[0,𝑦𝑦]
. 

 

𝑝𝑝(𝑦𝑦𝑡𝑡| 𝑦𝑦<𝑡𝑡 , 𝑥𝑥) =  exp (𝑤𝑤𝑡𝑡
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑡𝑡)

∑ exp (𝑤𝑤𝑘𝑘
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑘𝑘)𝑘𝑘:𝑦𝑦𝑘𝑘∈𝑉𝑉′

 (19). 

 

𝑒𝑒(𝑘𝑘) = 𝑤𝑤𝑘𝑘
𝑇𝑇 𝑧𝑧𝑖𝑖 +  𝑏𝑏𝑘𝑘  (12)  

with 𝑤𝑤𝑘𝑘 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 target word, 𝑧𝑧𝑖𝑖 the RNN’s calculated internal state and 𝑏𝑏𝑘𝑘 the bias vector. 

Once the words are scored, they are subjected to a softmax normalization function (13), in 
furtherance of squashing the scores’ values into a [0, 1] interval, i.e. generating a probability 
distribution over the calculated scores. The latter is involved in selecting the best translation by 
using a simplification algorithm. We should mention that the word and the decoder’s internal state 
are proportional, as the more correctly they align, higher the score gets, i.e. the product 𝑤𝑤𝑘𝑘

𝑇𝑇  𝑧𝑧𝑖𝑖  gets 
large. 

𝑝𝑝 (𝑦𝑦𝑡𝑡  = 𝑘𝑘|𝑦𝑦1,  𝑦𝑦2,  … , 𝑦𝑦𝑡𝑡−1,  𝑐𝑐) =  exp(𝑒𝑒(𝑘𝑘))
∑ exp(𝑒𝑒(𝑗𝑗))𝑗𝑗

 (13) 

to form the full representation of a given word ℎ𝑗𝑗 = [ℎ⃗ 𝑗𝑗𝑇𝑇 , ℎ𝑗𝑗
𝑇𝑇⃖⃗ ⃗⃗⃗]. 

 

𝑝𝑝(𝑦𝑦𝑖𝑖|𝑦𝑦1, … , 𝑦𝑦𝑖𝑖−1, 𝑋𝑋) = 𝑔𝑔(𝑦𝑦𝑖𝑖−1, 𝑠𝑠𝑖𝑖, 𝑐𝑐𝑖𝑖)(14) 

The context vector 𝑐𝑐𝑖𝑖 is, then, computed as a weighted sum of the annotations ℎ𝑗𝑗: 

𝑐𝑐𝑖𝑖 =  ∑ ∝𝑖𝑖𝑖𝑖 ℎ𝑗𝑗
𝑇𝑇𝑇𝑇
𝑗𝑗=1  (15)  

given ∝𝑖𝑖𝑖𝑖=  exp(𝑒𝑒𝑖𝑖𝑖𝑖)
∑ exp(𝑒𝑒𝑖𝑖𝑖𝑖)𝑇𝑇𝑇𝑇

𝑘𝑘=1
(16) and 𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑎𝑎(𝑠𝑠𝑖𝑖−1, ℎ𝑗𝑗) (17). 

 𝑙𝑙𝑝𝑝−1
𝑓𝑓 , 

 
𝑝𝑝(𝑤𝑤𝑝𝑝|𝑎𝑎, 𝑙𝑙𝑝𝑝−1

𝑓𝑓 ) =  ∏ 𝑝𝑝(𝑤𝑤𝑗𝑗,𝑖𝑖|𝑤𝑤𝑘𝑘,0, … , 𝑤𝑤𝑗𝑗,𝑗𝑗−1, 𝑎𝑎, 𝑙𝑙𝑝𝑝−1
𝑓𝑓 ) (18)

𝑖𝑖∈[0,𝑦𝑦]
. 

 

𝑝𝑝(𝑦𝑦𝑡𝑡| 𝑦𝑦<𝑡𝑡 , 𝑥𝑥) =  exp (𝑤𝑤𝑡𝑡
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑡𝑡)

∑ exp (𝑤𝑤𝑘𝑘
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑘𝑘)𝑘𝑘:𝑦𝑦𝑘𝑘∈𝑉𝑉′

 (19). 

 



JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

423

common issue of this kind of task. The authors gave credits of these results to 
the key contribution of reversing the order of words in the source sentence but 
not the target sentences in the training and test set.

Figure 9. The graphical illustration of the proposed model trying to generate 
the tth target word y_t  given a source sentence (x_1,…,x_T) Bahdanau et 
al. 2015

Bahdanau et al., 2014. One major drawback of the conventional neural 
machine translation is its underperformance when the length of an input 
sentence increases (Cho et al., 2014b). The reason is that a neural network 
needs to be able to compress all the necessary information of a source sentence 
into a fixed-length vector. This might cause some difficulties for the neural 
network to cope with long sentences, especially those that are longer than the 
samples in the training corpus. To resolve the problem, this article proposed 
an intention-based encoder-decoder system that learns jointly to align and 
translate. First, a source sentence is encoded into a sequence vector instead 
of a fixed length vector, using what is called bidirectional recurrent neural 
networks. The latter annotates each word by summarizing the preceding and 
following words, by reading the input sentence in order and calculates the 
forward hidden states. Then applies  the same process in the backward order 
respectively. Finally, it concatenates the forward and backward hidden states 
to form the full representation of a given word                    .

The approach of Bahdanu. for decoding a translation is a slightly different 
process compared to the classical one. They introduced a distinct context 
vector ci depending on the source annotation and the attention score referring 
to a measurement of importance of a source word in respect to the previous 

𝑒𝑒(𝑘𝑘) = 𝑤𝑤𝑘𝑘
𝑇𝑇 𝑧𝑧𝑖𝑖 +  𝑏𝑏𝑘𝑘  (12)  

with 𝑤𝑤𝑘𝑘 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 target word, 𝑧𝑧𝑖𝑖 the RNN’s calculated internal state and 𝑏𝑏𝑘𝑘 the bias vector. 

Once the words are scored, they are subjected to a softmax normalization function (13), in 
furtherance of squashing the scores’ values into a [0, 1] interval, i.e. generating a probability 
distribution over the calculated scores. The latter is involved in selecting the best translation by 
using a simplification algorithm. We should mention that the word and the decoder’s internal state 
are proportional, as the more correctly they align, higher the score gets, i.e. the product 𝑤𝑤𝑘𝑘

𝑇𝑇  𝑧𝑧𝑖𝑖  gets 
large. 

𝑝𝑝 (𝑦𝑦𝑡𝑡  = 𝑘𝑘|𝑦𝑦1,  𝑦𝑦2,  … , 𝑦𝑦𝑡𝑡−1,  𝑐𝑐) =  exp(𝑒𝑒(𝑘𝑘))
∑ exp(𝑒𝑒(𝑗𝑗))𝑗𝑗

 (13) 

to form the full representation of a given word ℎ𝑗𝑗 = [ℎ⃗ 𝑗𝑗𝑇𝑇 , ℎ𝑗𝑗
𝑇𝑇⃖⃗ ⃗⃗⃗]. 

 

𝑝𝑝(𝑦𝑦𝑖𝑖|𝑦𝑦1, … , 𝑦𝑦𝑖𝑖−1, 𝑋𝑋) = 𝑔𝑔(𝑦𝑦𝑖𝑖−1, 𝑠𝑠𝑖𝑖, 𝑐𝑐𝑖𝑖)(14) 

The context vector 𝑐𝑐𝑖𝑖 is, then, computed as a weighted sum of the annotations ℎ𝑗𝑗: 

𝑐𝑐𝑖𝑖 =  ∑ ∝𝑖𝑖𝑖𝑖 ℎ𝑗𝑗
𝑇𝑇𝑇𝑇
𝑗𝑗=1  (15)  

given ∝𝑖𝑖𝑖𝑖=  exp(𝑒𝑒𝑖𝑖𝑖𝑖)
∑ exp(𝑒𝑒𝑖𝑖𝑖𝑖)𝑇𝑇𝑇𝑇

𝑘𝑘=1
(16) and 𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑎𝑎(𝑠𝑠𝑖𝑖−1, ℎ𝑗𝑗) (17). 

 𝑙𝑙𝑝𝑝−1
𝑓𝑓 , 

 
𝑝𝑝(𝑤𝑤𝑝𝑝|𝑎𝑎, 𝑙𝑙𝑝𝑝−1

𝑓𝑓 ) =  ∏ 𝑝𝑝(𝑤𝑤𝑗𝑗,𝑖𝑖|𝑤𝑤𝑘𝑘,0, … , 𝑤𝑤𝑗𝑗,𝑗𝑗−1, 𝑎𝑎, 𝑙𝑙𝑝𝑝−1
𝑓𝑓 ) (18)

𝑖𝑖∈[0,𝑦𝑦]
. 

 

𝑝𝑝(𝑦𝑦𝑡𝑡| 𝑦𝑦<𝑡𝑡 , 𝑥𝑥) =  exp (𝑤𝑤𝑡𝑡
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑡𝑡)

∑ exp (𝑤𝑤𝑘𝑘
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑘𝑘)𝑘𝑘:𝑦𝑦𝑘𝑘∈𝑉𝑉′

 (19). 

 



424

JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

target history to generate a target word at a given step. Mathematically, the 
proposal of Bahdanau conditioned the probability on this distinct context 
vector for each target word yi as follows:

								           (14)

The context vector ci is, then, computed as a weighted sum of the annotations 
hj:

							             (15) 

								           (16)

								           (17)

Note that the alignment model directly computes a soft alignment eij, via 
a feedforward neural network which is jointly trained with all the other 
components of the proposed system.

The experiments conducted on the bilingual, parallel corpora provided by 
ACL WMT ’14 were compared to an RNN Encoder-Decoder suggested by 
(Cho et al., 2014a).  The proposed study demonstrated to be more robust to 
the length of the sentences as it performed well even with over 50 sentences 
in length.  Also it outperformed the reference baseline used for comparison 
purpose according to the BLEU metric.

Effective Approaches to Attention-based Neural Machine Translation (Luong 
et al., 2015). In this work, the authors extended the idea of attention-based 
neural machine translation from Bahdanau et al. (2014). They designed 
two novel types of attentional-based models, a global approach and a local 
one, each of which addressed the alignment process of the translation task 
differently. Similar to the existing attentional model, a simple concatenation 
layer was employed to combine information from the target hidden state and 
the source context vector into an attentional hidden state vector, which was 
then fed through the softmax layer to produce the predictive distribution. 
However, it differed in the global and local classes, i.e. the attention was 
placed on all source positions or only a few source positions.

Global attention: In this case, the context vector was computed as the weighted 
average over all the source hidden states. Instead of the concatenation of the 
forward and backward source hidden states in the bidirectional encoder as 

𝑒𝑒(𝑘𝑘) = 𝑤𝑤𝑘𝑘
𝑇𝑇 𝑧𝑧𝑖𝑖 +  𝑏𝑏𝑘𝑘  (12)  

with 𝑤𝑤𝑘𝑘 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 target word, 𝑧𝑧𝑖𝑖 the RNN’s calculated internal state and 𝑏𝑏𝑘𝑘 the bias vector. 

Once the words are scored, they are subjected to a softmax normalization function (13), in 
furtherance of squashing the scores’ values into a [0, 1] interval, i.e. generating a probability 
distribution over the calculated scores. The latter is involved in selecting the best translation by 
using a simplification algorithm. We should mention that the word and the decoder’s internal state 
are proportional, as the more correctly they align, higher the score gets, i.e. the product 𝑤𝑤𝑘𝑘

𝑇𝑇  𝑧𝑧𝑖𝑖  gets 
large. 

𝑝𝑝 (𝑦𝑦𝑡𝑡  = 𝑘𝑘|𝑦𝑦1,  𝑦𝑦2,  … , 𝑦𝑦𝑡𝑡−1,  𝑐𝑐) =  exp(𝑒𝑒(𝑘𝑘))
∑ exp(𝑒𝑒(𝑗𝑗))𝑗𝑗

 (13) 

to form the full representation of a given word ℎ𝑗𝑗 = [ℎ⃗ 𝑗𝑗𝑇𝑇 , ℎ𝑗𝑗
𝑇𝑇⃖⃗ ⃗⃗⃗]. 

 

𝑝𝑝(𝑦𝑦𝑖𝑖|𝑦𝑦1, … , 𝑦𝑦𝑖𝑖−1, 𝑋𝑋) = 𝑔𝑔(𝑦𝑦𝑖𝑖−1, 𝑠𝑠𝑖𝑖, 𝑐𝑐𝑖𝑖)(14) 

The context vector 𝑐𝑐𝑖𝑖 is, then, computed as a weighted sum of the annotations ℎ𝑗𝑗: 

𝑐𝑐𝑖𝑖 =  ∑ ∝𝑖𝑖𝑖𝑖 ℎ𝑗𝑗
𝑇𝑇𝑇𝑇
𝑗𝑗=1  (15)  

given ∝𝑖𝑖𝑖𝑖=  exp(𝑒𝑒𝑖𝑖𝑖𝑖)
∑ exp(𝑒𝑒𝑖𝑖𝑖𝑖)𝑇𝑇𝑇𝑇

𝑘𝑘=1
(16) and 𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑎𝑎(𝑠𝑠𝑖𝑖−1, ℎ𝑗𝑗) (17). 

 𝑙𝑙𝑝𝑝−1
𝑓𝑓 , 

 
𝑝𝑝(𝑤𝑤𝑝𝑝|𝑎𝑎, 𝑙𝑙𝑝𝑝−1

𝑓𝑓 ) =  ∏ 𝑝𝑝(𝑤𝑤𝑗𝑗,𝑖𝑖|𝑤𝑤𝑘𝑘,0, … , 𝑤𝑤𝑗𝑗,𝑗𝑗−1, 𝑎𝑎, 𝑙𝑙𝑝𝑝−1
𝑓𝑓 ) (18)

𝑖𝑖∈[0,𝑦𝑦]
. 

 

𝑝𝑝(𝑦𝑦𝑡𝑡| 𝑦𝑦<𝑡𝑡 , 𝑥𝑥) =  exp (𝑤𝑤𝑡𝑡
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑡𝑡)

∑ exp (𝑤𝑤𝑘𝑘
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑘𝑘)𝑘𝑘:𝑦𝑦𝑘𝑘∈𝑉𝑉′

 (19). 

 

𝑒𝑒(𝑘𝑘) = 𝑤𝑤𝑘𝑘
𝑇𝑇 𝑧𝑧𝑖𝑖 +  𝑏𝑏𝑘𝑘  (12)  

with 𝑤𝑤𝑘𝑘 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 target word, 𝑧𝑧𝑖𝑖 the RNN’s calculated internal state and 𝑏𝑏𝑘𝑘 the bias vector. 

Once the words are scored, they are subjected to a softmax normalization function (13), in 
furtherance of squashing the scores’ values into a [0, 1] interval, i.e. generating a probability 
distribution over the calculated scores. The latter is involved in selecting the best translation by 
using a simplification algorithm. We should mention that the word and the decoder’s internal state 
are proportional, as the more correctly they align, higher the score gets, i.e. the product 𝑤𝑤𝑘𝑘

𝑇𝑇  𝑧𝑧𝑖𝑖  gets 
large. 

𝑝𝑝 (𝑦𝑦𝑡𝑡  = 𝑘𝑘|𝑦𝑦1,  𝑦𝑦2,  … , 𝑦𝑦𝑡𝑡−1,  𝑐𝑐) =  exp(𝑒𝑒(𝑘𝑘))
∑ exp(𝑒𝑒(𝑗𝑗))𝑗𝑗

 (13) 

to form the full representation of a given word ℎ𝑗𝑗 = [ℎ⃗ 𝑗𝑗𝑇𝑇 , ℎ𝑗𝑗
𝑇𝑇⃖⃗ ⃗⃗⃗]. 

 

𝑝𝑝(𝑦𝑦𝑖𝑖|𝑦𝑦1, … , 𝑦𝑦𝑖𝑖−1, 𝑋𝑋) = 𝑔𝑔(𝑦𝑦𝑖𝑖−1, 𝑠𝑠𝑖𝑖, 𝑐𝑐𝑖𝑖)(14) 

The context vector 𝑐𝑐𝑖𝑖 is, then, computed as a weighted sum of the annotations ℎ𝑗𝑗: 

𝑐𝑐𝑖𝑖 =  ∑ ∝𝑖𝑖𝑖𝑖 ℎ𝑗𝑗
𝑇𝑇𝑇𝑇
𝑗𝑗=1  (15)  

given ∝𝑖𝑖𝑖𝑖=  exp(𝑒𝑒𝑖𝑖𝑖𝑖)
∑ exp(𝑒𝑒𝑖𝑖𝑖𝑖)𝑇𝑇𝑇𝑇

𝑘𝑘=1
(16) and 𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑎𝑎(𝑠𝑠𝑖𝑖−1, ℎ𝑗𝑗) (17). 

 𝑙𝑙𝑝𝑝−1
𝑓𝑓 , 

 
𝑝𝑝(𝑤𝑤𝑝𝑝|𝑎𝑎, 𝑙𝑙𝑝𝑝−1

𝑓𝑓 ) =  ∏ 𝑝𝑝(𝑤𝑤𝑗𝑗,𝑖𝑖|𝑤𝑤𝑘𝑘,0, … , 𝑤𝑤𝑗𝑗,𝑗𝑗−1, 𝑎𝑎, 𝑙𝑙𝑝𝑝−1
𝑓𝑓 ) (18)

𝑖𝑖∈[0,𝑦𝑦]
. 

 

𝑝𝑝(𝑦𝑦𝑡𝑡| 𝑦𝑦<𝑡𝑡 , 𝑥𝑥) =  exp (𝑤𝑤𝑡𝑡
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑡𝑡)

∑ exp (𝑤𝑤𝑘𝑘
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑘𝑘)𝑘𝑘:𝑦𝑦𝑘𝑘∈𝑉𝑉′

 (19). 

 

𝑒𝑒(𝑘𝑘) = 𝑤𝑤𝑘𝑘
𝑇𝑇 𝑧𝑧𝑖𝑖 +  𝑏𝑏𝑘𝑘  (12)  

with 𝑤𝑤𝑘𝑘 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 target word, 𝑧𝑧𝑖𝑖 the RNN’s calculated internal state and 𝑏𝑏𝑘𝑘 the bias vector. 

Once the words are scored, they are subjected to a softmax normalization function (13), in 
furtherance of squashing the scores’ values into a [0, 1] interval, i.e. generating a probability 
distribution over the calculated scores. The latter is involved in selecting the best translation by 
using a simplification algorithm. We should mention that the word and the decoder’s internal state 
are proportional, as the more correctly they align, higher the score gets, i.e. the product 𝑤𝑤𝑘𝑘

𝑇𝑇  𝑧𝑧𝑖𝑖  gets 
large. 

𝑝𝑝 (𝑦𝑦𝑡𝑡  = 𝑘𝑘|𝑦𝑦1,  𝑦𝑦2,  … , 𝑦𝑦𝑡𝑡−1,  𝑐𝑐) =  exp(𝑒𝑒(𝑘𝑘))
∑ exp(𝑒𝑒(𝑗𝑗))𝑗𝑗

 (13) 

to form the full representation of a given word ℎ𝑗𝑗 = [ℎ⃗ 𝑗𝑗𝑇𝑇 , ℎ𝑗𝑗
𝑇𝑇⃖⃗ ⃗⃗⃗]. 

 

𝑝𝑝(𝑦𝑦𝑖𝑖|𝑦𝑦1, … , 𝑦𝑦𝑖𝑖−1, 𝑋𝑋) = 𝑔𝑔(𝑦𝑦𝑖𝑖−1, 𝑠𝑠𝑖𝑖, 𝑐𝑐𝑖𝑖)(14) 

The context vector 𝑐𝑐𝑖𝑖 is, then, computed as a weighted sum of the annotations ℎ𝑗𝑗: 

𝑐𝑐𝑖𝑖 =  ∑ ∝𝑖𝑖𝑖𝑖 ℎ𝑗𝑗
𝑇𝑇𝑇𝑇
𝑗𝑗=1  (15)  

given ∝𝑖𝑖𝑖𝑖=  exp(𝑒𝑒𝑖𝑖𝑖𝑖)
∑ exp(𝑒𝑒𝑖𝑖𝑖𝑖)𝑇𝑇𝑇𝑇

𝑘𝑘=1
(16) and 𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑎𝑎(𝑠𝑠𝑖𝑖−1, ℎ𝑗𝑗) (17). 

 𝑙𝑙𝑝𝑝−1
𝑓𝑓 , 

 
𝑝𝑝(𝑤𝑤𝑝𝑝|𝑎𝑎, 𝑙𝑙𝑝𝑝−1

𝑓𝑓 ) =  ∏ 𝑝𝑝(𝑤𝑤𝑗𝑗,𝑖𝑖|𝑤𝑤𝑘𝑘,0, … , 𝑤𝑤𝑗𝑗,𝑗𝑗−1, 𝑎𝑎, 𝑙𝑙𝑝𝑝−1
𝑓𝑓 ) (18)

𝑖𝑖∈[0,𝑦𝑦]
. 

 

𝑝𝑝(𝑦𝑦𝑡𝑡| 𝑦𝑦<𝑡𝑡 , 𝑥𝑥) =  exp (𝑤𝑤𝑡𝑡
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑡𝑡)

∑ exp (𝑤𝑤𝑘𝑘
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑘𝑘)𝑘𝑘:𝑦𝑦𝑘𝑘∈𝑉𝑉′

 (19). 

 

𝑒𝑒(𝑘𝑘) = 𝑤𝑤𝑘𝑘
𝑇𝑇 𝑧𝑧𝑖𝑖 +  𝑏𝑏𝑘𝑘  (12)  

with 𝑤𝑤𝑘𝑘 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 target word, 𝑧𝑧𝑖𝑖 the RNN’s calculated internal state and 𝑏𝑏𝑘𝑘 the bias vector. 

Once the words are scored, they are subjected to a softmax normalization function (13), in 
furtherance of squashing the scores’ values into a [0, 1] interval, i.e. generating a probability 
distribution over the calculated scores. The latter is involved in selecting the best translation by 
using a simplification algorithm. We should mention that the word and the decoder’s internal state 
are proportional, as the more correctly they align, higher the score gets, i.e. the product 𝑤𝑤𝑘𝑘

𝑇𝑇  𝑧𝑧𝑖𝑖  gets 
large. 

𝑝𝑝 (𝑦𝑦𝑡𝑡  = 𝑘𝑘|𝑦𝑦1,  𝑦𝑦2,  … , 𝑦𝑦𝑡𝑡−1,  𝑐𝑐) =  exp(𝑒𝑒(𝑘𝑘))
∑ exp(𝑒𝑒(𝑗𝑗))𝑗𝑗

 (13) 

to form the full representation of a given word ℎ𝑗𝑗 = [ℎ⃗ 𝑗𝑗𝑇𝑇 , ℎ𝑗𝑗
𝑇𝑇⃖⃗ ⃗⃗⃗]. 

 

𝑝𝑝(𝑦𝑦𝑖𝑖|𝑦𝑦1, … , 𝑦𝑦𝑖𝑖−1, 𝑋𝑋) = 𝑔𝑔(𝑦𝑦𝑖𝑖−1, 𝑠𝑠𝑖𝑖, 𝑐𝑐𝑖𝑖)(14) 

The context vector 𝑐𝑐𝑖𝑖 is, then, computed as a weighted sum of the annotations ℎ𝑗𝑗: 

𝑐𝑐𝑖𝑖 =  ∑ ∝𝑖𝑖𝑖𝑖 ℎ𝑗𝑗
𝑇𝑇𝑇𝑇
𝑗𝑗=1  (15)  

given ∝𝑖𝑖𝑖𝑖=  exp(𝑒𝑒𝑖𝑖𝑖𝑖)
∑ exp(𝑒𝑒𝑖𝑖𝑖𝑖)𝑇𝑇𝑇𝑇

𝑘𝑘=1
(16) and 𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑎𝑎(𝑠𝑠𝑖𝑖−1, ℎ𝑗𝑗) (17). 

 𝑙𝑙𝑝𝑝−1
𝑓𝑓 , 

 
𝑝𝑝(𝑤𝑤𝑝𝑝|𝑎𝑎, 𝑙𝑙𝑝𝑝−1

𝑓𝑓 ) =  ∏ 𝑝𝑝(𝑤𝑤𝑗𝑗,𝑖𝑖|𝑤𝑤𝑘𝑘,0, … , 𝑤𝑤𝑗𝑗,𝑗𝑗−1, 𝑎𝑎, 𝑙𝑙𝑝𝑝−1
𝑓𝑓 ) (18)

𝑖𝑖∈[0,𝑦𝑦]
. 

 

𝑝𝑝(𝑦𝑦𝑡𝑡| 𝑦𝑦<𝑡𝑡 , 𝑥𝑥) =  exp (𝑤𝑤𝑡𝑡
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑡𝑡)

∑ exp (𝑤𝑤𝑘𝑘
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑘𝑘)𝑘𝑘:𝑦𝑦𝑘𝑘∈𝑉𝑉′

 (19). 

 



JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

425

in Bahdanau’s model. The hidden states at the top LSTM layers in both the 
encoder and the decoder were simply used for context computation.

Figure 10. Global attention model illustration Luong et al. 2015.

Figure 11. Local attention model illustration (Luong et al., 2015).

Local attention. It was inspired from the tradeoff between the soft and hard 
attentional models proposed by Xu et al. (2015) to tackle the image caption 
generation task. The local attention approach addressed some drawbacks of 
the proposed global attention approach. i.e. the global attention attends to 



426

JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

all words on the source side for each target word, the thing that would be 
computationally expensive and potentially make it difficult for the translation 
task for long sentences. The model first generates an aligned position pt for 
each target word at a time. Then it computes the context vector as a weighted 
average over the set of source hidden states within the selected window  
[pt˗D,pt+D]. The model also considers two variants, namely Monotonic 
alignments which simply assume that the source and target sequences are 
roughly monotonically aligned; and a Predictive alignment that predicts the 
aligned position using a sigmoid function. The study demonstrated that both 
approaches are effective in the WMT translation tasks between English and 
German in both directions. The models boosted the BLEU score to 5.0 over non-
attentional models. For English to German translation, the experimentations 
achieved new state-of-the-art results for both WMT’14 and WMT’15.

Character-Based Neural Machine Translation by  Wang Ling et al., 
2015. In this paper, the authors introduced a neural machine translation 
model that deals with character sequences rather than words. However, due 
to the importance of word-level information, they kept the use of the word-
level information by composing representations of character sequences into 
representations of words. To implement their proposal, the authors adapted 
the attention-based neural translation model presented by Bahdanau et al. 
(2014), to operate over character sequences rather than word sequences while 
keeping the use of the latter too. For this purpose, they proposed a hierarchical 
architecture, which replaced the word lookup tables aka the  one-hot encoding 
process and the word softmax with character-based alternatives for both the 
encoding and decoding parts of the system.

Figure 12. Illustration of the C2W model. Square boxes represent vectors of 
neuron activations Ling et al. 2015.



JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

427

Character-based Word Representation. When given a word as an input, the 
model projects each character into a continuous dimensional vector using a 
character lookup table. Then, it builds a forward LSTM state sequence by 
reading the character vectors. Moreover, it reads the character vectors in the 
reverse order generating the backward states via a backward LSTM. At the 
final step, all the final states are combined to produce the representation of 
the word.

Figure 13. Illustration of the V2C model. Square boxes represent vectors of 
neuron activations (Ling et al., 2015).

Character-based Word Generation: The character-based word generation 
model addresses many problems at the word-level neural machine translation, 
namely, the traversing of the whole target vocabulary for each prediction during 
both the training and the testing phases, as well as the inability of word-level 
models to generalize unseen words in the training corpus. The main idea of 
the character- to- vector approach is that rather than learning to predict single 
words, the model predicts the character sequence of the output word. Each 
prediction is dependent on the aligned source word a, target word context             
, and on the previously generated characters. Thus the probability of a given 
word could be defined as 

								           (18)

The current study showed some minimal improvement from a BLEU score 
perspective, and according to two experiences each on a different corpus. For 
the BTEC dataset, the character-based model enhanced the results of the word-
based neural model with 0.07 BLEU points. While using the Europarl, the 
proposed model performed a gain of 0.2 BLEU points over the baseline word-

𝑒𝑒(𝑘𝑘) = 𝑤𝑤𝑘𝑘
𝑇𝑇 𝑧𝑧𝑖𝑖 +  𝑏𝑏𝑘𝑘  (12)  

with 𝑤𝑤𝑘𝑘 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 target word, 𝑧𝑧𝑖𝑖 the RNN’s calculated internal state and 𝑏𝑏𝑘𝑘 the bias vector. 

Once the words are scored, they are subjected to a softmax normalization function (13), in 
furtherance of squashing the scores’ values into a [0, 1] interval, i.e. generating a probability 
distribution over the calculated scores. The latter is involved in selecting the best translation by 
using a simplification algorithm. We should mention that the word and the decoder’s internal state 
are proportional, as the more correctly they align, higher the score gets, i.e. the product 𝑤𝑤𝑘𝑘

𝑇𝑇  𝑧𝑧𝑖𝑖  gets 
large. 

𝑝𝑝 (𝑦𝑦𝑡𝑡  = 𝑘𝑘|𝑦𝑦1,  𝑦𝑦2,  … , 𝑦𝑦𝑡𝑡−1,  𝑐𝑐) =  exp(𝑒𝑒(𝑘𝑘))
∑ exp(𝑒𝑒(𝑗𝑗))𝑗𝑗

 (13) 

to form the full representation of a given word ℎ𝑗𝑗 = [ℎ⃗ 𝑗𝑗𝑇𝑇 , ℎ𝑗𝑗
𝑇𝑇⃖⃗ ⃗⃗⃗]. 

 

𝑝𝑝(𝑦𝑦𝑖𝑖|𝑦𝑦1, … , 𝑦𝑦𝑖𝑖−1, 𝑋𝑋) = 𝑔𝑔(𝑦𝑦𝑖𝑖−1, 𝑠𝑠𝑖𝑖, 𝑐𝑐𝑖𝑖)(14) 

The context vector 𝑐𝑐𝑖𝑖 is, then, computed as a weighted sum of the annotations ℎ𝑗𝑗: 

𝑐𝑐𝑖𝑖 =  ∑ ∝𝑖𝑖𝑖𝑖 ℎ𝑗𝑗
𝑇𝑇𝑇𝑇
𝑗𝑗=1  (15)  

given ∝𝑖𝑖𝑖𝑖=  exp(𝑒𝑒𝑖𝑖𝑖𝑖)
∑ exp(𝑒𝑒𝑖𝑖𝑖𝑖)𝑇𝑇𝑇𝑇

𝑘𝑘=1
(16) and 𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑎𝑎(𝑠𝑠𝑖𝑖−1, ℎ𝑗𝑗) (17). 

 𝑙𝑙𝑝𝑝−1
𝑓𝑓 , 

 
𝑝𝑝(𝑤𝑤𝑝𝑝|𝑎𝑎, 𝑙𝑙𝑝𝑝−1

𝑓𝑓 ) =  ∏ 𝑝𝑝(𝑤𝑤𝑗𝑗,𝑖𝑖|𝑤𝑤𝑘𝑘,0, … , 𝑤𝑤𝑗𝑗,𝑗𝑗−1, 𝑎𝑎, 𝑙𝑙𝑝𝑝−1
𝑓𝑓 ) (18)

𝑖𝑖∈[0,𝑦𝑦]
. 

 

𝑝𝑝(𝑦𝑦𝑡𝑡| 𝑦𝑦<𝑡𝑡 , 𝑥𝑥) =  exp (𝑤𝑤𝑡𝑡
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑡𝑡)

∑ exp (𝑤𝑤𝑘𝑘
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑘𝑘)𝑘𝑘:𝑦𝑦𝑘𝑘∈𝑉𝑉′

 (19). 

 



428

JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

based model. It was fairly noticeable that the differences were not significant, 
but according to the authors, they still represent a valuable finding compared 
to previous work.

On using very large target vocabulary for neural machine translation, 
Jean et al., 2015. This endeavor addressed the problem of handling large 
corpora in neural machine translation and dealing with learning and decoding 
complexity in this case. The proposal presented an approximate learning 
approach to a very large target vocabulary to allow its use of it with a constant 
training complexity relative to the size of the target vocabulary. Intuitively, 
the approach proposed to make use of only a small subset of the target 
vocabulary at each update to avoid the growing complexity of computing the 
normalization constant. This subset was defined prior to the learning process 
for each of the partitions obtained from partitioning the training corpus. In 
more detail, the pre-training process was repeated until reaching the end of 
the dataset, i.e. sequentially each target sentence in the corpus was examined 
before training began, and all the unique target words were accumulated until 
reaching a predefined threshold;  then made use of the resulting vocabulary 
for the equivalent partition during training. By looking at the formula (19) for 
computing the next target word, we can tell that this approach can be seen as 
approximating the exact output probability:

							            (19)

Experiments on the proposed model to matched, and in some cases outperformed 
the baseline models used in the study. Also, a comparable performance of  the 
state- of- the art results on both the English-German and the English-French 
translation tasks of WMT’14 was achieved based on BLEU scores using an 
ensemble of a few models with extensive target vocabularies. 

Addressing the Rare Word Problem in Neural Machine Translation, Luong 
et al., 2015. This proposal addressed a significant weakness of neural machine 
translation systems, which was their inability to translate very rare words, also 
known as out-of-vocabulary words, correctly. The authors proposed a method 
of training a neural machine translation on data that was augmented by the 
output of a word alignment algorithm. This approach allows the translation 
model to retrieve the position of the corresponding source sequence for each 
out-of-vocabulary word in the target sentence by annotating the training 
corpus with specific alignment information. Then it used the relative position 
in the  post-processing phase to retrieve the equivalent translation and replaced 
each unknown word in the system’s output with a translation of its source 

𝑒𝑒(𝑘𝑘) = 𝑤𝑤𝑘𝑘
𝑇𝑇 𝑧𝑧𝑖𝑖 +  𝑏𝑏𝑘𝑘  (12)  

with 𝑤𝑤𝑘𝑘 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 target word, 𝑧𝑧𝑖𝑖 the RNN’s calculated internal state and 𝑏𝑏𝑘𝑘 the bias vector. 

Once the words are scored, they are subjected to a softmax normalization function (13), in 
furtherance of squashing the scores’ values into a [0, 1] interval, i.e. generating a probability 
distribution over the calculated scores. The latter is involved in selecting the best translation by 
using a simplification algorithm. We should mention that the word and the decoder’s internal state 
are proportional, as the more correctly they align, higher the score gets, i.e. the product 𝑤𝑤𝑘𝑘

𝑇𝑇  𝑧𝑧𝑖𝑖  gets 
large. 

𝑝𝑝 (𝑦𝑦𝑡𝑡  = 𝑘𝑘|𝑦𝑦1,  𝑦𝑦2,  … , 𝑦𝑦𝑡𝑡−1,  𝑐𝑐) =  exp(𝑒𝑒(𝑘𝑘))
∑ exp(𝑒𝑒(𝑗𝑗))𝑗𝑗

 (13) 

to form the full representation of a given word ℎ𝑗𝑗 = [ℎ⃗ 𝑗𝑗𝑇𝑇 , ℎ𝑗𝑗
𝑇𝑇⃖⃗ ⃗⃗⃗]. 

 

𝑝𝑝(𝑦𝑦𝑖𝑖|𝑦𝑦1, … , 𝑦𝑦𝑖𝑖−1, 𝑋𝑋) = 𝑔𝑔(𝑦𝑦𝑖𝑖−1, 𝑠𝑠𝑖𝑖, 𝑐𝑐𝑖𝑖)(14) 

The context vector 𝑐𝑐𝑖𝑖 is, then, computed as a weighted sum of the annotations ℎ𝑗𝑗: 

𝑐𝑐𝑖𝑖 =  ∑ ∝𝑖𝑖𝑖𝑖 ℎ𝑗𝑗
𝑇𝑇𝑇𝑇
𝑗𝑗=1  (15)  

given ∝𝑖𝑖𝑖𝑖=  exp(𝑒𝑒𝑖𝑖𝑖𝑖)
∑ exp(𝑒𝑒𝑖𝑖𝑖𝑖)𝑇𝑇𝑇𝑇

𝑘𝑘=1
(16) and 𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑎𝑎(𝑠𝑠𝑖𝑖−1, ℎ𝑗𝑗) (17). 

 𝑙𝑙𝑝𝑝−1
𝑓𝑓 , 

 
𝑝𝑝(𝑤𝑤𝑝𝑝|𝑎𝑎, 𝑙𝑙𝑝𝑝−1

𝑓𝑓 ) =  ∏ 𝑝𝑝(𝑤𝑤𝑗𝑗,𝑖𝑖|𝑤𝑤𝑘𝑘,0, … , 𝑤𝑤𝑗𝑗,𝑗𝑗−1, 𝑎𝑎, 𝑙𝑙𝑝𝑝−1
𝑓𝑓 ) (18)

𝑖𝑖∈[0,𝑦𝑦]
. 

 

𝑝𝑝(𝑦𝑦𝑡𝑡| 𝑦𝑦<𝑡𝑡 , 𝑥𝑥) =  exp (𝑤𝑤𝑡𝑡
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑡𝑡)

∑ exp (𝑤𝑤𝑘𝑘
𝑇𝑇∅(𝑦𝑦𝑡𝑡−1,𝑧𝑧𝑡𝑡,𝑐𝑐𝑡𝑡) + 𝑏𝑏𝑘𝑘)𝑘𝑘:𝑦𝑦𝑘𝑘∈𝑉𝑉′

 (19). 

 



JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

429

word, using either a dictionary or the identity translation. Three strategies are 
presented in this article:

Copyable Model: In order to represent unknown words in the source and target 
language, this approach used multiple tokens and assigned repeating unknown 
words similar tokens,. i.e. the same unknown token has allocated to both the 
aligned source and the target unknown words, and words with no alignment or 
aligned to a known word used a special null token.

Positional All Model: This model used the universal token (UNK) and inserted 
a position token pd after every word in the target side, where d indicates a 
relative position to denote the alignment of a target word j and a source word 
i = j − d.
Positional Unknown Model: The only difference to the Position All model 
was that an UNKPOSd was used to denote both the positon with respect to its 
equivalent source word and a word that is unknown.

Luong et al.’s proposition achieved competitive results on the WMT’14 
English to French translation task with an improvement of up to 2.8 BLEU 
points over an identical neural machine translation system that did  not use 
this technique. On the other hand, the Positional Unknown model had the best 
performance compared to the other methods.

Coverage-Based Neural Machine Translation, Zhaopeng Tu et al., 2015. 
This work addressed the problems of over-translation (some words were 
unnecessarily translated for multiple times) and under-translation (some 
words were wrongly untranslated), resulting from ignoring past alignment 
information in the standard neural machine translation. The authors proposed 
a coverage-based approach by introducing a coverage vector to keep track of 
the attention history in the attention model to guide it through by paying more 
attention to the untranslated source words. In the neural machine translation 
context, the coverage-based approach could be applied by intuitively 
injecting the coverage from the previous step to the attention model. This 
vector provides complementary information of how likely the source words 
were translated in the past. This technique would assess the current source 
sequence if it was heavily attended in the past, then push the attention 
to the less attended segments of the original sentence instead. The overall 
performance of linguistic coverage outperformed its NN-based counterpart on 
both the translation and the alignment tasks (according to the authors, as no 
results have been presented in the paper), indicating that explicitly linguistic 
regularities are essential to the attention model.



430

JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

Google’s Multilingual Neural Machine Translation System: Enabling 
Zero-Shot Translation, Melvin Johnson et al., 2016. In this cutting-
edge paper, Melvin Johnson et al. proposed a new solution for multilingual 
translation Figure 14 using a single neural network slightly following the 
basic neural machine translation architecture i.e. encoder, decoder, attention, 
and sharing a wordpiece vocabulary. Particularly, this model simply added an 
artificial token to the input sequence to indicate the required target language 
(<2es> refers to “translate to Spanish”). The authors focused on three main 
points, namely simplicity (the approach made use of a general neural machine 
translation model with no changes), low-resource language improvements 
(since the training was a cross-languages process where the learned parameters 
were implicitly shared among different learnt translation pairs) and Zero-
shot translation (the training of the model on several language pairs were  an 
implicit application of transfer learning where the model generalized to the 
translation of unseen language pairs). 

On the other hand, the study was concerned with different configurations in 
order to train the monolingual model. Since the singularity/multiplicity of 
source/target languages could take various states, the authors assessed three 
important cases:

Many source languages to one target language: In this case, no additional 
source token was required since there was only a single target language. Three 
experiments have been conducted to assess the model for the many- to- one 
scenario, for instance, the one with WMT datasets, where the German-English 
and the French-English directions were combined to train the multilingual 
model. The model outperformed the baseline with +0.16 and +0.23 BLEU 
points with oversampling, and +0.11, +0.27 BLEU points without oversampling 
for the first and second directions respectively. 

One source language to many target languages: For this scenario, an 
additional token to specify the target language was prepended to the input. 
Similar to the previous case, three experiments were conducted, each of which 
adopted  two different translation directions. A significant gain of +0.90 and 
0.23 BLEU points has been achieved through the English-Spanish and the 
English-Portuguese language pairs respectively. However, there were also 
some cases where the model underperformed the baseline results, namely 
English-French with oversampling, English-German and English-French 
without oversampling, and English-Korean.



JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

431

Figure 14. The model architecture of the multilingual GNMT system 
(Melvin Johnson et al., 2016).

Many source languages to many target languages: As for the one- to- many 
configurations, a prepended token to the input specifying the target language 
is needed. However, except the French-English with no oversampling and the 
English-Spanish pairs, the results of all the remaining directions involved in 
the experiment underperformed the single baseline models used in the study.
Stanford Neural Machine Translation Systems for Spoken Language 
Domains, Luong, and Manning, 2015. In this paper, Luong and Manning 
investigated the effectiveness of applying neural machine translation to spoken 
language domains. This work considered developing answers as to how to 
adapt existing NMT systems to a new domain and how to generalize NMT to 
low-resource language pairs. For this purpose, they trained the attention-based 
NMT model proposed by Luong et al., 2015, which included two types of 
attention; global and local.

NMT Adaptation to new domains: The idea of adaptation refers to reusing 
an existing state of the art system, in this case, an English-German system 
consisting of 8 individual models trained on WMT data with mostly formal 
texts, then further training  it on a spoken language data (an English-German 
corpus provided by IWSLT 2015 in this case). The results of adaptation 
showed to be useful, giving a gain of +3.8 BLEU points compared to using an 
original model without further training.

Generalizing NMT for low-resource languages: One of the key requirements 
for training a neural machine translation model is the availability of large 



432

JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

amounts of parallel data. However, for some language pairs, the acquisition 
of large parallel corpora is not handy. In this work, the authors considered 
applying NMT to the low-resource translation task from English to Vietnamese 
in IWSLT 2015. The idea was about maintaining a big number of words in the 
vocabulary, by limiting the preprocessing to a standard corpus tokenization 
with Moses tokenizer and preserving the casing for words, then replacing 
those whose frequencies were less than five by the keyword <UNK> (referring 
to unknown words). The proposal also focused on minimizing the parameters 
of the deep LSTM, e.g. opt for 2-layer LSTM models with 500-dimensional 
embedding and LSTM cells.  As a result, the system performance was, 
unfortunately, behind the IWSLT’15 baseline. However, the approach showed 
to be promising as the gap was only about 0.6 BLEU points.

Applying neural machine translation to Arabic, Amjad Almahairi et 
al., 2016. Neural machine translation research has mainly focused on Latin 
languages. To the best of our knowledge, only one study (Amjad Almahairi et 
al., 2016) had addressed the application of NMT to Arabic language focusing 
on Arabic - English, and English – Arabic directions. This study reported an 
improvement by more than +2 BLEU points for the former direction, while for 
the other direction the proposed method achieved more than +4.98 BLEU upon 
the phrase-based bassline used in the study. The endeavor also investigated the 
importance of morphological-oriented and other linguistic-wise preprocessing 
methodologies for the Arabic language due to its ambiguity. Also by conducting 
such a preprocessing on the Arabic dataset used in the study, they were able to 
endorse their hypothesis as the results showed an improvement in comparison 
to the normal linguistic-less processing.

SUMMARY AND DISCUSSION

The evidence from this study points towards the idea that the neural machine 
translation approach has typically boosted translation quality, minimized 
translation errors (Luisa Bentivogli et al., 2016) and improved the translation 
grammaticality (Neubig et al., 2015) compared to the classical statistical 
machine translation. This considerable progress can be derived from the 
recently published results where authors compared their findings using neural 
models to the results of some statistical machine translation baselines using 
similar datasets. The comparison is naturally always based on the BLEU 
metric measurements (Workshop on Statistical Machine Translation’14, ’15, 
’16). On the other hand, Table 1 summarizes some of the main strengths and 
limitations of both models and gives a clear vision of some advantages of 



JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

433

the neural model face to the phrase-based model. One axiomatic advantage 
could be the fact that the statistical translation system is limited to a minimal 
local context, where the neural machine translation gives an extensive focus to 
the entire source sentence contextual information. From another perspective, 
Google also stated that Google neural machine translation reduced translation 
errors by up to 85% during tests using Wikipedia and news articles and  also 
produced translations which are closer to human quality than phrase-based 
translations for different language pairs.

Table 1

A multiperspective comparison that summarizes the strengths and limitations 
of both statistical and neural machines translation

Neural machine translation Statistical machine translation
-	 Generalization via continuous space 

representation.

-	 Easy implementation of the decoder.

-	 Conditioning the translation on full 
source context.

-	 Make use of efficient computing 
strategies (GPU).

-	 No need to store explicit phrase 
tables and language models.

-	 Log linear combination of many 
weak features.

-	 Using only a small context limited to 
n units.

-	 The use of phrase tables allows 
memorizing the translations of even 
infrequent words.

-	 Highly intricate decoders.

Table2 presents a general comparison of the main models discussed in this 
paper, based on some positive and negative points that we were able to observe 
in the papers covered. We noticed that the number of work presented in the 
scope of neural machine translation is exhaustive, diverse and progressive. 
Moreover, each study tries to tackle a specific problem in neural translation and 
capitalizes on previous studies, giving more chances to improve the baseline 
systems and enhance the translation quality. The recent proposed approaches 
of recurrent, attention-based and character-based translation models have 
some similarities in the core concept of modeling the translation task as an 
end-to-end process, but differ in their architecture and global configurations, 
since they are usually parameterized according to the problems. Currently, the 
largely adopted architecture is the attention-based model due to its ability to 
handle long sentences, make use of bidirectional encoders instead of fixed-
lentgh vectors, and its efficient soft alignment strategy.



434

JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

Table 2

A General Comparison of the Cutting-Edge Methods in the Neural Machine 
Translations

Model Pros Cons

Recurrent neural 
machine translation 
( Sutskever et al., 
2014).

-Direct end-to-end training.

-Use of minimal domain 
knowledge.

-Generalizing to new word phrases 
and sentences that do not occur in 
the training set.

-Inefficient generalization of 
rare words.

-Making use of a fixed length 
vector to represent variable 
length sentences which may 
cause overfitting in some cases.

Attention-based 
neural machine 
translation 
(Bahdanau et al., 
2014 ; Luong et al., 
2015).

-Handling long sentences in the 
translation process.

-Overtaking the use of the fixed-
length vector in the encoding 
process.

-Soft alignment strategy is easier 
to train than the hard attention 
approach.

-An extensive number of epochs 
is relevant to find the potential 
attention coefficients.

-Overfitting for small datasets 
due to the absence of domain 
knowledge regarding word 
alignment.

Character-based 
Neural Machine 
Translation (Wang 
Ling et al., 2015).

-The capability of interpreting and 
generating unseen word forms.

-Overtaking the preprocessing 
and tokenization of the source and 
target languages.

-Reducing the source and target 
vocabulary size.

-The use of characters as atomic 
units tends to significantly 
complicate the training.

The last three studies covered in the previous section could be excellent 
examples of applying the neural translation model to various domains. Looking 
at both of them we can tell that despite that sequence-to-sequence models 
being standard, the choice of the neural architecture is always dependent on 
the context of the study, i.e., some languages would require a morphological-
wise preprocessing as in the case of the Arabic language in the section above, 
and the new annotation concept to enable multilingual translation, where 
others would not.

Despite of the big success of applying neural networks to natural language 
processing, the use of artificial neural networks for translation ends, still raises 
many questions, especially, regarding the high efficient use of syntactic or 



JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

435

semantic structures, making use of more appropriate monolingual data for 
domain adaptation, handling large vocabularies and dealing with low-resource 
language pairs. As a response to these issues, some studies have outlined novel 
solutions. For instance, a few studies proposed to combine neural machine 
translation with a separately trained language model (Gülçehre, Firat et al., 
2015), a method in which the quality had improved up to +1.96 BLEU points 
on low resource language pairs like Turkish-English, and +0.39 and +0.47 
BLEU points by extending the method to tremendous resource languages such 
as Czech-English  and Dutch-English. Alternatively, other studies put forward 
new approaches to merge neural and statistical machine translation (Auli et 
al.,  2013, Li, Liu, and Sun, 2013, Devlin et al., 2014). Others have suggested 
enhancing neural translation systems with  useful statistical translation features 
(Wei He, Zhongjun He, Hua Wu, and Haifeng Wang, 2016).

CONCLUSION

Neural machine translation proved to be a cutting-edge improvement in the 
field of statistical translation. In this article, we have aimed to establish an 
overview of statistical translation starting from the classical statistical machine 
translation to the emerging approach of neural machine translation. Moreover, 
we surveyed some interesting endeavors that contributed generously and with 
remarkable results in developing this field. Through this study, we aimed 
to develop our understanding of the literature of statistical translation and 
paradigms of analysis that allow us to perceive the different aspects of the 
field. Moreover, moved forward with our future work that aligns with the 
scope of dealing with minimal corpora and limited resources language pairs 
in neural translation.

ACKNOWLEDGMENT

We would like to acknowledge the National Center for Scientific and Technical 
Research (CNRST) for supporting this study under the framework of Merit 
Scholarship Ref: L 02/13.

REFERENCES

Almahairi, A., Cho, K., Habash, N., & Courville, A. (2016). First result 
on Arabic neural machine translation. Retrieved from:https://arXiv 
preprint arXiv/1606.02680.



436

JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

Auli, M., Galley, M., Quirk, C., & Zweig, G. (2013, October). Joint language 
and translation modeling with recurrent neural networks. In EMNLP, 
3(8), 1-10.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by 
jointly learning to align and translate. Retrieved from:https://arXiv 
preprint arXiv:1409.0473.

Bentivogli, L., Bisazza, A., Cettolo, M., & Federico, M. (2016). Neural versus 
phrase-based machine translation quality: a case study. Retrieved 
from:https://arXiv preprint arXiv:1608.04631.

Berger, A. L., Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., Gillett, J. 
R., Lafferty, J. D., ... & Ureš, L. (1994, March). The Candide system 
for machine translation. In Proceedings of the workshop on Human 
Language Technology, 157-162. Association for Computational 
Linguistics.

Berger, A. L., Pietra, V. J. D., & Pietra, S. A. D. (1996). A maximum entropy 
approach to natural language processing. Computational Linguistics, 
22(1), 39-71.

Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P., Leveling, J., ... & 
Soricut, R. (2014, June). Findings of the 2014 workshop on statistical 
machine translation. In Proceedings of the Ninth Workshop on Statistical 
Machine Translation (pp. 12-58). Association for Computational 
Linguistics Baltimore, MD, USA. 

Bojar, O., Chatterjee, R., Federmann, C., Haddow, B., Huck, M., Hokamp, 
C., ... & Post, M. (2015). Findings of the 2015 Workshop on Statistical 
Machine Translation. 

Bottou, L. (2012). Stochastic gradient descent tricks. In Neural networks: 
Tricks of the trade (pp. 421-436). Springer Berlin Heidelberg.

Brown, P. F., Cocke, J., Pietra, S. A. D., Pietra, V. J. D., Jelinek, F., Lafferty, 
J. D., ... & Roossin, P. S. (1990). A statistical approach to machine 
translation. Computational Linguistics, 16(2), 79-85.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., & Mercer, R. L. (1993). The 
mathematics of statistical machine translation: Parameter estimation. 
Computational Linguistics, 19(2), 263-311.



JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

437

Chiang, D. (2007). Hierarchical phrase-based translation. Computational 
Linguistics, 33(2), 201-228.

Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the 
properties of neural  machine translation: Encoder-decoder approaches. 
Retrieved from:https://arXiv preprint arXiv:1409.1259.  

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., 
Schwenk, H., & Bengio, Y. (2014). Learning phrase representations 
using RNN encoder-decoder for statistical machine translation. 
Retrieved from:https://arXiv preprint arXiv:1406.1078.

Chung, J., Gülçehre, C., Cho, K., & Bengio, Y. (2015). Gated feedback 
recurrent neural networks. CoRR, abs/1502.02367.

Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R. M., & Makhoul, J. 
(2014, June). Fast and robust neural network joint models for statistical 
machine translation. In ACL (1), 1370-1380.

Germann, U., Jahr, M., Knight, K., Marcu, D., & Yamada, K. (2001, July). Fast 
decoding and optimal decoding for machine translation. In Proceedings 
of the 39th Annual Meeting on Association for Computational 
Linguistics (pp. 228-235). Association for Computational Linguistics.

Gulcehre, C., Firat, O., Xu, K., Cho, K., Barrault, L., Lin, H. C., ... & Bengio, Y. 
(2015). On using monolingual corpora in neural machine translation. 
Retrieved from: https://arXiv preprint arXiv:1503.03535. 

Hang Luong, Kyunghyun Cho, & Christopher. (2016). Manning Neural 
Machine Translation – Tutorial ACL 2016

Hasan, S., Quo, T. S., & Shamsuddin, S. M. (2012). Artificial fish swarm 
optmization for multilayer network learning in classification problems. 
Journal of Information & Communication Technology, 11, 37-53.

He, W., He, Z., Wu, H., & Wang, H. (2016, February). Improved neural 
machine translation with SMT features. In Thirtieth AAAI Conference 
on Artificial Intelligence.

Jean, S., Cho, K., Memisevic, R., & Bengio, Y. (2014). On using very large 
target vocabulary for neural machine translation. Retrieved from: 
https://arXiv preprint arXiv:1412.2007.



438

JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

Jean, S., Firat, O., Cho, K., Memisevic, R., & Bengio, Y. (2015, September). 
Montreal neural machine translation systems for WMT’15. In 
Proceedings of the Tenth Workshop on Statistical Machine Translation, 
134-140.

Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y., Chen, Z., ... & 
Hughes, M. (2016). Google’s multilingual neural machine translation 
system: Enabling zero-shot translation. Retrieved from:https://arXiv 
preprint arXiv:1611.04558.

Kalchbrenner, N., & Blunsom, P. (2013, October). Recurrent continuous 
translation models. In Proceedings of the 2013 Conference on 
Empirical Methods in Natural Language Processing, 1700–1709, 
Seattle, Washington, USA: Association for Computational Linguistics.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, 
Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. (2015). 
Show, attend and tell: Neural image caption generation with visual 
attention. Retrieved from:https://arxiv.org/pdf/1502.03044.pdf

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, 
N., & Dyer, C. (2007, June). Moses: Open source toolkit for statistical 
machine translation. In Proceedings of the 45th annual meeting of the 
ACL on interactive poster and demonstration sessions (pp. 177-180). 
Association for Computational Linguistics.

Koehn, P., Franz Josef Och & Daniel, M. (2003). Statistical phrase-
based translation. Proceedings of the 2003 Conference of the North 
American Chapter of the Association for Computational Linguistics on 
Human Language Technology-Vol.1. Association for Computational 
Linguistics.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 
436-444.

Li, P., Liu, Y., & Sun, M. (2013, October). Recursive autoencoders for ITG-
based translation. In EMNLP (pp. 567-577).

Ling, W., Trancoso, I., Dyer, C., & Black, A. W. (2015). Character-based 
neural machine translation. Retrieved from:https://arXiv preprint 
arXiv:1511.04586.



JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

439

Luong, M. T., & Manning, C. D. (2015). Stanford neural machine translation 
systems for spoken language domains. In Proceedings of the 
International Workshop on Spoken Language Translation.

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to 
attention-based neural machine translation. Retrieved from:https://
arXiv preprint arXiv:1508.04025.

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches 
to attention-based neural machine translation. arXiv preprint 
arXiv:1508.04025.

Luong, M. T., Sutskever, I., Le, Q. V., Vinyals, O., & Zaremba, W. (2014). 
Addressing the rare word problem in neural machine translation. 
Retrieved from:https://arXiv preprint arXiv:1410.8206.

Marcu, D., & Wong, W. (2002, July). A phrase-based, joint probability 
model for statistical machine translation. In Proceedings of the ACL-
02 conference on Empirical methods in natural language processing-
Volume 10 (pp. 133-139). Association for Computational Linguistics.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent 
in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115-
133.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). 
Distributed representations of words and phrases and their 
compositionality. In Advances in Neural Information Processing 
Systems, 3111-3119. 

Moon, T. K. (1996). The expectation-maximization algorithm. IEEE Signal 
Processing Magazine, 13(6), 47-60.

Neubig, G., Morishita, M., & Nakamura, S. (2015). Neural reranking improves 
subjective quality of machine translation: NAIST at WAT2015. arXiv 
preprint arXiv:1510.05203.

Och, F. J., Ueffing, N., & Ney, H. (2001, July). An efficient A* search algorithm 
for statistical machine translation. In Proceedings of the workshop on 
Data-driven methods in machine translation-Volume 14 (pp. 1-8). 
Association for Computational Linguistics.



440

JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

Och, F. J., & Ney, H. (2004). The alignment template approach to statistical 
machine translation. Computational Linguistics, 30(4), 417-449.

Och, Franz Josef, & Hermann,  N. (2004). The alignment template approach 
to statistical machine translation. Computational Linguistics, 30 (4), 
417-449.

Olanweraju, R. F., Aburas, A. A., Omran, O. K., & Abdalla, A. H. H. (2010). 
Damageless digital watermarking using complex valued artificial neural 
network. Journal of Information and Communication Technology, 9, 
111-137.

Philipp,  K. (2004a). Pharaoh: A beam search decoder for phrase-based 
statistical machine translation models. In Proceedings of the Sixth 
Conference of the Association for Machine Translation in the Americas, 
115–124.

Ranzato, M. A., Poultney, C., Chopra, S., & LeCun, Y. (2006, December). 
Efficient learning of sparse representations with an energy-based 
model. In Proceedings of the 19th International Conference on Neural 
Information Processing Systems, 1137-1144. MIT Press.

Shamsuddin, S. M., Zainal, A., & Mohd Yusof, N. (2008). Multilevel kohonen 
network learning 	for clustering problems. Journal of Information and 
Communication Technology, 7, 1-25.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning 
with neural networks. In Advances in Neural Information Processing 
Systems, 3104-3112.

Tillmann, C., & Ney, H. (2003). Word reordering and a dynamic programming 
beam search algorithm for statistical machine translation. Computational 
Linguistics, 29(1), 97-133.

Tu, Z., Lu, Z., Liu, Y., Liu, X., & Li, H. (2016). Coverage-based neural 
machine translation. Retrieved from:https://arxiv.org/pdf/1610.05150.
pdf

Wang, Y. and A. Waibel. (1997). Decoding algorithm in statistical machine 
translation. In Proceedings of the 35th Annual Meeting of the 
Association for Computational Linguistics and 8th Conference of the 



JourJournal of ICT, 16, No. 2 (Dec) 2017, pp: 408–441

441

European Chapter of the Association for Computational Linguistics 
(A CL/EA CL ‘97), 366-372, Madrid, Spain. Watanabe, T., & Sumita, 
E. (2003, September). Example-based decoding for statistical machine 
translation. In Machine Translation Summit IX, 410-417.

Zhang, J., Utiyama, M., Sumita, E., & Zhao, H. (2014). Learning hierarchical 
translation spans. In Proceedings of the 2014 Conference on Empirical 
Methods in Natural Language Processing (EMNLP), 183–188,


