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ABSTRACT

Flower Pollination Algorithm (FPA) is a relatively new meta-heuristic 
DOJRULWKP� WKDW� DGRSWV� LWV� PHWDSKRU� IURP� WKH� SUROLIHUDWLRQ� UROH� RI� ÀRZHUV�
in plants. Having only one parameter control (i.e. the switch probability, 
pa) to choose from the global search (i.e. exploration) and local search (i.e. 
exploitation) is the main strength of FPA as compared to other meta-heuristic 
algorithms. However, FPA still suffers from variability of its performance as 
WKHUH�LV�QR�RQH�VL]H�WKDW�¿WV�DOO�YDOXHV�IRU�pa, depending on the characteristics 
RI�WKH�RSWLPLVDWLRQ�IXQFWLRQ��7KLV�SDSHU�SURSRVHG�ÀRZHU�SROOLQDWLRQ�DOJRULWKP�
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metropolis-hastings (FPA-MH) based on the adoption of Metropolis-Hastings 
criteria adopted from the Simulated Annealing (SA) algorithm to enable 
dynamic selection of the pa probability. Adopting the problem of t-way test 
suite generation as the case study and with the comparative evaluation with 
the original FPA, FPA-MH gave promising results owing to its dynamic and 
adaptive selection of search operators based on the need of the current search. 

Keywords:� '\QDPLF� SUREDELOLW\� VHOHFWLRQ�� ÀRZHU� SROOLQDWLRQ� DOJRULWKP��
optimisation, t-way testing, data mining.

 
INTRODUCTION

Nowadays, the need to deal with optimisation problems is commonplace 
mainly to ensure effective return on investments (Odili, 2018). In a nutshell, 
RSWLPLVDWLRQ�SUREOHPV�UHODWH�WR�WKH�SUREOHP�RI�¿QGLQJ�WKH�EHVW�VROXWLRQ�IURP�
all the available feasible solutions. In some scenarios, the focus is to maximise 
SUR¿WV�� ZKLOVW� LQ� RWKHU� VFHQDULRV�� WKH� VWUHVV� LV� RQ�PLQLPLVLQJ� FRVWV� (Basir, 
<XVRI��	�+XVVLQ�� ������&ODUNH� HW� DO��� ������+DUPDQ�� ������5DR�	�3DZDU��
������ 6ZHVL� 	� %DNDU�� �����. Meta-heuristic-based algorithms have been 
known to be effective to deal with optimisation problems (Hairuddin, Yusuf, 
	�2WKPDQ�� ������5DR�� ������6KHKDE��.KDGHU��	�/DRXFKHGL�� �����. Many 
successful meta-heuristic algorithms have been designed to-date utilising and 
mimicking many natural phenomena from genetic evolution, swarming of 
ELUGV�� WHDFKLQJ� OHDUQLQJ�VFHQDULR�DV�ZHOO� DV�SROOLQDWLRQ�RI�ÀRZHUV�� WR�QDPH�
a few (Zou, Chen, & Xu, 2019). Flower pollination algorithm (FPA) is one 
RI�WKH�HI¿FLHQW�FRQWHPSRUDU\�PHWD�KHXULVWLF�DOJRULWKPV��7KH�PHWDSKRU�WDNHQ�
E\�)3$�FRPHV�IURP�ÀRZHUV�SUROLIHUDWLRQ�UROH�LQ�SODQWV�(Yang, 2010). Having 
only one parameter control (i.e. probability, pa) to choose from the global 
search or exploration and local search or exploitation is the main strength of 
FPA as compared to other meta-heuristic algorithms. 

On one hand, the fact that FPA only has one parameter control (i.e. probability 
selection operators, pa) facilitate its tuning process (unlike other meta-heuristics 
that adopt more than one parameter control such as genetic algorithm (GA), 
ant colony optimisation (ACO), and particle swarm optimisation (PSO). 
On the other hand, FPA still suffers from variability of its performance as 
WKHUH�LV�QR�RQH�VL]H�WKDW�¿WV�DOO�YDOXHV�IRU�pa, depending on the features of the 
optimisation function. 

,W�LV�NQRZQ�WKDW�VHDUFK�VSDFHV�YDU\�IURP�SUREOHP�WR�SUREOHP��L�H��G\QDPLF��
WKHUHIRUH��DQ\�¿[HG�DQG�SUH�VHW�pa can be counterproductive for considering a 
VXI¿FLHQW�DPRXQW�RI�H[SORUDWLRQ�DQG�H[SORLWDWLRQ��)RU�PRVW�RI�WKH�RSWLPLVDWLRQ�
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problems, more exploration is preferred at the beginning of the search process. 
Exploitation is performed when the search process is about to end. To achieve 
such behaviour, FPA needs to replace its static pa probability with a dynamic 
one. This paper proposes Flower Pollination Algorithm Metropolis-Hastings 
based on the adoption of Metropolis-Hastings criteria from the Simulated 
Annealing algorithm to enable dynamic selection of the pa probability. 
Adopting the benchmark t-way test suite construction problem as the case 
study and with the relative evaluation of the results obtained with the original 
FPA, FPA-MH gives promising performances owing to its dynamic and 
adaptive mechanisms for selecting appropriate search operators based on 
current search requirements.

OVERVIEW OF FLOWER POLLINATION ALGORITHM

)3$�RSWLPLVHV�VROXWLRQV�E\�XWLOLVLQJ�WKH�ÀRZHULQJ�SODQWV¶�SROOLQDWLRQ�SURFHVV�
where pollens are transferred by pollinators for reproduction. In the pollination 
SURFHVV��SROOHQ�JUDLQV�SURGXFHG�E\�WKH�ÀRZHU¶V�PDOH�FRPSRQHQW�WUDYHO�WR�WKH�
ÀRZHU¶V�IHPDOH�FRPSRQHQW��L�H��RYXOHV�ERUQH��WKURXJK�LQVHFWV��ELUGV��DQLPDOV�RU�
other sources such as wind or water. The former is termed as biotic pollination, 
whereas the latter is termed as abiotic pollination. Transmission of pollens 
IURP�PDOH� WR� IHPDOH�SDUWV�ZLWKLQ� WKH� VDPH�ÀRZHU�RU�ZLWKLQ�ÀRZHUV�RI� WKH�
same plant is known as self-pollination. On the other hand, cross-pollination 
LV�WKH�SURFHVV�ZKHUH�SROOHQV�DUH�WUDQVIHUUHG�ZLWKLQ�ÀRZHUV�RI�GLIIHUHQW�SODQWV�
(see Figure 1). These various pollination strategies are embedded in FPA for 
solving optimisation problems (Azad, Bozorg-Haddad, & Chu, 2018). FPA 
consists of two key operations, namely global pollination and local pollination. 
These operations are inspired by the pollination processes mentioned above. 
*OREDO�SROOLQDWLRQ�RSHUDWLRQ�VLPXODWHV�WKH�WUDQVIHU�RI�SROOHQV�ZLWKLQ�ÀRZHUV�
over long distances, where insects or other animals act as pollinators. Equation 
1 describes the global pollination operation mathematically.

        (1)

where      is the ith pollen or a solution at a particular run t, gbest is best 
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Algorithm 1: Flower Pollination Algorithm (Yang, 2010)

        L (a step vector) is generated based on the problem dimension that follows a  
        lévy distribution
        Global pollination operation:  
     else
        Generate     value randomly that falls in [0,1] following uniform distribution
        Randomly select j and k such that both are not same
        Local pollination operation:
     end if
��������(YDOXDWH�¿WQHVV�IRU�DOO�QHZ�VROXWLRQV�XSGDWHG�LQ�WKH�FXUUHQW�UXQ�
��������,I�¿WQHVV�IRU�WKH�QHZ�XSGDWHG�VROXWLRQV�DUH�EHWWHU��UHSODFH�WKH�ROG�RQHV�LQ�WKH����
        population with them
     end for
       Obtain the current best pollen gbest
     end while

RELATED WORKS

After its entry in the optimisation literature, many variants of FPA have been 
introduced. Several research endeavours consider the hybridisation of FPA 
with existing meta-heuristic algorithms. In this connection, the work by 
Abdel-Raouf, El-Henawy, and Abdel-Baset (2014) presented the FPA and 
Harmony Search (HS) algorithm hybridisation for solving Sudoku puzzles. In 
the work by Abdel-Baset and Hezam (2015), they proposed a hybrid approach 
based on FPA and GA to address problems with constraints. Similar efforts 
(hybridisation with different meta-heuristic algorithms) can be seen in other 
LQVWDQFHV� RI� RSWLPLVDWLRQ� SUREOHPV� VXFK� DV� VDWHOOLWH� LPDJH� FODVVL¿FDWLRQ�
(Johal, Singh, & Kundra, 2010), wind-thermal dynamic multi-objective 
dispatch problems (Dubey, Pandit, & Panigrahi, 2015), and route planning 
for unmanned undersea vehicles (Zhou & Wang, 2016), to name a few, which 
have been successfully addressed by FPA. Recently, Wang and Zhou (2014) 
utilised local neighbourhood search and dimension-wise evaluation to improve 
the convergence speed of FPA. In 2016, a study (Zhou, Wang, & Luo, 2016) 
HPSOR\HG�WKH�HOLWH�RSSRVLWLRQ�DSSURDFK�WR�¿QG�WKH�EHVW�SRVVLEOH�UHVXOW��Zhou 
et al. (2016)�PRGL¿HG�)3$�E\� LQWURGXFLQJ� WKUHH�QHZ�RSHUDWRUV�� HOLWH�EDVHG�
mutation, discard pollen, and crossover. Rao et al. (2018) introduced a two-
stage initialisation process, namely creation of a sub population vector and 
application of evolutionary operators, to improve the performance of basic 
FPA for detecting more optimal solutions. In a more recent work (Kopciewicz 
	�àXNDVLN�� �����, the researchers proposed Biotic FPA (BFPA), which is 
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the improvements of FPA involve hybridisation with other meta-heuristic 
algorithms. To the very least, some variants also incorporate search operators 
from different meta-heuristic algorithm into FPA. The effect of adding new 
search operators can be twofold. Firstly, there are potentially new additions 
RI�FRQWURO�SDUDPHWHUV� WKDW�PD\�LQWURGXFH�GLI¿FXOW\�RI� WXQLQJ��6HFRQGO\�� WKH�
addition of new search operators tends to alter the original structure of FPA, 
thus, demoting its learnability. In this research study, a minimalist approach is 
adopted so as to maintain the original structure of FPA.

As far as the problem of test suite construction is concerned, the literature 
includes many works that adopted different meta-heuristic algorithms such 
DV�VLPXODWHG�DQQHDOLQJ��6$���362��*$��DUWL¿FLDO�EHH�FRORQ\��$%&���HWF��6$�
(Cohen, Gibbons, Mugridge, & Colbourn, 2003)�ZDV�RQH�RI� WKH�¿UVW�PHWD�
heuristic algorithms that constructed optimal test suites. The algorithm 
RXWSHUIRUPV� JUHHG\�EDVHG� VWUDWHJLHV�� ZKHUHDV� IRU� KLJKHU� VWUHQJWK� DUUD\V��
it exhibits acceptable performance against computational strategies. PSO 
(Ahmed & Zamli, 2011) offers better results for uniform as well as variable 
interaction strength test suites. For many of the adopted cases, PSO results have 
been found effective against a range of strategies based on meta-heuristic and 
greedy algorithms. Recently, GA (Esfandyari & Rafe, 2018) has been adopted 
for the problem of test suite construction. The strategy based on GA offers 
WKH�KLJKHVW�VWUHQJWK�WHVW�VXLWHV�WR�GDWH��$UWL¿FLDO�EHH�FRORQ\�VWUDWHJ\��$%&6��
(Alazzawi, Rais, & Basri, 2018) is based on the ABC algorithm that can 
generate test suites. The strategy produces good results as compared to other 
VWUDWHJLHV� EDVHG� RQ� DUWL¿FLDO� LQWHOOLJHQFH� �$,�� DQG� FRPSXWDWLRQDO� PHWKRGV��
Hyper-heuristic strategies (Din & Zamli, 2018) based on Monte Carlo hyper-
heuristic can generate good quality pairwise test suites. This strategy employs 
more than one low-level heuristic that generate test suites under the control of 
a high-level heuristic. Though very effective, strategies proposed using these 
algorithms require extensive parameter tuning. On the contrary, FPA has only 
one parameter that requires tuning as compared to tuning of more parameters 
in case of the mentioned algorithms.

 
FLOWER POLLINATION ALGORITHM WITH METROPOLIS-

HASTINGS CRITERIA

The Metropolis-Hastings criteria are well-known within the SA algorithm’s 
probability density function. This probability density function decreases in 
nature, allowing SA to perform exploration (i.e. high probability of accepting 
SRRU�VROXWLRQ��HDUO\�LQ�WKH�LWHUDWLRQ�DQG�FRQYHUJH�WR�VSHFL¿F�YDOXH�V��WRZDUGV�
the end of the search process (i.e. with low probability of accepting poor 
solution). The Metropolis-Hastings criteria work well with SA as the search 
operator is purely based on the neighbourhood search (i.e. new solution is 
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merely a perturbation of the old solution), allowing an elegant way of getting 
out of local optima. In a nutshell, the Metropolis-Hastings criteria exploit 
�PLQXV�� H[SRQHQWLDO� GLIIHUHQFH�EHWZHHQ� �WKH�¿WQHVV� IXQFWLRQ�YDOXHV�� RI� WKH�
best solution and the current solution as well as the current iteration value to 
permit an exponentially decreasing function.

Revisiting Algorithm 1, the present study opted to make the static pa probability 
dynamic using a similar probability density function as Metropolis-Hastings 
criteria. Unlike the Metropolis-Hastings criteria where the probability density 
function was utilised for selecting the candidate solution for next iteration, the 
present study applied the dynamic probability density function for selecting 
the actual search operators for use in the next iteration. Additionally, unlike the 
Metropolis-Hastings criteria, the current work did not exploit the differences 
�EHWZHHQ� WKH� ¿WQHVV� IXQFWLRQ� YDOXHV�� RI� WKH� EHVW� VROXWLRQ� DQG� WKH� FXUUHQW�
VROXWLRQ��7R�EH� VSHFL¿F�� WKH�SUHVHQW� VWXG\�SURSRVHG� WKH�SUREDELOLW\�GHQVLW\�
IXQFWLRQ�DV�GH¿QHG�LQ�(TXDWLRQ���DV�IROORZV�

(3)

where gbest is the value of the last best solution, iteration is the current  
ith iteration, MaxGeneration is the total number of improvement generations. 

The net effect of this dynamic pa was that during the early part in the quest for 
searching optimal solutions, there were more chances to adopt global search 
via the global pollination operator (as the probability density function gave a 
large value in an exponentially decreasing manner). In this manner, the search 
process correctly explored all the search space for the best candidate solution. 
Towards the end, the probability density function gave a (decreasingly) low 
value, thus, favouring the local search via the local pollination operator. Here, 
the movement of pollen was restricted to small steps, allowing the search to 
go around the current best solution.

 
CASE STUDY: THE T-WAY TEST GENERATION PROBLEM

For the illustration of the t-way test generation problem, a hypothetical 
web-based application was considered. This application encompasses four 
parameters, each containing four values as shown in Table 1. Testing all 
possible combinations of these parameters is desirable in an ideal situation. 
In this example, there were exhaustively 34 = 81 combinations. However, all 
exhaustive combinations could be enormously large in real-life testing, thus, 
performing exhaustive testing was prohibitively impossible considering the 

As far as the problem of test suite construction is concerned, the literature includes many works that 
adopted different meta-heuristic algorithms such as Simulated Annealing (SA), PSO, GA, Artificial 
Bee Colony (ABC), etc. SA (Cohen, Gibbons, Mugridge, & Colbourn, 2003) was one of the first 
meta-heuristic algorithms that constructed optimal test suites. The algorithm outperforms greedy-
based strategies� whereas for higher strength arrays, it exhibits acceptable performance against 
computational strategies. PSO (Ahmed & Zamli, 2011) offers better results for uniform as well as 
variable interaction strength test suites. For many of the adopted cases, PSO results have been found 
effective against a range of strategies based on meta-heuristic and greedy algorithms. Recently, GA 
(Esfandyari & Rafe, 2018) has been adopted for the problem of test suite construction. The strategy 
based on GA offers the highest strength test suites to date. Artificial Bee Colony Strategy (ABCS) 
(Alazzawi, Rais, & Basri, 2018) is based on the ABC algorithm that can generate test suites. The 
strategy produces good results as compared to other strategies based on artificial intelligence (AI) and 
computational methods. Hyper-heuristic strategies (Din & Zamli, 2018) based on Monte Carlo hyper-
heuristic can generate good quality pairwise test suites. This strategy employs more than one low-
level heuristic that generate test suites under the control of a high-level heuristic. Though very 
effective, strategies proposed using these algorithms require extensive parameter tuning. On the 
contrary, FPA has only one parameter that requires tuning as compared to tuning of more parameters 
in case of the mentioned algorithms. 

 

FLOWER POLLINATION ALGORITHM WITH METROPOLIS-HASTINGS 
CRITERIA 

The Metropolis-Hastings criteria are well-known within the SA algorithm’s probability density 
function. This probability density function decreases in nature, allowing SA to perform exploration 
(i.e. high probability of accepting poor solution) early in the iteration and converge to specific 
value(s) towards the end of the search process (i.e. with low probability of accepting poor solution). 
The Metropolis-Hastings criteria work well with SA as the search operator is purely based on the 
neighbourhood search (i.e. new solution is merely a perturbation of the old solution), allowing an 
elegant way of getting out of local optima. In a nutshell, the Metropolis-Hastings criteria exploit 
(minus) exponential difference between (the fitness function values) of the best solution and the 
current solution as well as the current iteration value to permit an exponentially decreasing function. 

Revisiting Algorithm 1, the present study opted to make the static pa probability dynamic using a 
similar probability density function as Metropolis-Hastings criteria. Unlike the Metropolis-Hastings 
criteria where the probability density function was utilised for selecting the candidate solution for next 
iteration, the present study applied the dynamic probability density function for selecting the actual 
search operators for use in the next iteration. Additionally, unlike the Metropolis-Hastings criteria, the 
current work did not exploit the differences (between the fitness function values) of the best solution 
and the current solution. To be specific, the present study proposed the probability density function as 
defined in Equation 3 as follows: 

 

�
      (3) 

 

where   gbest is the value of the last best solution,  



48

Journal of ICT, 20, No. 1 (January) 2021, pp: 41-56

limited resources and time constraints. Therefore, the researchers formulated 
a sampling method that used t-way interaction between parameter values (here 
t in t-way is the interaction strength). 

The choice of t-way interaction strength depended on the test requirements 
(Alazzawi, Rais, & Basri, 2019). Typically, based on the empirical results 
within the literature, t might be selected from t = 2 until t = 6 depending on the 
parameters of choice. However, for the current problem, the maximum t was 
just four (as the exhaustive tests). To show how t-way test suite was generated, 
let t = 2 (i.e. pairwise interaction).

Table 1

Hypothetical Web-based Application

P1 P2 P3 P4
Firefox Linux ISDN Screen 
IE Macintosh PPP Networked
Netscape Windows LAN Local

Here, the set of interactions (P1, P2), (P1, P3), (P1, P4), (P2, P3), (P2, P4), 
and (P3, P4) denoted the pairwise interactions among the four parameters of 
the web-based application. For the running example, there would be 54 total 
pairs of interactions for the nine 2-way interactions among six parameters. 
These pairs of interactions are also known as interaction tuples. It could be 
easily deduced that all the 2-way interactions could be covered by a total of 10 
test cases as given in Table 2.
 
Table 2

Suggested 2-way Test Set

Test ID P1 P2 P3 P4
1 Netscape Windows LAN Local
2 IE Windows PPP Networked
3 Firefox Windows ISDN Screen
4 Netscape Macintosh PPP Screen
5 IE Macintosh LAN Local
6 Firefox Macintosh LAN Networked
7 Netscape Linux ISDN Networked
8 IE Linux LAN Screen
9 Firefox Linux PPP Local
10 IE Macintosh ISDN Local
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7R�EH�VSHFL¿F��WKH�W�ZD\�WHVW�VXLWH�JHQHUDWLRQ�LQYROYHG�WKH�IROORZLQJ�¿WQHVV�
function in Equation 4 �$OL��2WKPDQ��<DFRE��	�$ONDQDDQL��������+XDQJ�HW�DO���
2020): 

(4) 

where f (x�� UHSUHVHQWV� WKH� ¿WQHVV� IXQFWLRQ� WKDW� FRPSXWHV� WKH�ZHLJKW� RI� WKH�
individual test case in terms of the maximum number of coverages of the 
interaction tuples, x represents the set of each decision variable xi; xi, which 
consists of a series of values, that is, xi = {xi(1), xi(2),…, xi(K)}, such that 
(xi(1) < xi(2) <… < xi(K)), N represents total parameters of the system, K 
represents the total number of values that each discrete variable holds.

Test suites with t-way interactions could be described mathematically with 
FRYHULQJ� DUUD\V� QRWDWLRQ� UHSUHVHQWHG� DV� &$� �1�W�Yk) (Al-Sammarraie & 
-DZDZL��������(VIDQG\DUL�	�5DIH��������<RXQLV�������. For example, a test 
suite with nine test cases (i.e. size nine) that covered all pairwise or 2-way 
interaction tuples of a system consisting of four 3-value parameters could be 
UHSUHVHQWHG�DV�&$���������4). In this paper, the same covering array notation 
would be used.

T-WAY TEST SUITE GENERATION BASED 
ON THE PROPOSED STRATEGY

In this section, the design of FPA-MH-based strategy is described for 
addressing the construction problem of t-way test suites. Algorithm 2 presents 
the complete FPA-MH strategy. The dotted line box shows the proposed 
PRGL¿FDWLRQ�LQ�EDVLF�)3$��

5HIHUULQJ� WR� $OJRULWKP� �� DQG� EDVHG� RQ� WKH� UHFHLYLQJ� FRQ¿JXUDWLRQ� �L�H��
interaction strength t, number of parameter and their values), FPA-MH begins 
generating all possible combinations of parameters-values with size t. Then, 
FPA-MH starts generating population of pollen randomly in the Candidate 
6ROXWLRQ�OLVW��&6��+HUH��HDFK�ÀRZHU�SROOHQ�UHSUHVHQWV�RQH�WHVW�FDVH�DQG�¿WQHVV�
function is the number of interactions covered by the test case. Then, CS is 
subjected to updating process using FPA-MH operations (local and global 
pollinations). Unlike standard FPA, the switch between local and global 
pollinations is dynamically based on current best solution and iteration. The 
process updating CS continues until the stopping criteria is met, and the best 
test case that covers the maximum number of interactions, among CS, is 

Test ID P1 P2 P3 P4 
1 Netscape Windows LAN Local 
2 IE Windows PPP Networked 
3 Firefox Windows ISDN Screen 
4 Netscape Macintosh PPP Screen 
5 IE Macintosh LAN Local 
6 Firefox Macintosh LAN Networked 
7 Netscape Linux ISDN Networked 
8 IE Linux LAN Screen 
9 Firefox Linux PPP Local 
10 IE Macintosh ISDN Local 

 

To be specific, the t-way test suite generation involved the following fitness function in Equation 4 
�$OL��2WKPDQ��<DFRE��	�$ONDQDDQL��������+XDQJ�HW�DO�����20):  

 

Maximise  

Subject to  

(4)  

where  
f(x) represents the fitness function that computes the weight of the individual test case 
in terms of the maximum number of coverages of the interaction tuples,  
x represents the set of each decision variable xi; xi, which consists of a series of 
values, that is, xi = {xi(1), xi(2),…, xi(K)}, such that (xi(1) < xi(2) <… < xi(K)), 
N represents total parameters of the system, 
K represents the total number of values that each discrete variable holds. 

 

Test suites with t-way interactions could be described mathematically with covering arrays notation 
represented as CA �1�W�Yk) (Al-Sammarraie & JawaZL�� ������ (VIDQG\DUL� 	� 5DIH�� ������ <RXQLV��
2020). For example, a test suite with nine test cases (i.e. size nine) that covered all pairwise or 2-way 
interaction tuples of a system consisting of four 3-value parameters could EH�UHSUHVHQWHG�DV�&$��������
34). In this paper, the same covering array notation would be used. 

 

T-WAY TEST SUITE GENERATION BASED ON THE PROPOSED STRATEGY 

In this section, the design of FPA-MH-based strategy is described for addressing the construction 
problem of t-way test suites. Algorithm 2 presents the complete FPA-MH strategy. The dotted line 
box shows the proposed modification in basic FPA.  
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VHOHFWHG�DQG�DGGHG�LQWR�¿QDO�WHVW�VXLWH��7KLV�SURFHVV�LV�UHSHDWHG�XQWLO�DOO�WKH�
interactions are covered.

Algorithm 2: Strategy based on FPA-MH for solving the problem of t-way test 
suite generation

INPUT       :(P, v, t): Set of parameters P, values v of P and t as interaction strength
OUTPUT          :TS�¿QDO�WHVW�VXLWH
Based on P, v, t, populate interaction element list (IEL) by generating all possible 
interaction elements
Let TS�EH�WKH�¿QDO�WHVW�VXLWH��
Generate initial population of pollen randomly in the Candidate Solution list, CS
//Perform search using FPA
while IEL size is not zero (i.e. not empty) do 
while iteration < MaxGeneration or stop criteria not met do 
JEHVW� �JHWBEHVWBSROOHQ���
for i = 1: n (all n solutions in CS)

if (rand <                                                 )
Generate a step vector L based on the problem dimension that follows a lévy 
distribution
Global pollination operation:  
else
Generate e  using a uniform distribution from the interval [0,1]
Randomly select j and k such that both are not same
Local pollination operation:   
end if
�(YDOXDWH�¿WQHVV�RI�WKH�QHZO\�JHQHUDWHG�VROXWLRQV
If newly generated solutions are better, replace the old ones in the population with 
them
end for
Obtain the current best pollen gbest
end while
Add the best test case denoted by the best pollen gbest into the test suite TS. 
Remove the interaction tuples covered by gbest from IEL.
end while
Display and save TS

RESULTS AND DISCUSSION

The present study’s main goal in terms of evaluation focuses on ascertaining 
whether or not the introduction of dynamic pa improves the performance 
of the original FPA. For a fair comparison (i.e. both FPA and FPA-MH are 
non-deterministic strategies), both of them were run 20 times for every 
FRQ¿JXUDWLRQ�DQG�WKH�EHVW�REWDLQHG�WHVW�VXLWH�VL]HV�DQG�H[HFXWLRQ�WLPH�ZHUH�
reported. For comparison purpose, FPA parameters such as switch probability, 

 
 
 
 

 

 

Referring to Algorithm 2 and based on the receiving configuration (i.e. interaction strength t, number 
of parameter and their values), FPA-MH begins generating all possible combinations of parameters-
values with size t. Then, FPA-MH starts generating population of pollen randomly in the Candidate 
Solution list, CS. Here, each flower pollen represents one test case and fitness function is the number 
of interactions covered by the test case. Then, CS is subjected to updating process using FPA-MH 
operations (local and global pollinations). Unlike standard FPA, the switch between local and global 
pollinations is dynamically based on current best solution and iteration. The process updating CS 
continues until the stopping criteria is met, and the best test case that covers the maximum number of 
interactions, among CS, is selected and added into final test suite. This process is repeated until all the 
interactions are covered. 

Algorithm 2: Strategy based on FPA-MH for solving the problem of t-way test suite generation 

INPUT  :(P, v, t): Set of parameters P, values v of P and t as interaction strength 
OUTPUT  :TS final test suite 
Based on P, v, t, populate interaction element list (IEL) by generating all possible interaction 
 elements 
Let TS EH�WKH�ILQDO�WHVW�VXLWH�� 
Generate initial population of pollen randomly in the Candidate Solution list, CS 
//Perform search using FPA 
while IEL size is not zero (i.e. not empty) do  
while iteration < MaxGeneration or stop criteria not met do  
JEHVW� �JHWBEHVWBSROOHQ��� 
for i = 1: n (all n solutions in CS) 

if (rand <  ) 
Generate a step vector L based on the problem dimension that follows a lévy distribution 
Global pollination operation:   
else 
Generate H  using a uniform distribution from the interval [0,1] 
Randomly select j and k such that both are not same 
Local pollination operation:    
end if 
 Evaluate fitness of the newly generated solutions 
If newly generated solutions are better, replace the old ones in the population with them 
end for 
Obtain the current best pollen gbest 
end while 
Add the best test case denoted by the best pollen gbest into the test suite TS.  
Remove the interaction tuples covered by gbest from IEL. 
end while 
Display and save TS 

 
 
 
 

 

 

Referring to Algorithm 2 and based on the receiving configuration (i.e. interaction strength t, number 
of parameter and their values), FPA-MH begins generating all possible combinations of parameters-
values with size t. Then, FPA-MH starts generating population of pollen randomly in the Candidate 
Solution list, CS. Here, each flower pollen represents one test case and fitness function is the number 
of interactions covered by the test case. Then, CS is subjected to updating process using FPA-MH 
operations (local and global pollinations). Unlike standard FPA, the switch between local and global 
pollinations is dynamically based on current best solution and iteration. The process updating CS 
continues until the stopping criteria is met, and the best test case that covers the maximum number of 
interactions, among CS, is selected and added into final test suite. This process is repeated until all the 
interactions are covered. 

Algorithm 2: Strategy based on FPA-MH for solving the problem of t-way test suite generation 

INPUT  :(P, v, t): Set of parameters P, values v of P and t as interaction strength 
OUTPUT  :TS final test suite 
Based on P, v, t, populate interaction element list (IEL) by generating all possible interaction 
 elements 
Let TS EH�WKH�ILQDO�WHVW�VXLWH�� 
Generate initial population of pollen randomly in the Candidate Solution list, CS 
//Perform search using FPA 
while IEL size is not zero (i.e. not empty) do  
while iteration < MaxGeneration or stop criteria not met do  
JEHVW� �JHWBEHVWBSROOHQ��� 
for i = 1: n (all n solutions in CS) 

if (rand <  ) 
Generate a step vector L based on the problem dimension that follows a lévy distribution 
Global pollination operation:   
else 
Generate H  using a uniform distribution from the interval [0,1] 
Randomly select j and k such that both are not same 
Local pollination operation:    
end if 
 Evaluate fitness of the newly generated solutions 
If newly generated solutions are better, replace the old ones in the population with them 
end for 
Obtain the current best pollen gbest 
end while 
Add the best test case denoted by the best pollen gbest into the test suite TS.  
Remove the interaction tuples covered by gbest from IEL. 
end while 
Display and save TS 

 
 
 
 

 

 

Referring to Algorithm 2 and based on the receiving configuration (i.e. interaction strength t, number 
of parameter and their values), FPA-MH begins generating all possible combinations of parameters-
values with size t. Then, FPA-MH starts generating population of pollen randomly in the Candidate 
Solution list, CS. Here, each flower pollen represents one test case and fitness function is the number 
of interactions covered by the test case. Then, CS is subjected to updating process using FPA-MH 
operations (local and global pollinations). Unlike standard FPA, the switch between local and global 
pollinations is dynamically based on current best solution and iteration. The process updating CS 
continues until the stopping criteria is met, and the best test case that covers the maximum number of 
interactions, among CS, is selected and added into final test suite. This process is repeated until all the 
interactions are covered. 

Algorithm 2: Strategy based on FPA-MH for solving the problem of t-way test suite generation 

INPUT  :(P, v, t): Set of parameters P, values v of P and t as interaction strength 
OUTPUT  :TS final test suite 
Based on P, v, t, populate interaction element list (IEL) by generating all possible interaction 
 elements 
Let TS EH�WKH�ILQDO�WHVW�VXLWH�� 
Generate initial population of pollen randomly in the Candidate Solution list, CS 
//Perform search using FPA 
while IEL size is not zero (i.e. not empty) do  
while iteration < MaxGeneration or stop criteria not met do  
JEHVW� �JHWBEHVWBSROOHQ��� 
for i = 1: n (all n solutions in CS) 

if (rand <  ) 
Generate a step vector L based on the problem dimension that follows a lévy distribution 
Global pollination operation:   
else 
Generate H  using a uniform distribution from the interval [0,1] 
Randomly select j and k such that both are not same 
Local pollination operation:    
end if 
 Evaluate fitness of the newly generated solutions 
If newly generated solutions are better, replace the old ones in the population with them 
end for 
Obtain the current best pollen gbest 
end while 
Add the best test case denoted by the best pollen gbest into the test suite TS.  
Remove the interaction tuples covered by gbest from IEL. 
end while 
Display and save TS 



51

Journal of ICT, 20, No. 1 (January) 2021, pp: 41-56

pollen population size, and maximum number of improvements were set at 
0.8, 50, and 600, respectively, as suggested in a related study (Nasser, Zamli, 
Alsewari, & Ahmed, 2018). Based on the same FPA parameter settings, the 
UHVHDUFKHUV� HQVXUHG� WKDW� WKH�QXPEHU�RI�¿WQHVV� IXQFWLRQ� HYDOXDWLRQ� IRU�ERWK�
testing strategies was also the same as only one operator (i.e. either local or 
global pollination) was selected per iteration. As far as ensuring fair time 
comparison, the study also adopted the same data structure and language 
implementation for FPA and FPA-MH running on the same laptop with Core 
i7, 3.60 GHz CPU, 16 GB RAM and Windows 10. 

Table 3

Performance Comparison of FPA-MH with original FPA, PSO, and CS 
based on Generated Test Suite Sizes

FPA-MH FPA PSO CS

Best Size/Time(sec) Best Size/ Time(sec) Best Size Best Size

&$��1������7) 15/1.36 15/1.53 15 14
&$��1������7) 48/9.33 49/9.32 50 48
&$��1������7) 150/35.82 150/36.70 155 154
&$��1������7) 432/86.42 432/87.18 441 434
&$��1������7) 886/104.61 920/105.10 977 963
&$��1������4) 27/0.93 27/0.97 30 28
&$��1������5) 38/2.68 39/2.76 39 38
&$��1������6) 33/4.75 33/4.70 45 43
&$��1������8) 51/24.25 51/24.31 54 53
&$��1������9) 56/41.67 56/42.21 58 58
&$��1������10) 59/67.71 59/67.56 62 62
&$��1������7) 15/4.09 15/3.78 13 12
&$��1������7) 112/31.93 112/32.75 116 117
&$��1������7) 216/63.90 217/64.08 225 223
&$��1������7) 370/121.06 368/121.27 -       - 

Entries with bold font indicate best test suite sizes. Entries with ‘-’ indicate result not available 

Referring to Table 3, FPA-MH gave very good overall performance. To be 
VSHFL¿F��)3$�0+�REWDLQHG�WKH�PRVW�RSWLPDO�VL]H�LQ�PDQ\�FDVHV��L�H�����RXW�RI�
15 cases). Comparing with the standard FPA, FPA-MH outperformed FPA in 
¿YH�FDVHV��ZKLOH�)3$�RXWSHUIRUPHG�)3$�0+�LQ�RQO\�RQH�FDVH��7KH�)3$�0+�
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strategy appeared to produce better results owing to its ability for exploring all 
the search space for the best candidate solution and subsequently decreasing 
the exploration in exchange for increased exploitation.

As far as the comparison in terms of test suite sizes of FPA-MH with other 
strategies based on PSO and CS algorithms is concerned, FPA-MH mostly 
outperformed both in terms of the generated best test suite sizes. FPA-MH 
outperformed the PSO-based test suite generation strategy in 12 out of the 
WRWDO����LQVWDQFHV��362�PDWFKHG�)3$�0+¶V�UHVXOW�IRU�&$��1������7), whereas 
LW�REWDLQHG�D�EHWWHU� UHVXOW� WKDQ� LW�GLG�IRU�&$��1������7). Similarly, FPA-MH 
outperformed the CS-based strategy in 10 out of the total 14 cases. CS obtained 
EHWWHU�W�ZD\�WHVW�VXLWH�VL]HV�IRU�WZR�FDVHV��L�H��&$��1������7��DQG�&$��1������7)), 
whereas it twice matched the best test sizes of FPA-MH.

Concerning execution time, it was observed that both FPA-MH and FPA took 
the similar execution time and the new improvement of FPA-MH did not take 
DQ\�H[WUD�RYHUKHDG��7KHVH�UHVXOWV�VXJJHVWHG�WKDW�WKH�PRGL¿FDWLRQ�ZDV�UREXVW�
and easy to embed with the basic FPA.

Referring to the boxplot analysis in Figure 2, FPA-MH outperformed the basic 
FPA by producing the best mean results in case of both CA (N, 2 37) and CA 
�1������4). Similarly, the interquartile ranges of FPA-MH were better than that 
of FPA, showing its consistency in obtaining optimal results. This analysis 
MXVWL¿HG�WKH�HIIHFWLYHQHVV�RI�WKH�SURSRVHG�)$3�0+�RYHU�)3$�
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Figure 2. Boxplot analysis for FPA-0+�9V�)3$. 

 

CONCLUSION 

This paper proposed a new strategy based on FPA and FPA-MH for solving the t-way test suite 
generation problem. FPA-MH adopted the Metropolis-Hastings criteria from the Simulated Annealing 
algorithm to enable dynamic selection of global and local pollinations. The experimental results 
showed that FPA-MH has very good overall performance as compared to the standard FPA, owning 
to the dynamic and adaptive selection of search operators based on the need of the current search. 
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Hastings criteria from the Simulated Annealing algorithm to enable dynamic 
selection of global and local pollinations. The experimental results showed 
that FPA-MH has very good overall performance as compared to the standard 
FPA, owning to the dynamic and adaptive selection of search operators based 
on the need of the current search.

As part of future research work, the application of FPA-MH will be examined 
for other optimisation problems such as scheduling, clustering, and constrained 
optimisation.
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