
Deep Graph Mapper: Seeing Graphs
Through the Neural Lens
Cristian Bodnar*, Cătălina Cangea* and Pietro Liò

Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom

Graph summarization has received much attention lately, with various works tackling the
challenge of defining pooling operators on data regions with arbitrary structures. These
contrast the grid-like ones encountered in image inputs, where techniques such as max-
pooling have been enough to show empirical success. In this work, we merge the Mapper
algorithm with the expressive power of graph neural networks to produce topologically
grounded graph summaries. We demonstrate the suitability of Mapper as a topological
framework for graph pooling by proving that Mapper is a generalization of pooling methods
based on soft cluster assignments. Building upon this, we show how easy it is to design
novel pooling algorithms that obtain competitive results with other state-of-the-art
methods. Additionally, we use our method to produce GNN-aided visualisations of
attributed complex networks.

Keywords: mapper, graph neural networks, pooling, graph summarization, graph classification

1 INTRODUCTION

The abundance of relational information in the real world and the success of deep learning
techniques have brought renowned interest in learning from graph-structured data. Efforts in
this direction have been primarily focused on replicating the hierarchy of convolutional filters and
pooling operators, which have achieved previous success in computer vision Sperduti. (1994); Goller
and Kuchler. (1996); Gori et al. (2005); Scarselli et al. (2009); Bruna et al. (2014); Li et al. (2015),
within relational data domains. In contrast to image processing applications, where the signal is
defined on a grid-like structure, designing graph coarsening (pooling) operators is a much more
difficult problem, due to the arbitrary structure typically present in graphs.

In this work, we introduce Structural Deep Graph Mapper (SDGM)1—an adaptation of Mapper
(Singh et al., 2007), an algorithm from the field of Topological Data Analysis (TDA) (Chazal and
Michel, 2017), to graph domains. First, we prove that SDGM is a generalization of pooling methods
based on soft cluster assignments, which include state-of-the-art algorithms like minCUT (Bianchi
et al., 2019) and DiffPool (Ying et al., 2018). Building upon this topological perspective of graph
pooling, we propose two pooling algorithms leveraging fully differentiable and fixed PageRank-based
“lens” functions, respectively. We demonstrate that these operators achieve results competitive with
other state-of-the-art pooling methods on graph classification benchmarks. Furthermore, we show
how our method offers a means to flexibly visualize graphs and the complex data living on them
through a GNN “lens” function.

Edited by:
Umberto Lupo,

École Polytechnique Fédérale de
Lausanne, Switzerland

Reviewed by:
Mustafa Hajij,

Santa Clara University, United States
Stanislav Schmidt,

Ecole polytechnique fédérale de
Lausanne (EPFL), Switzerland

*Correspondence:
Cristian Bodnar

cb2015@cam.ac.uk
Cătălina Cangea

ccc53@cam.ac.uk

Specialty section:
This article was submitted to

Machine Learning and
Artificial Intelligence,

a section of the journal
Frontiers in Big Data

Received: 14 March 2021
Accepted: 24 May 2021
Published: 16 June 2021

Citation:
Bodnar C, Cangea C and Liò P (2021)
Deep Graph Mapper: Seeing Graphs

Through the Neural Lens.
Front. Big Data 4:680535.

doi: 10.3389/fdata.2021.680535 1Code to reproduce models and experimental results is available at https://github.com/crisbodnar/dgm.

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 6805351

ORIGINAL RESEARCH
published: 16 June 2021

doi: 10.3389/fdata.2021.680535

http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2021.680535&domain=pdf&date_stamp=2021-06-16
https://www.frontiersin.org/articles/10.3389/fdata.2021.680535/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.680535/full
http://creativecommons.org/licenses/by/4.0/
mailto:cb2015@cam.ac.uk
mailto:ccc53@cam.ac.uk
https://doi.org/10.3389/fdata.2021.680535
https://github.com/crisbodnar/dgm
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2021.680535

2 RELATED WORK

In this section, we investigate the existing work in the two broad
areas that our method is part of—graph pooling (also deemed
hierarchical representation learning) and network visualisations.

2.1 Graph Pooling
Algorithms have already been considerably explored within
GNN frameworks for graph classification. Luzhnica et al.
(2019) propose a topological approach to pooling, which
coarsens the graph by aggregating its maximal cliques into
new clusters. However, cliques are local topological features,
whereas our methods leverage a global perspective of the graph
during pooling. Two paradigms distinguish themselves among
learnable pooling layers: Top-k pooling based on a learnable
ranking (Gao and Ji, 2019), and learning the cluster
assignment (Ying et al., 2018) with additional entropy and
link prediction losses for more stable training (DiffPool).
Following these two trends, several variants and incremental
improvements have been proposed. The Top-k approach is
explored in conjunction with jumping-knowledge networks
(Cangea et al., 2018), attention (Huang et al., 2019; Lee et al.,
2019) and self-attention for cluster assignment (Ranjan et al.,
2019). Similarly to DiffPool, the method suggested by Bianchi
et al. (2019) uses several loss terms to enforce clusters with
strongly connected nodes, similar sizes and orthogonal
assignments. A different approach is also proposed by Ma
et al. (2019), who leverage spectral clustering.

2.2 Graph Visualization
Graph visualization is a vast topic in network science. We
therefore refer the reader to existing surveys, for a complete
view of the field (Nobre et al., 2019; von Landesberger et al., 2011;
Beck et al., 2017), and focus here only on methods that, similarly
to ours, produce node-link-based visual summaries through the
aggregation of static graphs. Previous methods rely on grouping
nodes into a set of predefined motifs (Dunne and Shneiderman,
2013), modules (Dwyer et al., 2013) or clusters with basic
topological properties (Batagelj et al., 2010). Recent
approaches have considered attribute-driven aggregation
schemes for multivariate networks. For instance, PivotGraph
(Wattenberg, 2006) groups the nodes based on categorical
attributes, while van den Elzen and van Wijk. (2014) propose
a more sophisticated method using a combination of manually
specified groupings and attribute queries. However, these
mechanisms are severely constrained by the simple types of
node groupings allowed and the limited integration between
graph topology and attributes. Closest to our work, Mapper-
based summaries for graphs have recently been considered by
Hajij et al. (2018). Despite the advantages provided by Mapper,
their approach relies on hand-crafted graph-theoretic “lenses,”
such as the average geodesic distance, graph density functions or
eigenvectors of the graph Laplacian. Not only are these functions
unable to fully adapt to the graph of interest, but they are also
computationally inefficient and do not take into account the
attributes of the graph.

3 BACKGROUND AND FORMAL PROBLEM
STATEMENT

3.1 Formal Problem Statement
Consider a dataset whose samples are formed by a graph
Gi � (Vi, Ei), A d-dimensional signal defined over the nodes of
the graph hi : V →Rd and a label yi associated with the graph,
where i ∈ I, a finite indexing set for the dataset samples. We are
interested in the setting where graph neural networks are used to
classify such graphs using a sequence of (graph) convolutions and
pooling operators.While convolutional operators act like filters of
the graph signal, pooling operators coarsen the graph and reduce
its spatial resolution. Unlike image processing tasks, where the
inputs exhibit a regular grid structure, graph domains pose
challenges for pooling. In this work, we design topologically
inspired pooling operators based on Mapper. As an additional
contribution, we also investigate graph pooling as a tool for the
visualization of attributed graphs.

We briefly review the Mapper (Singh et al., 2007) algorithm,
with a focus on graph domains (Hajij et al., 2018). We first
introduce the required mathematical background.

Definition 3.1: Let X,Z be two topological spaces, f : X→Z, a
continuous function, and U � (Ui)i ∈ I a cover of Z. Then, the pull
back cover f −1(U) of X induced by (f ,U) is the collection of open
sets f −1(Ui), i ∈ I, for some indexing set I. For each f −1(Ui), let
{Ci,j}j ∈ Ji be a partition of f −1(Ui) indexed by Ji. We refer to the
elements of these partitions as clusters. The resulting collection of
clusters forms another cover of X called the refined pull back
cover R(f −1(U)) � {Ci,j}i ∈ I,j ∈ Ji.

Definition 3.2: LetX be a topological space with an open cover
U � (Ui)i ∈ I. The 1-skeleton of the nerve N (U) of U , which we
denote by sk1(N (U)), is the graph with vertices given by (vi)i ∈ I,
where two vertices vi, vj are connected if and only if Ui∩Uj ≠∅.

3.2 Mapper
Given a topological space X, a carefully chosen lens function
f : X→Z and a cover U of Z, Mapper produces a graph
representation of the topological space by computing the 1-
skeleton of the nerve of the refined pull back cover
sk1(N (R(f −1(U)))), which we denote by M(f ,U). We note
that, more generally, the skeleton operator might be omitted, in
which case the output of the algorithm becomes a simplicial
complex. However, for the purpose of this work, we are only
interested in graph outputs. Typically, the input to the Mapper
algorithm is a point cloud and the connected components are
inferred using a statistical clustering algorithm, with the help of
a metric defined in the space where the points live.

Mapper for Graphs. More recently, Hajij et al. (2018)
considered the case when the input topological space X �
G(V , E) is a also a graph with vertices V and edge set E. In a
typical point cloud setting, the relationships between points are
statistically inferred; in a graph setting, the underlying relationships
are given by the edges of the graph. The adaptation of Mapper for
graphs proposed by Hajij et al. (2018) uses a lens function f :
V →R based on graph-theoretic functions and a cover U formed of
open intervals of the real line. Additionally, the connected

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 6805352

Bodnar et al. Deep Graph Mapper

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

components {Ci,j}j ∈ Ji are given by the vertices of the connected
components of the subgraph induced by f −1(Ui).

However, the graph version of Mapper described above has
two main limitations. Firstly, the graph-theoretic functions
considered for f are rather limited, not taking into account the
signals which are typically defined on the graph in signal
processing tasks, such as graph classification. Secondly, by
using a pull back cover only over the graph vertices, as
opposed to a cover of the entire graph, the method relies
exclusively on the lens function to capture the structure of the
graph and the edge-connections between the clusters. This may
end up discarding valuable structural information, as we later
show in Section 7.7.

4 STRUCTURAL DEEP GRAPH MAPPER

Structural Graph Mapper. One of the disadvantages of the graph
version of Mapper (described in the background section) is that
its output does not explicitly capture the connections between the
resulting collections of clusters. This is primarily because the lens
function f is defined only over the set of vertices V and,
consequently, the resulting pull-back cover only covers V. In
contrast, one should aim to obtain a cover for the graph G, which
automatically includes the edges. While this could be resolved by
considering a lens function over the geometric realization of the
graph, handling only a finite set of vertices is computationally
convenient.

To balance these trade-offs, we add an extra step to the
Mapper algorithm. Concretely, we extend the refined pull back
cover into a cover over both nodes and edges. Given the set of
refined clusters {Ci,j}i ∈ I,j ∈ Ji, we compute a new set of clusters
{C′i,j}i ∈ I,j ∈ Ji where each cluster C′i,j contains the elements of Ci,j

as well as all the edges incident to the vertices in Ci,j. We use RE

(the edge-refined pull back cover) to refer to this open cover of the
graph G computed from f −1(U). Then, our algorithm can be
written as sk1(N (RE(f −1(U)))) and we denote it by GM(f ,U).

Remark 1:We note that Structural Mapper, unlike the original
Mapper method, encodes two types of relationships via the edges
of the output graph. The semantic connections highlight a
similarity between clusters, according to the lens function (that
is, two clusters have common nodes—as before), while structural
connections show how two clusters are connected (namely, two
clusters have at least one edge in common). This latter type of
connection is the result of considering the extended cover over
the edges. The two types of connections are not mutually
exclusive because two clusters might have both nodes and
edges in common.

We now broadly outline our proposed method, using the three
main degrees of freedom of the Mapper algorithm to guide our
discussion: the lens function, the cover, and the clustering
algorithm.

4.1 Lens
The lens is a function f : V→Rd over the vertices, which acts as a
filter that emphasizes certain features of the graph. Typically, d is

a small integer—in our case, d ∈ {1, 2}. The choice of f depends on
the graph properties that should be highlighted by the
visualization. In this work, we leverage the recent progress in
the field of graph representation learning and propose a
parameterized lens function based on graph neural networks
(GNNs). We thus consider a function fθ(v) � gθ(V , E,X)v , where
g is a GNN with parameters θ taking as input a graph G � (V , E)
with n nodes and node features X ∈ Rn×k. For visualization
purposes, we often consider a function composition

fθ(v) � (r+gθ)v, where r : Rn×d′ →Rn×d is a dimensionality
reduction algorithm like t-SNE (van der Maaten and Hinton,
2008).

Unlike the traditional graph theoretic lens functions proposed
by Hajij et al. (2018), GNNs can naturally learn to integrate the
features associated with the graph and its topology, while also
scaling computationally to large, complex graphs. Additionally,
visualisations can be flexibly tuned for the task of interest, by
adjusting the lens gθ through the loss function of the model.

4.2 Cover
The cover U determines the resolution of the output graph. For
most purposes, we leverage the usual cover choice for Mapper,
Rd . When d � 1, we use a set of equally sized overlapping
intervals over the real line. When d � 2, this is generalized to
a grid of overlapping cells in the real plane. Using more cells will
produce more detailed visualisations, while higher overlaps
between the cells will increase the connectivity of the output
graph. When chosen suitably, these hyperparameters are a
powerful mechanism for obtaining multi-scale visualisations.

Another choice that we employ for designing differentiable
pooling algorithms is a set of RBF kernels, where the second
arguments of kernel functions are distributed over the real line.
We introduce this in detail in Section 5.2.

4.3 Clustering
Clustering statistically approximates the (topological) connected
components of the cover sets Ui. Mapper does not require a
particular type of clustering algorithm; however, when the input
topological space X is a graph, a natural choice, also adopted by
Hajij et al. (2018), is to take the connected components of the
subgraphs induced by the vertices f −1(Ui), i ∈ I. Therefore, in
principle, there is no need to resort to statistical clustering
techniques.

However, relying on the topological connected components
introduces certain challenges when the aim is to obtained a
coarsened graph. Many real-world graphs comprise thousands
of connected components, which is a lower bound to the number
of connected components of the graph produced by GM. In the
most extreme case, a graph containing only isolated nodes
(namely, a point cloud) would never be coarsened by this
procedure. Therefore, it is preferable to employ statistical
techniques where the number of clusters can be specified. In
our pooling experiments, we draw motivation from the
relationship with other pooling algorithms and opt to assign
all the nodes to the same cluster (which corresponds to no
clustering).

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 6805353

Bodnar et al. Deep Graph Mapper

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

We broadly refer to this instance of Structural Graph Mapper,
with the choices described above, as Structural Deep Graph
Mapper (SDGM). We summarize it step-by-step in the
cartoon example in Figure 1 and encourage the reader to refer
to it.

5 STRUCTURAL GRAPH MAPPER FOR
POOLING

We begin this section by introducing several theoretical results,
which provide a connection between our version of Mapper and
other graph pooling algorithms.We then use these results to show
how novel pooling algorithms can be designed.

5.1 Relationship to Graph Pooling Methods
An early suggestion that Mapper could be suitable for graph
pooling is given by the fact that it constitutes a generalization of
binary spectral clustering, as observed by Hajij et al. (2018). This
link is a strong indicator that Mapper can compute “useful”
clusters for pooling. We formally restate this observation below
and provide a short proof.

Proposition 5.1: Let L be the Laplacian of a graphG(V , E) and
l2 the eigenvector corresponding to the second lowest eigenvalue
of L, also known as the Fiedler vector (Fiedler, 1973). Then, for a
function f : V →R, f (v) � l2(v), outputting the entry in the
eigenvector l2 corresponding to node v and a cover
U � {(−∞, ε), (−ε,+∞)}, Mapper produces a spectral bi-
partition of the graph for a sufficiently small positive ϵ.

Proof: It is well known that the Fiedler vector can be used to
obtain a “good” bi-partition of the graph based on the signature of
the entries of the vector (i.e., l2(v)> 0 and l2(v)< 0) (please refer
to Demmel. (1995) for a proof). Therefore, by setting ϵ to a
sufficiently small positive number ε<minv|l2(v)|, the obtained
pull back cover is a spectral bi-partition of the graph.

The result above indicates that Mapper is a generalization of
spectral clustering. As the latter is strongly related to min-cuts
(Leskovec, 2016), the proposition also links them to Mapper. We
now provide a much stronger result in that direction, showing
that Structural Mapper is a generalization of all pooling methods

based on soft-cluster assignments. Soft cluster assignment
pooling methods use a soft cluster assignment matrix
S ∈ RN×K , where Sij encodes the probability that node i
belongs to cluster j, N is the number of nodes in the graph
and K is the number of clusters. The adjacency matrix of the
pooled graph is computed via A′ � ST(A + I)S. Below, we prove a
helpful result concerning this class of methods.

Lemma 5.1: The adjacency matrix A′ � ST(A + I)S defines a
pooled graph, where the nodes corresponding to clusters encoded
by S are connected if and only if there is a common edge
(including self-loops) between them.

Proof: Let L � AS. Then, A′
ij � ∑N

k S
T
ikLkj � 0 if and only if STik �

0 (node k does not belong to cluster i) or Lkj � 0 (node k is not
connected to any node belonging to cluster j), for all k. Therefore,
A′
ij ≠ 0 if and only if there exists a node k such that k belongs to

cluster i and k is connected to a node from cluster j. Due to the
added self-loops,A′

ij ≠ 0 also holds if there is a node k belonging to
both clusters.

Proposition 5.2: GM(f ,U) generalizes approaches based on
soft-cluster assignments.

Proof: Let s : V →△K−1 be a soft cluster assignment function
that maps the vertices to the (K − 1)-dimensional unit simplex.
We denote by sk(v) the probability that vertex v belongs to cluster
k≤K and ∑K

k sk(v) � 1. This function can be completely specified
by a cluster assignment matrix S ∈ RN×K with Sik � sk(i). This is
the soft cluster assignment matrix computed by algorithms like
minCut and DiffPool. Let U � {Ui}i≤K with Ui � {x ∈ △K−1x �∑jλjuj,∑jλj � 1 and λi〉0} be an open cover of △K−1. Then
consider an instance of GM where everything is assigned to a
single cluster (i.e. same as no clustering). Clearly, there is a one-to-
one correspondence between the vertices of GM(s,U) and the soft
clusters. By Remark 1, the nodes corresponding to the clusters are
connected only if the clusters share at least one node or at least one
edge. Then, by Lemma 5.1 the adjacency between the nodes of
GM(s,U) are the same as those described by A′ � ST(A + I)S.
Thus, the two pooled graphs are isomorphic.

We hope that this result will enable theoreticians to study pooling
operators through the topological and statistical properties of Mapper
(Dey et al., 2017; Carriere et al., 2018; Carrière and Oudot, 2018). At

FIGURE 1 | A cartoon illustration of Structural Deep Graph Mapper (SDGM) where, for simplicity, a graph neural network (GNN) approximates a “height” function
over the nodes in the plane of the diagram. The input graph (A) is passed through the GNN, which maps the vertices of the graph to a real number (the height) (B–C).
Given a cover U of the image of the GNN (C), the edge-refined pull back cover U is computed (D–E). The dotted edges in (D) illustrate connections between the node
clusters (strucutal connections), while the dotted boxes show nodes that appear in multiple clusters (semantic connections). The 1-skeleton of the nerve of the
edge-refined pull back cover provides the pooled graph (F).

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 6805354

Bodnar et al. Deep Graph Mapper

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

the same time, we encourage practitioners to take advantage of it and
design new pooling methods in terms of a well-chosen lens function f
and cover U for its image. To illustrate this idea and showcase the
benefits of this new perspective over graph pooling methods, we
introduce two Mapper-based operators.

5.2 Differentiable Mapper Pooling
The main challenge for making pooling via Mapper differentiable
is to differentiate through the pull back computation. To address
this, we replace the cover of n overlapping intervals over the real
line, described in the previous section, with a cover formed of
overlapping RBF kernels ϕ(x, xi) � exp(−||x − xi||2/δ), evaluated
at n fixed locations xi. The overlap between these kernels can be
adjusted through the scale δ of the kernels. The soft cluster
assignment matrix S is given by the normalized kernel values:

Sij �
ϕ(σ(fθ(Xl))i, xj)∑ n
j�1ϕ(σ(fθ(Xl))i, xj), (1)

where the lens function fθ is a GNN layer, σ is a sigmoid function
ensuring the outputs are in [0, 1], andXl are the node features at layer
l. Intuitively, the more closely a node is mapped to a location xi, the
more it belongs to cluster i. By Proposition 5.2, we can compute the
adjacency matrix of the pooled graph as ST(A + I)S; the features are
given by STX. This method can also be thought as a version of
DiffPool (Ying et al., 2018), where the low-entropy constraint on the
cluster assignment distribution is topologically satisfied, since a point
cannot be equally close tomany other points on a line. Therefore, each
nodewill belong only to a few clusters if the scale δ is appropriately set.

In Figure 2we show two examples of RBF kernel covers for the
output space. The scale of the kernel, δ, determines the amount of
overlap between the cover elements. At bigger scales, there is a
higher overlap between the clusters, as shown in the two plots.
Because the line is one-dimensional, a point on the unit interval
can only be part of a small number of clusters (that is, the kernels
for which the value is greater than zero), assuming the scale δ is
not too large. Therefore, DMP can be seen as a DiffPool variant
where the low-entropy constraint on the cluster assignment is
satisfied topologically, rather than by a loss function enforcing it.

5.3 Mapper-Based PageRank Pooling
To evaluate the effectiveness of the differentiable pooling
operator, we also consider a fixed and scalable non-
differentiable lens function f : V→R that is given by the
normalized PageRank (PR) (Page et al., 1999) of the nodes.
The PageRank function assigns an importance value to each of
the nodes based on their connectivity, according to the well-
known recurrence relation:

f (X)i �Δ PRi � ∑
j∈N(i)

PRj

|N (i)| , (2)

where N (i) represents the set of neighbors of the ith node in the
graph and the damping factor was set to the typical value of
d � 0.85. The resulting scores are values in [0, 1] which reflect the
probability of a random walk through the graph to end in a given
node. Using the previously described overlapping intervals cover
U , the elements of the pull back cover form a soft cluster
assignment matrix S:

Sij �
Ii∈ f −1(Uj)∣∣∣∣{Uk|i ∈ f − 1(Uk)}∣∣∣∣ (3)

where Un is the nth cover set in the cover U of [0, 1]. It can be
observed that the resulting clusters contain nodes with similar
PageRank scores. Intuitively, this pooling method merges the
(usually few) highly connected nodes in the graph, at the same
time clustering the (typically many) dangling nodes that have a
normalized PageRank score closer to zero. Therefore, this method
favors the information attached to the most “important” nodes of
the graph. The adjacency matrix of the pooled graph and the
features are computed in the same manner as for DMP.

5.4 Model
For the graph classification task, each example G is represented by
a tuple (X,A), where X is the node feature matrix and A is the
adjacency matrix. Both our graph embedding and classification
networks consist of a sequence of graph convolutional layers
(Kipf and Welling, 2016); the lth layer operates on its input
feature matrix as follows:

FIGURE 2 | Two covers of RBF kernels with different scales: δ � 0.002 and δ � 0.01. The x-axis corresponds to the unit interval where the nodes of the graph are
mapped. The y-axis represents the value of the normalized RBF kernels.

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 6805355

Bodnar et al. Deep Graph Mapper

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Xl+1 � σ(D̂− 1
2ÂD̂

− 1
2XlWl), (4)

where Â � A + I is the adjacency matrix with self-loops, D̂ is the
normalized node degree matrix, Wl is the weight matrix of the l-
th layer and σ is the activation function. After E layers, the
embedding network simply outputs node features XLE , which are
subsequently processed by a pooling layer to coarsen the graph.
The classification network first takes as input node features of the
Mapper-pooled graph,2 XMG, and passes them through LC graph
convolutional layers. Following this, the network computes a
graph summary given by the feature-wise node average and
applies a final linear layer which predicts the class:

y � softmax⎛⎝ 1

|MG| ∑|MG|

i�1
XLCWf + bf⎞⎠. (5)

We note that either of these pooling operators could readily be
adapted to the recently proposed message passing simplicial
neural networks (MPSNs) (Bodnar et al., 2021) as a tool for
coarsening simplicial complexes by dropping the 1-skeleton
operator after computing the nerve. We leave this endeavor
for future work.

5.5 Complexity
The topology of the output graph can be computed in O(V + E)
time when using a cover over the unit interval, as described above.
The output graph can be computed via (sparse) matrix
multiplication given by ST(A + I)S, to take advantage of GPU
parallelism and compute the coefficients associated with the edges.

6 POOLING EXPERIMENTS

6.1 Tasks
We illustrate the applicability of the Mapper-GNN synthesis
within a pooling framework, by evaluating DMP and MPR in
a variety of settings: social (IMDB-Binary, IMDB-Multi, Reddit-
Binary, Reddit-Multi-5k), citation networks (Collab) and
chemical data (D&D, Mutag, NCI1, Proteins) (Kersting et al.,
2016).

6.2 Experimental Setup
We adopt a 10-fold cross-validation approach to evaluating the
graph classification performance of DMP, MPR and other
competitive state-of-the-art methods. The random seed was set
to zero for all experiments (with respect to dataset splitting,
shuffling and parameter initialisation), in order to ensure a fair
comparison across architectures. All models were trained on a
single Titan Xp GPU, using the Adam optimiser (Kingma and Ba,
2014) with early stopping on the validation set, for a maximum of
30 epochs. We report the classification accuracy using 95%
confidence intervals calculated for a population size of 10 (the
number of folds).

6.3 Baselines
We compare the performance of DMP and MPR to two other
pooling methods that we identify mathematical connections
with: minCUT (Bianchi et al., 2019) and DiffPool (Ying et al.,
2018). Additionally, we include Graph U-Net (Gao and Ji,
2019) in our evaluation, as it has been shown to yield
competitive results while performing pooling from the
perspective of a learnable node ranking; we denote this
approach by Top-k in the remainder of this section. The
non-pooling baselines evaluated are the WL kernel
(Shervashidze et al., 2011), a “flat” model (2 MP steps and
global average pooling) and an average-readout linear
classifier.

We optimize both DMP and MPR with respect to the cover
cardinality n, the cover overlap (δ for DMP, overlap percentage
g for MPR), learning rate and hidden size. The Top-k
architecture is evaluated using the code provided in the
official repository, where separate configurations are defined
for each of the benchmarks. The minCUT architecture is
represented by the sequence of operations described by
Bianchi et al. (2019): MP(32)-pooling-MP(32)-pooling-
MP(32)-GlobalAvgPool, followed by a linear softmax
classifier. The MP(32) block represents a message-passing
operation performed by a graph convolutional layer with 32
hidden units:

X(t+1) � ReLU(~AX(t)Wm + X(t)Ws), (6)

where ~A � D⁻1/2AD⁻1/2 is the symmetrically normalized adjacency
matrix and Wm,Ws are learnable weight matrices representing

TABLE 1 | Results obtained on classification benchmarks. Accuracy measures with 95% confidence intervals are reported. The highest result is bolded and the second
highest is underlined. The first columns four are molecular graphs, while the others are social graphs. Our models perform competitively with other state of the art models.

Model D&D Mutag NCI1 Proteins Collab IMDB-B IMDB-M Reddit-B Reddit-5k

DMP (ours) 77.3 ± 3.6 84.0 ± 8.6 70.4 ± 4.2 75.3 ± 3.3 81.4 ± 1.2 73.8 ± 4.5 50.9 ± 2.5 86.2 ± 6.8 51.9 ± 2.1
MPR (ours) 78.2 ± 3.4 80.3 ± 6.0 69.8 ± 1.8 75.2 ± 2.2 81.5 ± 1.0 73.4 ± 2.7 50.6 ± 2.0 86.3 ± 4.8 52.3 ± 1.6
Top-k 75.1 ± 2.2 82.5 ± 6.8 67.9 ± 2.3 74.8 ± 3.0 75.0 ± 1.1 69.6 ± 3.8 45.0 ± 2.8 79.4 ± 7.4 48.5 ± 1.1
minCUT 77.6 ± 3.1 82.9 ± 6.0 68.8 ± 2.1 73.5 ± 2.9 79.9 ± 0.8 70.7 ± 3.5 50.6 ± 2.1 87.2 ± 5.0 52.9 ± 1.3
DiffPool 77.9 ± 2.4 94.7 ± 7.1 68.1 ± 2.1 74.2 ± 0.3 81.3 ± 0.1 72.4 ± 3.1 50.3 ± 1.8 79.0 ± 1.1 50.4 ± 1.7
WL 77.4 ± 2.6 74.5 ± 6.5 76.4 ± 2.7 74.7 ± 3.2 78.5 ± 1.1 72.1 ± 3.1 50.7 ± 2.9 66.7 ± 10.4 49.2 ± 1.4
Flat 69.9 ± 2.2 71.8 ± 4.3 65.5 ± 1.7 70.2 ± 2.6 80.9 ± 1.4 73.6 ± 4.2 48.5 ± 2.4 70.0 ± 10.8 49.5 ± 1.7
Avg-MLP 63.7 ± 1.4 69.1 ± 5.8 55.7 ± 2.8 61.8 ± 1.7 74.8 ± 1.3 71.5 ± 2.9 49.5 ± 2.2 53.6 ± 6.2 45.9 ± 1.6

2Note that one or more {embedding → pooling} operations may be sequentially
performed in the pipeline.

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 6805356

Bodnar et al. Deep Graph Mapper

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

the message passing and skip-connection operations within the
layer. The DiffPool model follows the same sequence of steps.

6.4 Evaluation Procedure
The best procedure for evaluating GNN pooling layers remains a
matter of debate in the graph machine learning community. One
may consider a fixed GNN architecture with a different pooling
layer for each baseline; alternatively, the whole architecture can be
optimized for each type of pooling layer. The first option, more
akin to the typical procedure for evaluating pooling layers in
CNNs on image domains, is used in papers like minCUT (Bianchi
et al., 2019). The second option is more particular to GNNs and it
is employed, for instance, by DiffPool (Ying et al., 2018). In this
work, we choose the latter option for our evaluation.

We argue that for non-Euclidean domains, such as graph ones,
the relationships between the nodes of the pooled graph and the
ones of the input graph are semantically different from one
pooling method to another. This is because pooling layers
have different behaviors and may interact in various ways with
the interleaved convolutional layers. Therefore, evaluating the
same architecture with only the pooling layer(s) swapped is
restrictive and might hide the benefits of certain operators. For
example, Top-k pooling (one of our baselines) simply drops
nodes from the input graph, instead of computing a smaller
number of clusters from all nodes. Assume we fix the pooled
graph to have only one node. Then Top-k would only select one
node from the original graph. In contrast, DiffPool would
combine the information from the entire graph in a single
node. DiffPool would thus have access to additional
information with respect to Top-k, so it would be unfair to
conclude that one model is better than the other in such a
setting. These differences implicitly affect the features of the
output graph at that layer, which in turn affect the next

pooling layer, as its computation depends on the features. This
can have a cascading effect on the overall performance of the
model. One might also argue that this procedure makes the
evaluated models more homogeneous and, therefore, easier to
compare. While this is true, the conclusions one can draw from
such a comparison are much more limited because they are
restricted to the particular architecture that was chosen.

For this reason, we have either run models with
hyperparameters as previously reported by the authors, or
optimized them ourselves end-to-end, where applicable. The
best-performing configurations were (Appendix A details the
hyperparameter search):

• MPR—learning rate 5e−4, hidden sizes {128, 128} (except for
{64, 64} on IMDB-Binary and {32, 32} on IMDB-Multi),
interval overlap 25% on Proteins, Reddit-Binary, Mutag,
IMDB-Multi and 10% otherwise, batch size 32 (except for
128 on Proteins) and:

• D&D, Collab, Reddit-Binary, Reddit-Multi-5K: cover
sizes {20, 5};

• Proteins, NCI1: cover sizes {8, 2};
• Mutag, IMDB-Binary, IMDB-Multi: cover sizes {4, 1};
• DMP—learning rate 5e−4, hidden sizes
{128, 128}, δ � 1/(cluster size)2 and:

• Proteins: cover sizes {8, 2}, batch size 128;
• Others: cover sizes {20, 5}, batch size 32;
• Top-k—specific dataset configurations, as provided in the
official GitHub repository3;

FIGURE 3 | SDGM visualization using as a lens function the GNN-predicted probability of a node in the network to be Spam. The (A) is colored with the average
predicted spam probability in each cluster, whereas the (B) is colored by the proportion of true spammers in each node.

3https://github.com/HongyangGao/Graph-U-Nets/blob/
48aa171b16964a2466fceaf4cb06fc940d649294/run_GUNet.sh

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 6805357

Bodnar et al. Deep Graph Mapper

https://github.com/HongyangGao/Graph-U-Nets/blob/48aa171b16964a2466fceaf4cb06fc940d649294/run_GUNet.sh
https://github.com/HongyangGao/Graph-U-Nets/blob/48aa171b16964a2466fceaf4cb06fc940d649294/run_GUNet.sh
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

• minCUT—learning rate 1e− 3, same architecture as reported
by the authors in the original work (Bianchi et al., 2019);

• DiffPool—learning rate 1e− 3, hidden size 32, two pooling
steps, pooling ratio r � 0.1 for D&D, Proteins, Collab and
Reddit-Binary and r � 0.25 forMutag, NCI1, IMDB-Binary,
IMDB-Multi and Reddit-Multi-5K, global average mean
readout layer, with the exception of Collab and Reddit-
Binary, where the hidden size was 128;

• Flat: hidden size 32.

6.5 Pooling Results
The graph classification performance obtained by these models is
reported in Table 1. We reveal that MPR ranks either first or
second on all social datasets, or achieves accuracy scores within
0.5% of the best-performing model. This result confirms that
PageRank-based pooling exploits the power-law distributions in
this domain. The performance of DMP is similar on social data
and generally higher onmolecular graphs.We attribute this to the

fact that all nodes in molecular graphs tend to have a similar
PageRank score—MPR is therefore likely to assign all nodes to
one cluster, effectively performing a readout. In this domain,
DMP performs particularly well on Mutag, where it is second-
best and improves by 3.7% over MPR, showing the benefits of
having a differentiable lens in challenging data settings. Overall,
MPR achieves the best accuracy on two datasets (D&D, Collab)
and the next best result on three more (Proteins, Reddit-Binary
and Reddit-Multi-5k). DMP improves on MPR by less than 1%
on NCI1, Proteins, IDMB-Binary and IMDB-Multi, showing the
perhaps surprising strength of the simple, fixed-lens poolingMPR
operator.

7 MAPPER FOR VISUALISATIONS

Graph pooling methods and summarized graph visualisations
methods can be seen as two sides of the same coin, since both aim

FIGURE 4 | Qualitative comparison between SDGM (first column), Mapper with an RBF graph density function (Hajij et al., 2018) (second), and Mapper with a
PageRank function (Hajij et al., 2018) (third). The Graphviz visualization of the graph cores (fourth column) are added for reference. The rows show plots for Cora,
CiteSeer, and PubMed, respectively. The graphs are colored based on the most frequent class in each cluster to aid the comparison. SDGM with unsupervised lens
implicitly makes all dataset classes appear in the visualization more clearly separated. This does not happen in the baseline visualisations, which mainly focus on the
class with the highest number of nodes from each graph.

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 6805358

Bodnar et al. Deep Graph Mapper

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

to condense the information in the graph. We now turn our
attention to the latter.

7.1 Visualisations in Supervised Learning
The first application of DGM is in a supervised learning
context, where fθ is trained via a cross entropy loss function to
classify the nodes of the graph. When the classification is binary,
fθ : V → [0, 1] outputs the probability that a node belongs to
the positive class. This probability acts directly as
the parameterization of the graph nodes. An example is shown

in Figure 3 (left) for a synthetic dataset a network formed of
spammers and non-spammers. Spammers are highly connected
to many other nodes in the network, whereas non-spammers
generally have fewer neighbors. For the lens function, we use a
Graph Convolutional Network (GCN) (Kipf and Welling, 2016)
with four layers (with 32, 64, 128, 128 hidden units) and ReLU
activations trained to classify the nodes of the graph. For the
spammer graph, the lens is given by the predicted spam
probability of each node and the cover consists of 10 intervals
over [0, 1], with 10% overlap.

FIGURE 5 | Ablation for dimensionality reduction methods; left–right, top–bottom: t-SNE, PCA, Isomap, UMAP. While t-SNE and UMAP produce slightly better
visualisations, the graph features displayed by the visualisations are roughly consistent across all of the four dimensionality reduction techniques.

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 6805359

Bodnar et al. Deep Graph Mapper

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Through the central cluster node, the SDGM visualization
correctly shows how spammers occupy an essential place in the
network, while non-spammers tend to form many smaller
disconnected communities. When labels are available, we also
produce visualisations augmented with ground-truth
information. These visualisations can provide a label-driven
understanding of the graph. For instance, in Figure 3 (right)
we color each node of the SDGM visualization according to the
most frequent class in the corresponding cluster. This second
visualization, augmented with the ground-truth information, can
also be used to compare with the model predictions.

7.2 Visualization in Unsupervised Learning
The second application corresponds to an unsupervised learning
scenario, where the challenge is obtaining a parameterization of
the graph in the absence of labels. This is the typical use case for
unsupervised graph representation learning models (Chami et al.,
2020). The approach we follow is to train a model to learn node
embeddings in Rd′ (in our experiments, d′ � 512), which can be
reduced, as before, to a low-dimensional space via a
dimensionality reduction method r. Unsupervised
visualisations can be found in the qualitative evaluation in
Section 7.3.

7.3 Qualitative Evaluation
In this section, we qualitatively compare SDGM against the two
best-performing graph theoretic lens functions proposed by Hajij
et al. (2018), on the Cora and CiteSeer (Sen et al., 2008) and
PubMed (Yang et al., 2016) citation networks. Namely, we
compare against a PageRank (Page et al., 1999) lens function
and a graph density function f (v) � ∑u ∈ Vexp((−D(u, v)/δ)),
where D is the distance matrix of the graph. For SDGM, we use a
composition of an unsupervised Deep Graph Infomax (DGI)
(Veličković et al., 2018) model gθ : V→R512 and a
dimensionality reduction function r : R512 →R2 based on
t-SNE. To aid the comparison, we mark the nodes with the
color of the most frequent class in the corresponding cluster.
Additionally, we include a Graphviz (Gansner and North, 2000)

plot of the full graph. We carefully fine-tuned the covers for each
combination of model and graph.

As depicted by Figure 4, SDGM successfully summarizes
many of the properties of the graphs that are also reflected by
full graph visualisations. For instance, on Cora, Genetic
Algorithms (in dark orange) are shown to be primarily
connected to Reinforcement Learning (orange). At the same
time, related classes that largely overlap in the full
visualisation—Probabilistic Methods and Neural Networks
(NNs) on Cora or Information Retrieval (IR) and ML on
CiteSeer—are connected in the SDGM plot. In contrast, the
baselines do not have the same level of granularity and fail to
capture many such properties. Both PageRank and the graph
density function tend to focus on the classes with the highest
number of nodes, such as the IR class on CiteSeer or the NNs class
on Cora, while largely de-emphasizing other classes.

7.3.1 Limitations
The proposed visualisations also present certain limitations. In an
unsupervised learning setting, in the absence of any labels or
attributes for coloring the graph, the nodes have to be colored
based on a colourmap associated with the abstract embedding
space, thus affecting the interpretability of the visualisations. In
contrast, even though the graph theoretic lens functions produce
lower quality visualisations, their semantics are clearly
understood mathematically. This is, however, a drawback
shared even by some of the most widely used data
visualization methods, such as t-SNE or UMAP (McInnes
et al., 2018). In what follows, we present additional
visualisations and ablation studies.

7.4 Ablation Study for Dimensionality
Reduction
We study how the choice of the dimensionality reduction method
for the unsupervised visualisations affects the output. To test this,
we consider the following dimensionality reduction methods:
t-SNE (van der Maaten and Hinton, 2008), UMAP (McInnes

FIGURE 6 | Ablation for different types of unsupervised lenses (identity, untrained DGI, trained DGI). The trained DGI model significantly improves the quality of the
visualisations.

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 68053510

Bodnar et al. Deep Graph Mapper

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

et al., 2018), IsoMap (Tenenbaum et al., 2000) and PCA. We use
the same model as in Section 7.2 and Section 8. 2D cells for the
cover of all models. The overlap was set after fine-tuning to 0.2 for
t-SNE and UMAP, and to 0.1 for the other two models. Figure 5
displays the four visualisations. As expected, t-SNE and UMAP
produce more visually pleasing outputs, due to their superior
ability to capture variation in the GNN embedding space.
However, the features highlighted by all visualisations are
largely similar, generally indicating the same binary relations
between clusters. This demonstrates that the GNN embedding

space is robust to the choice of the dimensionality reduction
method.

7.5 Ablation for the Unsupervised Lens
To better understand the impact of GNNs on improving the
quality of the Mapper visualisations, we perform an ablation
study on the type of unsupervised lens functions used within
Mapper. The first model we consider is simply the identity
function taking as input only graph features. The second
model is a randomly initialized DGI model. Despite the

FIGURE 7 |Hierarchical visualisations of the Cora citation network using various number of cover cells and degrees of overlap. Rows (top–bottom) have a different
overlap (g) between intervals: g � 0.1, g � 0.25, g � 0.35; columns (left–right): n � 16, n � 64, n � 256.

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 68053511

Bodnar et al. Deep Graph Mapper

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

apparent simplicity of a randomly initialized model, it was shown
that such a method produces reasonably good embeddings, often
outperforming other more sophisticated baselines (Veličković
et al., 2018). Finally, we use our trained DGI model from
Section 7.2. For all models, we perform a t-SNE reduction of
their embedding space to obtain a 2D output space and use 81
overlapping cells that cover this space. An overlap of 0.2 is used
across all models.

The three resulting visualisations are depicted in Figure 6. The
identity model and the untrained DGI model do not manage to
exploit the dataset structure and neither does particularly well. In
contrast, the trained DGI model emphasizes all the classes in the
visualization, together with their main interactions.

7.6 Hierarchical Visualisations
One of the most powerful features of Mapper is the ability to
produce multi-resolution visualisations through the flexibility
offered by the cover hyperparameters. As described in Section
4, having a higher number of cells covering the output space
results in more granular visualisations containing more nodes,
while a higher overlap between these cells results in increased
connectivity. We highlight these trade-offs in Figure 7, where
we visualize the Cora citation network using nine
combinations of cells and overlaps. These kinds of
hierarchical visualisations can help one identify the
persistent features of the graph. For instance, when
inspecting the plots that use n � 64 cells, the connections
between the light blue class and the yellow class persist for
all 3 degrees of overlap, which indicates that this is a persistent
feature of the graph. In contrast, the connection between the
red and orange classes is relatively reduced (g � 0.25) or none
(g � 0.1) for low values of overlap, but it clearly appears at

g � 0.35 in the top-right corner, suggesting that the semantic
similarity between the two classes is very scale-sensitive (that
is, less persistent).

7.7 The Importance of Capturing Structural
Information
In this section, we revisit the synthetic spammer dataset to
illustrate the importance of capturing structural information
via the edge-refined pull back cover operator. To that end, we
compare SDGM with a version using the usual refined pull back
cover as in Hajij et al. (2018), while using the same lens function
for both (a GCN classifier). We refer to the latter as DGM. The
visualisations produced by the two models are included in
Figure 8. We note that while both models capture the large
cluster of spammers at the center of the network and the smaller
communities of non-spammers, DGM does not capture the
structural relationships between spammers and non spammers
since it encodes only semantic relations.

8 CONCLUSION

We have introduced Deep Graph Mapper, a topologically
grounded method for producing informative graph
visualisations with the help of GNNs. We have shown these
visualisations are not only useful for understanding various graph
properties, but can also aid in visually identifying classification
mistakes. Additionally, we have proved that Mapper is a
generalization of soft cluster assignment methods, effectively
providing a bridge between graph pooling and the TDA
literature. Based on this connection, we have proposed two

FIGURE 8 | DGM (A) vs SDGM (B) visualization of the sythetic spammer datasets. DGM does not capture important relational information between spammers and
non-spammers.

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 68053512

Bodnar et al. Deep Graph Mapper

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Mapper-based pooling operators: a simple one that scores nodes
using PageRank and a differentiable one that uses RBF kernels to
simulate the cover. Our experiments show that both layers yield
architectures competitive with several state-of-the-art methods
on graph classification benchmarks.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

CB and CC have contributed equally in designing the model. CB
has performed the visualization experiments and proved the

theoretical results. CC has performed the pooling experiments.
PL is the senior author.

FUNDING

CC is supported by EPSRCNRAG/465 NERCCDTDream (grant
no. NE/M009009/1). PL is funded by EPSRC.

ACKNOWLEDGMENTS

We would like to thank both reviewers for their constructive
feedback and useful iterations on the manuscript. We would like
to thank Petar Veličković, Ben Day, Felix Opolka, Simeon Spasov,
Alessandro Di Stefano, Duo Wang, Jacob Deasy, Ramon Viñas,
Alex Dumitru and Teodora Reu for their constructive comments.
We are also grateful to Teo Stoleru for helping with the diagrams.

REFERENCES

Batagelj, V., Didimo,W., Liotta, G., Palladino, P., and Patrignani, M. (2010). Visual
Analysis of Large Graphs Using. x.Y)-Clustering and Hybrid Visualizations. In
(2010). IEEE Pacific Visualization Symposium (PacificVis). 209–216.

Beck, F., Burch, M., Diehl, S., andWeiskopf, D. (2017). A Taxonomy and Survey of
Dynamic Graph Visualization. Comp. Graphics Forum 36, 133–159. doi:10.
1111/cgf.12791

Bianchi, F. M., Grattarola, D., and Alippi, C. (2019). Mincut Pooling in Graph
Neural Networks (arXiv preprint arXiv:1907.00481.

Bodnar, C., Frasca, F., Wang, Y. G., Otter, N., Montúfar, G., Liò, P., et al. (2021).
Weisfeiler and lehman Go Topological: Message Passing Simplicial Networks
(arXiv preprint arXiv:2103.03212.

Bruna, J., Zaremba, W., Szlam, A., and Lecun, Y. (2014). Spectral Networks and
Locally Connected Networks on Graphs. ICLR.

Cangea, C., Veličković, P., Jovanović, N., Kipf, T., and Liò, P. (2018). Towards
Sparse Hierarchical Graph Classifiers (arXiv preprint arXiv:1811.01287.

Carriere, M., Michel, B., and Oudot, S. (2018). Statistical Analysis and Parameter
Selection for Mapper. J. Machine Learn. Res. 19, 478–516.

Carrière, M., and Oudot, S. (2018). Structure and Stability of the One-Dimensional
Mapper. Found. Comput. Math. 18, 1333–1396. doi:10.1007/s10208-017-
9370-z

Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., andMurphy, K. (2020).Machine Learning
on Graphs: A Model and Comprehensive Taxonomy (ArXiv abs/2005.03675.

Chazal, F., and Michel, B. (2017). An Introduction to Topological Data Analysis:
Fundamental and Practical Aspects for Data Scientists (arXiv preprint arXiv:
1710.04019.

Demmel, J. (1995). UC Berkeley CS267 - Lecture 20: Partitioning Graphs without
Coordinate Information II.

Dey, T. K., Mémoli, F., and Wang, Y. (2017). Topological Analysis of Nerves, Reeb
Spaces, Mappers, and Multiscale Mappers. In Symposium on Computational
Geometry.

Dunne, C., and Shneiderman, B. (2013). Motif Simplification. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. New York, NY,
USA: Association for Computing Machinery), CHI ’13, 3247–3256. doi:10.
1145/2470654.2466444

Dwyer, T., Riche, N. H., Marriott, K., and Mears, C. (2013). Edge Compression
Techniques for Visualization of Dense Directed Graphs. IEEE Trans. Vis.
Comput. Graphics 19, 2596–2605. doi:10.1109/TVCG.2013.151

Fiedler, M. (1973). Algebraic Connectivity of Graphs. Czech. Math. J. 23, 298–305.
doi:10.21136/cmj.1973.101168

Gansner, E. R., and North, S. C. (2000). An Open Graph Visualization System and
its Applications to Software Engineering. Softw. Pract. Exper. 30, 1203–1233.
doi:10.1002/1097-024x(200009)3011<1203::aid-spe338>3.0.co;2-n

Gao, H., and Ji, S. (2019). Graph U-Nets. In International Conference on Machine
Learning, 2083–2092.

Goller, C., and Kuchler, A. (1996). Learning Task-dependent Distributed
Representations by Backpropagation through Structure. ICNN.

Gori, M., Monfardini, G., and Scarselli, F. (2005). A New Model for Learning in
Graph Domains. ICNN.

Hajij, M., Rosen, P., and Wang, B. (2018). Mapper on Graphs for Network
Visualization.

Huang, J., Li, Z., Li, N., Liu, S., and Li, G. (2019). AttPool: Towards Hierarchical
Feature Representation in Graph Convolutional Networks via Attention
Mechanism. In Proceedings of the IEEE International Conference on
Computer Vision. 6480–6489.

Kersting, K., Kriege, N. M., Morris, C., Mutzel, P., and Neumann, M. (2016).
Benchmark Data Sets for Graph Kernels.

Kingma, D. P., and Ba, J. (2014). Adam: A Method for Stochastic Optimization
(arXiv preprint arXiv:1412.6980.

Kipf, T. N., and Welling, M. (2016). Semi-Supervised Classification with Graph
Convolutional Networks (arXiv preprint arXiv:1609.02907.

Lee, J., Lee, I., and Kang, J. (2019). Self-Attention Graph Pooling. In International
Conference on Machine Learning. 3734–3743.

Leskovec, J. (2016). CS224W: Social and Information Network Analysis - Graph
Clustering.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. (2015). Gated Graph Sequence
Neural Networks (arXiv:1511.05493.

Luzhnica, E., Day, B., and Lio, P. (2019). Clique Pooling for Graph Classification
(arXiv preprint arXiv:1904.00374.

Ma, Y., Wang, S., Aggarwal, C. C., and Tang, J. (2019). Graph Convolutional
Networks with EigenPooling. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 723–731.

McInnes, L., Healy, J., and Melville, J. (2018). UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction. ArXiv e-prints.

Nobre, C., Meyer, M., Streit, M., and Lex, A. (2019). The State of the Art in
Visualizing Multivariate Networks. Comp. Graphics Forum 38, 807–832. doi:10.
1111/cgf.13728

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The PageRank Citation
Ranking: Bringing Order To the Web. Tech. Rep. Stanford InfoLab.

Ranjan, E., Sanyal, S., and Talukdar, P. P. (2019). ASAP: Adaptive Structure Aware
Pooling for Learning Hierarchical Graph Representations (arXiv preprint arXiv:
1911.07979.

Scarselli, F., Gori, M., Ah Chung Tsoi, A. C., Hagenbuchner, M., and Monfardini,
G. (2009). Computational Capabilities of Graph Neural Networks. IEEE Trans.
Neural Netw. 20, 81–102. doi:10.1109/TNN.2008.2005141

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., and Eliassi-Rad, T. (2008).
Collective Classification in Network Data. AIMag 29, 93. doi:10.1609/aimag.
v29i3.2157

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 68053513

Bodnar et al. Deep Graph Mapper

https://doi.org/10.1111/cgf.12791
https://doi.org/10.1111/cgf.12791
https://doi.org/10.1007/s10208-017-9370-z
https://doi.org/10.1007/s10208-017-9370-z
https://doi.org/10.1145/2470654.2466444
https://doi.org/10.1145/2470654.2466444
https://doi.org/10.1109/TVCG.2013.151
https://doi.org/10.21136/cmj.1973.101168
https://doi.org/10.1002/1097-024x(200009)3011<1203::aid-spe338>3.0.co;2-n
https://doi.org/10.1111/cgf.13728
https://doi.org/10.1111/cgf.13728
https://doi.org/10.1109/TNN.2008.2005141
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1609/aimag.v29i3.2157
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J., Mehlhorn, K., and Borgwardt,
K. M. (2011). Weisfeiler-lehman Graph Kernels. J. Machine Learn. Res. 12,
2539–2561.

Singh, G.,Mémoli, F., andCarlsson, G. E. (2007). TopologicalMethods for the Analysis
of High Dimensional Data Sets and 3d Object Recognition. SPBG 91, 100.

Sperduti, A. (1994). Encoding Labeled Graphs by Labeling Raam. In NIPS.
Tenenbaum, J. B., Silva, V. d., and Langford, J. C. (2000). A Global Geometric

Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323.
doi:10.1126/science.290.5500.2319

van den Elzen, S., and van Wijk, J. J. (2014). Multivariate Network Exploration
and Presentation: From Detail to Overview via Selections and
Aggregations. IEEE Trans. Vis. Comput. Graphics 20, 2310–2319. doi:10.
1109/tvcg.2014.2346441

van der Maaten, L., and Hinton, G. (2008). Visualizing Data Using T-SNE.
J. Machine Learn. Res. 9, 2579–2605.

Veličković, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y., and Hjelm, R. D.
(2018). Deep Graph Infomax (arXiv preprint arXiv:1809.10341.

von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J. J.,
Fekete, J.-D., et al. (2011). Visual Analysis of Large Graphs: State-Of-The-Art
and Future Research Challenges. Comp. Graphics Forum 30, 1719–1749. doi:10.
1111/j.1467-8659.2011.01898.x

Wattenberg, M. (2006). Visual Exploration of Multivariate Graphs. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. New
York, NY, USA: Association for Computing Machinery), CHI ’06, 811–819.
doi:10.1145/1124772.1124891

Yang, Z., Cohen, W. W., and Salakhutdinov, R. (2016). Revisiting Semi-supervised
Learning with Graph Embeddings. ICML.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and Leskovec, J. (2018).
Hierarchical Graph Representation Learning with Differentiable
Pooling. In Advances in Neural Information Processing Systems.
4800–4810.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Bodnar, Cangea and Liò. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 68053514

Bodnar et al. Deep Graph Mapper

https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1109/tvcg.2014.2346441
https://doi.org/10.1109/tvcg.2014.2346441
https://doi.org/10.1111/j.1467-8659.2011.01898.x
https://doi.org/10.1111/j.1467-8659.2011.01898.x
https://doi.org/10.1145/1124772.1124891
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

APPENDIX

A Model Architecture and
Hyperparameters.
We additionally performed a hyperparameter search for DiffPool
on hidden sizes 32, 64, 128 and for DGM, over the following sets
of possible values:

• all datasets: cover sizes {[40, 10], [20, 5]}, interval
overlap {10%, 25%};

• D&D: learning rate {5e−4, 1e−3};
• Proteins: learning rate {2e−4, 5e−4, 1e−3}, cover sizes
{[24, 6], [16, 4], [12, 3], [8, 2]}, hidden sizes {64, 128}.

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 68053515

Bodnar et al. Deep Graph Mapper

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Deep Graph Mapper: Seeing Graphs Through the Neural Lens
	1 Introduction
	2 Related Work
	2.1 Graph Pooling
	2.2 Graph Visualization

	3 Background and Formal Problem Statement
	3.1 Formal Problem Statement
	3.2 Mapper

	4 Structural Deep Graph Mapper
	4.1 Lens
	4.2 Cover
	4.3 Clustering

	5 Structural Graph Mapper for Pooling
	5.1 Relationship to Graph Pooling Methods
	5.2 Differentiable Mapper Pooling
	5.3 Mapper-Based PageRank Pooling
	5.4 Model
	5.5 Complexity

	6 Pooling Experiments
	6.1 Tasks
	6.2 Experimental Setup
	6.3 Baselines
	6.4 Evaluation Procedure
	6.5 Pooling Results

	7 Mapper for Visualisations
	7.1 Visualisations in Supervised Learning
	7.2 Visualization in Unsupervised Learning
	7.3 Qualitative Evaluation
	7.3.1 Limitations

	7.4 Ablation Study for Dimensionality Reduction
	7.5 Ablation for the Unsupervised Lens
	7.6 Hierarchical Visualisations
	7.7 The Importance of Capturing Structural Information

	8 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References
	Appendix
	A Model Architecture and Hyperparameters.

