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Abstract

The availability of miniature low-cost sensors has allowed for the capture of rich, multi-
modal data streams in compact embedded sensor nodes. These devices have the capacity to
radically improve the quality and amount of data available in such diverse applications as
detecting degenerative diseases, monitoring remote regions, and tracking the state of smart
assets as they traverse the supply chain. However, current implementations of these appli-
cations suffer from short lifespans due to high sensor energy use and limited battery size.
By concentrating our design efforts on the sensors themselves, it is possible to construct
embedded systems that achieve their goal(s) while drawing significantly less power. This
will increase their lifespan, allowing many more applications to make the transition from
laboratory to marketplace and thereby benefit a much wider population.

This dissertation presents an automated framework for power-efficient detection in embed-
ded sensor systems. The core of this framework is a decision tree classifier that dynamically
orders the activation and adjusts the sampling rate of the sensors, such that only the data
necessary to determine the system state is collected at any given time. This classifier can
be tuned to trade-off accuracy and power in a structured fashion. Use of a sensor set
which measures the phenomena of interest in multiple modalities and at various rates fur-
ther improves the power savings by increasing the information available to the classification
process.

An application based on a wearable gait monitor provides quantitative support for this
framework. It is shown that the decision tree classifiers designed achieve roughly identical
detection accuracies to those obtained using support vector machines while drawing three to
nine times less power. A simulation of the real-time operation of the classifiers demonstrates
that our multi-tiered classifier determines states as accurately as a single-trigger (binary)
wakeup system while drawing half as much power, with only a negligible increase in latency.

Thesis Supervisor: Joseph A. Paradiso
Title: Associate Professor of Media Arts and Sciences, Program in Media Arts and Sciences
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Notation

To simplify references to various specifications of the hardware, we adopt the following

structure:

ParameterPart,Action

For example, the time to wake up the microprocessor is denoted:

tµP,Wake

A full listing of symbols used can be found below:

Parameter Symbol

Energy E

Power P

Time t

Part Symbol

Microprocessor µP

Sensor (ith of n) Si

Action/State Symbol Used with:

Waking up Wake Microprocessor/Sensor

Active On Microprocessor/Sensor

Analog to digital converter sample Adc Microprocessor

Execute decision tree Tree Microprocessor

Execute designated response Resp Microprocessor

Calculate feature Feat Microprocessor

Operation Cycle OP Microprocessor

Sampling Cycle Cyc Alone

Table 1: Summary of nomenclature of variables
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Chapter 1

Introduction

1.1 Embedded Wireless Sensing

1.1.1 Background

Embedded wireless sensor nodes and networks are currently being used in a wide ar-

ray of applications. These include, but are certainly not limited to, detecting degenera-

tive diseases[79], monitoring remote regions[102], and ensuring the safety of housebound

elders[52]. Such systems are part of a new class of sensor-driven applications, leveraging

the decrease in both price and size of components to allow rich, multimodal data streams to

be captured by very compact systems. However, limited battery size and continuous sam-

pling of these sensor nodes greatly constrains their lifespan. By concentrating our design

efforts on the sensors themselves, rather than on the networks, it is possible to construct a

class of embedded systems which achieve their sensing goal(s) while drawing significantly

less power. This will increase the lifespan of embedded sensor nodes, allowing many more

applications to make the transition from laboratory to marketplace and thereby benefit a

much wider population.
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1.1.2 Current Status

Size, weight and battery life directly affect user acceptance and marketability of sensors and

therefore greatly influence the ability of such technological innovations to improve people’s

lives and provide societal benefits. In the case of stand-alone sensor systems, the size of the

battery effectively determines size of device1. As the sensors and associated electronics have

been reduced in size, the volume dedicated to powering them (usually via batteries) has

remained roughly constant[95]. Sensor systems can both be made smaller and utilized in a

larger set of applications if their battery size is reduced by lowering the power consumption.

As well, as sensors nodes increase in functionality (i.e. the number and extent of features),

they require increasingly frequent use and hence replacement or recharging of batteries.

This creates an increasing gap between the capabilities of a device and its lifespan under

normal use. Thus, current applications of embedded sensor systems are mostly limited to

prototype and experimental usage (see section 1.3 for a more detailed discussion) or very

simple implementations (see section 3.2). The most common solutions to limited lifespan

are to tether the system to wall power[66] or to confine the system to sampling at such a

low rate that the lifespan is satisfactory[120]. Obviously, the full potential of wireless and

wearable sensors is not being achieved through these systems, as their limited lifespans,

sensing capabilities or update rates greatly reduce the utility to the end-user.

For example, long-term medical monitoring is often hindered by its power consumption.

Both fixed environmental sensors, which cannot provide a full picture of an active patient’s

movements, or body-worn sensors, which require large battery packs and/or frequent re-

placement, are inadequate.

Left solely to the progress of semiconductor technology and battery chemistry, the situation

will eventually become untenable and the rate of technology transfer to the consumer will

slow or stop, as commercial devices currently use only the simplest forms of power manage-

ment (see section 3.2). The solution then is to make sensor systems more power-efficient

through their design.
1For other types of systems, such as PDAs and mobile phones, much of the volume is consumed by the

user interface.
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1.2 Solution

1.2.1 Overview

This dissertation work improves the capability/lifespan gap in wireless sensor nodes through

high-level algorithmic means rather than low-level technical ones. We started from a fun-

damental: the raison d’etre of these devices is to collect and process data and therefore the

design of the sensors should be central2. We concentrated on reducing the energy usage of

the sensors (and the associated processing) within the nodes. This metric was chosen since

it is both general and tractable, though it is important to note that any power savings in

the form of reduced sensing also correspond to further power savings through a reduction

in:

• data to process

• data to transmit or store

• data to analyse (particularly for a human expert).

Any gains through this work can be considered independently from the large body of work

exploring power savings through improvements to ad-hoc networking protocols and pro-

cessor efficiency. This includes improvements to the software[111], hardware[1], and RF

efficiency[69], which are described in more detail in section 3.1.3.

Our goal is to extract the necessary or desired information available in the environment at

any given point in time for the smallest outlay of energy. Specifically, the power drawn by

the sensor node is reduced by dynamically adjusting the activation and sampling rate of the

sensors, such that only the data necessary to determine the system state is collected at any

moment. Use of a sensor set which detects the phenomena of interest in multiple fashions

and various accuracies further improves the savings by increasing the possible choices for

the above process. Overall, the amount of data collected by the system is reduced without

affecting the amount of useful information collected.

The form of the solution is such that the sensor sampling rates, as well as the transitions

between them, are generated in a semi-autonomous fashion and can easily be embedded in

hardware. Therefore, the work should be applicable to a wide variety of applications.
2Fundamentally, these are wireless sensor nodes rather than wireless sensor nodes.
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1.2.2 Relevant Systems

While the processor and RF transceiver are by far the largest power drains in long-range

wireless sensor networks, sensor power usage is often on par with them in light-weight and

wearable instantiations[100, 112]. Table 1.1 gives a breakdown of the power usage in three

field-tested wireless sensor systems.

The gait shoe is a wearable medical sensor for collecting information about a patient’s

manner of walking. It is centred on an inertial measurement unit (IMU) sampled at 200 Hz,

with the collected data transmitted directly to a wireless basestation. ZebraNet is a wireless

sensor network composed of collared zebras. The core components of each collar are a long-

range radio and a GPS unit sampled once every four minutes. The zebras themselves

comprise a mobile peer-to-peer network whose goal is to aggregate all sensor readings (from

all the units) at each node. Finally, the Great Duck Island habitat monitoring project

(GDI) was a wireless sensor network designed to track the Storm Petrels which populate

the eponymous island. Sensor nodes were placed at the entrance of the birds’ nests to record

their comings and goings through measurement of the humidity and ambient temperature

every five minutes. This data was sent to a gateway node - the first level of a hierarchical

network which eventually transmitted the data off the island. For each project, power

usage is broken down into three categories: the baseline power to run the processor and the

wireless link, the power expended in sensing, and the power used in responding to the sensor

data. In each application, the percentage of the power used for each of these categories is

more important than the total power usage.

The baseline power varies with the level of networking in each application. Since the gait

shoe is part of a hub and spoke network, it does not monitor an RF channel and therefore

has low baseline power usage. ZebraNet uses a moderate amount of power for networking,

since even though the radio is high power, it is rarely used. By contrast, the GDI radio is

relatively low power but is very frequently powered up to listen for messages, and therefore

uses almost four-fifths of the static power draw. As for the power usage of the sensing, the

gait shoe samples a half dozen sensors at a high rate and ZebraNet samples a single high

power sensor at a low rate, leading to sensing drawing approximately half the total power
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Device Base Power Usage Increase from IMUa

Magellan eXplorist 400 GPS unit[70] 275 mW 23%
iPod Shuffleb MP3 player[55] 67 mW 97%

Motorola v60t GSM Cell phone[109] 20 mWc 325%
Quartz Watch Movementd[34] 1.7 µW 3.8× 105%

Table 1.2: Power usage of selected commercial wearable devices with added IMU

aFrom gait shoe as above (65mW)
b2nd Generation
cStandby power (strong signal)
dETA Trendlife F05.111

in each case. By contrast, the Great Duck Island project collects small amounts of data

at a low rate, and therefore dedicates only one sixth of its power to sensing. Finally, since

each of these systems is designed for data logging and off-node analysis, their sole response

to the collected data is to transmit it wirelessly. The proportion of the total power usage is

related to the net amount of data generated, with the gait shoe using a substantial amount

of power to offload the data while ZebraNet and GDI both use negligible amounts.

Overall, each system dedicates a significant percentage of its power usage to collecting sensor

data and responding to it. Further, it should be noted that the power used to listen to the

radio in the two network applications is partially proportional to the amount of sensor data

transmitted over the network (nodes also listen for instructions and network maintenance).

Therefore, reducing sensing should lead directly to a reduction in both RF transmitter and

receiver power usage.

At an application level, there is considerable interest in adding sensors to everyday devices,

both for medical[91] and personal activity monitoring[83]. To a first order, the feasibility

of doing so would be based on the increase in power usage (and decrease in battery life)

caused by including sensing capabilities. Table 1.2 shows the percentage increase in power

usage of four common body-worn electronic devices if the IMU from the gait shoe above

were to be added to them3.

It is interesting to note that the power usage of the IMU is significant in each case, even that

of a portable GPS unit (which combines high power sensing with an LCD display). As for
3Although the power consumed by commercial inertial components has dropped somewhat since the gait

shoe was designed, the difference is small enough that it is still a valid point of comparison.
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portable music players and cell phones, the IMU’s power usage is on the same order as that

of the base device. Finally, while it is no surprise that a quartz movement draws negligible

power compared to continuous data sampling, the magnitude of the ratio demonstrates

that a wearable IMU whose power usage can effectively be ignored (as is the case with

wristwatches, which have battery life in years) is not naively achievable. In fact, in all

these cases, augmentation of the device with sensors without associated power management

would most likely significantly reduce marketability by increasing the frequency of battery

replacement or recharging.

1.2.3 Scope of Research

While any sensor system should be able to benefit from the techniques that were developed

in this dissertation, it is helpful for the purposes of discussion and evaluation to concentrate

on a specific class of systems. This and other related restrictions written into the scope of

the problem statement are discussed below. Further limitations to the applicability of the

work created by the structure of the proposed solution are discussed in section 2.3. Possible

expansions of scope and methods for overcoming the structural restrictions are given in

section 8.2 and section 8.1, respectively.

Explicit Limitations

While many application areas can be addressed by this framework, the main constraint

applied to this work was to limit our consideration to embedded sensor systems used

in human-focused applications - those which collect parameters of human activity either

directly (personal/on-body) or remotely (environmental/off-body). These systems would

benefit most in terms of usability from reduced power drain as they are required to use

batteries because of their mobility or inaccessibility, respectively. Also of importance is the

large body of prototype applications in this area which allow for points of comparison.

This achieves two goals. Firstly, the relevant applications are narrowed to what is generally

considered the consumer domain (lightweight, cheap and easy to use), corresponding to the
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scenarios of interest (section 1.3). The scope of sensors and other electronics to consider

in the hardware design is reduced in terms of acceptable size and cost, which corresponds

roughly to accuracy and update rate for sensors and processing speed for microcontrollers.

Secondly, the limitations should render tractable the optimization algorithms, which will

be used to generate the real-time embedded software, by narrowing the range of appropri-

ate/acceptable sampling rates as well as the space of useful features. The results of the

design and calculations for this class of systems provide guidance to alter the optimization

algorithms such that they can be applied to a wider range of systems.

Also, while nodes in collaborative wireless sensor networks could certainly benefit individu-

ally from the algorithms developed, this would be a first-order approach. More interesting

are the potential benefits to the network as a whole from the nodes informing their neigh-

bours of their current data or sensing state, allowing them to adjust their own sensing to

guarantee that the network (rather than the nodes) was collecting the available informa-

tion in the most efficient fashion. This necessarily requires details of the network size and

structure.

We also limit the systems examined to the use of passive sensors - those which measure

the environment without affecting it. Active sensors (e.g. sonar, radar) - those which

control the transmission as well as the reception of a measured signal - are excluded from

the initial analysis for two reasons. Firstly, they can use one to two orders of magnitude

more power than passive sensors, often making them inappropriate for low-power systems.

Secondly, their power management is potentially more complex as both the output power

and the sampling rate can be adjusted individually. Section 8.2.3 offers some avenues for

incorporating active sensors into this framework.

1.3 Scenarios

While the application space specified is still quite large, there are a few broad categories

that comprise the majority of the relevant published work. Within these categories, we

consider device scenarios without consideration of lifespan limitations to demonstrate the

possible benefits of our approach. We further discuss current implementations in these areas

and describe how the ideas developed in this dissertation could improve their functionality.
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1.3.1 Medical Wearables

Wearable devices for the collection of medically interesting and important data can be

categorized based on the amount of user interaction involved. Those which are triggered

by the user - such as a blood glucose monitor - can only be made more efficient through

improvement in sensor technology. Those which collect data without direct interaction can

be improved though more efficient determination of the user’s state, and therefore the value

of collecting data, at a given moment.

As an example, we consider a shoe-based wearable system with electronics integrated into

the heel and insole. The system captures both the inertial parameters of gait (manner of

walking) as well as the pressure distribution under the foot. Changes in gait are surrogate

markers for a variety of medically important phenomena, such as developmental maturation,

likelihood of falling, and recovery from a stroke. Currently, clinical gait analysis usually is

carried out in a confined environment - the patients typically walk less than 10m per trial

- using expensive vision-based motion capture systems. A wearable system, built by our

group in conjunction with the Massachusetts General Hospital (MGH) Biomotion lab[79],

is smaller and cheaper than these systems and can collect data in any environment. Gait

parameters are measured using a full six degree-of-freedom inertial measurement unit (IMU)

and an insole with pressure and bend sensors. The full set of sensors is polled at 75 Hz,

and the data is wirelessly transmitted to a nearby basestation. The IMU is attached to

the back of a patient’s shoe via a 4 in wide PVC attachment which protrudes 1.5 in. The

attachment weighs approximately 300 g, including a 9V battery which powers the system

for roughly six hours continuously. This system was validated against motion-tracking and

reaction force data from the MGH Biomotion lab and produced nominally identical results.

However, the lifespan of a single cell is not sufficient for even a single day’s continuous usage.

This is a product of the continuous collection and wireless transmission of the data4, which

is appropriate for laboratory testing of limited duration where the patient is assumed to

always be in motion. For general use, it is necessary to limit power usage while the patient is

in one of a number of uninteresting states (standing still, non-ambulatory motion, etc.). At

4Data storage in a flash memory requires a roughly equal amount of energy[94].
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the same time, the continuous sampling, analysis and storage of interesting motions allows

for new approaches to long-term medical treatment, both of diagnosed and asymptomatic

patients.

In the former case, continuous monitoring can be of benefit in a variety of fashions. Purely

passive monitoring can collect data which will help a doctor plot the course of a disease and

adjust medication both in type and dosage. Given that the data is being collected, there

are also a number of simple parameters which the device can monitor and use to provide

real-time feedback to the wearer. For example, Parkinson’s disease patients often suffer

from a chronically stunted walk and can spontaneously break into a slow shuffling gait.

Research indicates this condition improves when patients hear strong rhythmic cues from a

metronome[119] or other music[87, 90]. The wearable could easily detect the characteristics

of such a gait, and could produce the appropriate beat to reestablish proper stride length

and pace. If combined with a portable music device (e.g. iPod), it would be possible for

these cues to be detectable only by the user, a benefit since most people prefer discrete

systems. In the case of motor rehabilitation, the wearable could cue the patient towards

correct movements and away from dangerous ones. The system would, in effect, be replacing

sensing capabilities which the body had lost and needs to relearn. Finally, even fairly

mundane medical problems such as a broken leg could be aided by this system. The normal

recovery path involves taking an increasing portion of the normal weight on the damaged

limb over time. While this is fairly difficult for the patient to judge accurately, it is trivial

for the wearable, which could also keep track of progress and set the timeline accordingly.

In this case, the system would be providing sensing capabilities which the body never had.

An example of a mature medical wearable is the cardiac defibrillator[26]. The device itself

consists of a processor, lead electronics, capacitors and a battery (which occupies most of

the volume), and is implanted subcutaneously with leads connected to the heart. The pro-

cessor analyses the cardiac rhythm for tachycardia (fast heartbeat) or fibrillation (irregular

heartbeat). In the case of tachycardia, small pacing shocks are administered to attempt to

restore a normal rhythm. If this fails, or if the heart goes into fibrillation, a much larger

shock is applied. The device also records all tachycardic episodes for later analysis. Despite
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several small pacing shocks being administered daily, the device has a lifespan of approxi-

mately four years. Of note is the device’s tiered output. While administering the shocks to

correct a tachycardia, it is also charging the main capacitors in case of fibrillation. If a nor-

mal rhythm is not restored, this charge is immediately available; if not, it is simply dumped.

This assures readiness while minimizing the number of painful shocks administered. Such

a tiered structure will be used in the analysis techniques of our proposed system.

The more interesting group of patients, in the long run, are those who are currently healthy

(or at least asymptomatic). Any device used with such patients would have to be subtler,

cheaper and easier to use than those used with the patients mentioned above. The benefits

could be just as great, but for a much larger portion of the population. The device could

learn the patient’s normal baseline over time, providing a valuable reference point which is

normally not available to doctors, who tend to only see patients after they become ill. This

baseline would allow for quicker diagnosis of conditions which express themselves through

simple externally measured parameters such as motion and gait, since the comparison to

be made would not be with the normal range for the population at large but the much

narrower range of the patient alone. Also, knowledge of the patient’s normal state could

help avoid false positives as well, allowing a doctor to differentiate between, for example,

an abnormal gait caused by mundane influences (such as frequent caffeine consumption)

rather than pathological ones.

Long-term tracking of asymptomatic individuals was examined in the doctoral work of Brian

Clarkson[23]. The goal of this work was to show that reoccurring events in daily behaviour

could be recognized and predicted based on body worn sensors. The specific sensors chosen

were: forward and rear facing video (32x24 pixels, 10 Hz), audio (16 bits, 16 kHz) and 3

gyroscopes for orientation (8 bits, 60 Hz). A Pentium III processor and 10GB harddrive

were provided to process and store the data (5GB a day), and the system was powered by

four large lithium batteries (approximately the same volume as the rest of the components

combined) which lasted for 10 hours. In postprocessing, the system recognized 19 different

scenes with an overall accuracy of 97%. Activity prediction based on transition probabilities

between scenes gave promising results for long-term activity analysis. Increases in the length

of scenes such as walking to work could indicate normal aging (slow decline) or illness (rapid
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decline). Reduction in the number of scenes seen would suggest risk of depression. However,

as with the wearable gait laboratory, the prototype implementation presents a number of

problems, key among them being device size and lifespan. More efficient data collection is

a possible solution as data is collected continuously regardless of state. For example, the

addition of more inertial sensors would allow for motion to trigger the camera, reducing

both power and storage use for a minimal increase in volume. Such a technique is used in

the wearable SenseCam system[43], which uses inertial data to select when to take pictures

and to ensure the quality of the pictures by waiting for the user to be somewhat stationary

first.

1.3.2 Remote Monitoring

The application space of remote monitoring encompasses those tasks where data needs

to be collected about ambient phenomena or local fauna in an environment where the

sensors themselves cannot be easily accessed. The data itself is either cached or transmitted

wirelessly. This limitation can take the form of distant or hostile environments, where

the ability to change batteries and recover data is limited, but also applies to consumer

products which perform low priority tasks and therefore must not require large amounts of

user attention or maintenance. While the monitoring in these scenarios is not of human

activity, the concepts and concerns established in the last section still hold.

In the case of applications for hostile environments, we consider the monitoring and record-

ing of the presence and activity of an endangered species. Wireless sensor systems are

well-suited to this problem since they can operate unattended for long periods of time. Fur-

ther, they often have a small enough profile to be a minimal intrusion. The system would

likely collect environmental data (temperature, humidity, etc.) at fixed intervals, as well

as using heat and light sensors to detect the animal of interest. A small cellphone-style

camera might also be used. This data would help estimate the population size, correlate

their activity levels with changing weather conditions, and otherwise capture data solely

available in the natural habitat (i.e. without humans). Many other similar scenarios exist,
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with the literature most often centring around security and military applications and the

tracking of human or vehicular movement.

While there are a number of examples of remote monitoring, a particularly relevant one

is the work done on battlefield and border monitoring by a group at the University of

California at Berkeley and the Ohio State University[29]. Their work examines the problem

of detecting and identifying civilians, soldiers and vehicles travelling through a dense sensor

grid in remote terrain. The nodes themselves are 3.5 in x 3.5 in x 2.5 in, are placed roughly

30 m apart and act independently. The area of interest is monitored for activity using a

passive infrared detector, which wakes a microphone and magnetic sensor upon trigger.

These additional sensors are used to identify the source of the trigger. The project aims for

1000 hours of life on two AA cells, though this goal was not achieved. There are a number

of reasons for this. Key among them is that the number of false alarms was far greater than

predicted, with false triggers mostly caused by moving flora. This illustrates the danger

of designing systems without the use of real-world sample data streams. Also, the system

draws more power than necessary since it turns on all sensors after a trigger, while the

acoustic sensors alone can be used to distinguish between humans and vehicles and draws

far less power than the magnetic sensor. It is further noted that the fragility of this system

(in this case the high false alarm probability) is a product of the ad-hoc fashion in which

the classification algorithms were designed (in this case the setting of the thresholds[28]),

while a more analytic approach would likely have both identified the flaw sooner and made

it easier to correct. Our solution (chapter 2) presents such an approach.

In the case of low-priority applications, we consider a system for monitoring the long-term

stresses on building members and civil infrastructure. Again, temperature and humidity

would be of interest, as would pressure and bend sensors and inertial data from accelerom-

eters. Size is again the key parameter, not only to avoid alteration or stress to the beams,

but also to allow the sensors to be easily retrofitted to the members rather than having to

be implanted at time of construction. The data recovered would prove useful for evaluating

and improving structural designs using the force distributions measured under a variety of

circumstances. Also, in rare cases, the data could give advance warning of possible damage

which could be catastrophic if unchecked.
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Building infrastructure monitoring using wireless sensor nodes is still nascent, leading to a

lack of useful references. Currently, the two main lines of research are testing the use of

established hardware (e.g. Motes[9]) which shows that it cannot handle the peak stresses

seen[44] and the building of robust nodes from scratch which have not yet been deployed for

testing[20]. The state of the research related to civil infrastructure is similar, with deployed

systems able to measure conditions but not predict integrity[128] and more complicated

systems still in the design stage[17].

The link between these cases is that in both we are most interested in fairly rare data. It

is fundamental that the system be able to capture this data when it presents itself, which

requires vigilance (i.e. at least minimal sampling at frequent intervals). These applications

tend to be enormously power-limited, though it is possible to increase the lifespan of such

devices by being more judicious about the data sampled. Rather than sampling a fixed

amount from all sensors at fixed time periods, it is possible to sample small amounts of

data from more appropriate sensors (state determination) and then determine whether to

sample more (state response). Therefore, it should be possible to sample a large amount of

data at a few time points rather than smaller amounts of data far more frequently. This

would have the effect of not only reducing the power usage of the device, but also increasing

the relative quality of the data as well.

1.3.3 Distributed Tracking

The final application space we will consider is that of distributed tracking. While this area

bears some resemblance to remote monitoring in that it uses nodes to capture data about

local inhabitants and conditions, it fundamentally differs in that the nodes interact with each

other to complete a single sensing task, rather than collecting data in isolation. Beyond

that, the assumptions remain the same (inaccessible environment, limited maintenance

ability, etc.). While we are not examining distributed applications in this work5, it is still

worthwhile to quickly reference a few projects in the field. Their sensor hardware designs

can still be instructive, even if the software and analysis are not directly applicable.
5However, see section 8.2.1 for possible extensions.
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Consider the case of a network of simple sensor nodes which monitors the movement and

activities of the occupants of an apartment. Such an application is currently being proposed

as a solution to the impending mismatch between the number of people requiring some form

of home care and monitoring and the number of medical professionals able to provide it.

Networks of sensors - some video cameras watching portions of the house, others simple

switches attached to drawers and so on - would feed their data into a central processor

for analysis. In combination, they could provide a reasonable picture of what is taking

place in the home at any given time. Using learning algorithms and pattern matching, it is

possible to determine patterns which represent common daily activities. It is then possible

to determine if those activities have been skipped (e.g. taking medicine) or forgotten while

in progress (e.g. making tea). Except in the case of accidents or emergencies, a central

processor manages the problem locally. Since this application is designed to preserve scarce

resources, it is important that the nodes be easy to install (most likely a simple retrofit)

and require minimal upkeep (e.g. battery changes).

Such a system is being tested by the MIT Changing Places/House n research consor-

tium (Georgia Tech[58] and Intel[50] also have similar initiatives). Within their PlaceLab

apartment[54], two different styles of sensors are used to track activities. As above, wired

cameras are used for detailed overhead shots. In addition, simple sensors are deployed to

measure data at key points in the environment. These sensors are designed to be low-cost,

-power and -upkeep data collectors. Each is a circuit board, approximately 1 in square,

containing a microcontroller, real-time clock and an input for a binary sensor - either a reed

relay switch or a piezoelectric flag[35]. These sensors were attached to controllers, such

as light switches or stove knobs, and containers, such as drawers and cabinets. Each time

the sensor is tripped, the processor is awakened from a low-power sleep state, writes the

current time to memory, and returns to a sleep state. Assuming ten triggers a day, these

sensors will last for one year on a CR2430 coin cell, infrequent enough to allow for simple

upkeep by a service company. Along with user annotations of example activities, these two

forms of sensing are combined to determine the current activity of the home’s occupant.

The value of sensing specific parameters of interest (i.e. the opening of a cabinet) directly

is demonstrated by the quality of activity recognition achieved (up to 89% compared to a

baseline of 30%) based solely on completely innocuous sensors[81].

33



1.3.4 Notable Thresholds

In the above scenarios, the potential gains from this dissertation are two-fold. In general,

any decrease in power consumption increases the system lifespan, with the concomitant

benefits detailed. Further, a decrease in battery use has the added benefit of reducing the

amount of chemical waste going into the environment. These benefits, as a goal in and of

themselves, are of value societally, even if they are not notable for the individual user.

However, there are two key thresholds in the area of power consumption. The first, which

this work should help surpass, is that of commercial viability. Consider the medical wearable

device discussed above. An early hand-scripted implementation of the techniques to be

developed in this dissertation (detailed in chapter 2) increased the life of the wearable

gait laboratory described from approximately six hours to just short of six days[7]. This

would allow the system to provide real-time feedback to the user as part of everyday life,

allowing for corrections which could help avoid a number of different injuries or aid in

rehabilitation[79]. In general, systems which are currently confined to laboratories could be

used in unconstrained environments, increasing both their potential applications and users.

The second threshold, that of infinite life, is somewhat further off. However, advances in

parasitic power for wearable systems[113] combined with the high-level algorithmic power

savings from this work and the inevitable low-level technological gains should eventually

make it a reality. Eliminating the need for a power cell will simplify devices, reduce the

amount of waste generated, and allow for their placement in areas which are either sensitive

(e.g. subcutaneous) or inaccessible (e.g. battlefields). Other user benefits include systems

which would always be ready for use, which is important for emergency gear, as well as

reduced cost, volume and maintenance.

1.4 Contributions

The primary contribution of this dissertation is the construction of energy efficient sensor

systems through the use of tiered activation levels cued to evolving sensor stimuli. This
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work has resulted in a framework for automatically creating state determination algorithms

specifically tailored to increasing energy efficiency through the reduction of sensor usage.

Previous systems have most often used as many sensors as feasible at the maximum possible

sampling rate without regard to power and have employed at best only binary hand-scripted

techniques to increase efficiency. The consideration of energy cost as part of the system

design at an integral level - and the ability to systematically trade off energy and system

accuracy - is not only novel, but imperative for the progress of these technologies and

applications.

The ability for others to continue this and related work is key to the continued development

of low-power and power-aware sensor system. The modular prototyping system used to

construct these systems will help other researchers working towards common ends to im-

plement and test their design more rapidly. Similarly, techniques for quickly instantiating

tree-based state determination schemes into hardware shortens the design cycle of these

systems and reduces a barrier to exploration of different state determination algorithms.

Both can therefore be considered important contributions to future progress in the field.

Also of importance is the design and simulation of a wearable medical sensor system using

this framework. A large number of applications in this area (as described in section 1.3.1)

are positioned to be of great importance and value to the general public over the next

decade.
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Chapter 2

Form of Solution

2.1 Overview

The main goal of this work is the reduction of energy usage in embedded sensor systems

through the creation and demonstration of new tools and algorithms for their design and

construction. We will first consider the general form of our solution and the details thereof.

The problem space was limited to the sensing of human activity to reduce the scope of

possible solutions as well as to allow the incorporation of constraints arising from a funda-

mental knowledge of human physiology. The design of the device hardware, the software

and its instantiation are then discussed. The section concludes with a short discussion of

some of the limitations imposed by this solution. We note again that this solution centres

around sensor usage, is independent of any power reduction techniques based on reducing

RF transmissions or processor usage and can be used in conjunction with them.
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Figure 2-1: Flowchart of proposed hardware solution

The general design for our system is shown in figure 2-1. This system is centred around the

concept of what we term “groggy”, or tiered, wake up. This stands in contrast to the more

common binary wake up systems, which have only two modes: fully active, collecting all

possible data and drawing maximal power, or fully asleep, collecting no data and drawing

virtually no power. Instead, we envision a system with a number of different levels of

activity and associated power usages. Each level comprises the currently active sensors

for state determination and their sampling rate, together with algorithms to describe the

level transitions. Execution is straight-forward. From a given initial state at power up, the

system will begin to collect and analyse the sampled data and will switch activity levels

accordingly. At each time step, the current level will specify how to use as little energy as

possible to collect the data to determine the current state and whether a level transition is

necessary. Specific responses, such as data capture and storage, can be associated with the

individual states and are executed next. Once this is completed, the system powers down

until the next time step.
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2.2 Design Roadmap

Given a desired application, the design process proceeds as follows. First, hardware for the

individual application is configured. In the initial deployment for testing and sample data

collection, it is assumed that the system will include any sensors that could possibly be of

value for state determination. A training data stream is collected with this hardware, and

is annotated by the application designer. These annotated examples are used to construct a

classifier that will determine the current system state. The sensor set used by the classifier

allows the final, possibly pared down, form of the hardware to be built and the data col-

lection to be implemented on it. Each of these tasks are briefly described and commented

on in the following subsections. More detailed discussions can be found in the proceeding

chapters.

2.2.1 Hardware

As a reasonable starting point for designing a low-power system, the hardware should be

as efficient as possible. This generally entails choosing parts with the desired performance

characteristics but no greater. Low-power versions of most parts are available at marginally

higher cost than conventional versions. Also, a shutdown pin adds extra flexibility in tai-

loring power usage in real-time and can be quite valuable. If not available on-chip, this

functionality can be achieved with a separate CMOS switch.

There are a few specific characteristics to look for when choosing the two most important

classes of components for this project: the sensors and the processor. In the case of sensing,

parts with analog outputs are almost always superior in power usage to those with digital

outputs. Most sensors are fundamentally analog, meaning that a digital output requires

extra internal signal processing. Further, since a 12-bit analog to digital converter (ADC)

uses roughly the same energy per sample as five processor operations[118], it is more efficient

to collect an analog sample in all but the most trivial cases (i.e. 1 bit sensors). The other

key parameter is sensor wake up time. Since much of the power savings of the framework

is predicated on power-cycling the various components, reducing the wake up time is key
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to minimizing the power wasted during that interval. This parameter can vary widely

both between different sensing mechanisms for a given phenomenon (e.g. effectively nil

for a phototransistor to 40 ms for a IR rangefinder) and individual parts (e.g. 8 ms for

the ADXL202 MEMS accelerometer to 100 ms for the pin compatible MXR2312 thermal

accelerometer). The wake up time sets the upper limit of how quickly a sensor can be

cycled while still offering power savings over continuous activation. For the processor, we

consider two main features. The first is the available sleep states. Our design requires an

idle state, where the processor can be awoken by either a timer or a change on an external

pin, which draws as little power as possible. The time to exit this state should also be as

small as possible. The second consideration is the energy drawn per operation. This is

notably different than the operating power of the whole device and the calculation of this

value should include not only the energy of execution but also the energy necessary to wake

up and put the device to sleep.

A key design technique is the use of multiple sensors to measure a single parameter of

interest. The vast majority of sensor systems limit themselves (usually in the interests of

simplicity or compactness) to a single sensor for each modality of interest. No matter how

efficient such an implementation is for extracting information, it is guaranteed to be power

inefficient in states where less (or more) data is necessary to determine the transitions. A

system which can tailor its sensing in real-time to the current state of the device can draw

far less power on average. While it seems counterintuitive that we can make a system more

power-efficient by adding complexity (and/or redundancy), the key is that the system has

been given a new, lower energy source of information.

The prototype hardware for this work will be implemented using a modular sensor platform

we have designed. This platform is based around a series of circuit boards (or panes), each

of which instantiates a specific sensing modality - e.g. inertial sensing, tactile sensing or

ambient sensing. These boards can be arbitrarily combined and recombined, allowing for

rapid prototyping and testing of proposed sensor combinations. The individual boards have

been built along the lines listed above, with low power amplifiers and analog outputs from

the sensors. Further, individual boards generally have redundant sensor sets - e.g. the

inertial board uses both passive tilt switches and accelerometers to measure motion. For a

given application, the designer can use this platform to quickly put together a sensor node

with which to collect training data.
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2.2.2 Data Collection and Markup

Prior to the classifier construction process, sample data streams must be collected. These

streams should be long enough that they contain a suitable number of examples (dependant

on the application) of each of the interesting states (those to which the system should

respond), as well as enough data from other times to allow the training algorithms to

differentiate amongst them.

It is assumed that the application designer will hand annotate the data streams, labelling

the areas containing different types of interesting data. We designate each type separately

as A,B and so on. The remaining area, where the data is assumed to not be of interest, is

labelled X. In the medical wearable example (section 1.3.1), walking could be designated

as the A state and shuffling as the B state. The X state would then comprise everything

else (stand still, shifting weight, climbing stairs, etc.). In general, it is assumed that the

interesting examples will be fairly homogenous, while there may be large variations within

the uninteresting data. If the designer wished to differentiate between different forms of

walking (fast, slow, pathological), they would each need to be assigned to a separate cate-

gory. However, this would only be necessary if they required different real-time responses

(output, data collection, etc.).

We have chosen a supervised training approach based on the assumption of fairly constrained

applications and clarity of designer intent. Annotations are added to the timestamped data

stream by synchronizing with a separate record. This can be done via active schemes, such

as a diary or user annotation switch on the hardware, or via passive means, such as a video

recording. The former is preferred in most cases as it allows longer sample streams to be

collected without regard to location, but passive means are beneficial if the level of user

attention to the task is a concern.

2.2.3 Classifier Construction

Given the sample data stream and the user annotated states, the algorithms to determine

whether of not the system is in an interesting state can be constructed. We intend to use
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classification trees for this portion of the analysis1. There are three key factors to consider

in this form of analysis: the features to be extracted from the data stream, the addition of

energy use to the classifier construction algorithm, and the pruning technique. Note that

for the application designer, this portion of the process is completely automated.

While the relevant features for any particular sensor will tend to vary, there are a few

easily calculated functions which tend to work well across a wide spectrum of data sources.

These include mean, variance, minima and maxima. One salient feature of each of these

functions is that they can be computed efficiently on a point-by-point basis. Each function

is calculated over a fixed window, the length of which will vary with application and will

be based on the data markup.

A classification tree is built by recursively dividing the labelled examples into increasingly

smaller sets until only interesting or uninteresting examples remain. The splits themselves

are simple thresholds on the value of one of the above features, with the chosen split being

the one which maximizes a specific criteria (e.g. entropy of the data sets). In this case, we

are not solely concerned with finding the rules which separate the examples most accurately,

but also in doing so for the least energy. Therefore, we will weight the chosen splitting

criterion by the energy necessary to obtain the feature used. In most cases, this will be

the energy necessary to collect the relevant sensor data as the energy used to calculate the

features is negligible. This has the practical effect that once any sensor feature has been

used in the tree, all other features based on that sensor’s data are, to a first order, free.

The final step to consider is the pruning of the tree both to reduce its complexity and to

mitigate the risk of overtraining. This is a fairly straight-forward procedure. Any pruning

action will result in lower energy usage and increased response speed in state determination,

but also risks lowering the accuracy. This allows for accuracy, power and response speed to

be traded off by the designer through simple adjustments in the pruning parameters. At

least some pruning is likely to be necessary in most cases, since the lower branches on the

tree tend to expend considerable energy to distinguish between a very small percentage of

the examples.
1This algorithm choice is discussed and justified in chapter 5.
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Figure 2-2: Sample decision tree

To make this concept a little more concrete, figure 2-2 shows a sample decision tree for

evaluating whether a patient is diabetic. Values of plasma glucose below a certain threshold

suggest that the patient is not diabetic, while those above another threshold suggest that

they are. For patients with middling values, the body mass index is used to differentiate.

2.2.4 Solution Embedding

The real-time operation of the hardware for this design is fairly straight-forward and is

given by the current activity level2. A reloading timer is set for the current update rate and

the processor is put to sleep. The processor is awakened by the timer overflowing and turns

on the desired sensors. As each sensor completes its wake up cycle, it is sampled and then

turned off. Once all the sensors have been sampled, the data analysis is done and the state

is determined. In the interesting states, the system responds as chosen by the designer, e.g.

by making a notation of the occurrence, collecting data, or cuing the user. Actions can also

be taken in the uninteresting states, though these responses would have to be identical for

all possibilities. Once these actions are complete, the processor returns to sleep mode.

There are, as always, a few special cases. At the low data rate extreme, if the sole goal of an

activity level is to wait for a transition from a binary (or thresholded) sensor, the processor
2The activity level, as described in section 2.1, is the last non-leaf node encountered in the decision tree.
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Operation Example Use Output Size Energy Use
Wireless transmission Raw data transfer N/A 154 µJ

Fast Fourier Transform Find spectrum 64 bytes 1.15 µJ
Windowed variance Feature extraction 1 byte 291 nJ

N-tap feedback network Generalized filtering 64 bytes 190 nJ per tap

Table 2.1: Comparison of energy cost of common data operations on a 64 byte block

can simply be instructed to sleep until it sees a change on the appropriate pin. Further,

this change could be the output of a passive sensor for which the power cost is nearly nil.

At the high data rate extreme, it may not be possible to put the individual sensors to sleep

between samples, as their wake up time could be greater than the sampling period. It is

also possible that the processor itself will not have time to go into a sleep state because of

the time necessary to sample and process the data. At this point, hardware redesign should

be considered, either to chose more appropriate sensors, shorten the sensor wake up time

or the increase the processor speed.

It is straight-forward to algorithmically transform the decision tree found above into mi-

crocode. From there, given the structure that we have imposed on sampling rate and feature

size, we can automatically generate the transitions between the various levels and the pro-

cess of activating and deactivating the sensors as necessary. This will significantly simplify

the programming and therefore greatly reduce the implementation time.

Once the data has been collected, one response to consider is in-situ analysis of data.

Most sensor systems either transmit or cache all data without regard to expository value.

Simple data processing and feature extraction could reduce this volume considerably for

a small power cost. In fact, it can possibly result in a net power savings if data is

compressed[5] or discarded altogether. Table 2.1 gives the energy used by the Texas In-

struments MSP430F1610 to perform a number of different operations on a 64 byte window,

compared to the cost of transmitting that data outright. Due to the variety of applications

and desired responses, any use of such algorithms beyond the state determination needed

for this framework is best left to the discretion of the individual application designers.
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2.3 Structural Limitations

We note a few limitations on the applicability of this work which are imposed by the specific

form of the solution presented above. As opposed to the limitations of scope presented in

section 1.2.3, these structural limitations can be overcome by altering the algorithm choices.

This is discussed further in section 8.1

The key structural limitation of this work is the requirement for a supervised solution

for pattern recognition (in the form of the annotated data stream). This approach was

chosen based on the assumption of fairly constrained applications and clarity of designer

intent. The main benefit is the ability to ascribe specific meaning to the chosen states (e.g.

walking), to combine states which might otherwise be separated (e.g. fast and slow gaits)

and to ignore altogether portions of the data stream which could potentially be considered

interesting (e.g. skipping). On the other hand, systems where the states of interest are

either large in number or ill-defined will likely result in trees which are either too deep or

classify poorly, respectively.

The tree-based solution requires a binary decision to be made on a function of a block of

sensor data at each non-leaf node. Drawing from the limitation of scope to human activity

given above, the choice of features was restricted to a few easily calculated functions which

tend to work well across a wide spectrum of data sources. While this reduces the complexity

of the tree construction, it could possibly increase tree depth (in the case of a combination

of simple functions being substituted for a single complex one) and reduce classification

accuracy. It is also admittedly slightly incongruous with the principle of guided design

applied to the input data stream. The designer is expected to select and label the states of

interest, but at the same time not have any mathematical intuition about their structure.

Also, classification trees are time-invariant, i.e. state transition probabilities and parameters

are not effected by the time elapsed since the last transition (this is not the case for other

techniques, such as hidden Markov models[99]). In most cases, there will be no pattern to

the state changes, so it is preferable not to have one artificially imposed, though in certain
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cases (such as people entering and exiting a sensed environment within a fixed interval) it

can be of value.

Finally, it should be noted that any wake-up based system has the potential to miss anoma-

lous events (i.e. those with no precursor) - either entirely or during the state determination

procedure. While this may be a problem in general, it should not be in this case given that

we will concentrate on human-centric sensing (see section 1.2.3). Since most activities in

this domain take place on the order of seconds (at minimum) and state determination (in

our examples) requires roughly a second, the chance of missing an event is minimal3.

3This problem is examined numerically in section 7.4.
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Chapter 3

Related Works

We now describe a number of important publications which either implement similar con-

cepts in other fields or which provide background techniques for our work. First, academic

publications are discussed - both those directly on point (theoretically and practically) and

those from other domains which are peripherally relevant in one fashion or another. Second,

we comment on several consumer devices which implement first-order versions of some of

the algorithms we have constructed. Works related to various implementation issues will

be discussed in the relevant chapters.

3.1 Academic Work

3.1.1 Design Principles

Estrin’s[33] survey paper on pervasive networks highlights many of the techniques, both

hardware and software, explored in our work. It defines variability, scale and autonomy as

the key design axes for wireless networks and nodes. The need to maintain vigilance for

interesting data while consuming almost no power is highlighted, and the ability to rapidly

alter sensing based on incoming data is cited as the best way to cope with variability. The

scale of a specific application determines the size, sensors and sampling rate needed and
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are left to the designer in our work. Finally, the need for autonomy to facilitate long-term

deployment leads to the use of multiple sensors per modality and the desire for a large

number of activity levels. Note that Estrin presented only theoretical concepts, with no

implementation details given or cited.

Srivastava has written a number of papers [101, 112] which examine the power usage of

embedded nodes under a variety of conditions (data collection, wireless transmission, sleep,

etc.) and comments on the selection of modes for processors and RF transceivers that are

most efficient for their particular task. For short-range transceivers, the power drawn by the

electronics is far greater than the radiated power. Therefore, data should be transmitted

as quickly as possible, with the transceiver shut down between bursts. For the processors,

not only should the capabilities mirror the task, but the possibility of never shutting down

the processor should also be considered. Using dynamic voltage scaling[92], processor speed

and energy can be traded off, allowing the necessary calculations to be performed in exactly

the time allotted but for less energy. This work expressly sidesteps the issue of sensor

power because the wide variation in sensing modalities, signal conditioning and analog-to-

digital conversion make a compact general solution (like those above) unlikely. However,

these factors can be taken into account in the sensor hardware design to construct circuits

to measure an individual parameter as efficiently as possible. Some recent directions in

adaptive sampling are described in [100] and a number of them are detailed below.

3.1.2 Implementation Techniques

Table 3.1 lists the properties of a number of related projects with the same overarching goal

as our own - the reduction of power usage in embedded nodes by controlling sensor sampling.

Most concentrate on the measurement and collection of data from a single phenomenon.

Jain[56], Liu[67] and Rahimi[102] each use a different model of the sensor data to adjust the

sampling rate of a sensor on a single node. Jain uses the innovation of a Kalman filter[42] as

a measure of the entropy rate of the data stream and adjusts the sampling rate accordingly.

Liu models the system as a random walk and varies the sampling rate when subsequent

measurements fall outside of the expected range. Finally, Rahimi measures a phenomenon
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over a fixed area and uses the spatial rate of change of the data to adjust the spacing of

the samples. These are purely entropic approaches - more data is collected because the

phenomena is varying at a faster rate. While these techniques generated good results in

sample applications, they assume that data should be collected in all states and cannot

differentiate between them. Further, in the case of Jain’s work, the Kalman filter is a fairly

structured (and computationally expensive) model that would not be appropriate for all

systems.

He[49] and Zhao[130] consider power savings in tracking networks with the goal of reducing

the total power usage of the nodes. He solves the problem through the use of sentry nodes

- a subset of the network that continuously monitors for events - which awaken the other

nodes when there is an interesting phenomenon in the vicinity. The other nodes may be

proactive (they awaken unless they are told to sleep) or reactive (they sleep unless told

to wake), allowing a trade-off between power and latency. Zhao examines the problem in

the context of a query from an individual node, which then queries other nodes along a

gradient to acquire more accurate data. In selecting the path for the request to travel, the

system takes into account both the expected utility of the information to be collected (using

a Mahalanobis distance-based heuristic) and the power necessary to collect the data and

transmit the results back to the requesting node. While these techniques save significant

power by leaving most of the network asleep at any given time, they continue to respond

to information in a very binary way. He turns on all the neighbouring nodes on an event

trigger, without consideration of the amount of additional data necessary to accurately

track the phenomenon. Similarly, in Zhao’s network, nodes selected as the next hop along

the gradient do not use any knowledge of their circumstances to determine whether it is

worthwhile for them to collect data or if the request should simply be passed along to a

more suitable node.

Finally, Yu[127] and Dutta[29] consider power savings in the more general context of state

detection. Yu examines the case of a set of independent nodes in a network dedicated

to making a binary state decision. Each node collects samples until a decision can be

made with sufficient accuracy, with these decisions are fused at a central node. Dutta

examines the case of a multi-sensor node tasked to determine the form (civilian, soldier or
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vehicle) of nearby objects. These nodes use a binary wakeup scheme, where a thresholded

infrared sensor triggers the more expensive acoustic and magnetic sensors to collect enough

information to make a decision1. Both projects reduce power usage for state detection

using the technique suggested in this dissertation - actively considering in real-time which

information is necessary to make a decision - though in a more limited fashion. The sequence

of measurements in Yu is always taken with the same sensors set at the same rate, without

considering the information necessary from each sensor or a model of the time evolution.

The system in Dutta wakes all sensors based on a single trigger, when a subset of the

sensors is enough to make certain determinations. Incorporating more information about

the system of interest could result in power savings in each case.

The other properties listed in table 3.1 also bear discussion. First, as mentioned above, most

of the projects either do not model the phenomena of interest or use a trivial model thereof,

eschewing possible power savings. Second, most systems do not vary sensor usage beyond

an all-or-nothing approach. Only Dutta constructs a hierarchy of sensors, and only the data

collection applications consider varying the sensor sampling rate necessary. Finally, there is

a paucity of published details both regarding instantiations of the devised algorithms and

about how to generate an instantiation of a specific problem. Since the works referenced

were published either in conference proceedings or magazines, it is difficult to determine

whether this is an omission for space or if the construction was in fact ad-hoc.

A number of important works do not fall neatly into the categories above. Many projects

consider power/accuracy trade-offs as part of the offline decision process. For example,

looking at wearable examples, Bao[4] demonstrates that for human activity recognition

based on body-worn accelerometers, only sensors on the thigh and wrist are necessary, with

other positions giving only marginal increase in accuracy. Lester[64] both confirms the above

result and shows that multiple sensors on a single node can outperform multiple single-sensor

nodes for the same application. In terms of model-based systems, Deshpande[24] presents a

very detailed solution where queries from a root node are designed to minimize power usage

when executed in the network. The observation plan specifies not only the nodes to visit but

the individual sensor(s) to be sampled at each, and the optimization is based on both the
1See section 1.3.2 for a more detailed description.
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cost of the sensing and of data transmission. This work is excluded from the above discussion

because the observations are centrally planned and do not vary based on measured data.

Finally, the Low Power Energy Aware Processing (LEAP)[74] sensor node architecture

is designed to allow for a wide variety of power-saving techniques. The power to each

subsystem (sensing, processing, communication) can be individually controlled. A central

management unit employs a number of power-saving techniques, such as combining the

wireless receiver with a low-power paging channel (see section 3.2), adjusting the processor

frequency and allowing the sensors to be individually activated based on current data. In

the current implementation, the details of the control of the sensing subsystem are entirely

left to the application designer (as opposed to the communication system, which is almost

completely fixed). The best way of relating our work and the LEAP system is that the

classifier output of this framework could easily be used as an embedded sensor management

module, with the hardware aspects of control and switching entirely taken care of by the

other LEAP modules.

3.1.3 Related Disciplines

While research into power-efficient usage of sensors is fairly new, much work has been

done on reducing the power usage of other subsystems. These techniques are of interest

both because they can be applied atop our techniques, and because they share interesting

parallels with our techniques and may inform our designs. Three areas are considered.

RF techniques

Parallels can be drawn between our system and techniques for dynamic optimality in the

operation of RF transceivers in embedded sensors nodes. Work by Marsh[73] contrasts two

systems - one which collects data at a high rate but only communicates with a basestation

in the case of a specific event and one which collects data at a lower rate but transmits it

all. Preliminary testing shows both a notable savings and an increase in event detection

accuracy in the former case. Also, Chien[21] examines the benefits of error correcting codes
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in wireless transmission. Depending on the allowable error rate at a given time, differing

levels of encoding (including none) will result in the optimal energy per useful bit.

Many sensor networks, such as the Great Duck Island work[71], use rotating cluster heads

- an example of dynamical power optimality. In such schemes, a single node acts as a

message aggregator for a number of other identical nodes. This node will use far more power

than the others and therefore from time to time this role is reassigned, either randomly

or algorithmically, to another node. A similar example in ad-hoc networks is the use of

randomized routing[31]. While the greedy solution calls for routing through as many (useful)

nodes as possible, this would lead to spatially central nodes forwarding substantially more

packets than those along the edges. Therefore, these nodes are randomly bypassed to

preserve their energy, even though this requires more energy from the transmitting node.

While both of these techniques attempt to maximize network life, their approach merely

redistributes energy use among the nodes rather than increasing the life of each individual

node.

Sleep states and transition policies

In appropriately designed hardware systems, great benefits can be realized simply by shut-

ting down components which are not currently in use. The issues surrounding the shutdown

of the RF transceiver are given above. In the case of the sensors, the power management

need only take into account wake-up time when turning off unused devices (short wake-up

times are key to efficient power-cycling as discussed in section 7.2.3). The case of the pro-

cessor is more complex because of the variety of different sleep states, each shutting down

different peripherals. The most straight-forward approach is to examine the time necessary

to enter and leave each sleep state, and to invoke the state with the lowest energy usage

that still allows the processor to wake up before the next event. Detailed calculations for

this scenario are presented in [110]. If events are asynchronous, it is necessary to predict

when the next one is likely to occur. The work in [92] details a number of algorithms which

can be used for this purpose.
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Low-power electronics

In the long term, the feature extraction algorithms suggested and constructed in this dis-

sertation can be transformed and embedded in hardware to further reduce their energy

usage. The most interesting work in this area is being done by the Chandrakasan group at

MIT. One software technique proposed is the transformation of algorithms such that their

accuracy is monotonically increasing with the number of data points considered, allowing

for simple energy-accuracy trade-offs[111]. For example, in finite impulse response filtering,

this involves reordering the filter coefficients by magnitude. Note that the accuracy of these

techniques can be chosen at runtime based on the needs of the current system state. In the

hardware domain, their work has concentrated on techniques that break down a functional

block into a number of equivalent smaller systems the most suitable of which can be chosen

on-the-fly[10]. For the simple case of a 16 by 16 multiplier, the function would be imple-

mented with a number of multiplication blocks (1x1, 2x2, . . . , 16x16) of which the smallest

suitable block is used for any given calculation, trading circuit space for energy efficiency.

Given these techniques, it should be possible to specifically design and construct hardware

to execute the state determination, sensor control and sampling and data management al-

gorithms far more efficiently than with a general purpose processor. Such special-purpose

implementations are common in mass-produced consumer devices and therefore represent

an important long-term goal.

3.2 Consumer Devices

There are a number of consumer devices which exhibit similar behaviours to those imple-

mented in this dissertation. The cases of cell phones and personal digital assistants (PDAs)

are discussed below.

There are two key points to note when comparing the embedded sensor systems considered

in this dissertation to mobile phones. The first is that while talk/standby lifetime is clearly

important, it is considered secondary to ensuring quality of service (QoS) to the user.
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Therefore, most research is directed towards that end. The second is that both the cell

tower and mobile handset are (nominally) under the same control, making this situation

more akin to an active sensor than a passive one. Regardless, there are features in cell

systems which also have the effect of reducing energy usage to match current needs. First,

phone transmission power is set at the minimum level necessary to achieve the desired

QoS[103]. This is done to avoid a facet of the near-far problem where terminals near the

cell station swamp out the signal from more distant ones. This power adjustment is included

in the channel assignment message by the station, and thus the decision is not local to the

phone. Second, GSM algorithms (e.g.) have been designed to model the current signal

interference and noise in real-time, allowing for accurate decoding of signals with lower

signal to noise ratios than otherwise possible[69]. Again, the goal is to increase QoS, rather

than reduce transmission power, and the sampling rate at the receiver is not altered.

Power reduction in cell phones is more commonly achieved through fixed designs. The radio

frequency (RF) circuitry is, not surprisingly, the largest power drain for cell phones[115]

and there are a wide variety of low-level design techniques which can increase the efficiency

thereof[1]. Further, energy usage can be lowered simply by reducing the time which the

RF receiver is on. GSM call initiation2, both from the handset and the station, is done

via a low-power narrowband control channel[41]. The handset monitors this channel with

a one-eighth duty cycle, requiring far less energy than reception on the main transmission

channels. While this system does use a low power sensor to activate a higher power one, it

is a trivial two-state example which relies upon time synchronization between the tower and

the mobile. The systems discussed in the section 1.3 (e.g.) are much richer and therefore

could benefit from a greater number of levels which would allow for a broader range of

sensor sampling rates and activation.

Many cellular handsets also provide a range of multimedia services and user interfaces.

These features cannot be reasonably distinguished from those of a PDA and are therefore

considered together. Power management in PDAs is based, to a large extent, on system

timers. The screen will be turned off (or dimmed) after a certain period of user inactivity.

It is also possible to sleep the processor, wireless transmitter and disk (if present), while
2Similar techniques are used in all cellular protocols.
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keeping the screen active using a frame buffer[12]. This interaction is built on top of the

Advanced Configuration and Power Interface (ACPI) layer, which is also present in modern

computers[46]. We note that this behaviour is scripted ahead of time, and is not altered

in real time except by direct user control. Further, the response is binary: any peripheral

powered down can find itself fully awakened almost immediately by user input, usually at a

net energy cost. More recently, PDA designs have used processors that can be placed in a

lower power, though still operating, state by varying the input voltage and clock frequency.

Known as dynamic voltage scaling[92], this allows calculations to be performed more slowly

but for less net energy. It is most useful in applications, such as video decoding, where

operations which take differing amounts of time must be done on a fixed schedule. While

the system is adaptive, estimating the time necessary for the next calculation based on

previous ones has not been very successful - especially in user interface applications[92] -

and often the energy savings compared to simply running at full speed and then sleeping

for the duration of the cycle are minimal.

In both of these cases, any power management is implemented either through fixed tech-

niques or simple hand-scripted algorithms. Neither system takes advantage of low-power

sensors (which are either already present or could be trivially incorporated) that could allow

for a more nuanced interpretation of user input and action. Power savings could be drawn

from this knowledge through the tailoring of sensor activity levels. The following sections

provide details of our design for the automatic creation of application-specific algorithms

which can realize these benefits.
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Chapter 4

Hardware Design and

Implementation‡

4.1 Overall Design

4.1.1 Motivation

As discussed in chapter 1, embedded sensor nodes have become a staple for a variety of ap-

plications over the last decade. Recent examples from the Responsive Environments Group

at MIT Media Lab alone have included wireless systems to capture the expressive movement

of a dancer[89], to quantify the movement of a pair of foam rubber buns for experiments

in human-computer interaction[6], and to measure and facilitate group interaction in large

meetings[61]. Many of these systems are quite similar, sharing portions of their hardware

and software infrastructure. More importantly, they share large amounts of low-level design,

in the forms of the sensing, processing, wireless transceiving hardware (discussed in depth

in [62]) and software written to interface with or control their functionality. However, each

system, because of its unique form factor and choice of sensors, needed to be prototyped

from scratch, thereby incurring needless effort in design and debugging. To overcome these
‡This chapter is an extended version of a previously published paper[8].
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problems in general and simplify the rapid prototyping and testing of embedded sensor

nodes, we decided to design a modular sensor platform.

We begin by describing the goals and philosophy behind our design. We then discuss the

implementation of the hardware and software. Finally, we provide examples of how a variety

of designers have used this system in the past. Note that because this framework takes the

form of a series of circuit board connected and stacked vertically, it is colloquially referred

to as The Stack (with an individual instantiation called simply “a stack”).

4.1.2 Goals

Within the framework of this dissertation, this platform serves a dual purpose: to allow

application designers to construct their systems as easily as possible and to incorporate

aspects of low-power design that are often overlooked. These goals are incorporated within

the design:

Encapsulating knowledge: As mentioned above, the greatest benefit from a modular

sensor architecture is the ability to encapsulate knowledge (i.e. low-level design). A single

board (or pane) of a modular system can encapsulate the best practices of a given field, save

a large amount of design time, and allow for easy upgrades. Further, code can be associated

with various operations on a given pane, encapsulating them as a functional block rather

than simply a hardware block. For example, as radio frequency (RF) transceivers are very

sensitive to layout, even the smallest changes can be disastrous. A single pane with a

high-frequency transceiver and antenna laid out based on current best practices can solve

this problem. The same argument applies to the software for data encoding and decoding,

which can often be less than transparent. These benefits can also be obtained on a smaller

scale when considering component choice. From the myriad of possible parts, a (small)

number will be appropriate in terms of bandwidth, power usage and size (etc.). Though

their selection is not a technically complex task, it is still time-consuming and subject to

error - the reduction of both of which are goals of this platform.

Simplifying prototyping: While the form factor and generality of such a platform may

not be appropriate for the final design of some systems, they are certainly acceptable in
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the testing stages. Therefore, rather than proceeding directly to a stage where the whole

system is laid out in its final form, this platform makes it possible to quickly lay out a

new pane solely for the application at hand, which can then be attached to other available

panes to produce a working version of the new system. This prototype, while likely not

optimal for final deployment or mass production, will nonetheless collect the relevant data,

provide a valuable proof of concept, help detect flaws in the design, and provide a basis for

the construction of necessary interface and analysis software. Further, it is also possible to

quickly determine which sensors are of benefit in a given application simply by adding the

appropriate panes to the system and examining the resulting output data.

4.1.3 Modular Design Philosophy

The key to implementing the above goals - to making a general system instead of a specific

one - is to make the platform as modular as possible. Therefore, the choice of sensors

and their layout on the individual panes must be undertaken with care so as to construct

functional blocks rather than system blocks. Further, no single subcircuit on a particular

pane should be requisite for use of the pane (i.e. a combined capacitive-proximity/pressure-

sensing pane should allow for use of just one of the two modalities). Ideally, individual panes

should be combinations of circuitry that in general either cannot or should not be separated

(such as a six-axis inertial measurement unit). Modularity also extends to the individual

sensors on each board, where power switches and multiplexers should be used to allow each

part to be activated separately. This same modularity should apply to any software written

for the individual panes. A single master processor pane will contain the basic software for

data collection and transmission as well as communication with other panes. Each of those

panes should be associated with blocks of code (or a library) that can be included in the

main code when the sensor pane is attached to the processor pane. Also, the software for

each pane must be designed such that the appropriate code for any given configuration can

be easily composed and compiled.

To be able to fully exploit the modular design, it must be as easy as possible to combine

and recombine the available panes into different configurations for different applications.
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This will require a simple interconnect system between the boards that allows for repeated

insertion cycles as well as for as many signal lines as reasonably possible to run between the

panes (to increase the number of possible interactions between them). The goal of simplicity

in both the board design and interaction suggest that a direct connection scheme is the best

approach. While this requires a central nexus, it avoids the need to place a processor on

each pane and provides for much faster data transfer than higher-level schemes (such as

ethernet or USB). Mechanically, there are two other requirements: that the interconnects

be available on the top and bottom of each pane (allowing the panes to be stacked in

any order), and that they provide enough structural strength such that a stack of panes

connected together cannot accidentally disconnect, especially in wearable applications where

high levels of mechanical stress can be expected.

Finally, for the platform to be most useful, it must be possible for future users to extend it in

a variety of ways. Mechanically, this requires that the footprint and height of the individual

panes be such that new circuits can easily satisfy those constraints. Further, exclusive use

of interconnect lines between the individual panes should be avoided. In the case of the

software, the main code needs to allow for inclusion of library files (without source code)

for ease of integration. Monopolization of limited processor resources can cause conflicts

and should be avoided. Also, the core software for the processor should contain as many

helper functions (to set up timers, analog to digital converters, etc.) as possible to allow

those with a limited knowledge of the particular platform to still be able to code efficiently

and quickly.

4.2 Hardware Instantiation

4.2.1 Mechanical Structure

The system itself is comprised of boards 1.4 in square and 0.4 in high, which are intercon-

nected electrically by two headers totaling 26 pins (14 for one, 12 for the other) at opposite

corners. The connectors are Molex Milli-Grid shrouded headers and mating receptacles,
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and are rated for 100 insertion cycles (reasonable for prototyping). The other two corners

are used for mounting holes that allow for structural reinforcement of the full stack, which

is particularly important for wearable applications. An earlier board layout, while 60%

smaller, was replaced because of breakage and general wear of the smaller connectors used.

4.2.2 Electrical Interconnects

The electrical interconnects provide for signal, control and power lines to be run between

individual panes. The main method of data transfer is a shared multiplexer bus, though data

can also be transferred between suitably equipped parts using Serial Peripheral Interface

(SPI). Eight lines connected to the microcontroller on the master board (see below) provide

for general direct communication and two lines connected to the external interrupt pins

provide for time-critical communication. Finally, four pins transfer power between the

boards. In total, this gives:

• Data Transfer (12 Total)

◦ Multiplexer (8 Total)

– 3 Address Lines (8 selections)

– 4 Enable Lines

– 1 Shared Output Bus

◦ 4 Line Master-Slave SPI Bus

• Control (10 Total)

◦ 8 General Purpose Lines

◦ 2 Interrupt Lines

• Power (4 Total)

◦ +12V, +5 V, +3.3 V and Ground Reference

Power regulation is handled by a separate board, due to the wide variety of different ap-

proaches that can be taken and their respective efficiencies and noise characteristics.

61



4.2.3 Common Component Selection

There are three components which are expected to be used on virtually all panes: opera-

tional amplifiers, switches and multiplexers. These are chosen ahead of time to guarantee

acceptable performance and lowest power usage. In the case of op amps, there are three

main criteria. The first two are related - a shutdown pin to allow for near zero power usage

during sleep cycles and a high slew rate to allow the part to wake up quickly when needed.

In general, 0.1 V/µs is sufficient, giving a maximum 30 µs turn on time. The final criterion

is the availability of a single part package. While double and quad packages can ease routing

and placement, they also lead to difficulty in making the boards modular in terms of control

of the individual sensors. Given these restrictions, the Maxim MAX9911 is recommended.

It is available in a single SC70 package (5 mm2) with shutdown, and has a turn on time of

30 µs. Typical current draw is 4µA with a shutdown draw of 1 nA. The gain bandwidth

product of 200 kHz is acceptable for most uses.

For the switch, low impedance and fast switching are key to controlling power to the sensors.

Because of the number of control lines available, a serial interface is also required. Currently,

the best part in the domain is the Analog Devices ADG7141 octal single-pole, single-throw

switch with 2.5 Ω impedance and 20 ns switching. The device is controlled via SPI. The

10 µA typical current draw is somewhat high, since the device runs continously2. The

prototype ADG791A is far superior with a continuous draw of only 1 nA (and otherwise

equivalent specs), but can only pass 3.3 V maximum (even with a 5 V supply3). Switching

is currently implemented only on the inertial measurement board, as it was the board used

for the testing of this framework.

Finally, the multiplexer has similar requirements to the switch, requiring fast switching and

low impendence. Control is via the shared addressing bus detailed above. The Analog

Devices ADG608 is currently used for the individual panes. It is an 8:1 multiplexer with

30 Ω impedance and 120 ns switching. The maximum power draw is 0.6 µW when enabled

and 0.15 µW otherwise.
1The Maxim MAX395 is virtually identical.
2Since there is no straight-forward way of activating this part only when needed to control the sensors

short of adding another switchable power line.
3An additional FET pulldown would be needed to accommodate 5V devices.

62



(a) Master (b) IMU (c) Sonar Ranging

(d) Tactile (e) Ambient (f) Storage

Figure 4-1: Six boards in the modular architecture

4.2.4 Individual Panes

Master: The master board (figure 4-1a) is responsible for the data collection and transmis-

sion to a central basestation and is included in every stack. It currently contains a 8MIPS

16-bit Texas Instruments MSP430F1610 processor with 12-bit ADC as well as an RFM

DR3000-1 916 MHz transceiver running at 115.2 kBps. The processor pins are broken out

to the interconnects mentioned above, with the general purpose lines and the multiplexer

output connected to the analog input pins (which can also act as digital I/O). The processor

has two key features. First, it has many low power modes from which it can awaken quickly

(e.g. 6 µs to awaken from the 8 µA sleep state). Second, the two-cycle hardware multiplier

allows the features, such as variance, to be calculated very quickly and cheaply.

The central basestation itself was also built using this master board to manage a simple

time division multiple access (TDMA) wireless protocol (described in [79]). While it can

technically handle an arbitrary number of stacks, the practical limit is determined by the

size of the data packet from each stack and the desired update rate.
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IMU: The sensor board shown in figure 4-1b is a six degree-of-freedom inertial measure-

ment unit (IMU). Acceleration is measured via the analog output of two Analog Devices

ADXL2024 accelerometer (±2 g), one of which is attached to the side of the pane to achieve

the third axis of sensing. A four-way static tilt switch sensor (ALPS SPSF10005) pro-

vides for additional micropower single-bit acceleration measurement. Angular velocity is

measured via two Murata ENC03J gyroscopes and a single Analog Devices ADXRS300 gy-

roscope (all ±300◦/ sec). This combination allows for full 6-axis inertial sensing in a nearly

flat package.

Sonar Ranging: Distance measurements can be achieved using a matched pair of sonar

receiver and transmitter boards. The transmitter board sends a single 40 kHz pulse from an

omnidirectional transceiver (MSI 1005853), which is then received by two pickups (Gibson

Tech V-MA40A5R) board placed a fixed distance apart on the receiver. A measurement of

differential time-of-flight is allowed by synchronizing to the basestation’s TDMA messages,

hence the two receivers allow both displacement and relative angle to be calculated[79,

App.E]. It is pictured as figure 4-1c.

Tactile: A fourth sensor board is shown in figure 4-1d and allows for inputs from a number

of different tactile and pressure sensors. It includes inputs for four single-ended force-

sensitive resistors (FSRs) via common-collector BJT amplifiers, two back-to-back FSR bend

sensors via a differential op-amp pair, and two piezoelectric sensors via common-drain FET

amplifiers. This pane also contains the circuitry for a Motorola MC337946 9-channel loading-

mode capacitive proximity sensor[30]. These are attached via a header at the top of the

board, allowing them to be spatially distributed as desired (such as in sensate gloves or

shoe insoles).

Ambient: The ambient sensing board (figure 4-1e) provides a range of methods of detecting

audible and visible occupants of the local environment. This includes a narrow cone (10◦)

Osram BPX43 phototransistor and a wide cone (70◦) Osram SFH314 phototransistor to
4Though this part is now deprecated in favour of the pin-compatible ADXL203, it is retained because its

startup time is 4 ms faster. The preproduction (as of Q1 2007) ADXL323 has comparable specs with half
the power draw.

5Deprecated with no suitable (i.e. compact multiaxis package) replacement.
6The MC34940, now available, is more appropriate for this application.
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detect reflective objects at different horizontal distances from the board. Dynamic heat

sources, often (but not always) humans, are detected with an Eltec 442-3 pyroelectric sensor.

Finally, a complete visual of the environment can be acquired using the ALPS FPDB0 VGA

camera module with dynamic frame adjustment. Acoustic pickup is provided by a SiSonic

SP0103 microphone. An SiLabs C8051F121 is provided for in-situ signal processing (e.g.

of camera data).

Storage: On-board data storage is provided by the board shown in figure 4-1f. Data is

stored in a 1 Gbit flash memory chip (Toshiba TC58DVG02A1) and I/O is controlled by

a SiLabs C8051F206. Data is input to the board over SPI and is output via an RS232

connection.

The parameters of the major components for each of the boards are listed in table 4.1.

Because these boards were designed for different purposes and at different times, there are

a few component choices that do not fit with the rubric of low-power design. The most

obvious is the processor included with the ambient board for processing of the camera

data. Because it is clocked at the limits of its capabilities, but draws far more power

than necessary. Either a special purpose camera processor (e.g. Freescale MX21) or a

chip designed to run at hundreds of megahertz would be more appropriate. Further, the

two SiLabs processors (on the storage as well as ambient boards) lack a reasonable low-

power mode, with the idle state drawing 75% of full power. Switching to an MSP430 class

processor (as on the master board) should yield notable savings. Other improvements, such

as active illumination for the ambient board, are discussed in section 8.1.2.

It should be noted that this selection of boards merely represents the specific sensors that

were necessary for projects constructed within our research group. New boards can be

easily created and source code examples and we provided PCB templates for this purpose.

A number of applications designed with this platform (and new boards created for them),

both by our group and others at the MIT Media Lab, are discussed in section 4.5.
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4.3 Software Instantiation

This architecture was previously used exclusively for wireless data collection and streaming

transmission. Running on the master board, the sole purpose of the software was to collect

the data from the various sensor boards and transmit them to the basestation. Since

a TDMA scheme was used, these actions were taken in response to a prompt from the

basestation. The rest of the time, the processor idled (awaiting commands) with the radio

in receive mode.

The software itself was constructed in a modular format and contains three main sections:

initialization, data collection and data transmission. The addition of a new board to an

application can be accounted for in the code by adding an appropriate routine to each of

these sections. A header file may also be necessary for local variables. Also, macros and

helper routines exist within the main code to aid in common operations. These include data

collection tasks, such as setting the channel on the shared multiplexer bus, mutual exclusion

on the multiplexer enable lines, and ADC sampling. Data transmission is facilitated by a

hard-coded 6 to 8 bit DC balancing scheme (for use with the 12 bit ADC data), as well

as by macros for SPI and UART communication. Miscellaneous tasks such as timer start,

stop, store and reset and port input/output mode selection are also handled.

For a stand-alone application such as those considered in our work, the changes are fairly

minimal. We have removed the data transmission and the associated infrastructure. In its

place, code is added to perform the specific tasks desired by the application designer. The

initialization and data collection portion of the software are untouched.

4.4 Related Works

Other research projects are currently working towards similar ends and producing similar

systems. However, each is attempting to solve a slightly different problem, leading to

important differences.
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The best known system in this space is the Telos Motes[93] designed at UC Berkeley and

produced by moteiv[80]. Each Mote is a 1.25 in by 2.5 in board with attached power source,

processor and wireless transmitter. Low power usage is achieved through careful component

choice and (mostly) by running on a 1.8 V supply. This main board can be supplemented

by a single expansion board via a six and a ten pin header which provide analog inputs,

communication (serial and I2C) and power. No sample expansion boards are provided and

the choice of sensors is limited by the supply voltage. This approach eschews modularity

for the sake of size and integration, since incorporating another degree of sensing requires

redesigning the expansion board or the adding another wireless sensing node. Further, the

associated research has concentrated much more on building an ad-hoc peer-to-peer network

of these boards, rather than the collection of data for on-board or central processing.

The Power Aware Sensing Tracking and Analysis project (PASTA)[107] consists of a number

of stackable circuit boards, each 1.75 in by 2.5 in. PASTA is designed for applications an

order of magnitude larger than ours. Processing is done via a 400 MHz XScale processor

and separate boards provide for multi-channel analog to digital conversion and digital signal

processing. They are connected together through a 180 pin header consisting mostly of

direct parallel communication buses. The only available sensor board is an acoustic vehicle

detection system, though an interface for Mote sensor boards is available. PASTA has an

impressive thousand fold difference between full operation and standby mode, aided by the

ability to individually control power to each board. However, the minimum power usage is

still nearly 1 mW (compared to 8 µW for our system) with the sample tracking application

drawing 178mW on average. While these are impressive results for their domain, PASTA

creates bigger modules which require much larger batteries than the applications of interest

in this work. Further, the connector design does not appear to have mechanical strength

in mind (with connections on only one side of the board and no mounting holes), making

wearable applications difficult.

The Small Autonomous Network Devices (SAND)[86] project at Philips is quite similar in

goal and design to our system, though it was built with more recently available compo-

nents. This allows their system to be much smaller, with each circular circuit board only

half an inch in diameter. Panes are available matching our major functionality: inertial
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measurement, data collection, storage and wireless communication. More powerful modal-

ities, such as the ambient board, have not been built and most likely cannot be. The main

limitation on this system is the battery, a CR1225, which sets the board size and has a

maximum constant discharge rate of 1 mA[104]. Even using two in parallel, most of the

wireless user interface applications for which The Stack was designed would be impossible

with this system.

Finally, the Tower project[45], also at the MIT Media Lab, is in the same genre, at least in

some respects. The Tower features a main processor board to which multiple extensions can

be added. Each board is designed towards a single input (e.g. light sensors, microphones)

or output (e.g. LEDs, speakers) functionality. The whole system is programmed and

accessed via a real-time command line interpreter running on the main board. This system

is designed mainly for exploration and building, rather than for testing and deployment.

Therefore, the boards are quite large (about 3 in square) and stacks of boards can grow to

be 6 in or taller. Since the system is wired, power usage was not a design concern.

In contrast to the projects described above, our work concentrates on the sensor portion

of the design, rather than networking or pedagogical concerns. Further, our system was

intended primarily for prototyping devices for real-time collection of sensor data and state

detection therefrom. This requires a small low-power system with high modularity with

respect to the sensor subsystems.

4.5 Sample Uses

To determine whether this platform meets the goals of encapsulation and ease of proto-

typing, we consider a number of applications built using this device with only minimal

assistance from the author. Two applications - one complete, one prototyped - and their

relation to the design goals and philosophy are discussed. Further examples can be found

in appendix A. Since the designers discussed all have a technical background but had lim-

ited experience with electronics design, they are a good approximation of the ‘application

designer’ referred to throughout this document.
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4.5.1 Wearable Gait Laboratory

60 HARDWARE DESIGN

from 0.125 inch polyethylene terephthalate glycol (PTG) sheets. PTG is thermoformable, 

machinable, and shatter-resistant.   

Three versions of the shoe attachment, shown in Figure 3.11, were designed, both to 

accommodate changes in the stack hardware and to improve the mechanical attachment. 

On the far left is the first prototype, which had three large screws at the top to fasten the 

attachment to the shoe. The middle photo is the second prototype, which had two screws 

at the left and the right, and the power board was rotated to the side to decrease the length 

of the attachment. The final prototype featured longer plastic hooks at the location of the 

two set screws to help keep the attachment stable on the shoe, included a mounting point 

for the antenna, and improved alignment between the main stack and the power board. 

Both the second prototype and the final prototype had a plastic loop at the bottom of the 

attachment, through which fishing line was threaded, looped under the shoe, and tied to 

the laces, to reduce motion of the attachment during heel strike. The left and right attach-

ments of the final prototype are shown in Figure 3.12 (directions for fabricating the attach-

ments are in Appendix D.3).

The attachment was designed for walking shoes. The plastic loops pulled the flexible shoe 

material of the walking shoes away from the foot, so that the plastic loops did not rub 

against the foot. The top of the shoe attachment was at the same height as the back of the 

shoe, which helped to keep the shin from hitting the electronics while walking. As most 

walking shoes have a large heel, the height of the shoe attachment was short in relation to 

the shoe height, which resulted in a large clearance between the bottom of the shoe attach-

Figure 3.11   Photos of three versions of the shoe attachment
Figure 4-2: Wearable gait analysis platform and sensor attachment

Stacy Morris Bamberg applied this platform to develop a prototype inexpensive wireless

wearable system for the analysis of the motion of feet during gait (described in section 1.3.1

and detailed in [79]). The system consisted of the master, IMU, tactile and sonar boards, as

well as a power regulation board. The Stack was screwed down to a piece of thermoformed

plastic, which was connected to the patient’s shoe using plastic screws (figure 4-2). A sensor

insole was connected to the tactile board via the header and was placed inside the shoe.

This application took advantage of the extensibility of this architecture in a number of

ways. To increase the mechanical strength of the system, a third mounting hole was added

to the IMU board. Also, the sonar board was added to the system near the very end of

the design revision cycle to increase the accuracy of the foot-to-foot distance measurements

(compared to the IMU). In both cases, none of the other boards needed to be altered in

any way to accommodate these changes.

4.5.2 Prototyped Systems

Not all applications use the boards from this platform for their final implementation. Often

our boards are used simply for prototyping and design, and the circuitry is then redesigned

depending on the particular physical constraints of the systems. A recent example is com-

mented on below.
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The Huggable[114], designed by Dan Stiehl, is an instrumented responsive plush bear de-

signed to act as a companion animal. It is intended for use in wide variety of settings

including those, such as a hospital, where pets are normally not allowed. Along with a

number of proximity and pressure sensors (to detect if the bear is being petted), the Hug-

gable uses inertial sensors to determine if it is being held or rocked. This functionality was

prototyped using the IMU board prior to being integrated with the rest of the electronics.

The modularity of the architecture was exploited here, allowing motion detection to be

quickly tested in a system which had previously been static. More importantly, the encap-

sulation of expertise in inertial measurement proved invaluable. It was discovered during

the testing phase that the tilt switches, which most likely would not have been included

on a board designed from scratch, were much more effective at measuring rocking than the

accelerometers. Thus, the generality of our design allowed the application designer to locate

a sensing solution which would otherwise have been missed.

4.6 Summary

We have developed a compact wireless modular sensor platform, which contains a number

of circuit boards (panes). As opposed to similar architectures, this system treats the sensor

panes as discrete design objects that have data collection as their primary goal. Six boards

have been designed so far: master (processor/transceiver), tactile (pressure, bend, prox-

imity sensing), inertial measurement, ambient (visual and audio), sonar and data storage.

These boards encapsulate design knowledge and allow for rapid prototyping of applications.

A number of major applications, including a wearable gait laboratory, have been built and

user tested. Also, a number of systems were first prototyped using this platform before

being implemented in a more compact fashion. Therefore, it is believed that this hard-

ware platform, with minor modifications such as those made to the inertial board, will be

more than adequate for use by application designers. In chapter 7, we will discuss a test

application for our framework built using this platform.
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Chapter 5

Pattern Recognition Design and

Implementation

In this chapter, we discuss the core of the design process for creating power-efficient sensor

systems. To begin, one (or more) sample data streams containing segments of both the

interesting and uninteresting states are collected. These streams are annotated (i.e. the

segments are labelled with states) by the application designer, features are calculated and

examples are extracted. These examples are then used to build a decision tree classifier,

with a parameterized power/accuracy trade-off left to the designer. These processes are

described in order, and details of design choices are given in the appropriate sections.

Note that there are a number of references in this chapter to the main test scenario examined

in this dissertation - a wearable gait monitor. A complete discussion of this application is

deferred until chapter 7, though the reader may benefit from referring to it from time to

time.

5.1 Sample Data Sets

As a first step, a set of examples must be collected. Each example is a series of values with

a given label (in this case, the state) and the goal of the classifier is to create a mapping
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between the values and the states. For the classifier to do so as accurately as possible,

it should be trained with examples spanning both the range and variation of the possible

states. Further, those states need to be labelled as accurately as possible. Finally, features

need to be calculated to reduce each complex state to a simple and roughly complete set of

examples.

5.1.1 Collection

While data collection is an open-ended process, we propose the following two part procedure

to acquire the most relevant data. The first part will be reasonably short and collects a

set of data that contains the active (high energy/variance) states, both interesting and

uninteresting, that are known to the designer. As this is a supervised learning system,

the selection of states is left to the discretion of the application designer. The second part

contains a set of long-term background recordings, to provide a baseline for the uninteresting

cases and to catch states which were not considered by the designer. All streams are

captured at the maximum useful data rate. For human applications, this is pegged at

200 Hz[59] (i.e. a Nyquist frequency of 100 Hz). Also, any sensors which could possibly be

useful to the classification process should be included, as those not used by the classifier

can always be removed in a later revision of the hardware. Data can either be stored

locally (using the storage board) or remotely (using the master board to communicate with

a basestation).

The purpose of the active data set is to provide a suitable number of examples of the complex

states of the system. The meaning of complex varies by application, though in every case the

extrema are defined by the interesting states1 (regardless of metric). A firm definition is not

required - for a given case, the designer should have a reasonable idea of those states which

are similar enough to the interesting ones that they are likely to require the most effort to

distinguish. Rather than wait for these states to occur naturally in the operation of the

system, it is most often easier, when possible, to simply capture them directly in a scripted
1While uninteresting states may be more complex, there is no need to examine them in any more depth

than necessary to differentiate them from the interesting ones.
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sequence. This guarantees their presence, quality and labelling. Enough data should be

captured to represent the variation within the states. As a rule of thumb, roughly 100-200

examples per state should be adequate, though this value will depend on the complexity

of the states and the number of features. Finally, in a scripted sequence, passive means of

record keeping, such as video recording, are suitable, since the data collection will likely

take place in a confined space and the user’s attention will be occupied with performing the

tasks at hand.

The active data streams, by themselves, might be sufficient to train the classifier. However,

the response of the system to states not present in these streams, either by design or by

omission, is unknown. The purpose of the long-term data set is to capture such states. Those

not included by design are most often the simpler states which are easiest to separate from

those of interest, while those not included due to omission are the states which were either

too rare or oblique to be anticipated and included above. This stream should therefore

provide a measure of completeness which is lacking from the scripted stream. It can further

be used to provide prior probabilities for the classifier. Since the data collection is expected

to mimic actual usage as much as possible, it will likely have a time scale on the order

of hours or even days, depending on the frequency and variation of background events.

Therefore, an active method of record keeping, such as a diary, is most appropriate due to

the likely sparseness of states to label and the lack of any limitation on the locale of the

collection.

While it is possible to use only long-term data streams as the source of the training data,

this tends to be inefficient for a number of reasons. Firstly, the length of the recording

necessary to acquire good examples of all complex states may be quite long and their

duration quite short. Secondly, the vast majority of the uninteresting data collected will be

of little to no value in the classifier training. While having examples of all possibilities is

beneficial, this technique is likely to collect many more examples than are useful. Finally,

the hand annotation of such a long stream would be burdensome to the designer. Studies

by Intille[53] support this data collection scheme.
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5.1.2 Annotation

After collecting the data streams, it is the task of the application designer to annotate

them. From the records kept, examples are marked on the collected data stream with the

appropriate label. We consider the two stream classes defined above.

For the active stream, the designer first converts the collected record into individual times

marking the beginning and end of each activity. There will often be small gaps when

the recording is turned on and off, and during the transition between states. Given these

time points and knowledge of the fixed sampling rate, it is straight-forward to label the

data stream with the states. It is best to keep the recorded segments short, as missing

data, usually from glitches in the storage or transmission, can skew the timing. While it is

possible to resynchronize by visually inspecting the data stream for the transitions2, this is

an inherently subjective technique in most cases.

For the long-term data stream, the form of the labelling will vary with the information

recorded. If only active portions of the stream are marked, the rest is considered a single

uninteresting (X) block. If all segments are labelled, then the uninteresting blocks are

separately designated (X1, X2, . . .). In either case, it is assumed that the data stream is

long enough that a skew between the record and the data points is inevitable (from missing

data, jitter in the microprocessor clock, etc.). Therefore, alignment must be done based on

cues purposely introduced into the data stream (such as tapping the foot in the wearable

gait example) or from the active examples (if they can be clearly differentiated from the

rest of the data by inspection). However, it should be noted that exact annotation of the

long-term stream is not a necessity. For the background data, as long as the designer errs

on the side of including too little data in the marked segments, the risk of mislabelling is

low. Further, if the active portions are also included in the first stream, it may be best

to simply ignore them altogether rather than possibly include data from an uninteresting

state (at the beginning or end) in the example. In both cases, it is up to the application

designer to decide if enough examples are available for training the classifier such that a

conservative approach is acceptable.
2This is usually done by noting longer pauses at the transitions, though it may be possible to track

changes in features of the data as well.
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There are two further points to consider. The first is transitions between individual states.

As suggested above, this data will usually be in an unlabelled gap and it is best to exclude

it from the training set altogether3. These examples are amongst the most difficult to

classify, and will tend to force the classifier to overtrain. Also, the transitions themselves

are most often too short to recognize because of the latency associated with the activation

of individual sensors (see chapter 6). The second is the labelling of uninteresting states. For

complex states, separating the Xi will likely prove beneficial when estimating the average

power usage of the system, since the different states will vary in the energy used to classify

and in their frequency of occurrence. For the simple states, it is assumed that the same

amount of power (i.e. the minimum) will be used to classify all of them, and therefore the

subdivision is of little value.

5.1.3 Feature Extraction

To train the classifier based on the marked examples, a set of features is extracted from the

data. These features should be compact while still representing the variation between the

states. We consider the choice of features and the parameters thereof.

Features Used

For most embedded sensor systems, the data from which we will be extracting features will

be in the form of a time series. While it is possible to simply use the values at each point in

time, this solution will be less than robust. The cause is variation, both from the structure

of the time series (and by extension the human activity) and from the noise in the individual

data points. To take this variation within single states into account, we will use windowed

functions to calculate the features.

We chose to use a set of simple first order functions to calculate the features - specifically,

the windowed mean, variance, minimum and maximum. These features have been used
3While these situations will, of course, exist during the operation of the embedded classifier, anti-thrashing

code (see section 6.2.3) will take care of them.
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Figure 5-1: Sample data stream and windowed feature

successfully on time series of human motion, with both inertial[2, 64] and video[63] data.

They are also mathematically simple, requiring O(1) calculations and O(n) memory (for a

window of size n) to update their values at each time step. This simplicity provides two

benefits. First, while the classifier training is offline and can therefore be as complicated

as necessary, the features must be calculated in real-time and therefore should fall within

the limited processing and storage capabilities of the microcontroller. Second, the energy

expended to calculate these functions will typically be two or more orders of magnitude less

than that necessary to collect the data, allowing us to simplify the classifier by ignoring this

portion of the test cost (see section 5.2.3). Figure 5-1 demonstrates the calculation of the

windowed mean of a sample data stream (described in section 7.1). The brackets show the

extent of the window and the arrow designates the associated point in the feature stream.

We argue that these are good general statistics for two reasons. Intuitively, the mean is

the baseline, the maximum and minimum provide the limits or range and the variance is a

measure of energy expended by the subject. Analytically, the mean and variance are the

first and second moments (respectively) of a random process. If the window size is chosen

to be a multiple of the period (or greater than the correlation length), the data stream will

be wide sense stationary within any given state, and these values will be constant (with the

78



exception of additive noise). This converts a sequence of time varying values to one which

varies with state alone, allowing the use of most supervised classification algorithms.

A few other features bear mention. Zero-crossings and integrals under peaks of the curve

have proven quite valuable in previous work in inertial gesture recognition[6]. However,

unless the data is zero-mean4, these functions are far more expensive to calculate (O(n))

because they require both baseline (mean) subtraction and absolute value calculations at

each time step. Also, many characteristics which are obscured in the time domain can be

easily extracted using the chosen functions in the frequency domain. However, the time

complexity of converting to the frequency domain (at best O(n log n) with the fast Fourier

transform[16]) limits the utility of this approach.

Parameters

To generate examples using the above features, two more parameters are necessary. The

first is the window size, the second is the sampling frequency. Each is considered in turn.

As stated above, for the functions to generate well-behaved features for periodic data, the

window size should be a multiple of the period. In practise, this means that the window

size is set equal to the period, since the window size is also equivalent to the minimum delay

in activating a sensor (as the system must be causal). It should be noted that the period

of the data is often not constant, both within and between states, as a result of variations

in both the activity and data sampling. As shown in section 5.3.1, this leads to an increase

in variance in the feature values. Since the root causes are unavoidable, it is best for the

application designer to simply select the period based on a representative example of the

interesting state. It is possible to tune this value by varying it over a short range (±10% of

the chosen value) and choosing the one which minimizes the variance of the features.

For non-periodic data, the choice of window size is far easier, as it is simply the value at

which the variance of the features reaches a plateau. A plot similar to the one suggested

for the period should be adequate to find this value.
4In fact, for a single-ended ADC (as used here), zero-mean data would be uniformly zero. However, even

the assumption of constant mean (over all states) is unreasonable for most applications.
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Given the window size, there is also the matter of the spacing between the generated

examples, which can reasonably range anywhere from a single point to an entire window.

The goal is to extract as many uncorrelated examples from the data stream as possible5.

We use a sliding offset of a quarter window length for each example, which has given good

results[4, 25]. If the period or correlation length is nearly constant over the stream, it may

be necessary to add jitter (by moving the starting point of the window randomly by a few

points forward or back) to avoid correlation. This is considered unlikely, however, for the

reasons stated above.

Since power use is correlated to sampling frequency6, examples are generated at a number

of different frequencies. The classifier will then choose the lowest power example which has

the necessary information (see section 5.2.3). Therefore, the maximum frequency for gen-

erating examples is the sampling frequency of the training sets. While any lower frequency

is acceptable (as long as its ratio with to maximum is rational), we limit the allowable

choices to simplify the programming of the embedded code (see chapter 6). Specifically,

to avoid having to power cycle the processor on a complex and irregular schedule (which

will vary with activity level) to accommodate mutually prime sampling rates, we only allow

downsampling by powers of two. While this may reduce the power efficiency of the system

(there will usually exist a frequency between the two available which contains the necessary

information for lower cost), the difference is believed to be slight and balanced by the power

savings in the processor.

Note that data taken at the lower sampling frequencies will suffer (or possibly benefit) from

signal aliasing, since the sensors which make up The Stack are filtered only to remove fre-

quencies above the Nyquist frequency of the phenomena measured. This was a conscious

design decision made based on the power cost of varying the cutoff frequency (using a

switched capacitor circuit or special purpose chip) and the possibility that data sampled at

multiple frequencies will be desired simultaneously.

5Correlated examples are actually not a large concern during the training process. However, since the
training, pruning and testing sets are drawn (without replacement) from the same collection of examples,
correlation of examples between the sets can lead to overfitting during the pruning and testing process.

6At least until it is no longer possible to power cycle the sensor quickly enough, at which point the sensor
is continuously on (or off) and the power usage is constant.
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5.2 Data Classification

Having collected the data streams and used them to produce training examples, we are

now ready to design and construct a classifier to separate the various labelled states. The

choice to use classification trees for this purpose is first explained and defended. The issues

surrounding priors and weights in this application are discussed. The algorithms used to

construct the tree are then explained, including the splitting criterion, the addition of a

weighting based on test cost, and the pruning of the tree. Finally, we present a few simple

tests which were performed to confirm that the classifier had the desired properties.

5.2.1 Classifier Selection

To determine the necessary properties of the classifier, we note that this work seeks to

reduce the power usage of sensor nodes through the reduction of sensor usage. Specifically,

we seek a collection of hierarchical activation levels to allow the system to make a state

determination using as little energy as possible. Hence, the classifier used should be able to

make decisions in the same fashion - using more or less data as needed.

Therefore, decision trees with be used in this framework. Decision trees structure classifi-

cation in the form of a series of successive queries (usually a threshold on a single feature -

known as a univariate relational test), with each response leading to a following query until

a state is determined[123, §7.2]. In this way, the tree uses different sets of features to classify

different states (or portions thereof). In the case of an unbalanced tree, some classifications

are made with far fewer decisions (and therefore far less energy) than others. Overall, the

desire for hierarchical activation requires a hierarchical classifier. Similar arguments have

been made in both medical[76, §16] and general[121] contexts.

This structure provides three key benefits. Categorical (as opposed to nominal) data can

be handled directly as a single decision in the tree, rather than having to be assigned an

arbitrary value and mapped onto an axis. There are a number of sensors that provide

such output, either directly (such as tilt switches) or through internal thresholding (IR
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rangefinders). Also, the recursive partitioning process can often lead to a more accurate

subdivision of the input space into various states than most single-function classifiers (such

as support vector machines). Finally, the recursive structure makes for a fairly inexpensive

classifier suitable for embedded usage. The average computational complexity of classifica-

tion is O(log n) comparisons and the space complexity is O(n)(for n training examples with

d features each)[27, §8.3].

Support vector machines (SVM) are often used as the classifiers in human application

domains. SVMs perform classification by splitting the feature space into two classes along a

hyperplane[123, §5.4]. This split can either be a direct linear mapping or (more commonly)

one of a number of non-linear kernels applied to the input features. The examples closest to

the hyperplane are known as the support vectors and define the classifier and the robustness

thereof (based on their distance from the hyperplane). This algorithm is also typically

much more expensive than decision trees, with a computational complexity of O(d log n)

multiplications and the space complexity is O(d log n).

The key drawback of this algorithm is that access to all features is needed to make any

decision. One possible workaround would be to redefine the classes such that each is either

a state decision or a pointer to another classifier. This would allow for the creation of a

series of classifiers using different subsets of the sensors, each with different power usage,

which should result in reduced power usage (through the hierarchical nature, as above).

However, the system would not be as nimble as a decision tree, due to the use of multiple

sensors in each sub-classifier7. More importantly, it is unclear how to create and order

these sub-classifiers, since SVMs were not designed to create a solution space capable of

such subdivision. This suggests the intriguing solution of making the query at each node of

the decision tree an SVM, though it is unclear whether the benefits (if any) would be worth

the increase in complexity.

The key difference between these algorithms is their ability to cover the feature space. De-

cision trees create a sequence of subdivisions perpendicular to the feature axes, allowing

7The solutions from an SVM with only a single input would be a subset of the solutions from a similar
classification tree since only a single cut is possible.
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them to classify disparate sections as part of the same class8. SVMs define a single con-

tiguous space as one class with all the exterior labelled as the other class. The boundary

of this space is most often either linear or Gaussian - regardless, it is not bound to the

feature axes. Therefore, SVMs can oftentimes have much greater descriptive power. This

limitation of decision trees can be somewhat overcome by careful choice of sensors and their

axes of measurement, to create a state space where the single variable cuts made by the

classifier are more meaningful. By contrast, state spaces where diagonal cuts are necessary

(as might be obtained if the gait shoe attachment were rotated 45 degrees) will be difficult

for a decision tree to handle.

While not discussed in depth, it should be noted that the other classifiers commonly used

in this application space - such as neural networks, hidden Markov models (HMM) and

k-nearest neighbours - suffer from the same problem of lack of separability described above

for SVMs. One distinguishing feature worth discussing is the time-dependance of state

transition-based approaches, such as HMMs[99], which is not present in other techniques.

These techniques are based on tracking the internal state of a system and the transitions be-

tween them. Each state is associated with an output probability density for the observables

of the system, and a transition probability to other states. These techniques allow for the

encoding of the probability of transition between certain states as more or less likely than

other transitions. The seminal application of this approach is in speech recognition, where

certain phonemes are far more likely to occur given the previous phonemes. For example,

in a wearable gait application, we note that there are three subsets of states which can

only transition between each other: non-ambulatory states, level gait and other ambulatory

motions9. Such limitations could either be extracted from the long-term data stream or

hand-coded by the application designer. While this could be quite beneficial in a number

of applications, there would still be no good way of tiering the sensor usage for detection.

Therefore, to decrease net power usage, the increase in accuracy would have to be achieved

for less energy than the response to the interesting state would consume in the marginal

8This applies to standard univariate decision trees, as used in this work. It is worth noting that none
of the major classification tree packages incorporate training for multivariate nodes and Breiman[14] has
shown that they do not increase accuracy.

9It is assumed that transitions between, for instance, ascending stairs and shuffling are very rare.
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false positives. This particular analysis is more application specific than we wish to make

this framework, as it requires misclassification costs (in energy units, no less) to decide be-

tween two classifiers. We further note that, in comparison to SVMs (which are not strictly

comparable to HMMs), our tree based classifier will give equivalent or better performance

with respect to energy usage (section 7.3.2).

5.2.2 Priors and Costs

All things not being equal, we briefly discuss the usage of costs and prior probabilities

in our algorithms. In this work, three different costs are specifically considered (for a

comprehensive list of costs, see [122]):

Loss — Relative disinclination to predict one class when it is another. Often referred

to as misclassification cost.

Test — Relative cost to acquire a feature used in the classifier. Broken down into the

cost of acquiring the raw data and the cost of calculating the feature therefrom.

Time — Latency between state changes and recognition thereof.

Costs are used to alter the relative weight assigned to various states when making decisions

during the classification process. Test costs are used to alter the selection of one feature

over another during the construction of the tree. Loss is used to alter the assignment of a

node to one class or the other. Time cost could be used to adjust the pruning of the tree

(see section 8.1.3).

The test cost itself requires some definitions. We will use the notation introduced on page 17.

Firstly,

TC = (TCs + TCf )/(tCyc)

where TC is the test cost (in units of power), TCs is the energy used to collect a sample,

TCf is the energy used to calculate a single feature based on that sample. We break this

down further by considering the sensor cost and the feature cost. To whit:

TCs = ESi,Wake + tµP,AdcPSi,On + EµP,Adc (5.1)
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i.e. the sum of the energy to wake the sensor and the energy to sample the ADC and power

the sensor during the collection operation. Note that the power drawn by the sensor during

wake up is not assumed to be the same as that when it is active. If the time to turn on the

sensor and sample is greater than the sampling rate ((tSi,Wake + tµP,Adc) > tCyc), then we

replace equation 5.1 with:

TCs = PSi,OntCyc + EµP,Adc

since the sensor can no longer be duty-cycled.

Similarly, we define:

TCf = (#Ops)PµP,OntµP,OP

where #Ops is the number of operations necessary to compute the feature. The above

formulae are written such that there are no derived quantities. All of the values are available

directly from the data sheets (with the exception of tCyc). Note that in almost every case

TCs � TCf and therefore TC ∼= TCs. Numerical evaluation of these formulae for the

sample application can be found in section 7.2.

While time and test costs are well defined, the misclassification cost is almost by definition

ill-defined. In most cases, it will represent the designer’s internal trade-offs between incor-

rectly recognizing a state (false positive) and missing it (false negative). For the case where

power is the key criterion, this forces a comparison between the incomparable values of the

power wasted by responding to a false positive and the data loss of a missed detection.

Prior probabilities represent our knowledge about the relative frequency of various states and

are mathematically similar to loss. In the case where the cost of misclassifying a state has

equal cost regardless of what it is misclassified as, loss and priors are indistinguishable (which

is always the case for a two-state system). For the applications suggested in section 1.3,

priors are best obtained from knowledge and/or studies of the underlying system. Because

of our interest in infrequent states, the prior based on the long-term data streams are likely

to have a large error due to the small number of representative segments for each state (the

scripted data stream is, of course, useless for this purpose).

85



5.2.3 Overview of Decision Tree Construction

The construction of a classification tree is a straight-forward recursive algorithm which is

effectively unchanged from those codified by Breiman[15] and Quinlan[97]. This technique,

known as top-down induction of decision trees (TDIDT), is given below. We assume a

univariate relational test and binary splits.

1. Begin at the root node of the tree with all examples.

2. For each feature, determine all the possible splits (thresholds).

3. For each split, calculate the value of the splitting criterion. Roughly, this value will

be greater for purer splits (i.e. those where the split has skewed the distribution of

examples on each side towards different states).

4. Execute the split with the highest value:

(a) Set the query for the node to the feature and threshold of this split.

(b) Branch to create two new nodes, one containing the examples above the thresh-

old, the other with those below.

5. For each new node:

(a) If it is pure or meets a stopping criterion (see below), stop and set this node as

a leaf.

(b) Otherwise, apply steps 2–4 to this node.

Further implementation details are available in the above references. A survey of splitting

criteria is found in [105].

Issues Related to Classification with Test Costs

Overall, our goal is to make decisions for the minimal test cost for a given accuracy, rather

than simply making the most accurate decisions. Therefore, a number of new issues arise

with respect to the choice of algorithms.

The most important restriction is with regards to meta-algorithms which make use of a

combination of individual classifiers. Bagging[13] increases the accuracy of decision tree
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classifiers by building a large number of trees using different training and testing sets and

using the majority vote thereof to make a final decision. AdaBoost[39] acts recursively,

biasing each subsequent classifier constructed towards the incorrectly classified examples of

the previous ones. In each case, the structure of the decision trees change throughout the

process, until it is likely that the number of sensors at the root of at least one tree will be

quite large. At this point, any benefits from hierarchical activation will be lost.

One possibility for reducing the average test cost of classification is to alter the form of the

decision trees itself. Most TDIDT algorithms attempt to grow balanced trees, which can

require a large number of tests to make any decision. Trees with a higher ratio of leaves to

nodes - i.e. those which make more decisions more quickly - may achieve similar accuracy

for lower test cost. The most extreme case of such a decision tree is known as a decision list,

where each node connects to one node and one leaf (with the exception of the final node). A

possible technique for building these structures in a top-down fashion is considered below.

Finally, pruning is normally used to solely increase the generality of the classifier. As such,

pruning algorithms have been labelled as biased towards overpruning or underpruning[32].

Since pruning, in general, tends to reduce the test cost of the decision tree, we will want to

choose a technique which gives smaller trees, even at the possible price of reduced accuracy.

However, this loss should be minimal since the deepest nodes, by definition, include only a

small number of examples.

5.2.4 Decision Tree Splitting Criteria

Because of the concerns given above regarding the availability of the priors and costs, it is

preferred to use a splitting criterion which is robust to variation in these values - i.e. one

based solely on the enumeration of the training examples (cardinality). The goal is to grow

as general a tree as possible and then extract a final version through pruning and node

assignment using the eventual values for prior probabilities and misclassification costs.

The receiver operating characteristic (ROC) is one way to codify this concept of generality.

For a two-class system, the ROC is a plot of the true positive rate against the false positive
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rate. Values nearer to the top left corner are better, and (0, 0) and (1, 1) can be obtained

trivially. For a trained decision tree, the ROC can be generated simply by calculating the

true and false positive rates for each possible assignment of the leaf nodes. The area under

the ROC curve (AUC) is a good metric for the quality of a classifier[11, 51].

[p,n]

[p2,n2][p1,n1]

Number of positive (p) 
and negative (n) examples

Left child Right child

Root node

p = p1 + p2
n = n1 + n2

Note:

Figure 5-2: Classification tree split

A splitting criterion which maximizes the AUC of each split is adopted from [36]. For the

split shown in figure 5-2, this criterion gives10:

CAUC(s) =
1
2

(
p1

p
− n1

n
+ 1

)
(5.2)

where s is a specific split (i.e. the pi and ni values) and higher values of C(s) are better.

This criterion has several beneficial properties. It is based solely on cardinality, as desired.

Further, evenly sized splits (relative to the population at the parent node) are generally

better than smaller, purer splits (which can lead to overfitting). Most importantly, it has

been shown that the performance of this classifier does not degrade significantly even with

a large change in priors, which is not the case for those constructed using other splitting

criteria[36]. Therefore, a general (i.e. non-specific) criterion not only produces robust

classifiers for a large range of weights and misclassification costs, but can also be used to

argue for the generality of the techniques presented.

We note two concerns with this approach. The first is that it only applies to two class

systems11. This can be easily accommodated by setting the state of interest as the positive

10This assumes (wlog) that the left branch has a higher positive accuracy (i.e. p1
p1+n1

> p2
p2+n2

)
11While Hand and Till[47] have extended ROC analysis to systems with greater than two dimensions, this

has not been shown to produce a good splitting criterion.
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class and combining the rest as the negative class. This does not prevent the states from

being individually tracked, it merely means that the tree will not attempt to separate them.

This restriction is mitigated by the claim that there is usually only one interesting state per

application (or subset of the application) and the fact that a tree separating two classes will

never be larger than one separating more. Second, while tree construction is based solely

on cardinality, specific values for the priors and misclassification costs will still be necessary

to set the assignment of the leaf nodes and to prune the tree.

We consider two other popular splitting criteria in this context. C4.5, another classification

tree implementation by Quinlan[98], uses an information (entropy) based criterion:

Cinfo(s) =
∑

i ε child

P (i)
∑

j=+,−
P (j|i) log P (j|i) (5.3)

where + and - refer to the positive and negative classes, respectively. This gives:

Cinfo(s) =
N1

N

(
p1

N1
log(

p1

N1
) +

n1

N1
log(

n1

N1
)
)

+
N2

N

(
p2

N2
log(

p2

N2
) +

n2

N2
log(

n2

N2
)
)

(5.4)

for the case above (figure 5-2), where N = p + n and Ni = pi + ni. The split with the

maximum value is chosen. In the case of non-binary splits, C4.5 uses a function known as

gain ratio, which is as above, except divided by the entropy of the split population (since

equation 5.4 favours M-way splits based solely on larger M). The Gini criterion used in the

CART algorithms[15] is a simplified version of the entropy of the split:

CGini(s) =
∑

i ε child

P (i)P (+|i)P (−|i) (5.5)

For the case above, we have:

CGini(s) =
N1

N

(
p1

N1

n1

N1

)
+

N2

N

(
p2

N2

n2

N2

)
(5.6)

The split with the smallest value is chosen. As seen in figure 5-3, the Gini criterion and

the information criterion are nearly identical, with the exception of the much lower cost of

execution for Gini.
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Figure 5-3: Comparison of the Gini and information splitting criteria

Both of these criteria are designed to minimize the error (or risk, if weights are taken

into account) of the decision tree. Therefore, they are sometimes biased away from small

classes towards more populous ones, such that a split incorporating noisy examples from a

high probability state will be chosen over a split based on accurate examples from a rare

state. This can be alleviated by setting weights or artificially generating more examples of

uncommon states[19], but these techniques tend to be finicky at best.

To examine whether it is possible to achieve good performance while forcing the decision

tree into a list structure (one side of each split is a leaf), we will construct a modification

of the Gini criterion. At each node, we will pick the split which maximizes the criterion

for a single side, with the requirement that the chosen side has a lower impurity than the

current node and that it contain at least 5% of the examples (to avoid small pure nodes

dominating the tree). The maximal side is set as a leaf, and splitting continues on the other

branch. We use this technique because the current induction algorithms for decision lists

(such as [22]) are bottom up, which prevents the use of test cost, and are designed to split

on combinations of binary variables.

While a wide variety of splitting criteria are discussed in the literature, studies show that

the choice thereof has little to no effect on accuracy[77]. Therefore, any criterion which

gives good results with the test cost weighting described below is acceptable.
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Test cost weighting

To be able to take test cost into account when building the tree, the splitting criterion must

be a function thereof. Therefore, we alter it as follows:

C ′(s) =
C(s)

f(TC,W )
(5.7)

where f(·) is some function of the test cost and a parameter W . The intent is to reorder

C ′(s), relative to C(s), based on the test cost. W controls the extent of the reordering, with

W = 0 having no effect and W =∞ forcing only the sensor(s) with the lowest test cost to

be chosen.

Further, the structure of the decision tree needs to be taken into account. Since this is

a sequential classifier, once a feature has been used to make a decision, the sensor from

which that feature was calculated will then be available to all children of that node for a

discounted cost. Specifically, if the initial use is at a frequency f1, the new cost to sample

the sensor at a second frequency f2 is:

TC ′
s =


0 f1 ≥ f2

TCs(f2) − TCs(f1) f1 < f2

(5.8)

The feature cost is unchanged. This form makes both intuitive and analytic sense. The use

of a sensor which is already being sampled at the desired rate will not require additional

energy and therefore should not invoke additional cost. An increase in sampling rate should

only bear the cost of the increased power usage12. Note that this form also puts all activated

sensors on equal footing, regardless of their power usage. Sensors which share a common

cost (such as an amplifier) can also be easily accommodated. Any sensor used following one

with which it shares a cost is simply discounted by that amount.

We begin with a generalized multiplicative weighting function:

f(TC,W ) = (α + β(TC))W (5.9)
12Again, this refers to the special case where downsampling is trivial (i.e. if the new frequency is an

integral divisor of the old frequency). This will always be the case for the sampling frequencies chosen in
section 5.1.3.
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The parameters of this form will be examined in detail. We first set α = 1 without loss of

generality, since it can simply be divided out without altering the ordering of the function.

The value α = 0 is not allowed as it would make f undefined for activated sensors (TC = 0).

In fact, f(0,W ) = 1 for α = 0, such that splits involving activated sensors are discriminated

solely on the original criterion C(s). If, for some reason, TC 6= 0 for activated sensors, this

value could just be subsumed into α and then divided out.

Choosing a value for β is somewhat more complicated and tied to the individual values of

the test cost. We define γ ≡ β min(TC) for ease of discussion. For γ = 10 � 1, there

are effectively two separate operating ranges for f : the first for activated sensors, where it

has no effect whatsoever, and the second for unused sensors, where it has a relative value

proportional to the power usage of the sensors. It is also possible to set γ ≈ 1, which will

skew the function to give lower relative cost to higher power sensors. However, it is unclear

whether or when this is a desirable property. Therefore, it is best to keep γ ≥ 10 unless

obvious flaws are found in the resultant trees (such as the insistence on using slightly lower

power but far less discriminatory sensors).

Finally, the parameter W adjusts the relative importance of power in the classifier construc-

tion. Since this is a greedy process, it is most likely that the effect of this parameter will not

be smooth, but rather that a range of values will all result in the same tree being grown.

As long as the total test cost for classification is roughly monotonically non-decreasing with

increasing W and the number of different trees is non-degenerate, this stepwise behaviour

is not of particular concern. The overall goal is to be able to grow a population of different

trees by varying W . The exact relationship between W and total test cost is not examined.

We consider the useful range for W . Since the intent of the weighting function is to reorder

the original splitting criterion, the value of the minimum value of f for TC 6= 0 cannot

exceed the dynamic range of C(s). Specifically,

max(C(s))
min(C(s))

> min
TC 6=0

(f(TC,W )) (5.10)

If this does not hold, then no unused sensor will ever be activated since even in the case of a

perfect split (whose definition varies with the criterion) the value of C ′(s) cannot be greater

92



than that of the worst possible split of an activated sensor. The AUC-based criterion ranges

between 0.5 (useless) and 1 (perfect), and therefore:

1
0.5

> (1 + γ)W

⇒ log(2) > W log(1 + γ)

⇒W <
log(2)
log(11)

∼= 0.29 (5.11)

for γ = 10 as above. Redefining C ′
Gini = 1 − 2CGini gives this function the same range as

above and hence the same maximum value of W.

Several other weighting function have been used in the literature. The functions of Tan[117]:

C ′(s) =
[C(s)]2

TC
(5.12)

and Norton[84]:

C ′(s) =
C(s)
TC

(5.13)

are equivalent to ours for α = 0, β = 1 and W = 0.5 and 1, respectively. Obviously, neither

function allows sensor costs to be set to zero in the case of repeated use of the feature since

this would make C ′(s) undefined. Further, their choice of parameters (α, β, W ) are not

justified beyond unsupported claims of optimality13. Núñez[85] models the system as a

Shannon transmission line[108] and finds a signal to noise ratio of:

C ′(s) =
2C(s) − 1

(1 + TC)W
(5.14)

where C(s) is defined as in equation 5.4 and TC � 1. However, since 0 < C(s) < 1, it is

difficult to gauge the similarity between this form and our own. Costs are allowed to be

zero, though Núñez does not consider the case of costs which vary within the tree. Finally,

note that in all three cases, the cost function is multiplicative.

13In this case, defined as growing the tree which most accurately classifies an independent test set, possibly
for lower average classification cost.
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5.2.5 Decision Tree Pruning

Classification trees are grown until they are pure (i.e. the leaf nodes contain only examples

of a single class) or until some stopping condition is met. In general, this tends to lead to

trees which overfit the training data and then need to be pruned back[123]. Two types of

pruning are considered: pre-pruning, or stopping criteria, and post-pruning.

There are a number of stopping criteria in the literature. The most commonly used is the

imposition of a minimum node size. Any smaller node is set as a leaf. This acts as a check

against expending effort to distinguish between a small number of likely noisy examples

and on the possibility that two examples from different classes are indistinguishable (which

only tends to occur with categorical data). A chi-square test on the significance of the split

is sometimes used, though it is somewhat redundant with the first criterion (since small

nodes rarely pass) and can reject some important cases[32]. Minimum description length

pre-pruning looks for the global minimum of:

α · size +
∑

leaves

H (5.15)

where size is a measure of the size of the tree (often total nodes or leaf nodes) and H is the

entropy of the node. However, relationships between α and the accuracy of the classifier

are difficult to establish[27]. In general, pre-pruning is not considered to be beneficial and

should be avoided[123]. In this implementation, the only pre-pruning used is a limitation

on splitting nodes with fewer than 5 examples, as recommended in [37].

Post-pruning is the process of taking a fully grown tree and replacing subtrees by their root

node to improve the performance. All common techniques are designed to maximize the

accuracy or minimize the risk (error rate times loss) and therefore require both priors and

misclassification costs. Post-pruning is beneficial for two reasons. Numerically, it removes

nodes which do not alter the accuracy and those which degrade the accuracy since they are

based on idiosyncracies of the training set. Analytically, it brings the consideration of the

key metric of classifier performance, accuracy, into consideration for the first time. While

it may be argued that splitting based on the desired global metric is not the best way to
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construct a tree classifier (in fact, no common algorithm does so[105]), that metric is clearly

the best way to prune a tree.

There are a large number of different pruning algorithms[32], two of the most common of

which are considered below. The C4.5 package[98] uses a technique known as error-based

pruning. The algorithm treats each node as a binomial random variable, and replaces its

current error with the upper bound of the error for a fixed confidence interval (usually

25%). A bottom-up traversal is then performed over all nodes, comparing the upper bound

of the error of each interior node with the subtree beneath it. If the former is smaller, the

subtree is removed. The comparison is sometimes extended to include the most populous

child of the interior node, with that child (and its subtree) moved into the position of

the interior node if it has the minimal error. However, this addition is not appropriate

for our purposes, as the test cost weighting during tree construction is predicated on the

nodes above. The algorithm uses the training set populations to estimate the upper bound

of the error, and therefore does not require a separate pruning set. However, assumptions

necessary for the binomial modelling (specifically independence and sufficiently large nodes)

do not hold, as argued by Esposito[32] and acknowledged by Quinlan[98]. Further, while the

confidence interval can technically be changed, this is rarely done in practise, often leading

to underpruned trees.

The CART package[15] uses an algorithm known as cost-complexity pruning (CCP). It uses

effectively the same formula as the minimum description length (equation 5.15), where the

entropy is replaced by the risk and size is set to the number of leaf nodes. An order of

pruning operations is created by comparing the cost-complexity of each internal node with

the sum of the cost-complexity for all the leaves below it and finding the value of α necessary

to make them equal. The subtree with the lowest value of α is pruned first. The process

is then repeated on the new tree until only the root node remains. Given this ordering,

a level of pruning which trades error rate against depth can be chosen. In most cases,

the minimum of the curve is found and then the smallest tree (in the ordering) with an

error rate within one standard error of the minima is chosen. This procedure is most often

referred to as CCP-1SE. This technique has a tendency to overprune[32], which, in fact, is

desired in this case (section 5.2.3). This algorithm is most often run using cross-validation,
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and therefore does not require that a separate pruning set be extracted from the available

examples, though a holdout training set can also used. While it has the drawback that it

does not test all possible subtrees, it has been shown[15] that the generated subtrees are

optimal with respect to out of sample error for their size.

5.3 Examinations of Features

In this section, we examine the feature algorithms chosen in section 5.1.3 to show that they

have the consistency (on a class-by-class basis) desired for classification. This analysis uses

the data streams collected in section 7.1, though specific details thereof are not necessary

to understand this section.

The tests in this section are done using the data for the y-axis (upward facing) accelerometer,

which proved best for visual analysis for the majority of the motions tracked14. Results for

the other sensors are qualitatively similar. For reference, a portion of the data captured

from the accelerometer is shown in figure 5-4. The red boxes surrounding portions of the

data represent the extent of different motions. This segmentation was done by hand using

a video recording as a reference for the annotation. The motion type itself is not labelled

on the figure because of legibility concerns. They are: ascend stairs, turn, descend stairs.

14This is not to be confused with the ability to disambiguate states.

96



200 205 210 215 220 225
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time (sec)

R
el

at
iv

e 
V

al
ue

 (
A

rb
itr

ar
y)

Hand−segmented Raw Data Stream from Y−axis Accelerometer

 

 
Data
Stream Segmentation

Figure 5-4: Portion of sample data stream with segmentation

5.3.1 Consistency over Window Size

The windowed mean and variance of the y-axis accelerometer over the training data stream

is shown in figure 5-5. Again, the red boxes indicate the segmentation of the stream into

various motions based on the video record. The features were only calculated within the

labelled areas, hence the gaps in the stream. Note that the values are fairly consistent across

individual motions, and some motions can be differentiated based solely on these features.

The range of window sizes to consider can be determined in two ways. First, visual ex-

amination of the data can often provide an accurate starting value for the search. Second,

studies in the field may directly provide the information desired. In this case, the cycle

time appears to be roughly one second. Also, Finley and Cody[38] studied the walking

rates of urban pedestrians and found an average of 55 steps/min (or 1.1 sec/step). Using

the second value as a guide, window sizes examined will centre on 224 points (at 200 Hz

sampling) and range from 192 points to 256 points in steps of 8 (to provide for integer win-

dow sizes for 8 times downsampling to 25 Hz). Because all of the sensors capture a single

phenomenon, it is reasonable, but not necessary, for them to share a common window size.
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Figure 5-5: The windowed mean and variance features (1.2 sec window size)

In the case of sensors capturing orthogonal phenomena, different window sizes will most

likely be necessary.

Figure 5-6 organizes this information in the form of four plots, with the features now

separated by class. The average of the mean and variance features show that the values are

fairly consistent across the range of windows considered. This suggests that inaccuracies

in the step frequency (at least within the range considered) will produce at most small

differences in these variables over large sets and allows for the direct comparison of the

standard deviations of the mean and variance features. Since these values directly effect

separability, the minima will be used to choose the best window size. For the mean plots,

units are arbitrary (derived from ADC counts). For the standard deviation plots, each curve

is scaled such that its minimum value is equal to one. This places all of the minima along

the x-axis and allows the relative quality change with window size to be read off the y-axis.

Examination of the plots suggests that a window size of 240 points is the best choice for

this data.

The windowed maximum and minimum over the sample data stream are shown in figure 5-

7 and figure 5-8. These values proved inconsistent over the window size chosen, most
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Figure 5-6: Effect of window size on mean and variance features
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likely due to fast transients which were not completely captured by the hardware, and

would have proven virtually useless for training the classifier. Replacing the maximum

and minimum with the more robust 90th and 10th percentile (respectively) provided for

much more consistent results. While this analysis suggests that analysis of the robust

versions of mean and variance (termed clipped) would be fruitful, the increased complexity

of calculation (since they necessitate knowledge of the variance) would be unacceptable.

The use of fixed high and low thresholds beyond which data points are assumed to be

outliers could be used, though it would have to be done on a sensor-by-sensor basis.
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Figure 5-7: Comparison of windowed maximum and windowed 90th percentile features
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Figure 5-8: Comparison of windowed minimum and windowed 10th percentile features
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5.3.2 Consistency over Frequency

Having selected a window size above, it is worthwhile to examine the variation of the features

with respect to sampling frequency. This will give a sense of the tradeoff between the

accuracy of the classifier (tied to class separability) and sensor power (tied to the sampling

frequency). Figure 5-9 shows the mean and the standard deviation of the windowed mean

and variance features with respect to frequency. The standard deviation plots are scaled as

before. The mean of the features, as before, is effectively constant. The standard deviation

begins by dropping sharply, but appears to be approaching an asymptote near 100Hz. This

suggests that features at this sampling frequency may be as effective at disambiguating

states as those collected at 200 Hz.
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Figure 5-9: Effect of sampling frequency of mean and variance features
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Name Classes
Features With
Non-Zero Cost

Features With
Zero Cost

Trivial
accuracya

Pima Indians Diabetes
Database (Pima)

2 2 6 0.65

BUPA Liver-disorders
Database (BUPA)

2 6 0 0.51

Heart Disease Database -
Cleveland (Clev)

2b 10 3 0.54

Table 5.1: Summary of data sets used for testing

aCan be achieved by always selecting the majority class
bThe four subsets of the sick class were treated as a single class.

5.4 Examination of Test Cost Weighting

While altering the splitting criterion of a decision tree will, of course, alter the generated

tree, it is far from clear exactly what the effect will be. In this section, we will examine

how the accuracy, test cost and latency of classification trees varies with W for a variety

of data sets. Tests are run with the Gini criterion (both normal and single-sided) and

the AUC-based criterion. The data sets used are from the University of California Irvine

(UCI) machine learning repository[82] with test costs provided in [121]. Table 5.1 details

the relevant parameters of each set. All are from medical diagnostic domains, with test

costs reflecting the financial cost of running blood tests. Testing was done using a modified

version of the MATLAB implementation of CART (an overview of changes we made can be

found in appendix C).

5.4.1 Discussion of Testing Methodology

We originally intended to use a standard decision tree construction methodology here.

Specifically, the classifier was to be constructed using one of the splitting criteria to be

examined and then pruned using 10-fold cross-validation cost-complexity pruning with the

one standard error offset (CCP-1SE). Parameters could then be estimated from 10 loops of

the cross-validation procedure, as recommended in [15, 123]. However, closer examination

of the trees produced by the classifier suggested that there were some difficulties with this
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approach. Specifically, while only a small number of different trees were produced, the

graphs of accuracy and test cost against W were smooth, suggesting a much larger popula-

tion. The cause was instability in the cross-validation procedure, which is discussed below

(in this case, the cause was numerous features with near equivalent descriptive ability).

One known potential difficulty with the growing of the decision trees is the instability of the

top-down induction of decision trees themselves, as previously noted in the literature[15,

§5.5.2][48, §9.2.4]. Such problems can arise under two circumstances. In the first, multiple

features give splits of near maximum quality at a specific node. In the second, a subset

of the features are correlated and therefore their splits are of similar quality (albeit not

necessarily maximal) at most nodes. Slight deviations, caused by noise or sampling errors,

will determine the feature chosen by the training algorithm, which then affects the evolution

of the remainder of the tree. In most circumstances, this effect is not of great concern, since

the collection of trees grown tends to have similar accuracy. However, when the test cost

parameter is of importance, there may be large variations in the average cost of classification

based on the order in which the features (and hence the sensors) are chosen. While it was

expected that the test cost weighting of the splitting criterion would prevent this problem

from occurring, the structure of the induction (and the data) meant that once certain sensors

were chosen, the subtree beneath it was all but fixed. Further, the test cost weighting merely

changed the ordering of the features, but did not prevent groupings of features of similar

quality.

These difficulties are compounded by the structure of testing application (see section 7.1),

which purposefully sampled from a large number of sensors measuring identical phenomena

in different fashions. This leads to the high correlations described above. Also, the large

time and expense of collecting and annotating human motion data leads to the use of

smaller data sets, which are by definition noisier. Such sets usually call for the use of cross-

validation procedures for pruning and error (and other parameter) estimation. The removal

of a portion of the data from the training set leads to wide variability in the trees grown,

which directly increases the standard error of the estimation. In fact, the effect may be to

the extent that cross-validation itself is not as appropriate, since the stability and similarity

assumptions of the procedure are no longer met.
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A remedy to allow the use of cross-validation is not evident. Bagging (described earlier)

is often used in such cases (and with decision trees in general), but is not applicable here

because of the cost of execution (both in terms of information and processor time). Li[65]

has proposed a technique for overcoming instability in TDIDT. However, it requires us-

ing a logical conjunction (or disjunction) of tests at nodes where two (or more) tests are

similar enough that either could be chosen given small changes in the training population.

While effective, this greatly increases the test cost of evaluating the tree, and is therefore

unacceptable as well.

Hence, standard holdout training methods will be used. Specifically, 20% of the data will

be held out for a test set, with the remaining 80% again divided 80/20 between a training

set and a pruning set (CCP-1SE is used). Overall, this uses 64% of the data for growing

the tree, 16% for pruning and 20% for testing. This holdout procedure is stratified - i.e.

the proportion of the various classes in each subset is as close as possible to that of the full

set. The disadvantage of this procedure compared to cross-validation is that a much smaller

proportion of the data is used for calculation of the parameters of the classifier. We note

also that using less data to train the trees leads to greater differences amongst the grown

trees. However, this variation is of little concern as our goal is to produce a large population

and select amongst them based on their parameters. To be able to do so, estimation errors

must be reduced through the use of a large enough test set such that the three segments

are each reasonably representative.

5.4.2 Results

For each of the three splitting criteria, a population of trees was constructed using the above

holdout procedure. W was varied between 0, which trains a tree without consideration of

test cost, and 0.3, which uses only the cheapest feature(s). The relationships between W

and accuracy (error rate of the holdout set) and W and test cost (average classification

cost of the holdout set) are most important, though the latency and depth of the tree are

also of interest. The latency is the average number of different features used to determine

the class. This corresponds roughly to how long it would take to classify an example if
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a fixed delay was associated with each new feature. The depth is the average number of

comparisons made to determine the class, and therefore is a measure of the computation

necessary to classify an example.

For the Pima database, the results are fairly clear (figure 5-10). The one-sided split is

insensitive to W and can be ignored. The Gini and AUC splits are very similar, with perhaps

sightly better performance by the Gini split. More important is the general progression of

the operation of the classifiers as W is reduced. Using the Gini criterion produces four

distinct trees with different operating points. The simplest tree (figure 5-11d) is the trivial

tree, which simply chooses the most populous class and assigns it to all of the examples.

As W is reduced, useful trees are grown, beginning with one made up of only free features

- the patient’s age and body mass index (figure 5-11c). As the test cost is reduced further,

the most descriptive and expensive test - plasma glucose level - appears (figure 5-11b) and

eventually moves to the root of the tree when cost is no longer taken into account (figure 5-

11a). As indicated by the peaks in the latency and depth plots, for middling values of W,

the algorithm constructs more accurate classifiers by using a greater number of cheaper

tests in place of a single expensive one. For the AUC-based criterion, the only notable

difference in the classifiers built is that the most accurate tree does not occur at W = 0.

Since the tree growing algorithm is a top-down greedy process, being forced to choose less

expensive tests allows the algorithm to find an overall more accurate classifier than if it was

given free reign.

The results for the BUPA database (figure 5-12) are straight-forward. Again, the one-sided

splitting criterion only returned a single unique tree. The Gini and AUC-based criteria

constructed the same trees (with one exception), only for different values of W. Since mul-

tiple values of the weighting factor are used as a matter of course, this difference is not

significant.

The results for the Cleveland heart disease database (figure 5-13) are very similar. We

quickly note two points. The one-sided splitting criterion was able to find two different

trees, though neither was optimal. The Gini criterion found one more tree than the AUC-

based criterion, though in both cases the best results came from trees grown with higher

values of the weighting factor.
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Figure 5-10: Effect of test cost weighting on classifier performance (Pima)
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A few general points can be made regarding these tests. First, there is no clear advantage

to either the Gini or AUC-based criteria. However, the one-sided criterion is not responsive

to changes in the weighting factor for these databases. While this may be caused by the

low maximum accuracy of the classifiers for these problems, the criterion remains unproven

and therefore will not be used in future tests. Second, there tends to be only a small

number of trees grown for each database, suggesting that most features (or combinations

thereof) are not particularly useful or are masked by other more useful features. While

no general statement can be made, this does suggest that the tree growing algorithm is

reasonably effective at feature selection (e.g. only three of the eight total features in the

Pima database are ever used), in which case the plan to provide the classifier with data from

a number of sensors of unknown utility has a limited risk of overtraining. Third, the core

system is functioning as desired. Roughly, decision trees of increasing cost and accuracy

are grown with decreasing W. In most cases, expensive but effective substructures within

the tree progress towards the root node as the test cost weighting is reduced. This creates

the desired population of trees, each at a different point in the power/accuracy plane.
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Figure 5-12: Effect of test cost weighting on classifier performance (BUPA)
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Figure 5-13: Effect of test cost weighting on classifier performance (Clev)
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Chapter 6

Design for an

Embedded Implementation

6.1 Program Flow

The basic flow of the embedded code is shown in algorithm 6.1. Each step is described

briefly in turn, with additional discussion covered in the following section.

Algorithm 6.1: Overview of Program Flow
while true do1

Collect data;2

Run classifier;3

if classifier returns answer then4

Execute desired response;5

else6

Turn on necessary sensor;7

end8

Turn off unnecessary sensors;9

Sleep until next cycle;10

end11

This loop is repeated as long as the system is active, based on the assumption that the

main purpose of the system is to determine the current state and respond to it. Additional
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operations may be added before the collection of the data or before the transition to sleep

at the end of the cycle. Note that the length of the cycle constrains the complexity of the

other tasks (see section 6.2.2 for details).

Data collection is determined by the current activity level of the system, which selects the

sensors to activate and sets their sampling rate. In most cases, the sensors are powered

down between cycles to save energy and therefore need to be activated before a sample can

be taken1. To a first order, the processor wakes up and activates the appropriate sensors.

Once their output becomes valid, the processor collects the data (almost always using the

ADC) and then turns them off. The main constraint is that the turn on time of the sensors

be shorter than the cycle time of the system. If violated, it is necessary to leave the sensors

on continuously, which reduces the achievable power savings. The specifics about the timing

and constraints of sensor activation are described in section 6.2.2.

Given the sensor data, it is now possible to attempt to determine the current system state.

The evaluation of the classification tree itself is straight-forward. The process is simply

a series of comparisons of a feature calculated from a window of sensor data to a fixed

threshold, with each result either determining the next test (tree node) or returning the

state (tree leaf). If the returned state has a response associated with it by the application

designer, it is executed. The tree itself is stored in a linear array constructed from the

MATLAB tree structure. The conversion process is described in section 6.2.1, including the

handling of passive triggers and determination of the classifier update rate.

The above procedure can fail when the data necessary to determine the feature are not

available, either because the sensor is currently inactive or has not been active long enough

to the fill the data window (given that this is a tiered wakeup system, this will not be

a rare occurrence). In this circumstance, the only solution is to add the part to the list

of active sensors (if it hasn’t been already) and wait for one window length to be able

to proceed. During this time, the system is said to be in an indeterminate state, and no

responses are executed. Separately, the sensors which were active but were not used in the

1If some sensors are sampled at a lower rate than others, the system will not activate the less frequently
used devices during some cycles.
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decision process are deactivated. In both cases, sensor noise can lead spurious de/activation

requests by sending the tree evaluation along the incorrect path. Adding some hysteresis

can help alleviate this problem, and is discussed in section 6.2.3 (tree output smoothing is

also covered).

Finally, the system is put to sleep until the next cycle. The processor is set to awaken the

next time data collection is required, which is determined by the update rate of the active

sensors. The only components active during this phase should be the sensors that are not

duty cycled and the associated switches.

6.2 Specific Issues

6.2.1 Conversion from MATLAB

The process of converting the tree structure from MATLAB into embedded code is mostly

transcription. An array of data structures is created, with each index representing a node

in the tree. The data structure contains:

• Index of the sensor tested at this node (0 for leaf)

• Index of sampling rate (of above sensor)

• Index of feature calculated (with the above sensor and rate)

• Threshold for comparison

• Index of left child (feature less than threshold)

• Index of right child (greater than or equal)

• Node state assignment (only relevant for leaves)

• List of sensors in use at this node

• Maximum sampling rate of sensors in use at this node

• Order of activation of sensors (see section 6.2.2)

The tree structure in MATLAB is compact, so there are no empty indices in the array. The

first three values in the data structure are all extracted from a single index used in the
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classifier training process, which treats each <sensor, sampling rate, feature> triplet as a

separate vector of values. These parameters can no longer be treated as distinct when the

same sensor samples are used to calculate multiple features, possibly at multiple sampling

rates. Similarly, while the training algorithm needn’t keep track of the sensors in use at each

node, it is fundamental that the embedded implementation do so. Each node contains such

a list, which can be constructed with a simple traversal of the tree, allowing the algorithm

to determine which previously active sensors are no longer in use when the evaluation of

the tree transitions to a higher (nearer to the root) node. The rest of the values for the

data structure are copied directly from MATLAB.

The update rate of the decision tree must also be considered, as it is not fixed by the

classifier. The maximum useful rate is the highest sensor sampling rate used in the tree

and the lowest reasonable rate is the step size of the features created for the classifier - one

quarter of the window size. The choice must balance the difficulties of having the update

rate change as the activity level changes and the desire to take advantage of and/or respond

to those changes. Using the current maximum rate allows the system to use all the data

it collects since the tree would update each cycle. However, the variation in update rate

complicates the de/activation of sensors and any output smoothing which may be used.

By contrast, a fixed update rate (mostly likely the lowest rate in the tree) reduces power

usage and makes processes related to updating the tree (e.g. output smoothing and the

response function) more consistent. However, this may make the system slower to respond

in certain situations. For systems with less than an order of magnitude between the highest

and lowest rate (such as our example system), the latter is probably the best choice. For

systems which a greater spread or strict latency demands, the former would be preferred.

Note that the sampling rate of the sensors is unchanged by this choice.

MATLAB also provides direct function calls for the four windowed features used in this

implementation of the framework: maximum, minimum, mean and variance. Recursive

algorithms for all four are presented in algorithm 6.2 through 6.5. The first two are straight-
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forward. For mean, we use the fact that:

µ̂ =
∑n

i=1 x

n

⇒ µ̂ ∝
n∑

i=1

x ≡ fµ

where n is the number of points in the window. While differing from the mean by a

multiplicative factor, the value fµ preserves the ordering. This value is then used in the

formula for variance, which is based on:

σ̂2 =
∑n

i=1 x2

n− 1
−

(
∑n

i=1 x)2

n(n− 1)

⇒ σ̂2 ∝ n(
n∑

i=1

x2)− (
n∑

i=1

x)2

= n(
n∑

i=1

x2)− (fµ)2 ≡ fσ

Again, we see that fσ is proportional to the variance and preserves the ordering. To calculate

these values efficiently, we introduce two new data arrays: Σi, the running sum of all the

data from 1 to i, and Σ2
i , the running sum of the square of the data from 1 to i. Whenever

a sensor is active, all three data arrays are kept up to date for each frequency in use. While

this requires a larger memory footprint and a slight increase in power usage, it avoids a large

amount of latency and bookkeeping issues. Further, on a tree-by-tree basis, it is possible

to reduce the complexity of this approach by not filling arrays for features which are never

used in the tree2.

Algorithm 6.2: Recursive Windowed Mean(xn+1)

Data: Σ1,Σ2, . . . ,Σn /* Running sums for last n points */
Input: xn+1 /* Newest point */
Output: Mean of x2, x3, . . . , xn+1

Σn+1 = Σn + xn+1;1

return Σn+1 − Σ12

2Calculating the variance feature requires the mean information, even if it is not used directly.
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Algorithm 6.3: Recursive Windowed Variance(xn+1)

Data: Σ1,Σ2, . . . ,Σn+1 /* Running sums for last n+1 points */
Data: Σ2

1,Σ
2
2, . . . ,Σ

2
n /* Running sum square for last n points */

Input: xn+1 /* Newest point */
Output: Variance of x2, x3, . . . , xn+1

Σ2
n+1 = Σ2

n + (xn+1)2;1

return n(Σ2
n+1 − Σ2

1)− (Σn+1 − Σ1)22

Algorithm 6.4: Recursive Windowed Maximum(xn+1)

Data: x1, x2, . . . , xn /* Previous n points */
Data: currMax /* Maximum among those points */
Input: xn+1 /* Newest point */
Output: Maximum of x2, x3, . . . , xn+1

if x1 = currMax then /* Maximum fell off of end */1

currMax = 0;2

for i← 1 to n do3

if xi > currMax then currMax = xi; /* Find new maximum */4

end5

else6

if xn+1 > currMax then currMax = xn+1; /* New maximum? */7

end8

return currMax9

Algorithm 6.5: Recursive Windowed Minimum(xn+1)

Data: x1, x2, . . . , xn /* Previous n points */
Data: currMin /* Minimum among those points */
Input: xn+1 /* Newest point */
Output: Minumum of x2, x3, . . . , xn+1

if x1 = currMin then /* Minimum fell off of end */1

currMin = 0;2

for i← 1 to n do3

if xi < currMin then currMin = xi; /* Find new minimum */4

end5

else6

if xn+1 < currMin then currMin = xn+1; /* New minimum? */7

end8

return currMin9

118



 
 
 
 
          
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     µP wake         µP wake    µP wake  µP wake                           µP off        
 
          S1 wake,        S2 wake,        S3 wake,           All S off   

µP off             µP off             µP off      

µP 
 
S1
 
S2
 
S3

One Cycle 

 Sleep 
 
Sample Do 

Tree

Time 
 (not to scale)

  Waking up
Active 

 

Figure 6-1: Timeline of a single cycle of the embedded hardware.

6.2.2 Power cycling

While this framework primarily saves power by not turning on unnecessary sensors, there

are also significant savings to be had by power cycling both the sensors and processor. The

schedule which we will use is outlined in figure 6-1, where dashed lines beside a part name

indicate that they are waking up, while solid lines indicate that they are fully active. There

are three distinct phases. During the first, the processor intermittently wakes up to power

on the individual sensors in use in the given cycle. The activation of the individual sensors

is done in decreasing order of their wake up time, such that they all become active at the

same time. This allows them to be sampled at roughly the same time, minimizing the clock

skew in the data. In the second, each of the (now active) sensors are sampled and the

data is stored. Currently, all the sensors are deactivated at once, though they may be shut

off immediately after they are sampled if desired. However, the two order of magnitude

difference between the ADC sampling period and the sensor wake up period makes this a

minor improvement. Finally, the tree classifier itself is executed as detailed previously.
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The energy used by this scheme is:

ECyc = (n + 1)(EµP,Wake) +
n∑
i

ESi,Wake

+ n(EµP,Adc) + n(tµP,Adc)
n∑
i

PSi,On + EµP,Tree + EµP,Resp (6.1)

where n is the number of active sensors in this cycle. This formula (and therefore, the

scheme) requires that:

tCyc > 2tµP,Wake + max
i

(tSi,Wake) + n(tµP,Adc) + tµP,Tree + tµP,Resp (6.2)

where tCyc is the inverse of the current highest sampling rate. If equation 6.2 is violated,

we proceed by selecting the sensor which takes the longest to wake up and making it

continuously active. This process is repeated until the constraint is met (which could

possibly require making all of the sensors continuously active3). Once the sensors to be

power cycled have been determined, the timing is fairly straight-forward. Ordering these

sensors in decreasing order of wake up time, the sensors are activated at:

ti = tS1,Wake − tSi,Wake

where ti is the activation time for Si, with t = 0 being the time when the processor first

becomes active. Note that t1 = 0 and that ti ≥ 0∀i by construction.

Execution of this scheme in hardware is straight-forward. The values ti can be precomputed

and stored in the tree, with a special value set for those sensors which are continuously

active4. The times are loaded into a bank of timer compare registers, the counter is started

and the processor is put to sleep. The compare module generates a series of interrupts

which wake the processor at the predetermined times to activate the appropriate sensors.

Note that the reduced accuracy of the clock while the processor is asleep is a point of

concern. For the most common case, a 32.768 kHz watch crystal, the period is 30.5 µs.
3If this occurs often, it may be necessary to rethink the choice of sensors for the application. If the

constraint cannot be met at all, the design flaw is fundamental.
4If the sampling rate of the active sensors differ, there will need to be one set of ti for each permutation

of active sensors within a cycle.

120



For most sensors, it is easiest to convert the value of ti into clock cycles and simply round

down (which increases the wake up time). For high power sensors5, where the extra idle

time consumes significant power, it may be more efficient to round up the value of ti and

busy-wait the processor instead (specifically, if PS,Ont > PµP,On(30.5 µs− t), where t is the

extra idle time). This savings, however, should be considered relative to the total power

usage of the device (both during activation and use) and the added complexity introduced

into the system.

Finally, it should be mentioned that all reasonable timing schemes use roughly the same

amount of power, differing only in their length and the amount of clock skew. The sim-

plest scheme is simply to wake up and sample each of the sensors consecutively. This

requires a minimum of bookkeeping, but take substantially longer (
∑

i tSi,Wake rather than

maxi(tSi,Wake)). It is also possible to simply run the current scheme in reverse, activating

all of the sensors simultaneously and then sampling each when it becomes active. This in-

creases the skew, though it will slightly lower the peak power draw of the system (assuming

that power usage increases with time during wakeup).

6.2.3 Noise and Timing Issues

The final implementation issue considered is that of noise, specifically with respect to sen-

sor activation and deactivation. The concern is simple - that a spurious transition to a

higher/lower node in the tree (i.e. lower/higher activity level) from sensor or sampling

noise not result in the needless de/activation of a sensor. Therefore, it is required that the

de/activation of a sensor be requested (by arriving at a tree node which does/n’t use it)

some fixed number of times before the state change takes place. While the problem appears

symmetric, this is not the case. Because of the windowed nature of the features calculated,

a newly activated sensor must be on for the full length of the data window before it can

be used. The cost of accidentally turning off a sensor is the loss of all of that data and

therefore results in quite a large latency while the delay caused by waiting for confirmation

5Roughly defined as those for which PSi,On � PµP,On
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Figure 6-2: Latency and wasted power for various sensor de/activation scenarios

results in only a small amount of wasted power. By contrast, the cost of accidentally turn-

ing on a sensor is the power wasted until the mistake can be corrected, while the waiting

for confirmation only causes a slight increase in latency (especially compared to the length

of the data window). The two cases are shown in figure 6-2, where � and � represent the

need for a sensor and the lack thereof, respectively. The de/activate markers are generated

for a threshold of five requests in this figure.

It is apparent that the system should be quick to activate a sensor but loathe to turn one

off. The on latency will therefore be set rather low, on the order of one twentieth of the

window size. The off latency, by contrast, will be designed to be proportional to the amount

of data potentially lost to take into account both fully active sensors and those which are

turning on (but have not filled the data window). Values should be on the order of a quarter

to half of the amount of stored data.

Depending on the choices for the de/activation latencies, some smoothing of the output

state may also be desired. As with the sensors, the goal is to avoid spurious execution of

the response function which could increase power usage and reduce the utility of the system.

This smoothing will take the form of hysteresis, where the system requires that the tree

output the same state for a fixed number of cycles in a row before a change is acknowledged.

This will be in the range of one tenth to one half of the window size.

122



Chapter 7

Analysis

7.1 Testing Scenario

As a detailed testing scenario for this framework, we decided to mimic the wearable gait

laboratory detailed in section 1.3.1. We decided on this application because a similar system

was originally built using The Stack, it has a wide range of possible uses and we are familiar

with the application.

The hardware setup used was a reduced set of that in [79]. An embedded module was built

using the master board, the IMU board1 and the storage board (as well as the same power

regulation board). The tactile board (and insole) and sonar were omitted. The stack was

then attached to the heel of the user’s shoe with the same attachment as shown in figure 4-2.

Our goal was to collect a data stream which contained a wide variety of different ambulatory

activities. The set of activities chosen was: normal level gait, walking uphill, walking down-

hill, ascending stairs and descending stairs. A shuffling motion was also recorded, where

the user specifically attempted to mimic the shuffling motion of a patient with Parkinson’s

Disease (PD)[40]. This data set allows us to create classifiers which attempt to separate

1The measurement range (for both acceleration and angular velocity) for this board exceeds the measured
extrema of human ambulatory motion reported in [126].
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a single (complex) ambulatory activity from the rest. It is often the case that only one of

these motions is of interest for a given patient. When for treating PD patients, a doctor

would be most interested in collecting information about the frequency and parameters

describing the patient’s shuffling episodes[131]. For patients with total knee replacement,

activities such as ascending stairs (where the knee flexion is > 90◦) are the most important

to measure[60]. Both of these cases allow for far more complex and richer classifiers than

those used to simply separate ambulatory from non-ambulatory (roughly: still) states.

Data was collected using the two step process described in section 5.1.1. The active data

streams contained two separate segments of at least 2 minutes in length of each of the non-

walking motions. These motions were collected individually and in isolation, since only the

states (and not the transitions between them) were of interest. Two segments each of fast

and slow gait were captured in a similar fashion. This data was collected in a single session

lasting approximately one hour and was recorded with a video camera. Annotations were

later added to the data stream based on the camera’s time stamp.

Several hours after the active data stream was taken, a further data stream was collected

for the purposes of simulating the operation of the classifier in real-time. In the course of

a single session, the wearer performed two segments (roughly 10-15 seconds each) of each

of the motions of interest, with segments of level gait in between (roughly 5 seconds). The

total running time of this stream is 200 seconds. Note that the data from this stream

was not used to either grow, prune or test the classifier to allow for an independent real-

time simulation. Details of the collection of this and the above stream can be found in

appendix B.

The long-term data stream was designed to collect data representing the everyday activ-

ities of an office-bound worker (i.e. the author). Two hours of data were collected with

the subject sitting at his desk performing a number of basic activities – typing, reading,

searching for papers, etc. Non-ambulatory motions such as adjusting the position of the

feet, moving from one desk to another (while still in a desk chair) and waving the feet under

the desk were collected. The only high energy states collected were two segments of walking

to and from a kitchen area. Note that this also included standing up and sitting down,

124



two activities not considered above. The subject recorded his activities in a simple diary.

Passive activities were marked at 15 minute intervals and the time (to the minute) was

recorded when interesting motions took place. Annotations were later added to the data

stream using the diary as a rough guide, together with visual inspection to more precisely

mark the times.

While data was collected for only a single individual, studies suggest that intersubject

variability of heel motion is minimal[125]. However, it should be noted that variations in

gait for a user from day to day can be quite large, and more data streams would be necessary

for a more general classifier. This is of little concern, as the goal is to test the capabilities

and flexibility of our proposed classifier construction technique, not to solve the problem of

wearable gait recognition.

Finally, note that the data was collected at 200Hz (the chosen rate for human activity

from section 5.1.1). Versions of the data streams for sampling rates of 25, 50 and 100 Hz

were constructed in MATLAB using the downsample function, which does not apply an

anti-aliasing filter.

The specific parameters of these data sets are examined in the next section. They are then

used to train a number of different classifiers and simulate the real-time operation of those

classifiers.

7.2 Parameters of the Training Set

7.2.1 Sensors

To determine the test cost of the sensors while power cycling, it is necessary to know the

wakeup time of the device or the settling time of the output. It should be noted that

the availability of this information is spotty at best - provided on some data sheets while

completely ignored on others. Further, no information is given about the power draw during

wakeup. In many cases it is likely the same as during normal operation, though for some
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Sensor EWake (µJ) tWake (ms) PWake (mW) POn (mW)
Effective

tWake (ms)
ADXL202 13.5 8 1.7 1.5 9.1

ADXRS300 890 35 25.5 24.8 36
ENC03J 478 40 12 11.9 40.2

Table 7.1: Sensor wake up and active power usage

sensors (e.g. those that need to charge internal capacitor or equilibrate filters), it may well

be noticeably more. For the sensors used in the test set, settling time and power draw

during that period was measured directly.

Figure 7-1 shows the settling time for the sensors used. For the ADXL202 and the ADXRS300,

the settling time of the output value (to the zero bias offset) was used. The values found

were consistent with those listed on the data sheets (see table 4.1). For the ENC03J, the

output only becomes valid after the (somewhat) sinusoidal signal in the output. The point

where the data becomes valid is denoted by the horizontal line on the graph and was found

experimentally to be roughly 40ms.

Figure 7-2 shows the current drawn during wake up by the various parts. These values where

collected using a high-side sense resistor of 100Ω for the ADXRS300 and the ENC03J and

1000 Ω for the ADXL202. With the exception of the ADXL202, the wake up power was not

significantly different than the power used by the part when active.

Table 7.1 gives the parameters calculated from these measurements. The wake up energy

is simply the integral of the current drawn during wake up multiplied by the known supply

voltage. The wake up time is taken directly from the scope captures, allowing the wake up

power to the calculated. The power drawn when the sensor is active is calculated based on

the quiescent current draw (again found in the scope captures). Finally, the effective wake

up time is the duration for which the power usage of leaving the sensor active is equivalent

to that of power-cycling it. It is this value, rather than the wake up time, which should be

used to determine if power-cycling is beneficial. It is only significantly different in the case

of the ADXL202.

The energy necessary to collect sensor data using the ADC is also considered here. This

value depends on two parameters: the energy used to sample the sensor value and the energy
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Feature # Add # Multiply # Compare EFeat (nJ)
Maximum 0 0 2 24
Minimum 0 0 2 24

Mean 2 0 0 18
Variance 4 3 0 144

Table 7.2: Number of operations per time step to calculate various features

used in the analog to digital conversion itself. The former depends on the output resistance

of the sensor’s signal processing chain. Assuming that the final component in the chain is

an operational amplifier, this value will be roughly zero. Thus, a sample time of 1µs is

required. Combined with a conversion time of 3µs and a power usage of 2.5 mW [118], we

find EAdc = 10nJ.

Collecting data from the tilt switches is a different matter because of the binary nature of

the data. The specific collection procedure requires two port writes (to drive pins high)

and two port reads (to determine which switches are active). Using operational data of the

MSP430F1610 given below, the data collection is found to require 24 nJ. Since four binary

values are collected from the four-way tilt switch, the energy consumed per read is less than

that used by the ADC, though not substantially.

7.2.2 Features

While the test cost of the features will vary with the processor chosen, a general analysis

based on the number of operations is still possible. Table 7.2 lists the number of add,

multiply and compare operations necessary at each time step for the four features used on

this work.

For the specific case of the MSP430F1610[118], each instruction cycle draws 1.5 nJ. Add

operations were found to take 6 cycles, compares take 8 cycles and multiplication requires

24 cycles. These values assume that the operands are stored in local RAM. If the data

are stored in registers or external memory, the operations will take fewer or more cycles,

respectively. Further, compiler optimizations2 are not considered here. Using the value

above, the energy used for each feature was calculated and added to table 7.2.
2These include shadowing commonly used data in registers and exploiting the “free” addition operation

of the multiply-and-accumulate functionality of the hardware multiplier.
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Sensor EWake (µJ) EFeat (µJ) EAdc (µJ) Total (µJ) EWake dominates?
ADXL202 13.5 0.210 0.010 13.72 Y

ADXRS300 890 0.210 0.010 890.22 Y
ENC03J 478 0.210 0.010 478.22 Y

Tilt 0a 0.210 0.024b 0.234 N

aPassive device. No wake up time or static power draw
bEnergy for digital sampling

Table 7.3: Total energy usage of the sensors

Power usagea (µW) at
25 Hz 50 Hz 100 Hz 200 Hz

ADXL202 371 711 1391 1530
ADXRS300 22343 24831 24831 24831

ENC03J 11931 11931 11931 11931
Tilt 5.85 11.7 23.4 46.8

aGray cells indicate that the sensor cannot be power-cycled at this rate.

Table 7.4: Power usage of sensors by sampling rate.

7.2.3 Test Cost

Given the above discussion, it is possible to calculate the total test cost for each of the

features of each of the sensors. In this case, we will actually calculate the energy usage to

calculate all of the features for each sensor. By computing all of the features whenever a

sensor is in use, it is possible to avoid the increased latency from having to collect a full

window worth of data whenever a new feature is requested by the tree (see section 6.2.3).

As will be seen, this choice has a negligible effect on energy usage with the exception of

the tilt switch. However, this is only a minor concern as there are two orders of magnitude

difference between the test cost of the tilt switch and the next cheapest sensor. Table 7.3

shows the total energy use of each sensor per sample.

Table 7.4 gives the power usage of each sensor (with all features calculated) at various sam-

pling rates. Note that the ADXRS300 cannot be duty-cycled past 33 Hz, the accelerometer

cannot be duty-cycled past 125Hz and the ENC03J cannot be duty-cycled at all. In these

cases, it is POn (rather than PWake) which is used in the calculations.
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Activity Examples
Level Gait 305

Uphill 229
Downhill 264

Ascend Stairs 222
Descend Stairs 221
Shuffling Gait 482

Table 7.5: Number of examples of each activity in training set

7.2.4 Priors and Number of Examples

Because of wide variability in the amount of ambulatory activity between individuals, it is

difficult to impossible to select a general set of priors for the motions which make up this

application. However, in this specific case, it is known that classifiers constructed with the

training set will be run on a known set (specifically, the continuous stream for use in the

real-time simulation). Therefore, the distribution of that set is used for the priors, giving

a distribution which is approximately equal for all motions. Table 7.5 gives the number

of examples for each activity in the training set. Given the limited variability within the

motions, this set should be adequate for a holdout training and testing procedure.

7.3 Performance of Classifier

7.3.1 Methodology

Classifiers were constructed for the six different cases of one of the ambulatory motions

being the positive class and the others being grouped together as the negative class. Each

classifier will therefore attempt to separate a single type of motion from the other five.

Only the active data set was used to train the classifiers. This provides a fairly complex

task, such that power savings will be achieved from the appropriate selection of sensors to

sample, rather than through long periods of idling (since both the classification tree and

the SVM can be awoken by a simple trigger). To determine how the classifier responds to
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the availability of features calculated at different sampling rates (25, 50, 100 and 200Hz),

the following combinations were tested:

• All the frequencies together

• Each frequency individually

• The combination of pairwise adjoining rates

The classification trees are constructed using a generalized version of the holdout procedure

described in section 5.4.1. The full data set is divided into 5 segments, with one acting

as the holdout test set and the other four used as the training set. The portion used for

the test set will rotate, such that all five segments are eventually used. The 20% holdout

pruning set (from the four segments which make up the training set) is treated in the same

fashion. Overall, 25 classifiers will be built in each case. As before, accuracy and test cost

will be found using the test set.

Support vector machines are trained3 for the same tasks as above to act as a point of

comparison. Both Gaussian and linear kernels are used4, and the accuracy was estimated

from 5 loops of 5-fold cross-validation to mimic the same training set/test set combinations

used for the decision trees. While decision trees select the useful features as a fundamental

part of their operation, SVMs use all of the features provided in the training set. Therefore,

to calculate the power/accuracy trade-off of the SVMs, classifiers will be trained for all 1275

possible combinations of active sensors run at the maximum sampling rate.

Results from the above tasks will be plotted in the power/accuracy plane, with each classifier

being a single point. An algorithm will be considered superior to another if its curve is

closer to the top left corner (high accuracy/low power). The curves for each algorithm are

simplified by showing only the points which make up the non-decreasing hull of the data,

since any points below this curve are sub-optimal. Note that it is possible (and likely) that

different curves will be made up of a different number of points. This is a function of the

classifiers generated in each case and does not hold any intrinsic meaning.
3The LIBSVM package[18] was used.
4For the linear kernel, values of the regularization parameter C between 0 and 1000 were tested. For the

Gaussian kernel, values of C from 10 to 100,000 were tested and γ was set to 0.5.
5There are seven total sensors: three accelerometers, three gyroscopes and the tilt switch. The total

number of combinations is 27 − 1, since the case with no sensors active is uninteresting.
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7.3.2 Full Sensor Set

As described above, the decision tree classifier was trained to recognize each of the six

motions individually. Trees were constructed using both the AUC-based and Gini criterion

with 13 different values of the weighting parameter W over the useful range of 0 to 0.29.

The plots of accuracy versus power are shown in figure 7-3 and 7-4. These graphs are broken

down by the subset of the sampling frequencies used in constructing the classifier. Note

that the minimum of the accuracy axis is that of the trivial classifier (always negative) and

the maximum of the power axis is twice the power usage of the most accurate classifier.

While this leads to the truncation of some curves, the points lost were sub-optimal. The

classifiers constructed using the Gini splitting criterion proved to be superior to those built

with the AUC-based criteria (for this application) and therefore only the former are shown.

The most interesting feature of these graphs is the fact that training with all sampling rates

available does not give the best results in any case. Rather, the tasks fall into two sets.

For uphill, downhill and level gait, the 200 Hz data seems to give the best classification

results in general, with either the 100 Hz, 100Hz and 200Hz, or 200 Hz data sets being

superior at some point in the curve. The graphs of variance versus frequency show that the

100 Hz data is often only marginally noisier than the 200 Hz data, so the feature choice will

depend on the minutia at each individual split and thus neither value is clearly superior.

For ascending and descending stairs and the shuffling gait, the 50 Hz and 25 Hz data sets

are superior. These motions appear to be simpler and more structured than the first three

mentioned above, and therefore can be differentiated with less data and thus less power.

The next step is to compare the performance of the decision tree classifiers with those

obtained from using support vector machines. These results are shown in figure 7-5 and

with the axes reversed in figure 7-6. In this case, the decision tree curves are the non-

decreasing hull of all of the different sampling frequency combinations used in the training.

The power axis is set such that the whole curve for the decision trees is visible as well as at

least two points of the SVM curves6.
6The exception is the plot for classification of shuffling gait, where the next point over for the SVM is at

1.5mW.
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Figure 7-3: Power/accuracy tradeoff for various subsets of the data (1)
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Figure 7-4: Power/accuracy tradeoff for various subsets of the data (2)
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Figure 7-5: Power/accuracy tradeoff for decision trees and SVM
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Figure 7-6: Power/accuracy tradeoff for decision trees and SVM (swapped axes)
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Activity Accuracy Power (mW) Sensors used
Level Gait 0.9869 4.59 3 Accelerometers

Uphill 0.9991 3.06 2 Accelerometers
Downhill 0.9901 4.59 3 Accelerometers

Ascend Stairs 0.9946 1.53 1 Accelerometer
Descend Stairs 0.9955 1.53 1 Accelerometer
Shuffling Gait 0.9952 0.0336 Tilt Switch

Table 7.6: Highest accuracy achieved by Gaussian SVM

It is noted that in all cases the decision trees over their range of operation are superior to the

linear SVM, achieving the same accuracy for less power, and are superior to the Gaussian

SVM in all but the downhill gait. Further, it should be noted that the Gaussian SVM is in

fact unsuitable for implementation in an embedded platform. While a linear SVM requires

a dot product of vectors with length equal to the number of features, a Gaussian SVM

requires one such product for each support vector (e.g. ∼ 100 for walking). This is not only

time consuming, but requires large amounts of static memory. Thus, it is important to note

that this comparison is relevant numerically but impossible to be implemented practically.

That said, since the decision tree has access to all of the sensors, it is not immediately clear

why it is not superior in all cases. Examining the best result for each of the SVMs provides

some ideas (table 7.6).

The SVM for walking downhill uses all three accelerometers, with accuracy increasing with

each one added to the classifier, indicating that a fair number of expensive sensors are

necessary to achieve adequate performance. Because of the greedy training and the test

cost weighting, the decision trees are unlikely to find these solutions through recursive

partitioning. Even those trained without taking cost into account (the best point on the

curve) do not find these solutions.

More importantly, in all cases there is a knee in the power/accuracy curve for the decision

trees, after which there is minimal gain in accuracy for a large increase in power use. Prior to

this point, the accuracy of the decision tree is improved by adding more sensors. Afterward,

the accuracy is improved by moving the more expensive sensors closer to the root node.
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Naive Decision Tree This Framework Ratio (DT:This)
Accuracy Power (mW) Accuracy Power (mW) Accuracy Power

Level Gait 0.9774 41.35 0.9742 1.264 1.003 32.7
Uphill 0.9914 1.53 0.9845 0.548 1.007 2.79

Downhill 0.9822 29.42 0.9818 2.049 1.001 14.36
Ascend Stairs 0.9968 14.99 0.9935 0.467 1.003 32.10
Descend Stairs 0.9876 4.62 0.9876 0.1592 1.000 29.02
Shuffling Gait 1.0000 1.53 0.9912 0.0042 1.008 364.3

Gaussian SVM This Framework Ratio (SVM:This)
Accuracy Power (mW) Accuracy Power (mW) Accuracy Power

Level Gait 0.9869 4.59 0.9742 1.264 1.013 3.63
Uphill 0.9991 3.06 0.9845 0.548 1.015 5.58

Downhill 0.9901 4.59 0.9818 2.049 1.008 2.24
Ascend Stairs 0.9946 1.53 0.9935 0.467 1.001 3.28
Descend Stairs 0.9955 1.53 0.9876 0.1592 1.007 9.61
Shuffling Gait 0.9952 0.0336 0.9912 0.0042 1.004 8.00

Table 7.7: Comparison of best practises classifiers to this framework

This strongly supports the claim that a hierarchical activation system can provide strong

classifiers for reduced cost.

To demonstrate this point, table 7.7 compares three different classification algorithm. The

first two are what might be considered the current best practises used for constructing

SVMs and decision trees, with the third being the framework presented here. For SVMs,

feature selection algorithms are almost always used. Therefore, the accuracy and power

usage given are for the best classifiers found above. For decision trees, it is often assumed

that the construction of the classifier will (effectively) perform the feature selection, so the

best tree for W = 0 is used. The power usage given assumes that all of the sensors in the

tree are always active. For both SVMs and the naive decision trees, features are calculated

at the maximum sampling rate - again the current standard practise (at least in the case of

embedded sensors). In all three cases, the best classifier is defined as the one with the lowest

power usage amongst those with accuracies within 1% of the most accurate classifier. For

our framework, this corresponds to the knee point defined above. This definition was chosen

to avoid choosing very power hungry classifiers which are only marginally more accurate

than those with more reasonable power usage.
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First note that naive decision trees perform very poorly against this our framework. No

classifier offers an accuracy improvement greater than 0.8%. In general, improvements in

accuracy are roughly 0.3%, at the price of drawing 30 times as much power. Much of this

is due to the restriction of having all sensors in the tree continuously active, though it is

important to note that none of the best naive trees matches those selected by our algorithm.

This suggests that growing decision trees for W 6= 0 has merit distinct from the assumed

reduction in power, and that this small check of a pure greedy growing algorithm may have

general benefits.

When comparing the SVMs, our framework still performs quite well, though the difference

is not as extreme as above. SVMs offer an accuracy improvement on the order of 1%,

though at a power increase of three to nine times in most cases. In this case, it appears

that the hierarchical activation of sensors is what allows our framework to compete with a

classifier with greater descriptive power.

7.3.3 Without Redundant Sensors

To examine the benefits of adding redundant sensing to the sensor set (in this case, tilt

switches which shadow the accelerometers for near-zero cost), the same classifiers as above

were trained, omitting the tilt switches. The results are shown in figure 7-7. Note that the

minimum power level is now much higher, at roughly 1.5 mW for the SVM (one accelerom-

eter at 200 Hz) and 0.4 mW for the decision tree (one accelerometer at 25 Hz).

Again, we see that the decision tree is significantly better than the linear SVM and superior

to the Gaussian SVM in most cases. Interestingly, we note that the SVM also previously

benefitted from the availability of the tilt sensors, as shown by the vertical connectors in

figure 7-5 which indicate that a tilt sensor (of near zero cost) has been added to the classifier

(stair ascent is a particularly strong example). Comparing the decision trees trained with

tilt sensors to those trained without also provides some interesting results (figure 7-8).

We note that the trees constructed to classify shuffling gait and stair descent take full ad-

vantage of the tilt sensors and therefore perform far better than ones without. For both
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Figure 7-7: Power/accuracy tradeoff for decision trees and SVM (no tilt sensors)
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Figure 7-8: Power/accuracy tradeoff for decision trees with/out tilt sensors
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uphill gait and stair ascent, the decision tree using tilt sensors dominates until the accuracy

reaches 0.985, suggesting that the tilt switch is no longer useful (or used) beyond that point.

Classifiers for downhill and level gait are virtually unchanged.

7.4 Simulation of Real-time Operation

Two concerns arise when using the static trees grown as part of this framework in a real-

time system. The first is the effect of the latency inherent in activating sensors and whether

this will lead to missed detections. The second is the issue of the generalizability of the

classifier itself - i.e. did it overtrain to the sample set. These points are considered below.

Before testing can be done, representative classification trees for each of the motions must

be chosen. We will use the trees chosen for table 7.7 - those at the knee of the curve.

As discussed in section 7.3.2, each tree uses only a single sampling rate throughout their

operation. This greatly simplifies the simulation of the real-time operation of the classifier

by avoiding issues related to changes in sampling rate.

For each motion, a figure of the tree classifier itself as well as a series of plots detailing

the simulated real-time operation can be found on the following pages. This simulation

follows the implementation details given in chapter 6. The turn on hysteresis was set to

one-twentieth of the window size, the turn off hysteresis was one-half of the window size

and the output smoothing was set to one-quarter of the window size.

Each classifier was tested on the continuous stream set aside for this purpose in section 7.1.

Each series of plots (e.g. figure 7-10) shows four different interpretations of the operation of

the classifier and each is denoted with the ground truth - the hand annotation marking when

the motion of interest is taking place. The first plot, with the mint green background, is

the state output of the static classifier (for which all of the sensors are always active). This

is a point of comparison for the real-time classifier, which cannot, by definition, respond

more quickly. The second plot shows the state output for the real-time classifier. The third
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plot is the activation level of the classifier, defined as the number of sensors active (i.e.

available for use) at any given point. Finally, the last plot shows the power consumption,

which includes not only the sensors which are active but those which are waking up (i.e.

for which enough data has not yet been collected for features to be calculated). Just as the

state output of the real-time classifier is a subset of the state output of the static classifier,

it is also a subset of the activation level, which is a subset of the power usage.

We note that, in general, the state classification of the simulated real-time operation is, in

fact, better than that of the static classifier. While a quantitative evaluation of false posi-

tives and negatives is not appropriate because of the conservative nature of the annotation,

qualitatively the real-time classifiers have a notably lower rate of false positives with very

little increase in false negatives. This is to be ascribed to the delay caused by sensor acti-

vation latency, though a higher value for output window smoothing for the static classifier

might create the same effect. However, what is important is not that the static classifier

could be as good as the real-time one, it is that the real-time classifier is not worse than

the static one.

Table 7.8 shows the total energy used over the simulation stream for each of the classifiers.

In most cases, it is less than the estimated energy use obtained by multiplying the average

power usage of the tree classifier by the length of the stream. This is simply explained

by the turn on hysteresis reducing sensor usage, especially in the case of short or spurious

requests when the sensor is never activated at all.

Table 7.9 shows the energy saving of hierarchical activation compared to naively activating

all of the sensors used in the tree. Hierarchical activation draws roughly half as much power

in most cases. Even greater savings are achieved in the case of the classifiers for stair descent

and level gait, where the tree rarely reaches some of the lower (and more expensive) nodes.

Note that these savings are obtained on high energy data streams and the benefits would

be greater in situations with lower total activity, where our classifiers would spend more

time in the higher nodes.

The individual classifier responses bear additional discussion. The uphill gait classifier

(figure 7-9) is unique in that it uses more energy than estimated. The explanation for this
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Activity Estimate Energy Usage (mJ) Actual Energy Usage (mJ) Difference (%)
Uphill 113 139 +23

Downhill 422 397 -6
Shuffling Gait 0.870 0.870 0
Ascend Stairs 96.2 79.5 -20
Descend Stairs 32.8 18.8 -70

Level Gait 257 197 -30

Table 7.8: Energy usage of trees in real-time simulation

Activity Naive Energy Usage (mJ) Actual Energy Usage (mJ) Difference (%)
Uphill 322 139 -57

Downhill 945 397 -58
Shuffling Gait 0.870 0.870 0
Ascend Stairs 148 79.5 -46
Descend Stairs 154 18.8 -88

Level Gait 952 197 -79

Table 7.9: Energy savings of trees in real-time simulation

lies in the 80-100 sec segment of the stream which, as seen in the bottom two plots, has a

high activation level considering that the user is apparently not walking uphill (figure 7-10).

In fact, as can be seen in figure B-3, the user is actually on a shallow slope at the time.

This slope is apparently steep enough to raise the activation level (and energy usage) but

not enough to trigger state recognition.

The tree for downhill gait classification is quite complex (figure 7-11), which is not surprising

given the apparent difficulty of the recognition task. Nonetheless, the simulated real-time

classifier was able to detect roughly three-quarters of the downhill gait in the stream (see

figure 7-12).

The shuffling gait classifier (figure 7-13) is, by contrast, quite simple. However, this causes

a high level of false positives, since any stutter step or adjustment appears to be a shuffle

(figure 7-14). The latency in the real-time operation removes a few of these, but not many.

A higher level of output smoothing appears necessary for this classifier, though a more

expensive classification tree using an accelerometer feature at the root may also improve

the accuracy.
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A few false negatives for the stair ascent classifier are caused by latency effects, but it is

otherwise unremarkable. The tree is shown in figure 7-15 and the results can be seen in

figure 7-16.

The stair descent classifier stands out as drawing far less power than expected in the real-

time simulation. The reason for this lies in the structure of the decision tree (figure 7-17).

While there are positive states at two different activation levels, only the less costly one

is ever reached due to latency issues. Therefore, while the static classifier often activates

three sensors, the real-time classifier only uses two (figure 7-18). Output smoothing repairs

the slight defects such that they are not noticeable in the final state determination.

The real-time response of the level gait classifier (figure 7-19) appears, at first blush, to be

rather poor. However, there are two important facts to note. First, even the static classifier

has both high false positives and negatives (figure 7-20). Second, the segments of level gait

are very short, roughly five steps or less. Therefore, not only does sensor latency make it

difficult for the classifier to make the appropriate determination, but the examples of level

gait themselves are closer to the transitions than to the examples in the training stream.

Furthermore, the benefit of detecting such short stretches of motion is minimal at best.

Two prior points of concern can be addressed given these results. The first is the response

of the classifiers to untrained states (see section 5.1.1). The simulation data stream contains

such situations: one from the 85 second to 95 second mark, the other from the 140 second

to the 155 second mark. In the first case, only the uphill gait classifier responds at a high

activity level, which is to be expected since the untrained state closely approximates the

training examples. In the second case, the shuffling gait classifier responds, though only at

the beginning, which can be explained by the fact that most transitions will appear to be

shuffling as the user adjusts from one motion to the next. The second is the risk of increased

latency in balanced trees (see section 5.2.3). While most of the trees used in these trials

are quite balanced, no unreasonably high latencies were seen, likely since sensor usage is

balanced as well - i.e. the order of sensor activation is the same on either side of the decision

tree. Thus, even if the result of the root node were to change, flipping the evaluation to the

other half of the tree, all of the necessary sensors should already be active.
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   var(Tilt) < 3.71

   var(Ay) < 447

   mean(Ay) < 1592

Figure 7-9: Decision tree for uphill gait classifier (f=200Hz)
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Figure 7-10: Real-time simulation of uphill gait classifier
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Figure 7-11: Decision tree for downhill gait classifier (f=200 Hz)
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Figure 7-12: Real-time simulation of downhill gait classifier

149



Level Gait Shuffling Gait

   mean(Tilt) < 5.53

Figure 7-13: Decision tree for shuffling gait classifier (f=25 Hz)
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Figure 7-14: Real-time simulation of shuffling gait classifier
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Shuffling Gait Level Gait Ascend Stairs

Uphill Ascend Stairs

   var(Tilt) < 3.97

   var(Tilt) < 3.86         max(Ay) < 1040

   max(Ay) < 1124

Figure 7-15: Decision tree for stair ascent classifier (f=50 Hz)

152



0 20 40 60 80 100 120 140 160 180 200

Static Classifier

S
ta

te
 (

hi
gh

=
po

s,
 lo

w
=

ne
g)

 

 
Classifier Decision
Ground Truth

0 20 40 60 80 100 120 140 160 180 200

Simulation of Real−time Classifier

S
ta

te
 (

hi
gh

=
po

s,
 lo

w
=

ne
g)

 

 
Classifier Decision
Ground Truth

0 20 40 60 80 100 120 140 160 180 200
0

1

2

# 
of

 S
en

so
rs

Activation Level

 

 

Tree Node
Ground Truth

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

Time (s)

P
ow

er
 (

m
W

)

 

 

Power Use
Ground Truth

0

20

40

60

80

T
ot

al
 E

ne
rg

y 
(m

J)
Power Consumption

 

 
Total Energy Use

Figure 7-16: Real-time simulation of stair ascent classifier
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Downhill Descend Stairs Shuffling Gait

Downhill

Descend Stairs Ascend Stairs

   mean(Tilt) < 3.6

   max(Ax) < 1033      mean(Tilt) < 4.05

   max(Ax) < 1096

   max(Ay) < 1161

Figure 7-17: Decision tree for stair descent classifier (f=25 Hz)
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Figure 7-18: Real-time simulation of stair descent classifier
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Shuffling Gait

Ascend Stairs Uphill

Uphill Downhill

Level Gait Level Gait Downhill

Level Gait Downhill

   var(Tilt) < 3.86

   mean(Tilt) < 4.25.

   max(Ax) < 587      var(Ay) < 438

   max(Ax) < 2122      mean(Ay) < 1567

   var(Az) < 268          var(Ay) < 537

   mean(Ay) < 1559 

Figure 7-19: Decision tree for level gait classifier (f=200 Hz)
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Figure 7-20: Real-time simulation of level gait classifier
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Chapter 8

Future Work

In this chapter, we consider some directions for future work on this framework. Specific

changes that should be made to the current implementation to improve its functionality

and generality are discussed, both overall and with respect to the individual subsystems.

Possibilities for expansion of the scope of the framework are also described, focusing on

removing the limitations imposed during the design process.

8.1 Improvements to the Implementations

8.1.1 Overall

While the results from the previous section show the benefits of this framework, its overall

utility is based on both benefits and ease of use. At present, each of the individual segments

is fairly straight-forward for an application designer to use, while the combination thereof

can be unwieldy. Data can be collected and downloaded from the hardware fairly easily

and software is provided for this purpose. However, the importation into MATLAB is

somewhat ad hoc. Currently, this is done manually, by converting the time stamps from

the recording to array indices, and then tweaking the index manually such that it falls on

a state boundary. The final indices are then copied into an array of start and stop values
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along with state labels. At this point, the construction of the classifier is automated and the

creation of different trees for different states or values of W is simply a matter of changing

a single line of code. There is, however, no direct way to select the preferred tree based on

power and accuracy requirements. The designer must examine the power/accuracy curve

produced and manually select the desired tree. Once this solution is found, the embedded

code can be automatically generated, leaving the designer the final task of programming

the response to the detection of the desired state.

The two transitional steps above can be simplified by providing a user interface to guide the

designer. Time stamps from the recording can be easily converted to start and stop indices

for each segment1. These are then superimposed on the data stream, allowing the designer

to tweak their position and then enter a label for the segment. For classifier selection, a

simple form allowing the entry of desired power or accuracy and showing the intersection

of this value with the curve representing the best classifiers would allow for much simpler

selection.

Also of general importance is an examination of the operation of the classifier for an in situ

or off-body application. The mostly likely domain for a preliminary test would be in the

area of wildlife tracking, either outdoor (local fauna around MIT) or indoor (activity in the

Media Lab kitchen). This would test the operation of the classification trees with a wider

range of sensors (such as the ambient board) and non-periodic data (such as light and heat

levels). It would also provide a starting point for examining the use of this framework with

wireless networks rather than in individual nodes (see section 8.2.1).

8.1.2 Hardware

While a simple diary-style log served well as a recording medium for the long-term stream

(section 7.1), this technique will not always be appropriate. In the case of wearable applica-

tions, a subject who is more active, mobile or occupied than in our scenario may well find it

1Since this is a supervised training system, acquiring time stamps and labels for the segment are left to
the designer.
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difficult to keep an accurate log of actions and contexts as required. Therefore, an annota-

tion scheme requiring less attention would be of value. A bank of switches connected to the

master board – with each press recorded in the data stream – would allow for easy anno-

tation with little mental effort (beyond remembering the preset mapping between switches

and activity types). This hardware could easily be interfaced with the stack through the

external interrupt or direct connection lines, or could even comprise its own board. These

annotations could be combined with a bootstrapping pattern discovery algorithm (such as

[23, 78]) to match marked examples with those not annotated by the user, thereby speeding

the labelling process and increasing its accuracy.

In the case of environmental applications, having a human observer keep a log of the events

is at best time-consuming, likely disruptive and possibly dangerous (depending on the sur-

roundings). For such application, a passive means of annotation (such as video recording)

may be the only feasible approach. However, as noted before, timing skew is likely inevitable

over long durations. One solution is to add a real-time clock to the master board. This will

allow for orders of magnitude greater timing accuracy by storing the current time in the

data stream at regular intervals to keep it in synch with the recording.

In terms of the boards themselves, currently the largest impediment to the use of this

framework is that only the IMU board has been modified to allow direct power control over

the individual sensors (which was adequate for the examples presented here). Adding this

ability to the other sensor boards is slated for the next round of revisions which is currently

underway. Also, the ambient board will be modified to add an active lighting system. Most

likely in the form of a ring of IR LEDs, this will allow the system to improve the quality

of the images taken by the camera by brightening the environment. The magnitude of this

response can be based on the sensor data collected by the phototransistors and its power

cost will scale with the level of illumination. Other active sensors (e.g. proximity monitors)

are also under consideration (see section 8.2.3).

8.1.3 Pattern Recognition

The current algorithms for tree construction are agnostic about the desired response to

detection. Overall power-efficiency can be increased by combining this response with similar
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tasks already performed by the system. A data collection task can be combined with the

state determination algorithms in several ways, depending on the sensors used in each case.

For the sensors sampled within the interesting state, features based on those sensors will

have zero cost when used to determine if the system is still in that state. This data collection

will include (almost by definition) more sensors with greater net power usage than those used

to make the initial detection. Therefore, two trees should be constructed: the one currently

built, for use when the system is in an uninteresting state, and a second, for use when the

system has been determined to be in an interesting state. An interesting subcase occurs

when the data collection involves sensors not included in the construction of the original

tree because of high energy usage. One such possibility would be a still camera, which

generates large amounts of data per measurement and usually requires complex analysis.

These sensors could be included in the second tree for only the marginal cost of the feature

calculated from their data (which may well be on par with the total test cost of cheaper

sensors).

Since the trees constructed for evaluation were based on a continuously active stream, the

use of a single sensor trigger to wake the system from a sleep was not considered. However,

in more general applications, this can be of great utility. Such a trigger can be added simply

by forcing a single-sided split at the root of the tree. The leaf node selected should be as

close to purely negative as possible, since this determination is not even actively considered

by the processor. It is possible that this leaf will contain some proportion of the active

examples as well, which would increase the power saving even further. The feature used

for this split must be a simple binary choice. Therefore, it must come from either a two-

state sensor or from a thresholded analog sensor (which is assumed to be low-power2). The

window size used can be the same as before, with only a single trigger required within that

range for the feature to be defined as positive.

The current set of features used to train the classifier were chosen based on their simplicity

and generality. However, for any particular problem, it is likely that the application designer

knows of (or can find in the literature) other features which are useful within the specific

domain. It should be possible for such features to be calculated from the training set and
2The LTC1540 micropower (2 µW) comparator is suitable for this task
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used by the classifier with a minimum of hassle for the designer. While it will often be

the case that these features are more computationally expensive than the current set, the

current processor should be sufficient in most cases3. Similarly, it should be possible to

apply knowledge of combinations of sensors which, when used in combination, effectively

partition the data set. The current discounting of test cost can handle such features in all

orderings (i.e., regardless of whether the combination or the individual sensors are used

first). However, since the classifier does not have the ability to adjust the parameters of the

features, the exact combination must be fixed (i.e. the summation S1 + αS2 for unknown

or varying alpha is not acceptable).

The current choice of pruning algorithm is designed to achieve a large decrease in tree

size while minimizing the error. However, other goals are possible within the context of

detection and merit examination. Reduced error pruning (REP)[32], by its construction,

produces a complete ordering of subtrees with respect to error, such that for any tree size

(in terms of total nodes) the pruned tree with minimum error is known. This allows for a

variety of tradeoffs beyond power versus accuracy, with latency being an obvious choice (as

only a subset of the nodes activating a sensor for the first time increase the latency). Also,

the REP algorithm can be tweaked such that positive class nodes beyond a certain size are

not pruned. While this cannot increase overall accuracy beyond current techniques, it may

be possible to increase the performance with respect to certain states, which would prove

beneficial for applications with very high misclassification costs.

Also, the current pruning techniques use the error with respect to the pruning set as a

metric to determine the right-sized tree. However, it is the error rate on real-time data

which is of most interest to the designer. This can be accommodated at two levels. At the

lowest level, the error rate of the real-time simulation can be used in place of the risk in the

cost-complexity pruning algorithm. This poses some difficulty, since the false positive rate

will depend greatly on how conservatively the states are annotated (i.e. how many marginal

examples on each side are excluded), with the possibility of less accurate trees appearing to

be superior in the extreme case. At a higher level, additional pruning of individual subtrees
3For example, for the current window size, O(n) algorithms can be applied without taking so long to

execute as to cause cycle time difficulties.
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with small populations and high marginal test costs can be done. These prunes will be kept

if the output state of the decision tree does not change substantially over the annotated (as

opposed to transitional) portions of the stream.

8.1.4 Design for an Embedded Implementation

If the trigger variables defined above are used, they must be handled separately before the

decision tree can be converted for embedded use. The appropriate sensor outputs need to be

connected to one of the external interrupt pins. This input is treated differently depending

on the activity level of the system. If the device is at the lowest level - i.e. it is waiting

for a trigger from this source - then a rising edge trigger is set and the processor is set to

sleep. In this state, it is effectively continuously checking the value of the trigger pin. The

vast majority of the time, there will be no trigger and the system is assumed to be in the

negative state (which requires no response). When a trigger occurs, the system is awoken

and moves to the next node in the tree. However, it is still necessary to test if the trigger

condition is still met. The method of doing this depends on the form of the trigger. If it is

state based, then the direction is reversed to falling edge mode with the interrupt turned

off (the associated flag will still be raised). When the flag is seen, the system falls back to

the root node and into the sleep state again. If it is edge-based (e.g. a number of edges

can be expected when the system in a higher activity level), the trigger is left as is but the

interrupt is disabled. If the flag is not seen during a cycle, the system falls back to the root

node and into the sleep state again4. In either case, the root node (and its child leaf) are

dropped from the MATLAB tree before it is used to generate the data structure above.

In the case of high tree or state response execution times, it is still possible to construct

an embedded implementation with the appropriate timing to allow for power cycling of the

sensors. The key is to move the evaluation of the tree from the end of the cycle in which

the sensor data is collected to the beginning of the next cycle, overlapping with the sensor

wakeup period. This will require interrupt driven toggling between the tree execution and

4Some hysteresis may be necessary in this process.
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sensor management, but any difficulties are likely minor. Also, there will be an increased

latency in tree response, but for high sampling rates this is not a concern.

In our current prototype systems, the only reasonable way to control the power switches

was with the microcontroller. However, with application-specific hardware, it should be

possible to use an ultra-low power ASIC to control the activation and deactivation of the

sensors, such that the microcontroller only needs to wake up to collect the data and execute

the classifier. Such an ASIC would need to have a number of different modes (one per

activity level) which would be set by the microcontroller in response to the output of the

decision tree.

As for the selection of the decision tree itself, it should be noted that there is no reason why

this choice need be static. While it is assumed that the application designer will know the

desired lifespan of the system to be built and can therefore choose a tree with an appropriate

power draw, this is in fact not always the case. In the case of cell phones, the calling level

of the owner cannot be known in advance, and in fact varies quite widely. To be able to

achieve the same mean time lifespan regardless of user, the system can monitor the average

power usage and switch to a less expensive (and, admittedly, less accurate) tree if necessary.

Since the tree data structure is quite compact, multiple classifiers can be stored in a single

system with little difficulty.

8.2 Expansion of Scope

The limitations described in sections 1.2.3 and 2.3 provide a starting point for the extension

of this research, with the end goal of creating a framework for the creation of power-

efficient sensor systems which is both general and powerful. We will concentrate on three

main avenues. The first are modifications to extend this work to networked sensor systems,

thereby allowing for larger and more complex sensing applications. The second are strategies

for transforming the pattern recognition into an unsupervised solution, thereby allowing new

states to be added over time through use. Finally, the use of active sensors will be touched

upon.
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Static Moving
Corr. Length = ∞ Global

Corr. Length > Spacing Spatial Gradient Tracking (1)
Corr. Length < Spacing Independent Tracking (2)

Table 8.1: Summary of categories of sensor network problems

8.2.1 Networked Sensor Systems

We divide the application space of networked sensor systems along two axes. The first

considers the presence of the phenomena to be sensed – either static or moving. The second

considers the correlation length of the phenomena – either infinite (i.e. constant across the

network), greater than the node spacing or less than the node spacing. Table 8.1 enumerates

and names these cases.

In each case, the goal is to exploit the potential benefits to the network as a whole from

nodes informing their neighbours of their current sensing and/or state, thus allowing them

to adjust their own sensing to guarantee that the network (rather than the individual

nodes) makes decisions in the most efficient fashion. Note that while most sensor networks

fuse data to get the best possible result, our goal is simply to get enough information

to make a decision on a tree node. Sensor nodes will communicate either their current

measurement(s) and/or state. These can be transferred between the nodes in either a peer-

to-peer or centralized format, with the choice based on the details of the case. In general,

we believe that considering low-level real-time information in the analysis should allow for

better (more accurate and/or energy efficient) solutions.

Measuring global phenomena proves straight-forward. If the nodes are homogeneous, this

degenerates into the single node solution with data being collected from as many individual

nodes as necessary to make the determination with the desired accuracy. Node usage should

also be cycled randomly over time to balance workload, similar to cluster head rotation[71].

For heterogeneous nodes, the problem becomes more interesting. In each state, different

nodes will give more accurate results and/or draw less power and the network as a whole

should direct its resources towards them. A centralized solution is most efficient here. A
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second tier decision tree could be constructed, with the features being the state of the

individual nodes. The central master would then activate nodes as necessary to most

efficiently determine the overall state at a given instant. Deshpande[24] demonstrates a

static solution to this problem - i.e. power is minimized assuming no knowledge of the

individual node response.

When measuring a phenomenon which varies over the network, power savings can be

achieved through a reduction in sampling proportional to the correlation5. In the simplest

case, identical nodes running the same software collaborate on sensing tasks by sharing their

measurements with neighbouring nodes. With knowledge of the spatial correlation function,

this data can be combined with local data to provide a more accurate estimate. Nodes will

only use external info if the marginal cost of reception (beyond the communication already

necessary to the network) is the most efficient source of additional information. This is

most likely to be the case in networks which communicate continuously (e.g. to maintain

synchronicity of timers) or for high power sensors (e.g. sonar). For heterogeneous nodes,

low-level knowledge of all available sensors is necessary for the tree construction, where

the possibility that some of those sensors may not be in RF range must be considered.

Pradhan[96] demonstrated power savings in this domain by sharing only the bits likely to

differ between the node measurements based on a general system model.

In the tracking problem, the individual nodes will switch states as the phenomenon moves

through the sensed area. Their measurements and states will be correlated over time based

on the trajectory and speed of the phenomenon, such that the values and state of one node

will contain information about the current and future state of its neighbours. Therefore,

energy can be saved by gaining state knowledge from other nodes rather than through

sensing. Peer-to-peer communication is most appropriate, as only neighbouring nodes can

benefit from the information. At this point, there are two cases based on the speed of the

phenomenon relative to the node spacing. If the phenomenon is moving slowly, then it

is most efficient to transmit sensor data, which each node will use to determine not only

whether the object is present, but if it is the closest node to it. This is similar to work
5For a correlation length less than the node spacing, the nodes are independent and the problem degen-

erates to the single node solution.
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by Zhao[130], where nodes in a peer-to-peer network follow a data-accuracy gradient to

determine which node should sample a static phenomena. If the phenomenon is moving

quickly, then it is move valuable for nodes to transmit their states. A message from a

neighbour stating that it has detected an object would become part of the tiered wakeup

procedure, allowing the node to transition to a higher activity level in anticipation. This

should greatly reduce the latency and increase the amount of interesting data captured,

while an isolated node may well miss the phenomenon entirely. Similarly, a message from a

neighbour stating that the object is now out of range would likely move a node down into

a lower activity level. Note that while a centralized approach would have the benefit of

more accurate trajectory prediction (through knowledge of the network topology and track

history), it would require substantially more communication. He[49] examines this problem

for the case of a two-tier network - a fixed set of vigilant (always-on) sentries which wake

the other nodes when triggered - and achieves a significant increase in network lifetime.

So far, this analysis has assumed that all of the node were collaborating on a single task.

However, our techniques could also be extended to sensor networks in which the individual

nodes (or groups thereof) were each trying to accomplish different goals. Each task would

have a different decision tree to determine the relevant states. Information exchange between

nodes with the same goal would most likely be at the state level, while nodes with different

goals would most likely communicate low-level sensor readings.

8.2.2 Unsupervised Solutions

Unsupervised training of these sensor systems would have two main benefits. The first is

the ability to detect rare or unexpected states which might be missed through the training

process. For a gait monitoring system, tripping is a good example of an event which is

unlikely to be in a sample data stream (almost regardless of length), could possibly be

missed by the designer and would be of great value to detect (or even predict). The second

benefit would be the potential of the system to add states over time as the user himself

changes (e.g. the appearance of a shuffling gait). In fact almost any new movement state

would be an important physiological marker in and of itself6.
6Assuming minimal false positives in the state discovery algorithms.
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While more general and less taxing on the designer, unsupervised training has the draw-

back of creating unlabelled states, making both real-time and offline analysis more difficult

because of the lack of context. Further, to achieve the above benefits, the training must be

online, as we hope to quantify ephemeral and emerging states. To allow the system itself to

remain relatively low power, heuristics for the occurrence of new or interesting events will

need to be created. Given a supervised solution, one potential method is to look for, on a

micro level, state thrashing in the decision tree or, on a macro level, a large divergence from

the expected power usage. While these conditions can possibly be due to poor training,

they could also indicate that the system has an emergent state. Given information from

(for example) the user’s calendar (or other contextual source), transitions between (and

sometimes the content of) the entries can be used as cues that the sensor system should be

in a high complexity state7. In both cases, full data streams can be collected for analysis

and comparison to known states. If they are significantly different, a new state is added. It

may be possible to label this state based on the above calendar information, or the users

themselves could be cued to answer questions about the state when the system has access

to a GUI (most likely during a data download, as done in [54]).

As a further step to possibly capture very short states (which may be missed as the system

powers up consecutive levels of sensing), full data stream segments can be randomly collected

throughout the day at times when the device would otherwise be in a low-power state (i.e.

when supposedly nothing interesting is taking place). Information theoretic techniques can

be used as a low-level assessment of the complexity (and therefore potential interest) of the

data, with a strong enough result leading to it being added to the states in the decision

tree. This method will take a very long time to (effectively accidentally) catch one of these

events and it can be thought of as spreading out the power usage of long term continuous

data capture across a large number of battery cycles, such that no single cycle is noticeably

shortened. Given knowledge of possible circumstances which would drastically alter the

state detection (e.g., for the wearable gait lab, a sharp increase in outdoor humidity and/or

temperature might correlate to reduced activity levels), low-power static sensors with (high)

preset threshold can be added to detect these cases for nominal reduction in battery life8.
7As defined by the amount of sensing, i.e. the state’s leaf node depth
8See [72] for one such system.
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8.2.3 Active sensors

The difficulty of incorporating active sensors is that it adds an order of dimensionality to

the pattern recognition algorithms, as the variation of output power affects the received

signal. Currently, data is collected for training at the maximum accuracy for each sensor

and assumes a fixed energy usage per sample. While passive sensors represent a single

point on the power/accuracy plane, the various output states of active sensors form a (most

likely non-linear) functional relation. We consider two possible cases. Range-based sensors

(e.g. sonar) will tend to have a step-shaped power/detection accuracy curve. Therefore, the

sensors can be considered to have only a single useful operating point - the one just beyond

the threshold. While this point will vary with the range of the target, it should be possible

to produce a reasonable estimate based on the details of the state in which it is being used.

This case is then equivalent to that of a passive sensor. Environmental sensors (e.g. IR

illuminated camera) will have a more complicated power/accuracy curve. In the best case

scenarios, there will be a number of local minima, each of which can then be considered

as a separate sensor for the purposes for the pattern recognition algorithms. For flatter

curves, a few salient points can be chosen by the designer based either on the properties

of the other sensors available to measure the same phenomena or on the expected system

states. During training, the tree will choose the most appropriate operation point (from

those selected above) based on the accuracy, power usage and the other sensors’ data. Note

that since active sensors tend to use far more power than the embedded sensors currently

considered, they are likely to be used only if they are the only sensor which can distinguish

between a collection of training examples.
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Chapter 9

Conclusions

9.1 Overview of Work

This dissertation has presented a three-component framework for power-efficient detection in

wearable sensors. The first is modular hardware platform for ease of application prototyping.

As opposed to similar architectures, this system treats the sensor boards as discrete design

objects that have data collection as their primary goal. Each of the boards within this

platform encapsulates design knowledge of the best practises within an area of sensing (e.g.

inertial measurement). The architecture is currently being adapted to better reflect low-

power goals. This entails the addition of power switches to individually control the sensors,

replacement of amplifiers with more efficient models, and the updating of various sensors

to take advantage of improvements in the underlying technology.

The second and key component is a semi-autonomous classifier construction algorithm.

Supervised training was chosen to allow for designer selection of the particular states of

interest. Using a sensor node constructed with the modular hardware platform, a scripted

data stream is collected and annotated to provide suitable data for training. A set of simple

and efficient features - minimum, maximum, mean and variance (and their robust versions)

- are used for generality, though others can be added. The features are calculated over a

fixed window (based on the period of the data), thereby converting the data stream into a
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set of examples to be used by a classical machine learning algorithm. Since the specific goal

of this work is to create a hierarchy of activation levels to allow the system to make a state

determination as efficiently as possible, decision tree classification was used. By structuring

classification as a series of successive queries, the tree uses different sets of features to classify

various states (or subsets thereof), with some requiring far fewer decisions (and therefore

far less energy) than others. The standard top down induction algorithm for decision trees

is modified by weighting the splitting criterion by the energy cost necessary to collect the

sensor data used to calculate the features. As appropriate, this energy cost is discounted

based on prior use of a sensor in the tree. The weighting is parameterized, and allows for

the construction of a collection of trees at various points on the power/accuracy curve.

The final component is a design for an embedded implementation of this classifier for use

with wearable sensor nodes. This implementation takes into account a number of issues

deriving from the real-time sequential nature of the system. For a given activity level,

sensors are powered up in the inverse order of their wakeup time, such that they all come

online at the same time for sampling by the processor. Recursive implementation of the

selected features allows for efficient calculation thereof from the collected data. The tree

classifier is then executed as a series of simple comparisons. The state output and request for

activation or deactivation of sensors based on the result of the tree execution are smoothed

to avoid expensive spurious actions.

This framework was analysed in a number of ways. Examples of successful sensor nodes

built from the modular hardware platform are presented. The features chosen for use in the

classifier were shown to be consistent across a range of window sizes within their labelled

state. Tests with three popular data sets demonstrated the monotonicity of average test

cost with the weighting parameter. To examine one specific case in depth, a wearable gait

monitoring system was built using inertial measurement. Data was collected for six different

motions and classifiers were constructed to separate each one from the other five. These

classifiers performed better on the power/accuracy plane over their range than a support

vector machine (SVM) trained for the same task1. Tree classifiers built without the benefit

of redundant sensing (in this case, tilt switches to shadow the accelerometer) performed
1Note that Gaussian SVMs are computationally unsuitable for embedded applications.

172



less well than those which had both modalities available, but still outperformed the SVM.

Simulation of real-time operation demonstrated that the tiered system drew substantially

less power than a single-trigger (binary) wakeup system, with only a negligible increase in

latency.

9.1.1 Summary of Application Designer Tasks

Because of the user-driven nature of this framework, a number of tasks are explicitly left

to the application designer as part of this process. While the application designer will, of

course, need to specify the states to be detected, other requirements are less obvious. These

are itemized below:

• Selection of the sensors necessary to measure the states of interest

• Prototyping of a node containing those sensors using The Stack

• Determination of states similar to those to be detected

• Collection and annotation of a data stream containing the desired (and similar) states

• Selection of the desired power/accuracy operating point

• Designation and coding of the desired response to the state of interest

Of the above tasks, only the first and last are explicitly technical. While those with a general

familiarity with electronics may have an intuition as to which sensors are appropriate for

their task, some guidance will likely be necessary. The programming of the desired response

is a more difficult matter, as facility with coding for desktop computers does not translate

to the ability to write code for embedded applications, which often requires low-level design

knowledge. This suggests that a selection of simple responses should be added to the code

base of The Stack.

9.1.2 Assumptions

Assumptions of a human-centric application (specifically the wearable gait monitor system

test) were used at various points in the design process. The sensor choices, as well as their

sampling rates and accuracies, were thereby limited. Similarly, the analysis functions used

to create the decision tree were constrained. An explicit listing of all the assumptions is:
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• Sampling rate range of 25 Hz to 200 Hz

• Data period of ∼ 1 sec

• Minimum action length of ∼ 10 sec

• Utility of the windowed mean, variance, maximum and minimum

• Use of non-restrictive misclassification costs

While it is unlikely that generalizing these assumptions will create major difficulties, the

risk are worth discussing.

The restriction on the sampling rate simplifies the construction of the embedded software by

allowing the classifier to simply run at the maximum sample rate of the system. A higher

maximum (such as for audio sampling) could result in an update rate faster than any

possible state change and therefore in wasted power. The combination of the data period

and the minimum action length allows for classifiers with depths around five without the

risk of missed states (taking into account that the classifier will rarely jump from the lowest

level to the highest). Ephemeral events - those with periods very close to their length -

cannot be detected by this system. Similarly, the use of windowed features assumes either

periodicity or finite correlation length. Otherwise, the assumption of consistency across

the labelled classes will not hold and the classifier will increase in complexity. Finally,

there are two key assumptions about the misclassification costs. First, that they are not

highly skewed towards either positive or negative examples, which can make the training of

the decision tree very difficult, as a small number of examples suddenly hold large weight.

Second, that misclassification costs in the units of energy are an order of magnitude greater

than the cost of determining the state. Since this system has no restrictions on total cost,

it is possible that a classifier could be constructed for which the cost of determining the

state is greater than the penalty paid for being incorrect.

9.2 Detailed Contributions

The core contribution of this dissertation is an automated framework allowing application

designers to easily construct power-efficient state detection systems. The following are the

main parts of that framework:
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• A modular hardware platform centred on wearable sensing application was built and

used to construct a number of sample applications. The platform incorporates a

number of low-power design techniques to aid in the construction of efficient wearable

and embedded sensors.

• A multiplicative test cost weighting was added to the standard decision tree training

algorithm. The form of the weighting is justified and allows for zero cost tests.

• The weighting parameter was shown to alter the growth of the decision tree such that

higher values of the parameter will result in less costly trees.

• In a complex sample application, these classifiers were shown to perform better on the

power/accuracy plane over their range than a support vector machine (SVM) trained

for the same task.

• The addition of redundant sensors allowed for better performance in the bottom left

corner of the power/accuracy plane which would otherwise have not been possible.

• Simulation of real-time operation demonstrated that the tiered system drew half as

much power as a single-trigger (binary) wakeup system with only a negligible increase

in latency.
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Appendix A

Other Applications Using The

Modular Sensor Platform

Because of space and flow constraints, not all of the applications constructed or prototyped

with The Stack could be listed in chapter 4. They are presented here for completeness.

A.1 Constructed Applications

A.1.1 Roballet

Roballet was an initiative of the Future of Learning group at the MIT Media Lab to intro-

duce children to dance and choreography. The goal was to allow them to experience music

as a space to be explored, rather than a set of rules to conform to. Larissa Welti-Santos led

a group which used the modular hardware, in a configuration similar to that of the wearable

gait laboratory(section 4.5.1), to measure the children’s motion in real-time[124].

The Stack was mounted on the dancer’s upper arm, as seen in figure A-1a, with the IMU

board capturing whole body motion. Rather than using the tactile board with an insole as

before, the children each constructed a glove using the bend and pressure sensors (figure A-

1b). Two musical pieces were designed, with the sensors controlling lighting and animation.
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(a) Child wearing main sensor (b) Glove

Figure A-1: Roballet sensors

In the first, information from the flex sensors was used to change the lighting and background

animation during the dance. In the second, the pressure sensors were used to cue the

animation while the motion sensors were used to control its speed. Unfortunately, the

pieces were not performed as such because of complaints by the choreographer about the

“visibility” of the sensors.

This project benefitted greatly from the ease of prototyping with the system. The IMU

board was used without modification, and provided useful inputs to the dance applications.

The tactile board proved even more flexible, allowing children with little knowledge of

electronics to quickly and easily build a sensor glove. This glove could interface with the

rest of the system with no redesign of either hardware or software. Overall, use of The Stack

allowed the low-level hardware details to be abstracted away, such that only the high-level

details of the motion and pressure data being collected was of concern to the choreographer

and the children.

A.1.2 Novel Musical Controller

Another application implemented using this platform is a trainable adaptive musical con-

troller [75]. In traditional musical instruments, each input gesture is connected to a specific

output sound through the laws of physics (which are cleverly manipulated to create the de-

sired effect). The advent of digital sound synthesizers and electronic music controllers has
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Figure A-2: FlexiGesture controller

decoupled action and reaction, making a large range of input-to-output mappings possible,

as well as an infinite set of possible timbres. However, this revolutionary change brings with

it the problem of design - intuitive, natural mappings from gesture to sound now must be

created in order to create a playable electronic music instrument.

FlexiGesture, created by David Merrill, is a device that allows flexible assignment of input

gesture to output sound, thus acting as a laboratory to help further understanding about

the connection from gesture to sound. It is controlled in a two-handed fashion, with a

main handle and twistable top as shown in figure A-2. Manipulations of the device relative

to itself (bending, twisting, etc.) are measured using the tactile board. Movement of the

device in the world frame is measured using the IMU board. The data is collected and

transmitted using the master board. Two new boards were also created. An output pane

was built with circuitry to control a pager motor and LEDs for user feedback as well as

transmit circuitry for electric field position sensing[88]. An electric field receiver board was

built to detect these signals, and formed part of the basestation (nominally comprised of a

just master board).

We note two main benefits of the system here. The first is the obvious exploitation of the

extensibility, as described above. The second is the benefits derived from encapsulation,

which allowed the designer to reuse the circuitry of the IMU board, the master board
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(twice) and the tactile board in a new arrangement. This resulted in a significant reduction

in design time for the electronics, allowing the designer to concentrate on the interaction

aspects of the project rather than the data collection.

A.2 Prototyped Systems

Not all applications use the boards from this platform for their final implementation. Often

our boards are used simply for prototyping and design, and the circuitry is then redesigned

depending on the particular physical constraints of the systems. Two such systems are

touched on below.

A forearm controller and tactile display[106], designed by David Sachs, allows the wearer

to control a braille output scheme by rotating or raising or lowering their arm. It used

components of our platform in its original incarnation. The IMU board was used in the

motion tracking system, with its data collected by a different processor than that on the

master board. A new board was also created to test the benefits of magnetic sensors

for tracking. Eventually, these components were integrated with a previously constructed

circuit board which controlled the output portion of the application.

Ryan Aylward has constructed a compact coordinated gesture system[3] for concurrently

collecting motion data from a group of individuals at various points on their bodies. This

data is then analysed en masse for similarities in movements and gestures. The initial

application of this system was the instrumentation of a half-dozen dancers at four points

each (ankles and wrists), with the output data used to create music on-the-fly. This is a

direct extension of the work in the Expressive Footwear project[89] (identical in goal, but

with a single dancer) and the wearable gait laboratory (described previously). This system

was prototyped using the IMU and master boards, but the hardware was later reconfigured

into a package with nearly identical functionality, but planar and one third the height[68].

In both cases, the modularity of the architecture was exploited to quickly prototype new

systems. In the case of the forearm controller, we note that once the software to read data
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from a single board was incorporated into an existing system, it was trivial to have it read

data from a second, newly created board. In the case of the gesture system, each of the

individual subsystems were tested and revised (both individually and as a whole) as part

of the gait laboratory project before the combined system was designed. This new design

was vetted more quickly and had a higher assurance of success because of this prior work.
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Appendix B

Details of Data Collection

B.1 Sensor Measurement Axes

The coordinate axes for the sensor module are shown in figure B-1.

Y Accel

Z Accel X Accel

Y Gyro

Z Gyro X Gyro

O

Figure B-1: Coordinate axes for the sensor module
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B.2 Stream Used for Classifier Training

The training data stream was collected in the lower lobby of the MIT Media Laboratory.

The following motions were collected:

Level Gait — Walking back and forth across the lower lobby four times. Roughly 4

minutes.

Shuffling — Mimicries Parkinsonian shuffling (as per [40]) back and forth across

the lower lobby. Roughly 3 minutes.

Ascend Stairs — Climbing the second segment (13 steps) of the stairwell leading from

the lower lobby to the atrium nine times. Roughly 3 minutes.

Descend Stairs — As above, except descending.

Uphill — Climbing the ∼ 7.5◦ slope from the bottom of Bartos theatre to the

top eight times. Roughly 3 minutes.

Downhill — As above, except descending.

Figure B-2 shows the specific locations where the data was collected.

184



w
al

k 
&

 s
h

u
ff

le

as
ce

n
d

 &
 d

es
ce

n
d

st
ai

rs

d
o

w
n

h
ill

u
p

h
ill

Figure B-2: Locations for training set data collection
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B.3 Stream Used for Real-time Simulation

Starting from the entrance of Bartos theatre, the subject performed two loops (level, down-

hill, level, uphill) before leaving the theatre via a shallow ramp (∼ 4◦). The subject then

walked a short distance into the lower lobby, shuffled for roughly 20 feet, walked for five

steps, and then shuffled for another 20 feet. From there, the subject transitioned to the

staircase, which was ascended and descended twice. Figure B-3 shows the full path taken.

The dotted lines denote unlabelled transitional segments.
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Appendix C

Overview of Changes to MATLAB

Decision Tree Implementation

Version 7.1 (2006b) of MATLAB (the current version at the time of this writing) contains

a basic implementation of the CART algorithms, including cost-complexity pruning. This

implementation was significantly altered to add three new features. The first was test cost

handling, including changes to the ordering of possible splits, application of the weighting

parameter and discounting of features after first use. The second was the addition of the

two new splitting criteria used in the testing. The third was the ability to designate a

single positive state in non-binary (> 2) class systems, such that the rest of the classes are

considered as a single negative state for the purposes of misclassification cost.

The following portions of the implementation were changed to allow for our testing and tree

construction:

• Additions to the decision tree data structure

◦ Node level tracking of current:

– Feature test costs

– Active sensors

– Depth and latency

◦ Index of positive class
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• Changes to treefit.m

◦ Input of values necessary for test cost handling:

– Base test costs

– Grouping of features for discounting

– Weight parameter W

◦ New splitting criteria:

– AUC-based

– One-sided Gini

◦ Generalized application of test cost to choice of split

• Changes to treetest.m

◦ Cross-validation and holdout set estimation of:

– Test cost

– Latency

– Depth

• Changes to treedisp.m

◦ Ability to display test costs when visualizing tree

Since the MATLAB source code is under copyright, the altered versions of the files cannot

be reproduced here. Without them, the high-level scripts used to build the population of

classifiers and simulate the real-time operation would most likely serve to confuse the reader.

For those interested in obtaining copies of the implementation and data, instructions are

available at:

http://www.media.mit.edu/resenv/groggy/

or by contacting the author at:

ayb at alum dot mit dot edu
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