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Abstract 

Staged construction of embankments on soft ground remains one of the most challenging topics 
in geotechnical engineering due to the complex shear and consolidation behavior of clays. This thesis 
presents a case study on the performance of the New Hamilton Partnership (NHP) levee in Novato, 
California. This 11ft high levee was constructed over 30 ft – 40 ft thick layer of San Francisco Bay Mud 
during a six-month period in 1996. Settlements along the levee crest were monitored over a period of 
5.2 years after the end of construction (until early 2002), at which time URS installed piezometers to 
measure the existing consolidation stresses (σ’vc) within the Bay Mud. URS also conducted state-of-the 
art field and laboratory test programs to develop well-defined values of preconsolidation stress (σ’p) and 
compressibility parameters for the Bay Mud. However, conventional 1-D consolidation analyses greatly 
underestimated the measured levee settlements. Hence URS reduced σ’p by 20% for the Plaxis FE 
analyses with the Soft Soil Model (SSM) used to replicate the performance of the existing NHP levee 
and then to design an expanded levee system. 

This thesis presents a detailed re-evaluation of the NHP levee performance and of the stress 
history, strength, and consolidation properties of the Bay Mud obtained during the URS geotechnical 
site investigation. New conventional 1-D consolidation analyses with higher values of the 
recompression ratio and revised profiles of σ’vc indicate that the measured levee settlements at 5.2 years 
can be matched when σ’p is reduced by 10% to 15%. The thesis also presents two series of Plaxis 
analyses with the Soft Soil Model. The first evaluated SSM parameters to better model results from the 
laboratory consolidation and K0-consolidated undrained shear tests on the Bay Mud.  The second series 
conducted 2-D FE analyses to identify the most important variables effecting the predicted performance 
of the levee during and after construction. These parametric analyses show that the measured 
settlements during the 5.2 year period and the excess pore pressures measured in early 2002 can be 
consistently described only after careful definition of four major variables: the recompression ratio, RR, 
the normally consolidated coefficient of consolidation, cv(NC), and the preconsolidation stress, σ’p, of 
the Bay Mud; and the boundary drainage conditions. The measured performance is best matched by 
using values of cv(NC) and σ’p that are less than measured by the laboratory CRSC tests.  

Analyses with more sophisticated soil models are needed before definitive conclusions can be 
reached regarding the in situ properties of the Bay Mud and whether no not secondary compression 
(creep) plays an important role during primary consolidation (i.e., Hypothesis A versus Hypothesis B). 
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Title:  Edmund K. Turner Professor of Civil and Environmental Engineering, 

Emeritus   
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CK0UTX K0 consolidated-undrained triaxial test 
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HQN The author 
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CHAPTER 1  

INTRODUCTION 

1.1  Settlement of Embankments on Soft Ground 

 Ground conditions can be divided into two situations, “stiff” or “soft”, with 

respect to the applied embankment loading. A ‘soft ground’ condition denotes cohesive, 

compressible soils that undergo both recompression and virgin compression during 

consolidation. In other words, soft ground conditions occur when σ’vf, the ultimate 

drained equilibrium vertical stress (i.e., σ’vf  = σ’vo + ∆σv, where σ’vo is the initial in situ 

effective stress, and ∆σv is the change in total vertical stress), exceeds σ’p, the vertical 

preconsolidation (yield) stress within the soil profile. Hence, normally consolidated and 

slightly overconsolidated clay deposits correspond to soft-ground conditions, where 

relatively large consolidation settlements can be expected. In contrast, ‘stiff ground’ 

conditions occur if σ’vf is less than σ’p throughout the soil profile. This means the ground 

will experience only recompression behavior, leading to relatively small settlements. 

 

 There are many geotechnical structures built on soft ground conditions such as 

embankments for transportation facilities, flood-control levees, embankment dams, land 

fills, storage tanks and offshore gravity platforms. Figure 1.1 presents the typical scenario 

for a soft ground condition. In this example, the soil profile comprises a layer about 30 

feet deep of a saturated, slightly over-consolidated clay (with a typical overconsolidation 

ratio OCR = σ’p/σ’vo ≈ 1.5). The final consolidation stress profile exceeds the 

preconsolidation profile through most of the depth of the deposit except for a relatively 

thin crust layer at the surface. In the zone from the ground surface to the point where the 

preconsolidation stress profile intersects the final stress profile (marked X in Fig. 1.1a), 

the soil remains over-consolidated and undergoes only recompression from the initial in 
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situ stress (σ’vo) to the final stress (σ’vf), because σ’p is larger than σ’vf. Below X, the soil 

will experience recompression from σ’v0 to σ’p and then virgin compression from σ’p to 

σ’vf . 

 Problems associated with soft ground conditions are large total settlements, a slow 

rate of consolidation leading to long-term consolidation settlements, and low undrained 

shear strength leading to possible failures during loading. Large lateral deformations may 

also occur during loading and can increase during subsequent consolidation. Soft ground 

construction therefore requires comprehensive site characterization and understanding of 

soil properties and soil behavior issues, e.g., stress history of the ground with σ’p, σ’vo, 

σ’vc , and σ’vf  profiles, rate of consolidation with coefficients of consolidation cv(NC) 

and cv(OC), compressibility  of soil (RR, CR), and undrained shear strength (su) for 

stability analyses.   

 There are three components of settlement that contribute to the total settlement: 

1) Initial settlement, ρi: settlement due to undrained shear deformation of the ground 

when initially applying ∆σv. This type of settlement is called an undrained settlement by 

Foott and Ladd (1981): “When a load is rapidly applied over a limited area above a clay 

soil deposit, the shear stresses induced in the clay cause lateral deformation of the soil 

resulting in settlement. This settlement is commonly considered an instantaneous 

response to the applied loading, therefore, occurring under undrained conditions and 

known as initial settlement, ρi.” 

 

2) Consolidation settlement, ρc: Settlement due to drainage of pore water which occurs 

during the increase in effective stress in the soil. The rate of this type of settlement is 
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often computed by Terzaghi’s consolidation theory:
_

c cfUρ ρ= , where 
_

U  is the average 

degree of consolidation, and ρcf is the final consolidation settlement predicted at t = tp, 

where tp is the time to reach the end of primary consolidation (EOP). 

Conventional practice usually assumes that the overall total ρt at EOP is equal to 

final consolidation settlement, ρcf, for a one-dimensional (1-D) strain condition: 

' '

' 'log logp vf
cf i

vo p

H RR CR
σ σ

ρ
σ σ

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑                                                               (1.1) 

where:  

• Hi = initial thickness for the ith sub-layer of the compressible foundation soil; 

• σ’vf = σ’vo + ∆σv  = final vertical effective stress, which is the ultimate drained 

equilibrium vertical stress; 

•  ∆σv is the change in total vertical stress due to the applied surface loading, and 

usually is computed from an elastic stress distribution method; 

• σ’p is the preconsolidation stress interpreted from 1-D laboratory consolidation 

tests, such as the incremental loading Oedometer test (OED) or the Constant Rate 

of Strain Consolidation test (CRSC, Wissa et. al. 1971), or correlated from in situ 

tests such as the Field Vane or Piezocone; 

•  RR, CR are the Recompression and Virgin Compression Ratio (properties of the 

clay that are defined in conventional εv-logσv’ space, Fig.1.1b): 

'
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where Cr, Cc are the compression indices for overconsolidated and normally consolidated 

clay, and e0 is the initial void ratio. 

Figure 1.1 summarizes the computation of the final consolidation settlement and 

associated parameters for a one-dimensional (1-D) loading condition, which is typically 

assumed in conventional practice (even though the actual loading is two- or three- 

dimensional). 

 

3) Drained creep settlement, ρs: settlement due to secondary compression of soil that 

occurs after the end of primary consolidation (t = tp at EOP, excess pore pressure ue = 0):  

 logs i
p

tH C
tαρ

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑                                                                     (1.2) 

where Cα is the rate of secondary compression = dεv/dlogt 

Figure 1.1.c illustrates how the three components of settlement occur in sequence. 

In general, the total settlement is computed as follows: 

        ρt = ρi + ρc,      (Before EOP)                                    (1.3a) 

and,   ρt = ρi + ρcf + ρs,                      ( After EOP)                           (1.3b) 

Creep may also occur during primary consolidation, which leads to an increased 

ρcf at EOP. This problem is discussed in Section 1.2. 

 

 The assumption of using Equation 1.1 for estimating the total settlement at the end 

of consolidation ignores the initial settlement, ρi. For some cases of highly plastic (CH) 

or organic (OH) soil deposits, especially where there is a low factor of safety against 

undrained shear instability, the initial settlement due to undrained shear deformations 
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(i.e., lateral deformation) may become significant. In addition to the initial settlement, 

continued lateral deformations of clay also occur during consolidation, thus adding a 

certain amount of creep settlement, ρcr, to the total settlement (Foott and Ladd, 1981). 

Hence, a settlement estimate using Equation 1.1 that ignores ρi and ρcr is one controversy 

for CH-OH soils. The other controversy concerns the appropriate preconsolidation stress 

(σ’p) to use in Equation 1.1. Should σ’p corresponds to the value measured in the 

laboratory test at EOP (t increment= tp) or at a reference time such as t increment = 24 hours 

used in many conventional oedometer tests. Alternatively, some suggest that σ’p is much 

lower in the field, due to the increased drainage path length (Hd) and much larger time to 

end of primary, due to the occurrence of significant secondary compression during the 

primary consolidation. This controversy is discussed in more detail in Section 1.2.  

 

1.2  Hypothesis A vs. Hypothesis B 

 Ladd et al. (1977) first defined this controversy in terms of Hypothesis A versus 

Hypothesis B as illustrated in Figure 1.2. The two competing hypotheses are illustrated 

by the relationship between strains measured in a thin lab test specimen and a thick field 

deposit of the same clay. Hypothesis A (curve A, Fig.1.2) essentially assumes that 

significant secondary compression (drained creep) occurs only after EOP [after 

t=tp(field), where tp(field) = tp(lab).Hd(field)2/Hd(lab)2]. Proponents of this hypothesis 

believe that the physical mechanisms causing secondary compression are similar to those 

responsible for volume change due to an increase in effective stress (e.g., elastic 

deformation of particles; slippage at contacts and reorientation of particles; double layer 

compression and displacement of adsorbed water and particle crushing), [e.g., Mesri and 
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Godlewski (1977), and Ladd et al. (1977)]. Hypothesis A assumes that there is a unique 

location of the EOP compression curve independent of increases in sample thickness (i.e., 

drainage height, Hd) and hence the soil has a unique value of σ’p [e.g., Mesri (2003)]. In 

contrast, Hypothesis B (curve B, Fig.1.2) assumes that significant creep occurs during 

primary consolidation and has the same rate as measured in standard laboratory 

oedometer tests. Hence the strain at the end of primary consolidation increases, causing a 

downward shift in the EOP compression curve. This corresponds to a reduction in σ’p in 

the field compared to the laboratory EOP value of σ’p [e.g., Leroueil et al. (1985) used 

lab and field data on Champain “quick” clays of Canada to support Hypothesis B]. The 

mechanisms responsible for secondary compression occurring during primary 

consolidation are often thought to be due to some type of “structural viscosity” or time 

dependent deformation of adsorbed water films [Bjerrum (1973)]. 

 The εv - logσ’v plot in Fig.1.3 illustrates the reduction in the field σ’p according to 

Hypothesis B (dashed line) as compared to Hypothesis A (solid line), which explains the 

increase in strain predicted at the end of consolidation, εcf(B), Fig. 1.2. Hypothesis B 

often assumes that the strain due to secondary compression (εs) which occurs during 

primary consolidation in the field can be computed as 

)log(.
1t

t
C p

s αε = ,                                                                                        (1.4) 

where t1 is the reference time measured in 1 day (t1=1 day), and tp = tp(field) is the time to 

end of primary consolidation at field scale. This is equivalent to using Equation 1.1 with 

a reduced σ’p = σ’ps (reduced preconsolidation stress), where: 
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'
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 Hence, we have the following relationship: 

                          
1

'
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CR
C p
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p α

σ
σ

=                                        (1.6) 

with t1 = 1day. 

Thus the value of σ’ps in the field depends on the time, tp, which is the field EOP 

consolidation time [tp(field)] during which secondary compression occurs, and the ratio 

Cα/CR of the clay. Note that Eq. 1.6 neglects the difference in the values of the lab EOP 

σ’
p and that measured at tc = 1 day. 

 

Terzaghi, Peck and Mesri (1996) quote typical values of Cα/CR as 0.04 ±0.1 for 

inorganic soft clays and 0.05 ± 0.01 for highly plastic organic clays [e.g., Mesri and Feng 

(1986)]. For an average Cα/CR = 0.045, the reduction ratio in preconsolidation stress in 

the field becomes 

tp (year)  σ’ps/σ’p 

5  0.71 

10  0.69 

50  0.64 

The use of Hypothesis B therefore leads to a significant increase in the predicted ρcf due 

to the reduced σ’ps, especially for low values of σ’vf/σ’p and large values of tp.  
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1.3  New Hamilton Partnership Levee (NHPL) Project 

 The New Hamilton Partnership Levee (NHPL) is one of several existing levees 

that surround the Hamilton Army Air Field (HAAF) Base Wetlands Restoration project 

(Fig.1.4). The location of this site is within the City of Novato, north of San Francisco, 

California. The location of the Hamilton Army Air Field used to be a part of an extensive 

tidal wetlands area adjacent to the San Francisco Bay. As part of a federal program to 

convert military bases to civilian use, an area of about 900 acres is being restored to tidal 

and seasonal wetlands after the closure of the Air Base in 1994 (URS, 2003). 

 The plan of the HAAF Wetlands Restoration project is to create a system of 

seasonal and tidal wetlands by placing approximately 10.6 million cubic yards of dredged 

material to raise site elevation, which is now several feet below sea level. Also a new 

levee system is required to protect neighboring residential, agricultural and industrial 

areas from flooding. Therefore, the project would require construction of levees all 

around the perimeter of the new wetlands, including enlargement of the existing NHPL 

by constructing a new embankment overlapping the outboard (east) side of the levee. An 

intensive site investigation program, a new instrumentation and monitoring program, and 

an analysis program of the behavior of NHPL were conducted in 2002 by URS - the 

geotechnical consulting firm - to calibrate analytical and finite element (FE) models for 

further use in design of this and other levees. 

 The existing NHPL alignment is located on a thick layer (30-40 ft) of recent San 

Francisco Bay Mud (SFBM). The NHPL was built between March and October 1996, 

and is approximately 7,200 feet long and 12 feet high as a flood-control embankment 

structure for the New Hamilton Partnership residential area.  
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 Figure 1.5 shows a typical cross-section of the embankment, which has a height of 

about 12 ± 1 ft. The water table varies seasonally and is typically located several feet 

below the ground surface.  The embankment consists of well-compacted, slightly 

cohesive granular fill and is underlain by:  

- 3.0 to 4.5 feet air-field concrete pavement slab ( or occasionally fill material); 

- Several feet of stiff clay called Bay Mud Crust. The crust is composed of 

desiccated Bay Mud over the entire area; 

- 30 to 40 ft layer of soft, compressible marine clay known as Recent Bay Mud 

(or San Francisco Bay Mud)  

- Various essentially incompressible soil strata (sand, stiff clay, etc.) overlying 

bedrock.  

 The Bay Mud is a highly plastic, organic clay (CH-OH) with Atterberg limits 

plotted in Fig. 1.6. It is slightly over-consolidated (OCR is about 1.5), and has a high 

virgin compressibility, low undrained shear strength, and low hydraulic conductivity. The 

settlement and stability of levees are primarily controlled by the soft Recent Bay Mud 

layer.  

 The City of Novato conducted a program to monitor the settlement along the crest 

of the NHP levee at 200 ft intervals shortly after it was constructed1. In January 2002, 

approximately 5.2 years after construction, the settlement of the levee (ρm) = 2.0 ± 0.5 ft 

along most of the levee alignment. The settlement data also show that the soft Bay Mud 

is still in primary consolidation, which is estimated to take 50 years.  

                                                           
1 The Novato program does not include measurements of pore water pressure and lateral deformation in the 
foundation soils. 



 

37  

 In 2002, a comprehensive geotechnical site investigation was conducted by URS 

with “state of the art” field and laboratory testing programs to evaluate the performance 

of the NHPL and investigate the site geotechnical conditions for further developments of 

the project. The site investigation included both in situ Field Vane (FV) and Piezocone 

Penetration (CPTU) tests and laboratory consolidation and strength tests (OED, CRSC, 

CK0UTX, CK0UDSS) on undisturbed clay. The testing program resulted in a well-

defined stress history profile, compressibility and flow properties. In addition, URS 

installed instrumentation (sondex profilers, piezometers and inclinometers) at several 

locations designated as test sections (TS), both under the levee and beyond its toe (i.e., 

virgin ground). 

 

 URS calculated the settlements of the NHP levee using the conventional 1-D 

consolidation method via Equation 1.1 with profiles of current consolidation stress σ’vc = 

σ’vo + ∆σv (levee) – ue (measured from piezometers), and found a large discrepancy 

between measured and predicted settlements. At test sections TS3 and TS5 (which are 

typical conditions along the NHP levee) the best-estimate of σ’p from laboratory EOP 

curves, produced a consolidation settlement, ρc  ≈ 0.6 ft, whereas the measured settlement 

at about 5.2 yr after construction, ρm ≈ 1.6 ft. Hence, the prediction seriously 

underestimated the measured settlement. For the design of the wetland restoration 

project, URS reduced the lab best-estimate σ’p(EOP) profile by a factor of 0.8 in order to 

obtain agreement between calculated and measured settlements of the existing NHP 

levee.  
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 Professor C.C. Ladd, as a consultant to URS, prepared a memo (Ladd, 2002) that 

evaluated possible reasons for the large discrepancy between the calculated and measured 

settlements. He concluded that use of Hypothesis B was consistent with the larger 

measured settlement. However, he also thought that the plastic nature of clay might have 

caused a large initial settlement, ρi, plus ongoing creep, and thus increased settlement due 

to lateral deformation [e.g., Foott and Ladd (1981)]. The writer notes that Mesri and Choi 

(1985) [Fig.23 in Jamiolkowski et al. (1985)] ran consolidation tests on San Francisco 

Bay Mud with varying sample thickness (Hd) and concluded that this clay had an unique 

EOP compression curve and that it followed Hypothesis A, (i.e., no reduction in σ’p with 

increase in time to the end of primary, tp).  

 

1.4  Objectives and Scope of Thesis  

  In an attempt to try to understand and be able to explain the discrepancy in 

settlements of the NHPL, the thesis has three prime objectives: 

1) Re-evaluate the consolidation properties of the Bay Mud selected by URS and 

make new 1-D settlement calculations. 

2) Perform 2-D FE consolidation analysis using the Soft Soil Model (SSM), which is 

essentially the Modified Cam Clay, with PLAXIS, first to replicate similar analyses made 

by URS, and second to perform analyses with the author’s properties.  

3) Evaluate the importance of ρi and the effect of varying σ’p on predicted 

settlements. 
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Chapter 2 of the thesis presents a summary of the site characterization and 

previous analyses of the NHPL embankment project by URS, in which the author 

synthesizes the work of URS (2003) and Ladd (2002). 

Chapter 3 presents re-examination of soil properties at test sections TS3 and TS5, 

1-D consolidation analyses of the NHPL, simulations of consolidation and undrained 

strength behaviors of Bay Mud using FE PLAXIS code with Soft Soil Model (SSM), and 

PLAXIS analyses of the NHPL using SSM.  

Chapter 4 presents summary, conclusions and recommendations of the thesis. 
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Figure 1.1 Consolidation Behavior of Saturated Soil and 1-D Consolidation Settlement Calculation 



 

41  

LOG TIME

S
TR

A
IN

 , 
ε v

Thick
Sample
(Field)Thin 

Sample
(Lab)

Curve A

Curve B

ReferenceHypothesis
Ladd (1973), Mesri 
& Rokhsar (1974)Curve A

Barden (1969)
Brinch Hansen (1961)

Taylor (1942)
Curve B

Note: Same ∆σ'/σ'
vo

 for

            both samples

ε
cf
(B)

ε
cf
(A)

t
p
(field)

t
p
(lab)

 
Figure 1.2 Comparison of Hypotheses A and B and Effect of Sample Thickness on  

1-D Strain                  
[From Ladd et al. (1977)] 

 

LOGσ'
v

ST
R

A
IN

, ε
v

0

Same εv

σ'vo σ'ps σ'p

CR

 ε
s

Relationships:

ε
s
=C

α
log[tp(days)/1day]

ε
s
=CRlog(σ'

p
/σ'

ps
)

Hence,
log(σ'

p
/σ'

ps
) = (C

α
/CR)logt

p
(days)

Typical C
α
/CR = 0.045 

Hypothesis A: Unique EOP 
Compression Curve

Hypothesis B: Increased
strain with increased t

P

 
Figure 1.3 Application of Hypothesis B in Predicting Final Consolidation Settlement 
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Figure 1.4 Location Plan of HAAF Wetlands Restoration Project  
[From URS (2003)] 
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Datum: Mean Sea Level (MSL) 

 
 
 

Figure 1.5 - Typical Cross Section at NHPL – TS3   
[From URS (2003)] 
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Figure 1.6 Plasticity Chart for Bay Mud at NHPL 
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CHAPTER 2  

PRIOR GEOTECHNICAL STUDIES OF THE NHPL EMBANKMENT 

2.1  Introduction 

 Section 1.3 discussed the overall layout of the project, including a typical soil 

profile and levee cross-section (e.g., Fig. 1.5). Figure 2.1 shows a plan view of the project 

with the alignment of the existing NHP levee, and the locations of test and exploration 

sections designated as TS (i.e., borings, in situ tests and instrumentations). TS3 and TS5, 

shown in Fig. 2.2, are of prime interest for this study. 

 The existing NHP levee was built between March and October in 1996 next to the 

New Hamilton Partnership residential area. There is lack of detailed information about 

the construction history in the URS reports. The recorded settlement measurements by 

City of Novato were dated “since November 11, 1996” at points 16, 17, 18 and 19, which 

are closest to test section TS3 and TS5. The last recorded data presented in URS (2003) 

was dated January 31, 2002.   

The URS comprehensive site investigation took place from December 19, 2001 to 

February, 2003. The “state-of-the art” site investigation program included borings with 

tube samples for laboratory tests, in situ field vane and cone penetration tests, and 

installation of field instrumentation to measure pore pressure, settlements and lateral 

deformations. The results from this program and from consolidation analyses at the test 

sections are presented in this chapter.  

Chapter 2 of this thesis covers the following material: 
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- Description of URS field and laboratory test programs and results of 

settlement monitoring by the City of Novato 

- Evaluation of soil properties, especially for the Bay Mud with emphasis on 

stress history of both virgin (free field) ground and conditions under the levee 

- Results of URS consolidation analyses and comparison with measured 

settlements 

- Discussion of using a reduced σ’p in order to match the measured settlements. 

2.2  URS Field and Laboratory Test Programs 

2.2.1 Field Test Program 

Table 2.1 summarizes the field testing program. The field tests included borings 

and sampling, field vane tests (FVT), piezocone penetration soundings (CPTU), and 

downhole geophysical tests. In addition, field instrumentation at test sections included 

peizometers to measure in situ pore water pressures, inclinometers to measure lateral 

deformations, and Sondex devices to measure subsurface vertical settlement profiles. 

 

- Borings and Sampling: 19 boreholes were drilled at different locations along 

the levee alignment (at the crest, toe and in virgin ground) by Pitcher Drilling of Palo 

Alto, California – a subcontractor of URS. Rotary wash drilling procedures were used for 

advancing the boreholes. Figure 2.2 shows a plan location of borings and instrumentation 

and field tests at the main test section area of NHPL. The average ground surface 

elevation is EL. – 1.6 feet (NGVD) for the free field, and EL. + 6.9 feet (NGVD) for the 
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crest of levee (Line 3). The ground water table elevation is about EL. – 4.5 feet (NGVD). 

Note that NGVD elevation zero approximates mean sea level (MSL). 

At test section TS3, boring TS3-B1 and TS3-B4 are located about 30 ft away from 

the toe of the levee. They were assumed to have no affect from the existing NHPL in 

term of change in soil properties due to the construction and consolidation of the levee, 

and thus represent virgin ground conditions (or ‘free field’ conditions). Samples for 

laboratory consolidation and strength tests on virgin Bay Mud are from boring TS3-B1. 

Dames and Moore 2.5” diameter, 18” long, fixed piston, brass thin-wall samplers were 

used to extract most soil samples. This type of sampling technique is close to best 

practice for getting high quality undisturbed samples (Ladd and DeGroot, 2003). Results 

of radiography (X-Ray) of the samples at MIT and recorded vertical strains at overburden 

stress of laboratory test samples show that most of the samples are high-quality.  

 

- Geonor FV: In situ preconsolidation stress, σ’p profiles and undrained shear 

strength, su profiles were obtained from Geonor field vane tests using SHANSEP 

equation and Bjerrum’s field vane correction method (Ladd and DeGroot, 2003):  

1/' '

'

( ) /
m

p u v

v

s FVOCR
S

σ µ σ
σ

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
                                                                            (2.1) 

where OCR = Overconsolidation Ratio, σ’p = preconsolidation stress, σ’v = either σ’v0 

(free field) or σ’vc (under levee), su(FV) = measured peak field vane strength, coefficient 

µ = Bjerrum (1972)’s field vane correction factor empirically correlated with Plasticity 

Index -Ip, coefficient S = undrained strength ratio for normally consolidated soil, and m = 

exponent giving increase in undrained shear strength ratio with OCR. URS selected µ = 
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0.8 based on an average Ip= 50% for BM, S = 0.25 based on prior experience with San 

Francisco Bay Mud and results of direct simple shear tests, and m = 0.85.  

 Figure 2.2 also shows the locations where the FVT were conducted at the area of 

main interest. There are FV tests located at free field (Line 1), toe of levee (Line 2) and 

under the crest of levee, (Line 3) at each test section TS3 and TS5, for a total of six FV 

profiles.  

 

- CPTU and Geophysical tests: The cone penetration tests with pore pressure 

measurement (piezocone penetration soundings - CPTU) were also conducted at the site 

at some locations. The CPTU test gives a continuous log of cone tip resistance, cone side 

friction, and pore pressures near the tip of the cone. The CPTU was used to evaluate the 

spatial variation in su [su = (qc-σ’vo)/Nc with Nc = 16]. In addition, excess pore pressures 

generated during penetration and dissipated when holding the cone give an indication of 

hydraulic conductivity of soil layers. URS (2003) state that the undrained shear strength 

profiles estimated from CPTU test results are very close to those estimated by FVT.  

Four downhole geophysical tests were performed in the area of test sections to 

obtain shear wave and compression wave velocities through soil layers as means to 

extrapolate the spatial variation of soil properties. The shear wave velocity can also serve 

as a mean for estimating the maximum shear modulus of soils.  

 

- Instrumentation at TS3&TS5: Figure 2.2 also shows locations of 

instrumentation at the two test sections. The instrumentation by URS was started on 

January 25, 2002 and measured data were available in URS (2003) report until April 20, 
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2003. Four piezometers clusters (TS3-P4, TS3-P1, TS5-P1 and TS6-P4) were installed at 

Line 1 and Line 4 (free field locations) to measure the in situ pore pressure of virgin 

ground and the results show hydrostatic water pressures. The results also show variation 

in groundwater table (WT) elevation. URS (2003) state that the groundwater table varies 

between elevations EL. -4.0 and -5.0 feet (i.e., WT at EL. -4.0 ft for TS3 and WT at EL. -

4.5 ft for TS5). Two piezometers clusters were installed at Line 3 (TS3-P3 and TS5-P3) 

and three clusters at the toe of the levee, Line 4’ and Line 2 (TS3-P2, TS5-P2 and TS6-

P4A) to measure pore pressures under the crest and the toe of the levee. These 

piezometers showed excess pore pressures, especially at Line 3 where the ground under 

the levee is still being consolidated.  

In addition, two Sondex Profiler devices were installed at TS3, TS3-S1 at Line 1 

and TS3-S3 at Line 3, to measure the vertical settlement profile with depth (Note: the 

Sondex at TS3-S1 was for the test fill that was subsequently constructed during 2005). 

Two inclinometers were installed at the toe of levee in Line 4’(TS3-I4’ and TS5-I4’), one 

inclinometer (TS6-I4) installed at Line 4 test section TS6, and also two at Line 3 (TS3-I3 

and TS5-I3). These inclinometers are to monitor lateral deformations. Measured data of 

the Sondex Profilers and Inclinometers were dated from February 06, 2002 to November 

20, 2002 in URS (2003). 

2.2.2 Laboratory Test Program 

 Table 2.2 shows all laboratory tests performed on the Bay Mud at TS3 and TS5. 

Good to excellent sampling practices were used to obtain high quality undisturbed 

samples for laboratory engineering property tests. Sample tube radiography (X-Rays), 

constant rate of strain consolidation (CRSC), K0 consolidated - undrained direct simple 
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shear (CK0UDSS) and K0 consolidated - undrained triaxial compression/extension shear 

(CK0UTC/TE) tests were all performed at MIT. In addition, conventional incremental 

oedometer (OED) tests were performed by Signet for URS.     

 Consolidation tests included 22 CRSC and 16 OED on the Bay Mud to evaluate 

the preconsolidation stress profile, σ’p and consolidation engineering properties, e.g., 

compressibility properties (RR, CR, Cr, Cc, SR, Cα), hydraulic conductivity (kv0, Ck), 

coefficients of consolidation [cv(NC), cv(OC)]. Among the 22 CRSC tests, seven were on 

samples at boring TS3-B1, which represents the virgin ground. The other CRSC tests are 

for samples under the crest and toe of the levee.  

 Undrained shear tests, including CK0UDSS (7 tests), CK0UC (3 tests) and CK0UE 

(2 tests), were performed using the SHANSEP procedure (Ladd et al., 1977) to evaluate 

undrained shear strength and modulus properties of Bay Mud (all samples are under the 

NHP levee). DSS tests were performed at OCR=1 and 2, while all 5 triaxial shear tests 

were performed at OCR=1.  

  In addition, many CRSC and CK0UDSS tests were also run on samples from the 

South and North Levees with similar index properties, but different stress history.  

 

2.2.3 Unit Weight of Fill and Natural Soils 

 Table 2.3 summarizes the mean values with standard deviations for total unit 

weight, water content, liquid limit and plasticity index of the embankment fill and the 

natural soil layers under the NHPL embankment. Total unit weight of the embankment 

fill varies between 98 pcf to 144 pcf, with an average value of 126.3 pcf, from 46 density 

tests. A slightly higher value of 130 pcf was chosen for the fill by URS for settlement 
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analyses. Three to 4.5 feet of concrete pavement material above the Bay Mud crust was 

assumed to have a total unit weight of 150 pcf. Bay Mud crust layer unit weight varies 

from 93 pcf to 106 pcf, with an average value of 100 pcf. The Bay Mud below the Crust 

has a total unit weight range from 79 pcf to 97 pcf, with an average value of 92.4 pcf. 

URS selected 92 pcf for the Bay Mud for analysis. 

 

2.3  Measured Settlement of NHPL 

Post-construction settlement data of NHPL are provided by City of Novato from 

32 settlement markers on the flood wall (levee wall), which is located about 10 ft from 

the centerline of the levee. Figure 2.3 shows profiles of the thickness of the SFBM and 

recorded wall settlements (ρm or sm) along the NHPL about 3.8 and 5.2 years after 

construction. Typical thickness of SFBM layer along the NHPL alignment ranges from 

30 to 40 ft. The settlements readings on 1/31/02 generally range from 20 to 30 inches, 

with a maximum of 32 inches near test section TS1 and a minimum of 13 inches south of 

TS4.  

Figure 2.4 shows plots of settlement vs. log time at survey points 16, 17, 18 and 

19, which are near the TS3&5 test section locations. The increasing slope of the curves 

indicates that the soil layer is still consolidating with a significant zone of virgin 

compression. The data in the figures also show that settlements were recorded more 

frequently during the first year (i.e., from 01/07/97 to 07/09/97). After that, only four 

subsequent readings were taken and scattered roughly once per year. Zero time, t0 is 

assumed by the author to occur at mid-point of the embankment construction 

(approximately 4 months after construction started). Settlements at the survey points 16, 
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17, 18, and 19 measured on 1/31/02 (about 5 years plus 2 months after construction) are 

about 20 ± 2 inches (equal to 1.5 to 1.8 ft). Measured settlements at test section TS3 and 

TS5 are ρm = sm = 1.65 and 1.57 ft respectively (Ladd, 2002). Note that these measured 

settlements were recorded on the flood wall, which was constructed after the end of 

placement of embankment fill. 

However, changes in elevation of the Concrete Pavement indicate that the actual 

total settlement at TS3 and TS5 is about 1 to 1.5 ft larger than the measured wall 

settlements. At TS3, boring B3/I3 at centerline of NHPL shows the elevation of the top of 

the pavement in February 2002 at -4.1 ft, while for virgin ground (on Line 1 and 4) the 

elevation of the pavement top is -1.5 ft. Therefore, the difference in pavement elevation is 

estimated to be about 2.6 ft, and this is considered the actual total settlement. Similar data 

gives an actual settlement at TS5 of about 3.2 ft.  

Borings at Line 3&1 TS3 TS5 

Top Pavement elevation Line 3 (ft) -4.1 -5.0 

Top Pavement elevation Line 1 (ft) -1.5 -1.8 

Change in elevation (ft) - 2.6 - 3.2 

 

Therefore, about 1 to 1.5 ft of settlement is believed to have occurred prior to the 

first reading of wall settlements. This added settlement occurred either during placement 

of the levee fill (initial settlement due to undrained shear deformation) or between 

completion of the levee and the first elevation reading on the levee wall (consolidation 

settlement) or a combination of both sources of settlement (Ladd, 2002). 
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2.4  Stress History of Bay Mud 

2.4.1 Virgin Ground (Free Field) 

The vertical preconsolidation stress profile for virgin ground was investigated at 

many locations along the NHPL using in situ field vane (FVT) data and at two locations 

with laboratory consolidation tests. Figure 2.5 shows all results of σ’p(FV) and laboratory 

σ’p for the free field condition. The σ’p (FV) profile was estimated using the SHANSEP 

technique in Equation 2.1 with coefficients S= 0.25, m = 0.85 and Bjerrum’s field vane 

correction factor µ=0.8 (for an average Bay Mud Ip=50%). The σ’p results from CRSC 

tests on samples at TS3-B1 and OED tests on samples at ES2A-B1.5 are also plotted in 

the figure to compare with field vane data. The figure also shows a typical overburden 

vertical effective stress profile, σ’vo for reference. 

The data in the figure shows that the σ’p(FV) profiles at the different locations 

along the levee are very consistent, except at TS4 where the σ’p(FV) profile is higher 

than typical, especially above elevation -20 ft. Figure 2.1 shows that TS4 is located at the 

far south-end of the NHPL, far from TS3 and TS5. The mean σ’p(FV) profile for the free 

field condition therefore excluded data from TS4. Figure 2.5 and Figure 2.6 show that σ’p 

data from CRSC tests are in good agreement with the mean σ’p(FV) profile, whereas 

OED data at two locations are significantly less than the mean σ’p(FV) profile (the lower 

σ’p from OED tests probably resulted from a combination of lower sample quality and 

use of 24 hr load increments). On the other hand, the CRSC σ’p may be about 10% too 

high due to the strain rate (dε/dt = 0.72 %/hr) used to run the CRSC tests as suggested by 

Mesri and Feng (1992) [Ladd, 2002]. 
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The data on Fig. 2.5 show that the Bay Mud Crust (top few feet of Bay Mud) is 

highly overconsolidated with OCR in the range of about 6.5 down to 2.5. The soft Bay 

Mud at greater depth is slightly overconsolidated with OCR = 1.5 - 2.0. 

 

2.4.2 Beneath NHP Levee 

The stress history of the Bay Mud under the levee considers: values of σ’p from 

lab consolidation tests and field vane tests and the current consolidation stress (σ’vc) 

determined by subtracting the excess pore pressure (ue) measured by piezometers from 

the final consolidation stress (σ’vf) computed by a 2-D finite element analysis. Figure 2.7 

shows the ue profiles selected by URS (2003) at TS3 and TS5. The figure also plots 

values of ue computed by the Author from the piezometer data presented in Appendix H 

of the URS (2003) report. Note that ue is close to zero at the top and bottom of the soft 

Bay Mud.  

URS computed the current consolidation stress as follows: 

 

σ’vc = σ’vo + ∆σv - ue                               (2.2) 

Where 

• σ’vo = initial overburden stress;  

• ∆σv = change in total stress due to loading of embankment fill (stress distribution 

∆σv is computed using 2-D finite element – Plaxis code); 

• ue = selected excess pore water pressure profiles shown in Fig. 2.7 
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 Figures 2.8 a, b plot approximate profiles of preconsolidation stresses [σ’p(FV), 

σ’p (CRSC) and σ’p(DSS)], current consolidation stress (σ’vc), and final consolidation 

stress (σ’vf) at TS3 and TS5, respectively. The results show that σ’p from the CRSC and 

DSS tests are highly scattered about σ’vc, suggesting that the center of the Bay Mud is 

still consolidating with virgin compression. The σ’p(FV) data for µ = 0.8 are generally 

scattered about σ’vc within the central zone, but are much higher near the top and bottom 

of the clay. 

            

2.5  Consolidation Properties of Bay Mud 

2.5.1 Virgin Compressibility, CR  

Compressibility parameters of the Bay Mud were evaluated from the most reliable 

laboratory consolidation tests (i.e., the CRSC and CK0UDSS tests). Figure 2.9a 

summarizes URS reported values of virgin compression ratio, CR from these tests (not 

necessarily for the maximum slope) on Bay Mud at test section TS3 and TS5 both under 

the levee crest and for virgin ground (TS3-B1). The Compression Ratio, plotted as a 

function of elevation, for the Bay Mud Crust ranges from about 0.23 to 0.26 and CR of 

the Bay Mud ranges from about 0.25 to 0.45. URS selected CR=0.41 for consolidation 

analysis for both Bay Mud and Bay Mud Crust layers. 

Figure 2.9.b shows the variation of CR with water content. The data are scattered, 

but still show a reasonably consistent trend for increasing values of CR with increasing 

value of water content.  
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2.5.2 Recompression 

Figure 2.10a plots URS reported results of Recompression Ratio, RR from CRSC 

and DSS tests on Bay Mud as functions of elevation and Virgin Compression Ratio. 

There is considerable scatter in the data, with values of RR ranging from 0.019 to 0.038. 

URS selected RR = 0.04 for calculation of recompression settlements based on the 

empirical correlation RR = 0.1CR (typical range, RR/CR = 0.05 - 0.10, for many 

clays).However, the RR versus CR plot shows that the data are scattered about RR/CR= 

0.075CR.  

In Table 2-A of URS (2003), URS reported RR as well Swelling Ratio (SR) 

separately. Figure 2.10b plots SR data versus elevation and compares SR with RR from 

the CRSC tests. It should be noted that the CRSC tests did not have unload/reload 

cycles.2 Also, independent interpretations by Professor Ladd and the Author of RR from 

CRSC tests at boring TS3-B1 (virgin ground) as a function of σ’vc/σ’p are presented in 

Chapter 3.  

 

2.5.3 Coefficient of Consolidation (NC) 

Figure 2.11 plots Bay Mud coefficients of vertical consolidation, cv versus Liquid 

Limit compared with the commonly used correlation from DM-7.1 (NAVFAC 1982). 

Data are shown from CRSC and OED tests on samples from the NHPL levee and from 

other levees of the project. The plot shows cv values for both normally consolidated and 

overconsolidated Bay Mud. cv(NC) values of Bay Mud are highly scattered and  

                                                           
2 The author assumes that URS interpreted RR from the slope of the first loading curve in the DSS and 
CRSC tests.  
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generally fall on to well above the DM-7 mean-line. The average cv(NC) is roughly 10 

ft2/yr and most cv(OC) values are about 100 ft2/yr or higher. 

 

2.5.4 Coefficient of Permeability  

Figure 2.12 shows a typical plot of void ratio versus logarithm of vertical 

consolidation stress and hydraulic conductivity (permeability) from CRSC tests on Bay 

Mud during 1-D compression. The slope of e-logk curve defines the coefficient Ck = 

∆e/∆logk. The intersection between the Ck slope and the line of constant e0 defines the 

initial vertical hydraulic conductivity (kv0).  

URS selected Ck = 1.143 and initial values of hydraulic conductivities of kv0 = 

4.0x10-4 ft/day and kh0 = 8.0x10-4 ft/day for their Plaxis consolidation analyses of the 

NHP levee.   

  

2.6  Undrained Strength Properties of Bay Mud 

2.6.1 Overview of MIT CK0U Test Program 

Undrained shear properties of the Bay Mud were evaluated in the MIT laboratory 

using state-of-the-art testing techniques. The MIT testing program included many K0 

Consolidated - Undrained Direct Simple Shear (CK0UDSS) tests and several K0 

Consolidated - Undrained Triaxial Compression and Extension (CK0UTC/TE) tests to 

evaluate the anisotropic strength and deformation properties of Bay Mud. Undisturbed 

soil samples were consolidated using the SHANSEP technique (Ladd, and Foott, 1974) to 

simulate in situ anisotropic stress conditions (i.e., K0 condition) and then sheared 
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undrained in different modes of shearing (e.g., direct simple shear, DSS; triaxial 

compression, TC or triaxial extension, TE) to evaluate the stress-strain anisotropic 

properties of the Bay Mud.  

 
2.6.2 CK0UDSS 

Many DSS tests were run on Bay Mud at NHP levee and other levee segments 

around the entire project site. There were 7 tests run on Bay Mud samples at NHPL, one 

of them with OCR = 2 and the rest with OCR=1. In addition, DSS tests were run on 

samples taken along the alignment of North Levees 1 and 2 (N1, N2), which included 

tests at OCR = 2 and 3. For NC Bay Mud (OCR =1), all tests show fairly consistent 

normalized undrained strength ratios, τ/σ’vc at maximum stress ranging from 0.23 to 0.26. 

At OCR = 2 and 3, the average undrained strength ratios increased to 0.47 and 0.57 

respectively. Detailed interpretation of the CK0UDSS tests will be presented in Chapter 3.  

 

2.6.3 CK0UTX 

Five CK0UTX tests were run on Bay Mud at NHP levee. Three of them were 

triaxial compression (CK0UTC) and the other two were triaxial extension (CK0UTE). The 

test samples were taken at the middle zone of Bay Mud layer, namely at El. -18.1 ft at 

TS5 (under the levee crest) and at EL. -21.1 ft at TS3 (virgin ground). All five samples 

were tested at OCR = 1. The results from the tests show that the undrained strength ratio 

in compression mode (TC) is 0.348 ± 0.032 and in extension mode (TE) is 0.274 ± 0.016. 

For the three compression tests, the minimum value of friction angle is φ’tc = 38.70
 and 

the maximum value is φ’tc = 540. The friction angle measured at εa = 10% for the two 
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extension tests are φ’te equal to 600
 and 780. Detailed results of the triaxial tests will be 

presented in Chapter 3.  

In summary, two of the three TC tests and both TE tests gave undrained strength 

ratios and friction angles much higher than expected based on typical behavior as 

summarized in Ladd and DeGroot (2003).  

 

2.7  Settlement Analyses by URS 

2.7.1 Methodology 

URS used the same format and principles in Equation 1.1 to calculate 

consolidation settlements of the NHPL, namely: 

 
' '

' 'log logp vc
c i

vo p

H RR CR
σ σρ
σ σ

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦
∑                      (2.3) 

where ρc = predicted consolidation settlement at current vertical effective consolidation 

stress σ’vc , Hi = initial layer thickness, σ’v0 = initial vertical effective stress, σ’p = 

preconsolidation stress, RR = Recompression Ratio, CR = Virgin Compression Ratio.  

In Equation 2.3, σ’vc = σ’vf – ue, where σ’vf = σ’v0 + ∆σv. Also note that σ’vc replaces σ’p 

if the soil remains overconsolidated. The current vertical consolidation stress, σ’vc is 

computed as in Equation 2.2.  

 

 The soil properties selected by URS for predicting settlements at 5 test sections 

(TS1 to TS5) using Equation 2.3 are:  

- Recompression Ratio: RR = 0.04;  
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- Virgin Compression Ratio: CR=0.41; 

- Bjerrum’s correction factor µ = 0.8 for PI = 50% selected based on agreement 

between the computed σ’p(FV) and σ’p data from CRSC tests;  

- Preconsolidation stress profile: σ’p= mean σ’p(FV) profile at 7 test locations for 

the free field condition (see Fig.2.5); 

- Total unit weights used to calculate the initial and final stresses: Levee Fill = 129 

pcf, Pavement Slab = 150 pcf, Riprap =135 pcf, Fill = 130 pcf, Bay Mud Crust = 

100 pcf, and BM = 92 pcf; 

- Water table at EL. = - 5.0 ft. 

The URS (2003) report does not show the soil profiles used for the 1-D consolidation 

settlement analyses at the 5 test section locations. However, Professor Ladd was provided 

the spreadsheets used for the settlement calculation from which he developed the soil 

profiles shown in Fig. 2.15. 

 

2.7.2 Analyses at TS3, TS5 and Other Locations 

Stress histories used in settlement calculations are evaluated in Fig. 2.13 for TS3 

as follows: 

- Line No.1 = Preconsolidation stress σ’p(FV)  computed with correction factors µ=0.8 

and 0.6 based on the mean FV data of test locations along the NHPL levee (free field 

condition); 

- Line No.2 = Current vertical consolidation effective stress σ’vc (= σ’vf - ue), where σ’vf 

is the final consolidation stress (σ’vf = σ’vo + ∆σv) computed with Plaxis, ue = current 
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excess pore water pressure measured from the field piezometers data (e.g., the URS 

profiles in Fig. 2.7); 

- Line No.3 = initial effective overburden stress (σ’vo); 

- Line No.4 = Final consolidation stress (σ’vf) computed from Plaxis accounting for fill 

stiffness and increased modulus of the concrete slab and the Bay Mud Crust; 

- Line No.5 = Current σ’p(FV) computed with µ=0.8 and 0.6 from FV tests run under the 

crest of the levee. This line is not used for calculating ρc, but is shown for perspective 

since it theoretically should not exceed Line 1, except where σ’vc is greater than Line 1 

(Ladd, 2002).  

 The shaded zones are where the soil is normally consolidated because the current 

consolidation stress profile (σ’vc) surpasses the virgin preconsolidation stress σ’p(FV) 

profile. For µ=0.8, this virgin compression zone occurs near the top of the Bay Mud and 

is roughly only about one third of the Bay Mud thickness. Therefore, about 2/3 of the Bay 

Mud thickness would be in recompression range, and some 60% of the computed ρc for 

the mean µ=0.8 profile comes from recompression rather than virgin compression (Ladd, 

2002).  

 The virgin compression zone is significantly increased, as shown in Figure 2.13b, 

when reducing µ =0.8 to µ=0.6, which decreases the estimated σ’p (FV) profile by 29%. 

This reduced σ’p profile is significantly lower than the laboratory σ’p results from high 

quality undisturbed samples and high quality lab CRSC tests. In addition, using µ = 0.6 

also predicts a σ’p(FV) profile under the levee that is less than the current effective 

consolidation stress (σ’vc), which is not consistent with reality. 
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 Figure 2.14 shows the correlation between the field vane correction factor, µ 

versus computed settlement for mean σ’p(FV) profiles at TS3 and TS5. Computed 

settlements corresponding to three values of µ (0.8, 0.7 and 0.6) are plotted to establish a 

line from which one can determine the value of µ = µa, at which the measured settlement, 

ρm equals the computed settlement, ρc. The results show that, in order to match the 

measured and the computed settlements, the required FV correction factors are µa = 0.66 

for TS3 and µa = 0.65 for TS5.  

 Figure 2.15 summarizes the results of measured versus predicted settlements for 

mean σ’p(FV) profiles at TS1 through TS5. The figure shows, at each test section, the soil 

profile, measured settlement (sm = ρm) at 01/31/02, computed consolidation settlement for 

µ=0.8 (ρc), and the derived value of µa leading to agreement between measured and 

predicted settlement (Ladd, 2002).  

 For the TS3 levee with thickness H=11.0 ft, elevation of the bottom of the crust = 

-9.5 ft, and thickness of the soft Bay Mud T=32 ft: the measured settlement ρm = 1.65 ft, 

computed settlement for µ =0.8 ρc = 0.61 ft, meaning the measured settlement equals 2.7 

times the computed settlement, and the derived µa = 0.66.  

For the TS5 levee with thickness H=11.5 ft, elevation of the bottom of the crust = 

-10 ft, thickness of the soft BM T=30 ft: the measured settlement ρm = 1.57 ft, computed 

settlement for µ=0.8 ρc = 0.58 ft, meaning the measured settlement again equals 2.7 times 

the computed settlement and the derived µa = 0.65. Figure 2.15 also shows values of µa at 

the three other locations, these being lower than computed for TS3 and TS5 with  µa = 

0.57 to 0.60 (latter based on σ’p (FV) at TS4 rather than the mean for NHPL).  



 

63  

   

2.8  Discussion 

In general, for all test sections, the computed settlements for σ’p(FV) using µ=0.8 

are some three to four times less than the measured settlements. Note that: (1) the 

measured settlements had not even taken into account the 1.0 to 1.5 ft of settlement that 

probably occurred before measuring the wall settlement; and (2) µ = 0.8 presents the 

“best estimate” σ’p profile. In conclusion, the very large discrepancy between measured 

and calculated settlement was “entirely unexpected” (Ladd, 2002). 

To proceed with the design of the new Containment Dike and Hydraulic Fill, URS 

selected a reduced preconsolidation stress profile equal to 80% of the µ = 0.8 field vane 

preconsolidation stress profile, i.e., a design σ’p = 0.8σ’p(FV), which corresponds to 

using µa = 0.662. The consolidation – deformation analyses were done using the finite 

element code Plaxis with the Soft Soil Model. 

 

 It was highly unusual and unexpected that the measured settlements of the NHP 

levee were several times larger than predicted from conventional one-dimensional 

settlements calculations given the comprehensive, state-of-the art field and laboratory 

testing programs that had been used to characterize the stress history and compressibility 

parameters of the soft Bay Mud layer. 

 Professor Ladd in his 2002 report thoroughly assessed potential reasons that might 

have caused this large discrepancy. His assessment and discussion focused on: (1) 

potential errors in parameter selection for settlement calculations using Equation 2.3 

assuming Hypothesis A and that the measured wall settlements closely approximate 1-D 
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consolidation of the Bay Mud below the levee (i.e., ignoring settlement due to lateral 

deformations); (2) the decrease in σ’p when applying Equation 2.3 according to 

Hypothesis B; and (3) potential increases in the total settlement of the levee due to lateral 

shear induced deformations because of undrained shear strains during initial loading 

(initial settlement), which also would continue to increase with time due to undrained or 

partially drained creep. 

 As noted above, to achieve agreement between predictions and the measured 

settlements, URS reduced the best estimate preconsolidation stress (σ’p) profile derived 

from field vane tests by 20%, which corresponds to µa = 0.65. This reduction in σ’p, 

which significantly increases the predicted settlement due to virgin compression, is 

consistent with proponents of Hypothesis B for Cα/CR = 0.045 and assuming that creep 

starts at one day. Hypothesis B assumes that secondary compression (1-D creep) occurs 

throughout primary consolidation, which displaces the in situ compression curve to the 

left of the laboratory curve, and therefore reduces the in situ σ’p.  

 According to Ladd (2002), although Hypothesis B provides a theoretical basis for 

reducing σ’p in settlement predictions, a “more likely explanation” lies in lateral 

deformations of the Bay Mud. It is well established that two-dimensional loads on soft 

clays, similar to the NHPL, will produce undrained shear deformations that can be 

significant with highly plastic, organic clays such as the Bay Mud (e.g., Foott and Ladd, 

1981). These soil types also are likely to be highly creep susceptible, meaning that the 

lateral deformations continue to increase during the consolidation process, and therefore 

generate settlements greater than predicted for 1-D consolidation. However, increased 

settlements due to creep-type lateral deformations cannot be reliably predicted. 
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 The thesis therefore will perform finite element analyses using a simple soil 

model to evaluate the potential values of initial settlements during construction, to look at 

rates of consolidation settlement, and to assess the effect of varying preconsolidation 

stress profile. It also will re-evaluate the soil properties and soil profiles selected by URS 

(2003), both for simple 1-D consolidation analyses and the more complex finite element 

analyses.
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Table 2.1  Summary of Field Tests – Geotechnical Exploration and Measurements for NHP Levee 

 
Tasks Technique/contractor Quantity Remarks 

 
FIELD WORK    
Borings with sampling along 
the alignment of NHPL 

Rotary wash drilling; 
Dames  Moore U-
sampler, Pitcher 
sampler, Dames & 
Moore Piston Sampler, 
and SPT 

19 bore holes Taking undisturbed samples typically at 5 ft depth intervals in Bay 
Mud borehole logs; 
Dames&More Piston Sampler used to get undisturbed sample (2.5 
inches in diameter and 18 inches long –brass tubes) for laboratory 
tests.  Also some 3” φ Osterberg sampler for MIT DSS tests. 
 

Field vane tests Geonor device 20 locations - Undrained shear strength and stress history spatial  variations under 
and adjacent to levee; 
- Field vane correction factor µ = 0.8. 

CPTU tests (piezocone 
penetration tests)  

Nk = 16 7 locations - Tip resistance, side friction, pore pressures used mainly to provide 
information on stratigraphy and strength; 
- Pore pressure dissipation proved the sandy layer under the BayMud 
is a draining layer. 

Downhole geophysical tests Redpath Geophysics of 
Murphys, California 

4 locations, in 
the area of the 
proposed new 
test fill 

- Compression and shear wave velocities; SFBM has shear wave 
velocity = 255 to 270 ft/sec (free field) 
-Deposit stratigraphy.  

Instrumentation: Piezometers, 
inclinometers and Sondex 
devices 

URS 6 test sections, 
26 piezometers, 
2 inclinometers, 
2 Sondex 
systems 

- Pore pressures, lateral deformation, vertical settlement profiles; 
-TS3 and 5 at proposed test fill area. 
 

Prior settlement monitoring 
program after construction of 
NHPL  
From Oct. 96 to Jan. 31, 2002 

City of Novato 32 points, 200-
foot spacing 
along the NHPL 
alignment 

- Settlement markers were installed on the floodwall (about 3.0 ft 
away from center of the levee crest) 
- Baseline readings were taken between Oct. 7 and Dec. 4, 1996 
- Between baseline and Jan. 2002, 11 sets of readings were taken 
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Table 2.2 Laboratory Testing on Bay Mud for NHP Levee 

 

Tasks Technique/contractor Quantity Remarks 
 

LAB WORK MIT 
Signet Testing Lab 
(URS) 

  

Index tests (Atterberg limits, 
grain size analyses, moisture 
content, specific gravity and 
density ) 

- ASTM D422, D 1140, 
D 4318, D 2216, D2937 

All tubes  

X-rays  MIT All tubes tested 
at MIT 

All tubes sent to MIT for X-rays for assessing microfabric and sample 
quality 

Consolidation tests (CRSC)   
Conventional incremental 
Oedometer tests  

ASTM D 4186, MIT 
ASTM D 2435, Signet 

22 CRSC  
16 OED 

Compressibility and hydraulic conductivity parameters and stress 
history  
Casagrande and Becker et al. (1987) strain energy techniques for σ’p 

CK0U-DSS ASTM D 6528, MIT 7 DSS 
CK0UTC/TE ASTM D 4767, MIT 3 TC 

2 TE 

SHANSEP technique with values of S & m; DSS also provided 
compressibility and σ’p 
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Table 2.3 Summary of Index Tests on Levee Fill and Natural Soils (From URS 2003) 

 

Soil unit Total Unit weight 
γt, [pcf] 

Total Unit weight
Chosen for 

Analysis by URS 
γt, [pcf] 

Moisture 
Content 
ωn [%] 

Liquid 
Limit 

ωL [ %] 

Plasticity 
Index 
Ip [%] 

Levee Fill 126.3 ± 9.8 130 16.8 ± 11.4   

Concrete Pavement  150    

Bay Mud Crust 99.8 ± 4.5 100 65.3 ± 16.5 95.5 ± 15.2 53.2 ± 11.7 

Bay Mud 92.4 ± 4.1 92 93.7 ± 22.4 109.8 ± 43.4 (1) 62.6 ± 22.7 (2) 

Alluvial Soils 
(Stiff Clays) 120.7 ± 9.0 120 33.6 ± 14.0 45.8 ± 20.7 23.7 ± 15.2 

Dense Sand  130    

Old Bay Mud  130    

 
(1) Includes 2 tests with wL = 220 and 236. If these are excluded, mean wL = 95.0%. 

(2) Includes 2 tests with IP = 114 and 131. If these are excluded, mean IP = 55.1%.
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Figure 2.1 Plan of NHPL with Location of Test Sections 
[Modified from URS (2003)]

TS1

TS2

TS4

TS3

TS5 

Test Section 
Area 

ES2
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Figure 2.2 Plan of Test Section Area with Borings, Field Tests and Instrumentation 

[From URS, 2003]

Free Field Condition = Virgin Ground: 
Line 1 and Line 4 
Under Crest of Levee = Line 3 
At Toe of Levee = Line 2 and Line 4’ 
 
GS Elevation at Free Field: -1.6 ft 
GS EL.at the crest of NHPL: +6.9 ft 
WT. Elevation: - 4.5 ft 

Flood Wall 
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Figure 2.3 Settlement Data, Thickness of Bay Mud, Test Section Locations and Settlement Survey Points along NHP Levee 
 

[From URS, 2003 and Ladd, 2002] 
 

Note: Time zero equals 10/07/96 to 12/04/96 for points 1 to 32 
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LOG [time (days)]  

(Since 11/11/96)                                         
 

Figure 2.4a Settlements vs Log[time] at Survey Points Near Test Section TS3&TS5  
(From URS, 2003) 
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Figure 2.4b Settlements vs. Log[time] at Survey Points Near Test Section TS3&TS5 (Modified Plot) 
(Modified from URS, 2003) 
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Figure 2.5 Summary of NHPL Free Field σ’p(FV) for µ=0.8 and Laboratory σ’p 
 

[From URS (2003) and Ladd (2002)] 

σ’p mean profile 

σ’vo 
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Figure 2.6a Stress History at TS3, Comparison of µ =0.8 σ’p(FV) vs. σ’p(CRSC) 
 

[From URS (2003) and Ladd (2002)] 
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Figure 2.6b Comparison of µ=0.8 σ’p(FV) with σ’p from CRSC  
and Oedometer Tests at S2-B3 (South Levee) 

 
[From URS (2003) and Ladd (2002)] 
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Figure 2.7 Excess Pore Pressure Measured at TS3 & TS5 [From URS (2003) for Period, 
Jan-Mar, 2002] 
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Figure 2.8a Stress History under Crest of Levee at TS3 
[From URS (2003) and Ladd (2002)] 
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Figure 2.8b Stress History of under Crest of Levee at TS5 

 
[From URS (2003) and Ladd (2002)]
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Figure 2.9a Water Content and Virgin Compressibility of NHPL Bay Mud vs. Elevation 
[Data from URS (2003)] 
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Figure 2.9b Virgin Compression Ratio vs. Natural Water Content of NHPL Bay Mud 
[Data from URS (2003)] 
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Figure 2.10a Recompression Ratio, RR vs. Elevation and CR (Virgin + Under Levee Crest) 
[Data from Table 2-A, URS (2003)] 
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Figure 2.10b Swelling Ratio, SR vs. Elevation and RR 
[Data from Table 2-A, URS (2003)] 
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Figure 2.11 Coefficient of Consolidation vs. Liquid Limit for Bay Mud at NHPL and Other 
Levees 

[From URS (2003)]

Liquid Limit, wL % 
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Figure 2.12 Coefficient of Permeability: Typical e-logσ’vc-logk Curves from MIT CRSC Tests on NHPL Bay Mud  
(For CRS435, TS3-B1, El. – 26.5 ft) 
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Figure 2.13 Stress History for Settlement Analyses  
at TS3 for Mean Profile σ’p(FV) at Two Different Correction Factors, µ = 0.8 and 0.6 

[From URS (2003) and Ladd (2002)]

 

 
a)  µ = 0.8 

b)  µ = 0.6 
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TS3                                                                                                                                             TS5 
 
 

Figure 2.14 Field Vane Correction Factor vs. Computed Settlement for Mean σ’p(FV) Profiles: TS3 and TS5 
 

[From URS (2003) and Ladd (2002)] 
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      WT EL. =-5.0 ft 

 
 

Figure 2.15 Comparison of Cross-Sections and Measured vs. Predicted Settlements for Mean σ’p(FV) Profile at TS1 Through 
TS5 

[From URS (2003) and Ladd (2002)]
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CHAPTER 3  

REANALYSIS OF THE CONSOLIDATION AND 

DEFORMATION BEHAVIOR OF THE NHP LEVEE 

 

3.1  Introduction 

This chapter presents a detailed independent reanalysis of the settlement of the 

NHP levee using the same techniques as URS (2003). The Author reexamines the soil 

properties; makes conventional 1-D consolidation settlement calculations; and performs 

parametric, 2-D non-linear, finite element analyses using the Plaxis code. 

Section 3.2 interprets mechanical properties of the Bay Mud from available field 

and laboratory data for use in the subsequent 1-D and 2-D settlement analyses. In this 

section, the Author re-evaluates the soil profile and stress history for virgin ground at two 

test sections, TS3 and TS5, and revises the interpretation of the consolidation and 

undrained shear strength properties of the soft Bay Mud.  

Section 3.3 focuses on reanalysis of the settlement of the NHP levee using the 

same 1-D consolidation settlement calculation procedures as URS, but with revised soil 

properties. The calculations are based on a direct estimate of the vertical effective stress 

profile obtained from the in-situ pore pressures measured in early 2002 (i.e., 5.2 years 

after the end of construction) and the total vertical stress at the end of consolidation based 

on fully drained 2-D finite element analyses. One-dimensional consolidation settlement 

calculations are then presented using both the best estimate and reduced preconsolidation 

stress profiles.  
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Section 3.4 introduces the Soft Soil Model (SSM) in PLAXIS to characterize the 

behavior of Bay Mud in nonlinear FE analyses. One-dimensional consolidation and 

undrained strength behavior of Bay Mud were simulated with SSM and compared with 

laboratory results from consolidation and CK0U shear tests.  

Section 3.5 presents results of the 2-D reanalysis of the NHP levee performance, 

including consolidation settlement, undrained shear induced settlement, horizontal 

displacement, excess pore pressure and consolidation  stress using PLAXIS with SSM for 

the Bay Mud.  

In addition, there are four appendixes, that include data on laboratory tests on Bay 

Mud, the Author’s 1-D consolidation calculations, PLAXIS calculation of boundary 

conditions for the NHPL levee analyses, and details of an analysis to replicate the URS 

calculations. 

 

3.2  Reexamination on Soil Properties for Bay Mud 

A detailed study of the engineering properties of Bay Mud was carried out to 

check the interpretations presented by URS (2003), and to provide a more reliable basis 

for reanalyzing the settlement of the NHP levee. The main focus is on the properties that 

control the consolidation settlement of the ground including stress history, 

compressibility, hydraulic conductivity, and strength properties of Bay Mud. The 

reexamination combines previously published results on Bay Mud properties, including 

the URS (2003) geotechnical site investigation report, and data from an extensive 

program of tests carried out at MIT (Germaine, 2002, 2004).  
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3.2.1 Soil Profile and Stress History for Reanalysis 

In Chapter 2, the Author summarized the URS soil profile (URS, 2003) and stress 

history of the Bay Mud beneath the crest and in the free field along the NHP levee 

alignment, focusing on the two instrumented test sections TS3 and TS5. In this section, 

the Author presents an independent assessment of the soil profile and stress history of 

virgin ground at TS3 and TS5 for the reanalysis. 

Figure 3.1 shows the selected soil profile and stress history for the free field 

condition. The soil profile was based on careful evaluation of all boring logs in the area, 

which include those presented in URS(2003) plus additional borings made for 

instrumentation installed for the test fill constructed in 2005 [URS/ARUP (2005)]. The 

ground surface is at elevation, EL. -1.6 ft with respect to the Mean Sea Level (MSL) 

datum3. The average water table is at EL. -4.5 ft. The profile comprises (Fig. 3.1):  

- 4.6 ft thick stiff old concrete pavement (EL. -1.6 ft to -6.2 ft) subdivided into: 

+ 2.9 ft thick layer of concrete (EL. -1.6 ft to -4.5 ft) with total unit weight, 

γt = 150 pcf; 

+ 1.7 ft thick layer of basecoarse (EL. -4.5 ft to -6.2 ft) with total unit 

weight, γt = 145 pcf; and buoyant unit weight4, γb = 82.6 pcf; 

- 3.8 ft thick Bay Mud Crust layer (EL. -6.2 ft to -10.0 ft) with total unit weight, γt 

= 99.8 pcf, (γb = 37.4 pcf). The Bay Mud crust is stiff; 

- 31.5 ft thick of Bay Mud layer (El. -10.0 ft to -41.5 ft) with total unit weight, γt = 

92.7 pcf, (γb = 30.3 pcf). The Bay Mud is soft, highly compressible, with high 

void ratio, low hydraulic conductivity and low undrained shear strength; 

                                                           
3  MSL datum = Old (NGVD) used by URS (2002, 2003) 
   After 2003, URS uses new datum = NAVD(1988) = Old (NGVD) + 2.70 ft  
4 Assuming fresh water γw = 62.4 pcf. 
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- Alluvium (below El.-41.5 ft), very stiff, considered incompressible. The Alluvium 

probably has a higher hydraulic conductivity than the overlying Bay Mud. 

The right hand side of Fig. 3.1 shows:  

(1) In-situ overburden stress profile, σ’v0, assuming hydrostatic pore pressure 

conditions as measured by piezometers in free field conditions (URS, 2003); 

(2) Preconsolidation stress data computed from CRSC tests, σ’p(CRSC) at test section 

TS3;  

(3) Preconsolidation stress data computed from Field Vane tests, σ’p(FV) at test 

sections TS3 and TS5 based on the method proposed by Chandler (1988);  

(4) The selected mean profile of the preconsolidation stress, σ’p(average) represented 

by the dashed line. This average profile also equals the mean profile that URS selected 

for their analyses. It is important to note that this selected mean profile of the 

preconsolidation stress is consistent with the Field Vane data in the BM Crust, but is 

biased towards the lower bound of the FV data within the Bay Mud.  The CRSC 

preconsolidation stresses are lower than the mean FV profile in BM Crust, but are 

scattered about the mean profile at depth. Given the high quality of the CRSC test 

samples and testing techniques, and the good agreement with the mean σ’p (FV) line, this 

profile has been selected as the “best estimate”. 

Table 3.1 summarizes laboratory results for CRSC tests at TS3 in free field condition. 

There are seven samples located at depth intervals of approximately 5 feet from boring 

TS3-B1, including one sample in the Bay Mud Crust and six samples in the Bay Mud 

itself. The first three columns of Table 3.1 present Specimen Location information 

including test number, sample elevation, and in situ overburden stress (from Fig.3.1). The 
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following columns present Specimen Data with information on the specimen initial 

conditions, including natural water content (wn), total unit weight (γt), void ratio (e0), 

degree of saturation (S), liquid and plastic limit (ωL,ωp), plasticity index (Ip), and vertical 

strain measured for reconsolidation to the vertical overburden stress (εv%@σ’v0). Values 

of the vertical strain at the vertical overburden stress are an index that has been proposed 

for assessing sample disturbance, and hence test quality (e.g., Ladd and DeGroot, 2003). 

The strains at vertical overburden stresses of the tests are generally less than 2 %, 

indicating high quality samples. The other columns in the table present main results 

selected by the Author from the CRSC tests including compressibility parameters (RR, 

CRmax, and Cc max), preconsolidation stress (σ’p), vertical initial hydraulic conductivity 

(kv0), coefficient of change in permeability (Ck), and coefficient of consolidation for 

normally consolidated Bay Mud cv(NC). The shaded cells show values of compressibility 

parameters and σ’p selected by URS for comparison. The Author used the both the 

Casagrande (1936) and the Strain Energy method by Becker et al. (1987) to select values 

of the preconsolidation stress. Methods for selecting RRmax, Ck and kv0 are discussed in 

the following sections. Detailed data and plots of the CRSC tests are presented in 

Appendix A. 

 

Table 3.2 summarizes the reevaluation of field vane test data to characterize the 

in-situ undrained strength profile and preconsolidation stress profile using the URS 

method based on the SHANSEP equation and that proposed by Chandler (1988). 

Measured field vane shear strengths, su(FV) at two test locations TS3-V1 and TS5-V1 

were tabulated in URS( 2003).  
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URS used the SHANSEP equation (Ladd and Foott, 1974) to calculate 

overconsolidation ratio of the clay. Calculations of preconsolidation stress are based on 

Equations 3.1 to 3.3. 

.)(0374.03436.0)(' ELksfvo −+=σ   in BM Crust            (3.1a) 

.)(0303.04145.0)(' ELksfvo −+=σ    in Bay Mud                   (3.1b) 
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where: 

EL. = elevation in feet (NGVD datum ≈ MSL);  

µ = Field vane correction factor, URS selected µ = 0.8 as a function of Ip as discussed in 

Chapter 2; 

S = Undrained strength ratio for normally consolidated soil; URS selected S = 0.25 as 

discussed in Chapter 2 based on DSS test results; 

m = Empirical coefficient [m = dlog(su/σ’vc)/dlog(OCR)], URS selected m = 0.85. 

 The Chandler (1988) method was also used to determine preconsolidation stress 

profiles from the two field vane test locations TS3-V1 and TS5-V1 for comparison with 

the URS method. Calculations using Chandler (1988) are based on Equation 3.4. 
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where: 
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SFV  = Coefficient as a function of plasticity index, SFV = f(Ip); selected SFV = 0.297 for 

Bay Mud Ip = 58.5%. These results for σ’p were plotted in Figure 3.1 to characterize 

preconsolidation stress profile of the virgin ground. 

 The last column in Table 3.2 presents the ratio of σ’p computed by the URS and 

Chandler(1988) methods. In the BM Crust and several feet below the Crust, URS 

obtained higher values than Chandler by about 10% to 15% and reducing to 2% to 5% 

several feet below the Crust. Within soft Bay Mud below the crust from EL. -15 ft to -

41.5 ft, the two methods give very similar values of preconsolidation stress.  

In summary, reevaluating the stress history of the virgin ground has led to the 

following conclusions: 

1) Use of the Chandler (1988) method decreases σ’p(FV) by about 10 % at top Bay Mud 

(EL. -10 ft), but has negligible effect below EL. -15 ft with OCR generally ≤ 1.75.  

2) Within the soft Bay Mud, URS selected σ’p(FV) mean profile tends to be at the lower 

end of field vane data, except near EL. -14± 1 ft, where σ’p(FV) equals the selected mean 

profile.  

3) Within soft Bay Mud, three of the six CRSC σ’p are very close to the URS selected σ’p 

profile; 

4) Since the CRSC σ’p may be too high (since the strain rate used in these tests is higher 

than the strain rate at the EOP,
..

pv εε > ) by 7.5 ±3% (Ladd, 2002), there is some 

justification for using a lower mean σ’p below EL. -10 ft: 

• Approximately by ≈ 10 -15% at top of Bay Mud based on Chandler and 

one CRSC; 
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•  Approximately by ≈ 7.5 % below El. -15 ft based on reduced σ’p (CRSC) 

from 3 or 4 of the 5 tests. 

 

3.2.2 Index, Permeability and Compressibility Properties of Bay Mud 

Index properties 

Figure 3.2 summarizes the index properties of Bay Mud in the free field condition 

based on data from seven CRSC tests at boring TS3-B1. Index properties of Bay Mud 

plotted versus elevation include Atterberg limits (ωn, ωL, ωp), unit weight (γt) and initial 

void ratio (e0).  

 The plot of Atterberg limits versus elevation shows that only four Atterberg limits 

are available, with one in the Crust. Average values from the four tests give Liquid Limit, 

ωL= 97 ± 9 %, and Plasticity Index, Ip = 59.5 ±5 %. Note: if Atterberg limit data for Bay 

Mud below the NHPL Crest are included, one obtains ωL = 96 ±6%; Ip =58.5 ±4%. 

Average natural water content from six tests below the Crust is ωn =91.2±4.7%. Hence, 

the natural water content is close to the liquid limit in the soft Bay Mud. 

 The plot of total unit weight versus elevation (Fig.3.2) shows that the measured 

values within the Bay Mud are very consistent. The Bay Mud average total unit weight of 

92.1 pcf is slightly lower than the 92.7 pcf selected, which was computed from the 

average ωN for Si = 100% and Gs = 2.70.  

 Initial void ratio of the Bay Mud (Fig.3.2c) is relatively high and consistent 

through the Bay Mud depth, with an average e0 = 2.5 ±0.15.  
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Hydraulic Conductivity  

Figure 3.3a presents the in-situ vertical hydraulic conductivity properties of Bay 

Mud. Data for the three plots were interpreted from the 7 CRSC tests at TS3-B1 on virgin 

Bay Mud. The technique for estimation of kvo was discussed in Chapter 2 (Fig. 2.12). The 

average in-situ vertical hydraulic conductivity, kv0 = 4.75 ± 1.5x10-4 ft/day, while the data 

range from 3x10-4 ft/day to 6x10-4 ft/day, Fig. 3.3a.  

Horizontal hydraulic conductivity, kh0 for anisotropic marine clays is typically 

estimated based on: 

 

rk = kh/kv                                                                         (3.5) 

where rk ≈ (1.0 – 1.5) for marine clays (Ladd, 1998). 

The high salt content in the pore fluid of marine clays produces a flocculated micro-

structure, with low values of rk approximating nearly isotropic flow properties. For the 

Bay Mud, the Author generally selected kh ≈ 1.5 kv (upper bound) to estimate kh0, while 

URS used rk =2.0 in their analyses.  

It is noted that the hydraulic conductivity values computed from the CRSC tests 

are “intact” values on discrete samples, (i.e., they are representative for small uniform 

specimens of Bay Mud). Due to the fact that the CRSC tested samples were usually 

selected at “best quality” portions from a sample tube, the tested samples do not take into 

account possible effects of layers of more permeable soil and other aspects of macro-

fabric affecting hydraulic conductivity of a deposit. Thus, the in situ hydraulic 

conductivity of the deposit at macro-scale can have a higher values, rk and kh0 than 

selected by the Author. 
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 The middle plot in Fig. 3.3a presents permeability index (Ck) values interpreted 

from the same seven CRSC tests. By definition, Ck defines changes in the hydraulic 

conductivity with decreasing void ratio due to consolidation:     

 
kd

deCk log
=  

(3.6) 

                                                                                          

Results from seven CRSC tests show Ck =0.8 ±0.3. 

The last plot in Fig. 3.3a compares Ck to Cc and e0. The ratio of Ck/Cc is less than 

1.0 (about  0.5 on average), which indicates that cv(NC) decreases with increasing 

consolidation stress (Mesri and Rokhar, 1974). However, the CRSC tests on Bay Mud 

(Appendix A) show that cv(NC) generally remains constant. The ratio Ck/e0 ≈ 0.3, which 

is less than the lower limit of usual range of Ck/e0 = 0.33 – 0.50 (Ladd, 1998). 

The low values of Ck for Bay Mud may, in part, be related to the interpretation of 

the CRSC tests. These data generally do not show well-defined linear plots of e vs. logkv, 

which complicated selection of Ck (See Appendix A). 

 

Compressibility properties 

 Figure 3.3b summarizes the compressibility properties of the Bay Mud including 

the maximum virgin compression ratio, CRmax, and recompression ratio, RR. Note: The 

coefficient of consolidation for NC clay [Cv(NC)] will be discussed later. Data on the 

plots were obtained from the 7 CRSC tests on Bay Mud at TS3-B1. Values of CR = 0.40, 

RR = 0.06 above El. -20 ft; and RR = 0.12 at depth were initially selected by the Author 

for the 1-D settlement analyses of the NHP levee at sections TS3 and TS5.  
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URS (2003) and the Author have used very similar values for CR (CR = 0.41 and 

0.40, respectively) in their 1-D settlement analyses, but very different RR values 

throughout. URS (2003) assumed RR = 0.1 CR = 0.04 throughout the Bay Mud, while 

the Author selected much higher values based on a re-evaluation of the recompression 

behavior of the Bay Mud.  

As will be seen, the measured vertical consolidation stress, σ’vc, under the crest of 

the levee in early 2002 is close to the mean σ’p profile within most of the Bay Mud. 

Hence, there is a little virgin compression occurring within the clay, and the 

recompression parameter, RR, is critical in calculation of settlements. The next section 

describes the Author’s reevaluation of RR. 

Recompression Ratio from Normalized CRSC Stress-Strain Plots 

The approach assumes that sample disturbance did not affect the recompression 

behavior measured in CRSC tests at stresses greater than the overburden stress, σ’v0. In 

reality, disturbance does tend to increase the measured strains to some degree and hence, 

the derived values of RR from the CRSC tests represent an upper limit to the presumed in 

situ 1-D compression. However, since the CRSC tests did not include unload-reload 

cycles, and were run on high quality samples, this was the only reasonable approach for 

assessing RR. 

The Author plotted compression curves normalized by the overburden stress in 

both logarithmic and natural scales for the 7 CRSC tests at TS3-B1 to evaluate the 

recompression ratio for the Bay Mud. Figures 3.4a-g present the normalized CRSC 

stress-strain plots in the recompression range in εv versus log σ’vc/σ’v0 space. The plots 

start at ε0 = 0 at σ’v0 and end at σ’vc = 1.3 σ’p. These normalized plots allow one to 
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interpret and select appropriate values of RR by considering the value of the “current” 

σ’vc (i.e., that measured in early 2002) in relationship to the value of σ’p. Note that the 

“current” σ’vc is the average of the two profiles measured at TS3 and TS5. The first 

evaluation of RR used the mean σ’p(FV), leading to three conditions: (1) all 

recompression to σ’vc ≈ σ’p; (2) both recompression and virgin compression to σ’vc >σ’p; 

and (3) recompression to σ’vc <σ’p. Since settlement analyses were also made with 

reduced σ’p profiles, values of RR were also computed for σ’p = 0.8 and/or 0.9 times the 

mean σ’p(FV). 

The Author divided the seven CRSC tests into three categories as follows. 

(1) At locations where σ’vc ≈ σ’p: Three tests (CRS431, CRS443, and CRS444) at 

locations where the preconsolidation stresses are very close to the current in-situ  vertical 

consolidation effective stress, σ’vc under the Levee (refer to the stress history plot for 

consolidation settlement calculation in Fig. 3.12b, c). In detail, the normalized plots of 

the three tests (Fig. 3.4.a to 3.4c) show:  

-   Line 1 = Selected virgin compression line (VCL); 

- Line 2 = Maximum slope recompression line – this line goes from the 

overburden stress σ’v0 with zero strain through εv at the preconsolidation stress, σ’p = 

σ’vc; 

- Line 3 = Minimum slope recompression line – this line is tangent to the curve 

near the overburden stress, which gives the minimum value for recompression ratio 

(RRmin).  
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(2) At locations where σ’vc > σ’p, i.e. the in-situ vertical consolidation effective 

stresses are larger than the preconsolidation stress (CRS432 and CRS441 as in Figs 3.4d 

and 3.4e), the plots show:  

-  Line 1 = Virgin Compression line (VCL); 

- Line 2 = Recompression line for all recompression – this line goes through σ’vc 

(this line is not used); 

- Line 3 = Recompression line for recompression and virgin compression – this 

line goes through intersection between σ’p and the VCL; 

- Line 4 = Minimum Recompression line – this line is the tangent line near the 

overburden stress. 

(3)  At locations where σ’vc < σ’p as in Figs 3.4f and 3.4g, the soil experiences all 

recompression. The plots of the two tests CRS440 and CRS435 show: 

- Line 1 = Virgin compression line (VCL); 

- Line 2 = Recompression line – this line goes through σ’vc; 

- Line 3 = Minimum recompression line – this line is tangent to the curve near the 

overburden stress.  

Table 3.3a summarizes the evaluations and results of the recompression ratios for 

all seven tests, and Table 3.3b shows the selected values of RR for the 1-D and 2-D 

settlement analyses using both the mean σ’p(FV) and the reduced σ’p profiles. 
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Conclusions 

• Vertical strains at the overburden stress for the CRSC tests are ≤ 2 % (except for 

one test), indicating high quality samples. 

• CR selected by the Author (CR = 0.40) is essentially the same as that selected by 

URS (CR = 0.41).  

• It is critical to investigate recompression behavior by considering the current in-

situ effective consolidation stress compared to the preconsolidation stress since 

σ’vc ≈ σ’p within most of the deposit. In other words, the stress history in 

Fig.3.12b and c shows that settlement due to recompression plays a critical role in 

the overall recompression and virgin compression settlements of the clay. 

•  Reevaluation of the 7 CRSC developed RR values generally much larger than RR 

= 0.04 selected by URS (2003).  

 

3.2.3 Coefficient of Consolidation – Cv(NC) 

Figure 3.5 summarizes the values of coefficient of consolidation for normally 

consolidated Bay Mud [cv(NC)] from CRSC tests at TS3 and TS5 (Table 3.4, also see 

Fig. 3.3b for cv(NC) for the CRSC tests on virgin Bay Mud) in comparison to the 

established DM-7 correlation.  

The results show that Bay Mud has very high values of cv(NC) that, exceed the 

DM-7 mean line for an average Liquid Limit ≈ 95 %. In fact, the data are scattered about 

the lower limit line for OC clay. The average value for the Bay Mud cv(NC) ≈ 22 ft2/yr. 

The high values of cv(NC) suggest that the Bay Mud deposit will have a faster rate of 
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consolidation and a shorter time to end of primary consolidation (tp) than other 

comparable clays (i.e., having similar thickness and index properties). 

Plots of cv(NC) versus logσ’vc from the CRSC tests at TS3-B1 are shown in 

Appendix A for reference. These plots generally show that cv(NC) of Bay Mud is 

approximately constant with increasing σ’vc. This contradicts the data in Fig.3.3a since a 

Ck/Cc ratio less than unity predicts that cv(NC) decreases with increasing σ’vc.  

  

3.2.4 Coefficient of Earth Pressure at Rest, Ko 

Figure 3.6 plots K0 versus σ’vc (at both log and natural scales) from consolidation 

phases of five CK0U triaxial shear tests on specimens of Bay Mud. Individual plots of K0 

versus σ’vc of each test are shown in Appendix A. 

The plots show K0 decreases as the specimens are reconsolidated into the 

normally consolidated range. Within the normally consolidated range of effective stress 

K0(NC) = 0.44 to 0.50. The author selected K0(NC) = 0.47 as the mean value for the Bay 

Mud. In comparison, URS (2003) used K0(NC) = 0.62 for the Bay Mud in their analyses 

based on results of research done by University of California at Berkeley (URS, 2003). 

3.2.5 Strength Properties 

Figure 3.7 summarizes results of the undrained shear strength versus OCR from 2 

CK0UE, 3 CK0UC and 16 CK0UDSS tests on the Bay Mud from the NHP, N1 and N2 
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levees. Table 3.5 summarizes the results for the CK0UDSS tests and Table 3.6 

summarizes results for the triaxial shear tests5. 

At OCR =1, the mean value for the undrained shear strength ratio in DSS tests is 

SuDSS/σ’vc = Sd = 0.25; in TE tests, Se = 0.274, and in TC, Sc = 0.348. It is very unusual to 

measure a lower undrained strength ratio in the simple shear mode (Sd) than in triaxial 

extension.  

Interpretation of SHANSEP parameters (S and m) from results of the DSS tests 

shows that S =0.25 and m = 0.8. In comparison, URS used reasonable values of S = 0.25 

and m = 0.85 in their calculation of the preconsolidation stress from the field vane tests. 

Figure 3.8 presents typical results of CK0UDSS tests on Bay Mud including 

normalized shear stress versus shear strain, (Fig.3.8a), effective stress paths (σ’v/σ’vc vs. 

τ/σ’vc, Fig. 3.8b), and normalized modulus versus shear strain (Eu/σ’vc vs. γ; Fig. 3.8c). 

The three plots show results of three DSS tests at OCR = 1, 2, and 3. The two tests at 

OCR = 1 and 2 are at TS5-B3 location, while the DSS test at OCR = 3 is for the North 

Levee 1. 

Figures 3.9a and 3.9b plot results from all of the available CK0UC/E tests on K0-

consolidated specimens. The results of the tests are also summarized in Table 3.6. Two of 

the three CK0UC tests show a very high peak undrained strength ratio, su/σ’vc ≈ 0.37. The 

Bay Mud shows some softening in TC at axial strain exceeding 2-3%. The tests also give 

very high friction angles, especially in the extension shear mode. The author selected an 

average value of φ’tc = 470 for the Bay Mud. 

                                                           
5 DSS test data on the Bay Mud are available at OCR = 1,2, and 3, but only tests at OCR =1 are available 
for the TX tests. Noted that the figure uses the DSS tests at OCR=3 from the BM samples at the North 
levees because there was no sample from the NHP levee tested at OCR = 3 or higher. 
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Figure 3.9b plots results of undrained Young’s modulus from the same triaxial 

tests (Eu/σ’vc vs.⏐εa⏐%). The results show that Young’s modulus decreases sharply as the 

strain increases beyond εa ≈ 0.1%. At small strains (i.e., εa ≈ 0.001%) Eu/σ’vc = 170 to 

600. Thus, at εa = 0.001%, a minimum ratio of undrained Young’s modulus to strength 

(Eu/su) for normally consolidated Bay Mud is 680 for su/σ’vc = 0.25.  

 

3.3  Conventional 1-D Consolidation Settlement Analysis  

One of the efforts in the reanalysis of the NHP levee settlements is to calculate 

conventional 1-D consolidation settlements of the levee for comparison with the 

measured settlements. The Author computed 1-D consolidation settlements for the NHP 

levee using the same basic methodology as URS that was described in Section 2.7 of 

Chapter 2. This section presents the Author’s work on characterizing stress history for 

consolidation settlement reanalysis and recalculation of conventional 1-D consolidation 

settlements using the revised compressibility parameters (RR, CR). 

3.3.1 Final Consolidation Stress, σ’vf 

As described in Section 2.7, URS determined the consolidation vertical effective 

stress (σ’vc) based on measured excess pore pressures, ue recorded in early 2002, as σ’vc = 

σ’vf –ue. This section describes the process to get the σ’vf profile using finite element 

analysis code PLAXIS. 

The Author began FE analysis by assessing the effects of Young’s modulus and 

strength of the overlying concrete pavement on the final stress distribution under the 
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levee. A series of simulations were carried out assuming different elastic stiffness and 

strength properties for the pavement. 

 Figure 3.10 summarizes the computed vertical stress distributions beneath 

the centerline and toe of the NHP levee using different assumptions for the stiffness and 

shear strength of the pavement material. The ‘base case’ calculations consider E = 2x105 

ksf and compare solutions for an elastic pavement with those for an elasto-plastic 

pavement using the Mohr-Coulomb (MC) model (c = 4960 psf, φ’ = 350, ψ =20). The 

results show that yielding of the concrete pavement causes a significant increase in the 

centerline vertical effective stress, while reducing the stress beneath the toe of the levee. 

Further analyses were performed using reduced elastic stiffness for MC pavements with 

E = 2000 ksf and 500 ksf. These produce small changes in the computed stress fields 

(Fig. 3.10). 

A further three analysis cases (A, B and C) were carried out to evaluate the effects 

of the layers above the Bay Mud (i.e., Pavement, Base Course and Bay Mud Crust) on the 

overall stress distribution within the Bay Mud.  

 Case A analysis was carried out with an uncracked, continuous, and very stiff 

pavement and a stiff  BM Crust under the NHPL. Table 3.7a presents properties used in 

Case A analysis, including layers of the soil deposit under the NHP levee, and 

corresponding selected values of material parameters used in PLAXIS for calculating 

σ’vf. For soils other than Bay Mud, the Author used values from URS/ARUP (2005). The 

Mohr-Coulomb (MC) soil model was used for the levee Fill, Crust and Bay Mud layers 

while the Alluvium is assumed to be elastic. The Bay Mud profile was subdivided into 5 

ft sublayers with undrained strengths estimated based on SHANSEP with S = 0.25 and m 
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= 0.85. The undrained Young’s modulus profile for the Bay Mud was then estimated 

using the correlation, Eu = 200su. The calculations to obtain undrained shear strength and 

Young’s modulus for the Bay Mud in the analysis are presented in Table 3.7d. 

 Case B analysis was carried out with a cracked pavement and a stiff BM Crust 

under the NHPL. Table 3.7b presents the selected properties for Case B, which are the 

same as Case A except for the cracked pavement having a much lower cohesion (25 psf 

versus 4960 psf) and a slightly lower modulus. 

 Case C analysis was carried out with much lower strength parameters for the levee 

fill, cracked pavement, and BM Crust under the NHPL [i.e., properties in Table 6, URS 

(2003)]. Table 3.7c presents the selected properties used for Case C. 

 Figure 3.11a shows the geometry of the NHPL in Plaxis analyses for Case B and 

Case C, which has a cracked pavement under the levee and fill material at the toes of the 

levee. For Case A, there is only an uncracked and continuous pavement under the NHPL. 

 

 Figure 3.11b shows vertical profiles of σ’vf below the toe and centerline of the 

NHP levee from the there analysis cases (and also shows the URS (2003) σ’vf profile). 

The results show that Case C, with lower values of E and c’ for the BM Crust and the 

cracked pavement compared with Case A and Case B, produces higher stresses at 

centerline and lower stresses at toe of the levee. These changes in σ’vf (i.e., ∆σ’vf =0.1 – 

0.2 ksf) within the Bay Mud are due to the fact that the stronger pavement and fill in Case 

A & B causes more spreading of the load from the levee fill. 
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 The Author selected the Case C centerline σ’vf profile for calculating σ’vc for his 

1-D consolidation analyses. This profile is very similar to that used by URS (2003) in 

their spreadsheet analyses sent to Professor Ladd. 

  

3.3.2 Measured Excess Pore Pressure at TS3 and TS5 on Feb-Mar, 2002 

Figure 3.12a presents the measured excess pore pressure data at the centerline of 

the NHPL at TS3 and TS5 as computed by the Author in Table 3.8a. The figure also 

shows three ue profiles at TS3 and TS5 as follows. 

1) ue profiles selected by URS (2003) for their 1-D consolidation 

settlement calculations; 

2) First estimates by the Author using ue values scaled from URS (2003) 

report and labeled SH1. These were used for computing σ’vc as shown 

in Fig. 3.12b; 

3) Best estimates of ue profiles based on the piezometer data, SH2, used to 

compute σ’vc as in Fig. 3.12c (SH2). 

 There are significant differences in the interpreted ue at TS3 and TS5 between 

URS (2003) and the Author’s SH1 and SH2. For example, the maximum ue values at TS3 

and TS5 are summarized and compared in the table following. 
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Max. ue (ksf)Profile

No. 

Name 

TS3 TS5 

1 URS(2003) 0.42 0.54 

2 SH1 0.53 0.39 

3 SH2 0.48 0.365 

 

There are uncertainties in the measured ue data due to variable water table (or hs) 

assumptions and scatter in the data (e.g., ue within the upper Bay Mud at TS5) at the two 

test sections. Thus, it is difficult to define ue at TS3 and TS5 precisely. The Author and 

Professor C.C. Ladd developed the measured piezometer data during February to March,  

2002, as presented in Table 3.8a and 3.8b, for TS3 and TS5 respectively. The Author 

concludes that profiles SH2, which are based on these values of ue, should be the most 

realistic.  

 
3.3.3 Consolidation Stress Profiles, σ’vc at TS3 and TS5 

Vertical consolidation effective stress profiles (σ’vc) were calculated from the 

computed final vertical consolidation effective stress profiles (i.e., σ’vf in Fig. 3.11b) by 

subtracting the ue profiles plotted in Fig. 3.12a as follows.  

Figure 3.12b shows σ’vc profiles at TS3 and TS5 computed with the lower σ’vf 

(i.e., Case A&B σ’vf analysis) and the higher SH1 for ue. 

Figure 3.12c shows σ’vc profiles at TS3 and TS5 computed with the higher σ’vf 

(i.e., Case C σ’vf analysis) and the lower SH2 for ue.  
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Therefore, the consolidation stress profile σ’vc at TS3 and TS5 for SH2 (Fig. 

3.12c) are higher than those of SH1 (Fig.3.12b). In addition, consolidation stress profiles 

at TS3 and TS5 used by URS (2003) are shown in Fig.3.12c for comparison. 

 

3.3.4 Stress History Profiles for 1-D Settlement Calculation  

Figures 3.12b and 3.12c present two consolidation effective stress history profiles 

(SH1 and SH2) for 1-D settlement calculations.  

SH1 in Fig.3.12b summarizes the initial overburden stress profile for virgin 

ground (σ’v0); the selected preconsolidation stress profiles (σ’p; 0.9σ’p; and 0.8σ’p); the 

computed final consolidation stress profile (σ’vf) from Case A; and the vertical 

consolidation effective stress profiles at TS3 and TS5 at time 1/31/02 (σ’vc) computed 

from the SH1 ue data. The figure shows that for the best estimate σ’p profile, there is only 

a small zone of virgin compression in the Bay Mud (i.e., from EL. -12.5 to - 20 ft for TS3 

and -12 to -23.5 ft for TS5 where σ’vc > σ’p), while the rest of the deposit has only 

recompression. Hence, a large portion of the levee settlement would be due to 

recompression settlements. Reducing the preconsolidation stress profile will obviously 

increase the virgin compression zone in the deposit, and therefore increase the predicted 

consolidation settlement. The selected soil profile and values of RR and CR are presented 

in the figure for reference. 

Figure 3.12c shows the same information, but the σ’vc profiles are now higher due 

to the large σ’vf (Case C) and smaller values of ue based on the SH2 profiles (Fig. 3.12a). 

This presents the Author’s best estimate of consolidation stress conditions for use in 

settlement calculations.  
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3.3.5 One-Dimensional Consolidation Settlement Calculations with Varying 

Preconsolidation Stress Profiles 

The Author used the same methodology as URS to compute 1-D consolidation 

settlements at TS3 and TS5 of the NHP levee, which was described in Section 2.7. 

Consolidation settlements (ρc) were computed for three preconsolidation stress profiles: 

the best estimate profile of preconsolidation stress based on the mean σ’p (from FV data); 

and reduced values equal to 0.9σ’p and 0.8σ’p.  

Calculation sheets are presented in Appendix B for the stress histories in Fig. 

3.12c. The Author assumed that consolidation settlements of the deposit under the NHP 

levee occur only in the BM Crust and Bay Mud layers (from EL. -6.2 ft = top of BM 

Crust to EL. -41.5 ft = bottom of Bay Mud). The soil from EL. -6.2 to -41.5 ft is divided 

into small sub-layers (usually one foot thick). Each sub-layer has a constant strain, which 

is computed at the mid-point of each sub-layer, due to change in vertical effective stress 

from σ’v0 to σ’vc. Settlement of each sub-layer is the multiplication of the strain and the 

sub-layer thickness. Total consolidation settlement of the levee is the addition of all sub-

layer settlements. Similar calculations with 0.9σ’p and 0.8σ’p profiles at TS3 and TS5 are 

presented in Appendix B.  

Compressibility parameter RR was selected as a function of σ’vc/σ’p, leading to 

the selected values shown in Table 3.3b. In all cases, the selected value of CR = 0.40 

throughout the depth of the BM Crust and Bay Mud.  

Figure 3.13a plots results of the 1-D consolidation settlement calculations for SH1 

stress history (i.e., Fig.3.12b), which are also summarized in Table 3.9a. The measured 
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consolidation settlements after the end of construction, ρm at TS3 and TS5 are also shown 

for comparison. The computed ρc with the σ’p profile shows that ρc/ρm ≈ 46% ρm at TS3 

and 52% at TS5. For cases with 0.9σ’p, ρc/ρm ≈ 58% at TS3 and 75% at TS5, while the 

0.8σ’p profile, ρc/ρm ≈ 75% at TS3 and 96% at TS5. Calculations for SH1 result in values 

of ρc that are much too low, presumably due to the fact that SH1 underestimates σ’vc. 

Figure 3.13b plots results of the 1-D consolidation settlement calculations for the 

SH2 consolidation stresses (i.e., Fig.3.12c). Calculation sheets for SH2 are presented in 

Appendix B and Table 3.9b summarizes the computed results. At TS3, ρc/ρm increases 

from 63% to 104% as the preconsolidation stress is reduced from σ’p to 0.8σ’p. For TS5, 

the corresponding ratios are 73% and 119%. According to these results, the 1-D 

consolidation analyses with the SH2 stress history predict satisfactorily the measured 

settlement using a reduced preconsolidation stress profile of 0.9σ’p.  

Figure 3.13c plots ρc versus the selected σ’p profile for the Author’s SH1 and SH2 

stress histories, plus the results presented in URS (2003). Note that ρc computed with the 

Author’s SH2 stress history is much larger than computed by URS (2003), who 

concluded that the measured σ’p should be reduced by 20% for design calculations of 

levee settlements along the NHPL alignment. The principal reason for the large 

differences in ρc lies in the much higher values of RR used by the Author (0.06 and 0.12 

versus only 0.04). The Author’s selected ue profile at TS5 also is significantly lower than 

selected by URS (2003).  
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3.3.6 1-D Final Consolidation Settlements, ρcf Computed for SH2 

Figure 3.13d plots predictions of final consolidation settlements (ρcf) at TS3 and 

TS5 computed for σ’p, 0.9σ’p, and 0.8σ’p using the same RR and CR selected for the ρc 

calculations with σ’p and 0.9σ’p profiles. The figure also shows computed profiles of ρc 

for comparison. The results show that ρcf = 1.76 ft for σ’p profile, and increasing to ρcf = 

2.63 ft for the 0.8σ’p profile. The corresponding degrees of consolidation at TS3 and TS5 

equal 59% and 65%, respectively, for ρc and ρcf computed for the measured σ’p; and 

equal 65% and 71%, respectively, for ρc and ρcf computed with 0.9σ’p or 0.8σ’p. 

Appendix B presents the calculation sheets for ρcf. Table 3.9b also summarizes these 

results, as well as the corresponding values of ρc/ρm. 

 

3.3.7 Summary and Conclusions 

Application of the conventional 1-D consolidation method to predict the amount 

of consolidation settlement (ρc) of the NHP levee at 5 plus years after the end of 

construction at two test section locations (TS3 and TS5) with extensive piezometer data is 

complicated by several factors, the most important being: 

1) The strength and modulus of the levee fill [very different properties where 

selected in the URS (2003) and URS/ARUP (2005) reports]; 

2) The strength of the overlying pavement and whether or not the pavement has 

undergone extensive cracking. Factors 1 and 2 can significantly affect the 

magnitude of the final vertical effective stress (σ’vf); 
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3) Selection of profiles of excess pore pressure (ue) from the piezometer data due 

to uncertainties in the equilibrium pore pressure (i.e., location of water table) 

and scatter in the readings) needed to computed profiles of σ’vc = σ’vf – ue; and 

4) Selection of appropriate values for the recompression ratio (RR) when the 

computed σ’vc is either slightly less or slightly greater than the well defined 

mean preconsolidation stress (σ’p), such as occurs throughout most of the soft 

Bay Mud. 

Most of Sections 3.2 and 3.3 have focused on the above issues, leading to the 

Author’s “best estimate” of RR [with values several times larger than selected by URS 

(2003)] and the stress history (denoted as SH2) presented in Fig. 3.12c. The remaining 

comments are based on estimates of ρc using that figure, unless otherwise noted. 

It is evident that the conventional 1-D consolidation method significantly under-

predicts the measured consolidation settlement (ρm) of the NHP levee when computed 

with the “best estimate” σ’p(FV) profile (i.e., ρc = 63% ρm at TS3 and ρc = 73% ρm at TS5 

as per Table 3.9b). Reducing the preconsolidation stress profile by 10% results in good 

agreement with the measured ρm, especially at TS5 (where ρc equals ρm). As concluded in 

Section 3.2.1, there is some justification for using a lower mean σ’p within the Bay Mud 

deposit (i.e., “high” strain rate of dε/dt = 0.73%/hr for the CRSC tests, and 

σ’p(CRSC)/σ’p(FV) < 1 in four of the 7 tests at TS3-B1).  

In contrast, URS (2003) concluded that σ’p(FV) should be reduced by 20% for 

settlement predictions.  

It is clearly not satisfactory to arbitrarily reduce the preconsolidation stress by 

10% or 20% to match field measurements, especially since the field and lab tests were 
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done using “state-of-the-art” practices and the σ’p profiles from the Field Vane and lab 

CRSC tests are in good agreement (Fig.3.1). Therefore, two questions remain: (1) Will a 

2-D consolidation settlement analysis help to improve the agreement between predicted 

and measured settlements? (2) Or does Hypothesis B apply for the consolidation behavior 

of the Bay Mud? Further 2-D analyses of the NHP levee using a Finite Element code 

have been carried out to address these questions.  



 

116  

 

3.4   Element Analysis on Bay Mud with PLAXIS Soft Soil Model  

  This section describes the application of the Soft Soil Model (SSM) in Plaxis for 

characterizing the elemental behavior of Bay Mud, and the calibration of SSM soil 

parameters from the field and laboratory tests. The model parameters are based on 

simulations of: 

1) 1-D consolidation tests to evaluate coefficient of consolidation and other consolidation 

properties;  

2) Undrained plane strain shear tests (CK0PSC/E); and 

3) Undrained direct simple shear (CK0DSS) model test 

These model test exercises are to calibrate SSM material parameters for Bay Mud 

to obtain reasonable soil behavior in term of consolidation [i.e., cv(NC), kv0, and Ck] and 

undrained shear strength [i.e., su(DSS), c’, φ’, and K0NC]. This work also identifies 

problems with using the SSM in Plaxis to predict undrained shear deformations. 

 

3.4.1 Summary of SSM 

Soft Soil Model (SSM) in Plaxis is formulated based on the modified Cam-Clay 

isotropic soil model. The model assumes a logarithmic relationship between the 

volumetric strain εv and the mean effective stress p’ as in Equations 3.6 and 3.7:  
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where λ* is the modified compression index, which is related to the virgin compression 

ratio CR as in Equation 3.8; and κ* is the modified swelling index, which is related to the 

recompression ratio as in Equation 3.9. 

3.2
* CR=λ                                                                                                               (3.8) 

3.2
2* RR≈κ                                                                                                             (3.9) 

The superscript e in Equation 3.7 implies elastic behavior in recompression and swelling 

(unloading/reloading) as formulated in Equation 3.10. 

*
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).21(3
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ν pE urur −=                                                                                             (3.10) 

where Eur is the elastic Young’s modulus and νur is the Poisson’s ratio in which the 

subscript ur denotes unloading/reloading. In SSM, νur and κ* are input parameters to 

compute elastic strains. 

The SSM is capable of simulating soil behavior under general states of stress. For 

triaxial stress states for which σ’2 = σ’3, the SSM yield function is defined as: 

ppff −=                                                                                                           (3.11) 

where f  is a function of the stress state (p’, q) and the preconsolidation stress pp is a 

function of plastic strain such that: 

'
)'cot'.'(2

2

p
cpM

qf +
+

=
−

ϕ
                                                                                  (3.12a) 

where 
)1)(1()21)(21(

)1)(21)(1(

)21(
)1(

3

0*

*

0

*

*

0

2
0

2
0

ur
NC

ur
NC

ur
NC

NC

NC

KK

K

K
K

M
ν

κ
λν

κ
λν

+−−−+

−−−
+

+
−

≈       (3.12b) 



 

118  

is the slope of the critical state line used in Modified Cam-Clay models; 

( )'
3

'
1

' 2
3
1 σσ +−=p                                                                                              (3.13) 

is the isotropic effective stress, or mean effective stress; 

'
3

'
1 σσ −=q                                                                                                         (3.14) 

is the equivalent shear stress; 

 

and, 
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The vertical preconsolidation stress σ’p is used to compute pp
0

, which determines the 

initial position of the yield surface as follows: 

σ’1 = σ’p                                                                                                             (3.16) 

σ’2 = σ’3 = K0NC.σ’p                                                                                           (3.17) 

'
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σ
σ

=                                                                                                         (3.18) 

where K0NC is the coefficient of lateral earth pressure at rest for normally consolidated 

soil. In the SSM, the default setting of K0NC is the Jaky formula (K0NC = 1-sinϕ). But one 

can impose a specified value for K0NC. OCR is the overconsolidation ratio. 

It should be noted that SSM uses the conventional Mohr-Coulomb criterion, (ϕ’, 

c’) and K0NC as model input parameters, while the critical state line (slope, M) is not used 

directly.  
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3.4.2 One-Dimensional Consolidation 

The aim of this exercise is to examine the computed coefficient of consolidation 

for normally consolidated clay [cv(NC)] of Bay Mud at OCR = 1.5 using SSM, and then 

to select appropriate parameters for the hydraulic conductivity properties (kv0 and Ck) 

such that SSM produces cv(NC) ≈ 0.06 ft2/day, which is the average measured value of 

cv(NC) for the Bay Mud.  

Table 3.10 shows two sets of SSM input parameters used in the 1-D consolidation 

simulations. Case 1 uses parameters selected by URS (2003) in their analyses on the NHP 

levee. Case 2 corresponds to the set of parameters selected by the Author for which: λ*, 

κ* and e0 are best estimates from the laboratory data; Ck is selected equal Cc =1.40; kx, ky 

are calibrated values of initial horizontal and vertical hydraulic conductivities to get 

cv(NC) ≈ 0.06 ft2/day. The other input parameters remain the same as Case 1. Initial 

conditions were set up so that the preconsolidation stress σ’p = 1.5 ksf and the over-

consolidation ratio OCR = 1.5. In addition, the coefficient of lateral earth pressure at rest 

for the Bay Mud was selected as K0OC = 0.73 for OCR =1.5 (e.g., for OCR = 1.5, K0NC = 

0.62 and K0OC  = K0NC.(OCR)n, where n = 0.4).  

Table 3.11 shows the calculation scheme for the 1-D load incremental oedometer 

consolidation simulation on SSM having a drainage height Hd = 3 inches. The scheme 

simulates a conventional incremental loading consolidation test in laboratory. The model 

was loaded from recompression to virgin compression to examine the variation of cv in 

SSM. cv was backcalculated using the relationship in Equation 3.19a to 3.19d. 
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 Figure 3.14a plots the stress-strain relationship in logarithmic scale for Case 1 and 

Case 2 analyses. Figure 3.14b plots the same results in natural scale in order to determine 

the equivalent oedometer loading modulus, Eoed. Figure 3.14c plots variations of 

backcalculated cv for the simulations and the measured cv(NC) from the CRSC tests. In 

addition, Figures 3.14d and 3.14e show changes in permeability for the two cases. 

In Case 1, the URS selected set of SSM parameters produces cv(NC) = 0.04 ft2/ft, 

which underestimates the measured value of cv(NC) = 0.06 ft2/day of the Bay Mud. 

Hence, this set of SSM parameters would presumably underestimate the rate of 

consolidation for virgin compression at field scale. In contrast, the Author’s Case 2, with 

the higher kv0 = 9x10-4 ft/day and consistent values of Cc and Ck = 1.40, obtains cv(NC) 

from SSM =  cv(NC) measured from CRSC tests. These parameters are selected as best 

estimates for the analysis of the NHP levee in Section 3.5. Note, however, that 

predictions of the rate of consolidation during recompression will be less rapid than for 

the URS Case 1 due to the decrease in cv(OC) [but less so for the Bay Mud having lower 

values of RR as per Figs. 3.12b and c]. 
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3.4.3 CKoU PSC/E Tests Simulation 

One- dimensionally (K0) consolidated plane strain compression undrained shear 

tests were simulated in Plaxis using SSM in order to calibrate the model parameters, K0NC 

and φ’for Bay Mud. SSM parameters for Bay Mud used in the analyses are presented in 

Table 3.10. The simulations were carried out with two values of K0NC for Bay Mud (i.e., 

the URS selected K0NC=0.62 and the MIT lab measured K0NC = 0.47). Simulations of 

varying friction angles (φ’ = 200, 250, 300 and 460) were carried out for each of the two 

specified K0NC values. For each pair of K0NC, φ’ values, five CK0U PSC tests were 

simulated at OCR = 1, 1.5, 2, 3, and 5. For simulations with overconsolidated samples 

(OCR > 1), K0 conditions are imposed using the Schmidt (1966) empirical relationship, 

K0 = K0NC.(OCR)n , where n = 0.4. 

 The pair of K0NC = 0.62, φ’ = 300 are the URS selected parameters, and K0NC = 

0.47, φ’=460 are the MIT measured values for the Bay Mud in TX tests. Table 3.12 

summarizes results of all the PSC simulations. The undrained shear strength at each OCR 

is the same in both compression and extension in the plane strain shear mode with SSM. 

Figure 3.15 plots the results of undrained shear strength ratio, su/σ’vc versus OCR 

for all of the CK0U PSC simulations and compares them with the laboratory measured 

CK0U DSS, TC and TE data. Line 2a presents results of the SSM undrained shear 

strength of the pair of parameters (K0NC = 0.62, φ’=300) that was used by URS (2003). 

The URS pair of parameters underestimate the undrained shear strength at OCR >3 and 

overestimate it at OCR <2. At OCR = 1.5, where most of the soil below Bay Mud crust 

experiences (i.e., Fig. 3.1), Line 2a shows su/σ’vc = 0.44, which is 25% higher than the 
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measured CK0UDSS value (DSS su/σ’vc = 0.35). In addition, Line 2a gives Sd = 0.38, 

which is 50% higher than measured Sd = 0.25. 

Results from SSM with K0NC = 0.47, φ’ = 460 (i.e., Line 3b) correspond to 

properties measured ≈ the MIT triaxial shear tests, result in much too high Sd = 0.52 (i.e., 

108% higher than the measured Sd) and greatly overestimate su at OCR=1.5 6[i.e., 

su(SSM) ≈ 166% of measured su(DSS) at OCR =1.5]. 

The figure shows that Line 1b (K0NC = 0.47, φ’=200) gives Sd (SSM) = Sd (lab), 

but underestimates the measured undrained shear strength at the average in situ OCR ≈ 

1.5. 

To get agreement of su(DSS) versus su(SSM) at OCR = 1.5, the best selected pair 

of parameters are φ’=250, K0NC = 0.47. 

3.4.4 CK0PS-DSS Tests Simulation 

Plane strain direct simple shear (PS-DSS) tests were simulated with SSM for Bay 

Mud at OCR = 1, 1.5, 2, and 4. Selected SSM parameters for the Bay Mud in the analyses 

are presented in Table 3.10.  

K0 consolidation was simulated using a distributed load system and a prescribed 

displacement at the top and at both sides of the soil element. The element was first K0 

consolidated to 1.5 ksf into the virgin compression range. In every test, the element was 

then unloaded to a specified OCR prior to shearing. Shearing process was simulated by 

imposing no displacement in the vertical direction (Y-axis) while straining the element by 

a prescribed displacement at the top to 30% shear strain in horizontal direction (X-axis).  

                                                           
6 This result reflects limitations of the SSM soil model, not in the values of φ’, K0NC themselves. 
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The DSS simulations were carried out with two values of the modified swelling 

index, κ* = 0.104 (i.e., the lab measured κ* for getting realistic recompression behavior 

to predict consolidation settlement, ρc), and κ* = 0.002 (i.e., the reduced κ* for getting 

realistic undrained modulus, Eu to predict shear induced settlement or initial settlement, 

ρi). Eq.3.10 shows the relationship between Eu and κ* .  

Figures 3.16 presents the results of undrained shear strength ratio, su/σ’vc versus 

OCR from the DSS simulations for the cases where K0NC = 0.47, φ’ = 250, and κ* = 0.104 

and 0.002. Simulations with both values of κ* generally result in the same undrained 

shear strength at a given OCR. In addition, the results from the DSS simulations are 

essentially the same with the PSC/E (i.e. Fig.3.15 Selected Line). Table 3.13 summarizes 

results of all the DSS simulations. 

Figure 3.17a, b present results of the DSS simulations for the cases where the 

modified swelling index, κ* = 0.104 (i.e., selected maximum value of RR = 0.12). Figure 

3.17a plots stress-strain curves for the DSS simulations at OCR = 1, 1.5, 2 and 4. The 

undrained strength ratios at failures are then plotted versus OCR to establish the best 

fitting line as shown in Figure 3.16 (i.e., FE Simulation line). 

Figure 3.17b plots the normalized undrained modulus, Eu/σ’vc versus shear strain, 

γ%. Eu values were computed from the undrained shear modulus, Gu based on the 

relationship Eu = 3Gu, where Gu = ∆τ/∆γ. Measured data from the laboratory DSS tests 

are shown for comparison with the SSM simulation results. As shown in the figure, using 

the selected maximum κ* value greatly underestimates the undrained modulus, Eu by a 

factor of 45 to 50 at OCR = 1.5. The measured Eu/σ’vc ≈ 500 (at OCR =1) to 1000 (at 

OCR=2, 3), and the averaged ratio at OCR = 1.5, Eu/σ’vc ≈ 750. On the other hand, the 
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DSS simulation at OCR =1.5 gives Eu/σ’vc = 16, which is much too low (by a factor of 

47) compared with the measured data. Therefore, using the SSM, one cannot use a 

selected κ* for realistic prediction of initial settlement during embankment construction, 

ρi. Prediction of ρi needs a realistic Eu, which requires a reduced value of κ* (i.e., κ* = 

0.002, by a factor of 47 compared with the lab κ*). 

 Figures 3.18a,b present results of the DSS simulations with the reduced κ* = 

0.002. Realistic values of Eu at very small strain (i.e., at γ =1x10-5 %) and at γ = 0.1 to 0.2 

% are achieved by the reduced κ* = 0.002 (i.e., Fig.3.18b).  

3.4.5 Summary and Conclusions 

SSM su and Eu simulations have shown the following results.  

1) The SSM predicted values of su at OCR = 1 depend primarily on the selected values 

of φ’ and to a lesser degree on K0NC, whereas Eu depends primarily on κ*. 

2) SSM needs a low value of friction angle, φ’ to predict a reasonable DSS undrained 

shear strength ratio for NC clay, Sd, but the low φ’ results values of su(DSS) that are 

two low at OCR >1.  

3) SSM with φ’ = 250 gives reasonable agreement between the measured and computed 

su(DSS) at OCR = 1.5 for the Bay Mud. 

4) SSM with the “best selected” φ’=250 greatly underestimates su at OCR >2. 

5) Using κ* in SSM based on lab data results in much too low Eu (by a factor of 50 at 

OCR =1.5 for κ* = 0.104 corresponding to RR = 0.12). To obtain a reasonable Eu, 

and therefore reasonable predictions of the initial settlement ρi, one has to reduce κ* 

to values an order of magnitude less than appropriate for consolidation analyses. 
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6) Hence, we cannot use the same value of κ* for realistic prediction of both ρi and ρc.  

But one can use two values of κ*, one to predict ρi and another much higher value to 

predict ρc. 

7) SSM predicts the same undrained shear strength in plane strain compression, 

extension and DSS shear modes since it is an isotropic model. 

8) Because the Bay Mud has OCR ≈ 1.5 within most of the deposit (below EL. -12 ft), 

the SSM strength parameters selected by the Author for the Bay Mud are φ’=250 and 

K0NC = 0.47. 
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3.5    NHPL Reanalysis Using Soft Soil Model in Finite Element Code 

PLAXIS 

Using a finite element code to model and predict deformations of the NHP levee 

allows one to address the 2-D effects that a 1-D consolidation analysis cannot take into 

account. This section presents 2-D finite element analyses for the NHP levee using the 

commercial finite element code PLAXIS v.8.2. The built-in Soft Soil Model (SSM) in 

PLAXIS was used to represent the Bay Mud Crust and the Bay Mud. The Author ran 

PLAXIS analyses with varying sets of SSM parameters for the Bay Mud to predict the 

performance of the NHP levee, including vertical settlements, horizontal displacements, 

and excess pore pressures. The results from PLAXIS analyses are then compared with the 

measured data to evaluate the capabilities of the 2-D FE analyses.  

3.5.1 Geometry and Mesh of NHPL Model 

Geometry of the NHP levee fill and the soil deposit were set up in layers, which 

are called to soil clusters in the model. Splitting the fill and the materials under the fill 

into clusters help one to model different material properties and simulate staged 

construction. Figure 3.19 presents the NHP levee model geometry. Pavement and soil 

layers and the water table elevation are shown in the figure. All elevations of material 

layers were set up in the model as follows: 

- Levee fill was from elevation of the levee crest at 9.4 ft down to the levee base at -1.6 ft, 

giving a 11 ft levee height. The widths of the levee fill were 23.0 ft an the top and 89.0 ft 

at the bottom. The levee fill was divided into six clusters (sub-layers). Each levee fill 
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cluster is 2 ft thick, except for the top one having thickness of 1 ft (Note that URS used 

only two layers for the levee fill).  

- Concrete pavement (or cracked pavement, i.e., in cases where analyses are run with a 

cracked pavement under the NHPL) from elevation -1.6 ft to -4.5 ft = one cluster; 

- Base course from elevation -4.5 ft to -6.2 ft = one cluster; 

- Bay Mud Crust from elevation -6.2 ft to -10 ft equivalent to = one cluster; 

- Bay Mud from elevation -10 ft to -41.5 ft divided into 8 clusters (sub-layers) to model 

the changes in the stress history (OCR), and the corresponding coefficient of earth 

pressure at rest (K0), plus changes in compressibility; and 

- Alluvial soil layer from elevation – 41.5 to -60 ft = one cluster. 

Fig. 3.19 also plots the mesh of the NHP levee model (i.e., the mesh type of Very-

Fine in the Global Coarseness was selected in the meshing type). The geometry, which 

had a total width of 325 ft, with frictionless ends, was meshed into 1231 triangle-15-

moded elements with total 10079 nodes and 14772 stress points. The average element 

size is 4.28 ft. A twelve-point Gauss integration was used in each element. Note that finer 

and coarser meshes were also evaluated during the analysis process of the NHP levee and 

there was almost no change in the analysis results due to changes in the selection of mesh 

types. 

 

3.5.2 Defined Cases for FE Analyses of the NHPL 

Table 3.14 presents four groups of cases (A, B, C and D) for the FE analyses of 

the NHPL. Cases A1 and A2 are analyses using same best estimates of material 
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properties for all soil layers. Case A1 assumes a continuous uncracked pavement, while 

Case A2 assumes cracked pavement (properties extending to the toe of the levee).  

Case A2 is identified as the base analysis (i.e., for comparisons with all other 

cases). The soil properties used in A1 and A2 can be summarized as follows: 

Preconsolidation stress profile σ’p = mean σ’p(FV) profile. K0NC and φ’ were selected for 

Bay Mud that give su(SSM) = su(DSS) at OCR =1.5 (i.e., K0NC = 0.47 and φ’ = 250). 

Compressibility parameters used the best estimate RR and CR values for Bay Mud and 

Bay Mud Crust (i.e., CR = 0.40; RR = 0.06 from EL. = - 6.2 to -20 ft and RR = 0.12 from 

EL. = -20 to -41.4 ft). The hydraulic conductivity properties were selected for Bay Mud 

that gives lab measured average cv(NC) = 0.06 ft2/day (i.e., kv0 = 9x10-4 ft/day, kh0 = 

12x10-4 ft/day, and Ck = 1.40). And kv0 = kh0 = 0.001 ft/day within the Alluvial soil below 

the Bay Mud. 

Case B assumes that the underlying Alluvium layer is effectively free draining 

(i.e., kv0 = kh0 = 1.0 ft/day), and hence the excess pore pressure ue = 0 throughout this 

stratum by early 2002.  

Cases C1, C2, and C3 were carried out to evaluate the effects of cv(NC) for the 

Bay Mud. Each analysis case varies the hydraulic conductivity properties (i.e., kv0, kh0, 

and Ck) such that cv(NC) is in the range of cv(NC) = 0.04 to 0.06 ft2/day [i.e., Case C1 = 

URS (2003) parameters that gives cv(NC) = 0.04 ft2/day; C2 = 0.045 ft2/day; and C3 = 

0.05 ft2/day].  

Finally, Cases D1 and D2 analyses were carried out with reduced preconsolidation 

profiles; 0.9σ’p and 0.8σ’p respectively, and with cv(NC) = 0.06 ft2/day to evaluate the 

effect of the preconsolidation stress profile on the consolidation behavior of the NHP 
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levee. Case D3  uses a reduced cv(NC) for comparison with D2.                              

Case D4 uses a reduced hydraulic conductivity values for the BM Crust and Alluvium 

(i.e., 0.005 ft/day) in order to improve agreement with measured profiles of excess pore 

pressure at TS3 and TS5. 

  
3.5.3 Selection of Material Parameters for FE Plaxis Analyses 

The material parameters for the FE Plaxis analyses were selected both from URS 

(2003) and from the Author’s reevaluation of soil properties in the previous sections of 

this chapter. Table 3.15 gives a complete summary of the material models and input 

parameters used for the Plaxis analyses of the NHP levee.  

The Mohr-Coulomb (MC) material model was used for the Levee fill, the 

uncracked Pavement, cracked Pavement and Base Coarse layers, while Linear Elasticity 

was assumed for the underlying Alluvium layer. The material parameters for the 

materials above the Bay Mud were selected from Table 6 of URS (2003) after being 

evaluated by the Author in Section 3.3.1 (i.e., to get best estimated σ’vf profile). 

Soft Soil Model (SSM) was used for the Bay Mud and Bay Mud Crust layers. 

Within the Bay Mud, the soil from EL. = -10 ft to EL. = -20 ft is identified as Bay Mud 1 

and the soil from EL. = -20 ft to EL. = -41.5 ft is Bay Mud 2, where the recompression 

ratio is varied according to values shown at the bottom of Table 3.14.  

  

3.5.4 Simulation and Calculation Procedures 

The four groups of analysis cases (A, B, C and D) were run following the same 

simulation and calculation procedures. 
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Initial conditions of the ground with unit weight, water table elevation, stress 

history and coefficient of earth pressure at rest (K0) selected for the Plaxis analyses are 

shown in Tables 3.15 and 3.16. Table 3.16 shows overconsolidation ratio (OCR) profiles 

selected by the author based on the best estimated preconsolidation stress profile (σ’p) as 

in Fig. 3.1. Based on the OCR data, the K0 profile of the ground was estimated using the 

following formula [Ladd et al. (1997)]: 

K0OC = K0NC.(OCR)m      ,                                                                       (3.20) 

where K0OC and K0NC are coefficients of earth pressure at rest for overconsolidated and 

normally consolidated soils, respectively; m is a coefficient depending on plasticity index 

of soil (Ip) (i.e., for Ip = 50%, m ≈ 0.35);  K0NC = 0.47 for the Bay Mud from the 

laboratory triaxial tests.  

Figure 3.20 shows the sequence assumed in the FE simulations for which was the 

staged embankment construction (the actual schedule of loading is not known). The 

figure shows a key assumption that the consolidation time for the settlement monitoring 

stated at CD90, which is midway through the estimated construction period. URS (2003) 

reported that the NHP levee was built between March and October 1996, whereas 

measurements of settlements were initiated only after the end of construction (11/11/96; 

CD210).  

 Table 3.17 lists all the calculation phases for the FE model. Each loading step was 

calculated as a Plastic Loading phase (with undrained response in the Bay Mud and Bay 

Mud crust), followed by Consolidation. For the first two fill layers, each was loaded 

instantaneously with Plastic Calculation and then Consolidation for 45 days. Each of the 

four consecutive layers was then loaded and consolidated for 30 days. In the final phase, 
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after completing the levee fill, the NHP levee was consolidated about 5 years and 2 

months to the date when both measured settlements and pore pressures were available 

(i.e., at CD2115 = 01/31/02). 

 

3.5.5 Results from Cases A1 and A2 

These analyses used the best estimate set of parameters for soils below the levee. 

Case A1 used Young’s modulus E = 1000 ksf for the uncracked pavement while Case A2 

used E = 200 ksf for the cracked pavement. 

 

Figure 3.21a plots the predicted consolidation settlement, ρc versus logt for 

analysis Cases A1 and A2 compared with the measured data (ρm) from settlement points 

P16 to P19. The results show that the curves of ρc from both cases are essentially the 

same. Hence, there is minimal effect of the pavement on the computed consolidation 

settlements between the two cases. Figures 3.21b to 3.21d show comparisons of the 

excess pore pressures and stress histories at CD2115 for the analysis Cases A1 and A2. 

The results also show no difference in the predicted ue and σ’vc between the two cases. 

Therefore, one can conclude that the difference in Young’s modulus E of the pavement in 

the two cases has no effect on the consolidation behavior of the NHPL. 

Comparison of the predicted consolidation settlement (ρc) with the measured 

consolidation settlements (ρm) at measured points near TS3 and TS5 (i.e., 16, 17, 18 and 

19) are shown in the Fig. 3.21a assuming that ρm = 0 shortly after the assumed EOC 

(CD210). The results show that at CD2115 (1/31/02), ρc ≈ ρm at point 18, and ρc ≈ 75% 
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ρm at point 17. At CD2115, Cases A1 and A2 predict ρc ≈ 1.47 ft, while URS (2003) 

reported that ρm = 1.65 ft at TS3 and ρm =1.57 ft at TS5. In general, the analyses 

underestimate the measured rate of consolidation recorded at P16 – P19. 

Figure 3.21b shows comparison of the predicted excess pore pressures at CD2115 

versus elevation at centerline of the NHPL with the measured data. Cases A1 and A2 

both under-predict the maximum ue at the mid-depth of the Bay Mud by about 38% and 

50% compared to ue measured at TS5 and TS3, respectively. In addition, the two cases 

predict excess pore pressures in the BM Crust (from EL. -6.2 to -10 ft) and in the 

Alluvium below Bay Mud (below EL. -44 ft). In contrast, the measured data show ue =0 

at both locations. Figure 3.21c shows a similar comparison of excess pore pressure at toe 

of the levee. The figure shows that Case A1 and A2 are in good agreement with 

measurements within the Bay Mud layer, but again overestimate ue at the BM Crust and 

Alluvium interfaces. 

Figure 3.21d shows a comparison of the predicted vertical consolidation stress 

σ’vc for Cases A1 and A2 with the selected σ’p profile, and the “measured SH2” σ’vc at 

TS3 and TS5 under the centerline of the NHPL. Comparison of σ’p and the predicted σ’vc 

shows that σ’vc is larger than σ’p from EL. -12 to - 35 ft, creating a relatively large zone 

of virgin compression in the Bay Mud. But, a large fraction of ρc still comes from 

recompression. The figure also shows that the predicted σ’vc profile is close to the 

measured σ’vc at TS5 from EL. = -15 ft to -32 ft, but higher than σ’vc at TS3 from EL. = -

20 to -35 ft. The predicted σ’vf = σ’vc + ue at CD2115 for the two cases is plotted in the 

figure to compare with σ’vf for 1-D SH2 case presented in Fig.3.12c. There is a 

significant reduction in σ’vf due to decreases in the total vertical stress σv during 
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consolidation under the centerline of the levee. This “arching effect” is due to coupled 

consolidation with SSM (Ladd et. al , 1994). This arching effect is evaluated further in 

Section 3.5.11. 

 
Figure 3.21e plots profiles of the predicted total settlement (ρt) at CD180 (EOC), 

and CD2115 (1/31/02) and the resulting consolidation settlement after EOC (ρc) versus 

elevation at centerline of the NHPL for the Case A2 analysis. The ρt line at CD180 

presents the total settlement profile at the end of construction (i.e., comprising undrained 

shear induced settlements, which are much too high due to the very low SSM Eu values 

for the Bay Mud, plus consolidation settlements during construction of the levee). Line ρt 

at CD2115 is the total settlement profile at 1/31/02. Hence, the predicted consolidation 

settlement of the NHPL after the EOC is ρc = ρt (CD2115) - ρt (CD180). The results 

show a constant ρc ≈ 1.40 ft from EL. = 9.4 (levee crest) to EL. = -10 (bottom of BM 

Crust). Thus, all of the predicted ρc occurs within the soft Bay Mud, which is reasonable. 

In comparison, the measured settlements of are 1.65 ft at TS3 and 1.57 ft at TS5.  

The results in Fig. 3.21e show an amount of 0.4 ft of compression occurring 

within the Base Course and Cracked Pavement layers at CD180 and CD2115. This 

corresponds to an axial strain of approximately 5%. This is not very realistic, but is due to 

the relatively low stiffness (E = 200 ksf) recommended by URS (2003) for these layers.  

Figure 3.21f plots the computed settlement for the pavement on top of the BM 

Crust from the Case A2 analysis at CD180 and CD2115. The maximum settlement occurs 

at the centerline of the levee, while there is an upward movement (heave) beyond the toe 

of the levee. The heave pattern reflects undrained shear-induced strains, which are too 

large because of the low Eu used in the analysis for the Bay Mud.  
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Figure 3.21g plots settlement versus logarithm of time at Point A located at the 

centerline of NHP levee for the cracked pavement Case A2 analysis. The plot shows that 

for each loading step, there is an undrained shear induced settlement occurring instantly 

during each loading step, followed by a consolidation settlement. The undrained shear 

induced settlements contribute a significant fraction of the predicted total settlement 

during construction of the fill. These large undrained shear induced settlements occurred 

because the analyses used very low values of undrained modulus Eu, that are much lower 

than measured in the lab CK0U DSS tests (i.e., see Section 3.4.4). Therefore, these large 

“initial” settlements are not realistic. The predicted consolidation settlement (ρc) is 

computed from end of construction (CD180) to CD2115 (01/31/02), and was compared 

with the measured settlements after EOC (i.e., in Fig. 3.21a). Note that about 0.3 ft of 

predicted consolidation settlement occurred during construction of the levee compared to 

a total settlement of 2.4 ft. 

Figure 3.21h plots the centerline excess pore pressure (ue) versus logarithm of 

construction day near the mid-point of the soft Bay Mud for Case A2. The figure shows 

the excess pore pressure response during and after construction, in which ue builds up 

during each loading step and then dissipates, especially after EOC. The excess pore 

pressure at the mid-point is ue ≈ 0.94 ksf at CD180, and ue = 0.23 ksf at CD2115 (5.2 

years after EOC), with very little ue dissipation during construction. 

 

One of the advantages of a 2-D analysis compared with a 1-D analysis is the 

capability to compute and take into account both horizontal and vertical deformations 

within the soil mass. Two-dimensional (2-D) effects could be important for the NHP 
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levee where the ratio of the thickness of the deposit to the width of the levee, H/B is 

about 0.6.  

Figure 3.21i plots the predicted horizontal displacements versus elevation at the 

toe and 20 ft away from the toe of the levee at time CD180 (end of construction) and 

CD2115 (1/31/02). The maximum horizontal displacement is 1.14 ft located at EL. = -20 

ft within the Bay Mud. Much less horizontal displacement is predicted within the Bay 

Mud near the ground surface as shown in the figure. It is likely due to the high stiffness 

of the upper layers (i.e., the BM Crust, pavement and levee fill).  

It is noted that the analysis predicts slightly decreasing horizontal displacements 

during consolidation after EOC. This prediction is not realistic since extensive field data 

show that horizontal displacements always increase during consolidation (i.e., Ladd, 

1991). In addition, the measured data for the Test Fill (URS/ARUP, 2005) proved that the 

horizontal displacements were increasing during consolidation after EOC. Thus, 

predicting decreased horizontal displacement during consolidation is one of the 

limitations of the SSM in Plaxis. 

 

3.5.6 Results from Case B Compared to Case A2 

The Case B analysis evaluates the effect of the hydraulic conductivity of the 

Alluvium below the Bay Mud. The input parameters for Case B are the same as Case A2, 

except for a 1000 fold increase in the hydraulic conductivity of the Alluvium (i.e., kv0 = 

kh0 = 1.0 ft/day) such that there is effectively free drainage below the Bay Mud.  

Figure 3.22a compares the computed ρc versus logt from analysis Cases B and A2 

with measured data ρm at points 16, 17, 18 and 19 near TS3 and TS5. Case B predicts a 
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faster rate of consolidation than Case A2. From CD180 to about CD1200, the Case B 

predicted ρc closely matches with the measured values of settlement point 17, but then 

has a much slower rate of settlement. Case B analysis predicts ρc ≈ 1.5 ft at CD2115 

(1/31/02), which is equivalent to 95% the measured ρm at TS5 and 90% ρm at TS3. 

Figures 3.22b and 3.22c plot the predicted ue at the centerline and toe of the 

NHPL compared with the measured ue at TS3 and TS5. Case B predicts much less ue at 

CD2115 than the measured data or Case A2 at both the centerline and toe locations. The 

figures also show that ue = 0 below the bottom of the Bay Mud for Case B. 

Figure 3.22d plots stress histories for the two analyses. The figure shows 

comparison of the predicted σ’vc at the centerline of the NHPL for Case B along with σ’p, 

σ’vc from Case A2, and the “measured SH2” σ’vc profiles at TS3 and TS5. The predicted 

σ’vc for Case B is higher than σ’vc below El. -12ft for Case A2. Although this results in a 

much larger zone of virgin compression in Bay Mud compared to Case A2, the predicted 

ρc for Case B at CD2115 is just slightly higher than that of Case A2. Therefore, The very 

small increase in ρc is not consistent with the relatively large increase in σ’vc, which the 

Author cannot explain. 

 
3.5.7 Results from Cases C1, C2, and C3 Compared to Case A2 

Case C1, C2 and C3 evaluate the effect of cv(NC) of Bay Mud on the 

consolidation behavior of the NHPL compared with Case A2. Case C1 used URS input 

parameters (kv0 = 4x10-4 ft/day, kh0 = 8x10-4 ft/day and Ck = 1.143), which are equivalent 

to cv(NC) = 0.04 ft2/day in SSM 1-D consolidation, while cv(NC) = 0.045 and 0.05 

ft2/day in cases C2 and C3.  
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Figure 3.23a plots the predicted ρc versus logt from the four analyses, along with 

the measured ρm. The Case C1 ρc curve shows a much slower rate of settlement 

compared with the measured and Case A2 curves. At CD2115, Case C1 predicts ρc = 

1.25 ft, and Case C3 predicts ρc = 1.34 ft; both being less much less than measured. 

Figure 3.23b and Figure 3.23c plot results of excess pore pressure versus elevation 

at centerline and toe of the NHPL, respectively, for Cases C analyses compared with the 

measured ue and those from Case A2. Case C1 predicts much higher ue profiles compared 

to Case A2, and agree quite well with the measured centerline data from EL. = -24 to -34 

ft at TS3 (Fig. 3.23b). Cases C1 and C2 seem to encompass the range of measured ue at 

the centerline of TS3 and TS5, but overpredict those at the toe (Fig.3.23c). 

Figure 3.23d shows predicted σ’vc at CD2115 for Cases C1 and C3 and compares 

them with the σ’p profile, σ’vc from Case A2 and the “measured SH2” σ’vc profiles at TS3 

and TS5. Case C1 predicts a very small virgin compression zone (from EL. -12.5 to -22 

ft) and therefore, the main source of ρc in this case comes from recompression. The 

higher cv(NC) for Case 3 predicts σ’vc moderately less than σ’vc from Case A2.  

 

3.5.8 Results from Cases D1 and D2 Compared to Case A2 and URS (2003) 

The Case D1 and D2 analyses use reduced (scaled) preconsolidation stress 

profiles in the Bay Mud (0.9σ’p and 0.8σ’p, respectively). Input parameters for Cases D1 

and D2 are the same as Case A2, except for lower RR values (Table 3.14) and the 

reduced OCR and K0 profiles (Table 3.16). 
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Figure 3.24a plots the predicted ρc versus logt for Cases D1 and D2 and compares 

them with the base Case A2, as well as with prior analysis by URS (2003), and the 

measured ρm at points near TS3 and TS5. The Case D1 and D2 curves show higher rates 

of settlement compared to Case A2, and they bracket very well the measured ρm curves. 

The D2 analysis (with 0.8σ’p) gives much higher settlements than those reported by URS 

(2003) using the same preconsolidation profile. The larger Case D2 prediction of ρc is 

probably mainly due to the fact that URS used cv(NC) = 0.04 ft2/day, which is smaller 

than the Case D2 cv(NC) = 0.06 ft2/day  and predicted a much higher centerline ue profile 

(Fig. 3.24b). In addition, URS (2003) used RR = 0.04 for Bay Mud, while Case D2 used a 

higher RR = 0.08 from EL. -20 to EL. -41.5.  

Figure 3.24b shows comparisons of ue at the centerline of the NHPL. Cases D1 

and D2 predict much less excess pore pressure than measured at TS3 and TS5, but similar 

to Case A2. The predicted maximum excess pore pressure at mid-point of the Bay Mud is 

roughly 50% of the averaged measured ue at TS3 and TS5. In contrast, the URS (2003) ue 

is in much better agreement with the measured data, and also predicts a smaller ue within 

the Alluvium. 

Figure 3.24c compares ue at the toe of the NHPL. The figure shows that the 

predicted ue agrees quite well with the measured data above EL. -38 ft, but overpredicts 

ue below EL. -38 ft.  

Figure 3.24d plots the predicted stress histories from Cases A2, D1 and D2, which 

shows relatively small differences in the σ’vc profiles. Case D2 with the 0.8σ’p profile has 

a very large zone of virgin compression, and thus the main source of ρc comes from 
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virgin compression. The figure also shows a reduction of about 0.1 ksf in σ’vf profiles of 

Cases D1 and D2 due to the arching effect. 

Figure 3.24e plots the predicted total settlements (ρt) versus elevation at the 

centerline of the levee from the Case D2 analysis at CD180 and CD2115. The predicted 

consolidation settlement (ρc) from CD180 to CD2115 is also shown. 

Figure 3.24f shows plots of horizontal profiles of the predicted ρt (at CD180 and 

CD2115), predicted ρc (from CD180 to CD2115) from Case D2 analysis, and ρc from 

URS (2003). Case D2 predicts a maximum ρc about 0.3 ft higher than URS (2003).  

Figure 3.24g plots settlement at EL.- 3.0 ft versus logt of Point A at the centerline 

of the levee from Case D2. Note that the total settlement is reset to zero at CD180 prior to 

consolidation after loading of the last fill layer. The figure shows that there is about 0.3 ft 

of consolidation settlement, and about 1.5 ft of undrained shear induced settlement during 

construction of the levee. The consolidation settlement after EOC from CD180 to 

CD2115 is ≈ 1.9 ft.  

Figure 3.24h plots the predicted excess pore pressure of Case D2 versus logt at the 

mid-point of Bay Mud (EL. = -26 ft).  

Figure 3.24i plots the horizontal displacement at toe versus elevation at CD180 

and CD2115. From the top of the cracked pavement to EL. -11ft, the horizontal 

displacement slightly decreases from CD180 to CD2115, and then remains essentially 

constant at greater depths. In contrast, the A2 analysis predicted a decrease in horizontal 

displacement of about 0.1 ft through most of the BM during consolidation (Fig.3.21i).  
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3.5.9 Results from Case D3 Analysis and Comparison with Cases A1, C1 and D2 

The Case D3 analysis was carried out with a reduced preconsolidation stress 

profile (0.8σ’p) and cv(NC) = 0.04 ft2/day to further evaluate the combined effects of the 

preconsolidation stress and cv(NC) of Bay Mud on the NHPL performance.  

Figure 3.25a plots the predicted ρc versus logt for Case D3 and compares it with 

Case A2, Case C1, and Case D2, along with the measured settlements, ρm at points near 

TS3 and TS5. Case D3 predicts a much higher rate of settlement compared with Case C1 

having the same cv(NC) and its consolidation settlement curve matches very well with the 

ρm of point 18. The figure shows that Cases D2 and D3, both with the 0.8σ’p profile, 

encompass the four measured settlement curves. The figure also shows that a reduction in 

cv(NC) causes a large decrease in the predicted ρc, especially when σ’p is reduced by 

20%.  

Figures 3.25b and 3.25c show predictions of excess pore pressures at the 

centerline and the toe of the NHP levee for the same four analysis Cases. These results 

confirm the importance of cv(NC) in controlling magnitudes of ue at the end of the 

monitoring period, CD2115, whereas σ’p has relatively little effect.  

Figure 3.25d shows comparison of the predicted σ’vc at centerline of NHPL for 

the same four analyses. The figure shows that the predicted zone of virgin compression is 

significantly effected by both cv(NC) and σ’p, although the later variable has a larger 

effect on ρc at CD2115. 
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3.5.10 Results from Case D4 Analysis 

This case attempted to improve the predicted excess pore pressures ue at the 

centerline of NHP levee at CD2115. Therefore, the hydraulic conductivities of the BM 

Crust and the Alluvium are selected such that the analysis gives high value of ue within 

the soft Bay Mud, along with ue ≈ 0 in the Bay Mud Crust and Alluvium. The selected 

hydraulic conductivities for the soils are kv0 =kh0 = 0.005 ft/day in both the BM Crust and 

Alluvium. 

Figure 3.26a plots ρc versus logt for Case D4 and the predicted ρc of URS (2003). 

The selected cv(NC) for Bay Mud and the hydraulic conductivities of BM Crust and the 

Alluvium in Case D4 and URS(2003) are also shown for comparison. URS(2003) 

analysis used a sand layer below a thin stiff clay under the Bay Mud with very high 

permeability (kv0=kh0 =1 ft/day) as a draining layer. 

Figure 3.26b shows comparisons of ue vs. elevation at centerline of Case D4, URS 

(2003) and the measured data at TS3 and TS5. The plot shows that URS (2003) 

overpredicts ue above El. -20 ft because URS (2003) used very low hydraulic 

conductivities for BM Crust (i.e., kv0 = 4x10-4 ft/day and kh0 = 8x10-4 ft/day). The 

predicted ue from Case D4, as shown in the figure, perfectly matches the measured data at 

TS5, but underpredict the high ue measured at TS3.  

Figure 3.26c shows comparison of the predicted ue vs. elevation at toe from Case 

D4 with measured ue data. Case D4 predicted ue at toe again matches very well with the 

measured data at TS5, but now overpredicts the data at TS3.  

Figure 3.26d shows predicted stress histories for Case D4, which are about 0.1 ksf 

lower than measured (due to the lower σ’vf). 
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3.5.11 Discussion on Computed Arching Effects during Consolidation  

Ladd et. al. (1994) investigated the “arching effect” behavior of an embankment 

on Boston Blue clay in which FE analyses using the MCC and MIT-E3 soil models 

predicted a decrease in σv at centerline and an increase of σv beyond the toe of the 

embankment during consolidation.  

Figure 3.27a plots the net stress, σ’v = σv - uhydrostatic versus elevation at centerline 

of the levee computed at CD180 and CD2115 for the base Case analysis. The results are 

compared with the final effective stress profile σ’vf used in 1-D settlement calculations 

[i.e., 1-D (SH2) σ’vf]. The figure shows that σ’v of Case A2 at CD180 is slightly higher 

than that used for the 1-D ρc calculation presented in Section 3.3. Importantly, the figure 

shows that σ’v = (σv – uhydro) at CD2115 is reduced significantly from that at CD180, i.e., 

∆σv ≈ 0.05 ksf from top of BM Crust at El -6.2 down to El. -20 ft, and  ∆σv ≈ 0.1 to 0.13 

ksf from El. -20 ft to the bottom of the Bay Mud at El. -41.5 ft.  

Figures 3.27b and 3.27c presents similar results from the Case C1 and Case D2 

analyses. Case C1 has ∆σv ≈ 0.05 ksf at top of BM Crust, and ∆σv ≈ 0.1 ksf within most 

of the Bay Mud. Case D2 has the largest reduction of ∆σv ≈ 0.13 from CD180 to CD2115 

at centerline. 

Figure 3.27d plots ∆σv from CD180 to CD2115 versus distance from centerline of 

the NHPL at El. = -29.7 ft. The result shows that σv decreases 0.135 ksf at centerline and 

increases by the same amount at toe of the levee.  

The decrease in the total vertical stress under an embankment is contrary to the 

common assumption that σv remains constant during consolidation. 
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3.5.12 Summary and Conclusions 

Table 3.18 summarizes the ten analysis cases of the NHPL. Table 3.18a presents 

comparison of the predicted ρc and ue with measured data at TS3 and TS5 and with the 

URS (2003) analysis. Table 3.18b lists the total settlements at CD180 (EOC) and 

CD2115 (1/31/02), the consolidation settlement (ρc) at 5.2 years after end of construction 

(i.e., from CD180 to CD2115) and the maximum horizontal displacement (hmax) and the 

maximum excess pore pressure (ue) predicted at CD2115.  

Figure 3.28a plots the predicted consolidation settlements from the 2-D FE 

analyses for 8 cases and compares them with the URS (2003) value and with the 1-D ρc 

calculation results from 1- D SH1, 1-D SH2 and 1- D URS (2003). The figure plots the 

predicted ρc versus the σ’p profile used in the analyses. Results from the Plaxis analyses 

are divided into two groups: (1) those analysis cases with cv(NC) = 0.06 ft2/day (i.e., A1, 

A2, B, D1 and D2); and (2) those analysis cases with cv(NC) = 0.04 ft2/day (i.e., C1, D3, 

and D4). 

For the Author’s Plaxis analyses, an increase in cv(NC) and a decrease in σ’p both 

increase ρc, as would be expected. The effect of cv(NC) on ρc is most pronounced for the 

0.8σ’p profile. Note that RR was reduced from 0.06 and 0.12 to 0.04 and 0.08 for the 

0.9σ’p and 0.8σ’p profiles, which explain the smaller increase in ρc for a 10% reduction in 

σ’p compared to the 20% reduction (i.e., the results from the A2, D1 and D2 Cases). The 

effect of reducing ue to zero at the top and bottom of the soft Bay Mud is also important 
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for the 0.8σ’p profile (Cases D3 and D4). Note that the D4 analysis predicts a ρc very 

close to that reported by URS (2003). 

Overall, the results of the Plaxis analyses are in reasonable agreement with the 

SH2 1-D ρc calculations for the two lower σ’p profiles, especially when considering the 

results for Cases D1, D2 and D4. 

Figure 3.28b plots the predicted maximum ue versus Bay Mud cv(NC) from the 

analyses, along with the measured data at TS3 and TS5, and the URS (2003) analysis. 

The results show that Cases C1, D3 and D4 with cv(NC) = 0.04 ft2/day predict ue in the 

range of the measured data. Analyses using higher cv(NC) values underestimate the 

maximum ue below the centerline, but can still achieve reasonable agreement with 

maximum values beneath the toe. 

The combined results of the conventional 1-D consolidation analysis (SH2) and 

the Plaxis analyses indicate that the preconsolidation stress (σ’p) of the Bay Mud is lower 

than the σ’p(FV) profile developed by URS (2003) and checked by the Author. The 

CRSC σ’p data also were in reasonable agreement with σ’p(FV). One must also reduce 

σ’p, and also cv(NC) compared to the lab CRSC data, in order to achieve reasonable 

agreement between predicted and measured values of both ρc and ue. A 10% reduction in 

σ’p can be explained by the fact that the CRSC tests overpredict σ’p due to the higher 

strain rate than occurs at the EOP in incremental oedometer tests. And a 20% reduction in 

σ’p would support Hypothesis B. 

Unrealistic undrained shear induced settlements (initial settlements) are predicted 

(therefore the horizontal displacements) when using SSM with the best selected 

parameters to predict ρc. This is due to the fact that reasonable values of κ* for 
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consolidation analyses result in values of Eu that are much too low (i.e., as discussed in 

Section 3.4.4). In addition, the SSM cannot predict increasing horizontal displacements 

during consolidation after the EOC. 
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Table 3.1 Summary of Laboratory CRSC Tests on Virgin Ground at TS3-B1 (Free Field Condition) 

 

Cc max kvo Ck cv(NC)

CRSC
Test #

EL.
 [ft]

σ'vo

[ksf]
wn

[%]
γt

[pcf]
e0
[Gs=2.70]

S
[%]

ωp

[%]
ωL

[%]
IP εv%

@σ'vo URS

CCL/
HQN

CRmax URS

CCL/
HQN

RRmax URS
CCL/
HQN

[10-4

ft/day] [ft2/yr]
440 -6.5 0.59 74.9 97.3 2.025 99.8 41 105 64 0.8 0.261 0.255 0.027 0.036 0.772 3.28 3.35 1.1 0.664 17.0±3.4
441 -11.5 0.76 95.2 92.0 2.575 99.8 1.1 0.297 0.480 0.019 0.055 1.715 1.64 1.64 5.7 0.676 16.6
432 -16.5 0.91 88.4 93.2 2.41 100 34 87 53 1.3 0.329 0.373 0.029 0.071 1.27 1.62 1.64 6.2 0.587 30.9
431 -21.5 1.07 98.2 90.8 2.68 99 2.0 0.428 0.420 0.029 0.117 1.545 1.64 1.70 5.7 0.830 13.2
435 -26.5 1.22 87.4 94.0 2.36 100 35 93 58 1.5 0.435 0.440 0.029 0.065 1.48 2.15 2.18 2.8 0.838 18.7
443 -31.5 1.37 95.2 89.3 2.685 95.8 2.2 0.354 0.340 0.028 0.131 1.253 2.03 2.00 5.1 0.477 30.5  ± 7.5
444 -36.5 1.52 88.1 93.4 2.395 99.4 41 104 63 1.5 0.372 0.390 0.033 0.119 1.325 2.05 2.10 3.1 1.127 25.1

Notes:
 URS from Appendix E table E-2-1A, 2A
NQH & CCL used plots from Germaine (2002)
All tests are run at a strain rate of 0.72 % per hour
σ'vo[ksf] = 0.3436+0.0374(-EL.) for BM Crust
σ'vo[ksf] = 0.4145+0.0303(-EL.) for Recent Bay Mud
Water Table Elevation = -4.5 ft

Flow Properties
by HQNCompressibility Parameters

Preconsolidation
StressSpec. Location

TS3-B1 @GL=-1.5 ft
Specimen Data

CR σ'p[ksf]RR
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Table 3.2 Summary of Field Vane Shear Test Results at Virgin Ground Condition 

Ratio

URS Chandler(88) URS Chandler (88)

URS/
Chandler(88)

x100%

1 -8.5 BM Crust 0.662 0.873 1.320 5.445 4.788 3.602 3.167 113.7
2 -9.5 BM Crust 0.699 1.066 1.525 6.456 5.573 4.512 3.895 115.8
3 -10.5 BM 0.733 0.776 1.059 4.204 3.800 3.080 2.784 110.6
4 -11.5 BM 0.763 0.562 0.737 2.742 2.595 2.092 1.980 105.7
5 -12.5 BM 0.793 0.524 0.661 2.412 2.315 1.914 1.836 104.2
6 -13.5 BM 0.824 0.465 0.565 2.006 1.963 1.652 1.617 102.2
7 -14.5 BM 0.854 0.485 0.568 2.020 1.976 1.725 1.687 102.2
8 -16.5 BM 0.914 0.465 0.509 1.773 1.759 1.621 1.608 100.8
9 -18.5 BM 0.975 0.504 0.517 1.808 1.789 1.762 1.745 101.0

10 -20.5 BM 1.036 0.485 0.468 1.609 1.613 1.667 1.671 99.8
11 -22.5 BM 1.096 0.572 0.522 1.828 1.807 2.004 1.981 101.1
12 -24.5 BM 1.157 0.562 0.486 1.680 1.676 1.944 1.939 100.2
13 -26.5 BM 1.217 0.543 0.446 1.520 1.533 1.850 1.866 99.2
14 -28.5 BM 1.278 0.572 0.448 1.526 1.538 1.950 1.966 99.2
15 -30.5 BM 1.339 0.640 0.478 1.649 1.649 2.207 2.207 100.0
16 -32.5 BM 1.399 0.630 0.450 1.537 1.548 2.150 2.166 99.3
17 -34.5 BM 1.460 0.640 0.438 1.489 1.505 2.174 2.197 98.9
18 -36.5 BM 1.520 0.853 0.561 1.990 1.950 3.026 2.965 102.1
19 -38.5 BM 1.581 0.679 0.429 1.454 1.473 2.298 2.329 98.7
20 -40.5 BM 1.642 0.620 0.378 1.250 1.287 2.051 2.113 97.1
21 -42.5 BM 1.702 0.814 0.478 1.649 1.649 2.808 2.807 100.0
22 -45.5 Alluvium 1.793 >1.80

1 -8.8 BM Crust 0.673 0.989 1.470 6.183 5.362 4.159 3.607 115.3
2 -9.8 BM Crust 0.710 0.737 1.038 4.105 3.720 2.915 2.642 110.3
3 -10.8 BM 0.742 0.717 0.967 3.775 3.453 2.800 2.561 109.3
4 -11.8 BM 0.772 0.640 0.829 3.151 2.938 2.433 2.268 107.2
5 -12.8 BM 0.802 0.485 0.604 2.173 2.109 1.744 1.692 103.0
6 -13.8 BM 0.833 0.446 0.536 1.885 1.857 1.570 1.547 101.5
7 -14.8 BM 0.863 0.436 0.505 1.760 1.747 1.519 1.508 100.7
8 -16.8 BM 0.924 0.465 0.503 1.753 1.741 1.619 1.608 100.7
9 -18.8 BM 0.984 0.485 0.493 1.709 1.702 1.682 1.675 100.4

10 -20.8 BM 1.045 0.524 0.502 1.745 1.734 1.823 1.811 100.6
11 -22.8 BM 1.105 0.562 0.508 1.773 1.759 1.960 1.944 100.8
12 -24.8 BM 1.166 0.543 0.466 1.599 1.604 1.864 1.870 99.7
13 -26.8 BM 1.227 0.562 0.458 1.569 1.577 1.924 1.934 99.5
14 -28.8 BM 1.287 0.562 0.437 1.482 1.499 1.908 1.929 98.9
15 -30.8 BM 1.348 0.679 0.504 1.754 1.742 2.364 2.347 100.7
16 -32.8 BM 1.408 0.659 0.468 1.608 1.612 2.264 2.270 99.8
17 -34.8 BM 1.469 0.650 0.442 1.506 1.520 2.212 2.233 99.1
18 -36.8 BM 1.530 0.892 0.583 2.083 2.031 3.186 3.106 102.6
19 -38.8 BM 1.590 0.950 0.597 2.143 2.083 3.408 3.312 102.9
20 -40.8 Alluvium 1.651 1.692

Su(FV)
 [ksf]

Su(FV)/
σ'vo

URS= SHANSEP (Ladd&Foott, 1974): µ=0.80; S=0.25; m=0.85 Chandler(88) - Select SFV=0.297 for Ip = 58.5%

TS5-V1
GSEL.
 -1.8 ft

TS3-V1
GSEL.
-1.5 ft

OCR σ'p(FV) [ksf]

Vane
Sounding

No.
Test
 No.

MSL
EL. [ft] Soil

σ'vo

[ksf]

1/( ) / '( ) mu voS FVOCR
S

µ σ=
1.05

( ) / ' ; ( )u vo
FV

FV

s FVOCR S f PI
S

σ⎛ ⎞
= =⎜ ⎟
⎝ ⎠
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Table 3.3a Summary of Recompression Ratio Evaluation 
 

Status CRS# El. 
[ft] 

σ’vo 
[ksf] 

σ’p 
[ksf] 

Ave. 
σ’vc 
[ksf] 

σ’vc/σ’p σ’p/σ’vo 
[OCR] 

σ’vc/σ’vo CRmax RR RRmin Remarks 

431 -
21.5 

1.065 1.70 1.70 1.0 1.6 1.6 0.42 0.117 0.045

443 -
31.5 

1.370 2.00 1.93 0.97 1.46 1.41 0.34 0.131 0.084

σ’vc ≈ σ’p 

444 -
36.5 

1.52 2.10 2.10 1.0 1.38 1.38 0.39 0.119 0.075

σ’v0 → σ’vc 

             
432 -

16.5 
0.915 1.64 1.73 1.05 1.79 1.9 0.373 0.071 0.045 For CR = 0.375 

         0.108  For all Recomp. 
441 -

11.5 
0.763 1.64 1.8 1.10 2.15 2.36 0.48 0.055 0.037 For CR = 0.48 

σ’vc > σ’p 
(Virgin 

Compression) 

         0.098  For all Recomp. 
             

440 -6.5 0.58 3.35 1.70 0.51 5.8 2.93 0.255 0.036 0.020  σ’vc < σ’p 
All 

Recompression 
435 -

26.5 
1.22 2.18 1.86 0.85 1.8 1.525 0.44 0.065 0.045  

 
 

Table 3.3b Selected RR for 1-D Analysis 

Preconsolidation Profile El. RR Selected 
From -6 to -20 ft 0.06 For σ’p & 0.9σ’p 

From -20 to -41.5 ft 0.12 
From -6 to -20 ft 0.04 For 0.8σ’p 

From -20 to -41.5 ft 0.08 
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Table 3.4 NC Coefficient of Consolidation of Bay Mud  

 

Condition
Boring
GSE.

EL.
[ft]

ωΝ

[%]
ωL

[%]
Ip

[%] CRSC#
Cv(NC)
[x10-4cm2/s]

Cv(NC)
[ft2/yr]

TS3-B1 -11.5 91.1 441 4.9 16.6
-16.5 88.2 87 53 432 9.1 30.9

-1.5 ft -21.5 96.0 431 3.9 13.2
-26.5 86.7 93 58 435 5.5 18.7
-31.5 100.5 443 9.0 30.6
-36.5 86.6 104 63 444 7.4 25.1

TS3-B3
+6.9 ft -13.1 79.3 451 4.1 13.9

-26.1 89.7 450 3.9 13.2
-34.1 127.1 442 4.2 14.3

TS3-S3 -12.1 85.5 437 3.9 13.2
+6.9 ft -18.1 87.1 96 58 439 4.5 15.3

-23.1 76.8 433 7.6 25.8
-28.1 171.8 438 2.2 7.5
-32.1 80.9 93 57 434 5.6 19.0

TS5-B3 -13.1 77.9 445 4.2 14.3
+6.9 ft -33.1 107.2 449 4.7 16.0

Index & Boring Log data from Appendix A&E (URS, 2003)
Cv(NC) data from Germaine (2002)

U
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Table 3.5a Summary of Undrained Strength Ratio of Bay Mud from DSS Tests 

at NHP, N1 and N2 Levees 

DSS Test # Location ωn [%] El. [ft] OCR τ/σ'vc 
583 N2-B7(S5) 77.4   1 0.2653 
584 N2-B7(S5) 78.0   1 0.242 
585 N2-B7 (S9) 78.1   1 0.2532 
586 N2-B7 (S9) 69.7   1 0.2448 
587 N2-B7 (S13) 93.7   1 0.2654 
588 TS5-B3 (S6) 86.0 -18.1 1 0.2533 
589 TS5-B3(S8) 88.1 -28.1 1 0.2295 
590 TS3-S3(S3) 95.4 -18.1 1 0.2383 
591 TS3-S3(S5) 163.9 -28.1 1 0.3205 
592 TS5-B3(S6) 90.6 -18.1 1 0.2306 
593 TS5-B3(S6) 92.0 -18.1 1.96 0.4828 
594 N2-B7 (S7) 76.7   1.96 0.4589 
596 N2-B7(S13) 89.7   1.97 0.4546 
601 TS3-S3(S3) 94.5 -18.1 1 0.2366 
621 N1-B9(S6) 85.4   2.89 0.5999 
622 N1-B4(S9) 86.0   2.94 0.5454 

     
Table 3.5b Summary of Direct Simple Shear Results for NHPL BAY MUD 

OCR Types of Analysis  # of tests 

Mean 
of 

 max. 
τ/σ'vc SD 

All DSS tests  11 0.2527 0.0171 
All Tests at TS3&TS5 6 0.2515 0.0236 

1 All tests at TS3&TS5 except DSS591 5 0.2377 0.0065 
All tests 3 0.4654 0.0116 

2 Only at TS5 & TS3 1 0.4828 0.0000 
3 All tests 2 0.5727 0.0273 
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Table 3.6 Summary of Triaxial Tests on Bay Mud from NHP Levee 

 
TX Test # Mode Location El. [ft] q/σ'vc εa[%] OCR 

575 TC TS5-B3(S6) -18.1 0.3757 1.53 1 
576 TE TS5-B3(S6) -18.1 -0.2908 -15 1 
584 TC TS5-B3(S6) -18.1 0.3725 2.41 1 
590 TC TS3-S3(S6) -18.1 0.3009 3.84 1 
603 TE TS3-B1(S4) -21.1 -0.258 -14.5 1 

Average of TC mode (n=3):  0.3479 ± 0.0325 2.59±0.831   
Average of TE mode (n=2)  0.2744 ± 0.0164 14.75 ± 0.25   
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 Table 3.7a Selected Values of Parameters for Computing σ’vf Using PLAXIS - CASE A: Stiff and Uncracked, Continuous Pavement and 
Stiff Crust 

[Properties other than Bay Mud = Table 4.1 URS/ARUP Test Fill (2005)] 
 

Layer 
No. Material El.[ft] Model γt[pcf] 

φ' 
[deg] 

c or 
su 

[ksf] Eu[ksf] ν 
kh 

[ft/day]
kv 

[ft/day] 
1 Levee Fill From 9.4 to -1.6 MC 130.0 37 0.300 300 0.3 0.1 0.1 
2 Pavement From -1.6 to -4.5 MC 150.0 35 4.960 2000 0.15 1 1 
3 Base Course From -4.5 to -6.2 MC 145.0 45 0.025 1500 0.2 1 1 
4 BM Crust From -6.2 to -10 MC 99.8 0 0.800 300 0.29 6.E-04 4.E-04 
5 BM1 From -10 to -15 MC 92.7 0 0.392 78.3 0.26 6.E-04 4.E-04 
6 BM2 From -15 to -20 MC 92.7 0 0.366 73.1 0.26 6.E-04 4.E-04 
7 BM3 From -20 to -25 MC 92.7 0 0.406 81.2 0.26 6.E-04 4.E-04 
8 BM4 From -25 to -30 MC 92.7 0 0.450 90.0 0.26 6.E-04 4.E-04 
9 BM5 From -30 to -35 MC 92.7 0 0.491 98.1 0.26 6.E-04 4.E-04 
10 BM6 From -35 t0 -40 MC 92.7 0 0.533 106.5 0.26 6.E-04 4.E-04 

11 BM7 
From -40 to -

41.5 MC 92.7 0 0.559 111.8 0.26 6.E-04 4.E-04 

12 Below BM 
From -41.5 

below 
Linear 
Elastic 120.0     3000 0.3     

 
Note: The Author replaced the lower portion of the pavement used by URS/ARUP (2005) with a granular base course (Layer 3) 
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Table 3.7b Properties of Soils Used in σ’vf Analyses for CASE B: Stiff Cracked Pavement and Stiff Crust 

[Properties other than Bay Mud = Table 4.1 – URS/ARUP Test Fill (2005)] 
 

Layer 
No. Material El.[ft] Model γt[pcf] 

φ' 
[deg] 

c or 
su 

[ksf] Eu[ksf] ν 
kh 

[ft/day]
kv 

[ft/day] 
1 Levee Fill From 9.4 to -1.6 MC Values are the same as Table 3.7a 0.1 0.1 

2 
Cracked 

Pavement From -1.6 to -4.5 MC 150.0 35 0.025 1500 0.2 1 1 
3 Base Course From -4.5 to -6.2 MC 1 1 
4 BM Crust From -6.2 to -10 MC 8.E-04 4.E-04 
5 BM1 From -10 to -15 MC 8.E-04 4.E-04 
6 BM2 From -15 to -20 MC 8.E-04 4.E-04 
7 BM3 From -20 to -25 MC 8.E-04 4.E-04 
8 BM4 From -25 to -30 MC 8.E-04 4.E-04 
9 BM5 From -30 to -35 MC 8.E-04 4.E-04 
10 BM6 From -35 t0 -40 MC 8.E-04 4.E-04 

11 BM7 
From -40 to -

41.5 MC 8.E-04 4.E-04 

12 Below BM 
From -41.5 

below 
Linear 
Elastic

Values are the same as Table 3.7a 

    
 

Note: The Author replaced the lower portion of the pavement used by URS/ARUP (2005) with a granular base course (Layer 3) 
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Table 3.7c Properties of Soils Used in σ’vf Analyses for CASE C: Weaker Cracked Pavement and Crust 

[Properties other than BM and BM Crust = Table 6, URS (2003)] 
 

Layer 
No. Material El.[ft] Model γt[pcf] 

φ' 
[deg] 

c or 
su 

[ksf] Eu[ksf] ν 
kh 

[ft/day]
kv 

[ft/day] 
1 Levee Fill From 9.4 to -1.6 MC 130.0 37.0 0.020 30.0 0.3 0.1 0.1 

2 
Cracked 

Pavement From -1.6 to -4.5 MC 150.0 35 0.025 200 0.2 1 1 
3 Base Course From -4.5 to -6.2 MC Values are the same as Table 3.7a 1 1 
4 BM Crust From -6.2 to -10 MC 100.0 0.0 0.580 116.0 0.3 8.E-04 4.E-04 
5 BM1 From -10 to -15 MC 8.E-04 4.E-04 
6 BM2 From -15 to -20 MC 8.E-04 4.E-04 
7 BM3 From -20 to -25 MC 8.E-04 4.E-04 
8 BM4 From -25 to -30 MC 8.E-04 4.E-04 
9 BM5 From -30 to -35 MC 8.E-04 4.E-04 
10 BM6 From -35 t0 -40 MC 8.E-04 4.E-04 

11 BM7 
From -40 to -

41.5 MC 8.E-04 4.E-04 

12 Below BM 
From -41.5 

below 
Linear 
Elastic

Values are the same as Table 3.7a 

    
 

                        
Note: The Author replaced the lower portion of the pavement used by URS (2003) with a granular base course (Layer 3) 



 

155  

 
Table 3.7d Selected Undrained Shear Strength and Young’s Modulus for Bay Mud for σ’vf Calculation 

 

Layer No. Name Thickness (ft)
Mid 

El. (ft) σ'v0 (ksf) σ'p(ksf) OCR Su[ksf] Eu[ksf]

1 BM1 From -10 to -15 -12.5 0.797 1.765 2.215 0.392 78.3
2 BM2 From -15 to -20 -17.5 0.950 1.579 1.662 0.366 73.2
3 BM3 From -20 to -25 -22.5 1.103 1.740 1.578 0.406 81.2
4 BM4 From -25 to -30 -27.5 1.256 1.919 1.528 0.450 90.0
5 BM5 From -30 to -35 -32.5 1.409 2.081 1.477 0.491 98.1
6 BM6 From -35 to -40 -37.5 1.562 2.251 1.441 0.533 106.5
7 BM7 From -40 to -41.5 -40.75 1.661 2.357 1.419 0.559 111.8
8 BM Crust From -6.2 to -10 -8.1 0.640 3.20 5.00 0.580 116.0  

 
 
 
 

Notes: -    Estimate undrained shear strength (su) using SHANSEP method (Ladd and Foott, 1974) 

- SHANSEP Equation:  ( )'
mu

vo

s S OCR
σ

=  , with S = 0.25 and m =0.85 

- Estimated undrained Young’s Modulus Eu = 200su 
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Table 3.8a Measured Excess Pore Pressure Data at TS3 
 

Units: psi x 144 = psf/62.4 = ft ; psi x 2.308 = h (ft) 
 

Test Section and Piezometer Location Piezometer 
Readings Excess Pore Pressure Calculation 

TS3 Soil Piezo. # EL.Tip (ft) Date (psi) hp (ft) ht (ft) 
Selected 

 hs (ft) 
hex = ht 

- hs 
(ft) 

ue (ksf) 

                      
BM Crust SP3-1 -10.1 3/12/02 2.62 6.05 -4.05 -4.04 0.00 0.000 

3-1 -10.1 2/28/02 2.63 6.07 -4.03 -4.04 0.01 0.001 
3-2 -17.1 3/12/02 7.21 16.64 -0.46 -4.16 3.70 0.231 
3-3 -24.1 3/12/02 11.61 26.79 2.69 -4.30 6.99 0.436 
3-4 -31.1 3/12/02 14.68 33.88 2.78 -4.40 7.18 0.448 

BM 

3-5 -38.1 3/12/02 15.995 36.91 -1.19 -4.53 3.34 0.209 
Alluvium 3-6 -45.1 3/12/02 17.535 40.47 -4.63 -4.65 0.00 0.000 U

nd
er

 L
ev

ee
 C

re
st

 
 (L

in
e 

3)
 

                    
2-1 -10.8 2/1/02 3.25 7.50 -3.30 -4.04 0.74 0.046 
2-2 -17.8 2/1/02 6.54 15.09 -2.71 -4.16 1.45 0.091 
2-3 -24.8 2/1/02 9.58 22.11 -2.69 -4.30 1.61 0.100 
2-4 -32.8 2/1/02 13.03 30.07 -2.73 -4.40 1.67 0.104 

BM 

2-5 -39.8 2/1/02 15.53 35.84 -3.96 -4.53 0.57 0.035 
Alluvium 2-6 -47.8 2/1/02 18.68 43.11 -4.69 -4.70 0.01 0.000 

U
nd

er
 L

ev
ee

 T
oe

 
 (L

in
e 

2)
 

                    
 
 

Note: hs based on assumed linear variation in the minimum ht measured near the top and bottom of the Bay Mud for line 3. 
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Table 3.8b Measured Excess Pore Pressure Data at TS5 
 

Units: psi x 144 = psf/62.4 = ft  ; psi x 2.308 = h (ft) 
 

Test Section and Piezometer Location Piezometer 
Readings Excess Pore Pressure Calculation 

TS5 Soil Piezo. # EL.Tip (ft) Date (psi) hp (ft) ht (ft) 
Selected 

 hs (ft) 
hex = ht 

- hs 
(ft) 

ue (ksf) 

SP3-1 -11.1 3/12-27/02 2.92 6.74 -4.36 -4.35 0.00 0.000 
3-1 -11.6 3/10-20/02 4.535 10.47 -1.13 -4.35 3.22 0.201 
3-2 -17.6 3/10-20/02 6.955 16.05 -1.55 -4.30 2.75 0.172 
3-3 -24.1 3/10-20/02 11.17 25.78 1.68 -4.25 5.93 0.370 
3-4 -30.6 3/10-20/02 13.48 31.11 0.51 -4.20 4.71 0.294 

BM 

3-5 -36.6 3/10-20/02 15.56 35.91 -0.69 -4.15 3.46 0.216 
Alluvium 3-6 -43.1 3/10/02 16.9 39.00 -4.10 -4.00   0.000 U

nd
er

 L
ev

ee
 C

re
st

 
 (L

in
e 

3)
 

                    
                    

Crust 2-1 -9.8 1/25/02 2.08 4.80 -5.00 -5.00 0.00 0.000 
2-2 -17.8 1/25/02 6.31 14.56 -3.24 -4.90 1.66 0.104 
2-3 -26.3 1/25/02 10.7 24.69 -1.61 -4.85 3.24 0.202 
2-4 -34.3 1/25/02 13.9 32.08 -2.22 -4.80 2.58 0.161 

BM 

2-5 -41.8 1/25/02 16.09 37.13 -4.67 -4.70 0.03 0.002 

U
nd

er
 L

ev
ee

 T
oe

 
 (L

in
e 

2)
 

Alluvium                   
 

Note: hs based on assumed linear variation in the minimum ht measured near the top and bottom of the Bay Mud for line 3.
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Table 3.9a Summary Results of 1-D Consolidation Settlement Calculations [SH1, SH2, and URS (2003)] 
 

Computed 1-D Consolidation Settlements  
at 1/31/02, ρc (ft) 

Measured 
Settlements  

at 1/31/02, ρm, (ft) 

(a) 
 Stress History 1 (SH1) 
 Case A &B, Fig. 3.12b 

 (b) 
 Stress History 2 (SH2) 

 Case C, Fig. 3.12c 

(c) 
 

URS (2003) 
    

Computed with  
Preconsolidation Stress  

Profiles 

TS3 TS5 TS3 TS5 TS3 TS5 TS3 TS5 
σ'p 0.761 0.81 1.043 1.141 0.61 0.58 

0.9σ'p 0.963 1.186 1.42 1.548 1.06 0.99 
0.8σ'p 1.229 1.501 1.713 1.865 1.65 1.5 1.65 1.57 

 
 

Table 3.9b Comparison of Computed 1- D Consolidation Settlements (Computed with SH2) and Measured Settlements 
 

ρc at 1/31/02 (ft) % of Measured ρm ρcf (ft) 
Degree of  

Consolidation,U% Preconsolidation Stress  
Profile TS3 TS5 TS3 TS5 TS3=TS5 TS3 TS5 

σ'p 1.043 1.141 63 73 1.761 59 65 
0.9σ'p 1.42 1.548 86 99 2.169 65 71 
0.8σ'p 1.713 1.865 104 119 2.633 65 71 

Measured (1/31/02) 1.65 1.57           
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Table 3.10 Parameters for Simulations of Consolidation and Undrained Shear - Bay Mud 

      1-D Consolidation CK0U PSC/E  CK0U DSS 
Case     Case 1 Case 2 1 2 3 4 5 6 7 1 2 
Name     BM1=URS BM2=Nguyen              
Type     Undrained Undrained Undrained Undrained 
SSM Property Name Symbol Unit                       
Unit weight γt [klb/ft^3] 0.092 0.0927 0.0927 0.0927 
Horizontal hydraulic conductivity k_x [ft/day] 0.0008 0.0012 0.0012 0.0012 
Vertical hydraulic con. k_y [ft/day] 0.0004 0.0009 0.0009 0.0009 
Change of hydraulic con. Ck [ - ] 1.143 1.40 1.40 1.40 
Initial void ratio e0 [ - ] 1.00 2.50 2.50 2.50 

Modified compression index λ* [ - ] 
0.18 

(CR=0.41) 
0.174 

(CR =0.40) 
0.174 

(CR =0.40) 
0.174 

(CR =0.40) 

Modified swelling index κ* [ - ] 
0.035 

(RR=0.04) 
0.104 

(RR = 0.12) 
0.104 

(RR = 0.12) 0.104 0.002 
Poisson's ratio for 
unloading/reloading νur [ - ] 0.26 0.26 0.26 0.26 
Lateral stress ratio for NC BM K0nc [ - ] 0.62 0.62 0.62 0.47 0.47 
Friction angle ϕ' [ ° ] 30 30 20 30 46 20 25 30 46 25 
K0nc - parameter Μ [ - ] 1.27 1.20 1.20 1.55 1.55 
Cohesion c' [klb/ft^2] 0.025 0.025 0.025 0.025 
Dilatancy angle ψ' [ ° ] 0.001 0.0001 0.0001 0.0001 

Overconsolidation ratio OCR [ - ] 1.5 1.5 1, 1.5, 2, 3, and 5 
1, 1.5, 2, and 

4 
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Table 3.11 Calculation Scheme for 1-D Consolidation Simulation of Incremental Oedometer Test 

 
 
Phase ID 

Cal. type Loading 
input 
[ksf] 

Time 
increment 
[day] 

End time 
[day] 

Notes 

0 Initial Cal. 0.0 0 0 Initial phase, OCR = 1.5, K0OC 
1 Plastic 1.5 0 0 Loading to virgin compression  
2 Consolidation 1.5 1 1 Check ue = 0 at end of consolidation 
3 Plastic 1.0 0 1 Unloading to 1.0 ksf (OCR =1.5) 
4 Consolidation 1.0 1 2 Check ue = 0 at end of consolidation 
5 Plastic 2.5 0 2 Loading to virgin compression 
6 Consolidation 2.5 2 4 Check ue = 0 at end of consolidation 
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Table 3.12 Summary Results of PSC Simulations 

(Sheet 1 of 2) 
 

Case 1: With K0NC=0.62 and  Friction Angle = 200 (Line 1a) 

OCR K0 σ'p [ksf] σ'vc [ksf] σ'hc [ksf] 
su 
[ksf] su/σ'p su/σ'vc 

1 0.62 1.5 1.50 0.93 0.428 0.28533 0.285 
1.5 0.73 1.5 1.00 0.73 0.321 0.214 0.321 

2 0.8181 1.5 0.75 0.61 0.258 0.172 0.344 
3 0.9621 1.5 0.50 0.48 0.193 0.129 0.386 
5 1.1803 1.5 0.30 0.35 0.138 0.092 0.460 

                

Case 2: With K0NC=0.62 and  Friction Angle = 300 (Line 2a) 

OCR K0 σ'p [ksf] σ'vc [ksf] σ'hc [ksf] 
su 
[ksf] su/σ'p su/σ'vc 

1 0.62 1.5 1.50 0.93 0.538 0.35867 0.3587 
1.5 0.73 1.5 1.00 0.73 0.444 0.296 0.444 

2 0.8181 1.5 0.75 0.61 0.396 0.264 0.528 
3 0.9621 1.5 0.50 0.48 0.269 0.179 0.538 
5 1.1803 1.5 0.30 0.35 0.186 0.124 0.620 

Case 3: With K0NC=0.62 and  Friction Angle = 460 (Line 3a) 

OCR K0 σ'p [ksf] σ'vc [ksf] σ'hc [ksf] 
su 
[ksf] su/σ'p su/σ'vc 

1 0.62 1.5 1.50 0.93 0.829 0.55267 0.553 
1.5 0.73 1.5 1.00 0.73 0.614 0.40933 0.614 

2 0.8181 1.5 0.75 0.61 0.515 0.34333 0.687 
3 0.9621 1.5 0.50 0.48 0.375 0.250 0.75 
5 1.1803 1.5 0.30 0.35 0.257 0.17133 0.857 
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(Table 3.12 Continued, Sheet 2 of 2) 
 

OCR K0 σ'p [ksf] σ'vc [ksf] σ'hc [ksf] su [ksf] su/σ'p su/σ'vc

1 0.47 1.5 1.50 0.71 0.4 0.266667 0.267
1.5 0.552757 1.5 1.00 0.55 0.289 0.192667 0.289

2 0.620169 1.5 0.75 0.47 0.232 0.154667 0.309
3 0.729367 1.5 0.50 0.36 0.172 0.115 0.344
5 0.894717 1.5 0.30 0.27 0.123 0.082 0.410

OCR K0 σ'p [ksf] σ'vc [ksf] σ'hc [ksf] su [ksf] su/σ'p su/σ'vc

1 0.47 1.5 1.50 0.71 0.564 0.376 0.376
1.5 0.552757 1.5 1.00 0.55 0.412 0.275 0.412

2 0.620169 1.5 0.75 0.47 0.327 0.218 0.436
3 0.729367 1.5 0.50 0.36 0.239 0.159 0.478
5 0.894717 1.5 0.30 0.27 0.164 0.109 0.547

OCR K0 σ'p [ksf] σ'vc [ksf] σ'hc [ksf] su [ksf] su/σ'p su/σ'vc

1 0.47 1.5 1.50 0.71 0.741 0.494 0.494
1.5 0.552757 1.5 1.00 0.55 0.617 0.411 0.617

2 0.620169 1.5 0.75 0.47 0.458 0.305 0.611
3 0.729367 1.5 0.50 0.36 0.331 0.221 0.662
5 0.894717 1.5 0.30 0.27 0.222 0.148 0.740

OCR K0 σ'p [ksf] σ'vc [ksf] σ'hc [ksf] su [ksf] su/σ'p su/σ'vc

1 0.47 1.5 1.50 0.71 0.498 0.332 0.332
1.5 0.552757 1.5 1.00 0.55 0.352 0.235 0.352

2 0.620169 1.5 0.75 0.47 0.28 0.187 0.373
3 0.729367 1.5 0.50 0.36 0.206 0.137 0.412
5 0.894717 1.5 0.30 0.27 0.146 0.097 0.487

Case 4:  With K0NC=0.47 and  Friction Angle = 200 (Line 1b)

Case 6: With K0NC=0.47 and  Friction Angle = 300 (Line 2b)

Case 7: With K0NC=0.47 and  Friction Angle = 460 (Line 3b)

Case 5: With K0NC=0.47 and  Friction Angle = 250 (Best Selected Line)
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Table 3.13 Summary Results of DSS Simulations 
 
 

Case 1 with measured κ* = 0.104  
OCR K0 σ'p [ksf] σ'vc [ksf] σ'hc [ksf] su [ksf] su/σ'p su/σ'vc Eu/σ'vc 

1 0.47 1.5 1.500 0.705 0.486 0.324 0.324 11 
1.5 0.5528 1.5 1.000 0.553 0.350 0.233 0.35 16.1 

2 0.6202 1.5 0.750 0.465 0.279 0.186 0.372 21.7 
4 0.8183 1.5 0.375 0.268 0.160 0.107 0.427 42.8 

         

Case 2 with  reduced  κ* = 0.002 
OCR K0 σ'p [ksf] σ'vc [ksf] σ'hc [ksf] su [ksf] su/σ'p su/σ'vc Eu/σ'vc 

1 0.47 1.5 1.500 0.705 0.458 0.305 0.305 557.1 
1.5 0.5528 1.5 1.000 0.553 0.351 0.234 0.351 835.7 

2 0.6202 1.5 0.750 0.465 0.279 0.186 0.372 1114.2 
4 0.8183 1.5 0.375 0.268 0.158 0.105 0.421 2228.5 
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Table 3.14 Definition of Cases for NHPL FE Analyses 
 

    BAY MUD* 

su (DSS) cv(NC) kvo, kh0 (ft/day) 
Case Pavement σ’p 

@ OCR =1.5 (ft2/day) and Ck 

Alluvium 
kvo 

(ft/day) 
Effect of 

A1 URS (2003) uncracked pavement σ’p(FV) Konc= 0.47, 
φ’=250  0.06  9E-4, 12E-4, Ck = 

1.40 0.001 Pavement  

A2 Cracked Pavement (below and 
extended at toes of NHPL) ,, ,, 0.06 ,, ,, Cracked Pavement 

B ,, ,, ,, 0.06 ,, 1 ue = 0 below BM 

C1 ,, ,, ,, 0.04 4E-4, 8E-4, Ck = 1.143 0.001 cv(NC) 

C2 ,, ,, ,, 0.045 6E-4, 9E-4; Ck = 1.40 ,, ,, 

C3 ,, ,, ,, 0.05 7E-4, 10.5E-4; Ck = 
1.40 ,, ,, 

D1 ,, 0.9σ’p ,, 0.06 9E-4, 12E-4, Ck = 1.40 ,, σ’p 

D2 ,, 0.8σ’p ,, 0.06 9E-4, 12E-4, Ck = 1.40 ,, σ’p and cv(NC) 

D3 ,, 0.8σ’p ,, 0.04 4E-4, 8E-4, Ck = 1.143 ,, σ’p and cv(NC) 

D4 ,, 0.8σ’p ,, 0.04 4E-4, 8E-4, Ck = 1.143 0.005 
σ’p, cv(NC), kv0 of 

Alluvium 
and Crust 

Notes *       

 Nguyen's Selected CR = 0.40 for BM Crust and Bay Mud     

 Nguyen's Selected RR  σ'p 0.9σ'p & 0.8σ'p     

 From EL. -6.2 to -20 0.06 0.04     

 From EL.  -20 to -41.5 0.12 0.08     
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Table 3.15 Soil and Pavement Properties Used in NHPL FE Analyses 
 

No.  1 2 3 4 5 6 7 8

From EL. [ft] 9.4 -1.6 -1.6 -4.5 -6.2 -10 -20 -41.5
To EL. [ft] -1.6 -4.5 -4.5 -6.2 -10 -20 -41.5 -60

Soil layer -  Levee Fill Pavement
Cracked 

Pavement Base Course
Bay Mud

 Crust Bay Mud 1 Bay Mud 2 Alluvium
Soil Model - MC MC MC MC SSM SSM SSM Linear Elastic

Type Drained Drained Drained Drained Undrained Undrained Undrained Undrained

γt [pcf] 130 150 150 145 99.8 92.7 92.7 130
e0 [ - ] - - - - 2.5 2.5 2.5 -
νur [ - ] 0.3 0.15 0.2 0.2 0.26 0.26 0.26 0.3

E_ref [ksf] 30 1000 200 200 - - - 1000
c' [ksf] 0.02 0.02 0.025 0.025 0.025 0.025 0.025 -
φ' [ ° ] 37 35 35 35 25 25 25 -
ψ' [ ° ] 0 5 2 2 0 0 0 -

K0NC [ - ] 0.5 0.5 0.5 0.5 0.47 0.47 0.47 0.7
M [ - ] - - - - 1.693 1.693 1.55 -

λ* [ - ] - - - -
0.174

(CR=0.40)
0.174

(CR=0.40)
0.174

(CR=0.40) -

 D1, D2, D3, and D4 - - - -
0.035

(RR=0.04)
0.035

(RR=0.04)
0.07

(RR=0.08) -

Other Cases - - - -
0.052

(RR=0.06)
0.052

(RR=0.06)
0.104

(RR=0.12) -
 A1, A2, D1, D2 0.1 1.0 1.0 1.0 9E-4; 12E-4 9E-4; 12E-4 9E-4; 12E-4 0.001
 B ,, ,, ,, ,, 9E-4; 12E-4 9E-4; 12E-4 9E-4; 12E-4 1.0
 C1 ,, ,, ,, ,, 4E-4; 8E-4 4E-4; 8E-4 4E-4; 8E-4 0.001
C2 ,, ,, ,, ,, 6E-4; 9E-4 6E-4; 9E-4 6E-4; 9E-4 ,,
C3 ,, ,, ,, ,, 7E-4; 10.5E-4 7E-4; 10.5E-4 7E-4; 10.5E-4 ,,
D3 ,, ,, ,, ,, 4E-4; 8E-4 4E-4; 8E-4 4E-4; 8E-4 ,,
D4 ,, ,, ,, ,, 0.005 4E-4; 8E-4 4E-4; 8E-4 0.005
Other Cases ,, ,, ,, ,, 1.40 1.40 1.40 -
C1, D3, D4 1.143 1.143 1.143 -

V
ar

ie
d 

pa
ra

m
et
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s

κ∗ [ - ]

Ck [ - ]

kvo, kho [ft/day]

NHPL
Analysis Case
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A
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E

R
C
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All Cases
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Table 3.16 Imposed Initial OCR and K0 in the Subsoil Layers for Plaxis Analyses of the NHP Levee 

Sub-layer Case A, B &C 
( σ'p) 

Case D1 
(0.9σ'p) 

Case D2 
(0.8σ'p) 

From To σ'v0 σ'p Soil 

EL. 
[ft] 

EL. 
[ft] 

Average
EL. [ft] 

[ksf] [ksf] 

OCR K0 OCR K0 OCR K0 

Bay Mud 
Crust -6.2 -10 -8.1 0.647 3.300 5.104 0.826 4.594 0.801 4.083 0.769 

-10 -12 -11 0.748 2.224 2.974 0.694 2.677 0.663 2.379 0.637 

-12 -15 -13.5 0.824 1.623 1.971 0.596 1.774 0.574 1.577 0.551 

-15 -20 -17.5 0.945 1.584 1.676 0.561 1.509 0.543 1.341 0.521 

-20 -25 -22.5 1.096 1.752 1.598 0.551 1.438 0.534 1.278 0.512 

-25 -30 -27.5 1.248 1.920 1.539 0.545 1.385 0.527 1.231 0.505 

-30 -35 -32.5 1.399 2.088 1.492 0.539 1.343 0.521 1.194 0.500 

-35 -40 -37.5 1.551 2.256 1.455 0.534 1.309 0.516 1.164 0.496 

BAY MUD 

-40 -41.5 -40.75 1.649 2.365 1.434 0.531 1.291 0.514 1.147 0.493 

 
Notes: 
+ Estimate K0 using method from Ladd et al. (1977) Tokyo SOA report: K0OC = K0NC(OCR)m 
      selecting m = 0.35 (Ip = 50%) and K0NC = 0.47; 
 
+    WT. elevation  = -4.5 ft 
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Table 3.17 Calculation phases in PLAXIS 
 

Phase ID Cal. type Loading 
input 
 

Layer 
thickness 
[ft] 

∑H 
Levee 
[ft] 

Time 
 increment
[day] 

End 
time 
[day] 

Construction 
Time 
 

Remarks 

1 Plastic Layer 1 2 2 0 0  Start of Construction 4/11/96
2 Consolidation Layer 1  2 45 45   
3 Plastic +Layer 2 2 4 0 45 CD45  
4 Consolidation +Layer 2  4 45 90   
5 Plastic +Layer 3 2 6 0 90 CD90  
6 Consolidation +Layer 3  6 30 120   
7 Plastic +Layer 4 2 8 0 120 CD120  
8 Consolidation +Layer 4  8 30 150   
9 Plastic +Layer 5 2 10 0 150 CD150  
10 Consolidation +Layer 5  10 30 180   
11 Plastic +Layer 6 1 11 0 180 CD180 End of Construction (EOC) 
12 Consolidation Full Levee  11 1935 2115 CD2115 t = tc = 1/31/02 
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Table 3.18 Summary of Results of All Plaxis Analyses of the NHP Levee 

(3.18a) 

cv(NC) σ'p ρc @CD2115 Max. ue

(ft2/day) Factor (ft) (ksf)
A1 0.06 1 1.477 0.23 89.5 94.1 47.9 63.9
A2 0.06 1 1.46 0.2265 88.5 93.0 47.2 62.9
B 0.06 1 1.49 0.104 90.3 94.9 21.7 28.9

C1 0.04 1 1.252 0.458 75.9 79.7 95.4 127.2
C2 0.045 1 1.271 0.331 77.0 81.0 69.0 91.9
C3 0.05 1 1.336 0.291 81.0 85.1 60.6 80.8
D1 0.06 0.9 1.53 0.2 92.7 97.5 41.7 55.6
D2 0.06 0.8 1.89 0.263 114.5 120.4 54.8 73.1 119.4 66.4
D3 0.04 0.8 1.494 0.477 90.5 95.2 99.4 132.5 94.4 ** 120.5
D4 0.04 0.8 1.70 0.373 103.0 108.3 77.7 103.6 107.4 94.2

* URS(2003) Plaxis ρc = 1.58 ft for Feb., 2002 and max. ue = 0.396 ksf
** URS used free draining below BM (ue =0), thus having higher rate of consolidation compared to Case D3

TS5

ρc(HQN)/ρc(URS)*
x100%

Maximum
ue (HQN)/ue 

(URS)
x100%

Case TS3 TS5 TS3

NHPL Case Prediction ρc/ρmx100%

Maximum
ue (predicted)/ue 

(measured)
x100%
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(3.18b) 
 
 
 
 

A1 A2 B C1 C2 C3 D1 D2 D3 D4 TS3 TS5
ρt (ft) CD180 2.367 2.30 2.529 2.508 2.678 2.709 1.806 1.843 1.84 1.936
ρt (ft) CD2115 3.844 3.76 4.019 3.76 3.949 4.045 3.336 3.733 3.334 3.636
ρc (ft) CD(2115 - 180) 1.477 1.46 1.49 1.252 1.271 1.336 1.53 1.89 1.494 1.70 1.65 1.57
hmax (ft) at toe CD(180; 2115)** 1.09 1.15 1.09 1.09 1.17 1.15 0.79 0.87 0.87 0.86
ue max (ksf) CD2115 0.23 0.2265 0.104 0.458 0.331 0.291 0.2 0.263 0.477 0.373 0.48 0.36

Note: ρt and ρc for point A at EL. - 3.0 ft
* Based on change in elevation of pavement surface (See Section 2.3)
** Case D2 hmax at CD2115

1.0 to 1.5  *
Results Construction Day

Analysis Cases Measured
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Figure 3.1 NHPL, Line 1 Average Soil Profile and Stress History – Free Field Conditions 
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Figure 3.2 Index Properties of Bay Mud at Free Field Condition, TS3-B1 
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Figure 3.3a Hydraulic Conductivity Property of Bay Mud at TS3-B1
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Figure 3.3b Selected Consolidation Properties for Virgin Bay Mud 
(Values of RR based on mean σ’p(FV) profile)
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Figure 3.4a CRS431 Normalized Compression Curve in Log-Scale (σ’p ≈ σ’vc) 
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Figure 3.4b CRS443 Normalized Compression Curve in Log-scale (σ’vc ≈ σ’p) 
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Figure 3.4c CRS444 Normalized Compression Curve in Log-scale (σ’vc ≈ σ’p) 
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Figure 3.4d CRS432 Normalized Compression Curve in Log-scale (σ’vc > σ’p) 
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Figure 3.4e CRS441 Normalized Compression Curve in Log-scale (σ’vc>σ’p) 
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Figure 3.4f CRS440 Normalized Compression Curve in Log-scale (σ’vc < σ’p) 
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Figure 3.4g CRS435 Normalized Compression Curve in Log-scale (σ’vc<σ’p) 
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Figure 3.5 Comparison of NC Coefficient of Consolidation of Bay Mud with NAVFAC DM-7.1 (May1982) Chart 
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Figure 3.6 Coefficient of Earth Pressure at Rest for Normally Consolidated Bay Mud, K0
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[Data from Germaine, 2002 & 2004 including DSS tests from North Levees] 

Figure 3.7 Undrained Strength Ratio vs. Overconsolidation Ratio (Log su/σ’vc vs. Log OCR) 
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Figure 3.8 Typical Results of CK0UDSS Tests on Bay Mud at OCR = 1, 2 and 3. 
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[Data from Germaine, 2002] 

 
Figure 3.9a Results of CK0UTX Tests on Bay Mud at OCR =1: Stress-Strain and Stress Path 
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Figure 3.9b Results of CK0UTX Tests on Bay Mud at OCR =1: Undrained Young’s Modulus 
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Figure 3.10 Influence of Young’s Modulus and Strength of Uncracked, Continuous Concrete Pavement on Final Vertical 

Effective Stress Distribution in Bay Mud 
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Figure 3.11a Geometry for CASE B&C Analyses of Final Vertical Stress, σ’vf 
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Figure 3.11b PLAXIS Predicted Final Consolidation Vertical Effective Stress at Centerline and Toe of Levee 
 (Cases A, B and C) 
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Figure 3.12a Selected Excess Pore Pressure Profiles under Centerline of Levee at TS3 and TS5
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Figure 3.12b TS3 & TS5, Line 3 Stress Histories for One-Dimensional Consolidation Analysis (SH1) 
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Figure 3.12c TS3 & TS5, Line 3 Stress Histories for One –Dimensional Consolidation Analysis (SH2) 
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Figure 3.13a One-Dimensional Consolidation Settlements and Measured Settlements at TS3 

& TS5 up to 01/31/02 (SH1) 
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Figure 3.13b One-Dimensional Consolidation Settlements and Measured Settlements at TS3 
& TS5 up to 01/31/02 (SH2) 
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Figure 3.13c Comparison of 1-D Consolidation Settlements at TS3 and TS5 at 1/31/02 [SH1, 
SH2, and URS (2003)]
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Figure 3.13d Predicted 1-D Consolidation Settlements at 1/02 and Final Consolidation 

Settlements with SH2 
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Figure 3.14a Stress-Strain Log Scale, 1-D Consolidation Model Test on Bay Mud SSM 
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Figure 3.14b Stress-Strain Natural Scale, 1-D Consolidation Model Test on Bay Mud SSM 
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Figure 3.14d Change in Permeability, Case 1 1-D Consolidation Model Test on Bay Mud 
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Figure 3.14e Change in Permeability, Case 2 1-D Consolidation Model Test on Bay Mud 
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Figure 3.15 Undrained Shear Strength Ratio vs. OCR, CK0U PSC/E Tests Simulation with SSM for Bay Mud 
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Figure 3.16 Undrained Strength Ratio vs. OCR, DSS Simulation 

 for Bay Mud (SSM), κ* = 0.104 and 0.002 
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Figure 3.17a Normalized Undrained Shear Stress vs. Shear Strain, DSS Simulation on Bay Mud (SSM), κ*=0.104 
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Figure 3.17b Normalized Undrained Modulus vs. Shear Strain, DSS Simulation on Bay Mud (SSM), κ*=0.104 
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Figure 3.18a Normalized Undrained Shear Stress vs. Shear Strain, DSS Simulation on Bay Mud (SSM), κ*=0.002 



 

205  

1

10

100

1000

104

10-5 0.0001 0.001 0.01 0.1 1 10 100

κ*=0.002

Lab DSS592 (OCR =1)

Lab DSS593 (OCR =2)

Lab DSS621 (OCR=3)

FE SSM (OCR =1)

FE SSM (OCR =1.5)

FE SSM (OCR =2)

FE SSM (OCR =4)N
or

m
al

iz
ed

 U
nd

ra
in

ed
 M

od
ul

us
, E

u/σ
' vc

Shear Strain, γ [%]

FE SSM Parameters
K

0NC
 =0.47

Friction angle = 250

c' =25 psf

OCR =4

OCR =2

OCR =1.5

OCR=1

OCR =2

OCR =1

DSS FE Simulation (SSM)

DSS Lab Mesured Range

OCR=3

 
 

Figure 3.18b Normalized Undrained  Modulus vs. Shear Strain, DSS Simulations on Bay Mud (SSM), κ*=0.002
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Figure 3.19 Geometry of NHP Levee Model with FE Mesh and Soil Materials for Cracked Pavement 
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Figure 3.20 Staged Construction Modeling of NHP Levee
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Figure 3.21a Predicted and Measured Consolidation Settlements of NHPL for Cases A1 and A2 Analyses: Effect of Pavement 
Cracking 
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Figure 3.21b Predicted and Measured Excess Pore Pressure at Feb., 2002 under Centerline for Cases A1 and A2 Analyses: 
Effect of Pavement Cracking 
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Figure 3.21c Predicted and Measured Excess Pore Pressure at Feb., 2002 under Toe for Cases A1 and A2 Analyses: Effect of 
Pavement Cracking
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Figure 3.21d Comparison of Predicted and Measured Stress Histories under Centerline of NHPL at Feb. 2002 for Cases A1 

and A2 Analyses: Effect of Pavement Cracking 
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Figure 3.21e Predicted Total Settlement Profiles at CD180 and CD2115 under Centerline of 
the NHPL for Case A2 Analysis 
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Figure 3.21f Predicted Settlement Profiles at CD180 and CD2115 of the Ground under the NHPL for Case A2 Analysis 
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Figure 3.21g Predicted Settlement vs. logt for Case A2 Analysis 
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Figure 3.21h Predicted Excess Pore Pressure at Mid-point of Bay Mud vs. logt for Case A2 Analysis 
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Figure 3.21i Horizontal Displacements at Toe of the NHPL for Case A2 Analysis
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Figure 3.22a Predicted and Measured Consolidation Settlements of the NHPL for Cases A2 and B Analyses: Effect of Free 
Draining Alluvium 
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Figure 3.22b Predicted and Measured Excess Pore Pressure under Centerline of the NHPL at Feb. 2002 for Cases A2 and B 
Analyses: Effect of Free Draining at the Alluvium 
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Figure 3.22c Predicted and Measured Excess Pore Pressure at Toe of the NHPL at Feb. 2002 for Cases A2 and B Analyses: Effect 
of Free Draining at the Alluvium 
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Figure 3.22d Comparison of Predicted and Measured Stress Histories under Centerline of the NHPL at Feb. 2002 for Cases A2 
and B Analyses: Effect of Free Draining Alluvium 
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Figure 3.23a Predicted and Measured Consolidation Settlements of the NHPL for Cases A2, C1, C2, and C3 Analyses: Effect of 

cv(NC) of Bay Mud 
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Figure 3.23b Predicted and Measured Excess Pore Pressure at Centerline of the NHPL for Cases A2, C1, C2 and C3 Analyses: 

Effect of cv(NC) of Bay Mud 
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Figure 3.23c Predicted and Measured Excess Pore Pressure at Toe of the NHPL for Cases A2, C1, C2, and C3 Analyses: Effect of 

cv(NC) of Bay Mud 
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Figure 3.23d Comparison of Predicted and Measured Stress Histories for Cases A2, C1 and C3 Analyses: Effect of cv(NC) of Bay 
Mud 
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Figure 3.24a Predicted and Measured Consolidation Settlements of the NHPL for Case A2, D1, D2 and URS(2003) Analyses: 
Effect of Preconsolidation Stress 
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Figure 3.24b Predicted and Measured Excess Pore Pressure at Centerline of the NHPL for Cases A2, D1, D2 and URS (2003) 

Analyses: Effect of Preconsolidation Stress 
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Figure 3.24c Predicted and Measured Excess Pore Pressure at Toe of the NHPL for Cases A2, D1, and D2 Analyses: Effect of 

Preconsolidation Stress 
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Figure 3.24d Predicted and Measured Stress Histories for Cases A2, D1 and D2 Analyses: Effect of Preconsolidation Stress 
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Figure 3.24e Predicted Settlement Profiles under Centerline of the NHPL for Case D2 Analysis: Effect of Preconsolidation Stress 
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Figure 3.24f Predicted Settlement Profiles of the Ground under the NHPL for Cases D2 and URS (2003) Analyses 
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Figure 3.24g Predicted Settlement vs. logt for Case D2 Analysis: Effect of Preconsolidation Stress 
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Figure 3.24h Predicted Excess Pore Pressure at Mid-point of Bay Mud vs. logt for Case D2 Analysis 
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Figure 3.24i Predicted Horizontal Displacements at Toe of the NHPL for Case D2 Analysis 
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Figure 3.25a Predicted and Measured Consolidation Settlements of the NHPL for Cases A2, C1, D2 and D3 Analyses: Combined 
Effects of Preconsolidation Stress and Bay Mud cv(NC) 
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Figure 3.25b Predicted and Measured Excess Pore Pressure at Centerline of the NHPL for Cases A2, C1, D2 and D3 Analyses: 
Combined Effects of Preconsolidation Stress and Bay Mud cv(NC) 
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Figure 3.25c Predicted and Measured Excess Pore Pressure at Toe of the NHPL for Cases A2, C1, D2 and D3 Analyses: 
Combined Effects of Preconsolidation Stress and Bay Mud cv(NC) 
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Figure 3.25d Predicted Stress Histories for Cases A2, C1, D2 and D3 Analyses 
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Figure 3.26a Predicted and Measured Consolidation Settlements of the NHPL for Case D4 and URS (2003): Combined Effects of 
Bay Mud cv(NC), σ’p Profile and Permeability of BM Crust and Alluvium 
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Figure 3.26b Predicted and Measured Excess Pore Pressure at Centerline of the NHPL at CD2115 for Case D4 and URS (2003): 
Effects of Bay Mud cv(NC), σ’p Profile and Permeability of BM Crust and Alluvium 
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Figure 3.26c Predicted and Measured Excess Pore Pressure at Toe of the NHPL at CD2115 for Case D4 
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Figure 3.26d Predicted Stress Histories for Case D4 
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Figure 3.27a Predicted Reduction in Total Vertical Stress at Centerline of NHPL during Consolidation from CD180 (EOC) to 
CD2115 for Case A2 Analysis 
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Figure 3.27b Predicted Reduction in Total Vertical Stress at Centerline of NHPL during Consolidation from CD180 (EOC) to 

CD2115 for Case C1 Analysis 
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Figure 3.27c Predicted Reduction in Total Vertical Stress at Centerline of NHPL during Consolidation from CD180 (EOC) to 

CD2115 for Case D2 Analysis 
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Figure 3.27d Predicted Changes in Total Vertical Stress (“Arching Effect”) under the NHPL at El. -29.7 ft for Case D2 Analysis 
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Figure 3.28a Summary and Comparison of Plaxis Predicted Consolidation Settlements at Feb. 2002 with URS (2003) and 1-D ρc 
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Figure 3.28b Summary and Comparison of Plaxis Predicted Maximum Excess Pore Pressure within Bay Mud at Feb. 2002 
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CHAPTER 4  

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

4.1  Summary and Conclusions 

This thesis presents results of a case history to interpret the performance of the New 

Hamilton Partnership Levee (NHPL) constructed on soft San Francisco Bay Mud. The thesis 

comprises five parts:  

(1) Description of the project case history including: the geotechnical site conditions; 

levee construction; instrumentation and monitored performance (over a period of 5.2 years); 

and results of prior analyses by the geotechnical consultant for the project (URS, 2003).  

(2) Reevaluation of soil properties for the Bay Mud (BM) from the field and laboratory 

data; 

(3) Reanalysis of settlements of the NHP levee using the conventional 1-D 

consolidation settlement analysis (Eq. 2.3); 

(4) Calibration of the Soft Soil model (SSM) parameters for Bay Mud by using 

element test simulations to match the laboratory measured data of consolidation and strength 

properties; and 

(5) 2-D finite element analyses with the effective stress SSM to predict the 

performances of the NHP levee during and after construction. 

This section summarizes the case history, major research results, and conclusions 

obtained from this research. The following section presents recommendations for further 

possible research. 
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4.1.1 Overview of Project  

The NHP levee built on the San Francisco Bay Mud (SFBM) foundation soil is a levee 

section in a system of several levees containing the Hamilton Army Air Field (HAAF) 

Wetland Restoration project, which aims to restore an ecological system of seasonal and tidal 

wetlands for the region (Fig.1.4). A part of the restoration project is to modify the existing 

NHPL and construct new levees surrounding the new wetlands.  

The existing NHPL was built between March and October 1996, with approximate 

dimension of 7,200 ft long and 11 to 12 ft high, to serve as a flood-control structure for the 

New Hamilton Partnership residential area. The foundation meterials under the levee are 

several feet of pavement, several feet of BM crust, 30 to 40 feet of soft recent BM, and 

alluvial soil strata of sand and stiff clay overlying bedrock (see cross-section of the NHP levee 

and underlying soil profile in Fig.1.5). The thick Bay Mud layer known, as the San Francisco 

Recent Bay Mud, is a soft, compressible, marine clay with a low undrained shear strength, and 

is slightly over-consolidated (i.e., OCR=1.5 within most of the deposit below the crust), which 

incurs problems of settlement and stability of the levees. 

Starting shortly after construction of the NHP levee, (which occurred approximately 

from October to November, 1996), the City of Novato monitored the settlements of the levee 

crest along its alignment using 200 ft interval survey points located on the flood- wall on top 

of the levee. The measured settlements (ρm) of the levee in January 2002, which was 

approximately 5.2 years after construction, show that ρm = 2.0 ± 0.5 ft along the levee 

alignment.  
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4.1.2 URS Site Characterization and Settlement Analyses 

In 2002, URS, as the geotechnical consulting firm for the project, conducted a 

comprehensive geotechnical site investigation with “state-of-the art” field and laboratory 

testing programs and instrumentations (i.e., Table 2.1 and Table 2.2) in order to evaluate the 

performance of the existing NHP levee and to develop design recommendations for new levee 

construction. Detailed results of the site characterization and soil properties are presented in 

Chapter 2 and Section 3.2 of Chapter 3 at one location along the alignment, designated as test 

sections TS3 and TS5 (Figs. 2.1 and 2.2), that had extensive laboratory and field vane tests 

and instrumentation (especially piezometers). 

Soil Properties 

 The 30 to 40 ft thick recent soft Bay Mud, which starts some 10 ft below 

original ground surface (Fig. 1.5), is an organic, highly plastic CH-OH material with Atterberg 

limits that plot near to well below the A-line with a typical wL = 97 ± 9 % and IP = 59 ± 5 % 

(Fig. 1.6). The Bay Mud is slightly overconsolidated with OCR ≈1.5 within most of the 

deposit. 

The field and laboratory test programs have developed:  

(1) Very well defined soil profile and initial stress history for the virgin soil, plus 

estimates of the “existing” (i.e., in early 2002) consolidation stress under the crest of the levee 

(Fig.2.5 to Fig.2.8 and Fig.3.1). In particular, there is good agreement between values of 

preconsolidation stress (σ’p) measured by CRSC tests and those computed from field vane 

data, σ’p(FV), using both the SHANSEP technique (Ladd and Foott, 1974) in Eq.3.3 and the 

Chandler(1988) method in Eq.3.4;  
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(2) Well defined values for the Bay Mud recompression and virgin compression ratios, 

RR and CR parameters (i.e., Fig.2.9, Fig.2.10 and Fig.3.3b). In particular, the Author’s 

reinterpretation of RR presented in Section 3.2.2 (i.e., values of RR using normalized CRSC 

stress-strain curves) resulted in much higher values of RR for the Bay Mud (Fig.3.3b) as 

compared to the URS (2003) selected value of RR = 0.04.  

(3) cv(NC) values of the Bay Mud that exceed the DM-7 mean line for liquid limit wL 

≈ 95% (i.e., cv(NC) = 20 ft2/yr = 0.06 ft2/day). The high value of cv(NC) suggests that the Bay 

Mud deposit will experience relatively high rates of consolidation under the NHP levee 

compared to clays with similar index properties and drainage heights; 

(4) Vertical hydraulic conductivity interpreted for the Bay Mud from CRSC tests, kv0 = 

4.8 ± 1.5x10-4 ft/day, and Ck <1.0, which is much smaller than the mean Cc =1.40. The low 

values of Ck may in part be caused by the fact that most of CRSC tests did not yield linear 

plots of e vs. logkv. However, there was a lack of prior investigation and interpretation of the 

hydraulic conductivity properties (kv0, kh0 and Ck) of the Bay Mud and especially of the 

Alluvium soils below the Bay Mud. The flow properties of the Bay Mud Crust and the 

underlying Alluvium affect the predicted rate of consolidation of the soft Bay Mud. 

(5) Well defined undrained shear strength (su) and undrained modulus (Eu) of Bay Mud 

(i.e., Fig.3.7 to 3.9) from laboratory CK0U DSS tests. 

URS 1- D Consolidation Settlement Analysis 

URS used conventional 1-D consolidation analyses via Eqn.2.3 to compute 

consolidation settlements (ρc) from the initial overburden stress (σ’v0) to the current (early 

2002) consolidation stress (σ’vc) under the crest of the levee with RR = 0.04 and CR=0.41. 

They estimated consolidation settlements of ρc = 0.55 ± 0.1 ft at five test sections along the 
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NHPL alignment (i.e., Fig. 2.15) for the mean σ’p(FV) profile plotted in Fig. 3.1. These 

predicted “best-estimate” settlements are several times lower than the measured settlements of 

the flood-wall (ρm = 2.0 ± 0.5 ft). In addition, changes in pavement elevation from the boring 

logs located at the levee crest and the free field indicate that an additional settlement of 

approximately 1.0 to 1.5 ft to occurred before starting the measurements of wall settlement. 

Hence, the URS (2003) predictions significantly underestimated the measured settlements of 

the levee. For the design purpose, URS reduced the best-estimate σ’p (FV) = σ’p(EOP) profile 

by a factor of 0.8 in order to obtain agreement between predicted and measured settlements 

along the NHPL.  

URS (2003) also performed finite element Plaxis analyses with the SSM for Bay Mud 

and using the reduced preconsolidation stress 0.8σ’p. The URS predicted ρc ≈ 1.58 ft and 

maximum ue ≈ 0.4 ksf at 1/31/02 are in reasonable agreement with the measured data.  

 

4.1.3 Hypothesis A versus Hypothesis B  

The URS settlement analyses assumed that there is negligible secondary compression 

(drained creep) during primary consolidation as discussed in Section 1.2, this follows accepted 

US practice that consolidation in the field has a unique EOP compression curve independent 

of the clay thickness and hence the time required for dissipation of excess pore pressures (so-

called Hypothesis A). However, others believe that secondary compression also occurs during 

primary consolidation at a rate equal to that measured in lab oedometer tests (so-called 

Hypothesis B), which results in decreased values of the in situ σ’p and larger settlements 

throughout the period of pore pressure dissipation.  
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Professor C.C. Ladd, as an independent consultant to URS, evaluated possible reasons 

for the large discrepancies between the predicted and measured settlements (Ladd, 2002). He 

concluded that use of Hypothesis B was consistent with the larger measured settlements at 5.2 

years for the NHP levee soil conditions. However, he also thought that the plastic nature of the 

clay might have caused a large initial settlement plus ongoing creep, thus increased 

settlements due to lateral deformations [e.g., Foott and Ladd (1981)] during the 5.2 years 

settlement monitoring period. Using undrained modulus data from CK0U DSS tests on Bay 

Mud, the procedure for estimating initial settlement (ρi) presented in Foott and Ladd (1981), 

Ladd (2002) predicted ρi ≈ 0.3 ft for the NHP levee. However, this value is far less than the 

estimated value of 1.0 to 1.5 ft of “short-term” settlement in the period between the start of 

construction and the start of the first settlement measurements. 

  

4.1.4 Reanalysis of One-Dimensional (1-D) Consolidation Settlements 

The Author computed 1-D consolidation settlements (ρc) for the NHP levee using the 

same methodology as URS described in Section 2.7. The two stress histories (SH1 and SH2) 

used for the 1-D consolidation settlements are shown in Figs. 3.12b and 3.12c. Detailed 

calculations are contained in Appendix B. There are three variables (i.e., RR, σ’vf and ue) other 

than σ’p that cause uncertainties in the calculations. The Author devoted significant studies to 

these three variables to come up with the “best estimates”. 

As seen in Fig.3.12b, the “measured” vertical consolidation stresses, σ’vc = σ’vf -ue, 

under the Crest of the levee are close to the mean σ’p profile within most of the Bay Mud. 

Hence, the value of RR, and how it varies as a function of the ratio σ’vc/σ’p, are very 
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important. Evaluation of RR based on normalized compression curves from CRSC tests were 

used to select appropriate RR values for the 1-D consolidation settlement calculations. 

FE analyses to compute σ’vf were carried out to address the effects of the concrete 

pavement, the levee fill and BM Crust strength and stiffness properties on the stress 

distribution (i.e., σ’vf profile) under the NHP levee. A strong, uncracked pavement with high 

stiffness properties (i.e., c’, E’) give a low centerline σ’vf profile, and therefore lower σ’vc 

profiles for the 1-D ρc calculation. On the other hand, a cracked, low stiffness material will 

result in higher σ’vf. The Author’s SH2 stress history used the higher σ’vf profile, which is 

close to the σ’vf profile adopted by URS (2003).  

The reexamination of the measured ue from piezometers at TS3 and TS5 shows that the 

Author’s selected ue at TS3 for SH2 is slightly higher than that of URS (2003), but the 

Author’s selected ue at TS5 is much less than that of URS (2003) as per Fig. 3.12a. Thus, the 

Author’s σ’vc at TS3 is slightly lower than that of URS (2003), whereas his σ’vc at TS5 is 

much larger than that of URS (2003) as per in Fig. 3.12c.  

The results of the 1-D consolidation settlement (ρc) calculation with SH2 and 

comparisons with the measured settlements (ρm) at TS3 and TS5 are presented in Table 3.9 

and Figs. 3.13c and 3.13d for values of σ’p equal to σ’p(FV) and 0.9 and 0.8 times σ’p(FV). 

Agreement between measured and computed consolidation settlements was achieved 

by reducing the σ’p profile by about 10% to 15%. A 5 to 10% reduction in σ’p is considered 

reasonable based on correcting the σ’p(CRSC) values for strain rate effects to obtain σ’p 

(EOP) as recommended by Mesri and Feng (1992). 

The values of 1-D ρc computed with the SH2 profile are about twice as large as 

reported by URS (2003) for the measured σ’p(FV), i.e., as in Fig. 3.13c. Therefore, the 
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technique of selecting RR as a function of σ’vc/σ’p ratio for soft ground conditions plays a 

critical role in 1-D consolidation settlement calculations. 

  

4.1.5 Simulated Bay Mud Behavior in Plaxis SSM 

To model the consolidation and undrained strength behavior of Bay Mud in SSM, the 

Author simulated OED, CK0UPS DSS and CK0UPSC/E tests for Bay Mud in the FE code 

Plaxis to evaluate appropriate SSM material parameters for the Bay Mud. These calibrated 

consolidation and strength parameters were then used in the Author’s 2-D analyses of the 

NHPL.  

The 1-D consolidation simulations (Section 3.4) show that using SSM, the URS 

selected kv0 =4x10-4 ft/day and Ck =1.143 result in a low cv(NC) = 0.04 ft2/day compared to 

the average measured cv(NC) = 0.06 ft2/day from the CRSC tests. To obtain cv(NC) = 0.06 

ft2/day, the SSM requires kv0 = 9x10-4 ft/day, and Ck = Cc = 1.40 (i.e., Fig.3.14c). 

The shear lab test simulations have shown some very important facts such as SSM 

requires an artificially low friction angle φ’ = 250 (with measured K0NC = 0.47) in order to 

achieve agreement with the measured su(DSS) at OCR = 1.5 for the Bay Mud  (e.g., Fig 3.15 

and 3.16). In addition, the SSM predicts the same undrained shear strength in plane strain 

compression/extension and DSS shear modes, i.e., it ignores su anisotropy. The selected κ* for 

SSM for ρc predictions results in a much too low Eu (by a factor about 45 to 50 at OCR =1.5). 

To predict reasonable Eu, therefore the initial settlement ρi, one should reduce κ* by a factor 

of about 45. Hence, one cannot use the same value of κ* for realistic predictions of both ρi and 

ρc. However, one can use two values of κ* i.e., low values to predict ρi and much higher 

values to predict ρc.  
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4.1.6 Two-Dimensional (2-D) Finite Element Analyses 

Two-dimensional finite element analyses of the NHP levee were carried out with the 

application of the Soft Soil Model (SSM) in Plaxis for the Bay Mud and BM Crust. Staged 

construction of the NHP levee was simulated as in Fig. 3.20, where relevant construction days 

(CD) are CD=180 at the EOC and CD = 2115 at 1/31/02. 

The Author did analyses with basically four group of cases (A, B, C, and D in Table 

3.14) in order to evaluate the effects of: (1) the pavement under the NHPL (Cases A1 and A2); 

(2) the Alluvium hydraulic conductivity (Case B); (3) rate of consolidation, i.e., cv(NC) of Bay 

Mud (Cases C1, C2, and C3); (4) the effect of preconsolidation stress profiles, σ’p (Cases D1 

and D2); and (5) the combined effects of σ’p,  cv(NC), and hydraulic conductivities of Bay 

Mud Crust and Alluvium (Cases D3 and D4). Parameters selected for each case are specified 

in Table 3.15. 

Case A1 and A2 , with the “best estimate” parameters, analyses show no change in 

σ’vc, ρc and ue predictions when using an uncracked pavement (E = 1000 ksf) for Case A1 and 

a cracked pavement (E=200 ksf) for Case A2. The analyses predict a consolidation settlement 

at 5.2 year after EOC of ρc = 89% and 94% ρm at TS3 and TS5, respectively. The predicted 

maximum excess pore pressure within Bay Mud ue = 64% and 48% ue measured at TS5 and 

TS3, respectively. The two cases predict a rate of settlement close to the lowest of the four 

measured ρm curves near TS3 and TS5 (Fig. 3.21a). 

Case B uses the same parameters as Case A2 except for a much higher hydraulic 

conductivity of the Alluvium below Bay Mud (i.e., kv0 = kh0 = 1.0 ft/day), such that ue = 0 

below the Bay Mud in early 2002. Case B slightly increases the rate of settlement (Fig. 3.22a), 
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but predicts much too low ue at CD2115 compared with the measured ue at TS3 and TS5 (Fig. 

3.22b). 

Cases C1, C2 and C3 use the same properties as Case A2 except for the reduced values 

of cv(NC) of Bay Mud (i.e., = 0.04, 0.045, and 0.05 ft2/day, respectively). The lower cv(NC) of 

Bay Mud results in lower rates of consolidation, thus smaller predicted ρc at CD2115 (Fig. 

3.23a) and increased ue below the NHPL (Fig. 3.23b and 3.23c). Case C1 and C2 

approximately bracket the measured ue data under the centerline. 

Cases D1 and D2 use the reduced σ’p profiles (i.e., 0.9σ’p and 0.8σ’p, respectively) and 

also values of RR reduced by one-third. The ρc vs. logt curves for these cases bracket the four 

ρm curves (Fig. 3.24a). However, using cv(NC) = 0.06 ft2/day in these two cases results in two 

low ue at centerline (Fig. 3.24b), but can predict very well ue at toe of the NHP levee (Fig. 

3.24c).  

Therefore, both σ’p and cv(NC) have significant effects on the predictions of ρc and ue 

(Figs. 3.25a to 3.25c). Case D4 presents the “best predicted” case that takes into account the 

combined effects of σ’p, cv(NC), and hydraulic conductivities of Bay Mud Crust and 

Alluvium. Case D4 matches rather well both ρc and ue with the measured data (Figs. 3.26). 

This case illustrates that there are several important factors controlling the consolidation 

behavior of the NHP levee other than the pavement and the preconsolidation stress profile, i.e., 

cv(NC) of Bay Mud, and hydraulic conductivities of BM Crust and the Alluvium. 

 

The Plaxis SSM cannot describe the increasing horizontal displacements (h) during 

consolidation after EOC. In fact, the analysis results show that h remains almost constant or 

reduces slightly during consolidation (i.e., Fig.3.21i and 3.24.i).  
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The undrained shear induced settlements (i.e., initial settlements, ρi) predicted using 

SSM in the analysis cases are unrealistic because of the much too low Eu due to the selected 

κ* for consolidation analysis (i.e., as discussed in Section 3.4). Therefore, the horizontal 

displacement results are much too large. One can better predict ρi and hx, when using SSM by 

greatly lowering κ* to obtain more realistic values of undrained modulus Eu. 

The two-dimensional FE analyses using SSM also show an important “arching effect” 

associated with coupled consolidation in which the total vertical stress decreases under the 

centerline and increases at toe of the levee by a significant amount (Figs. 3.27a, b, c, d). 

Reductions in σv below NHP levee during consolidation affect (reduce) the predicted 

consolidation settlement (ρc) and final consolidation settlement (ρcf). In contrast, a 1-D 

consolidation analysis assumes that σv remains constant after EOC. Further research should 

focus on the identification of factors that control the arching effect and its role on the overall 

behavior of an embankment after EOC. 

 

In conclusion, the results of the 1-D and Plaxis consolidation analyses both suggest 

that the in situ σ’p is probably less than derived from the CRSC and field vane tests, and hence 

less than σ’p (EOC) for the NHP levee site. However, it is very likely that continued lateral 

deformations during consolidation also caused increases in settlement. Thus, one cannot assess 

the actual reduction in the in situ σ’p and hence the validity of Hypothesis B. 
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4.2  Recommendations for Further Research 

The Author has the following recommendations: 

• Perform 2-D FE analyses with more advanced soil models that can better simulates soil 

behavior [e.g., MIT-E3, Whittle and Kavvadas (1994); MIT-S1, Pestana and Whittle 

(1999)] with respect to initial settlement, lateral deformations and consolidation 

behavior when σ’vc/σ’p is near or slightly larger than unity; 

• Perform further research on the arching effect under an embankment to identify factors 

controlling the reduction in σv and its effects on the consolidation behavior of the 

embankment; 

• Perform further experimental research on secondary compression behavior of Bay Mud 

to identify its creep behavior and its effects on consolidation and undrained shear.
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CHAPTER 6  

                                                          APPENDIXES 

6.1  Appendix A:  MIT Laboratory Tests on Bay Mud 

6.1.1 CRSC Tests on Bay Mud at TS3-B1(From Germaine, 2002) 

 
Table A1 Summary of CRSC Tests at TS3-B1 

(From Germaine, 2002) 
 Last Revised: 04/24/02

Spec. Location Index Tests Specimen Data Test Conditions Remarks
Test # Depth (ft) Tv ωc ωp ωn ei  . ∆u/σv

Boring SD SD ωl Ip Si (%) σs ub ε @ σ'vm

Sample Markers # obs # obs %2µ γt Gs (ksc)  (ksc) (%/hr) (%)
CRS430 0.26 94.2 85.87 2.318 Control failure-no data-soil extruded from ring
TS3-B1 0.03 9.5 100.0 water content and void ratio computed

S-3 4-5 5 4 1.512 2.70 based on assume S=100%

CRS431 0.25 96.0 98.16 2.678
TS3-B1 0.04 3.5 99.0

S-4 3-4 6 4 1.455 2.70

CRS432 0.21 88.2 88.35 2.407
TS3-B1 0.03 4.8 99.1

S-3 8-9 4 3 1.493 2.70

CRS435 0.32 86.7 87.37 2.358
TS3-B1 0.05 3.5 100.0

S-5 3-4 6 4 1.507 2.70

CRS440 0.70 74.9 74.88 2.026
TS3-B1 0.09 0.7 99.8

S-1 3.5-4.5 8 4 1.560 2.70

CRS441 0.36 91.1 95.17 2.574
TS3-B1 0.01 2.0 99.8

S-2 10-11 7 4 1.474 2.70

CRS443 0.48 100.5 95.22 2.684 Organic material, specific gravity too high
TS3-B1 0.04 9.9 95.8

S-6 6-7 6 4 1.431 2.70

CRS444 0.30 86.6 88.12 2.393
TS3-B1 0.05 2.8 99.4

S-7 5.5-6.5 3 4 1.497 2.70

a)  Markers - Location within tube b)  Stresses in kg/cm2 c)  1 kg/cm2 = 2048 psf d)  Water Contents in %  
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Natural-Scale Plots of Normalized Compression Curves to Overburden Stress of CRSC 

Tests at TS3-B1 
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6.1.2 CK0U-DSS Tests at OCR =1, 2, & 3 on Bay Mud (From Germaine, 2002 & 2004) 
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Table A2 Details of Direct Simple Shear Test Results of Bay Mud at NHPL and North Levees (N1 and N2) 
Index Tests Specimen Lab Consolidation At Max Stress At Final Point Eu/σ'vc: @ Remarks

Test No. El. Tv ωn ωn ei σ'p Cα σ'vm σ'vc ωc γ τh/σ'vc τh/σ'v τh/σ'vc τh/σ'v γ = ∆τh =
Boring SD SD %2µ Si (%) CR o εa εa ec o γ 0.01 30%
Sample Loc.a # obs # obs γi Gs RR εa ts ts OCR γ σ'v/σ'vc ψo σ'v/σ'vc ψo

0.1 50%
DSS583 0.39 73.1 77.38 2.060 1.554 1.554 11.00 0.2653 0.447 0.2111 0.552 320 132
N2-B7 0 2.0 101.4 14.23 14.23 30.0

S-5 4.5-5.5 8 4 1.565 2.70 0.79 29.5 29.5 1.00 5.3 0.5937 24.1 0.3824 28.9 161 83

DSS584 0.43 74.4 77.97 2.067 2.444 2.444 11.12 0.2420 0.419 0.1958 0.546 170 103 Stepped rate 
N2-B7 0.04 2.6 101.9 20.17 20.17 30.0 after peak

S-5 6-7 3 4 1.567 2.70 0.74 21.7 21.7 1.00 5.3 0.5781 22.7 0.3583 28.7 125 69 shear

DSS585 0.40 76.3 78.10 2.092 1.336 1.336 9.81 0.2523 0.428 0.1913 0.563 240 122
N2-B7 0.02 0.5 100.8 12.87 12.87 30.0

S-7 3.5-4.5 4 3 1.555 2.70 0.74 24.4 24.4 1.00 4.9 0.5896 23.2 0.3397 29.4 156 77

DSS586 0.38 65.4 69.73 1.860 1.434 1.434 12.40 0.2448 0.468 0.1778 0.640 336 130
N2-B7 0 2.8 101.2 13.71 13.71 30.0

S-9 7.5-8.5 8 4 1.602 2.70 0.77 23.9 23.9 1.00 4.9 0.5234 25.1 0.2776 32.6 161 84

DSS587 0.50 90.3 93.74 2.519 1.760 1.760 13.57 0.2654 0.466 0.2074 0.560 220 108
N2-B7 0 2.1 100.5 13.95 13.95 30.0
S-13 5.3-6.3 6 4 1.486 2.70 0.77 26.8 26.8 1.00 5.0 0.5692 25.0 0.3703 29.3 139 66

DSS588 -18.1 0.41 86.5 86.01 2.316 1.249 1.249 13.02 0.2533 0.460 0.1927 0.575 220 108
TS5-B3 0 4.1 100.3 15.10 15.10 30.0

S-6 2.5-3.5 8 4 1.514 2.70 0.75 26.0 26.0 1.00 5.1 0.5512 24.7 0.3352 29.9 136 70

DSS589 -28.1 0.40 85.8 88.14 2.369 1.529 1.529 9.02 0.2295 0.383 0.1634 0.527 170 106
TS5-B3 0 2.7 100.4 15.32 15.32 30.0

S-8 3.5-4.5 6 4 1.508 2.70 0.76 27.5 27.5 1.00 5.0 0.5989 21.0 0.3102 27.8 125 70

DSS590 -18.1 0.34 91.0 95.41 2.548 1.124 1.124 11.47 0.2383 0.412 0.1840 0.518 256 106
TS3-S3 0 6.4 101.1 15.27 15.27 30.0

S-3 4 - 5 3 3 1.487 2.70 0.76 24.4 24.4 1.00 5.1 0.5780 22.4 0.3549 27.4 138 70

DSS591 -28.1 0.74 171.8 163.9 4.625 1.473 1.473 19.90 0.3205 0.516 0.3024 0.553 120 49 Organic clay
TS3-S3 0 20.4 95.7 16.12 16.12  30.0 Gs too high

S-5 H.5-I.5 3 3 1.267 2.70 0.76 29.6 29.6 1.00 5.2 0.6210 27.3 0.5467 28.9 82 30

a) Loc. - marker location in tube d) Water content and strain in % g)  ts time for secondary compression
b) Stresses in kg/cm2 e) Time in hours h)   Shear strain rate from 10% to 100% of peak stress
c) 1 kg/cm2 = 2048 psf f) Elevation in Feet

Spec. Location
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(Table A2 Continued) 
Index Tests Specimen Lab Consolidation At Max Stress At Final Point Eu/σ'vc: @ Remarks

Test No. EL. Tv ωn ωn ei σ'p Cα σ'vm σ'vc ωc γ τh/σ'vc τh/σ'v τh/σ'vc τh/σ'v γ = ∆τh =
Boring SD SD %2µ Si (%) CR o εa εa ec o γ 0.01 30%
Sample Loc.a # obs # obs γi Gs RR εa ts ts OCR γ σ'v/σ'vc ψo σ'v/σ'vc ψo

0.1 50%
DSS592 0.38 87.6 90.63 2.461 1.195 1.195 11.40 0.2306 0.418 0.1867 0.537 230 78
TS5-B3 0 3.4 99.4 12.63 12.63 30.0

S-6 6.5-7.5 3 3 1.487 2.70 0.76 2.3 2.3 1.00 5.0 0.5512 22.7 0.3475 28.2 112 50

DSS593 0.39 88.7 92.04 2.478 1.181 0.604 12.45 0.4828 0.479 0.3995 0.574 500 197
TS5-B3 0.01 1.7 100.3 14.28 13.37 30.0

S-6 8.5-9.5 4 3 1.491 2.70 0.77 24.0 7.7 1.96 5.1 1.0070 25.6 0.6958 29.9 265 122

DSS594 0.26 74.0 76.67 2.034 1.447 0.737 8.59 0.4589 0.449 0.3385 0.634 470 202
N2-B7 0.02 0.9 101.8 13.47 12.84 30.0

S-7 5.5-6.5 4 3 1.572 2.70 0.75 24.0 9.6 1.96 4.8 1.0220 24.2 0.5342 32.4 255 134

DSS596 0.25 87.9 89.65 2.418 1.882 0.954 12.78 0.4546 0.467 0.3493 0.543 360 170
N2-B7 0 2.1 100.1 15.53 14.54 30.0
S-13 7-8 4 3 1.498 2.70 0.76 24.0 9.2 1.97 5.0 0.9744 25.0 0.6430 28.5 227 110

DSS601 0.40 88.1 94.49 2.549 1.171 1.171 10.00 0.2366 0.400 0.1801 0.526 200 106
TS3-S3 0 4.4 100.1 15.26 15.26 30.0

S-3 11-12 4 3 1.48 2.70 0.72 24.5 24.5 1.00 0.83 0.5917 21.8 0.3422 27.8 135 66

DSS621 0.21 75.3 85.43 2.311 1.633 0.564 13.26 0.5999 0.505 0.4558 0.550 550 200
N1-B9 0.02 8.4 99.8 19.85 18.29 30.0

S-6 G.5-H.5 6 4 1.512 2.70 1.47 2.0 17.5 2.89 5.3 1.1880 26.79 0.8290 28.80 290 125

DSS622 0.25 78.0 85.97 2.324 3.237 1.103 n/a 0.5454 0.462 800 250 Top cap slip
N1-B4 0.00 2.3 99.9 24.34 22.80 n/a

S-9 6.5-7.5 6 4 1.510 2.70 3.10 1.0 33.3 2.94 5.5 1.1813 24.78 350 150

a) Loc. - marker location in tube d) Water content and strain in % g)  ts time for secondary compression
b) Stresses in kg/cm2 e) Time in hours h)   Shear strain rate from 10% to 100% of peak stress
c) 1 kg/cm2 = 2048 psf f) ELevation in Feet

Spec. Location

  
 

[Data from Germaine, (2002, 2004)] 
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6.1.3 CK0UTC/TE tests on Bay Mud at OCR =1 (From Germaine, 2002) 
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Table A3 Detail Results of CK0U Triaxial Tests on Bay Mud at NHPL 

Specimen Preshear Conditions At Max Shear At Max Obliquity Eu/σ'vc @ Remarks
εa = ∆q/∆qm

Test # Depth ωn ei ts εv σ'vc εa ∆ue/σ'vc q/p' εa ∆ue/σ'vc q/p' 0.001% 0.3
Boring Ip Si ∆us/σ'vc φ' ∆us/σ'vc φ' 0.01%
Sample Markers γt Gs Kc OCR q/σ'vc p'/σ'vc Α q/σ'vc p'/σ'vc Α 0.1% 0.5

TX575 85.23 2.276 42.5 15.86 1.699 1.53 0.2038 0.5843 13.02 0.3430 0.7201 550 270
TS5-B3 101.1 0.1260 35.8 0.2978 46.1 300

S-6 11-14 1.527 2.70 0.469 1.00 0.3757 0.643 0.895 0.3278 0.4552 2.65 140 190
TX576 91.26 2.434 41.5 11.70 1.132 -15.00 -0.1149 -0.9312 460 120 Internal strain yoke
TS5-B3 101.3 0.2509 -68.6 Same as Max Shear 295 strength taken at 

S-6 15-18 1.504 2.70 0.486 1.00 -0.2908 0.3123 0.104 180 65 15% strain
TX584 91.62 2.474 11.8 13.06 1.029 2.41 0.2585 0.6543 15.00 0.3864 0.8205 290 130
TS5-B3 100.0 0.1855 40.9 0.3484 55.1 210

S-6 19.5-22.5 1.489 2.70 0.470 1.00 0.3725 0.5693 1.19 0.3187 0.3884 3.51 100 94
TX590 86.29 2.322 3.0 11.40 1.427 3.84 0.2628 0.5645 13.43 0.3460 0.6345 170 67
TS3-S3 100.3 0.2167 34.4 0.3325 39.4 115

S-6 8-11 1.514 2.70 0.517 1.00 0.3009 0.533 1.91 0.2543 0.4008 8.72 58 45
TX603 5.2 11.28 1.000 -14.5 -0.0841 -0.9799 N/A 97 Internal strain yoke
TS3-B1 0.2704 -78.5 Same as Max Shear 265 SS Modulus NG due

S-4 10-13 0.463 1.00 -0.2580 0.2633 0.0745 155 57 to sec. Strain rate

a) Marker location in tube c) 1 kg/cm2 = 2048 psf e) Time in hours g) density in gm/cm3

b) Stresses in kg/cm2 d) Depth in Feet f) Water content, saturation, and strain in %

Specimen
Location Data

  
 

[Data from Germaine, (2002)] 
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6.2  Appendix B: 1-D Consolidation Settlement Calculation 

 
Note: For Stress History 2 (Case C σ’vf and SH2 ue)
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Table B-1 1-D Consolidation Settlement Prediction at TS3 (computed with σ’p profile) 

TS3 -σ'p

Cons. Status

From
 EL. (ft)

To
EL. (ft) Soil type

Average
EL. (ft)

Thickness 
of soil
Hi[ft]

 σ'v0

(ksf)
σ'p(FV)

(ksf)

σ'vc

TS3
(ksf) ε ε[%]

∆ρc

(ft)
ρc

[ft]
-1.6 -4.5 Pavement
-4.5 -6.2 Basecourse
-6.2 -8 BM Crust RR=0.06 -7.1 1.8 0.609 5.0689 1.851 0.0290 2.90 0.0521 1.0430

-8 -9 BM Crust RR=0.06 -8.5 1 0.662 3.300 1.890 0.0274 2.74 0.0274 0.9909
-9 -10 BM Crust RR=0.06 -9.5 1 0.699 2.747 1.918 0.0263 2.63 0.0263 0.9635

-10 -11 BM RR=0.06 -10.5 1 0.733 2.469 1.947 0.0255 2.55 0.0255 0.9372
-11 -12 BM RR=0.06 -11.5 1 0.763 2.080 1.932 0.0242 2.42 0.0242 0.9118
-12 -13 BM RR=0.06, CR=0.40 -12.5 1 0.793 1.760 1.929 0.0367 3.67 0.0367 0.8875
-13 -14 BM RR=0.06, CR=0.40 -13.5 1 0.824 1.615 1.925 0.0480 4.80 0.0480 0.8508
-14 -15 BM RR=0.06, CR=0.40 -14.5 1 0.854 1.572 1.919 0.0506 5.06 0.0506 0.8028
-15 -16 BM RR=0.06, CR=0.40 -15.5 1 0.884 1.569 1.912 0.0493 4.93 0.0493 0.7522
-16 -17 BM RR=0.06, CR=0.40 -16.5 1 0.914 1.550 1.904 0.0495 4.95 0.0495 0.7029
-17 -18 BM RR=0.06, CR=0.40 -17.5 1 0.945 1.584 1.895 0.0446 4.46 0.0446 0.6535
-18 -19 BM RR=0.06, CR=0.40 -18.5 1 0.975 1.617 1.886 0.0399 3.99 0.0399 0.6088
-19 -20 BM RR=0.06, CR=0.40 -19.5 1 1.005 1.651 1.877 0.0352 3.52 0.0352 0.5690
-20 -21 BM RR=0.12, CR=0.40 -20.5 1 1.036 1.685 1.869 0.0434 4.34 0.0434 0.5337
-21 -22 BM RR=0.12, CR=0.40 -21.5 1 1.066 1.718 1.862 0.0389 3.89 0.0389 0.4903
-22 -23 BM RR=0.12, CR=0.40 -22.5 1 1.096 1.752 1.857 0.0346 3.46 0.0346 0.4515
-23 -24 BM RR=0.12, CR=0.40 -23.5 1 1.127 1.785 1.855 0.0306 3.06 0.0306 0.4169
-24 -25 BM RR=0.12, CR=0.40 -24.5 1 1.157 1.819 1.856 0.0271 2.71 0.0271 0.3862
-25 -26 BM RR=0.12, CR=0.40 -25.5 1 1.187 1.853 1.860 0.0239 2.39 0.0239 0.3592
-26 -27 BM RR=0.12 -26.5 1 1.217 1.886 1.869 0.0223 2.23 0.0223 0.3353
-27 -28 BM RR=0.12 -27.5 1 1.248 1.920 1.882 0.0214 2.14 0.0214 0.3130
-28 -29 BM RR=0.12 -28.5 1 1.278 1.953 1.900 0.0207 2.07 0.0207 0.2915
-29 -30 BM RR=0.12 -29.5 1 1.308 1.987 1.924 0.0201 2.01 0.0201 0.2709
-30 -31 BM RR=0.12 -30.5 1 1.339 2.021 1.953 0.0197 1.97 0.0197 0.2508
-31 -32 BM RR=0.12 -31.5 1 1.369 2.054 1.987 0.0194 1.94 0.0194 0.2311
-32 -33 BM RR=0.12 -32.5 1 1.399 2.088 2.027 0.0193 1.93 0.0193 0.2117
-33 -34 BM RR=0.12 -33.5 1 1.430 2.121 2.072 0.0193 1.93 0.0193 0.1924
-34 -35 BM RR=0.12 -34.5 1 1.460 2.155 2.122 0.0195 1.95 0.0195 0.1730
-35 -36 BM RR=0.12 -35.5 1 1.490 2.189 2.176 0.0197 1.97 0.0197 0.1536
-36 -37 BM RR=0.12, CR=0.40 -36.5 1 1.520 2.222 2.233 0.0206 2.06 0.0206 0.1338
-37 -38 BM RR=0.12, CR=0.40 -37.5 1 1.551 2.256 2.293 0.0223 2.23 0.0223 0.1132
-38 -39 BM RR=0.12, CR=0.40 -38.5 1 1.581 2.289 2.353 0.0241 2.41 0.0241 0.0909
-39 -40 BM RR=0.12, CR=0.40 -39.5 1 1.611 2.323 2.414 0.0257 2.57 0.0257 0.0668
-40 -41 BM RR=0.12, CR=0.40 -40.5 1 1.642 2.357 2.472 0.0271 2.71 0.0271 0.0411
-41 -41.5 BM RR=0.12, CR=0.40 -41.25 0.5 1.664 2.382 2.512 0.0280 2.80 0.0140 0.0140

Computed Settlement : σ'vo→σ'vc

TS3 with σ'p Layers
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Table B-2 1-D Consolidation Settlement Prediction at TS3 (computed with 0.9σ’p profile) 

TS3 -0.9σ'p

Cons. Status

From
 EL. (ft)

To
EL. (ft) Soil type

Average
EL. (ft)

Thickness 
of soil
Hi[ft]

 σ'v0

(ksf)
σ'p(FV)

(ksf)
0.9σ'p(FV)

(ksf)

σ'vc

TS3
(ksf) ε ε[%]

∆ρc

(ft)
ρc

[ft]
-1.6 -4.5 Pavement
-4.5 -6.2 Basecourse
-6.2 -8 BM Crust RR=0.06 -7.1 1.8 0.609 5.0689 4.5620 1.852 0.0290 2.90 0.0522 1.4197

-8 -9 BM Crust RR=0.06 -8.5 1 0.662 3.300 2.9700 1.892 0.0274 2.74 0.0274 1.3675
-9 -10 BM Crust RR=0.06 -9.5 1 0.699 2.747 2.4723 1.925 0.0264 2.64 0.0264 1.3401

-10 -11 BM RR=0.06 -10.5 1 0.733 2.469 2.2221 1.952 0.0255 2.55 0.0255 1.3137
-11 -12 BM RR=0.06, CR=0.40 -11.5 1 0.763 2.080 1.8720 1.932 0.0289 2.89 0.0289 1.2882
-12 -13 BM RR=0.06, CR=0.40 -12.5 1 0.793 1.760 1.5840 1.929 0.0523 5.23 0.0523 1.2593
-13 -14 BM RR=0.06, CR=0.40 -13.5 1 0.824 1.615 1.4537 1.925 0.0636 6.36 0.0636 1.2070
-14 -15 BM RR=0.06, CR=0.40 -14.5 1 0.854 1.572 1.4145 1.919 0.0662 6.62 0.0662 1.1435
-15 -16 BM RR=0.06, CR=0.40 -15.5 1 0.884 1.569 1.4125 1.912 0.0648 6.48 0.0648 1.0773
-16 -17 BM RR=0.06, CR=0.40 -16.5 1 0.914 1.550 1.3952 1.904 0.0650 6.50 0.0650 1.0125
-17 -18 BM RR=0.06, CR=0.40 -17.5 1 0.945 1.584 1.4254 1.895 0.0602 6.02 0.0602 0.9475
-18 -19 BM RR=0.06, CR=0.40 -18.5 1 0.975 1.617 1.4557 1.886 0.0554 5.54 0.0554 0.8873
-19 -20 BM RR=0.06, CR=0.40 -19.5 1 1.005 1.651 1.4859 1.877 0.0508 5.08 0.0508 0.8318
-20 -21 BM RR=0.12, CR=0.40 -20.5 1 1.036 1.685 1.5161 1.869 0.0562 5.62 0.0562 0.7810
-21 -22 BM RR=0.12, CR=0.40 -21.5 1 1.066 1.718 1.5464 1.862 0.0517 5.17 0.0517 0.7248
-22 -23 BM RR=0.12, CR=0.40 -22.5 1 1.096 1.752 1.5766 1.857 0.0474 4.74 0.0474 0.6732
-23 -24 BM RR=0.12, CR=0.40 -23.5 1 1.127 1.785 1.6069 1.855 0.0434 4.34 0.0434 0.6258
-24 -25 BM RR=0.12, CR=0.40 -24.5 1 1.157 1.819 1.6371 1.856 0.0399 3.99 0.0399 0.5823
-25 -26 BM RR=0.12, CR=0.40 -25.5 1 1.187 1.853 1.6673 1.860 0.0367 3.67 0.0367 0.5424
-26 -27 BM RR=0.12, CR=0.40 -26.5 1 1.217 1.886 1.6976 1.869 0.0340 3.40 0.0340 0.5057
-27 -28 BM RR=0.12, CR=0.40 -27.5 1 1.248 1.920 1.7278 1.882 0.0318 3.18 0.0318 0.4717
-28 -29 BM RR=0.12, CR=0.40 -28.5 1 1.278 1.953 1.7581 1.900 0.0301 3.01 0.0301 0.4399
-29 -30 BM RR=0.12, CR=0.40 -29.5 1 1.308 1.987 1.7883 1.924 0.0290 2.90 0.0290 0.4098
-30 -31 BM RR=0.12, CR=0.40 -30.5 1 1.339 2.021 1.8185 1.953 0.0283 2.83 0.0283 0.3808
-31 -32 BM RR=0.12, CR=0.40 -31.5 1 1.369 2.054 1.8488 1.987 0.0282 2.82 0.0282 0.3525
-32 -33 BM RR=0.12, CR=0.40 -32.5 1 1.399 2.088 1.8790 2.027 0.0285 2.85 0.0285 0.3243
-33 -34 BM RR=0.12, CR=0.40 -33.5 1 1.430 2.121 1.9093 2.072 0.0293 2.93 0.0293 0.2958
-34 -35 BM RR=0.12, CR=0.40 -34.5 1 1.460 2.155 1.9395 2.122 0.0304 3.04 0.0304 0.2665
-35 -36 BM RR=0.12, CR=0.40 -35.5 1 1.490 2.189 1.9697 2.176 0.0318 3.18 0.0318 0.2361
-36 -37 BM RR=0.12, CR=0.40 -36.5 1 1.520 2.222 2.0000 2.233 0.0334 3.34 0.0334 0.2043
-37 -38 BM RR=0.12, CR=0.40 -37.5 1 1.551 2.256 2.0302 2.293 0.0352 3.52 0.0352 0.1709
-38 -39 BM RR=0.12, CR=0.40 -38.5 1 1.581 2.289 2.0605 2.353 0.0369 3.69 0.0369 0.1357
-39 -40 BM RR=0.12, CR=0.40 -39.5 1 1.611 2.323 2.0907 2.414 0.0385 3.85 0.0385 0.0988
-40 -41 BM RR=0.12, CR=0.40 -40.5 1 1.642 2.357 2.1209 2.472 0.0399 3.99 0.0399 0.0603
-41 -41.5 BM RR=0.12, CR=0.40 -41.25 0.5 1.664 2.382 2.1436 2.512 0.0408 4.08 0.0204 0.0204

Layers
Computed Settlement : σ'vo→σ'vc

TS3 with 0.9σ'p 
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Table B-3 1-D Consolidation Settlement Prediction at TS3 (computed with 0.8σ’p profile) 

TS3 -0.8σ'p

Cons. Status

From
 EL. (ft)

To
EL. (ft) Soil type (Reduced RR)

Average
EL. (ft)

Thickness 
of soil
Hi[ft]

 σ'v0

(ksf)
σ'p(FV)

(ksf)
0.8σ'p(FV)

(ksf)

σ'vc

TS3
(ksf) ε ε[%]

∆ρc

(ft)
ρc

[ft]
-1.6 -4.5 Pavement
-4.5 -6.2 Basecourse
-6.2 -8 BM Crust RR=0.04 -7.1 1.8 0.609 5.0689 4.0551 1.852 0.0193 1.93 0.0348 1.7133

-8 -9 BM Crust RR=0.04 -8.5 1 0.662 3.300 2.6400 1.892 0.0183 1.83 0.0183 1.6785
-9 -10 BM Crust RR=0.04 -9.5 1 0.699 2.747 2.1976 1.925 0.0176 1.76 0.0176 1.6602

-10 -11 BM RR=0.04 -10.5 1 0.733 2.469 1.9752 1.952 0.0170 1.70 0.0170 1.6426
-11 -12 BM RR=0.04 -11.5 1 0.763 2.080 1.6640 1.932 0.0161 1.61 0.0161 1.6256
-12 -13 BM RR=0.04, CR=0.40 -12.5 1 0.793 1.760 1.4080 1.929 0.0647 6.47 0.0647 1.6095
-13 -14 BM RR=0.04, CR=0.40 -13.5 1 0.824 1.615 1.2922 1.925 0.0771 7.71 0.0771 1.5448
-14 -15 BM RR=0.04, CR=0.40 -14.5 1 0.854 1.572 1.2574 1.919 0.0802 8.02 0.0802 1.4677
-15 -16 BM RR=0.04, CR=0.40 -15.5 1 0.884 1.569 1.2555 1.912 0.0792 7.92 0.0792 1.3875
-16 -17 BM RR=0.04, CR=0.40 -16.5 1 0.914 1.550 1.2402 1.904 0.0798 7.98 0.0798 1.3084
-17 -18 BM RR=0.04, CR=0.40 -17.5 1 0.945 1.584 1.2670 1.895 0.0750 7.50 0.0750 1.2286
-18 -19 BM RR=0.04, CR=0.40 -18.5 1 0.975 1.617 1.2939 1.886 0.0704 7.04 0.0704 1.1536
-19 -20 BM RR=0.04, CR=0.40 -19.5 1 1.005 1.651 1.3208 1.877 0.0658 6.58 0.0658 1.0832
-20 -21 BM RR=0.08, CR=0.40 -20.5 1 1.036 1.685 1.3477 1.869 0.0660 6.60 0.0660 1.0174
-21 -22 BM RR=0.08, CR=0.40 -21.5 1 1.066 1.718 1.3746 1.862 0.0616 6.16 0.0616 0.9514
-22 -23 BM RR=0.08, CR=0.40 -22.5 1 1.096 1.752 1.4014 1.857 0.0575 5.75 0.0575 0.8898
-23 -24 BM RR=0.08, CR=0.40 -23.5 1 1.127 1.785 1.4283 1.855 0.0536 5.36 0.0536 0.8324
-24 -25 BM RR=0.08, CR=0.40 -24.5 1 1.157 1.819 1.4552 1.856 0.0502 5.02 0.0502 0.7787
-25 -26 BM RR=0.08, CR=0.40 -25.5 1 1.187 1.853 1.4821 1.860 0.0472 4.72 0.0472 0.7285
-26 -27 BM RR=0.08, CR=0.40 -26.5 1 1.217 1.886 1.5090 1.869 0.0446 4.46 0.0446 0.6814
-27 -28 BM RR=0.08, CR=0.40 -27.5 1 1.248 1.920 1.5358 1.882 0.0425 4.25 0.0425 0.6368
-28 -29 BM RR=0.08, CR=0.40 -28.5 1 1.278 1.953 1.5627 1.900 0.0409 4.09 0.0409 0.5942
-29 -30 BM RR=0.08, CR=0.40 -29.5 1 1.308 1.987 1.5896 1.924 0.0399 3.99 0.0399 0.5533
-30 -31 BM RR=0.08, CR=0.40 -30.5 1 1.339 2.021 1.6165 1.953 0.0394 3.94 0.0394 0.5134
-31 -32 BM RR=0.08, CR=0.40 -31.5 1 1.369 2.054 1.6434 1.987 0.0393 3.93 0.0393 0.4740
-32 -33 BM RR=0.08, CR=0.40 -32.5 1 1.399 2.088 1.6702 2.027 0.0398 3.98 0.0398 0.4347
-33 -34 BM RR=0.08, CR=0.40 -33.5 1 1.430 2.121 1.6971 2.072 0.0406 4.06 0.0406 0.3949
-34 -35 BM RR=0.08, CR=0.40 -34.5 1 1.460 2.155 1.7240 2.122 0.0418 4.18 0.0418 0.3543
-35 -36 BM RR=0.08, CR=0.40 -35.5 1 1.490 2.189 1.7509 2.176 0.0433 4.33 0.0433 0.3125
-36 -37 BM RR=0.08, CR=0.40 -36.5 1 1.520 2.222 1.7778 2.233 0.0450 4.50 0.0450 0.2691
-37 -38 BM RR=0.08, CR=0.40 -37.5 1 1.551 2.256 1.8046 2.293 0.0468 4.68 0.0468 0.2241
-38 -39 BM RR=0.08, CR=0.40 -38.5 1 1.581 2.289 1.8315 2.353 0.0487 4.87 0.0487 0.1772
-39 -40 BM RR=0.08, CR=0.40 -39.5 1 1.611 2.323 1.8584 2.414 0.0504 5.04 0.0504 0.1286
-40 -41 BM RR=0.08, CR=0.40 -40.5 1 1.642 2.357 1.8853 2.472 0.0518 5.18 0.0518 0.0782
-41 -41.5 BM RR=0.08, CR=0.40 -41.25 0.5 1.664 2.382 1.9054 2.512 0.0527 5.27 0.0264 0.0264

Layers
Computed Settlement : σ'vo→σ'vc

TS3 with 0.8σ'p 
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Table B-4 1-D Consolidation Settlement Prediction at TS5 (computed with σ’p profile) 

 

TS5 -σ'p

Cons. Status

From
 EL. (ft)

To
EL. (ft) Soil type

Average
EL. (ft)

Thickness 
of soil
Hi[ft]

 σ'v0

(ksf)
σ'p(FV)

(ksf)

 σ'vc

TS5
(ksf) ε ε[%]

∆ρc

(ft)
ρc

[ft]
-1.6 -4.5 Pavement
-4.5 -6.2 Basecourse
-6.2 -8 BM Crust RR=0.06 -7.1 1.8 0.609 5.0689 1.852 0.0290 2.90 0.0522 1.1414

-8 -9 BM Crust RR=0.06 -8.5 1 0.662 3.300 1.892 0.0274 2.74 0.0274 1.0893
-9 -10 BM Crust RR=0.06 -9.5 1 0.699 2.747 1.925 0.0264 2.64 0.0264 1.0619

-10 -11 BM RR=0.06 -10.5 1 0.733 2.469 1.952 0.0255 2.55 0.0255 1.0355
-11 -12 BM RR=0.06 -11.5 1 0.763 2.080 1.957 0.0245 2.45 0.0245 1.0100
-12 -13 BM RR=0.06, CR=0.40 -12.5 1 0.793 1.760 1.928 0.0366 3.66 0.0366 0.9854
-13 -14 BM RR=0.06, CR=0.40 -13.5 1 0.824 1.615 1.903 0.0461 4.61 0.0461 0.9489
-14 -15 BM RR=0.06, CR=0.40 -14.5 1 0.854 1.572 1.884 0.0474 4.74 0.0474 0.9028
-15 -16 BM RR=0.06, CR=0.40 -15.5 1 0.884 1.569 1.870 0.0454 4.54 0.0454 0.8554
-16 -17 BM RR=0.06, CR=0.40 -16.5 1 0.914 1.550 1.861 0.0455 4.55 0.0455 0.8100
-17 -18 BM RR=0.06, CR=0.40 -17.5 1 0.945 1.584 1.856 0.0410 4.10 0.0410 0.7645
-18 -19 BM RR=0.06, CR=0.40 -18.5 1 0.975 1.617 1.856 0.0371 3.71 0.0371 0.7235
-19 -20 BM RR=0.06, CR=0.40 -19.5 1 1.005 1.651 1.860 0.0337 3.37 0.0337 0.6864
-20 -21 BM RR=0.12, CR=0.40 -20.5 1 1.036 1.685 1.868 0.0433 4.33 0.0433 0.6528
-21 -22 BM RR=0.12, CR=0.40 -21.5 1 1.066 1.718 1.880 0.0405 4.05 0.0405 0.6094
-22 -23 BM RR=0.12, CR=0.40 -22.5 1 1.096 1.752 1.895 0.0381 3.81 0.0381 0.5689
-23 -24 BM RR=0.12, CR=0.40 -23.5 1 1.127 1.785 1.913 0.0360 3.60 0.0360 0.5309
-24 -25 BM RR=0.12, CR=0.40 -24.5 1 1.157 1.819 1.933 0.0342 3.42 0.0342 0.4949
-25 -26 BM RR=0.12, CR=0.40 -25.5 1 1.187 1.853 1.956 0.0327 3.27 0.0327 0.4607
-26 -27 BM RR=0.12, CR=0.40 -26.5 1 1.217 1.886 1.982 0.0314 3.14 0.0314 0.4280
-27 -28 BM RR=0.12, CR=0.40 -27.5 1 1.248 1.920 2.008 0.0303 3.03 0.0303 0.3966
-28 -29 BM RR=0.12, CR=0.40 -28.5 1 1.278 1.953 2.037 0.0294 2.94 0.0294 0.3663
-29 -30 BM RR=0.12, CR=0.40 -29.5 1 1.308 1.987 2.066 0.0286 2.86 0.0286 0.3370
-30 -31 BM RR=0.12, CR=0.40 -30.5 1 1.339 2.021 2.097 0.0279 2.79 0.0279 0.3084
-31 -32 BM RR=0.12, CR=0.40 -31.5 1 1.369 2.054 2.129 0.0274 2.74 0.0274 0.2805
-32 -33 BM RR=0.12, CR=0.40 -32.5 1 1.399 2.088 2.162 0.0269 2.69 0.0269 0.2531
-33 -34 BM RR=0.12, CR=0.40 -33.5 1 1.430 2.121 2.196 0.0266 2.66 0.0266 0.2261
-34 -35 BM RR=0.12, CR=0.40 -34.5 1 1.460 2.155 2.231 0.0263 2.63 0.0263 0.1995
-35 -36 BM RR=0.12, CR=0.40 -35.5 1 1.490 2.189 2.267 0.0262 2.62 0.0262 0.1732
-36 -37 BM RR=0.12, CR=0.40 -36.5 1 1.520 2.222 2.305 0.0261 2.61 0.0261 0.1470
-37 -38 BM RR=0.12, CR=0.40 -37.5 1 1.551 2.256 2.344 0.0262 2.62 0.0262 0.1209
-38 -39 BM RR=0.12, CR=0.40 -38.5 1 1.581 2.289 2.385 0.0264 2.64 0.0264 0.0947
-39 -40 BM RR=0.12, CR=0.40 -39.5 1 1.611 2.323 2.429 0.0268 2.68 0.0268 0.0683
-40 -41 BM RR=0.12, CR=0.40 -40.5 1 1.642 2.357 2.476 0.0274 2.74 0.0274 0.0415
-41 -41.5 BM RR=0.12, CR=0.40 -41.25 0.5 1.664 2.382 2.514 0.0281 2.81 0.0140 0.0140

Layers
Computed Settlement : σ'vo→σ'vc

TS5 with σ'p 
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Table B-5 1-D Consolidation Settlement Prediction at TS5 (computed with 0.9σ’p profile) 

TS5 -0.9σ'p

Cons. Status

From
 EL. (ft)

To
EL. (ft) Soil type

Average
EL. (ft)

Thickness 
of soil
Hi[ft]

 σ'v0

(ksf)
σ'p(FV)

(ksf)
0.9σ'p(FV)

(ksf)

σ'vc

TS5
(ksf) ε ε[%]

∆ρc

(ft)
ρc

[ft]
-1.6 -4.5 Pavement
-4.5 -6.2 Basecourse
-6.2 -8 BM Crust RR=0.06 -7.1 1.8 0.609 5.0689 4.5620 1.852 0.0290 2.90 0.0522 1.5479

-8 -9 BM Crust RR=0.06 -8.5 1 0.662 3.300 2.9700 1.892 0.0274 2.74 0.0274 1.4957
-9 -10 BM Crust RR=0.06 -9.5 1 0.699 2.747 2.4723 1.925 0.0264 2.64 0.0264 1.4684

-10 -11 BM RR=0.06 -10.5 1 0.733 2.469 2.2221 1.952 0.0255 2.55 0.0255 1.4420
-11 -12 BM RR=0.06, CR=0.40 -11.5 1 0.763 2.080 1.8720 1.957 0.0311 3.11 0.0311 1.4164
-12 -13 BM RR=0.06, CR=0.40 -12.5 1 0.793 1.760 1.5840 1.928 0.0521 5.21 0.0521 1.3853
-13 -14 BM RR=0.06, CR=0.40 -13.5 1 0.824 1.615 1.4537 1.903 0.0616 6.16 0.0616 1.3332
-14 -15 BM RR=0.06, CR=0.40 -14.5 1 0.854 1.572 1.4145 1.884 0.0629 6.29 0.0629 1.2716
-15 -16 BM RR=0.06, CR=0.40 -15.5 1 0.884 1.569 1.4125 1.870 0.0609 6.09 0.0609 1.2086
-16 -17 BM RR=0.06, CR=0.40 -16.5 1 0.914 1.550 1.3952 1.861 0.0610 6.10 0.0610 1.1477
-17 -18 BM RR=0.06, CR=0.40 -17.5 1 0.945 1.584 1.4254 1.856 0.0566 5.66 0.0566 1.0867
-18 -19 BM RR=0.06, CR=0.40 -18.5 1 0.975 1.617 1.4557 1.856 0.0527 5.27 0.0527 1.0301
-19 -20 BM RR=0.06, CR=0.40 -19.5 1 1.005 1.651 1.4859 1.860 0.0492 4.92 0.0492 0.9774
-20 -21 BM RR=0.12, CR=0.40 -20.5 1 1.036 1.685 1.5161 1.868 0.0561 5.61 0.0561 0.9282
-21 -22 BM RR=0.12, CR=0.40 -21.5 1 1.066 1.718 1.5464 1.880 0.0533 5.33 0.0533 0.8721
-22 -23 BM RR=0.12, CR=0.40 -22.5 1 1.096 1.752 1.5766 1.895 0.0509 5.09 0.0509 0.8188
-23 -24 BM RR=0.12, CR=0.40 -23.5 1 1.127 1.785 1.6069 1.913 0.0488 4.88 0.0488 0.7679
-24 -25 BM RR=0.12, CR=0.40 -24.5 1 1.157 1.819 1.6371 1.933 0.0470 4.70 0.0470 0.7191
-25 -26 BM RR=0.12, CR=0.40 -25.5 1 1.187 1.853 1.6673 1.956 0.0455 4.55 0.0455 0.6721
-26 -27 BM RR=0.12, CR=0.40 -26.5 1 1.217 1.886 1.6976 1.982 0.0442 4.42 0.0442 0.6266
-27 -28 BM RR=0.12, CR=0.40 -27.5 1 1.248 1.920 1.7278 2.008 0.0431 4.31 0.0431 0.5824
-28 -29 BM RR=0.12, CR=0.40 -28.5 1 1.278 1.953 1.7581 2.037 0.0422 4.22 0.0422 0.5393
-29 -30 BM RR=0.12, CR=0.40 -29.5 1 1.308 1.987 1.7883 2.066 0.0414 4.14 0.0414 0.4971
-30 -31 BM RR=0.12, CR=0.40 -30.5 1 1.339 2.021 1.8185 2.097 0.0407 4.07 0.0407 0.4557
-31 -32 BM RR=0.12, CR=0.40 -31.5 1 1.369 2.054 1.8488 2.129 0.0402 4.02 0.0402 0.4150
-32 -33 BM RR=0.12, CR=0.40 -32.5 1 1.399 2.088 1.8790 2.162 0.0398 3.98 0.0398 0.3748
-33 -34 BM RR=0.12, CR=0.40 -33.5 1 1.430 2.121 1.9093 2.196 0.0394 3.94 0.0394 0.3350
-34 -35 BM RR=0.12, CR=0.40 -34.5 1 1.460 2.155 1.9395 2.231 0.0391 3.91 0.0391 0.2956
-35 -36 BM RR=0.12, CR=0.40 -35.5 1 1.490 2.189 1.9697 2.267 0.0390 3.90 0.0390 0.2565
-36 -37 BM RR=0.12, CR=0.40 -36.5 1 1.520 2.222 2.0000 2.305 0.0389 3.89 0.0389 0.2175
-37 -38 BM RR=0.12, CR=0.40 -37.5 1 1.551 2.256 2.0302 2.344 0.0390 3.90 0.0390 0.1786
-38 -39 BM RR=0.12, CR=0.40 -38.5 1 1.581 2.289 2.0605 2.385 0.0392 3.92 0.0392 0.1396
-39 -40 BM RR=0.12, CR=0.40 -39.5 1 1.611 2.323 2.0907 2.429 0.0396 3.96 0.0396 0.1003
-40 -41 BM RR=0.12, CR=0.40 -40.5 1 1.642 2.357 2.1209 2.476 0.0403 4.03 0.0403 0.0607
-41 -41.5 BM RR=0.12, CR=0.40 -41.25 0.5 1.664 2.382 2.1436 2.514 0.0409 4.09 0.0204 0.0204

Layers
Computed Settlement : σ'vo→σ'vc

TS5 with 0.9σ'p 
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Table B-6 1-D Consolidation Settlement Prediction at TS5 (computed with 0.8σ’p profile) 

TS5 -0.8σ'p

Cons. Status

From
 EL. (ft)

To
EL. (ft) Soil type

Average
EL. (ft)

Thickness 
of soil
Hi[ft]

 σ'v0

(ksf)
σ'p(FV)

(ksf)
0.8σ'p(FV)

(ksf)

σ'vc

TS5
(ksf) ε ε[%]

∆ρc

(ft)
ρc

[ft]
-1.6 -4.5 Pavement
-4.5 -6.2 Basecourse
-6.2 -8 BM Crust RR=0.04 -7.1 1.8 0.609 5.0689 4.0551 1.852 0.0193 1.93 0.0348 1.8648

-8 -9 BM Crust RR=0.04 -8.5 1 0.662 3.300 2.6400 1.892 0.0183 1.83 0.0183 1.8301
-9 -10 BM Crust RR=0.04 -9.5 1 0.699 2.747 2.1976 1.925 0.0176 1.76 0.0176 1.8118

-10 -11 BM RR=0.04 -10.5 1 0.733 2.469 1.9752 1.952 0.0170 1.70 0.0170 1.7942
-11 -12 BM RR=0.04, CR=0.40 -11.5 1 0.763 2.080 1.6640 1.957 0.0417 4.17 0.0417 1.7772
-12 -13 BM RR=0.04, CR=0.40 -12.5 1 0.793 1.760 1.4080 1.928 0.0645 6.45 0.0645 1.7355
-13 -14 BM RR=0.04, CR=0.40 -13.5 1 0.824 1.615 1.2922 1.903 0.0751 7.51 0.0751 1.6710
-14 -15 BM RR=0.04, CR=0.40 -14.5 1 0.854 1.572 1.2574 1.884 0.0770 7.70 0.0770 1.5959
-15 -16 BM RR=0.04, CR=0.40 -15.5 1 0.884 1.569 1.2555 1.870 0.0753 7.53 0.0753 1.5189
-16 -17 BM RR=0.04, CR=0.40 -16.5 1 0.914 1.550 1.2402 1.861 0.0758 7.58 0.0758 1.4436
-17 -18 BM RR=0.04, CR=0.40 -17.5 1 0.945 1.584 1.2670 1.856 0.0714 7.14 0.0714 1.3678
-18 -19 BM RR=0.04, CR=0.40 -18.5 1 0.975 1.617 1.2939 1.856 0.0676 6.76 0.0676 1.2964
-19 -20 BM RR=0.04, CR=0.40 -19.5 1 1.005 1.651 1.3208 1.860 0.0642 6.42 0.0642 1.2288
-20 -21 BM RR=0.08, CR=0.40 -20.5 1 1.036 1.685 1.3477 1.868 0.0659 6.59 0.0659 1.1646
-21 -22 BM RR=0.08, CR=0.40 -21.5 1 1.066 1.718 1.3746 1.880 0.0632 6.32 0.0632 1.0987
-22 -23 BM RR=0.08, CR=0.40 -22.5 1 1.096 1.752 1.4014 1.895 0.0609 6.09 0.0609 1.0355
-23 -24 BM RR=0.08, CR=0.40 -23.5 1 1.127 1.785 1.4283 1.913 0.0590 5.90 0.0590 0.9745
-24 -25 BM RR=0.08, CR=0.40 -24.5 1 1.157 1.819 1.4552 1.933 0.0573 5.73 0.0573 0.9155
-25 -26 BM RR=0.08, CR=0.40 -25.5 1 1.187 1.853 1.4821 1.956 0.0559 5.59 0.0559 0.8582
-26 -27 BM RR=0.08, CR=0.40 -26.5 1 1.217 1.886 1.5090 1.982 0.0548 5.48 0.0548 0.8022
-27 -28 BM RR=0.08, CR=0.40 -27.5 1 1.248 1.920 1.5358 2.008 0.0538 5.38 0.0538 0.7475
-28 -29 BM RR=0.08, CR=0.40 -28.5 1 1.278 1.953 1.5627 2.037 0.0530 5.30 0.0530 0.6936
-29 -30 BM RR=0.08, CR=0.40 -29.5 1 1.308 1.987 1.5896 2.066 0.0523 5.23 0.0523 0.6406
-30 -31 BM RR=0.08, CR=0.40 -30.5 1 1.339 2.021 1.6165 2.097 0.0518 5.18 0.0518 0.5883
-31 -32 BM RR=0.08, CR=0.40 -31.5 1 1.369 2.054 1.6434 2.129 0.0514 5.14 0.0514 0.5365
-32 -33 BM RR=0.08, CR=0.40 -32.5 1 1.399 2.088 1.6702 2.162 0.0510 5.10 0.0510 0.4851
-33 -34 BM RR=0.08, CR=0.40 -33.5 1 1.430 2.121 1.6971 2.196 0.0507 5.07 0.0507 0.4341
-34 -35 BM RR=0.08, CR=0.40 -34.5 1 1.460 2.155 1.7240 2.231 0.0506 5.06 0.0506 0.3834
-35 -36 BM RR=0.08, CR=0.40 -35.5 1 1.490 2.189 1.7509 2.267 0.0505 5.05 0.0505 0.3328
-36 -37 BM RR=0.08, CR=0.40 -36.5 1 1.520 2.222 1.7778 2.305 0.0505 5.05 0.0505 0.2823
-37 -38 BM RR=0.08, CR=0.40 -37.5 1 1.551 2.256 1.8046 2.344 0.0507 5.07 0.0507 0.2318
-38 -39 BM RR=0.08, CR=0.40 -38.5 1 1.581 2.289 1.8315 2.385 0.0510 5.10 0.0510 0.1811
-39 -40 BM RR=0.08, CR=0.40 -39.5 1 1.611 2.323 1.8584 2.429 0.0515 5.15 0.0515 0.1301
-40 -41 BM RR=0.08, CR=0.40 -40.5 1 1.642 2.357 1.8853 2.476 0.0522 5.22 0.0522 0.0786
-41 -41.5 BM RR=0.08, CR=0.40 -41.25 0.5 1.664 2.382 1.9054 2.514 0.0529 5.29 0.0264 0.0264

Layers
Computed Settlement : σ'vo→σ'vc

TS5 with 0.8σ'p 
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Table B-7 1-D Final Consolidation Settlement Prediction at TS3 & TS5 (computed with σ’p profile) 

 
TS3&TS5 -σ'p

Cons. Status

From
 EL. (ft)

To
EL. (ft) Soil type

Average
EL. (ft)

Thickness 
of soil
Hi[ft]

 σ'v0

(ksf)
σ'p(FV)

(ksf)
 σ'vf

(ksf) ε ε[%]
∆ρc

(ft)
ρc

[ft]
-1.6 -4.5 Pavement
-4.5 -6.2 Basecourse
-6.2 -8 BM Crust RR=0.06 -7.1 1.8 0.609 5.0689 1.851 0.0290 2.90 0.0521 1.7611

-8 -9 BM Crust RR=0.06 -8.5 1 0.662 3.300 1.890 0.0274 2.74 0.0274 1.7090
-9 -10 BM Crust RR=0.06 -9.5 1 0.699 2.747 1.918 0.0263 2.63 0.0263 1.6816

-10 -11 BM RR=0.06 -10.5 1 0.733 2.469 1.947 0.0255 2.55 0.0255 1.6553
-11 -12 BM RR=0.06 -11.5 1 0.763 2.080 1.975 0.0248 2.48 0.0248 1.6298
-12 -13 BM RR=0.06, CR=0.40 -12.5 1 0.793 1.760 2.004 0.0433 4.33 0.0433 1.6050
-13 -14 BM RR=0.06, CR=0.40 -13.5 1 0.824 1.615 2.032 0.0574 5.74 0.0574 1.5617
-14 -15 BM RR=0.06, CR=0.40 -14.5 1 0.854 1.572 2.060 0.0629 6.29 0.0629 1.5043
-15 -16 BM RR=0.06, CR=0.40 -15.5 1 0.884 1.569 2.087 0.0645 6.45 0.0645 1.4415
-16 -17 BM RR=0.06, CR=0.40 -16.5 1 0.914 1.550 2.114 0.0676 6.76 0.0676 1.3770
-17 -18 BM RR=0.06, CR=0.40 -17.5 1 0.945 1.584 2.140 0.0657 6.57 0.0657 1.3094
-18 -19 BM RR=0.06, CR=0.40 -18.5 1 0.975 1.617 2.165 0.0638 6.38 0.0638 1.2437
-19 -20 BM RR=0.06, CR=0.40 -19.5 1 1.005 1.651 2.189 0.0619 6.19 0.0619 1.1799
-20 -21 BM RR=0.12, CR=0.40 -20.5 1 1.036 1.685 2.213 0.0727 7.27 0.0727 1.1179
-21 -22 BM RR=0.12, CR=0.40 -21.5 1 1.066 1.718 2.236 0.0706 7.06 0.0706 1.0452
-22 -23 BM RR=0.12, CR=0.40 -22.5 1 1.096 1.752 2.258 0.0685 6.85 0.0685 0.9745
-23 -24 BM RR=0.12, CR=0.40 -23.5 1 1.127 1.785 2.279 0.0664 6.64 0.0664 0.9060
-24 -25 BM RR=0.12, CR=0.40 -24.5 1 1.157 1.819 2.300 0.0643 6.43 0.0643 0.8396
-25 -26 BM RR=0.12, CR=0.40 -25.5 1 1.187 1.853 2.320 0.0622 6.22 0.0622 0.7753
-26 -27 BM RR=0.12, CR=0.40 -26.5 1 1.217 1.886 2.339 0.0602 6.02 0.0602 0.7130
-27 -28 BM RR=0.12, CR=0.40 -27.5 1 1.248 1.920 2.357 0.0581 5.81 0.0581 0.6528
-28 -29 BM RR=0.12, CR=0.40 -28.5 1 1.278 1.953 2.375 0.0561 5.61 0.0561 0.5947
-29 -30 BM RR=0.12, CR=0.40 -29.5 1 1.308 1.987 2.392 0.0540 5.40 0.0540 0.5387
-30 -31 BM RR=0.12, CR=0.40 -30.5 1 1.339 2.021 2.409 0.0520 5.20 0.0520 0.4847
-31 -32 BM RR=0.12, CR=0.40 -31.5 1 1.369 2.054 2.426 0.0500 5.00 0.0500 0.4326
-32 -33 BM RR=0.12, CR=0.40 -32.5 1 1.399 2.088 2.442 0.0481 4.81 0.0481 0.3826
-33 -34 BM RR=0.12, CR=0.40 -33.5 1 1.430 2.121 2.457 0.0461 4.61 0.0461 0.3346
-34 -35 BM RR=0.12, CR=0.40 -34.5 1 1.460 2.155 2.473 0.0442 4.42 0.0442 0.2885
-35 -36 BM RR=0.12, CR=0.40 -35.5 1 1.490 2.189 2.489 0.0424 4.24 0.0424 0.2442
-36 -37 BM RR=0.12, CR=0.40 -36.5 1 1.520 2.222 2.504 0.0405 4.05 0.0405 0.2019
-37 -38 BM RR=0.12, CR=0.40 -37.5 1 1.551 2.256 2.520 0.0388 3.88 0.0388 0.1613
-38 -39 BM RR=0.12, CR=0.40 -38.5 1 1.581 2.289 2.536 0.0371 3.71 0.0371 0.1226
-39 -40 BM RR=0.12, CR=0.40 -39.5 1 1.611 2.323 2.552 0.0354 3.54 0.0354 0.0855
-40 -41 BM RR=0.12, CR=0.40 -40.5 1 1.642 2.357 2.568 0.0338 3.38 0.0338 0.0501
-41 -41.5 BM RR=0.12, CR=0.40 -41.25 0.5 1.664 2.382 2.581 0.0326 3.26 0.0163 0.0163

Layers
Computed Final Consolidation Settlement : σ'vo→σ'vf

with σ'p 
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Table B-8 1-D Final Consolidation Settlement Prediction at TS3 & TS5 (computed with 0.9σ’p profile) 

 
TS3&TS5 -0.9σ'p

Cons. Status

From
 EL. (ft)

To
EL. (ft) Soil type

Average
EL. (ft)

Thickness 
of soil
Hi[ft]

 σ'v0

(ksf)
σ'p(FV)

(ksf)
0.9σ'p(FV)

(ksf)
 σ'vf

(ksf) ε ε[%]
∆ρc

(ft)
ρc

[ft]
-1.6 -4.5 Pavement
-4.5 -6.2 Basecourse
-6.2 -8 BM Crust RR=0.06 -7.1 1.8 0.609 5.0689 4.5620 1.851 0.0290 2.90 0.0521 2.1689

-8 -9 BM Crust RR=0.06 -8.5 1 0.662 3.300 2.9700 1.890 0.0274 2.74 0.0274 2.1168
-9 -10 BM Crust RR=0.06 -9.5 1 0.699 2.747 2.4723 1.918 0.0263 2.63 0.0263 2.0894

-10 -11 BM RR=0.06 -10.5 1 0.733 2.469 2.2221 1.947 0.0255 2.55 0.0255 2.0631
-11 -12 BM RR=0.06, CR=0.40 -11.5 1 0.763 2.080 1.8720 1.975 0.0327 3.27 0.0327 2.0377
-12 -13 BM RR=0.06, CR=0.40 -12.5 1 0.793 1.760 1.5840 2.004 0.0589 5.89 0.0589 2.0050
-13 -14 BM RR=0.06, CR=0.40 -13.5 1 0.824 1.615 1.4537 2.032 0.0730 7.30 0.0730 1.9461
-14 -15 BM RR=0.06, CR=0.40 -14.5 1 0.854 1.572 1.4145 2.060 0.0784 7.84 0.0784 1.8731
-15 -16 BM RR=0.06, CR=0.40 -15.5 1 0.884 1.569 1.4125 2.087 0.0800 8.00 0.0800 1.7947
-16 -17 BM RR=0.06, CR=0.40 -16.5 1 0.914 1.550 1.3952 2.114 0.0832 8.32 0.0832 1.7147
-17 -18 BM RR=0.06, CR=0.40 -17.5 1 0.945 1.584 1.4254 2.140 0.0813 8.13 0.0813 1.6315
-18 -19 BM RR=0.06, CR=0.40 -18.5 1 0.975 1.617 1.4557 2.165 0.0794 7.94 0.0794 1.5503
-19 -20 BM RR=0.06, CR=0.40 -19.5 1 1.005 1.651 1.4859 2.189 0.0775 7.75 0.0775 1.4709
-20 -21 BM RR=0.12, CR=0.40 -20.5 1 1.036 1.685 1.5161 2.213 0.0856 8.56 0.0856 1.3934
-21 -22 BM RR=0.12, CR=0.40 -21.5 1 1.066 1.718 1.5464 2.236 0.0834 8.34 0.0834 1.3078
-22 -23 BM RR=0.12, CR=0.40 -22.5 1 1.096 1.752 1.5766 2.258 0.0813 8.13 0.0813 1.2244
-23 -24 BM RR=0.12, CR=0.40 -23.5 1 1.127 1.785 1.6069 2.279 0.0792 7.92 0.0792 1.1430
-24 -25 BM RR=0.12, CR=0.40 -24.5 1 1.157 1.819 1.6371 2.300 0.0771 7.71 0.0771 1.0638
-25 -26 BM RR=0.12, CR=0.40 -25.5 1 1.187 1.853 1.6673 2.320 0.0751 7.51 0.0751 0.9867
-26 -27 BM RR=0.12, CR=0.40 -26.5 1 1.217 1.886 1.6976 2.339 0.0730 7.30 0.0730 0.9116
-27 -28 BM RR=0.12, CR=0.40 -27.5 1 1.248 1.920 1.7278 2.357 0.0709 7.09 0.0709 0.8386
-28 -29 BM RR=0.12, CR=0.40 -28.5 1 1.278 1.953 1.7581 2.375 0.0689 6.89 0.0689 0.7677
-29 -30 BM RR=0.12, CR=0.40 -29.5 1 1.308 1.987 1.7883 2.392 0.0668 6.68 0.0668 0.6988
-30 -31 BM RR=0.12, CR=0.40 -30.5 1 1.339 2.021 1.8185 2.409 0.0648 6.48 0.0648 0.6320
-31 -32 BM RR=0.12, CR=0.40 -31.5 1 1.369 2.054 1.8488 2.426 0.0628 6.28 0.0628 0.5672
-32 -33 BM RR=0.12, CR=0.40 -32.5 1 1.399 2.088 1.8790 2.442 0.0609 6.09 0.0609 0.5043
-33 -34 BM RR=0.12, CR=0.40 -33.5 1 1.430 2.121 1.9093 2.457 0.0589 5.89 0.0589 0.4435
-34 -35 BM RR=0.12, CR=0.40 -34.5 1 1.460 2.155 1.9395 2.473 0.0570 5.70 0.0570 0.3846
-35 -36 BM RR=0.12, CR=0.40 -35.5 1 1.490 2.189 1.9697 2.489 0.0552 5.52 0.0552 0.3275
-36 -37 BM RR=0.12, CR=0.40 -36.5 1 1.520 2.222 2.0000 2.504 0.0534 5.34 0.0534 0.2723
-37 -38 BM RR=0.12, CR=0.40 -37.5 1 1.551 2.256 2.0302 2.520 0.0516 5.16 0.0516 0.2190
-38 -39 BM RR=0.12, CR=0.40 -38.5 1 1.581 2.289 2.0605 2.536 0.0499 4.99 0.0499 0.1674
-39 -40 BM RR=0.12, CR=0.40 -39.5 1 1.611 2.323 2.0907 2.552 0.0482 4.82 0.0482 0.1175
-40 -41 BM RR=0.12, CR=0.40 -40.5 1 1.642 2.357 2.1209 2.568 0.0466 4.66 0.0466 0.0693
-41 -41.5 BM RR=0.12, CR=0.40 -41.25 0.5 1.664 2.382 2.1436 2.581 0.0454 4.54 0.0227 0.0227

Layers
Computed Final Consolidation Settlement : σ'vo→σ'vf

with 0.9σ'p 
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Table B-9 1-D Final Consolidation Settlement Prediction at TS3 & TS5 (computed with 0.8σ’p profile) 

 
TS3&TS5 -0.8σ'p

Cons. Status

From
 EL. (ft)

To
EL. (ft) Soil type

Average
EL. (ft)

Thickness 
of soil
Hi[ft]

 σ'v0

(ksf)
σ'p(FV)

(ksf)
0.8σ'p(FV)

(ksf)
 s'vf
(ksf) ε ε[%]

∆ρc

(ft)
ρc

[ft]
-1.6 -4.5 Pavement
-4.5 -6.2 Basecourse
-6.2 -8 BM Crust RR=0.06 -7.1 1.8 0.609 5.0689 4.0551 1.851 0.0290 2.90 0.0521 2.6334

-8 -9 BM Crust RR=0.06 -8.5 1 0.662 3.300 2.6400 1.890 0.0274 2.74 0.0274 2.5813
-9 -10 BM Crust RR=0.06 -9.5 1 0.699 2.747 2.1976 1.918 0.0263 2.63 0.0263 2.5539

-10 -11 BM RR=0.06 -10.5 1 0.733 2.469 1.9752 1.947 0.0255 2.55 0.0255 2.5276
-11 -12 BM RR=0.06, CR=0.40 -11.5 1 0.763 2.080 1.6640 1.975 0.0501 5.01 0.0501 2.5021
-12 -13 BM RR=0.06, CR=0.40 -12.5 1 0.793 1.760 1.4080 2.004 0.0762 7.62 0.0762 2.4520
-13 -14 BM RR=0.06, CR=0.40 -13.5 1 0.824 1.615 1.2922 2.032 0.0904 9.04 0.0904 2.3758
-14 -15 BM RR=0.06, CR=0.40 -14.5 1 0.854 1.572 1.2574 2.060 0.0958 9.58 0.0958 2.2854
-15 -16 BM RR=0.06, CR=0.40 -15.5 1 0.884 1.569 1.2555 2.087 0.0974 9.74 0.0974 2.1896
-16 -17 BM RR=0.06, CR=0.40 -16.5 1 0.914 1.550 1.2402 2.114 0.1006 10.06 0.1006 2.0922
-17 -18 BM RR=0.06, CR=0.40 -17.5 1 0.945 1.584 1.2670 2.140 0.0987 9.87 0.0987 1.9916
-18 -19 BM RR=0.06, CR=0.40 -18.5 1 0.975 1.617 1.2939 2.165 0.0968 9.68 0.0968 1.8930
-19 -20 BM RR=0.06, CR=0.40 -19.5 1 1.005 1.651 1.3208 2.189 0.0949 9.49 0.0949 1.7962
-20 -21 BM RR=0.12, CR=0.40 -20.5 1 1.036 1.685 1.3477 2.213 0.0999 9.99 0.0999 1.7013
-21 -22 BM RR=0.12, CR=0.40 -21.5 1 1.066 1.718 1.3746 2.236 0.0978 9.78 0.0978 1.6014
-22 -23 BM RR=0.12, CR=0.40 -22.5 1 1.096 1.752 1.4014 2.258 0.0957 9.57 0.0957 1.5037
-23 -24 BM RR=0.12, CR=0.40 -23.5 1 1.127 1.785 1.4283 2.279 0.0936 9.36 0.0936 1.4080
-24 -25 BM RR=0.12, CR=0.40 -24.5 1 1.157 1.819 1.4552 2.300 0.0915 9.15 0.0915 1.3144
-25 -26 BM RR=0.12, CR=0.40 -25.5 1 1.187 1.853 1.4821 2.320 0.0894 8.94 0.0894 1.2230
-26 -27 BM RR=0.12, CR=0.40 -26.5 1 1.217 1.886 1.5090 2.339 0.0873 8.73 0.0873 1.1336
-27 -28 BM RR=0.12, CR=0.40 -27.5 1 1.248 1.920 1.5358 2.357 0.0852 8.52 0.0852 1.0463
-28 -29 BM RR=0.12, CR=0.40 -28.5 1 1.278 1.953 1.5627 2.375 0.0832 8.32 0.0832 0.9611
-29 -30 BM RR=0.12, CR=0.40 -29.5 1 1.308 1.987 1.5896 2.392 0.0812 8.12 0.0812 0.8779
-30 -31 BM RR=0.12, CR=0.40 -30.5 1 1.339 2.021 1.6165 2.409 0.0791 7.91 0.0791 0.7967
-31 -32 BM RR=0.12, CR=0.40 -31.5 1 1.369 2.054 1.6434 2.426 0.0772 7.72 0.0772 0.7176
-32 -33 BM RR=0.12, CR=0.40 -32.5 1 1.399 2.088 1.6702 2.442 0.0752 7.52 0.0752 0.6404
-33 -34 BM RR=0.12, CR=0.40 -33.5 1 1.430 2.121 1.6971 2.457 0.0733 7.33 0.0733 0.5652
-34 -35 BM RR=0.12, CR=0.40 -34.5 1 1.460 2.155 1.7240 2.473 0.0714 7.14 0.0714 0.4920
-35 -36 BM RR=0.12, CR=0.40 -35.5 1 1.490 2.189 1.7509 2.489 0.0695 6.95 0.0695 0.4206
-36 -37 BM RR=0.12, CR=0.40 -36.5 1 1.520 2.222 1.7778 2.504 0.0677 6.77 0.0677 0.3511
-37 -38 BM RR=0.12, CR=0.40 -37.5 1 1.551 2.256 1.8046 2.520 0.0659 6.59 0.0659 0.2834
-38 -39 BM RR=0.12, CR=0.40 -38.5 1 1.581 2.289 1.8315 2.536 0.0642 6.42 0.0642 0.2175
-39 -40 BM RR=0.12, CR=0.40 -39.5 1 1.611 2.323 1.8584 2.552 0.0625 6.25 0.0625 0.1533
-40 -41 BM RR=0.12, CR=0.40 -40.5 1 1.642 2.357 1.8853 2.568 0.0609 6.09 0.0609 0.0908
-41 -41.5 BM RR=0.12, CR=0.40 -41.25 0.5 1.664 2.382 1.9054 2.581 0.0598 5.98 0.0299 0.0299

Computed Final Consolidation Settlement : σ'vo→σ'vf

with 0.8σ'p Layers
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6.3  Appendix C: NHPL Plaxis Analysis Control Parameters  

 
 
REPORT 
 
 September 14, 2006 
 

User: Massachusetts Institute of Technology 

Title: NHPL-A2 

Comments: 8/08/06 NHPL – A2 Cracked Pavement, 
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1. General Information 
 
 
Table [1]  Units 

Type Unit 
Length 
Force 
Time 

ft 
klb 
day 

 
Table [2]  Model dimensions 

 min. max. 
X 
Y 

-175.000 
-60.000 

150.000 
9.400 

 
Table [3]  Model 

Model Plane strain 
Element 15-Noded 
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2. Geometry 
 
 

 
Fig. 1 Plot of geometry model with significant nodes 
 
Table [4]  Table of significant nodes 
Node no. x-coord. y-coord. Node no. x-coord. y-coord. 
727 
8119 
475 
8701 
465 
8891 
97 
9989 
23 
10059 
16 
10089 
4127 
7551 
4781 
5702 
71 
10039 
9937 
177 
9823 
193 

-175.000 
150.000 
-175.000 
150.000 
-175.000 
150.000 
-175.000 
150.000 
-175.000 
150.000 
-175.000 
150.000 
-44.500 
44.500 
-11.500 
11.500 
-175.000 
150.000 
150.000 
-175.000 
150.000 
-175.000 

-60.000 
-60.000 
-41.500 
-41.500 
-40.000 
-40.000 
-10.000 
-10.000 
-5.000 
-5.000 
-1.600 
-1.600 
-1.600 
-1.600 
9.400 
9.400 
-6.200 
-6.200 
-12.000 
-15.000 
-15.000 
-20.000 

9707 
209 
9545 
225 
9355 
241 
9181 
4153 
7216 
4185 
6859 
6628 
4457 
6316 
4707 
4771 
6017 
161 
3691 
3793 
7875 
7865 

150.000 
-175.000 
150.000 
-175.000 
150.000 
-175.000 
150.000 
-38.500 
38.500 
-32.500 
32.500 
26.500 
-26.500 
20.500 
-20.500 
-14.500 
14.500 
-175.000 
-49.000 
-49.000 
49.000 
49.000 

-20.000 
-25.000 
-25.000 
-30.000 
-30.000 
-35.000 
-35.000 
0.400 
0.400 
2.400 
2.400 
4.400 
4.400 
6.400 
6.400 
8.400 
8.400 
-12.000 
-1.600 
-5.000 
-1.600 
-5.000 
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Fig. 2 Plot of geometry model with cluster numbers 
 
Table [5]  Table of clusters 
Cluster no. Nodes 
1 727, 8119, 475, 8701. 
2 475, 8701, 465, 8891. 
3 465, 8891, 241, 9181. 
4 225, 9355, 241, 9181. 
5 209, 9545, 225, 9355. 
6 193, 9707, 209, 9545. 
7 177, 9823, 193, 9707. 
8 9937, 177, 9823, 161. 
9 97, 9989, 9937, 161. 
10 97, 9989, 71, 10039. 
11 23, 10059, 71, 10039, 3793, 7865. 
12 23, 16, 3691, 3793. 
13 4127, 7551, 3691, 3793, 7875, 7865. 
14 4127, 7551, 4153, 7216. 
15 4153, 7216, 4185, 6859. 
16 4185, 6859, 6628, 4457. 
17 6628, 4457, 6316, 4707. 
18 6316, 4707, 4771, 6017. 
19 4781, 5702, 4771, 6017. 
20 10059, 10089, 7875, 7865. 
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3. Mesh data 
 
 

 
Fig. 3 Plot of the mesh with significant nodes 
 
Table [6]  Numbers, type of elements, integrations 
Type Type of element Type of integration Total 

no. 
Soil 15-noded 12-point Gauss 1232 
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4. Material data 
 
 

 
Fig. 4 Plot of geometry with material data sets 
 
Table [7]  Soil data sets parameters 
Linear Elastic 
 

 1 
Alluvium (below 
BM) 

*Type  Undrained 
γunsat [klb/ft³] 0.13 
γsat [klb/ft³] 0.13 
kx [ft/day] 0.001 
ky [ft/day] 0.001 
einit [-] 2.200 
ck [-] 1E15 
Eref [klb/ft²] 1000.00 
ν [-] 0.300 
Gref [klb/ft²] 384.615 
Eoed [klb/ft²] 1346.154 
Eincr [klb/ft²/ft] 0.00 
yref [ft] 0.000 
Rinter [-] 1.000 
Interface 
permeability 

 Neutral 

 
Mohr-Coulomb 
 

 3 
Levee Fill 

4 
Base Course 

6 
Cracked Pavement 

7 
Pavement 

Type  Drained Drained Drained Drained 
γunsat [klb/ft³] 0.13 0.15 0.15 0.15 
γsat [klb/ft³] 0.13 0.15 0.15 0.15 
kx [ft/day] 0.100 1.000 1.000 1.000 
ky [ft/day] 0.100 1.000 1.000 1.000 
einit [-] 1.000 0.500 0.500 0.500 
ck [-] 1E15 1E15 1E15 1E15 
Eref [klb/ft²] 30.000 200.000 200.000 1000.000 
ν [-] 0.300 0.200 0.200 0.150 
Gref [klb/ft²] 11.538 83.333 83.333 434.783 
Eoed [klb/ft²] 40.385 222.222 222.222 1055.901 
cref [klb/ft²] 0.02 0.03 0.03 0.02 
ϕ [°] 37.00 35.00 35.00 35.00 
ψ [°] 0.00 2.00 2.00 5.00 
Einc [klb/ft²/ft] 0.00 0.00 0.00 0.00 
yref [ft] 0.000 0.000 0.000 0.000 
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Mohr-Coulomb 
 

 3 
Levee Fill 

4 
Base Course 

6 
Cracked Pavement 

7 
Pavement 

cincrement [klb/ft²/ft] 0.00 0.00 0.00 0.00 
Tstr. [klb/ft²] 0.00 0.00 0.00 0.00 
Rinter. [-] 1.00 1.00 1.00 1.00 
Interface 
permeability 

 Neutral Neutral Neutral Neutral 

 
Soft-Soil 
 

 2 
Bay Mud Crust 

5 
Bay Mud B 

8 
Bay Mud A 

Type  Undrained Undrained Undrained 
γunsat [klb/ft³] 0.10 0.09 0.09 
γsat [klb/ft³] 0.10 0.09 0.09 
kx [ft/day] 0.001 0.001 0.001 
ky [ft/day] 0.001 0.001 0.001 
einit [-] 2.50 2.50 2.50 
ck [-] 1.40 1.40 1.40 
λ∗ [-] 0.174 0.174 0.174 
κ∗ [-] 0.052 0.104 0.052 
c [klb/ft²] 0.03 0.03 0.03 
ϕ [°] 25.00 25.00 25.00 
ψ [°] 0.00 0.00 0.00 
νur [-] 0.260 0.260 0.260 
K0

nc [-] 0.47 0.47 0.47 
Rinter [-] 1.00 1.00 1.00 
Interface 
permeability 

 Neutral Neutral Neutral 
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5. Calculation phases 
 
 
Table [8]  List of phases 
Phase Ph-No. Start 

phase 
Calculation type Load input First step Last step 

Initial phase 0 0  - 0 0 
1 st layer 1 0 Plastic Staged construction 1 13 
Consolidating 45 
days 

2 1 Consolidation Staged Construction 14 20 

2 nd layer 3 2 Plastic Staged construction 21 36 
Consolidating 45 
days 

4 3 Consolidation Staged Construction 37 43 

3 rd 5 4 Plastic Staged construction 44 70 
Consolidating 30 
days 

6 5 Consolidation Staged Construction 71 74 

4th 7 6 Plastic Staged construction 75 102 
Consolidating 30 
days 

8 7 Consolidation Staged Construction 103 106 

5th 9 8 Plastic Staged construction 107 139 
Consolidating 30 
days 

10 9 Consolidation Staged Construction 140 142 

6th 11 10 Plastic Staged construction 143 164 
Consolidating 30 
days 

12 11 Consolidation Staged Construction 165 166 

Consolidating to 
2115 

13 12 Consolidation Staged Construction 167 175 
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Table [9]  Staged construction info 
Ph-No. Active clusters Inactive clusters Active beams Active geotextiles Active anchors 
0 1, 2, 3, 4, 5, 6, 7, 

8, 9, 10, 11, 12, 
13, 20. 

14, 15, 16, 17, 18, 
19. 

   

1 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 
13, 14, 20. 

15, 16, 17, 18, 19.    

3 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 
13, 14, 15, 20. 

16, 17, 18, 19.    

5 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 
13, 14, 15, 16, 20. 

17, 18, 19.    

7 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 
13, 14, 15, 16, 17, 
20. 

18, 19.    

9 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 
13, 14, 15, 16, 17, 
18, 20. 

19.    

11 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 
13, 14, 15, 16, 17, 
18, 19, 20. 

    

 
Table [10]  Control parameters 1 
Ph-No. Additional steps Reset displacements 

to zero 
Ignore undrained 
behaviour 

Delete intermediate 
steps 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

250 
250 
250 
250 
250 
250 
250 
250 
250 
250 
250 
250 
500 

No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
Yes 
No 

No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 
No 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
No 
Yes 
Yes 
Yes 
No 
Yes 
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Table [11]  Control parameters 2 
Ph-No. Iterative 

procedure 
Tolerated 
error 

Over 
relaxation 

Max. 
iterations 

Desired min. Desired 
max. 

Arc-Length 
control 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Manual 
Manual 
Manual 
Manual 
Manual 
Manual 
Manual 
Manual 
Manual 
Manual 
Manual 
Manual 
Standard 

0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.010 

1.200 
1.200 
1.200 
1.200 
1.200 
1.200 
1.200 
1.200 
1.200 
1.200 
1.200 
1.200 
1.200 

60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 
60 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

 
Table [12]  Incremental multipliers (input values) 
Ph-No. Displ. Load A Load B Weight Accel Time s-f 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
45.0000 
0.0000 
45.0000 
0.0000 
30.0000 
0.0000 
30.0000 
0.0000 
30.0000 
0.0000 
30.0000 
1905.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

 
Table [13]  Total multipliers - input values 
Ph-No. Displ. Load A Load B Weight Accel Time s-f 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
45.0000 
45.0000 
90.0000 
90.0000 
120.0000 
120.0000 
150.0000 
150.0000 
180.0000 
180.0000 
210.0000 
2115.0000 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
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Table [14]  Total multipliers - reached values 
Ph-No. Displ. Load A Load B Weight Accel Time s-f 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
45.0000 
45.0000 
90.0000 
90.0000 
120.0000 
120.0000 
150.0000 
150.0000 
180.0000 
180.0000 
210.0000 
2115.000
0 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 

 

 
Fig. 5 Plot of geometry with deformed mesh & boundary conditions at CD2115 
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Fig. 6 Plot of geometry with excess pore pressure contours at CD2115 
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6.4    Appendix D: Author’s Replication of URS (2003) Plaxis Analysis of NHPL 

 This Appendix presents a brief summary of an analysis performed by the Author to replicate 

finite element results presented by URS (2003) using Plaxis program. This work was done at the 

beginning of the current study prior to independent evaluation of the site conditions, soil properties 

and load history of the NHP levee. The results are included for completeness in documenting the 

research done on the NHP levee project.  

 Tables D1 through D5 summarize the input parameters for the Plaxis finite element (FE) 

model: The Bay Mud and Bay Mud Crust are modeled using the Soft Soil Model [Plaxis 2-D v. 8.2 

(2002)], while other soil and pavement layers are treated as linearly elastic or linearly-elastic perfectly 

plastic (i.e., Mohr Coulomb) materials. Figures D1 and D2 give full details of the FE model geometry 

which includes the stiff clay, dense sand and Old Bay Mud beneath the soft Bay Mud. Note that the 

analysis was done for the reduced preconsolidation stress profile 0.8σ’p (FV) for the Bay Mud and 

BM Crust. 

Construction and consolidation of the NHP levee are simulated by staged construction as in 

table D6. The construction of the levee is implemented in two stages with two fill layers. The first fill 

layer is loaded and consolidated in 120 days following by the loading of second fill layer and 

consolidating in 90 days. The total construction time is 7 months. Note that URS (2003) did not 

present details of their simulation sequence. The Author selected 7 months for construction of the 

NHP levee based on the reported construction information.  

 Consolidation after end of construction are simulated in stages according to the reported 

results by URS (2003) in construction day (CD) after EOC, i.e., CD365= 1 yr, CD2035 ≈ 1/31/02 etc. 

Detailed construction phases are presented in Table D6. 

 

 The following results of the Author’s replicate analysis are compared with URS (2003), including: 

consolidation settlement after EOC at the centerline of the levee (ρc vs. logt, Figure D3); horizontal 

profile of consolidation settlement  of the pavement (ρc vs. distance from the centerline, Figure D4); 

excess pore pressure at the centerline of the levee, mid-depth of Bay Mud (ue vs. logt at El. ≈ -26 ft, 

Figure D5); and vertical profiles of excess pore pressure at the centerline of the levee (Elevation vs. 

ue, Figures D6). In conclusion, the comparisons of ρc and ue show that the Author’s replicate analysis 

results match well with those of URS (2003). 



 

358 

Table D1  Units 
Type Unit 

Length 
Force 
Time 

ft 
lb 

day 
 

Table D2 Model dimensions 
 min. max. 

X 
Y 

-175.000 
-60.000 

150.000 
9.000 

 
Table D3  Model 

Model Plane strain 
Element 15-Noded 

 
 

 

Table D4 URS (2003) Selected Soil Properties for Analysis 
 

No.  1 2 3 4 5 6 7

From EL. [ft] 9 -2 -5 -10 -40 -44 -50
To EL. [ft] -2 -5 -10 -40 -44 -50 -60

Soil layer -  Levee Fill Pavement
Bay Mud

 Crust Bay Mud Stiff Clay Dense Sand Old Bay Mud
Soil Model - MC MC SSM SSM Linear Elastic Linear Elastic Linear Elastic

Type Drained Drained Undrained Undrained Undrained Drained Undrained

γt [pcf] 130 150 100 92 120 130 130
e0 [ - ] - - 1 1 - - -
νur [ - ] 0.3 0.2 0.26 0.26 0.3 0.3 0.3

E_ref [ksf] 30 1000 - - 1000 1000 2640
c' [ksf] 0.02 0.02 0.025 0.025 -
φ' [ ° ] 37 35 30 30 -
ψ' [ ° ] 0 5 0 0 -

K0NC [ - ] 0.62 0.62 -
M [ - ] - - -

λ* [ - ] - -
0.18

(CR=0.41)
0.18

(CR=0.41) -

κ∗ [ - ] - -
0.035

(RR=0.04)
0.035

(RR=0.04) -
kvo, kho [ft/day] 0.1 1.0 4E-4; 8E-4 4E-4; 8E-4 4E-4; 8E-4 1.0; 1.0 4E-4; 8E-4

Ck [ - ] 1.14 1.14

In
pu

t p
ar

am
et

er
s

SU
B

SO
IL

 L
A

Y
E

R
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Table D5 

From To σ'p

EL. [ft] EL. [ft] [ksf]

9 4 6.5 NA 0.5

4 -2 1 NA 0.5

-2 -4 -3 NA 0.5
-4 -5 -4.5 NA 0.5

-5 -8 -6.5 3.520 6.000 1.68

-8 -10 -9 2.886 4.200 1.3

-10 -12 -11 2.019 2.700 1.08

-12 -15 -13.5 1.449 1.760 0.82

-15 -20 -17.5 1.584 1.550 0.77

-20 -25 -22.5 1.752 1.410 0.73

-25 -30 -27.5 1.920 1.320 0.71

-30 -35 -32.5 2.088 1.250 0.69

-35 -40 -37.5 2.256 1.200 0.67

Stiff Clay -40 -44 -42 NA 1

Dense Sand -44 -50 -47 NA 1

Old BM -50 -60 -55 NA 1

Note: Water table EL. = -4.0 ft

 Imposed OCR and K0 in Sub-layers for Plaxis Analyses of the NHP Levee URS (2003)

Average
EL. [ft]

Levee Fill 

Pavement

OCR

URS (2003)Sub-layer

Soil K0

BAY MUD

Bay Mud Crust

 
              Bay Mud K0(NC) = 0.62 
 
Table D6 Construction Phases  

Phase Ph-No. Start phase Calculation type Load input Time
 (Day)

Construction Time
(Day)

Initial phase 0 0 - 0 0
Loading 1st Fill layer 1 0 Consolidation Staged Construction 120 120
Loading 2nd Fill Layer 2 1 Consolidation Staged Construction 90 210
1yr 3 2 Consolidation Staged Construction 365 575
2yr 4 3 Consolidation Staged Construction 365 940
5yr 5 4 Consolidation Staged Construction 1095 2035
10yr 6 5 Consolidation Staged Construction 1825 3860
20yr 7 6 Consolidation Staged Construction 3650 7510
50yr 8 7 Consolidation Staged Construction 10950 18460
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Fig. D1 Plot of geometry model with significant nodes 
 Table of significant nodes 
Node no. x-coord. y-coord. Node no. x-coord. y-coord. 

5055 
1 

26 
5383 
5631 
33 

5943 
55 

7143 
161 

7271 
193 

7320 
427 

5151 
2707 
3873 
3353 

-175.000 
150.000 
150.000 
-175.000 
-175.000 
150.000 
-175.000 
150.000 
-175.000 
150.000 
-175.000 
150.000 
-175.000 
150.000 
-43.000 
45.000 
-9.000 
10.628 

-60.000 
-60.000 
-50.000 
-50.000 
-44.000 
-44.000 
-40.000 
-40.000 
-10.000 
-10.000 
-5.000 
-5.000 
-2.000 
-2.000 
-2.000 
-2.000 
9.000 
9.000 

4463 
3281 
7205 
183 

7017 
145 

6887 
129 

6723 
113 

6565 
97 

6397 
81 

6107 
65 

7283 
209 

-25.170 
26.918 

-175.000 
150.000 
-175.000 
150.000 
-175.000 
150.000 
-175.000 
150.000 
-175.000 
150.000 
-175.000 
150.000 
-175.000 
150.000 
-175.000 
150.000 

4.000 
4.000 
-8.000 
-8.000 

-12.000 
-12.000 
-15.000 
-15.000 
-20.000 
-20.000 
-25.000 
-25.000 
-30.000 
-30.000 
-35.000 
-35.000 
-4.000 
-4.000 
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Fig.D2 Plot of the mesh with significant nodes 
 
 

 Numbers, type of elements, integrations 
Type Type of element Type of integration Total 

no. 
Soil 15-noded 12-point Gauss 892 
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Figure D3: URS Plaxis Analysis Replicate – Settlement vs. log (time) 
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Figure D4:  URS vs. Nguyen Replicate Plaxis Analysis - Comparison of Settlement 
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Figure D5:  URS vs. Nguyen Replicate Plaxis Analysis - Comparison of Excess Pore Pressure Dissipation at Middle 

Point of Bay Mud 
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(a) Excess Pore Pressure Profile at Centerline of NHPL at End of Construction (EOC), 1, 2 and 5 years after EOC 
 

Figure D6a:  URS vs. Nguyen Replicate Plaxis Analysis - Comparison of Excess Pore Pressure in Bay Mud at 
Centerline of NHPL 
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(b) Excess Pore Pressure Profile at Centerline of NHPL in 10, 20, and 50 years after EOC 

 
Figure D6b:  URS vs. Nguyen Replicate Plaxis Analysis - Comparison of Excess Pore Pressure Dissipation at 

Middle Point of Bay Mud 
 
 
 
 
 
 

 
 

 


