
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s  i n s t i t u t e  o f  t e c h n o l o g y,  c a m b r i d g e ,  m a  0 213 9  u s a  —  w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2007-041 August 6, 2007

Toward Secure Services from Untrusted Developers
Micah Brodsky, Petros Efstathopoulos, Frans 
Kaashoek, Eddie Kohler, Maxwell Krohn, David 
Mazieres, Robert Morris, Steve VanDeBogart, and 
Alexander Yip

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4403234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Toward Secure Services From Untrusted Developers

Micah Brodsky† Petros Efstathopoulos⋆ Frans Kaashoek† Eddie Kohler⋆

Maxwell Krohn† David Mazières‡ Robert Morris† Steve VanDeBogart⋆ Alexander Yip†

⋆UCLA †MIT ‡Stanford

ABSTRACT

We present a secure service prototype built from untrusted,contributed code. The service manages private
data for a variety of different users, and user programs frequently require access to other users’ private data.
However, aside from covert timing channels, no part of the service can corrupt private data or leak it between
users or outside the system without permission from the data’s owners. Instead, owners may choose to reveal
their data in a controlled manner. This application model isdemonstrated by Muenster, a job search website
that protects both the integrity and secrecy of each user’s data. In spite of running untrusted code, Muenster
and other services can prevent overt leaks because the untrusted modules are constrained by the operating
system to follow pre-specified security policies, which arenevertheless flexible enough for programmers to
do useful work. We build Muenster atop Asbestos, a recently described operating system based on a form
of decentralized information flow control [5].

1 INTRODUCTION

Since Sun, and later Netscape, developed ways for a web browser to safely run untrusted code from arbitrary
Internet sites, the average user’s web experience has been entirely transformed. The key step was defin-
ing and enforcing security policies that prevented most malicious behavior on the part of Java applets or
JavaScript scripts. Existing flaws in these policies and their implementations have had limited consequences
in the wild, and now JavaScript is an essential part of the webexperience. What ifserverapplications, like
client applications, could safely run untrusted code? Server-resident code has advantages in terms of band-
width, latency, and simplicity. A service that allowed arbitrary users to extend it could take advantage of
open-source programmers around the world, leading to new development models and applications.

Unfortunately, the consequences of any breach in a server application are dire, leading potentially to
massive data loss, corruption, denial of service, or the embarrassing release of users’ private information.
As a result, existing attempts at server extensibility expose only a fraction of the server’s resources and
private data. Livejournal, for example, allows journal authors to upload sandboxed PHP renderers for their
journals, but each renderer can read only a limited set of user data accessible through a strict API and has
very limited write access [2].

This is one instance of a more general problem: conventionalprogramming languages and operating
system environments only offer limited tools for defining and enforcing application security policies. Desir-
able policies might, for example, limit an application’s privilege to the minimum required to accomplish its
expected task, according to the principle of least privilege [22]; or it might track the progress of sensitive
information through an application, preventing its undesired escape [4, 14]. In order to constrain a program
to follow such a policy, today’s application programmer must cobble together combinations of existing fea-
tures, such as Unix’schroot facility and Perl’s variable tainting. The result is complex, hard to maintain, and
difficult to truly secure [11].

Recent work shows that decentralized information flow control (DIFC), however, can enforce many
security policies cleanly and reliably, either in the programming language [16] or in the operating system [5,
27]. These systems label all secret data and track it as it passes between software components to prevent

1



information leaks. To enforce a security policy, an application designer decides how to assign labels to the
application’s data and splits the application into pieces according to the policy. For example, there might be
one label per type of system user, one label per user, or one label per user per application.

Our previous work on DIFC in Asbestos improved the security of an existing application, a dynamic web
site. In this paper, we move towards a new type of applicationpreviously thought too inherently insecure
to build. Thewikicodemodel uses flexible secure information flow control to allow loosely affiliated, and
thus mutually suspicious, programmers to collaborate in constructing a secure web service. A core set of
programmers design the service architecture and the corresponding security policy, as expressed in labels.
Thereafter, untrusted programmers can upload binary code to the server to augment its base functionality.
Since this add-on code is constrained by the system’s security policies, the service still maintains its security
guarantees, and in particular, untrusted code cannot inappropriately leak sensitive data from the server.

(Untrusted code can misbehave in ways not constrained by labels, of course, such as by running inef-
ficiently, annoying the user, or simply by performing no useful function. Furthermore, while current DIFC
systems eliminate overt information leaks and certain covert channels, one untrusted module might poten-
tially extract a secret from another using a timing exploit such as wallbanging. A full system would need
to address these problems as well. DIFC primitives and appropriate application security policies should be
used to keep particularly sensitive data, such as private keys, from reaching untrusted code (which could
in turn leak the data through covert channels). A combination of future work and existing techniques could
address resource leaks and other similar problems. The workin this paper prevents high-rate overt leaks and
storage channels—a necessary first step, since breaches have serious consequences and are hard to prevent
with conventional techniques.)

We tested the wikicode development model by buildingMuenster, a prototype job search web site in-
spired by Monster.com, on top of the Asbestos operating system [5]. Job search sites serve two primary types
of users: job applicants and employers. Job applicants submit their resumes and profiles to the service’s ap-
plicant pool and employers search through the pool, lookingfor good matches. Applicant and employer
data is sensitive and must be protected from inappropriate exposure: some applicants will want to restrict
the employers that can see their résumés, and certain employers will want to keep their job postings secret
except to select applicants. Furthermore, job search userswill likely desire an endless list of features, many
of which the site designer may lack the resources to implement. To satisfy this demand, Muenster users
can contribute wikicode programs that implement interesting features yet cannot violate users’ disclosure
policies. These programs require an access control model more flexible than, for example, data partitioning,
since untrusted code must compute over sensitive data.

Relative to our previous work on the Asbestos operating system [5], the central contribution of this paper
is the DIFC-enabled wikicode application model, which goesbeyond a more-secure variant of an existing
application. To our knowledge, Muenster is the first secure application that combines both interesting cross-
user data sharing policies and untrusted code. Wikicode is designed to preserve strong security policies—and
even to update policies—while supporting mutually untrusted developers who are continuously developing
and improving a running service. This required that we develop patterns for selective information sharing
that go beyond the strict isolation and declassification presented previously. Online application development
requires DIFC-aware data storage policies for service-specific data. In particular, the file system must per-
sistently storeprivilege, allowing applications to isolate data from others while keeping it accessible to the
owner across application upgrades and reboots. Finally, since wikicode authors develop on a live machine
they do not control, we had to develop tools that facilitate debugging without violating the information flow
rules of the system. After discussing related work and an overview of Asbestos, we discuss these contribu-
tions in turn, closing with a performance evaluation and a discussion of our experience building systems that
use decentralized information flow control.

2



2 RELATED WORK

Several earlier systems have used confinement to safely execute untrusted programs. Web browsers and
active network systems like ANT [26] execute untrusted Java[8] programs by running them in a restricted
virtual machine. Browsers confine the untrusted programs byrestricting the disk and network access of the
Java virtual machine. The ANT execution environment further restricts untrusted code by limiting the Java
language as well. Virtual machines are not limited to Java programs; virtual machine [7, 9] sandboxes can
provide strong isolation for any program, including nativecode, for example in the NetTop project [24].
The strong isolation provided by virtual machines is unsuitable for wikicode because it precludes the safe
exchange of private data between mutually untrusted programs. An untrusted wikicode program must be
able to read, write and process data as long as it does not export it off the server in a way that violates the
information-flow rules. A virtual machine relinquishes allcontrol over data that it exports to other VMs
for processing by another user’s untrusted module. Information flow control enables wikicode to support
functions like applicant searches because the applicant declassifier agents can receive secret data about
employers in order to make declassification decisions, but they cannot export the secrets off the server.

It may be possible to enforce wikicode security policies at the language level using a language like
JiF [16] with some modifications. The JiF compiler checks JiFsource code containing inline flow control
annotations to verify that sensitive information does not flow to unauthorized recipients. But this would
restrict wikicode contributors to a single language and require them to disclose their source code.

Our work is an extension of the Asbestos privilege separatedWeb server [5], which was in turn inspired
by the OK Web Server (OKWS) [10]. OKWS provides a framework for secure web services on Unix through
various sandboxing techniques. Implementing wikicode as aseries of OKWS services does not seem feasi-
ble, since OKWS has no way to track the data of different userseven within a single service. As with virtual
machine sandboxing, OKWS can prevent an untrusted program from directly reading private data, but it
cannot allow an untrusted program to read private data whilealso preventing it from leaking that data.

Wikicode uses Asbestos, but there are a number of other mandatory access control (MAC) systems.
SELinux [14] and FreeBSD [25] both include MAC functionality. We chose to use Asbestos because it
efficiently supports dynamic creation of many isolation domains. This is important for wikicode because
users may join the system and untrusted programs may add new security compartments at any time.

Other systems that perform automatic contamination propagation [12] include IX [15] and LOMAC [6],
but these systems use predefined information data flow rules.Asbestos allows applications to define their
own data flow policies.

Other MAC storage systems store labels, but they do not storeprivilege in the file system. Of recent
systems, HiStar [27] most influenced the Asbestos persistence layer; it uses a single-level store to store in-
stances of kernel objects, including labels. Similarly, EROS [23] stores whole system “checkpoints” on disk;
system operation is resumed by reloading the last checkpointed state. The persistence layer we introduce
uses the filesystem to store privilege as a regular file instead of checkpointing kernel objects to the disk.
Reclaiming privilege does not assume an earlier checkpointed state and multiple process can acquire, drop
and re-acquire privilege as long as they have access to the appropriate files storing it—even after a “hard”
reboot.

Existing database systems [13, 20] also support per-row security labels based on users. The Asbestos
database benefits from closer integration with operating system labels, allowing different processes work-
ing on behalf of one user to have different security policies. The database also allows unprivileged clients
to specify the label assignments on their data. These differences allow Asbestos to support more flexible
security policies.

3



⋆,0,1,2,3 Label levels, in increasing order
TP, CP ProcessP’s tracking label and clearance label

L1⊑ L2 Label comparison:
true iff ∀x, L1(x)≤ L2(x)

L1⊔L2 Least-upper-bound label:
(L1⊔L2)(x) = max(L1(x),L2(x))

L1⊓L2 Greatest-lower-bound label:
(L1⊓L2)(x) = min(L1(x),L2(x))

Figure 1: Summary of basic Asbestos label operations. Note that levels 0 and2 are not used by Muenster.

3 ASBESTOS OVERVIEW

This section provides an overview of the Asbestos operatingsystem [5] used as a base for this work. Its
security and access control decisions are based onAsbestos labels, which control and track interprocess
information flow, as well as application privilege, for an effectively unlimited number of information cat-
egories calledtags.1 For example, an application may choose to mark sensitive data with a tagt, which
prevents any unprivileged process that has examined this data from exporting it over the network.

For each processP, the kernel maintains atracking labelTP and aclearance labelCP. The tracking
label lists all of the tagsP has observed, either directly or indirectly, as well as the tags for which it has
privilege. WhenP receives a message from another processQ, its tracking label collects additional tags
from Q’s tracking label via a least-upper-bound operation [3]TP← TP⊔TQ. P’s clearance label governs
P’s ability to receive messages and protects it from unexpected contamination: the kernel silently dropsQ’s
message unlessTQ⊑CP. The kernel maintains the invariant thatTP⊑ CP.

Tracking labels and clearance labels are functions mappingtags tolevels. This work effectively uses
three levels,⋆, 1, and3. The⋆ level represents privilege. In a tracking label,3 indicates that a process has
observed sensitive data (is contaminated with respect to the tag); in a clearance label,3 represents theability
to observe sensitive data. The default level is1. We usually write labels using modified set notation. Thus,
L = {a3,b⋆,1} indicates a function withL(a) = 3, L(b) = ⋆, andL(x) = 1 for x 6∈ {a,b}. In comparisons,
⋆ < 1 < 3.

Any processP can ask the kernel to allocate a new tag; this setsTP(t) to ⋆. The⋆ level is immune to
contamination from received messages:TP(t) remains⋆ even afterP receives a message from someQ with
TQ(t) > ⋆. In information flow terms, this allowsP to declassifyinformation that is sensitive relative tot.
Only P itself can renounce this privilege. Creating new tags is thesole mechanism by which Asbestos grants
privilege; there is no tag hierarchy and, thus, no root privilege.

The kernel enforces information flow tracking by checking clearance labels and tracking labels on mes-
saging operations, but Asbestos processes can change the labels in force for a particular message within the
bounds of safe information flow. In particular, a sender can raise the levels for particular tags on a message
(useful, for example, when a privileged process wants to send sensitive data), prove to the receiver that it
holds privilege for one or more tags, grant privileges to thereceiver, and grant clearance to the receiver. The
last three cases are only possible when the sender has privilege for the relevant tags.

Asbestos services must respond to many differently-taggedrequests over time. Theevent process(EP)
abstraction lets such services avoid collecting tags. Event processes are limited, fast forks of a process; each
event process has its own labels and address space. Various kernel structures are optimized for the case of
small differences between event processes and their base process.

Asbestos was used to develop a privilege separated web server [5] inspired by the OK web server [10].
The Asbestos web server (AWS) labels user data as well as usernetwork connections appropriately, ensuring
that information leakage is not possible — e.g. by exploiting a bug in the CGI scripts or any other untrusted
application component. The main AWS components include:

1Our notation and terminology differed in prior work.

4



• a set ofworker EPs, each handling requests for a particular user and contaminated accordingly

• a set ofdeclassifier workers, which allow a user to make part of her private data public.

• a trusteddemuxthat accepts connections and redirects incoming requests to the appropriate worker
process. For new incoming connections, it also looks up the tag identifying the user and sets up
connection contamination accordingly.

• a trustedidentity daemonprocess (idd), responsible for username to user contamination translation

• a trusteddatabaseservice that stores a single user’s privacy tag on each private row of data and
propagates that tag to readers. AWS stores user data in this database.

• a trustednetwork daemon(netd) that labels network connections so that contaminated datacannot
leak to connections without adequate clearance.

The Asbestos web server uses information flow control to protect user privacy even if a worker is com-
promised. It accomplishes this by labeling each useru’s data with a per-user taguT 3. Whenu logs onto the
server, AWS forks a new worker event process for the user and tags it withuT 3 as well. AWS then disallows
data tagged withuT 3 from leaving the system towards any user other thanu. This policy prevents leaking
u’s data even if a worker is compromised because the operatingsystem tracks which processes and messages
containu’s data.

4 A WIKICODE APPLICATION

Our wikicode demonstration application is a job search web site called Muenster, a service similar to Mon-
ster.com and Hotjobs.com. Muenster’s niche isdiscreetjob searching and posting: job applicants and em-
ployers have personalized control over which other users can view their information. Job search has a num-
ber of important privacy requirements. Applicants should be able to keep their resume hidden from some
employers; for example, an applicant may choose to hide their job search intentions from their current em-
ployer to avoid jeopardizing their current job. Employers should also be able to keep their job opportunities
confidential, except for select applicants. For example, when employers are seeking to replace high-level
executives, secrecy can be critical for maintaining publicrelations. Employers might also want to keep their
hiring techniques private. For example, on Muenster, an employer can upload their own proprietary applicant
selection algorithms and Muenster will keep their algorithms hidden from other employers.

We choose this application to test wikicode because it has fairly restrictive security policies. Not all web
services will be as restrictive as Muenster, but we use Muenster as an extreme test to explore the wikicode’s
ability to enforce security policies despite untrusted programmers adding features and code to the server. The
challenge is not only to enforce the security policies on untrusted extensions, but to do so without unduly
restricting their functionality.

We have built Muenster, defined its security policies, and implemented three uploaded extensions that
exercise different aspects of the security system. To show how Muenster keeps user data private despite
untrusted extensions running on the server, we implementedcustomizable user interface widgets. We also
built an applicant search function that goes beyond strict isolation and declassification, and allows users to
selectively share data with each other, all while running asan untrusted extension. Finally, our reference
letter extension shows that an untrusted programmer can augment a running Muenster server with a new,
custom DIFC security policy without interfering with Muenster or any another extension on the server.

4.1 Wikicode Server

Muenster derives its underlying security policy from the Asbestos Web server (AWS) [5]. Its design is based
on the AWS, but includes several enhancements that make it suitable for wikicode development. Figure 2
illustrates the main server components.

5



Database

Declassifier
Agent

Declassifier
Agent

File System

Client

Declassifier
Service

Worker
Untrusted

Worker

WorkerWorker
Untrusted Untrusted

Untrusted

Wikicode Server

Demux

Netd

Figure 2: Wikicode server modules.

Like the AWS, Muenster assigns each useru a data tagcalleduT and contaminates all ofu’s private
data withuT 3. The web server’s network daemon prevents data leaks between users by preventing any
information contaminated with one user’s data tag from traveling to another user.

Since users will also store data on the server, Muenster alsoassigns each user awrite tag calleduW.
Only processes which run on behalf ofu have privilege overuW, and only they may modifyu’s data.

Untrusted Workers Usually, an untrusted extension will fit into the server as aworker. Each worker
extension runs as a different Asbestos process; each time a different web client invokes a service, the worker
forks a new event process to handle the request. The demux module grants the client’s write privilegesuW

to the event process and contaminates it with its data taguT , preventing it from leaking the client’s private
data. Forking a separate event process for each client prevents the worker process from accumulating tags.

The author of a worker may or may not share her worker with other users. Sensitive workers, such as
a proprietary applicant matching algorithms, may be keptprivateso that no other user may invoke them. If
worker authoru chooses to make her worker private, she uploads the executable extension and contaminates
it with her data taguT 3. Since the executable extension is tagged, the Muenster server tags any instance
of the worker process withuT 3, and a user that is not authorized to receive data with that tag will not be
able to use the worker. Ifu opts to make her worker public, she uploads her executable through a privileged
Muenster service which leaves the tag off the worker executable’s label, allowing other users to invokeu’s
worker.

Allowing users to upload their own untrusted workers makes it possible for them to extend Muenster
in ways the original developers may not have foreseen. We have implemented the following three example
extensions as untrusted worker processes on the server to illustrate how an untrusted programmer might
contribute to Muenster.

4.2 User Interface Widgets

The most basic type of untrusted extension that Muenster should support is an extension that only accesses
one user’s data at a time. As a concrete implementation of this policy, we developeduser interface widgets.
UI widgets give users additional options when displaying their profile to themselves when they log onto
Muenster’s web site. Since the widgets never need to share data with other users, they can simply run as
untrusted workers.

4.3 Searching for Applicants

Untrusted user interface widgets do not need to share data between users, so it is easy to support them
with strict partitioning, but in wikicode we want to allow users to share data, assuming they approve of
the sharing. The challenge is to allowselectivesharing, where users determine who can see their private
data. Making the problem more challenging, a user might not know anything about the other users in the
service because they might not want to reveal themselves either. Our goal was to enable users to selectively
disclose their data to other users on a case by case basis, without revealing anything about the other users. To

6



Declassifier
Server

Carol’s Resume

T

T

Bob’s Resume
  L = {bob    3}

T  L = {carol   3}

Worker
Search

"Yes!"DB Query

Database

Alice’s Resume

Company
Foo

TL={foo   3}

  L = {alice    3} A

B

C

A B C

Bob’s
DC Agent

"No!"
Carol’s

DC Agent

"Yes!" Alice’s
DC Agent

A: L = {foo  3}T

TB: L = {foo  3}

T T

T

T
Event−processes

  L={foo   3, bob   3}

  L={foo   3, alice   3}

T

  L={foo   3, carol   3}T

T T

  L={foo   3, carol   3}

  L={foo   3, bob   3}

TT

T  L={foo   3, alice   3}T

Consult
File System

Consult
Database

Declassifier
Client

Figure 3: Declassification details for applicant search. Company Foo queries all rows, but only Alice and Bob’s agents approve
declassification to Foo. Clear modules are system components; shaded modules can be customized by users.

better understand this kind of controlled data sharing, we implemented a resume search in Muenster where
applicants and employers can share secrets with each other,but they retain control over who learns them.
This demonstrates the flexible privacy policies that an untrusted extension can implement with no special
administrative server support,

In a resume search, an employer searches for job applicants and Muenster returns a set of applicant
resumes. However, an applicant may want to hide her resume and the fact that she is looking for a job from
some employers but not others. To help protect user privacy,a Muenster job applicant should only show up
in the search results if she wants to reveal herself to the employer; otherwise, her very existence in the system
should remain hidden. Like the applicants, an employer may also want to remain hidden in the system. For
example, they may want to hide the fact that they are looking for employees or they may only want to show
their open positions to suitable applicants.

Revealing an applicant’s (tagged) resume to an employer in amandatory access control system like As-
bestos requires explicit declassification, but Muenster cannot just ask an applicant if they want to declassify
their resume for employere, as that would reveal thate is searching for applicants. Worse yet, if a notifica-
tion method was used, a malicious extension could use the notifications as a covert channel to leak all the
pending job descriptions, or any other private data, of a given employer.

Our approach is to use a declassification service that handles declassification requests without leaking
secrets. When a client asks the declassification service to declassify some data, the trusted part of the service
examines the data’s label and invokes a separate declassification agent for each tag at which that label has
level 3.

Each user selects or creates their own declassification agent that may declassify the given block of data
based on the user’s policy. The agent may be quite powerful since it runs on the server as a regular Asbestos
process. The user may select an agent that implements something simple like a blacklist or something
more sophisticated, like a document relevance calculation[21] that decides based on the employer’s job
description. A user may even write his own declassifier agentif he chooses to. It can be written in any
language, including machine code, and it can even query the database and read from the disk because the
kernel will ensure that it does not violate the information flow control rules.

Figure 3 illustrates the details of an example search where employer Foo is looking for applicants. In
the example, Foo logs into the untrustedsearch workerand enters some search parameters. The search
worker, which is tagged withfooT 3, queries the database and requests that the results be sent through
declassification for recipient Foo. The database sends eachresulting row, which is tagged with its owner’s
data tag, to a declassifier (DC) client. The DC client runs with event processes, which prevent the search
worker from accumulating the tags assigned to the many database rows. With each row in a different event
process, row tags do not accumulate in the DC client and the DCclient can continue to process rows even if

7



a given row is not declassified. Each DC client event process then sends its row to the DC server and asks
it to remove all tags except for the untrusted worker’s data tag, fooT . Starting a new event process for each
row is relatively efficient because event processes use copy-on-write support from the Asbestos kernel [5].

The DC server is trusted infrastructure, privileged with respect to all user data tags. The DC clients are
not trusted, carry no privilege, and could be customized by users. For each data tag on the row, the DC
server asks the corresponding DC agent if it is willing to declassify its data to user Foo. This request carries
tag fooT 3, preventing the DC agents from exporting information aboutit; this prevents the applicant from
learning that the search ever occurred. For each DC agent that agrees to declassify the row, the DC server
will remove the respective tag and send the row back to the original untrusted worker with the sole tag
fooT 3. In this example, Alice and Bob both agree to release their resumes to Foo, but not Carol.

The key is that Alice and Bob can selectively share their private resumes with Foo without learning that
Foo is searching for applicants; Carol retains her privacy,but she also does not learn of Foo’s search. Foo’s
actions are kept private unless it decides to contact Alice or Bob directly.

4.4 Reference Letters

To experiment with more sophisticated privacy policies andto see if untrusted programmers can add their
own security policies to Muenster, we have implemented a reference letter feature in Muenster as an un-
trusted extension. The reference letter feature allows a job applicant to ask another user, such as a previous
employer, to write him a letter of reference. In general, an applicant is not allowed to read his own reference
letters for confidentiality reasons, and Muenster’s reference letter extension enforces this. However, the ex-
tension lets an applicant configure the system to analyze theletters and withhold some letters from potential
employers, without revealing any information about the letters to the applicant. The extension also ensures
that a letter is only associated with an applicant if the applicant requested it. These two properties enable
an applicant to retain editorial control over his referenceletters without being able to read them in person
or learning that a letter was ever withheld. The original Muenster developers may not have imagined such a
feature, but an untrusted programmer could easily implement it, including its privacy policy, without special
support from the Muenster administrators.

In the reference letter extension, an applicant issues a request to another user for a letter by inserting a
row into the reference letter database table. The row contains an empty reference letter and is contaminated
with both the applicant’s and recommender’s data tags. The applicant must configure his declassifier such
that the recommender may see the row. The recommender can then write the letter and update the database
row with the contents of the letter, which is still contaminated with both the applicant and the recommender’s
data tags. The presence of the applicant’s tag means the applicant must explicitly declassify the letter before
anyone can see it. When an employer searches for the letter, the applicant’s declassifier can analyze the letter,
possibly using sentiment detection techniques [17, 19], and remove the applicant’s data tag if the declassifier
approves of the letter. The letter is also tagged with the recommender’s data tag, which prevents leaking the
contents of the letter to the applicant. To reveal the letterto the employers, the recommender must configure
his declassifier agent to remove his tag only when an employerqueries the letter.

(Of course, the reference letter extension’s security policy takes effect only as far as it can be enforced
by labels—that is, within Muenster itself. A recommender could always post a reference letter on the web,
although social pressure might discourage this. Furthermore, a recommender might always encode a mes-
sage in an outwardly unremarkable letter; an applicant’s declassifier could only catch obvious problems,
such as overtly negative letters or letters too short to be useful. Considered generally, however, the extension
(1) prevents applicants from viewing recommendations and (2) prevents recommenders from viewing appli-
cants’ potential employers, while simultaneously (3) letting applicants exclude references based on content,
a difficult combination of features involving three interacting information flow tags. Similar combinations
will be useful in other contexts.)

Wikicode also enables the author of the reference letter system to prevent unauthorized reference letters

8



from entering his system by write-protecting the database table containing the letters. To do so, authora
creates the reference letter table with a clearance containing his write tag,aW ⋆, which means only processes
which speak fora may modify the table. He then configures Muenster to launch his reference letter ex-
tension with his write privilege,aW ⋆. Sincea’s write privilege is only given to processes thata trusts, an
unauthorized extension may not add unrequested letters to the system.

The reference letter worker shows that untrusted workers have the flexibility to implement fairly sophis-
ticated features. Because the extensions run as full Asbestos processes, and not just sandboxed processes,
they have full access to the server’s resources, within the information flow constraints: they can store per-
sistent data in the file system and database without risking leaks and they can even implement their own
security policies, like write protection using Asbestos labels, without interfering with the server’s existing
security policy.

4.5 Programming Environment

For ease of development, Muenster components may be writtenin its native C or in Python, a popular
language for web applications. C has the advantage of high performance and Python has the advantage of
development ease.

For rapid prototyping, Muenster provides a web based user interface for developing Python workers.
Users edit the source code directly on the Muenster web site,click a submit button and their code is imme-
diately available as a running Muenster service.

Muenster also provides a number of libraries and stock components in C and in Python. Declassifier
libraries and worker libraries implement most of the commonoperations, so much of the system complex-
ity is hidden. Untrusted programmers do not need to deal withthe labeling schemes unless they need to
implement their own security policy but even if they do, the extensions can be terse; the reference letter
application is only 218 lines of Python, including comments.

Since the labeling scheme is consistent throughout the operating system, an untrusted extension is al-
lowed to create and modify database tables as well as read andwrite file system files without the risk of
leaking data.

4.6 Caveats

In its current implementation, Muenster only uses one data tag and one write tag per user. Only having
one data tag per user has the limitation that all of one user’sprivate data is in the same protection domain.
Therefore, if a user is willing to declassify his resume to company Foo, then he has effectively declassified
the rest of his data to company Foo. Similarly, only having one write tag per user means that that granting an
untrusted extension the ability to modify a user’s data allows it to modify all of that user’s data. In practice,
Muenster would use multiple data tags and multiple write tags per user so that users may exercise finer
grained control over their private data. They would only reveal portions of their profile to other users and
only grant write privileges over a portion of their data to untrusted extensions. This is possible because
Asbestos allows applications to create new data tags at any time and store those new tags persistently.

5 PERSISTENT STORAGE

Muenster services store addresses, resumes, and other information that must persist even if the server reboots
and all volatile storage is cleared. There are several challenges in building a persistent storage system that
maintains privilege and information flow invariants, even across reboots. If a contaminated process writes
contaminated data to the hard disk and then later, another process reads the file, the reading process must
become contaminated in the same way as the writer. Existing labeled file systems solve this problem, but
the wikicode development model imposes further challengeson persistent storage. Service code may create
private data and generate new security policies that apply to it. A common policy would prevent other
services from modifying the data: the service generates a privatetS tag and applies a clearance oftS⋆ to the

9



Diary

Web Blog

Directory: Alice/

...

Size: 5120

Data blocks
...

File: Diary File data blocks

Data blocks
...

File data blocks

Size:2340

Diary contents

Blog contents

D
ire

ct
or

y 
en

tr
ie

s

File: Web Blog

T = {1}

C = {a *, 2}

T = {1}

C= {a *, 2}

C = {a *, 2}

T = {a 3, 1}

Figure 4: File and directory labels. User Alice owns a publicly readable directoryAlice, a publicly readable fileWeb Blog, and a
private fileDiary. Only processes with privilege taga⋆ may modify her files.

data, whether it is stored directly in the file system or with another, database-like application. The service and
the data store must therefore maintaintS privilege when the server reboots, when the service code crashes
and restarts, and even when the service code itself is updated: that is, the privilege must be made persistent,
and the data store must maintain any relationships between the service’s privilege and data’s labels and
clearances. The mechanism for preserving these relationships should be flexible enough to support arbitrary
application policies. Our prior storage layer could not support this usage.

We have developed a flexible technique for preserving privileges calledpickling, and two persistent
storage services, a file system and a database. The labeled file system enables the system to store user data
such as uploaded programs without the risk of leaking them tounauthorized recipients. More importantly,
it also gives untrusted programs the ability to safely read and write the file system without risking privacy
leaks. The persistence services uphold information flow invariants; preserve privilege across reboots; map
the tag values used in one boot to those used in the next; avoidcovert channels through file metadata such
as names and labels; and allow applications to set up their own hierarchy of privilege. Although these
requirements might be easy to provide if the file server couldarbitrarily create privilege and allocate specific
tags after a reboot, for higher assurance, the Asbestos file server operates within the same rules as any
ordinary Asbestos process; it does not have theoptionof violating the information flow invariants.

Our file system semantics resemble those of HiStar [27], except for the way privilege is stored. HiStar
and other systems such as EROS [23] avoid the problems of persistent privilege by introducing a single-level
store: rebooting returns the system to a checkpointed state, and a process’s tags and capabilities are stored
along with its virtual memory. In HiStar’s single-level store, privilege is tied to process lifetime: after the
last process with privilege for a tagt dies, there is no way to recover that privilege. Our persistent store
seems more familiar to most programmers and simplifies the process of recovering from application crashes
without losing associated tag state.

5.1 File System Semantics

The label rules for file operations in Asbestos are similar tothe label rules for processes. Each filef in
the Asbestos file system has atracking labelT f and aclearance labelC f . These are analogous to the
corresponding Asbestos process labels. Like a process’s label, a file’s label represents the contamination
of the file’s data. The file system contaminates any process that reads fromf with its tracking labelT f .
Similarly, a file’s clearance label is like a process’s clearance label; a processP with tracking labelTP may
only write to a file f if TP⊑C f . For example, in Figure 4, user Alice owns the taga and creates a filediary
with clearance labelCdiary = {a⋆,1}, then the only processes that may modifydiary are processes to which
Alice grants the privilegea⋆.

Directories have tracking labels and clearance labels exactly like regular files. Creating, renaming and
removing a file are treated as writes to the directory. For example, if a processP is to create a file in directory

10



Operation Label Checks and Action
read(f ) T f ⊑ CP Action: TP← TP⊔T f
write( f ) TP⊑ C f
create(f , dir, T f , C f ) TP⊑ Cdir , TP⊑ T f , C f ⊑ T f
pickle(f , dir, T f , C f , TP⊑ Cdir , TP⊑ T f , C f ⊑ T f ,

ft , flevel, fpassword) TP( ft) = ⋆, TFS( ft) = ⋆

unpickle(f , 3, password) T f ⊑ CP Action: TP← TP⊔T f
unpickle(f , level, password) TP⊑ C f , T f ⊑ CP, level≥ flevel,

wherelevel< 3 password= fpassword
Action: TP← (TP⊔T f )⊓{ ft level,3}

Figure 5: Rules for operation on filef by processP

d, it must have a tracking labelTP such thatTP⊑ Cd. Also, after a processP reads the directory listing, its
tracking labelTP will reflect any further contamination inTd. Figure 5 summarizes the label rules for file
system operations.

Unlike process labels, file labels are immutable. Files may not be dynamically contaminated or granted
privilege, and a file meant to hold a secret must be tagged appropriately when it is created. The immutable
tracking label and clearance label are supplied at creationtime; the file system ensures that the new file is
at least as contaminated as the creating process (TP⊑ T f ), maintaining the information-flow rules, and that
the clearance label is no more tagged than the tracking label(C f ⊑ T f ). The immutable label design, which
was influenced by HiStar [27], simplifies certain information flow guarantees: for example, a directory
listing, which consists of the names and labels of the directory’s files, has a tracking label equal to the
directory’s tracking label, rather than a combination of the files’ labels. Designs that allow a file’s tracking
label to change are either more complex, leak information, or both. Although immutable labels might appear
cumbersome, in practice it has not been difficult to figure outa file’s intended label before the file is created.

Immutable file labels make it possible for a process to determine if it can read a file and how much more
contaminated it would become by doing so. Because file labelsare immutable and set at file creation time
(a write to the directory), they can safely be returned when reading a directory (a read contaminates the
reader with the directory tracking label). Directory read operations must not return information that might
be affected by processes more contaminated than the directory itself. Thus, reading a directory reports file
names, file labels, inode numbers, and the like, but not file sizes or timestamps. (A directory withCd = {1}
might contain a more contaminated file withT f = {a3,1}. A process withTP = T f could not write to
the directory, and thus could not remove the file, butcould write to the file, possibly changing its size.)
Therefore, Asbestos provides a separateread-size operation that returns a file’s size and also marks the
reading process with the file’s tracking label.

5.2 Preserving Privilege with Pickles

The main contribution of the Asbestos file system is its method to make privileges persist across system
reboots. Because tag names are non-persistent and randomlygenerated, any persistent store must serialize
tags in some form. The Asbestos file system usespickle filesto serialize tags.

A pickle file, or pickle, is a serialized tag represented as a file in the file system. A process with privilege
for a tag may preserve that privilege by creating a pickle. Later on, another process mayunpicklethe pickle,
thus acquiring the privilege that was preserved in the pickle.

To create a pickle of tagt, processP sends a request to the file system containingt and the maximum
privilege (i.e., smallest level,flevel) that the file system should grant as the result of unpicklingthe pickle.
Since a pickle is also a file,P also specifies its pathname, tracking label and clearance label. The file system
performs the regular file creation checks on the tracking label, clearance label, and containing directory. It
also confirms thatP has privilege overt (TP(t) = ⋆), and that the file system process has privilege overt (the
file system needs privilege with respect to every tag it pickles). Once these checks succeed, the file system
can create the pickle file.

11



User

Kernel

Buffer
cache

Server
File

Client

Client

Client

No taint?
Partition privilege?

Tag id   Pickle id

...

Figure 6: General file server architecture. Each client talks to a unique event process of the file server. The Event processes can
access pages from the buffer cache as well as modify the tag topickle id table.

To acquire the stored privilege in the pickle, processQ (whereQ may be the process equivalent toP after
one or more reboots) issues an unpickle request to the file system. The request includes the pathname of the
pickle and the desired privilege level, which must be≥ flevel. The file system then checks ifQ passes the
normal file system checks for readingandwriting a file with the pickle’s tracking label and clearancelabel.
The write check is done because we overload theC label on pickles to indicate who can unpickle them. If
Q passes these checks, the file system grantst at the desired privilege level to processQ.

By starting with the simplifying assumption that there is only one persistent store, it is easy to see
how pickles solve the persistence problem caused by randomly generated tags. Specifically, when trying to
acquire privilege by unpickling a pickle: If the pickle was created on this boot, the file system simply returns
the tag associated with the pickle. If no process has unpickled a particular pickle on a given boot, the file
system simply creates a new tag for that pickle, and remembers its value for the duration of the boot.

The processes that can acquire pickled privilege can be limited by the pickle’s tracking label and clear-
ance label and the tracking labels and clearance labels on its containing directories. This means that the
pickler can restrict unpickling to a set of processes that are already privileged with respect to some other tag
t by putting tagt in the clearance label of the pickle. For example, ifTQ includes{t ⋆, p⋆}, it could picklep
with CQ = {t ⋆,3}. This means that a processRmay only acquirep from the pickle if it hasTQ(t) = ⋆. This
is similar to how Alice was able to write-protect herDiary file in Section 5.1.

Privilege Hierarchies Pickles enable applications to construct their own privilege hierarchies using the
file system andpasswordprotected pickles. If a key is provided during pickle creation then the correct key
must also be supplied during unpickling. In order to create an independent privilege hierarchy, an application
can first create a password protected pickle with an empty tracking label and clearance label to root its
hierarchy. Then it would create a directory tree, protectedby the first pickle, to match the privilege hierarchy
it desires. After a system reboot, the application can recover the entire privilege hierarchy by unpickling the
root pickle and then using it to unpickle the subsequent levels of the hierarchy; Muenster uses this technique
to store its users’ privilege handles.

5.3 File Server Implementation

The Asbestos file system is composed of a user level file serverand two kernel components, a buffer cache
and a pickle-to-tag mapping table (Figure 6). Processes access the file system by communicating with the
file server, which accesses the disk through a special kernelinterface.

To write data to the disk, the file server first makes sure all the contamination associated with the data
has already been serialized: that is, all tags at a level other than 1 have pickle equivalents. This ensures
that the file server can use the data it is about to write in a consistent way after a reboot. If there were a
non-pickled tag on some file, there would be no way for the file server to figure out which tag in the fresh
boot corresponded to the non-pickled tag.

12



The file server has read and write privileges to the raw disk blocks, so it is effectively trusted with all
data in the file system and all pickled tags, but the file serveris not completely privileged and is not trusted
with any tags or data outside the file system. Specifically, the kernel will not allow the file server to write
contaminated data to the disk. This means that the file servermust have privilege for all tags on any data
going to disk. As a consequence, processes may protect especially secret data from ever being written to
disk by simply contaminating it with a tag that they never grant to the file server. The file system is only as
privileged as it is trusted by the processes that store data in it.

A tagged process may communicate with the file server even if it has not picked all of its tags, so the
file server uses event processes to avoid accumulating and spreading these tags to its clients. Each client of
the file server communicates with a unique event process. Since each event process acts like a fork of the
base process from the perspective of information flow, otherevent processes don’t spread the resulting tags.
However, the file server does need some information to flow between its event processes. Therefore, we
extended the kernel interface to provide that information in the form of a memory-mapped buffer cache and
a map between tags and pickles. Both interfaces are designedto avoid channels. For instance, writing a page
to the buffer cache may communicate information between event processes, but since the kernel only allows
completely uncontaminated writes, the file server cannot leak data for which it does not have privilege.

5.4 Database

We also updated our prior, memory-only database to store itsdata persistently and to support fully general
labels. In designing the database, we used many of the designpatterns found in the file system to preserve
information flow constraints. For example, rows are similarto files in a directory; they each have a tracking
label,Trow and a clearance label,Crow. Database tables are treated similarly to directories and labels in the
database are also immutable.

When processing a read query, the database returns each matching row in a separate message contami-
nated with the strict upper bound of the row’s tracking labeland the tracking label of the querying process.
After all the rows are sent, the database sends a row done message with the tracking label of the process
that submitted the query. The message labels ensure that allcontamination tags propagate to the recipient of
each row. The database sends a separate message for each row because the rows may have different tracking
labels. If the rows did have different tracking labels and the database sent all rows at once, the resulting
message would have a cumbersome number of contamination tags, and the recipient process would likely
become too contaminated to be of further use or be unable to receive the message.

In addition to the labeling scheme, the Asbestos database differs from a conventional database because a
conventional database returns one row at a time and waits forthe client to request the next row. This protocol
would be unusable in Asbestos because if the client is not authorized to receive one of the row messages, it
would never know when to ask for the next row.

Since the database may read many rows during the course of a single query, it runs as a privileged
process. For simplicity, we implemented the database by isolating a commodity database (SQLite) and
adding a front-end process that handles labels. To prevent covert channels, the database only supports a
subset of the SQL language; for example it does not support SQL aggregation queries like SUM.

6 DEBUGGING MECHANISMS

Muenster shows that web services can be built from untrustedcomponents. But how can those components
be built? In a conventional development scenario, a serviceprogrammer builds their service using private
infrastructure, such as a development server, over which they have full control. When things go wrong with
the service, the programmer can examine the entire machine,including error logs, console, and process
memory. Even when physical access to the machine is not possible, developers may collect and expose
debugging information (e.g. through the web browser) without any information flow restrictions.

13



1 init() {
2 tag_t t;
3 sys_new_tag(&t);
4 pickle(private_pickle_path, passwd, *, &t);
5 writefile(priv_file, C={t 3, 1}, V={t *, 3});
6 self_declassify_clearance(t, 3);
7 ...
8 sys_tag_dissociate(t, 1);
9 http_output("Initialization: success!");
10 return;
11 }
12
13 main() {
14 char * buf;
15 init();
16 ...
17 read_from_my_file(buf);
18 http_output(input);
19 }

Figure 7: Block of C-like code demonstrating possible bugs when developing for Muenster.

The wikicode model changes this significantly. An untrusteddeveloper’s wikicode service runs in an
environment owned and built by other developers, who may notmake their code public. Service developers
have no privileged access, such as root or console access, since these would represent gigantic channels.
Instead, service code is constrained to follow stringent security policies, which often prevent that code from
exporting information, including debugging information such as backtraces and error logs. This problem is
unique to information flow controlled systems.

How can a wikicode service be developed in such an environment? This section presents a set of abstrac-
tions, based on the concept ofdebug domains, which allow developers to debug their code without violating
information flow rules. A debug domain represents a set of tags for which the service author has debugging
privilege. Kernel errors and application behavior are exposed to the debug domain, but only as allowed by
the explicit debugging privilege. A service author attempting to debug a service might, for example, create a
special debugging worker, which would explicitly grant privilege to the service’s debug domain. Alternately,
a normal system user experiencing problems with a service might grant his or her privilege to the service’s
debug domain, as long as they trust the service author.

The rest of this section describes examples of errors that plague DIFC applications, the debug domain
abstraction, and some ways we use debug domains to facilitate wikicode and similar development tasks.

Label Errors The observed high frequency of label errors in Muenster development, as well as their im-
portance, made them the primary target for Asbestos debugging. Label errors may have a number of causes,
including insufficient clearance to receive contamination, improper declassification and lack of privilege
with respect to a faulting tag. In Muenster for instance, assume that userAlice develops and uploads her
own module shown in Figure 7. Alice first creates a new tag,t, used to protect her application’s private data,
and pickles it to maket persistent (lines 3 & 4). Note that sysnew tag() grantst ⋆ to the calling process.
Then Alice creates a new file to store the private applicationdata, sets the file labels so that readers get
contaminated tot 3 and writers need to havet ⋆ (line 5) and raises her process’s clearance label with respect
to t, making it possible to receivet 3 contamination (line 6). Additionally, the user drops the tag from her
tracking label (line 8) for two reasons: first, she doesn’t need to hold “unnecessary” privilege, and second
she wants to keep the process’s tracking label as small as possible. Finally, the process informs the user of
successful initialization by sending her a message (line 9).

This block of code will actually not work because of a label error. The first bug is on line 8: the user drops
tagt prematurely. Although the user is able to read the secret file(since it has granted herself clearance to do
so on line 6), she has dropped privilege to declassify information with respect tot. After reading the secret

14



file (line 17), the process gets contaminated witht 3 and can no longer write data to the user’s connection
(line 18), since the network daemon cannot accept this tag. The call to httpoutput() will result in a label
error due tot and there will be a warning on the console, but the user will have no idea of what went wrong.

In this case we would like the developer to receive debug information that would help resolve the error,
such as the tag that caused the label error, the level of that tag in both the sender’s tracking label and the
receiver’s clearance label, the specific type of label error, etc. Providing such debugging information directly
reveals information about the sender’s tracking label and the receiver’s clearance label with respect to the
faulting tag. This information flow should be modeled and forced to adhere to the information flow control
rules of the system, to prevent any information leakage.

6.1 Debug Domains

Label errors have high impact on the development of Asbestosapplications like Muenster (especially for un-
trusted users) since they are frequent during development and can lead to serious, complex bugs. Therefore,
label errors serve as a concrete working example of our approach to debugging.

To debug a label error like the one presented in Figure 7, Alice’s worker processWA would need to
explicitly notify the kernel that it wants to receive debug messages about label errors related to a set of tags,
T. (In this caseT consists of a single tagt.) This is done by instructing the kernel to create an internal
structure called a debug domain and associate the members ofT with the debug domain. Processes, such
asWA, that subscribe to the debug domain receive debug messages generated by the kernel due to errors
involving one or more of these tags.2 Adding member tags and subscribers to a debug domain affectsthe
way information may flow and requires privilege with respectto both the debug domain and the member
tags or subscriber end-points that are being added.3

When an error occurs because oft—or any other member ofT—the kernel sends a debug message to
all subscribers containing details about the offending message, including its source, destination, message
ID, the tag that caused the fault, the level of the faulting handle in the sender’s tracking label and receiver’s
clearance label, and finally the type of label error. To ensure that information flow control rules are not
violated, the debug message carries the contamination of both the sender and the destination of the message
that caused the label error. More specifically, a debug message resulting from a label error while Alice tries to
send a message to the network daemonNetdcarries the label((TWA⊓TNetd)⊔{t1⋆, t2⋆, . . . tn⋆, 3})⊔{p⋆,3},
whereti are the members ofT andp is the destination of the debug message, i.e. the subscriber’s listening
tag. In the case of Figure 7 the message would be contaminatedwith the label(TWA ⊓TNetd)⊔{t ⋆, p⋆,3},
sincet is the only member tag of the debug domain in question. This label contaminates the receiver of the
debug message with both sender and receiver contamination while declassifying information about the set
of tags that are being debugged.

Using Debug Domains in Muenster Debug domains make it possible for Muenster users—including
untrusted remote users—to debug their code on a “live” service, without risking data leaks, by modeling and
managing debugging privilege in a decentralized fashion.

In order for user Alice to debug her application, a separate debugger process holding privilege to receive
messages generated for the relevant debug domains is required to perform collection and exposure of debug
information.

In Muenster users have access to one kind of processes: untrusted worker processes that are part of the
web service and run on the users’ behalf. Therefore Alice canuse a separate, uncontaminated worker process
for debugging purposes4. The debugging worker would need to hold debugging privilege with respect to

2Processes may create and subscribe to an arbitrary number ofdebug domains.
3Every debug domain is represented by a special tag, which itscreator holds privilege for and can grant to other processes.
4A different user’s worker, for example another developer who has agreed to help her debug her service, may be used for

debugging purposes as long as privilege with respect to Alice’s tag (AliceT ) is granted to that worker.

15



X

member tags: member tags:

Kernel

Netd

Debug Domain (ddA)

p

tt, t1, t2

p1, p2

Debug Domain (ddX)
t

kernel
generated by
Debug message

Need privilege over
ddX to modify

subscribers: subscribers:

Message causing label
error due to t

Alice

debug worker through "p"
Message sent to Alice’s

Figure 8: Label error presented in the example of Figure 7. Message sent from Alice to the Network daemon (Netd) causes label
error due to tagt. The kernel generates a debug message and sends it to all subscribers of the debug domains t is a member of
(p from ddAandm, n from some other debug domain represented byddX). Message sent top is received byp’s owner—in our
example “Alice-debug”.

Alice’s relevant tags. All such debugging privilege is encoded in a debug domain: members of the debug
domain are monitored for errors and debugging information is declassified with respect to members and
sent to all subscriber processes—thus modeling debugging privilege as subscription to the relevant debug
domain.

In practice, Alice would send a message to her debugging worker granting privilege with respect to all
of her private tags that she wants to enable debugging for. Alice’s debugging worker would then take the
following steps:

1. Create a new debug domainddAfor Alice (and get privilege over it as the creator)

2. Subscribe toddA(required privilege is held)

3. Add all tags granted by Alice toddAas members (required privilege is held)

4. Optionally addAliceT to the members ofddA

5. Optionally grant Alice privilege overddAso that she can manage it (e.g. add additional members or
subscribe to it).

Using this setup, Alice’s debugging worker will be able to receive debug messages concerning Alice. Each
such message carries appropriate contamination and therefore information flow rules are not violated and
data leaks with respect to non-member tags are prevented. Figure 8 illustrates an instance of these debugging
mechanisms.

Debug domain generalization Debug domains are flexible enough to be applied to various debugging
problems, such as system call tracing, label history tracking, and dead process tracking. System call debug
messages contain the arguments to the system call as well as its return value, a label history debugger tracks
changes in a monitored process’s tracking label or clearance label, and a process death debugger notifies
subscribers of a dying process’s ID.

Looking back to the example code of Figure 7, if the unallocated buffer passed to the function on line 17
leads to a page fault, Alice can use a system call tracing debug domain to identify the problem. Alice may
also use label history to identify the calls that led to dropping privilege (line 8) and getting contaminated
(line 17) with respect tot. Finally, while debugging, one could use a debug domain to identify processes
exiting early or dying due to bugs.

We have successfully used debug domains to implement debugging tools and performed debugging tests.
In test cases, we have verified label error debugging in situations where the user has no console access, just
like the Muenster untrusted developers.

We have also created three library calls using debug domains: strace() which traces a process’s system
calls, lt (), which traces a process’s tracking label changes, and the Asbestoswait() library call. We have

16



 0

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 s
ea

rc
he

s/
se

co
nd

Attempted declassifications/search

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  20  40  60  80  100

A
ve

ra
ge

 s
ea

rc
he

s/
se

co
nd

Percent of declassifications that succeed

(a) (b)

Figure 9: (a) Completed searches per second as a function of the number of rows that the search returned (before declassification).
The declassifier used for these measurements declassified fifty percent of the request. (b) Completed searches per secondas a
function of the percentage of declassifications that succeeded. All searches returned 100 rows from the database.

also built a simple Asbestos debugger library that allows processes to fork debuggers that collect debugging
information on the processes’ behalf. Furthermore, we havebuilt a simple tool around the uploader of
untrusted worker processes that would restart a Muenster worker within a debug domain, capture all debug
messages the developer had clearance to receive and thus provide label error reports and system call tracing
through a web interface.

7 PERFORMANCE

Muenster’s declassification scheme involves a significant amount of work, so we were concerned that the
performance of Muenster would be unreasonably low. To investigate the performance of the declassification
system we evaluated the throughput of Muenster’s search function, the heaviest user of the declassification
scheme, while changing the load on the declassification system. First, we varied the query that the search
worker performs to return differing numbers of results fromthe database. Next, we used a testing declassifier
that let us change the percentage of users that declassified their data. These tests show that the performance
of job searches has room for improvement, but the system is not unreasonably slow.

In these experiments, the Asbestos server was a 2.8GHz Pentium 4 with 1GB of RAM and a 7200RPM
PATA drive with an average seek time of 8.5ms. The experiments took place on a gigabit local network
with a Linux HTTP client generating requests. The server ranthe latest version of Asbestos [1], including
the persistent storage layer described in Section 5. The Muenster applicant database contained 2500 rows,
each with about 30 bytes of data. Our experiments accessed data from persistent storage, but did not do any
logging.

Figure 9(a) shows the number of searches that complete per unit time, as the number of rows returned
by each search varies. As we expected, performance is roughly linear, with the cost of additional rows
accounted for mainly by additional declassification and additional search worker processing.

Figure 9(b) indicates that the cost of declassifying (vs. rejecting the declassification request) is small.
The component breakdown in Figure 10 shows mostly constant costs regardless of the fraction of rows
declassified, with the exception being the search worker. The search worker formats and returns the data to
the user and therefore is expected to do more work as more rowsare declassified. The search worker is also
written in Python which is not very efficient.

In summary, per-row declassification impacts request performance by a factor of roughly three. Though
significant, this cost does not rule out the approach.

8 DISCUSSION

The Muenster application and wikicode in general reaped twokey benefits from using information flow
control (IFC). First, confined, automated declassificationis a more expressive mechanism than simple static
ACLs or capabilities. For instance, Muenster users can specify access control policies over employers they’re

17



 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  20  40  60  80  100

A
ve

ra
ge

 K
cy

cl
es

/s
ea

rc
h

Average declassifications per search (out of 100)

DB
Labels

Muenster
IPC

Other
Search Worker

Figure 10: The cost of different components in the system, as a function of the percentage of rows that the declassifier permits. All
searches returned 100 rows from the database.

not even allowed to know are in the system. More importantly,IFC provides a precise yet high-level language
for specifying our end-to-end security policies. We built Muenster by envisioning desired security policies,
then trying to implement them using labels. When we had difficulty in making this translation, we often
discovered holes in the policy itself.

Security policies in Asbestos are specified using labels andtags, and in the system we describe, all priv-
ileged code—such as application declassifiers—make policydecisions based on labels and tags. Originally,
we had planned for more complex declassifiers: perhaps a userwould want to reveal their employment his-
tory more broadly than their name and address, even though both history and name were tagged identically.
However, we found that these policies—which would declassify selectedinformation based on thecontents
or resultsof a query, rather than declassifyingall secret information based on theidentityof a querier—were
extremely vulnerable to covert channel exploits. A declassifier could be tricked into declassifying an appli-
cant’s name by a worker that encoded that name in a query’s result using steganography. Our declassifiers
thus make their decisions on the basis of information that Asbestos IFC renders unforgeable, namely labels,
query history, and explicitly trusted outside information. A key lesson, also mentioned in Section 4.6, is that
sources of information that need to be declassified differently must given distinct tags.

The Asbestos label mechanisms go a long way toward confining communication within the bounds of
the security policy, but as in other IFC systems, covert channels are a persistent challenge. With current
commodity hardware, it is possible to leak data through shared system resources [18]. Software covert
channels present a more fundamental challenge, however, both because they can be replicated for high
throughput and because they naturally appear in common software patterns.

Whenever information travels from one contamination levelto another, covert channels can creep in.
Flow control—whether there was room to enqueue a message, for example—inherently conveys informa-
tion back to the source and thus cannot be used across levels.Instead, our usual solution is to place a
privileged mediator process between the contamination levels. In Muenster, when data flows from lower
to higher contamination, the mediator is usually the file system or the database. For example, to process a
Muenster candidate search, the request query and candidateprofile both climb from their previous contam-
ination levels to the employer-candidate combined level byway of the database front end. Such privileged
mediators are less confined by IFC and must be careful not to expose information leaks; for example, while
developing the database front end and the declassifier service, we discovered and corrected several over-
looked covert channels. In future work, it might be interesting to consider integrating finer-grained language

18



based solutions, such as JiF [16], for these few remaining critical points in the system.
Wikicode is not immune to other covert channels, although webelieve they are limited in number and

mainly restricted to timing leaks. For example, declassifier agents can modulate the time they take before
sending a response, yielding a covert channel to the search worker. This particular channel can be limited
by bounding or quantizing the amount of time a query takes before returning, although this remains future
work for us.

Another artifact of operating in the physical world is that users may try to misrepresent their identities
when making accounts on Muenster, thus hampering IFC policies. To mitigate this risk, Muenster can verify
user identities when they create accounts, much like financial institutions do when users create online web
accounts.

9 CONCLUSION

In this paper we presentwikicode, a new application development model that enables the co-operation of
mutually untrusted developers while maintaining the application’s security guarantees. Wikicode leverages
the flexible information flow control model furnished by Asbestos, profiting from the power of automated
declassification and the expressiveness of labels for specifying high-level security policy. Declassifiers and
other confined modules can use information their creators are not authorized to see, yet they have the full
power of the operating system at their disposal, without needing rigidly specified confinement policies.
Modules simply pick and choose what information and services they need.

In order to support wikicode we extend Asbestos to persist privileges in a highly flexible manner, by
storing them in the filesystem using thepickleprimitive. We also add a crucial feature for introspection,the
debug domain, allowing untrusted programmers to debug their applications without violating the security
policy.

We successfully demonstrated wikicode with the Muenster application, a simple job searching site that
makes heavy use of customizable, untrusted code, yet maintains the invariant that even the mere presence of
employers and job seekers in the system is kept secret from other users unless explicitly disclosed. Although
covert channels do remain a challenge, as yet they seem to be manageable. Finally, we showed that, in spite
of the extra effort needed for all our security mechanisms, Muenster’s performance is reasonable.

10 ACKNOWLEDGMENTS

This work was supported by the joint NSF Cybertrust/DARPA grant CNS-0430425 and Nokia.

REFERENCES

[1] Homepage of the Asbestos operating system, .http://asbestos.cs.ucla.edu.

[2] Livejournal S2 manual, .http://www.livejournal.com/doc/s2/.

[3] D. E. Denning. A lattice model of secure information flow.Communications of the ACM, 19(5):236–243, May 1976.

[4] Trusted Computer System Evaluation Criteria (Orange Book). Department of Defense, Dec. 1985. DoD 5200.28-STD.

[5] P. Efstathopoulos et al. Labels and event processes in the Asbestos operating system. InProc. 20th ACM Symposium on
Operating Systems Principles (SOSP ’05), Oct. 2005.

[6] T. Fraser. LOMAC: Low water-mark integrity protection for COTS environments. InProc. 2000 IEEE Symposium on Security
and Privacy, pages 230–245, May 2000.

[7] R. P. Goldberg. Architecture of virtual machines. InProc. AFIPS National Computer Conference, volume 42, pages 309–318,
June 1973.

[8] J. Gosling, B. Joy, G. Steele, and G. Bracha.The Java Language Specification. Addison-Wesley Professional, third edition,
2005.

[9] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E.Kahn. A VMM security kernel for the VAX architecture. In
Proc. 1990 IEEE Symposium on Security and Privacy, pages 2–19, May 1990.

[10] M. Krohn. Building secure high-performance web services with OKWS. InProc. 2004 USENIX Annual Technical Confer-
ence, pages 185–198, June 2004.

19



[11] M. Krohn et al. Make least privilege a right (not a privilege). InProc. 10th Hot Topics in Operating Systems Symposium
(HotOS-X), June 2005.

[12] C. E. Landwehr. Formal models for computer security.ACM Computing Surveys, 13(3):247–278, Sept. 1981.

[13] J. Levinger and R. Moran. Oracle Label Security Administrator’s Guide, Mar. 2002.http://tinyurl.com/hu4qz.

[14] P. Loscocco and S. Smalley. Integrating flexible support for security policies into the Linux operating system. InProc. 2001
USENIX Annual Technical Conference—FREENIX Track, pages 29–40, June 2001.

[15] M. D. McIlroy and J. A. Reeds. Multilevel security in theUNIX tradition. Software—Practice and Experience, 22(8):
673–694, Aug. 1992.

[16] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model.ACM Transactions on Computer Systems,
9(4):410–442, Oct. 2000.

[17] T. Nasukawa and J. Yi. Sentiment analysis: capturing favorability using natural language processing. InK-CAP ’03: Pro-
ceedings of the 2nd international conference on Knowledge capture, 2003.

[18] D. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: the case of aes. InCryptology ePrint Archive,
Report 2005/271, 2005.

[19] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?: sentiment classification using machine learning techniques. InEMNLP
’02: Proceedings of the ACL-02 conference on Empirical methods in natural language processing. Association for Computa-
tional Linguistics, 2002.

[20] W. Rjaibi and P. Bird. A Multi-Purpose Implementation of Mandatory Access Control in Relational Database Management
Systems. InProc. 30th Very Large Data Bases Conference (VLDB ’04), Aug. 2004.

[21] G. Salton and C. Buckley. Term-weighting approaches inautomatic text retrieval.Inf. Process. Manage., 24(5):513–523,
1988.

[22] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems.Proc. of the IEEE, 63(9):1278–1308,
Sept. 1975.

[23] J. S. Shapiro, J. Smith, and D. J. Farber. EROS: A fast capability system. InProc. 17th ACM Symposium on Operating
Systems Principles, pages 170–185, Dec. 1999.

[24] VMware. VMware and the National Security Agency team tobuild advanced secure computer systems, Jan. 2001.
http://www.vmware.com/pdf/TechTrendNotes.pdf.

[25] R. Watson, W. Morrison, C. Vance, and B. Feldman. The TrustedBSD MAC framework: Extensible kernel access control for
FreeBSD 5.0. InProc. 2003 USENIX Annual Technical Conference, pages 285–296, June 2003.

[26] D. Wetherall. Active network vision and reality. InProc. 17th ACM Symposium on Operating Systems Principles, Dec. 1999.

[27] N. B. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making information flow explicit in HiStar. InProc. 7th
Symposium on Operating Systems Design and Implementation (OSDI ’06), Nov. 2006.

20




