
An Inertial Measurement Unit for User Interfaces

by

Ari Yosef Benbasat

B.A.Sc., University of British Columbia (1998)

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2000

@ Massachusetts Institute of Technology 2000. All rights reserved.

Author
Program in Media Arts and Sciences

September 8, 2000

Joseph A. Paradiso
Principal Research Scientist

MIT Media Laboratory
Thesis Supervisor

U

Chair, Department
Stephen A. Benton

Committee on Graduate Students
Progr bm in Media Arts and Sciences

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

OCT 2 0 2000 0

LIBRARIES

Certified by
7

7

Accepted by . . 114 % of . 0- I 11Z st L V. L.--- " -

2

An Inertial Measurement Unit for User Interfaces

by

Ari Yosef Benbasat

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

on September 8, 2000, in partial fulfillment of the
requirements for the degree of

Master of Science in Media Arts and Sciences

Abstract

Inertial measurement components, which sense either acceleration or angular rate, are be-
ing embedded into common user interface devices more frequently as their cost continues to
drop dramatically. These devices hold a number of advantages over other sensing technolo-
gies: they measure relevant parameters for human interfaces and can easily be embedded
into wireless, mobile platforms. The work in this dissertation demonstrates that inertial
measurement can be used to acquire rich data about human gestures, that we can derive
efficient algorithms for using this data in gesture recognition, and that the concept of a
parameterized atomic gesture recognition has merit. Further we show that a framework
combining these three levels of description can be easily used by designers to create robust
applications.
A wireless six degree-of-freedom inertial measurement unit (IMU), with a cubical form
factor (1.25 inches on a side) was constructed to collect the data, providing updates at
15 ms intervals. This data is analyzed for periods of activity using a windowed variance
algorithm, whose thresholds can be set analytically. These segments are then examined
by the gesture recognition algorithms, which are applied on an axis-by-axis basis to the
data. The recognized gestures are considered atomic (i.e. cannot be decomposed) and are
parameterized in terms of magnitude and duration. Given these atomic gestures, a simple
scripting language is developed to allow designers to combine them into full gestures of
interest. It allows matching of recognized atomic gestures to prototypes based on their
type, parameters and time of occurrence.
Because our goal is to eventually create stand-alone devices,the algorithms designed for this
framework have both low algorithmic complexity and low latency, at the price of a small
loss in generality. To demonstrate this system, the gesture recognition portion of (void*):
A Cast of Characters, an installation which used a pair of hand-held IMUs to capture
gestural inputs, was implemented using this framework. This version ran much faster than

the original version (based on Hidden Markov Models), used less processing power, and

performed at least as well.

Thesis Supervisor: Joseph A. Paradiso
Title: Principal Research Scientist, MIT Media Laboratory

4

An Inertial Measurement Unit for User Interfaces

by

Ari Yosef Benbasat

The following people served as readers for this thesis:

Thesis Reader A T Bruce M. Blumberg

Assistant Professor of Media Arts and Sciences
Asahi Broadcasting Corporation Career Development Professor

of Media Arts and Sciences

Thesis Reader
Paul A. DeBitetto
Program Manager

Special Operations and Land Robotics Group
Charles Stark Draper Laboratory

6

Acknowledgments

To Joe Paradiso, who brought me to the Lab when I knew nothing, and then provided

me with his enthusiastic suggestions, directions and advice to support my growth. If I am

one day a good engineer, much of it will be Joe's doing.

To Bruce Blumberg and Paul DeBitteto, my gracious readers, for their help and will-

ingness to operate under deadline. Also, many thanks to Bruce for asking me to work on

(void*).

To all those who helped me along: Matt Berlin and Jesse Gray, who coded up the script-

ing system at the last moment and contributed to its structure; Andy Wilson for wonderful

advice on gesture recognition; Michael Patrick Johnson for his patience in helping me

with quaternion math; Marc Downie for his patience in helping me with virtually every-

thing else; Jacky Mallett, my partner in crime in late-summer thesis preparation; and

Pamela Mukerji, who wrote some of the embedded code and helped hunt down references

and figures.

To Ari Adler and Ara Knaian, wonderful officemates who made the rough times at the

Lab bearable and the good times better.

To the Responsive Environments Group, my good friends and home away from home.

To the Synthetic Characters, for use of their code base and their friendship. It was a

joy to work on (void*) with them.

To the Natural Sciences and Engineering Research Council, for financial support.

And finally, to my parents, who have never spared any time, effort or love if it would make

my life in any way better.

8

Contents

Abstract

List of Figures

List of Tables

1 Introduction
1.1 Historical Methods

1.1.1 Inertial Technologies . .
1.1.2 Gesture-Based Systems

1.2 Prior Art
1.3 Project Goals

2 Hardware Systems
2.1 Summary .
2.2 IMU High Level Design

2.2.1 Core functionality
2.2.2 Mechanical Design
2.2.3 Subsidiary systems

2.3 IMU Component Selection
2.3.1 Inertial Sensors
2.3.2 Processors
2.3.3 Radio Frequency Transmitters/Receivers
2.3.4 Other Components

2.4 IMU Low Level Design
2.4.1 Core functionality
2.4.2 Mechanical Design
2.4.3 Subsidiary systems

2.5 Microcontroller Embedded Code
2.5.1 Data Collection
2.5.2 RF Transmission
2.5.3 Capacitive Signaling

2.6 Receiver Hardware
2.7 Receiver Software

25
. 25
. 26
. 26
. - 28
. 29
. 29
. 30
. 32
. 32
. 35
. 36
. 36
. 37
. 38
. 39
. 39
. - 40
. - 4 1

. 42

. 43

3 Sample Data Stream

4 Analysis 49
4.1 Kalman Filtering 49

4.1.1 Principles and Algorithms 50
4.1.2 Limits of Inertial Tracking . 52

4.2 Frequency Space Filtering . 54
4.2.1 Low Pass . 54
4.2.2 High Pass . 55

4.3 Activity Detection . 55

5 Gesture Recognition 63
5.1 Key Definitions . 63

5.1.1 G esture . 64
5.1.2 The Parameterization . 65

5.2 State-Based Approaches . 67
5.3 Single-Axis Gesture Recognition . 68

5.3.1 Pros/Cons . 68
5.3.2 Algorithms . 69
5.3.3 Interpretation . 75

5.4 Entropic Limits . 77

6 Output Scripting 79
6.1 Scripting System . 79

6.1.1 High-Level Structure . 80
6.1.2 Low-Level Code . 81

6.2 Sample Script . 83

7 Sample Application 85
7.1 Solvable Problems . 85
7.2 (void*): A Cast of Characters . 86

7.2.1 Summary of Installation . 87
7.2.2 T hen . 88
7.2.3 N ow . 89
7.2.4 Comparison . 92

8 Conclusions 93
8.1 Summary . 93
8.2 Future Work . 95
8.3 Future Applications . 97

A Abbreviations and Symbols 99

B Glossary 101

C Schematics, PCB Layouts and Drawings 103

D ADuC812 Embedded Code 113

E MATLAB Code 119

F (void*) Recognition Script 127

Bibliography 131

12

List of Figures

1-1 System/Document Organization . 22

2-1 Current IMU Hardware and Reference Frame 26
2-2 High-level Data Flow . 27
2-3 Data Flow in the Embedded Code . 39
2-4 ADXL202 Digital Output . 40

2-5 Current Basestation in Shielded Case . 42

3-1 Sample Data Stream . 46

4-1 Error Growth over Time for Inertial Tracking of Gesture 53
4-2 Gesture Artifacts Caused by High-pass Filtering 56
4-3 Linear Correlation as Activity Detection Algorithm for Accelerometer Data 57
4-4 The Piecewise Model Used in the Activity Detection Algorithm 57
4-5 Windowed Variance as Activity Detection Algorithm for Accelerometer Data 61

5-1 A Parsed Accelerometer Data Stream . 73
5-2 A Parsed Gyroscope Data Stream . 76

6-1 Flow of Data in the Scripting System. 80
6-2 Sample Output Script . 84

7-1 Buns and Forks Interface to (void*) . 87

C-1 Main IMU Schematic . 104
C-2 Main IMU PCB - Top . 105
C-3 Main IMU PCB - Bottom . 106
C-4 Receiver Schematic .. 107
C-5 Receiver PCB - Top layers . 108
C-6 Receiver PCB - Bottom layers . 109
C-7 Receiver Base Drawing . 110

C-8 Receiver Cover Drawing . 111

14

List of Tables

2.1 Overview of available inertial components. 31
2.2 Overview of available microcontrollers. 33
2.3 Overview of available RF parts. 34

3.1 Gestures in Sample Data Stream . 47

4.1 Expected Variance Ranges for Various Window Sizes for Accelerometer Data 59

5.1 Recognized Accelerometer Gestures . 72
5.2 Recognized Gyroscope Gestures . 75
5.3 Gesture Recognition Rate for Various Sampling Rates and Accuracies . . . 77

7.1 Gesture Set for (void*) . 88
7.2 Results of Informal Testing of New Algorithms 91

16

Chapter 1

Introduction

Inertial measurement components, which sense either translational acceleration or angular

rate, are being embedded into common user interface devices more frequently. Examples

include VFX1 virtual reality headtracking systems[1], the Gyro Mouse[2] (a wireless 3D

pointer), and Microsoft's SideWinder tilt-sensing joystick[3]. Such devices hold a number

of advantages over other sensing technologies such as vision systems and magnetic trackers:

they are small and robust, and can be made wireless using a lightweight radio-frequency

link.

However, in most cases, these inertial systems are put together in a very ad hoc fashion,

where a small number of sensors are placed on known fixed axes, and the data analysis

relies heavily on a priori information or fixed constraints. This requires a large amount of

custom hardware and software engineering to be done for each application, with little reuse

possible.

This dissertation proposes to solve this problem by developing a compact six degree-of-

freedom inertial measurement unit (IMU) as well as an analysis and gesture recognition

framework. My vision is that this IMU could easily be incorporated into almost any interface

or device, and a designer would be able to quickly and easily specify the gestures to be

detected and their desired response.

1.1 Historical Methods

1.1.1 Inertial Technologies

Inertial measurement devices have a very rich history[4]. The field began with motion-

stabilized gunsights for ships and was later driven by guidance systems for aircraft and

missiles (dating to the V2 rocket), providing a large body of work to draw on. Because

of the relatively large cost, size, and power and processing requirements of these systems,

they were previously not appropriate for human-computer interfaces and consumer appli-

cations. However, recent advances in micro-electromechanical systems (MEMS) and other

microfabrication techniques have led to lower cost, more compact devices, while at the same

time, the processing power of personal computers has been increasing exponentially. There-

fore, it is now possible for inertial systems, which previously required large computers and

large budgets, to reach end-users. The Intersense[5] inertial-acoustic tracking system is an

example of a commercial product exploiting this new market.

Inertial tracking systems such as Intersense's are known as strapdown systems, because

the sensors are fixed to the local frame of the instrumented object. Many of the early

military applications were closed-loop systems, where the inertial sensors are mounted on

a controlled gimballed platform which attempts to remain aligned with the world frame

regardless of the motion of the body. Such systems can operate over a much smaller dynamic

range and therefore provide higher accuracy, but they also tend to be fairly large and costly.

Therefore, for low-cost human interface applications, open-loop strapdown systems are more

appropriate.

Recent uses of inertial sensors in major products have tended toward the automotive regime.

The first major application of MEMS accelerometers was as a cheap, reliable trigger mecha-

nism for airbag deployment' and they have since been applied to active suspension control,

as well as other applications[7]. Gyroscopes are most often used to provide turn rate infor-

mation to four wheel steering systems to help the front and rear tires match speed[8]. They

Interestingly enough, gyroscopes are being explored for the same purpose, this time with roof airbag
deployment for vehicle roll[6].

have very recently been used to provide heading information for in-vehicle tracking systems

(which obtain position from the speedometer or a Global Positioning System unit).

There are also a number of smaller systems which use inertial components for navigation.

Pedometry can be done in an entirely feature-based fashion using accelerometer data and

knowledge of the average rate of human foot falls[9]. A much more complex device is a

suitcase-sized inertial measurement system, designed at Draper Laboratories, which can be

carried through a building, and uses features such as the rate of foot falls, path crossing

and others, along with some forward integration of the signals, to reconstruct the route

taken[10].

1.1.2 Gesture-Based Systems

Computer vision is the sensing modality used in the vast majority of current gesture-based

systems. Academic work done at the MIT Media Laboratory in this field will be described

and as well as a commercial non-vision product.

The Pfinder system was designed to find human shapes in a video stream, separate them

from the background, and then track the motion of the hands and head[11]. People are found

by comparing a view of an empty room to that of an occupied one. Their shapes then are

broken into a set of blobs which represent portions of the anatomy (torso, foot, hand, etc.),

and are tracked using knowledge of Newtonian mechanics and limitations on human move-

ment. This provides the raw data for gesture recognition, which was usually implemented

using Hidden Markov Models[12]. Applications exploiting Pfinder include real-time recog-

nition of American Sign Language[13] and the augmentation of dance performances[14].

Andrew Wilson's Ph.D. dissertation[15] describes a number of interesting vision-based mod-

els, culminating in a system built around Bayesian networks[16]. This system can both rec-

ognize trained gestures and learn new gestures in real-time, by using contextual information.

It again uses a blob based representation of form and separates areas of interest from the

background. This work provides the foundation for gestural human-computer interaction

by allowing the computer to learn how a user wishes to interact with it on the fly, rather

than forcing the user to conform to a predesignated interface.

In terms of commercial products, one popular non-vision system is the Analogous Gypsy

motion capture system[17]. It uses an exoskeleton to tracks absolute human motion in the

body frame by measuring joint rotation. The system is very popular in user modeling, and

its data can be used in gesture recognition.

Though these systems have proven performance, both in term of raw data and recognition

rate, they require a significant infrastructure. The Gypsy is tethered and requires a bulky

infrastructure; the vision-based systems need a number of fixed cameras to work, suffer

from problems of occlusion, and require a large amount of processing power.

1.2 Prior Art

This project builds on previous projects from the Media Laboratory's Responsive Environ-

ments and Physics and Media groups. Its direct lineage can be traced to the Expressive

Footwear[18] project, where a small printed circuit card instrumented with inertial sen-

sors (gyroscopes, accelerometers, magnetic compass), among a number of others (sonar,

pressure), was mounted on the side of a dance shoe to allow the capture of multi-modal

information describing a dancer's movements. This data was then filtered for a number of

specific features, such as toe-taps and spins, which were used to generate music on the fly via

a computer running a simple musical mapping algorithm. While this system collected the

appropriate data for its circumstance, it could not be used in an application with arbitrary

orientation because the chosen set of sensors measure only along specific axes (as suggested

by the constraints of the shoe and a dancer's movement). Further, the circuit card was too

large for many applications. Therefore, it was decided to create a system that would contain

the sensors necessary for full six degree-of-freedom inertial measurement. The system had

to be compact and wireless, to allow the greatest range of possibilities. A prototype version

of the hardware was built by the author and was used in the (void*): A Cast of Characters

installation, which was demonstrated at SIGGRAPH '99[19] and is described in section 7.2.

There are currently a number of six-degree-of-freedom systems commercially available, and

several of them are targeted at either the high-end user interface market or the motion cap-

ture market. The Ascension Technology miniBird 500 [20] magnetic tracker is the smallest

available at 10mm x 5mm x 5mm making it particularly easy to use. However, the closed

loop nature of the sensor requires that it be wired, and the base unit is fairly cumbersome.

The Intersense IS-900 inertial-acoustic system[21] offers excellent accuracy over a very large

range, but requires a fair amount of infrastructure for the sonar grid (used in position track-

ing). Crossbow Technologies offers the DMU-6X inertial measurement unit[22] which has

excellent accuracy, but is quite large (> 30 in 3). Also, all these systems are fairly expensive

and none match our specification in terms of ease of use (small, wireless, low-cost).

There are two major threads in the academic literature on the uses of inertial components

as a gestural expression. The first is in the area of musical input. Sawada[23] presents an

accelerometer-only system that can recognize ten gestures based on a fairly simple feature

set. These gestures are then used to control a MIDI (Musical Instrument Digital Interface)

instrument. The Brain Opera, a large-scale interactive musical exhibit produced by the

Media Laboratory, included an inertially-instrumented baton as an interface[24], among

a number of other interesting examples[25]. The Conductor's Jacket[26] uses a magnetic

tracker and biological sensors to distill expressive information from a conductor's movement.

In each of these cases, the gesture recognition techniques are very specific to the application

at hand and are therefore difficult to generalize.

The second area is the use of inertial sensors as a stand-alone interface for palmtop com-

puters. The Itsy system from Compaq[27] uses accelerometers both as a static input, with

the user tilting the device to scroll images, and a dynamic input, where fanning the device

zooms the image in or out. Speculative execution is used to distinguish between the two

operations since the start of a fan looks like a tilt. Interesting design ideas and concepts for

such devices are presented by Small and Ishii[28] and Fitzmaurice[29]. While interesting,

the input spaces of devices such as the Itsy tend to be very small as they consider only

orientation (either static or dynamic) as an input parameter.

This dissertation aims to greatly increase both the input space of inertial devices and the

ease of use thereof, as is described in the next section.

21

Hardware -A-J Data -- \ Data Gesture --2 Scripting -\ Otu
Systems -I/Streams -- V/ Analysis -VRecognition -f Language Output

Chapter 2 Chapter 3 Chapter 4 1 Chapter 5 Chapter 6 Chapter 7

Figure 1-1: System/Document Organization

1.3 Project Goals

The overall goal of this research project is to explore the advantages of inertial sensing in

gesture recognition-based applications. The claim made is that inertial sensors will provide

a lower-cost, more robust and more flexible sensing modality than those currently in use. As

a step towards proving this claim, a framework was designed and built to enable application

designers to use inertial sensors with a minimum of knowledge and effort.

The first step in the framework is the inertial measurement unit (IMU), an electronics

package that provides three axes each of acceleration and rotation sensing, as well as a

microcontroller for data collection and processing, and a wireless link to transmit the data

to an external computer. This data is then passed through an analysis algorithm to prepare

the data for gesture recognition. This analysis could include, but is certainly not limited

to, orientation tracking, data smoothing, and activity detection. The transformed data is

then analyzed using a parameterized gesture recognition system, which matches portions

of the incoming data stream to a set of predetermined patterns. The recognition system

will give both a sense of the quality of a gesture (a straight line, a curve, etc) as well as

its parameters (fast, short, etc). The framework provides a scripting language to allow an

interface designer to link the occurrence of a gesture (or gestures with certain parameters,

two coincident gestures, etc) to output routines of their choosing, effectively attaching

meaning to these gestures. The data flow is shown in figure 1-1.

Such a framework would help interface designers bypass much of the difficulty associated

with the use of inertial sensors in their devices. Knowledge of analog electronics, microcode,

and radio frequency transmission is no longer required. The fragility of ad hoc gesture

recognition systems and the complexity of data analysis are avoided. The designers simply

determine the gestures associated with the movements in which they are interested (software

is provided to aid this process) and in turn connect each gesture to output routines.

22

Systems built with this framework will realize several benefits from inertial technologies.

They are open-loop systems, and therefore can be wireless (contrast with magnetic trackers).

Their compact size allows for direct instrumentation of the object of interest and therefore

provides direct measurement of the quantities of interest (contrast with computer vision).

Further, as discussed above, both market pressures and research progress will lead to these

sensors becoming increasingly more economical in the short term.

This framework also points towards the long term goals of this project (beyond the scope of

this document), which is to realize the sensor package as a stand-alone device, rather than

one which sends its data off-board for processing. Given simple (or simplified) algorithms for

each of the framework functions described above, it is possible to create stand-alone devices

that have a sense of their own movement and the ability to respond to this knowledge in

some simple way. Imagine shoes that beep when you are overrotating, golf clubs that yell

"Slice!" when you are about to slice, or even juggling balls that can teach you how to

juggle[30]. This technology points the way to a world of intelligent unwired devices.

Chapter 2 will discuss the design of the inertial measurement unit (IMU) we created, and

a sample data stream therefrom is shown in Chapter 3. Chapter 4 will describe various

analysis techniques relevant to inertial measurement and tracking and Chapter 5 presents

the single axis gesture recognition algorithms we created for this project, which allow for

efficient robust gesture recognition on both full and reduced sets of inertial sensors with

few limitations. Chapter 6 presents the simple scripting language we designed to ease

the creation of the sample application, described in Chapter 7. Chapter 8 presents the

conclusions and future directions.

24

Chapter 2

Hardware Systems

The hardware systems are the foundation of this project, providing the core sensor data

which the analysis and gesture recognition software later interpret. The design of the

wireless inertial measurement unit (IMU) itself will be described in some detail, including

an examination of component selection and the operation of the unit's microcode. The

general operation of the receiver hardware and software will also be explained. For readers

not interested in the technical details, a short summary is also provided.

2.1 Summary

The physical design of the wireless inertial measurement unit is a cube 1.25 inches on a

side (volume < 2 in3) and is shown in figure 2-1. Two sides of the cube contain the inertial

sensors. Rotation is detected with three single-axis gyroscopes and acceleration is measured

with two two-axis accelerometers . The sensor data are input to a microcontroller (on the

remaining side) using a 12-bit analog-to-digital converter (ADC). The raw sensor values

are then transmitted wirelessly to a separate basestation, which connects to a data analysis

machine via a serial link. In addition, short-range signaling circuitry was provided for use in

proximity sensing. The complete system operates at 3 V and draws 26 mAl while powered,

Most of the draw is from the processor and the gyroscopes, split evenly between them.

Figure 2-1: Current IMU Hardware and Reference Frame

and runs for about 50 hours on two batteries placed in parallel. These batteries are also

small enough to fit inside of the cube formed by the hardware. The total cost of the system,

in prototype quantities, is approximately US$300.

2.2 IMU High Level Design

We begin by considering the requirements for overall functionality of the wireless inertial

measurement unit; in effect, what are its defining characteristics. Without such an analysis,

it is impossible to complete a proper low-level design, much less choose components.

At a minimum, the IMU must provide three axes of both acceleration and rotation sensing,

as well as data collection and a wireless link. Subsidiary systems provide capacitive signaling

and power supply. Mechanical and structural details that can be vital when using inertial

sensors are also discussed.

2.2.1 Core functionality

There are three main subsystems in the core functionality: sensing, processing and com-

munication. Each is examined in turn, and a schematic of high-level data flow is shown in

figure 2-2.

Figure 2-2: High-level Data Flow

The sensing subsystem must detect a full 6 degrees of freedom (DOF) of motion. To

achieve this, the IMU will use three axes each of accelerometers and gyroscopes. While it is

possible to measure rotation using two (or more) co-axial accelerometers[31], such systems

must be completely rigid and tend to be rather large (on the order of an aircraft width)

as their resolution is proportional to the separation of the accelerometers. In contrast,

gyroscopes provide a more direct measure of rotation in a compact space. Magnetometers

are sometimes used to measure orientation relative to the Earth's magnetic field, but only

provide two DOF and are hard to use indoors, where the local magnetic field varies wildly.

A sampling rate of approximately 50 to 100 Hz and a signal resolution of 8 to 12 bits are

expected to be necessary for adequate recognition latency and accuracy (this assumption

is tested in Section 5.4). To match this requirement, the sensors should have a bandwidth

of at least 50Hz (by Nyquist's theorem [32]). To achieve the desired resolution, the signal

to noise ratio (SNR) must be greater than - 60 dB. Analog processing will be required to

low-pass filter the signal, as well as to modify the sensor output ranges to match the input

range of the ADC.

The processing subsystem collects this filtered data from the sensors, either by timing pulse-

width-encoded digital signals or using an analog to digital converter (ADC) to acquire analog

outputs. Some simple signal manipulation is done on board the IMU, consisting primarily

of the digital signal timing mentioned above, as well as encoding the data for transmission

via a radio frequency (RF) link. Processor speed is relatively unimportant due to the

low update rate (relative to usual clock speeds in such devices) and the limited processing

being done on board. However, the ADC speed should be fast enough to avoid becoming a

bottleneck.

The final subsystem is the communication hardware. To allow the IMU to be used in as

wide a variety of situations as possible, a wireless communication system was chosen. The

necessary range will be relatively short, on the order of ten meters, and the communication

rate should be at least 9600 bps2. A wired interface should also be provided for debugging

purposes.

At this point, we note that a signal path has been established. The inertial sensors react

to movement, their output signals are filtered and then collected by a processing unit. This

unit packages up the data and then transmits it via a wireless link to a receiving basestation

(described in Section 2.6) which then sends it along to a computer for analysis (Chapter 4).

2.2.2 Mechanical Design

In general, mechanical design tends to be a minor concern for hardware systems. However,

since this system uses inertial sensors, matters such as size, strength and rigidity are very

important.

The prime consideration, of course, is the placement of the sensors. Since the components

chosen (see next section) are virtually certain not to sense along all three axes, circuit cards

at right angles to each other are necessary. Specifically, the design uses three square planar

circuit panes, at right angles, forming half a cube (see figure 2-1). They are both physically

and electrically connected using right angle connectors. Note that while it is difficult to

guarantee that the panes will be exactly perpendicular to each other, any misalignment can

be dealt with in software (if necessary).

The other consideration is the quality of the electrical connections, since the device will

be, by definition, undergoing a fair amount of motion and stress. Therefore, the battery is

soldered in place, and any vias must be soldered through to ensure that connectivity is not

lost if the circuit boards flex.

2Assuming 2 bytes per measurement, 6 DOF x 2 bytes = 12 bytes = 96 bits (disregarding per byte and
per packet overhead). Therefore, 9600 bps is the absolute minimum for 100 Hz updates.

2.2.3 Subsidiary systems

The subsidiary systems are those which either provide extra input or outputs, such as the

capacitive coupling system, or perform necessary though not defining tasks, such as the

power system.

Because this is a wireless system, batteries must be used as the power supply for the

hardware. These batteries should be able to power the full system for at least a day to

maintain the continuity of user experience, not to mention the usual maintenance and

ecological concerns of using large quantities of batteries. The batteries need to be small

enough to fit unobtrusively either within the IMU (which would also reinforce the structure)

or on an outside face. A voltage regulator and switch circuit will also be necessary.

The only subsidiary output capability in the current design is a capacitive transmit plate,

designed to allow the IMU to be detected if it is over a similar receive plate. Varying

the transmit frequency (or sending a modulated code) will allow differentiation of devices.

Though not implemented, it would be very easy to use the same electrode as either a

receiver, so the device could detect when it was over a transmitting plate, or as a load-

sensing plate, such that the device could detect if it was being held or touched[33]. A

simple input header for auxiliary sensors of various sorts would also be valuable3 , but is not

in the current design.

2.3 IMU Component Selection

In selecting components, we consider two sets of goals gleaned from the above design. The

first are the functional requirements - 6 DOF sensing, data processing, data transmission.

The second are the usability goals - small and wireless, as well as low-cost and low-power.

With those in mind, we now examine part selection in four broad categories: the inertial

sensors themselves, microprocessors, RF transmitters and receivers, and other components.

3E.g. the data from a glove measuring finger bend would quite nicely complement the motion information

from an IMU mounted on the wrist.

2.3.1 Inertial Sensors

While inertial sensors have a long history, it is only in recent years that their price and

size have dropped dramatically, especially with the advent of microfabrication technology.

Table 2.1 gives an overview of some of the sensors available on the market. This table is

skewed towards lower cost, non-mechanical sensors as per the design criteria.

In the case of the accelerometers, the Analog Devices components are notably superior for

our applications. They provide adequate accuracy and bandwidth as well as excellent power

drain and price per axis. The ability to switch between the pin compatible 2 g and 10 g

version is very useful as well, as is the dual analog and digital outputs. Finally, Analog

Devices will soon be distributing a much smaller version of the ADXL202 with a footprint

of 0.2 x 0.2 x 0.1 in3 [36].

In selecting gyroscopes, the matter is not quite as simple. While the Gyration gyroscope

has the best power drain and price, as well as good accuracy, it is simply far too large for

this design4 . While far from perfect, the Murata gyroscopes are small and have reasonable

performance and price, and will therefore be used in this design. The Fizoptika gyroscopes'

specifications clearly demonstrate that an order of magnitude increase in price will buy an

order of magnitude increase in noise performance, these are not appropriate in this case

because of their large size, cost and power drain.

The design of the IMU is continuing to evolve. A planned revision will take advantage of

both the smaller Analog Devices accelerometers and their promised MEMS gyroscopes[37].

However, the delay of both these releases made this revision impossible within the time

frame of this dissertation.

Another possibility for the future lies in ICs or hybrid circuits containing both three de-

grees of accelerometers and gyroscopes on board; effectively an IMU on a chip. Samsung

Electronics is currently developing such a device[38] with dimensions of 20 mm square by

4 In fact, the module's size is on the order of the desired size of the IMU!

Part and Type Voltage Current Technologya Axes Range Noise Band- Drift Bitsc Size (ins) Cost
per axis [________________ widthb'~n per axis

Analog Devices 2.7 - 5.3 V 0.6 mA MEMS 2 ±2 ge (0 mg 5 kHz N/Af 8.5 0.4x0.4x0.2 $8
4 ADXL202 (50 Hz)

MSI
0h MSI 5 V Varies9 Piezoelectric 3 ±250 g 250 mgh 5 kHz N/A 10 0.3x0.3x0.2 $75

ACH-04-08-05

Q Silicon Devices 5V 6mA Cpctv 1 ±5g (kz) ____ ____ ___ _______

12105 V 6 mA Capacitive 1 5g 400 Hz N/A 11 0.4x0.4x0.2 $6

BEI QRS11 ±5 V < 80 mA MEMS 1 +100'/ sec 0.12'/ sec 100 Hz 0.2 / sec 9.4 1.60x0.6 $1400
W__

(100 Hz) _____

F 5V 200 mA IFOG 1 ±5000/ sec 0.04 0/sec 1kHz 0.02'/sec 13 1.10x2.2 $1100
VG941-3 (50 Hz)

24 Gyration VibrtiA
2.2 -5.5 V 2.7 mA Vibrating 2 ±150'/ sec 0.15 / sec 10Hz 0.12'/ sec 9.6 0.9x0.9x0.8 $25

0 Microgyro 100 reed

Nu-a 2.7 -5.5 V 3.2 mA Vibrating 1 ±300'/ sec 0(50/ seci 50 Hz 0.5 / seci 10.2 0.6x0.3x0.2 $80

3 i500' /sec 0.4' /sec 50 Hz 1/ /sec 10
Samsung IMU3 2.7 -5.3 V 3 mA MEMS 0.8x0.8x0.1 $10

3 ±3g 10mg 50Hz N/A 8

'Details about these technologies can be found in [34].
b 3dB point
log2 (2.5 x Noise)

dDigital and analog outputs.
ci 1 0 g version also available

Not applicable
gDepends on an external bias network.
hBased on quantization noise for a 12 bit ADC.
'Not given on spec sheet; measured by hand.
!Available Q4 2000.

Table 2.1: Overview of available inertial components.

1.5 mm. It would have competitive specifications (see table 2.1) with a price point around

$50.

2.3.2 Processors

The next major component to consider is the microcontroller. An overview of parts can be

found in table 2.2. It lists only parts from major manufacturers which meet the minimum

necessary functionality (ADC, timers) and usability criteria (power, size 5).

As with the gyroscopes, the selection process is quickly reduced to deciding which design

goal is most important. The Analog Devices chip offers excellent ADC features but slower

processing, while the Microchip PIC16F877 offers both reasonable ADC performance and

processing speed. The Motorola chip, a vintage device, does not stand out, and the Hitachi

processor is simply too large and unwieldy for this design. Since our requirements call

mostly for data collection rather than data processing, the Analog Devices ADuC812 was

chosen. For future systems in which data will be analyzed on board, chips such at the

Hitachi SH-1 and the Intel StrongARM series will be more appropriate.

Again, as in the previous discussion, the part which best matches the design considerations,

the Microchip PIC16C774, will be available for the next anticipated round of revision.

2.3.3 Radio Frequency Transmitters/Receivers

The last major component to select is the RF chipset, an overview of which is shown in

table 2.3. In this case, consideration is limited only to chipsets which require either limited

or no external components and which accept a serial stream as input to simplify interfacing

with the microcontroller.

At the time the design was done, the RF Monolithics HX/RX1000 series was easily the

most appropriate, with a small footprint, reasonable speed, and low current draw. It also

5 Footprint < 1 in2

Part Voltage Current Core Pins RAM(bytes)/ ADC Sample MIPSa Timer Features Cost
___________ _____ _____ ____ROM(words)a Inputs/Bits Rate ____ Rate es

Analog Devices 3V 12 mA s 52 256/4k 8/12 200k 0.5 1MHz UART, Vref $8
ADuC812 3CISC (2.56V)___________

Hitachi SH-1 3.3 V 60 mA 32 bits 112 4k/16k 8/10 75k 20 20 MHz UART(x2), $35
7034 ________RISC ____Fast Mult.

Microchip 5V 7mA 8 bits 40 368/8k 8/10 24k 5 5 MHz UART $8
PIC16F877 RISC

Microchip 5 V 13 mA 8 bits 44 256/4k 10/12 30k 5 5 MHz UART, Vref
PIC16C7 7 4 b I___ RISC I / (4.096V) ___

Motorola 3V 8mA 8 bits 52 512/6k 8/8 45k 1 2 MHz UART $9
M68L11E9 CISC

aFor CISC chips, this value is an average.
bLimited availability at present.

Table 2.2: Overview of available microcontrollers.

TX DaaReceiver TX Size ICostPart Voltage Current Data Rate Sensitivity' (in 3) Frequencies per set

Linx LC Series 3V 1.5 mA 5 kbps -95 dBm 0.5x0.4x0.2 315/418/433 MHz $15

Radiometrix 3V 6 nA 40 kbps -100 dBm 1.3x0.5x0.2 418/433 MHz $50TX2/RX2

RH Monolithics 3V 3.5 mA 19.2 kbps -71 dBm 0.4x0.4x0.1 303/315/418 $35HX/RX1000b 433/868/916 MHz

RE Monolithics 3V 6rA 152kp 8 ~n 04O3Ol 303/315/418 $50
TRI0N Transceiverc 3V 6mA 115.2 kbps -85 dBm 0.4x0.3x0.1 433/868/916 MHz

Ericsson Bluetooth 3.3V 35 mA 1 Mbpsd -70 dBm 1.3x0.7x0.2 2.5 GHz $200Transceiver

aAt 10-5 BER.
bDiscontinued April 2001.
'Limited availability at present.
dSpread Spectrum, 79 channels

Table 2.3: Overview of available RF parts.

provides a large number of different fixed frequencies, allowing multiple devices to be used

at once.

For new designs, the TR1000 series transmits at a far higher rate than the HX/RX1000

series for only a small increase in current drain. In the near future, chipsets using short-

range network standards such as Bluetooth[39] will allow reasonable numbers of wireless

devices to operate in the same space without interference, but may have to be smaller

than current prototypes to be appropriate for applications such as this one. Cambridge

Silicon Radio is currently developing a chip combining a Bluetooth radio, baseband DSP

and microcontroller, which would be perfect for future embedded applications[40].

2.3.4 Other Components

We now consider parts from the subsidiary and mechanical systems, which, though not as

crucial as those described above, still merit some discussion.

The components selected above allow for the IMU to be powered with a single 3 V source.

Therefore, a 3.3 - 3.6 V battery and a regulator will be used. Further, the selections suggest

that - 20 - 30 mA of continuous current will be necessary. Coin cells would be the first

choice for use with our cubical design; the cell could simply sit on the inside of one of

the faces. A product search found no coin cells with a high enough continuous load rating.

Therefore, a short cylindrical cell was chosen which matched our requirements. The Tadiran

Battery TL-5902[41] has a 3.6 V nominal voltage, a capacity of 650 mA hours at 10 mA load,

and dimensions of 0.570 x 1.0 in3. Two of these batteries were run in parallel and sit within

the cube formed by the electronics.

To create the cubical form factor, connectors between the sides were necessary. The simplest

method of achieving this was to use right angle headers as connectors. The AMP 644457

right angle connector, which required 0.2 in on each side, suited our purposes nicely, with

a plastic base to add some support. For smaller designs, the new Molex 5550 right angle

connector requires only 0.1 in clearance on each side and has pins which do not extend

between the base, providing greater stability.

Finally, a Splatch planar antenna from Linx Technologies was used for transmission. While

not achieving the same performance as a quarter-wave whip, they do provide transmit

powers within 5 dB and require far less space - the Splatch measures 1.1 x 0.6 x 0.1 in3 and

should be able to fit easily within the electronics; a 900 MHz quarter-wave whip antenna is

on the order of 3 inches long and will extend beyond the core circuitry.

The remaining parts used in building the IMU hardware are considered to be generic and

are not discussed here.

2.4 IMU Low Level Design

With a high level design completed and components selected, we turn our attention to the

low level design issues surrounding the IMU. Specifically, we now consider the implementa-

tion of the necessary functionality and usability goals.

2.4.1 Core functionality

Our discussion of the implementation of the core functionality will follow the signal path,

beginning with the inertial sensors, moving through the processor and then on to the output

systems. The schematics for the IMU are found in figure C-1. Part designators from the

schematics are referred to throughout this section.

The Murata ENC03J gyroscopes' output signal is differential, floating around a central

voltage that is nominally given by a reference voltage pin (Vref). The output is amplified

using an inverting amplifier configuration, centered on op amps U1-2 (see figure C-1), with

bias of Vref on the non-inverting input. The amplifier has a gain of 1.5 so that its output

range will match the full 0 - 2.56 V input range of the ADuC812 ADC. This gain can be

adjusted depending on the expected range of motion of the device. A feedback capacitor

(C2) provides a low-pass filter with a roll-off frequency of 66 Hz. The three filtered gyroscope

signals are wired into the ADC inputs.

The ADXL202 accelerometer has a configurable bandwidth and period for the pulse-width

encoded outputs. In this case, the smallest available period, 1 ms, was chosen to achieve the

highest update rate. This was done by setting R12-13 to 125 kQ. The bandwidth is set to

50Hz by letting C18-21 be 47nF. The digital outputs are wired directly into digital inputs

on the ADuC812. All four accelerometers are connected, though only three are necessary

for full functionality. While these outputs in theory are at the full accuracy of the device,

they require many more processor cycles to measure6 than the analog outputs, and the

accuracy of the measurement will depend on the granularity of the internal timer. The

digital outputs were used in this design solely because the other ADC inputs were being

used to collect data from two magnetic sensors 7, which have since been removed. It is

recommended that the analog protocol be used in any future revisions.

The setup of the ADuC812 itself is fairly straight-forward. Beside the usual voltage inputs

(and bypass capacitors), there is an 11.0592 MHz crystal to provide an oscillator and a pull

up on the EA pin to switch to the internal memory space. There are also push-button

switches on the reset and program pins to allow the user to put the processor into in-circuit

programming mode.

The data is transmitted using the serial UART on the ADuC812 at 19.2 kbps, which is

the maximum rate for the HX1000 transmitter. The same serial stream is also routed to a

header to allow hardwired connections for debugging purposes. A kHz-range square wave

is output to a separate pin for use with the capacitive signaling hardware.

2.4.2 Mechanical Design

The mechanical structure of the IMU consists of three printed circuit board (PCB) panes at

right angles, connected mechanically and electrically using the right angle headers described

above. The three panes contain:

* Pane 1: The processor and transmitter

6 On low-end processors such as the one in this design. Chips with pulse-width modulation inputs can

time such signals in the background.
7 These were included to provide information about the proximity of two devices.

" Pane 2: One accelerometer and one gyroscope
" Pane 3: One accelerometer and two gyroscopes

Each pane is 1.25 in on a side and the cube itself has a volume of less than 2 in3

The connectors provide a fair amount of rigidity but are far from perfect. It is hard to align

the panes properly, and there is enough play in the system to allow the panes to flex slightly.

The battery alleviates this problem to a fair extent, but it is still well worth considering

using the other connectors mentioned earlier or providing mechanical rigidity through other

means. The simplest solution is to epoxy the panes to a hard shell, while more complicated

solutions[42] have embedded the sensors in an acrylic block.

A note on connectors: any external connection to the IMU must either be soldered in place

or connected via a screw terminal block. While this level of precaution is unnecessary for

most hardware systems, the nature of the IMU, especially in our applications, is that it will

be subjected to a large amount of movement, which tends to cause intermittent connection

loss that can be very hard to diagnose.

Beyond greater rigidity, another important point to consider in a revision of the mechanical

system is the form factor of the device, as a cube is not the most appropriate shape for

all application. This system would be more generally useful if it had a planar shape, with

only a small extension at right angles to provide the third axis of sensing. It is possible to

produce such a structure which could be folded into a cube by moving one of the panes.

2.4.3 Subsidiary systems

The capacitive signaling system is designed to buffer the signal running from the processor

to the transmitting electrode and to round the sharp edges of the square wave train (to

ensure FCC compliance). The signal is amplified using a common-emitter NPN amplifier

and is then passed through an RC low pass filter to the output electrode.

The power regulation system is trivial. The battery runs through a switch, into a low-

dropout 3V voltage series regulator (Toko AM TK11630), and then out to the IMU. The

Figure 2-3: Data Flow in the Embedded Code

IMU draws a continuous current of 26 mA, giving a pair of the selected batteries a 50 hour

lifespan.

2.5 Microcontroller Embedded Code

While the ADuC812 microcontroller embedded code performs no complex algorithms, there

are still a number of notable implementation issues. The major functions of the code axe

considered: data collection, RF transmission, and capacitive signaling. The complete code

is found in Appendix D and figure 2-3 shows the data flow.

2.5.1 Data Collection

The data collection system works at a fixed rate, with an interrupt designating the start

of each time step. Each cycle, the data from the previous round is transmitted and new

data is collected, and then the device waits for the next interrupt. If the processor should

hang and has not completed collecting data by the start of the next time step, the data is

marked as dirty and is not transmitted that round. This should allow the device enough

time to reacquire the sequence. The current interrupt period is 15 ms, giving an update

rate of 66.6 Hz.

The gyroscope data is collected at each time step using the built-in ADC on the micro-

controller. Since the ADC operates at 200,000 samples per second, there is little to gain

by executing other instructions in parallel with this collection. The accelerometer data is

input to the microcontroller in the form of a duty-cycle modulated square wave, as shown

in figure 2-4 below:

Figure 2-4: ADXL202 Digital Output

The acceleration sensed is (T1/(T1+ T2) - 50%) x 1 g/12.5%. Since (TI+ T2) is a constant

set by the external resistor values (see above), we need only measure either T1 or T2 at each

time step. In this case, we measured T1, simply by waiting for a rising edge and starting

the timer, then waiting for the falling edge and stopping the timer.

There are some problems with this scheme, however. We note that it takes on average a full

cycle to complete a measurement. Further, since the ADXL202 pulse output tends to hang

high or low with out of range accelerations (roughly, lal > 5g), it is prudent to include a

timeout counter inside the timing loop to watch for this condition. However, this increases

the grain of the timing measurement to unacceptable levels. For the above reasons, the next

revision of the design will most likely measure the analog output of the accelerometers. It

requires more signal processing, but given our constraints provides much better accuracy

and shorter measurement times.

2.5.2 RF Transmission

Once collected, the sensor data stream must be DC-balanced[43] before transmission to

ensure good receiver tracking of the threshold point. Because the measurements being

transmitted are 12 bit quantities, a 6-bit to 8-bit DC balancing scheme was used. Since

there are 64 6-bit values and 70 balanced 8-bit values, 6 of the byte values were not used.

These were the 5 values with runs of 4 consecutive highs, which can cause tracking problems,

as well as 55, (where subscript x indicates a hexadecimal number), which is reserved for

other purposes. The remaining values were mapped in order (i.e. 0 -> 17
2, 1 -- 1B2, etc.),

and placed in a lookup table.

The strength of this scheme is in its compactness. It quickly and with little memory use

(64 bytes for the look-up table) allows the conversion of a 12 bit quantity to two bytes, the

atomic units of serial transmission. It guarantees that each byte will be DC-balanced, and

that there will not be runs of greater than six. Single bit errors will always be detected.

The data transmission itself is done using the serial port on the ADuC812 with packets

constructed as follows. A two-byte header is sent. The first byte is FF2 if the on-board

power monitor shows a voltage above 2.93 V, FEx for between 2.93 V and 2.63 V and FDx

otherwise. The second byte is always 01, to balance the header. Then the measurements

are sent as two byte quantities, the high byte being the balanced version of the high 6 bits of

the ADC reading, the low byte being the balanced version of the low 6 bits. The gyroscope

readings are sent in order (x,y,z), followed by the accelerometer timing results in the same

order.

While data is being collected, the processor attempts to keep the transmitter active and

continually sending the value 55,. Since this value alternates high and low, it aids greatly

in keeping the receiver locked on to the proper threshold value. This transmission is ac-

complished by scattering non-blocking8 writes throughout the code.

2.5.3 Capacitive Signaling

The processor strobes a pin for ims at the end of each collection cycle, at either 50 kHz or

20 kHz (though any value is possible). This is designed to be used to transmit a signature

via a simple mesh electrode, for the purpose of capacitive signaling. An example use of this

capability is described in the section on the (void*) application (section 7.2).

80nly writes to the port if it is free

Figure 2-5: Current Basestation in Shielded Case

2.6 Receiver Hardware

The receiver basestation is designed to simply receive the RF transmissions from the IMU

and shift them to RS-232 levels for transmission to a computer. The schematic and PCB

layouts for this board can be found in Appendix C. A description of the functionality

follows.

The main IC on the basestation is a RF Monolithics receiver chip (Ul) that matches the

transmitter on the IMU. The RF signal is input through a BNC jack, to which an appropriate

length whip antenna is attached. The digital output data from the receiver is passed through

an op amp in unity gain configuration (U7, as the receiver could not drive the serial line

driver) and then is shifted to appropriate RS-232 levels9 using a serial line driver (U3). A

serial cable to the computer can be attached to the female DB9 jack provided (J1). Note

that a jumper (LK1), allows the user to select between the RF signal and direct cable

connection (JP1, from the IMU, presumably) for debugging purposes.

Power is supplied via a standard DIN-5 jack (J8). 3 V power is generated using the TK11630

90V -* +12V, 5V -+ -12V

voltage regulator. Also, debugging LEDs are provided to indicate data reception (L6), as

well as 5V (L3) and 3V (L4) power.

This receiver should be enclosed in a metal case to provide RF shielding. The drawings for

an appropriate case can be found in Appendix C and a picture appears in figure 2-5.

2.7 Receiver Software

We complete this chapter with a short description of the receiver code for use in a personal

computer connected to the basestation. This code is designed to find valid data packets in

the incoming data stream, decode them, and then send them along for further analysis.

The receiver code works in two stages. In the collection stage, the code reads 24 bytes

from the serial port, 14 bytes for a full data packet plus 10 bytes worth of padding. This

guarantees that at least one packet header should be in the buffer. The code scans along this

buffer looking for a valid header start byte (FD, to FF) followed by the valid second byte

(012). It then copies the next 12 bytes (reading more data from the serial port if necessary)

to a processing buffer. Bytes are then read in pairs from the buffer and put through the

inverse of the DC-balancing mapping to that used in the microcontroller. Any bytes that

do not have a valid decoded value are mapped to FF, which serves as an error code. Note

that all the header bytes as well as the padding byte (552) fall into this category, as would

any byte with a single bit error. Any invalid byte fails the whole packet. Assuming no

invalid bytes, the 12 bit values are reconstructed and placed, together with a timestamp,

into an instantiation of a data record class, which is then read by the analysis and gesture

recognition code. Since data collection in the embedded processor begins right after the

transmission and data analysis does not take place until the whole packet is collected, there

is a net latency of 15 ms in the hardware.

This code was made part of the Synthetic Characters[44] code base, a collection of Java

classes constructed for the purpose of building virtual creatures who inhabit 3D computer

graphical worlds. The code base contains graphics systems, behavior systems, interface

mechanisms, and a host of mathematical and prototyping tools, greatly simplifying the

process of application creation. While the receiver software is usable separately, modifica-

tions will be required to remove various extraneous class references. The author is currently

developing stand-alone versions of all the code discussed in this document.

Chapter 3

Sample Data Stream

At this point, we present an example data stream to get a sense of the information being

gathered by the hardware. This stream will be used throughout the document. It shows

the data associated with a number of simple human arm gestures on one accelerometer axis

and two gyroscope axes, one of which is about the accelerometer axis. The streams are

shown in figure 3-1 and a list of gestures follows in table 3.1.

This data was gathered a single subject (the author) performing the listed gestures in order.

The IMU was contained with a teapot held in the right hand. No effort was made to ensure

that parameters such as long or short was reproduced exactly, since this will not be the

case in unconstrained human gesture.

Note that while the algorithms developed in this dissertation will be as general as possible,

their application will often be in recognizing human gesture, and therefore both this data

stream and the subsequent discussion will be skewed toward that use.

The data was collected using a PC-based data acquisition card (National Instruments PCI-

6024) at a rate of 2000 samples per second, each with an accuracy of 12 bits. The analog

outputs from the IMU were amplified to match the full range of the ADC, and were low-pass

filtered to roll-off frequencies outside the range of interest.

4 56

uilLLIk
1500

Time (1Ims increments)

9 10

2000 2500

13 14 1514

JiLl
X Accelerometer

- X Gyroscope
__ Y Gyroscope

3500 4000 4500 5000 5500 6000
Time (10ms increments)

1 2
1500

1000 I-

500

0

3

500

IT
10000

2000 -

1500-

1000

500-

01-

-500-

-1000 -

4

13 15

Short straight line

and back

Short straight line

and back

Short fast straight line

and back

Long fast straight line

and back

Short Loopback

Repeat

Long loopback

Repeat

Long fast loopback

Repeat

Short fast loopback

Repeat

Twist

and back

Fast twist

and back

21.

22.

23.

24.

25.

26.

27.

28.

29.

Twist and return

Repeat

Twist

Twist on y

and back

Fast twist on y

and back

Twist and return on y

Repeat

Table 3.1: Gestures in Sample Data Stream

This data stream is fairly comprehensive and includes a wide range of gestures. It will

therefore be used to tune the algorithms we develop in the following chapter and to illus-

trate their performance. Note that in the sample application presented in Chapter 7, the

algorithms use real-time input data, not that from this set.

For further analysis, the data will be downsampled to a variety of rates; this allows us to

evaluate our performance with different rates and accuracies of data. This will be done

using the decimate command in MATLAB[45], which includes an anti-aliasing operation.

The data is then rounded to the nearest integer to maintain the accuracy'. The data shown

in figure 3-1 is 12 bits, downsampled to 100 Hz, similar to that obtained from the hardware

described in the previous chapter. This resolution and sampling rate will be used in the

examples throughout the document. Note that the baseline for the first gyroscope channel

(on axis) has been modified for clarity.

We quickly note a few key features of the data. All of the gestures present themselves

as a sequence of peaks of alternating polarity, which is consistent with smooth motions.

Also, there are no single peaked accelerometer gestures, as this would imply a change in

velocity, since each gesture began and ended at zero velocity. Finally, we note that either the

'Or nearest multiple of 2", to reduce the accuracy by n bits.

gyroscopes' acceleration sensitivity is quite high, or that slight twists are being introduced

into straight-line gestures. In either case, these will have to be filtered out.

Without launching into a detailed discussion, it is worth noting that the streams shown are

consistent with those in the physiological literature (e.g. [46, 47]). Further reference to this

literature will be made when appropriate.

Chapter 4

Analysis

The analysis system acts as an intermediary between the raw data from the IMU and the

gesture recognition system. Its purpose is to transform the data in such a way as to make

the recognition stage easier and more accurate. The method chosen should have low latency

and, with an eye towards the future, require limited processing power. Three algorithms to

achieve this goal are examined. Kalman filtering can be used to transform the IMU values

from its local coordinate frame to a fixed world frame, which is necessary if the instrumented

object is not the sole item of interest and some kind of position tracking is needed. Filtering

the data in frequency space can be used to distill the essential information from the data by

removing the low-frequency baseline shifts and extraneous high-frequency noise and shocks.

Finally, this chapter will show the derivation of an activity detection algorithm, designed

to highlight sections of the data stream where there is a significant departure from a noisy

baseline. This algorithm was chosen as the input (along with the raw data) to the gesture

recognition stage, described in Chapter 5.

4.1 Kalman Filtering

Kalman filtering is the main analysis technique for inertial data and is used almost ex-

clusively for inertial tracking, the determination of position and orientation from inertial

readings and an initial state. As inertial components have become more common in user

interfaces, particularly for head-tracking[48], a number of variations on the original algo-

rithms have been created to ensure robustness and accuracy when working with low-cost

components and processing hardware1 . These extensions will be examined, as will the limits

placed on this tracking over time by sensor errors.

Note that this section will not present the details of the Kalman filtering algorithm (which

is extremely well developed in the literature) or the derivation thereof. For readings on this

topic, the user is directed to [50, 51, 52].

4.1.1 Principles and Algorithms

Kalman filtering (KF) is a state-based recursive algorithm, which works in two stages. The

first is the prediction stage, where given the (possibly incorrect) current state of the system

and a mapping of how the system progresses with time, a prediction of the state at the next

time step is calculated. The second is the correction stage, where given a noisy observation

(not necessarily full or direct) of the state at the new time step, the predicted state and the

measured values are combined to give a new, more accurate, state for the system. Given

certain assumptions described below, Kalman filtering is the least-squares optimal linear

method of estimating system state.

The strength of Kalman filtering lies in its optimality, its minimal memory requirements for

state (only a single time step), and its ability to include a model of the system dynamics.

There are a number of limitations which must be considered as well. The most troublesome

is that it is the linear optimal solution, while most physical systems, including tracking, are

non-linear. In such circumstances the Extended Kalman Filter (EKF) can be used, which,

while it can no longer be proven optimal (or even to converge), is still very successful

in practical applications. The next problem (for either type of filter) lies in the process

noise2 models, which are assumed to be white and Gaussian. To see the implications of

1As compared with military systems, which are still the primary users of inertial tracking. Strategic
grade IMUs cost in the hundreds of thousands, if not millions, of dollars[49].

2Any dynamics not contained by the model

this, consider a state vector containing position and velocity. Since the acceleration is not

contained in the state, the best model of the velocity dynamics is vt+1 = vt, which treats

the (unknown) acceleration as white noise, which it most certainly is not. It is possible to

bootstrap by using the velocity to calculate an approximation of the acceleration and then

feed that back to the velocity (which actually works because of physical limits on the jerk),

but this points to a final problem. The most time consuming operation in the execution of

the Kalman Filter is a n x n matrix inversion in the correction step, where n is the length of

the state vector. Since matrix inversion is an O(n 3) operation, this can become very costly

if the state vector becomes large, as it does in the case of inertial tracking, with a usual

3
length of eighteen

A number of techniques have been used to alleviate some of the above problems. Foxlin[53]

demonstrates two interesting methods. By using a Complementary Kalman Filter which

estimates the state error rather than the state itself, the latency associated with the inversion

operation can be reduced. The smaller magnitudes in the state vector also make linear

approximation more accurate, allowing for the use of the KF instead of the EKF, and

the state vector itself is reduced to six members. By exploiting certain aspects of the

measurement structure, the equations can in fact be rewritten with a single 3 x 3 inversion.

Welch and Bishop[54] extend this concept to the logical extreme with Single Constraint

at a Time (SCAAT) tracking, where each observation is used in a correction step as it is

collected, thereby minimizing the inversion size and reducing latency as well (since we no

longer have to wait for a full set of measurements).

While these techniques are strong, they ultimately fail the context of this project for two

reasons. The first is that the above systems use sensors other than accelerometers and

gyroscopes (magnetometers for Foxlin, acoustic sensors for Welch) which allow for their

simplifications, while in our case the systems are not as separable since both the accelerom-

eters (via tilt angle) and gyroscopes are used to update the orientation, conflating those

two portions of the state vector. The second, and more fundamental problem, is that the

3Three degrees each of the position, velocity, acceleration, orientation, angular velocity, and the gyroscope

biases.

sensor update rates and accuracy are not high enough to track for any reasonable periods

of time, as will be discussed in the next section.

4.1.2 Limits of Inertial Tracking

We now consider the cumulative position and orientation error over time for inertial tracking.

This problem will be examined for the case of a single axis, and taking only gyroscope errors

into account (we will use the parameter for the Murata ENC-03J from table 2.1). While

fairly simplified, this model will give a lower bound on the error, which should be illustrative.

More detailed discussions can be found in [55, 56].

There are three main sources of gyroscope error. Axis misalignment error occurs if the

sensors are not exactly perpendicular to each other and can be corrected in software up to

one half of the accuracy of the accelerometers. Therefore, since the accelerometers have 8.5

bits of accuracy, there will be a misalignment error of M = sin(O.5 x 1/28.5) = 0.00140. The

next source of error is random walk error caused by integration of noisy data. This error

is proportional to the sensor noise and to the square root of time, giving an error term of

o-t = 0.5fi. Finally, we have gyro bias drift, which is based on the inability to track the

gyroscope output baseline exactly. This error appears as a fixed rotation, adding a term of

/3t = 0.5t. Combining these, we have an error of:

AO(t) = 0.5t + 0.5v'i + 0.00140 (4.1)

At any point in time, this gives a cross-axis acceleration error of:

Aa(t) = a(t) sin(AO(t)) (4.2)

where a(t) is the acceleration at time t. To calculate the net error, this equation must

be double integrated. Therefore, we need to select an acceleration profile. We choose a

10 V -0.

0O.3:
C 8. -0.1

6 2 -0.15

45 -0.2

00.1
2 1 1-0.25

0 0 1 V -0.3
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Time (s) Time (s) Time(s)

Figure 4-1: Error Growth over Time for Inertial Tracking of Gesture

function which approximates human gesture, letting:

a(t) = +(0.3 g) sin(27rt), if LtJ is even (forwards motion) (4.3)

-(0.3 g) sin(27rt), if [tj is odd (backwards motion)

where [tJ denotes the greatest integer less than or equal to t, giving a 1 Hz sine wave which

reverse polarity every cycle and has a magnitude of 0.3g. This approximates a person

performing a straight line gesture away from the body and back again, using the sample

data stream of Chapter 3 as a guide.

Figure 4-1 shows the error growth over twenty seconds. We note that at the end of this

time frame, the gesture is only 2cm from the expected position on the axis of movement,

but the heading error is over 12* and the cross-axis error is over 25 cm, which is completely

unacceptable. Such an error could make a huge difference in the interpretation of a gesture,

and this value will continue to compound over time. Therefore, inertial tracking is simply

inaccurate given the quality of sensors chosen.

Note that if there is an external source of information about position and heading available,

it can be used to correct the system. For example, if there is a slot in which the device

must be placed at regular intervals, then the tracking error can be zeroed. Therefore, the

result does not mean that we cannot track for more than five seconds, only that we cannot

track for more than five seconds without external information.

4.2 Frequency Space Filtering

While the sampling bandwidth of the ADC is between 0 and 60 Hz, that is not necessarily

the frequency range over which the data contains the information of interest. In this section

we examine the benefits of reducing the frequency band considered using both high- and

low-pass filters.

4.2.1 Low Pass

The purpose of a low-pass filter is to reduce the effect on the system of noise in the band-

width of immediate interest. The maximum frequency of interest for human arm gestures

(the example application) is considered to be approximately 10 Hz[57], though quantita-

tive analysis of the sample data stream suggests that most of the gestures in which we are

interested have a maximum frequency in the 3 - 5 Hz range.

Simple low-pass filtering can be done using digital signal processing techniques[58], using

either finite-impulse response (FIR) or infinite-impulse response (1IR) techniques. FIR

filters use only correlations with the incoming data stream, and their length is inversely

proportional to the pole frequency. FIR filters introduce a constant group delay equal to

half the filter length. IIR techniques feedback the filtered results of the preceding points

as well, and therefore can achieve the same filter parameters in a shorter length. However,

they do not have constant group delay, which causes shifts in the relative location of low

and high frequency components (fast and slow motion), which is not acceptable.

Another interesting low-pass filter is the Savitzky-Golay[59, p. 650] smoothing filter. Orig-

inally designed for use in resolving frequency spectra, it reduces noise while keeping the

nth moment unchanged, where n is at least 2. Therefore, peak widths and heights are left

unchanged, as that is the characteristic of interest in spectral analysis.

The utility of these filters eventually depends on the gesture recognition algorithm chosen.

If it examines either the first or second moment (magnitude or derivative), then low-pass

filtering will prove quite useful. If it instead looks at the zeroth moment (integral), then

any noise will be canceled by the summing operation, and low-pass filtering is irrelevant.

This point will be revisited as the discussion progresses.

4.2.2 High Pass

High-pass filtering can be used to remove constant and slowly changing values from the

signals. In this case, this would allow us to remove the gyroscope offset and bias drift

and the accelerometer offset (due both to the 50% bias on the pulse-width modulated

signal and the current tilt angle), which can be very useful if thresholding of the signals

is desired. Again, quantitative analysis of the sample data stream suggests that a single

gesture can take as long as 1.5 seconds, therefore, the high frequency cut-off will need to be

approximately 0.5 Hz.

However, two problems occur in this case. The low frequency pole location results in IIR

filters which can go unstable and FIR filters which are quite long. More importantly, a

high-pass filter can only react on the order of its pole frequency (by causality) and therefore

can generate artifacts if the IMU changes orientation too quickly. In the worst case, these

artifacts can create new gestures as shown in figure 4-2. Because of these artifacts and the

latency caused by the filter, these techniques are unacceptable.

4.3 Activity Detection

The final algorithm considered is an activity detection scheme we developed for this appli-

cation. The purpose of this algorithm is to determine portions of the data stream that have

a high probability of containing interesting motion.

To do this, it is first necessary to have a piecewise model of the data stream. We consider

the lowest order model possible, with a constant for sections with no activity and a straight

line for those with activity. Given this definition, the most obvious algorithm to use would

600:
-- Raw

400 High-Pass
Filtered

200

& 0

8-200

-400

-600

-800
3400 3500 3600 3700 3800 3900

Time (10ms increments)

Figure 4-2: Gesture Artifacts Caused by High-pass Filtering

be a linear correlation in time:

r =- E(t-i (4.4)
V/E4(y - -)2 VE(t - t)

where y is the data stream of interest and t is the time index. Not only will this detect

straight lines (by definition), but it is slope-independent, which is consistent with the pa-

rameterized nature of the system. This algorithm has reasonable latency (100 ms for the

example shown), though the structure of linear correlations does not allow for caching of

calculations4 .

However, as can be seen in figure 4-3 (which runs this algorithm on an indicative section

from the sample accelerometer of figure 3-1), this technique does not give good results at the

local extrema of the gestures, where the linear approximation breaks down. This suggests

that the model should be expanded and another algorithm found.

'The kernel cannot be precomputed at each point because of the presence of the means.

400

0200

0 0 -7 -

< -200-

-400
1350 1400 1450 1500 1550 1600 1650 1700 1750

Time (10ms increments)
0

ou .

0

-0.05

-0.1
1350 1400 1450 1500 1550 1600 1650 1700 1750

Time (10ms increments)

Figure 4-3: Linear Correlation as Activity Detection Algorithm for Accelerometer Data

x 1 -)(2 s X3 .2 XI - X2 X3 X2' - XI

200

150

100-

100

-200

1eso 22D 222D 2240 22 o 22m o 20oo 23a
Time (10m Incremenwt)

Figure 4-4: The Piecewise Model Used in the Activity Detection Algorithm

We next constructed an algorithm based on windowed variances. To understand how this

will work, we consider three piecewise models to make up our data stream: constant, linear,

and quadratic, each with additive white Gaussian noise (again see figure 4-4). In the

constant case, the calculation is trivial:

X1 = J(0, a) (4.5)

2 o1 = 02 (4.6)

where o- is the sensor noise and N((0, a) is a zero-mean Gaussian distribution with variance

a2 . In the linear case, we have:

X2 = m2i + N(0, o-) (4.7)

where m 2 is the slope and i E Z, i E [-n/2, n/2], n even, without loss of generality and

n + 1 is the window size. This gives:

2 = 0 (4.8)

2 2

n/(m
2 i)2 +N2(0, o-) + (mi)N(0, a)

i=-n/2

n/2

= o 2 + 2mZi 2

i=O

2 m2(n + 2)(n + 1)
o 2 = 2 + 12 (4.9)X2=a 12

where we now see that it is possible to differentiate between these two portions of the data

stream. For the quadratic model, using the same n as the linear model, we have:

X3 = m3i2 + .A(0, a) (4.10)

where m 3 is the quadratic coefficient. This gives:

Smn(n + 2)
3 = 2 (124.11

n/2

X3 = (x-)
i=-n/2

2

4 o- 2 =2 + m 3 (n4 + 5n3 + 5n2 - 5n - 6) (4.12)180

r min 1) max(o)m min(m2) min(x3) max(u3) min(m2)

5 4.62 61.67 5.67 75.70 9.58 4.63 61.78 6.56
10 9.61 48.88 16.47 83.82 3.11 9.81 49.91 1.11
15 12.20 43.99 30.18 108.79 1.73 13.35 48.11 0.42

20 13.84 41.25 48.49 144.47 1.16 17.67 52.64 0.21

30 15.88 38.15 101.19 243.17 0.66 36.49 87.69 0.08
40 17.13 36.38 176.91 375.73 0.45 84.78 180.06 0.04

Table 4.1: Expected Variance Ranges for Various Window Sizes for Accelerometer Data

where the equation 4.12 is found using the MATLAB symbolic solver. This piecewise model

is illustrated in figure 4-4, which shows data from a typical gesture divided into the regions

described above. The designations at the top of the graph indicate the most appropriate

model for that portion of the data.

It follows from observation of equations 4.9 and 4.12 that for small n the variance of a 2nd

order section will be less than that of a 1st order section. Therefore, activity can be found

using a simple thresholding scheme with a high start threshold and a low stop threshold.

The start threshold should be slightly less than the minimum expected value of variance

in a linear section, and the stop threshold should be slightly smaller than the minimum

expected variance in a quadratic section. This algorithm will work as long the maximum

expected value of the variance in the constant section is smaller than the two thresholds.

We consider this algorithm for the case of the accelerometer sample data stream described.

For this stream, which is composed of typical human arm gestures, we found o 2 c 26,

min(m2) a 1.3, and min(m3) 2 0.08. We calculated the 90% confidence interval for

01 ,2,3 [60] for a number of different window sizes (n), using the minimum m (model coeffi-

cients) given above. The minimum value of m for which there is no overlap of the constant

case (xi) is also shown for each model. This data can be found in table 4.1. A similar

calculation was done for the gyroscopes, but is not shown.

A value of n = 30 was chosen, which appropriately balances the latency caused by the filter

(n/2 or 15ms) against the minimum value of m which can be detected. A start threshold

QuadraticConstant ILinear

of 100, far above the expected variance in constant portions, and a stop threshold of 50,

just slightly above the expected constant model variance, will be used. This value of n is

not perfect, as the quadratic case overlaps just slightly with the constant case. This may

cause some stuttering, where the period of detected activity missed a portion of a gesture,

though it is not of great concern and is easily solved in higher-level software. The sample

accelerometer data stream segmented using these values can be found in figure 4-5.

As can be seen in the figure, this algorithm was fairly successful. It identified at least the

start and end of all areas of activity, though it missed the center of some. The false positives

are unavoidable, as they are either caused by a number of random errors forming a linear

section, or by a shift in baseline, which, while not a gesture (on that axis), is certainly

activity. This algorithm has a reasonable latency and can be executed very quickly by

caching data streams of cumulative data point sums and square sums, and using the identity

a 2= 2- . MATLAB code showing this algorithm can be found in Appendix E in the

function findgests.

There are some potential definitional problems which stem from this algorithm. They

arise from the fact that we define constant acceleration or angular velocity as the start

and end condition of the gestures. Therefore, constant accelerations and angular rates are

effectively ignored, and the instrumented object must meet this condition before parsing

can begin. For human motion, which for a given path is usually executed such that the

jerk is minimized[61], this condition would imply that the velocity or angular velocity is

in fact nil, which would make it difficult to recognize cyclic gestures or a quick transition

between two gestures. With this algorithm, we may have no choice but to consider what

could possibly be classified as two (or more) gestures as a single one and attempt to solve

this issue as part of the gesture recognition routines.

Despite these concerns, windowed variance will be used as the input (along with the raw

data) to the gesture recognition stage. The algorithms for recognition, including the sepa-

ration of false positives from actual gestures, and the combining of stuttering gestures5 into

full ones, are described in the next chapter.

5 E.g. time index 2850-3050 in figure 4-5

8 8 8 * *8

lesgo + indino oOV

* e* 88 8 *

19sW + Indino OOV

Figure 4-5: Windowed Variance as Activity Detection Algorithm for Accelerometer Data

62

Chapter 5

Gesture Recognition

The concept behind the gesture recognition system is fairly straight-forward. The author

claims that it is possible to decompose any arbitrary gesture (within reasonable limits) into

one or more atomic gestures. These gestures should be fairly simple and easy to recognize via

algorithmic means. Magnitude and duration will be treated as parameters of these atomic

gestures, rather than being considered to be fundamental to them. This chapter details the

development of such a generalized parameterized gesture recognition system. Our concept

of a gesture will be defined and the parameterization will be described. State-based gesture

recognition techniques, which have had great success in computer vision applications, will

be examined, with an eye towards their suitability to this project. The main portion of this

chapter will give the details of a single-axis gesture recognition system, including comments

on the interpretation of gestures. Finally, the minimum data sampling rate and accuracy

for recognition will be examined.

5.1 Key Definitions

To be able to construct a parameterized gesture recognition system we must obviously first

consider what is meant by a gesture, and how we wish to parameterize it. This section gives

those definitions, and comments on the strengths and limitations of the approaches taken.

5.1.1 Gesture

In the context of this thesis, a gesture is considered to be any space-time curve. This

definition serves two goals. First, it highlights that a gesture cannot be defined solely by

its value at a small number of instants, as thresholding schemes do, but is instead a path

having an extent in time, which allows for more complex structures. Second, and more

importantly, it suggests gesture as a way of thinking of more than simply human motion,

though that is the sample application in this case. The same curves in space could be made

by a human forearm, a dog's torso, a juggling ball, or a car. The breadth of our definition

will rest on how general the analysis and gesture recognition algorithms are.

Consider the limitations that have already been placed on the gestures. We have enforced

a constant acceleration or angular rate as the start/stop condition of the gesture, with the

implication that the net acceleration or angular rate is in fact nil, and the data simply

reflects a bias, either inherent in the sensors or from a tilt of the object. This is built on the

assumption that a human motion cannot produce such values otherwise (which the sample

data stream supports). How does this effect our ability to measure non-human gesture?

Take the example of a vehicle swerving. Prior to the event, the vehicle will have zero

acceleration as it is maintaining a constant speed. The swerve itself will have a noticeable

tangential jerk, which will be detected, and the vehicle will then return to zero velocity,

making recognition possible.

We now examine the concept of atomic gestures. By definition, such gestures cannot be

decomposed into smaller meaningful gestures, and it must be possible compose them into

larger gestures. The value of this definition is fairly obvious: it is only necessary to recognize

a small set of atomic gestures which span the space of (human) gestures; thereafter, any

new gesture of interest can be recognized simply by discovering the atomic gestures it is

composed of. By contrast, conventional gesture recognition algorithms usually require that

each gesture be trained individually. This can lead to possible overlaps in the state space and

makes the system more difficult to use for those who do not understand the complexities of

modern pattern recognition algorithms. The value of this scheme will lie in how well it can

approximate the key strength of conventional systems, which is the ability (given enough

examples) to be trained to recognize any gesture.

5.1.2 The Parameterization

The gesture recognition algorithms for this framework will be parameterized as an aid to

the application designer. Humans tend to divorce the quality of a gesture from the quantity;

e.g. a long linear motion (without curvature) is thought of as a specific version of a line

gesture, rather than a gesture in and of itself. The recognition system will reflect that

notion by recognizing lines as atomic gestures, with their length given by the parameters

as described below.

We now consider a prototypical gyroscope gesture gi(t) where we let:

ci, t < 0

gi(t) = Wo(t), 0 < t K to (5.1)

C2, t > to

where w, (t) is the measured angular velocity (from the gyroscope) about the x-axis, to is

the duration of the gesture and Ci, c2 E Z. We further enforce the boundary condition (as

per the activity detection algorithm) of i(0) = i(to) = 0 (i.e. the angular velocity is

constant).

We wish to consider two possible parameterizations of this gesture: those which travel the

same path in different time, and those which travel an expanded or compressed version

of the path in the same amount of time. We will place limits on the mappings allowed

between our prototype gi (t) and some variation thereof 92(t). Equivalence is defined by the

space-time trajectory of the object of interest being the same up to two scale factors, one

in time, the other in space:

01 =02 iff 3 a, # E R s-t. 01 (t) - 01 (0) =(02 (0t) -2 2(0)), Vt.

Taking the derivative and using the definition above, we get:

g1 (t) =g2(t) iff] a, # E R s.t. gi(t) = a0g2(43t), Vt. (5.2)

Our boundary conditions denote the start and end of the gesture by requiring zero derivative

at those points. Boundaries based on zero magnitude would require filtering to remove the

baseline, as shown in the previous chapter.

Note that the parameterizations for all gyroscope measurements can be derived in this

fashion.

We now consider the case of analogous accelerometer gesture gi (t) defined as above:

Ci t < 0

91 (t) = a(t) 0 < t < to (5.3)

C2 t > to

where a- (t) is the measured acceleration along the x-axis, to is the duration of the gesture,

and cI, c2 E R. Similar to the previous equivalence relation, we have:

X1 =X2 iff 3 a, / E R s.t. X1(t) = ax 2(0t), Vt.

setting x(0) = x2 (0) = 0 without loss of generality. Taking two derivatives and using the

above definition gives:

gi(t) 92(t) iff] a, # E R s.t. gi(t) = a02 92(0t), Vt. (5.4)

We again use the constant derivative boundary constraint on the gesture to specify

start/stop.

The literature supports such a parameterization. Atkeson and Hollerbach[62] show that

regardless of speed, distance and load, arm movement velocity profiles can all be scaled to

the same general shape (they further use a similar scaling to ours[47]. Plamondon's very

detailed model of such systems[63] also allows for such scalings.

5.2 State-Based Approaches

State-based approaches, notably Hidden Markov Models (HMMs) [12], have had great suc-

cess in the area of human gesture recognition. These techniques are based on tracking the

internal state of a system and the transitions between them. Each state is associated with

an output probability density for the observables of the system, and a transition probability

to other states. Given enough examples of the observables of a gesture of interest over time,

it is possible to infer the state transition and output probabilities[64].

In the context of gesture recognition, the states are usually the actual position and orien-

tation of the object of interest, and the output probability density is a Gaussian bubble

(representing sensor noise) around that value. The next position/orientation in the sequence

is reflected in the transition probabilities. Since it is possible to calculate the probability

with which an observation stream came from a model of a specific gesture, this system can

be used for gesture recognition.

One intriguing state-based approach, suggested by Wilson[65], would be to predetermine a

state space to represent the expected states through which the data from the IMU might

pass during a gesture. The output means and covariances (of the Gaussian bubbles) would

be determined based on knowledge of the expected values and noise levels of the sensors

used. Training could then be accomplished simply by recording the states that a single

example gesture travels through.

However, there are two key difficulties in using these techniques. The first stems from

the fact that the parameters of the states themselves will usually be the output from the

inertial sensors. Therefore, there is no way to achieve parameter-independent recognition

of a gesture - each version of the gesture will travel a completely different path in the state

space. Techniques have been developed to allow parametric extensions of HMMs[66], but

they tend to be very processor intensive, which would not support the goal of stand-alone

devices. The second (and greater) problem is that while state-based approaches are very

strong with absolute data, they tend to have problems with derivative data, as is available

in this case. The trouble lies in the fact that gestures in this data space are cyclic - they

start and end in the same state, and often pass through a given state more than once. This

leads to degenerate parses in which a stationary device is believed to be in the stationary

state, then progresses through the other states as quickly as possible, and returns to the

stationary state again. Therefore, with reasonable probability, a full gesture has now been

traversed, even though the device has not moved at all. This behavior is simply unacceptable

and leads to difficulty in setting the probability threshold on gestures, thereby making the

system less accurate. Because of these problems with HMMs, and the fact that they are

fairly processor intensive, it was decided to seek another algorithm.

5.3 Single-Axis Gesture Recognition

This section describes the single-axis gesture recognition scheme created for this project.

This scheme breaks down the recognition problem to the smallest possible unit: atomic

gestures on a single data axis. The detected atoms can then be combined together into

composite gestures using the scripting language described in Chapter 6. Three majors

points are considered. The first is an examination of the pros and cons of this approach

compared to looking for gestures in the full space, the second is the algorithms which were

developed to find the gestures, and the third is a brief attempt at assigning some meaning

to the atomic gestures chosen.

5.3.1 Pros/Cons

The general idea behind considering gestures on an axis-by-axis basis is that very few

gestures in fact exist in the higher dimensional spaces considered by most algorithms. The

author proposes that most gestures can easily be decomposed without loss in meaning. An

arbitrary straight line gesture, for example, can always be projected onto (at most) three

axes of space, and therefore can be recognized.

The benefits of such a scheme are readily apparent. Recognition algorithms in one dimension

can be far less complex than those in higher dimensional spaces and still perform adequately.

There is a further gain to be achieved through parallelization, since an identical set of algo-

rithms can be run on each axis, recognizing the same gestures on each. Multi-dimensional

schemes treat not only straight lines on different axes as different gestures, but also those

at every angle in between. Single-axis algorithms will therefore require less processor time

and less memory space, making them perfect for embedded applications. Furthermore, this

system will work on reduced sets of inertial sensors, with gestures scripted for the full 6

DOF still applicable as long as the axes of interest remain instrumented.

The major concern in using single-axis gesture recognition is that a granularity is imposed

on the gesture space that did not previously exist. Gestures are now broken down into

a lexicon that may not be complete. The scripting system will have to impose a notion

of simultaneity that will further reduce the space of allowable gestures. And while logical

AND and logical OR operations are straight-forward to implement, logical NOT creates a

host of problems (some described in section 6.1.2), meaning that not all combinations of

gestures possible under a full dimensional scheme can be constructed here.

Nonetheless, there is little to suggest that these limitations will be fatal. The space of

recognizable gestures and combinations thereof is still large, and it is possible that unrecog-

nizable gestures could prove to be impossible for a human to execute, rendering the point

moot. A full examination of this is a topic for future research.

5.3.2 Algorithms

We now consider the gesture recognition algorithms themselves. These algorithms take the

raw data streams and use the activity detection algorithms' output (as described in the

previous chapter) as a starting point to finding gestures in the stream. The recognition

algorithm for the accelerometer data will be examined first, followed by comments on the

slight differences for the case of the gyroscope data.

In both cases, groups of continuous peaks were considered the atomic unit. Therefore, peaks

were never split in two, and groups of peaks were only split under limited conditions. The

number of peaks was used to designate the type of the atomic gesture, as described in the

next section.

Accelerometers

We begin by considering the constraints that have already been placed on the problem to

determine whether they can now be exploited. Based on the assumption that the velocity

is constant on both ends of an atomic gesture, we note that the integral of the acceleration

over that range should be zero, once a baseline has been subtracted. In the case where the

constant accelerations on either side of the gesture are not the same (c1 # c2), the baseline

representing the change in velocity is approximated as a straight-line interpolation from one

end to the other.

This provides the basics of the gesture recognition. Beginning with an area of suspected

activity, the baseline is subtracted and three values are tracked across the gesture. They are

the total absolute area under the peaks of the gesture, the net area under each peak, and

the number of peaks. The consistency check for a gesture is simply the ratio of the net area

to the absolute area under the peaks. If this ratio is below a fixed threshold, the gesture

is recognized and passed, along with its parameters, to the scripting system. Single peaked

gestures are, by this definition, ignored. Note that simply matching the height or widths of

the peaks will not work, because asymmetries therein are common in precise motions[67].

While under ideal conditions, the net integral would be zero, that assumption cannot be

made here for two reasons. The first is that the integral is effectively a tracking operation and

therefore suffers from random walk noise. The second is that noise will also be introduced

into the system if a baseline shift from the start to the end of a gesture is not linear, and

this will also be reflected in the net to absolute integral ratio.

More needs to be said about the integral and peak parsing procedure. Firstly, since this is

a noisy signal, it is necessary to ensure that it does not dither back and forth across the

zero point, thereby causing spurious peaks. This is done by enforcing a window after a zero

crossings in which further crossing are ignored. Also, any peaks with a net integral below

a fixed threshold are subsumed into the previous peak. This takes care of both spurious

peaks cause by an incorrect baseline and the small peaks (used for correction) common at

the end of fast human gesture[68].

The parameters for each atom are as follows. The end-time of the gesture as well as its

width (3) are used to provide temporal information. The number of peaks determines the

type of the gesture, and the polarity of the initial peak determines the direction. Integrating

equation 5.4, we note that the net integral divided by # gives a.

We next consider two cases stemming from incorrect parsing by the activity detection

algorithm. Note that these algorithms are used after the initial peak finding algorithm.

The first is the case where two gestures are incorrectly pieced together as one. These

gestures can be separated by considering the polarity of adjacent peaks, which cannot be

identical without the device having come to a stop first. If two peaks of identical polarity

are found adjacent to each other, the system splits the peaks into two gestures at that point

and checks the consistency of each separately.

The second problem is the case where a single gesture is broken up into several separate

activity sections, with a gap in between. This is solved by recording the location of the

last segment to fail the consistency check since the most recent good gesture. If a failing

segment is found and there is a previous failing segment with which it could be combined,

the following algorithm is run. The start of the most recent segment is compared to the end

of the previous one to ascertain that they are within a reasonable distance of each other.

If so, the peak finding and integration algorithm is run on the segment reaching from the

start of the first failed segment to the end of the second. If this new segment is consistent

enough to be termed a gesture, it is passed along to the scripting systems. Otherwise, the

combined segment is stored once again, hopefully to be combined with another segment in

the future.

The algorithms described occupy approximately 200 lines of code, and can be written using

solely integer quantities. This makes it highly suited to embedded systems.

Start Stop Peaks a # IGesture

314 458 2 33.45 144 Not in Script
497 595 2 63.38 98 False Positive
630 739 2 45.70 109 Short Line
782 887 2 46.17 105 Short Line
932 1063 2 43.75 131 Short Line

1077 1215 2 38.71 138 Short Line
1235 1331 2 45.28 96 Fast Short Line
1356 1451 2 66.72 95 Fast Short Line
1479 1587 2 82.62 108 Fast Long Line
1594 1700 2 80.54 106 Fast Long Line
1738 2141 5 40.90 403 Joined Gestures
2202 2317 3 90.83 115 Long Loopback
2339 2501 3 76.28 162 Long Loopback
2528 2680 3 110.71 152 Long Fast Loopback
2681 2826 3 112.22 145 Long Fast Loopback
2852 3058 3 58.43 206 Short Fast Loopback
3135 3340 3 58.31 205 Short Fast Loopback
3672 3765 2 98.92 93 False Positive

Table 5.1: Recognized Accelerometer Gestures

A parsed data stream is shown in figure 5-1 and the recognized gestures are listed in table 5.1.

In this case, the parameters (which were found empirically and are given in the units of the

ADC, where appropriate) were:

" Consistency < 0.3
" Distance between segments to attempt combination < 30
" Net integral of a valid peak > 500

In this figure, the solid line (boxcar) indicates the good gestures and the dotted line indicates

the bad gestures. We note that all the gestures were recognized and that the system

properly pieced together the stuttering gestures (time indices 2800-3300) and split a single

activity block into two gestures (t = 2500 - 2800). There are false positives in the segments

where the baseline of the accelerometer shifted radically because of a change in orientation

(t = 550 and 3700), but there is little that can be done in such cases, short of either tracking

the orientation, which is quite difficult (as shown earlier), or disregarding all accelerometer

gestures when there is a gyroscope gesture on the same axis, which would reduce our

-400
0 500 1000 1500 2000 2500 3000

Time (10ms increments)

3500 4000 4500 5000 5500 6000
Time (10ms increments)

0

CA D

9-

o 400

.200

0 0

<-200

-400

MR

recognition set greatly. The small correction at the start and end of those segments, which

are misunderstood as part of a gesture, are in fact fundamental to fast human motion[68].

A final concern is the case where two gestures were pieced together as one (t = 2000), even

though the activity detection system recognized them as separable. In this case, a shift in

the baseline and a lack of deliberateness in the gestures are the likely the source of error.

The results of the parameterization can be considered reasonable in this case, given the

variability of human gestures. All the short lines have similar values for a, and the fast

versions have a slightly longer duration. The long lines have approximately double the

average a of the short lines. In the case of the loopbacks, the values of a for the long

loopbacks are consistent, though the # values are hard to interpret. The short loopback

has a much smaller a, as would be expected. Some of the difficulty in getting accurate

parameters comes from the inconsistency in start and end points for the gestures, with

some very accurate and others less so. Since a is dependant on this value, the only solution

would seem to be a better activity detection algorithm.

MATLAB code for the accelerometer gesture recognition algorithm can be found in Ap-

pendix E in the functions parsegests and gestcons (helper function).

Gyroscopes

We now consider the differences between the accelerometer and gyroscope algorithms. The

main difference is that the consistency check must be replaced as the zero velocity condition

it enforces is no longer applicable. Instead, a peak size threshold is used, to ignore gestures

that are caused either by the acceleration sensitivity of the gyroscopes, or by misalignment

of the sensors. Otherwise, the only difference is that a is now the absolute integral itself.

A parsed data stream is shown in figure 5-2 and a list of recognized gestures is given in

table 5.2. In this case, the parameters (which were found empirically and are given in the

units of the ADC, where appropriate) were:

" Absolute sum for valid gesture > 7500
" Distance between segments to attempt combination < 30

Start Stop Peaks a # IGesture

482 586 1 11976 104 Not in script
3498 3597 1 14753 99 Slow Twist
3672 3758 1 12330 86 Slow Twist
3989 4077 1 12350 88 Fast Twist
4102 4190 1 12978 88 Fast Twist
4336 4455 2 25909 119 Twist and Return
4527 4663 2 27948 136 Twist and Return
4757 4857 1 11536 100 Twist

Table 5.2: Recognized Gyroscope Gestures

e Net integral of a valid peak > 1000

In this figure, the solid line indicates the good gestures and the dotted line indicates the

bad gestures. This case is far simpler than the previous one, with all gestures successfully

recognized and no false positives. The parameterization was quite effective in this parse as

well. Each of the single twist gestures, regardless of speed, had an a between 12000 and

15000, and the twist and return gestures were between 26000 and 28000, falling well within

double the first range.

MATLAB code for the gyroscope gesture recognition algorithm can be found in Appendix E

in the functions parseggests and gestmass (helper function).

5.3.3 Interpretation

The current interpretation of the gestures follows from the recognition scheme. Accelerom-

eter and gyroscope gestures are classified in terms of the number of peaks. A two-peaked

accelerometer gesture is a straight-line, three peaks represents a loopback, etc, with each

new peak adding another line segment in the path. The gyroscope gestures follow the same

pattern, where a single peak is a twist, two peaks is a twist and return, etc. We do not

claim that these gestures provide a basis for the space of (human) gesture, merely that they

are one logical way of decomposing the problem given the structure of the data.

1. L

0
:
 --
-
-
-
-

..
..

..
..

0
.

.
.

.
.

0
.

..
.

..
.

..

.
.
.

.
.

.
.

.
.

. .
..

.
..

.

0
.

.
.
.
.
.

<
nin

...........
O
.
.

Figure5-2:
A

P
arsed

G
y
ro

scp
e.D

at.S
trea

.
.

.
.
.
.
.
.
.

.
.
.
.

6

33 Hz 50 Hz 100 Hz 200 Hz 500 Hz

8 bits 1/2/0 0/3/0 1/2/1 1/3/0 2/1/0
12 bits 1/0/0 2/0/2 1/0/1 1/0/1 1/0/1
False Positives/False Negatives/Joined Gestures

Table 5.3: Gesture Recognition Rate for Various Sampling Rates and Accuracies

Note that these descriptions are somewhat arbitrary and are based on observations of human

arm gestures. Overall, any attempt to assign meaning to these atoms will fail in one

context or another. In general, what the atomic gestures mean is irrelevant, as their key

characteristic is that they can be combined to form larger gestures, as shown in the next

chapter.

5.4 Entropic Limits

In this section, we consider the minimum data sampling rate and accuracy necessary to

achieve reasonable recognition. This is done by starting with the raw accelerometer data

stream and decimating it in time and accuracy to produce lower entropy' data streams. The

activity detection and gesture recognition algorithms were run on these streams, and the

number of false positives, false negative and joined gestures (two or more gestures grouped

as one) are recorded in table 5.3 (out of 29 total). The parameters used by the activity

detection and gesture recognition algorithm were chosen in the same fashion as described in

Section 4.3 and 5.3.2, respectively. Note that the goal here is not to prove the optimality of

our algorithms or to compare them to others, but merely to get a sense of how the success

rate changes with entropy.

Data reduced to six bits of accuracy was also analyzed, but our current algorithms proved

inappropriate. Visual inspection suggests that it would be possible to collect interesting

information from that data stream, certainly the presence of gestures and the number of

'Total information content, comprising both number of bits per sample and number of samples per

second.

peaks. However, it seems there is not enough entropy in the stream for our current algo-

rithm, which produced meaningless output. A simpler scheme looking at pairwise differences

between data points could be successful in this case and is left as possible future work.

The only conclusion that can be drawn from the table is that there is no statistically

significant difference between any of the tested data streams. The few differences which can

be seen are based on differing parses of a few segments. Specifically, referring to figure 3-1,

the two first loopbacks (9 & 10) are usually joined together, the change in baseline before

the first gesture is often considered a gesture, and the change in baseline during gesture 20

is sometimes classified as a gesture.

However, the lack of significance in and of itself is relevant, as it suggests that running

at lower sampling rates and accuracies will not result in a significant loss of recognition.

However, latencies at lower sampling rates were slightly higher, and the accuracy of the

parameters will not be as good.

Chapter 6

Output Scripting

The recognition portion of the framework produces parameterized atomic gestures on an

axis-by-axis basis. For this to be useful to interface designers, there must be a way to

combine these gestures into larger units and to interpret those units in some fashion. An

output scripting system was designed to fill this role. It allows users to combine gestures

based on their type, any or all aspects of the parameterization, and their temporal relation.

Output routines can be tied to the occurrence of these combinations. A sample script is

provided for reference.

6.1 Scripting System

The output scripting system extends the generalized nature of the overall framework. It

allows for any number of atomic gestures to be assembled into full prototype gestures, with

matching functions on both the individual atoms and the temporal combinations thereof.

These full gestures are matched against the recognized atomic gesture stream. If the gesture

is found, a specified output routine is executed. The general flow of data in the scripting

system is shown in figure 6-1 and is detailed below.

Gesture
Recognition

System
Extracts atomic gestures

from hardware data

Recognized
Atomic Gesture
(from the data)

Matching Class
Fit atom stream to predefined

composite gestures

Recognized
Atom

Stream

List of
Prototype
Gestures

Full Gesture

Output
Scripting
System

Speciy set of predefined
composite stures to detect

Prototype Atomic
Sub-Gesture Gesture

Figure 6-1: Flow of Data in the Scripting System

6.1.1 High-Level Structure

In general, designers will put together the full gestures of interest in a bottom-up fashion.

The first step is to construct the prototype atomic gestures that are relevant to the appli-

cation of interest, specifying the type (line, twist, etc.) - axis and number of peaks - and

the desired range (if any) that the parameters should match. One or more atoms which

should occur in a single timeframe are combined together into a sub-gesture. The designer

can specify logical AND, OR and NOT existence operations between the atoms'. Finally,

these sub-gestures are combined, in chronological order, into a full prototype gesture.

These gestures are held by a top level matching class, which receives atomic gestures from

the recognition software as they occur. This matcher examines each prototype gesture

to determine whether it appears in the stream of received atoms. If so, it will execute

an output function which the user has associated with the full gesture. No limits are

placed on the actions of this function, including accessing parameters from the received

atoms. Examples range from printing text messages to the screen to providing commands

to artificial intelligence-based creatures.

Lje. Atomic gesture A AND Atomic gesture B occur simultaneously, either A OR B occurs, etc.

Note that while the gesture set is fairly straight-forward, how an individual gesture will be

broken down, and the range of interest of the parameters, is not immediately clear. To make

the construction of prototypes easier, a short helper script is provided that will output the

atomic gestures as they occur. Automatic training systems which can learn scripts like the

one described below are considered future work.

The code for the output scripting system is written in JPython[69], a variant of the Python

scripting language designed to interface with Java. JPython provides a large amount of

graphical user interface and networking code, simplifying the process of writing output

functions.

A short block of example code, showing the instantiation of prototype gestures and simple

output functions, can be found in Section 6.2 and figure 6-2.

6.1.2 Low-Level Code

The low-level code of the scripting system was built using a fairly simple class hierarchy

and a number of generalized matching functions. The lowest class is the atomic gesture

class itself. Each prototype gesture is specified with an index corresponding to an axis, the

number of peaks specifying the gesture, and the parameters from the recognition system:

a, 3 and direction. The prototype further takes a generalized matching function written

by the designer. Equivalence of a prototype atom to one found by the recognition system

is defined as follows: the axis and number of peaks must be identical, and the matching

function must return true. A sample that does matches parameters within a fixed range is

provided.

The prototype atoms are combined together to form sub-gesture detectors, which contain a

list of atoms and a generalized matching function designating the necessary logical relation

among the existence functions of the atoms. Logical AND, OR, and NOT are provided.

Atoms in a sub-gesture must happen simultaneously, which is defined as any time overlap

between them2. The matching function examines a number of recognized atoms equal to

the maximum number of atoms necessary for a match (e.g. 1 for OR, 2 for AND). If the

atoms tested are equivalent to a set of prototype atoms in the sub-gesture which fulfill the

matching function, then a match has been found.

A list of sub-gestures in chronological order forms a full gesture. The limitation on the

time frame in which a sub-gesture may fall is two-fold: first, it cannot overlap a previous

sub-gesture; second, it must start less than the width of the longest atom after the end of

the previous sub-gesture.

A master matching class contains all of the user-defined gestures and controls the matching

process. Whenever it receives a new atomic gesture from the recognition system, it prompts

each gesture to look for a match in a vector containing the twenty most recent atoms (in all

axes). If a gesture is found, the function associated with it within the matcher is executed.

The master class also receives a tick command from the recognition code at a fixed interval

to use as a time reference (if necessary).

The scripting system is general enough to allow virtually any combination of gestures to be

detected, though there are a few limitations in the current instantiation. Because the system

does not have knowledge of the gestures currently taking place, but only those completed,

a delay (of a gesture width) is necessary to ensure that no other atom overlaps the atom(s)

of interest. Also, the sub-gesture matching algorithm has difficulty with spurious atoms

interspersed among those it seeks. While this case is fairly unlikely (it can only happen if

an atom is concurrent with those in the sub-gesture), the only way to currently accommodate

for it is to define a number of extra sub-gestures to account for that case. While this is

algorithmically correct, it violates the spirit of the scripting language, which is ease of use.

The ability to filter the packets before inclusion in the master matching array will be added

in the next revision and should aid in resolving these difficulties.

2The NOT function enforces a time window after the last matched atom in which its parameter cannot
occur.

6.2 Sample Script

To render the above discussion more concrete, a sample script is provided in figure 6-2 and

will be discussed below. This script is designed to demonstrate a few simple gestures and to

give the reader a sense of the syntax of JPython and the ease of use of the scripting system.

Lines 1 through 11 in the script define simple comparison functions to be used by the

atomic gestures defined below. In this case, these functions test whether a gesture is within

a reasonable range of the prototype in both a and width (f), as well as testing that they

are in the same direction (in the case of the CompDir function). Lines 15 through 19 define

four gestures. TwistY is a single-peaked gyro gesture, while the lines (LineX,Y,Z,Up) are

double-peaked accelerometer gestures. Note that the only difference between LineZ and

LineUp is the comparison function.

Next, sub-gestures are constructed (lines 21-25). dAnyLine will respond to any straight

line, dSweep to a combination of an upwards movement and a twist, and LineX and LineY

to movements in those planes. These are then combined to form full gestures (lines 27-31).

Note that g2 and g3 differ only in order. Lines 34-39 demonstrate some simple output

functions.

Finally, the full gestures above are added to the matching system, and are paired with the

appropriate output function (line 42-46). Here the logic of the definitions of g2 and g3

becomes apparent. Since they are both simple L-shaped gestures, they both have the same

output code, allowing the system to respond identically to all four such gestures.

A few comparators

dAlpha = 20.0

dDuration = 20.0

def CompDir(myAlpha, myDuration, myDirection, theirAlpha, theirDuration, theirDirection):

5 return (myDirection == theirDirection) and \
(abs(myAlpha-theirAlpha)<dAlpha) and \
(abs(myDuration-theirDuration)<dDuration)

def CompNoDir(myAlpha, myDuration, myDirection, theirAlpha, theirDuration, theirDirection):

10 return (abs(myAlpha-theirAlpha)<dAlpha) and \
(abs(myDuration-theirDuration)<dDuration)

Atomic Gestures

(axis, number of peaks, alpha, timestamp, width, direction, matching function)
15 TwistY = Subgesture(1, 1, 80, 0, 100, 1, CompNoDir)

LineX = Subgesture(3, 2, 70, 0, 100, 1, CompNoDir)

LineY = Subgesture(4, 2, 70, 0, 100, 1, CompNoDir)

LineZ = Subgesture(5, 2, 70, 0, 100, 1, CompNoDir)

LineUp = Subgesture(5, 2, 70, 0, 100, 1, CompDir)

20

Subgestures (List of atoms, number for a match, matching function)

dAnyLine = SubgestureDetector([LineX, LineY, LineZ], 1, gOR)

dSweep = SubgestureDetector([LineUp, TwistY], 2, gAND)
dLineX = SubgestureDetector([LineX], 1, gOR)

25 dLineY = SubgestureDetector([LineY], 1, gOR)

Full gestures

gO = Gesture([dAnyLine])
gi = Gesture([dSweep])

30 g2 = Gesture([dLineX, dLineY])
g3 = Gesture([dLineY, dLineX])

Output functions

def f0(:

35 print "Found a straight line"

def fi(:

print "Found a sweep"

def f20:

print "Found an L"
40

Constructing the matching system (full gesture, output function)

grs = GestureRecognitionSystem()
grs.addGesture(gO, f0)

grs.addGesture(gi, f1)

45 grs.addGesture(g2, f2)

grs.addGesture(g3, f2)

Figure 6-2: Sample Output Script

Chapter 7

Sample Application

As the easy creation of applications is a core feature of this project, a sample application

will be examined in detail in this chapter. We begin with a discussion of the form gestures

of interest must take to accommodate the limitations of the framework described in earlier

sections. We then present the (void*) user interface, concentrating on the differing imple-

mentations of gesture recognition in the system shown at SIGGRAPH '99 and the revised

system using the framework described herein.

7.1 Solvable Problems

While we attempted to create as general a system as possible, various features of both

inertial sensing generally and this framework specifically impose certain restrictions on the

gestural applications that can be implemented. These are detailed below.

The most important constraint to keep in mind is the lack of an absolute reference frame. As

seen in Section 4.1.2, it is not possible, given the class of sensors used, to track orientation

relative to a fixed frame for longer than five seconds. Therefore, it is necessary for the

body reference frame to have some meaning associated to it, such that the application

designer will be able to construct output functions which are appropriate regardless of the

instrumented object's orientation in the world frame.

The second constraint is that the system cannot track multi-dimensional gestures, except

for those which are separable in space and time. An arbitrary straight line can always be

decomposed, and therefore can be recognized, while a rotating object tracing the same linear

path would not be recognizable because the local axis of acceleration changes with time,

making the decomposition impossible. However, the physical constraints of the gestural

system often prevent such movements, especially in the case of human movement.

The final set of constraints are those imposed by the algorithms used for analysis and gesture

recognition. Gestures must come to a complete stop to be found by the activity detection

algorithm, making fluid motions and transitions hard to pick up. Note that as long as

movement on one axis comes to a stop, the recognition of at least part of the gesture can be

attempted. Also, the limited baseline tracking of the gesture recognition algorithm makes

movements which combine translation and rotation difficult to measure. Research shows

that subjects using 6 DOF controls in docking experiments' tend to control the rotational

and translation DOFs separately[70], though the extension of this data to human hand

gestures is not clear.

7.2 (void*): A Cast of Characters

Consider a diner, surrounded by the void, on a hot starless night. Three haphazard fools at

the counter, alone and tired. The trucker is the strong, silent type. A salesman sits fretting,

half-expecting some unknown plague. A hipster awaits excitement, but seems unwilling to

provide it himself. A Spirit descends. Suddenly the salesman twitches, looks at his legs in

amazement and is dragged feet first away from the bar. The others eye their feet warily. In

the center of the floor, the salesman tentatively begins to dance.

This is the setting for (void*): A Cast of Characters.

The task in a docking experiment is to manipulate a randomly situated object (in 3D) such that it
overlaps an identical fixed object exactly.

Figure 7-1: Buns and Forks Interface to (void*)

7.2.1 Summary of Installation

Created by the Synthetic Characters Group at the MIT Media Laboratory, (void*) is

an interactive installation which transports the user to a world of intelligent creatures

which interact both with one another and the user, and have the ability to learn from

those interactions. These characters are semi-autonomous in that they will obey external

commands, but may make assumptions about the user's intentions based on their current

context and will color how they execute the commands with their own desires. The reader

is directed to [71, 72] for a detailed discussion of such creatures.

Drawing inspiration from Charlie Chaplin's famous 'buns and forks' scene in The Gold

Rush[73], we created for this installation an input device whose outer casing is two bread

rolls, each with a fork stuck near the end, thereby mimicking a pair of legs (see figure 7-1).

By performing gestures with the interface, the user controls the lower half of the body of one

of the three characters. However, their upper body movements and the quality of the lower

body movement remains under the characters' autonomous control. The user can choose

to control a specific character by placing the buns and forks on one of the three plates (left

hand image in figure 7-1), where they are detected through the capacitive signalling system.

The buns and forks are an abstracted representation of feet and legs. This is well suited

to the installation - an interface that closely resembles a lower torso would have suggested

Gesture Description

Kick Forward (L/R/B) Rotate bun forward
Kick Sideways (L/R/B) Rotate bun outward
Twirl (L/R) Rotate bun about fork
Twist (L/R) Sweep a circle in XY plane
Knee Lift (L/R/B) Raise and lower bun
Crossover Move one bun across the other
Walk Move buns forward and back, half-cycle out of phase
L=left bun, R=right bun, B=both

Table 7.1: Gesture Set for (void*)

greater control, while an even more abstracted interface such as a mouse would have been

too distant. We note that our IMU is the best way to sense the motion of such objects, given

that it is small enough to be embedded within the bread rolls used (which are 3 x 2 x 2 in3)

and can operate wirelessly. There is a separate IMU in each roll.

The target set of gestures to be recognized, as derived from the Chaplin scene, is listed in

table 7.1. They include both one- and two-handed dynamic gestures. Notice that there

are no gestures that imply navigation - absolute position and orientation are not used. We

now consider two implementations of the gesture recognition for this set: an HMM-based

system shown at SIGGRAPH '99 and a system based on the algorithms developed in this

dissertation.

7.2.2 Then

The original gesture recognition for (void*) was done using an HMM-based system de-

signed principally by Andrew Wilson and Marc Downie[74]. Each individual gesture was

implemented using a separate model (or two, depending on the number of different ac-

ceptable interpretations of each gesture), with 5 to 10 training examples necessary. A null

gesture was also provided. At any given time step, the user was assumed to be performing

the gesture whose HMM had the highest log-likelihood after the subtraction of a fixed off-

set. Because of this winner-takes-all thresholding algorithm, the system could respond to

a gesture even before its peak in likelihood. The gesture recognition software was written

in Java and, running on a single 400MHz Pentium computer could recognize gestures from

21 HMMs at 30Hz. Note that the time complexity of this system is linear with the number

of models, and that the addition of a new gesture generally required that all the HMM

threshold offsets be altered.

A few features of this system merit note. The first is that the time progression through the

HMM states was done using a technique known as linear time warping. In this algorithm,

the HMM is assumed to have spent an equal amount of time in each state and a range of

total durations is tested to find the one with the highest probability. This technique helps

avoid degenerate parses, but requires a fair amount of processing time. The second is an

activity detection algorithm implemented by creating an HMM with a single zero mean, low

covariance state. This model would drop below a certain probability whenever the device

was moved. Using this information, it was possible to alleviate user frustration with the

latency in recognition (since the gesture must be completed to be recognized) by having the

characters look at their feet if the buns were moved at all.

This HMM-based gesture recognition system was used with reasonable success both at

SIGGRAPH '99 and in demonstrations at the Media Laboratory. The overall recognition

rate was on the order of 70%[75]. The main source of error was the overconstraint of the

HMM parameters, leading to a lack of generality not only between users, but also between

slight variations in the IMU position over time. Adjusting the offsets had some limited

success in remedying this situation.

7.2.3 Now

The gesture recognition for (void*) was recently redone, with help from researchers in the

Synthetic Characters Group, using the algorithms described in this dissertation and can be

found in Appendix F. This system exploits the similarity between the gestures in the set to

simplify the implementation procedure. The atomic gestures that make up a 'lift left' are

exactly the same as those that make up a 'lift right', except on the other IMU, and a 'lift

both' is (by definition) the combination of the two. The atoms that each gesture caused was

determined using the helper script mentioned earlier. The full script for this application

can be found in Appendix F. This system was written in Java and JPython and ran at full

rate (66 Hz) on a dual Pentium 933 MHz, using only 5% of the processor's capability. The

complexity of the system is linear in the number of axes, and constant otherwise.

Note that because the IMU must come to a complete stop at the end of a gesture, the

movement for walk was altered. Instead of continuously moving the buns back and forth

a half-cycle out of phase, only a single cycle is completed. While this gesture is easily

recognized, it is somewhat less than intuitive.

The most interesting feature to consider in this implementation is mutual exclusion. It

turns out that the kick gestures contain the Y-accelerometer loopback atom as part of their

structure. Unfortunately, this atom alone corresponds to a lift. Therefore, to avoid spurious

triggers, the prototypes for the lift gestures uses the NOT function with a null operand to

require that only the atom specified take place for a trigger to occur. This results in a slight

extra latency, but that is unavoidable. Also, the researchers implementing the script found

it quite easy to add a subgesture combination function, allowing lift both (for example) to

be specified as a combination of lift right and lift left.

It should also be noted that the (void*) installation does have a subsystem that can make

use of the parameterized information from the recognition system. The motor system used

in this installation has the ability to blend between prototypical animations[76] - currently,

it blends between happy and sad versions based on the characters state. This technique

could use the a parameter (for example) to provide the position in a blend between weak

and forceful versions of the movements.

An informal study was done with six people who were familiar with the (void*) gesture

set. Each subject was reminded of the new gesture set, and then was asked to perform a

number of the gestures following a script. The results are shown in table 7.2, which lists

the gesture, the number of times it was correctly performed (out of two), and the reason

for missed gestures. An overall recognition rate of 87% was found. There is not enough

Gesture User 1 User 2 User 3 User 4 User 5 User6

Kick Forward Right 2 2 2 2 2 2
Kick Forward Left 2 2 2 2 2 2

Kick Forward Both 2 2 2 2 2 2
Knee Lift Right 2 2 2 2 2 2
Knee Lift Left 2 2 la 2 2 2
Knee Lift Both 2 2 2 1 2 2

Kick Sideways Right 2 2 2 2 2 2
Kick Sideways Left 2 2 2 2 2 2

Kick Sideways Both 2 2 1b 2 2 2
Twist Left 2 2 2 2 2 2

Twist Right 2 2 2 2 2 14

Twirl Left 0d 2 2 2 1F 2
Twirl Right 2 2 2 1d- 2 1d

Walk (Version 1) 2 1d 2 1d 2 1d
Walk (Version 2) 2 2 2 1d 2 2

Crossover 2 2 2 2 2 2
2 trials per gesture per user

Table 7.2: Results of Informal Testing of New Algorithms

aResulted in no gestures.
bRF transmission problem. Not used in calculation.
'Resulted in kick forward.
d2-peaked rather than three peaked gesture.

data to claim that the new system performed better than the previous version, though it is

reasonable to conclude that it performed at least as well.

Most of the missed gestures were the result of a lack of deliberateness in the motion - weak

or off-axis gestures are hard to detect with this scheme. This is the cause of the large

number of kick forward gestures found in error, and the few times when nothing was found.

The 2-peaked gestures seen in place of 3-peaked gestures were likely caused by the limit on

minimum peak size. Altering the thresholds on the various algorithms can help solve these

problems, but will result in more spurious gestures being detected.

7.2.4 Comparison

The strength of the new system lies, by design, in its speed and ease of use. It occupies

few processor cycles, freeing them up for more complex output tasks. The script took less

than two hours to write, and will remain valid even after changes to the underlying gesture

recognition scheme (within reasonable limits). In contrast, the HMM-based system was

not able to accept data at even half the update rate, and needed to be retrained after even

cursory change to the algorithm. Further, the new system proved more robust in admittedly

less than complete testing, which is the expected result of using an algorithm that exploits

fundamental a priori knowledge about the data.

The generality of HMMs does provide two notable benefits in this case. Firstly, they can

achieve continuous recognition, while our algorithm requires that gestures be distinct.

Secondly, complex relations between the axes are handled automatically in the (high-

dimensional) gesture state space, rather than manually through in the scripting system.

However, these advantages are not enough to overwhelm the obvious benefits of the new

generalized system.

Chapter 8

Conclusions

In this chapter, the entirety of the project is considered. We begin with a summary of this

dissertation; the work to date. Comments on the short term improvements to be made

to the current framework and on the long-term potential of self-contained inertial gesture

recognition are given.

Overall, the work in this dissertation demonstrated that inertial measurement can be used

to acquire rich data about human movement, that we can devise efficient algorithms for

using this data in gesture recognition, and that the concept of a parameterized atomic

gesture recognition has merit. Further we show that a framework combining these three

can be easily used by designers to create robust applications.

8.1 Summary

The framework we constructed uses an inertial measurement unit to collect data from

the object of interest and wirelessly transmit it to a personal computer. The data is then

analyzed with a windowed variance algorithm to find periods of activity, and the generalized

gesture recognition algorithms are applied to those periods. These gestures are recognized in

an atomic form on an axis-by-axis basis using a number of physically based constraints, and

those atoms can be combined into more complicated gestures using an output scripting

system. This system was designed for use by application designers and allows output

functions to be linked to specific gesture inputs. Each portion of the framework is considered

below.

The gesture sensing for these applications is accomplished using a compact inertial mea-

surement unit. The device is a cube 1.25 inches on a side, and measures a full six degrees-of-

freedom in motion using three orthogonal accelerometers and three orthogonal gyroscopes.

Data is collected at 15 ms intervals, and is transmitted wirelessly, to allow for the greatest

possible range of applications. The hardware runs on a pair of batteries with a 50 hour life,

and currently costs approximately US$300, in prototype quantities.

A thresholded windowed variance algorithm for activity detection was developed. This

routine has low latency and is fairly effective at finding areas of interest in the data, though

it imposes the constraint that each gesture must begin and end with an area of constant

acceleration or rotational rate. Two other analysis schemes were considered. Kalman

filtering, which is commonly used in inertial tracking applications, was deemed ineffective

over the relatively long time scales of interest, and frequency space filtering did not provide

any useful information.

Next, the parameterized gesture recognition algorithm considers the data on an axis-by-axis

basis, and is further simplified by considering only atomic gestures - those which cannot

reasonably be decomposed into simpler gestures. Therefore, only a very small number of

gestures need to be recognized on each spatial axis, and the same algorithm can be applied

to each. The recognition method for accelerometers is fairly straight-forward. Using the

assumption that constant acceleration implies zero velocity (in the case of human gesture),

we note that once a baseline has been removed the net integral across any accelerometer

gesture should be nil (within a reasonable threshold). This condition does not hold for

gyroscope data, and therefore gestures are separated from incoherent activity by a threshold

on their absolute integral. Width, length, number of peaks, and direction are the parameters

collected for each gesture. This system was used rather than more conventional state-based

methods such as Hidden Markov Models, which are processor intensive and have difficulties

analyzing dynamic (rather than absolute) data.
94

Given these atomic gestures, a designer must have some method of piecing them together

into full gestures. An output scripting language is provided for this purpose. The designer

can create prototypes of various atomic gestures of interest. These are then combined into

subgestures of one or more atoms that should occur simultaneously. An ordered sequence

of subgestures produces a full prototype gesture and the occurrence of a full gesture in the

stream of recognized atoms can be associated with an arbitrary output function. Recognized

atoms can be matched to prototypes based on any or all of their parameters, and they can

be combined together into subgestures using logical operands.

Because our goal is to eventually create stand-alone devices with this functionality, the

design constraints were different than those in vision-based and tethered gesture systems.

The algorithms used in this framework were chosen for their low algorithmic complexity

and low latency. While not as general as those commonly used in gesture recognition, they

provide similar performance at a much lower cost in terms of processor cycles. Further,

it was shown that the algorithms developed can be used with much lower data rates and

accuracies. The gesture recognition portion of (void*): A Cast of Characters was reimple-

mented using this scripting language. The new version ran much faster than the previous

version, used less processing power, and performed at least as well.

8.2 Future Work

As the intent of this dissertation work was to provide a proof of principle, there are a

number of possible improvements to both the hardware and the software that are worth

noting. Further, there are fundamental design questions to be answered regarding stand-

alone devices, and they are discussed here as well.

Possibilities for the next revision of the inertial hardware are described in Chapter 2 and

the three areas for improvement will just be touched on here. Sensor size should be reduced,

hopefully moving to smaller accelerometers and MEMS gyroscopes in the near future. The

device should also be more flexible in shape, to allow for a greater range of applications.

Finally, the non-inertial input capability should be extended by providing other modes of

capacitive sensing (useful for hand-held applications) and an external header for additional

wired sensor inputs.

In the analysis stage, there is the possibility of combining both activity detection and track-

ing using a Kalman filter. We noted that accurate tracking can be achieved only with a high

enough rate of external update. Using the assumption that constant acceleration implies

zero velocity, the rate of increase of position error can be greatly slowed, and magnitude of

the constant acceleration (assumed to be from tilt) can be used to correct two degrees of

freedom in the orientation. Further, any zero crossing in the velocity will demark the start

or end of a gesture in the world frame. However, with no heading information available,

the angular error in the plane perpendicular to gravity will tend to increase quickly.

Turning to gesture recognition, the need to remove the baseline is the greatest concern with

our algorithm. It requires that atomic gestures be completed before any recognition can

begin, and leads to missed gestures and false positives in areas of orientation change. The

latency could be overcome by doing a speculative integration from the start of a period

of activity, assuming a constant baseline at the current value. The integration ends when

the sum returns to zero, indicating a successful parse, or appears to be increasing without

bounds, indicating a failure due to change in baseline. For gestures parsed after completion,

it should be possible to remove the baseline more accurately by using information from the

associated gyroscope channel. Specifically, by checking for overlapping gestures between

the channels, the start and end point of a change in orientation can be determined more

accurately. This algorithm was attempted using a linear interpolation between the start and

stop points of a gyroscope gesture, as long as those points were within an accelerometer

gesture, but proved ineffective. It will be necessary to consider changes in orientation

beyond the time extent the acceleration gesture and higher-order interpolation routines for

this technique to succeed.

The main area for future expansion of this work is in the design of stand-alone devices.

Improvements in the hardware and algorithms will be necessary, particularly to provide

greater processing power and storage. However, larger questions lie in the uses of such a

device. Will the gestural lexicon created here be rich enough to describe not only interesting

motion, but interesting variations therein? How can effective output be accomplished in a

compact low-power inexpensive device? Can the device itself learn not just the motion of

interests, but the most effective feedback mechanism and the contexts in which to offer (or

withhold) comment?

Once accomplished, the benefits of such a system would be enormous. Otherwise ordinary

objects could have a sense of their own motion and the ability to communicate this knowl-

edge completely in situ, with no wires or infrastructure. We conclude now with a short

discussion of such an object.

8.3 Future Applications

To comment on the future possibilities of inertial measurement as not just a user interface,

but a learning tool, we consider the somewhat whimsical example involving a general iner-

tial unit that can be attached to any ordinary object. It will sense 6 degrees-of-freedom,

recognize gestures using a generalized scheme, and have a small wireless link with which to

receive commands.

On your favorite cooking show, the chef is baking a chocolate cake, and is demonstrating

how to properly fold the batter. You follow along with the program and prepare the cake

in question, only to have it come out flat. But why? It turns out that the batter was folded

incorrectly.

Of course, you could prepare the cake again, but it would be sheer happenstance if you did

so correctly, because two key portions of the learning process are missing. The feedback

received has only a weak temporal coupling to the action, which makes learning more

difficult [77]. Further, the feedback received is based on the outcome, rather than the quality

of your action, which would be far more valuable[78]. By placing the generalized IMU on

the spatula, this situation can be improved. Transmitted along with the cooking program

will be a script of atomic gestures which represent proper folding technique. These gestures

can be sent to the IMU via a low bandwidth link because of the abstraction in the gesture

recognition progress. Then, as you fold, the IMU will produce pleasing tones if you do so

correctly, and cacophonous notes otherwise. These sounds could further give some sense of

the mistake being made. Not only will this cake turn out well, but so will those you produce

in the future.

This is just one possible example: other applications include physical therapy systems where

a user is alerted when they make awkward movements, and interfaces which can train users

on how to use them via feedback. Such systems would color our everyday life, changing the

way we learn by allowing perception and expertise to be contained in the device itself.

Appendix A

Abbreviations and Symbols

0 Diameter

ADC Analog to digital converter.

DOF Degree of freedom.

EKF Extended Kalman Filter.

FIR Finite impulse response (digital filter).

HMM Hidden Markov Model.

IC Integrated circuit (chip).

IIR Infinite impulse response (digital filter).

IMU Inertial measurement unit.

KF Kalman Filter.

MEMS Micro-electromechanical systems.

PCB Printed circuit board.

RF Radio frequency.

RS-232 Serial transmission protocol.

SNR Signal to noise ratio.

100

Appendix B

Glossary

Activity Detection The finding of areas of (possible) interest in a data stream.

dB Power ratio expressed as 10 log(-).

DC Balancing

Embedded Code

The processing of data to ensure that it contains an equal number
of ones and zeros, and sometimes also to limit runs. Usually done
prior to RF transmission to ensure that the receiver maintains the
proper threshold level between high and low bits.

Software which is executed on a microcontroller. It is usually re-
stricted in terms of its use of memory and floating-point operations,
and is often executed at low speeds.

Gesture The space-time curve associated with a motion of interest.
Atomic gestures are the fundamental unit of the gesture recogni-
tion system and cannot be further decomposed.
Sub-gestures are a combination of simultaneous atomic gestures.
Full gestures are a combination of consecutive sub-gestures.

Inertial Sensors Sensors which measure their own motion through inertial reatction,
sensitive to either acceleration or rotational rate.

IMU Inertial Measurement Unit; any systems with three axes of ac-
celerometers and three axes of gyroscopes. Minimum set of sensors
necessary to completely describe motion in three dimensions.

101

Microcontroller Small microprocessor, usually featuring additional integrated fea-
tures such as an analog to digital converter and/or a serial com-
munication hardware (UART).

Reference Frame The (arbitrary) axes which form a coordinate system. The world
reference frame is considered fixed to a certain location, while the
local (or body) reference frame moves with an object.

102

Appendix C

Schematics,

Drawings

PCB Layouts and

103

On

o e

c

0

0V

JP4
0

Figure C-2: Main IMU PCB - Top

105

I

Figure C-3: Main IMU PCB - Bottom

106

- .

-o +t ** 0444-

+4

L woJ

0 o

r oi

4
I

OL

w.
+

Ov r too 0*
,o. r
"A Lol -- w toI -U., o 701.wv.-w 'I w w. X, I ;10. K eW'11;*'IIII v

4to to *Oo # * 4Ow*ww.. v 4

...
to

V too
t +

t *74
0+4**

x*++Li 0 o' 4so-1
0 *o-

too -4 f r o#** to too 4* 111 "*+e

J# co c* 'o

w Q7W

o.

00o%%
0 o V #*

tl
to + "o %

4 4 Notot !4 4 tooII o#1 4 -4 No -.#4
*

%:
r.1

to 41 w!'
o v

to
+ ; ff"t

ot
Otto

.**** tote
;t "-77 o** lIP*+*#**#4

0*0*o

too 6
***4 ";9V'I Cto
tnv r 0 Co + *

1#4 0 o

rn

0 too 0 0 * 0

to,**#**
*******#*
******##
*+000o"o
0 ******#**

C-Ile-0 00**
I, AR

.'Vow* w

..

1 2 3 4

J5
POWER

+5V
+12V G+2

09 ND (2
47uF--12 G1

Power Jack

Voltage Regulator Simple Serial Receiver

B 2
Date: 7- 2000 Sheet I of 2
Fil: X: e \d Deawn By. AYB

(2

I-c

I I

Figure C-5: Receiver PCB - Top layers

108

0 *---

...
01

0 -

U

~~0

U

LL0

0 0

0
00

0 0

Figure C-6: Receiver PCB - Bottom layers

109

P-MM

R.06 TYP

.83

1 . 28

4X .13

3. 43

Figure C-7: Receiver Base Drawing

110

ADLER IMU RECEIVER BASE

09-00-99 I MU

100-002

.xtO.010

x 1.00' 0.500

1.81

Figure C-8: Receiver Cover Drawing

111

ADLER IMU RECEIVER COVER

13-Ot-99 IMU

100-001 I

.xxtO.OIO
A,i_*_i_" 05I .O000

112

Appendix D

ADuC812 Embedded Code

113

/+ thesis.c - - Final version of IMU microcontroller code. +/

#pragma CODE /* pragma lines can contain state C51 +/
#include <stdio.h>

#include <ADuC812.h>

#include <intrins.h>

#include "812.h"

//Are we using ONEY accelerometer value or TWOY values?
10 #define ONEY

/Are we using the PAN? (Uncomment first line and the frequency of choice)
//#define PAN
//#define PAN50k
//#define PAN20k

//Forward declerations
void init(void);

void collectAnalog(void);

void collectAccels(void);

20 void checkPower(void);

void transmitData(void);

void trans3Nibbles(unsigned char,unsigned char);

void transByte(unsigned char);

void pulsePAN(void);

// Declare ports
cbit AccelX = Ox82; //Pin P0.2

sbit AccelYl = Ox83; //Pin P0.3
sbit AccelY2 = Ox80; //Pin PO.0

30 sbit AccelZ = Ox81; //Pin PO.1

sbit PANpin = OxA7; //Pin P2.7

// Plug in lookup table
idata unsigned char lookup[64] = {23,27,29,39,43,45,46,51,53,54,57,

58,71,75,77,78,83,86,89,90,92,99,

101,102,105,106,108,113,114,116,

135,139,141,142,147,149,150,153,

154,156,163,165,166,169,170,172,

177,178,180,184,195,197,198,201,202,
40 204,209,210,212,216,225,226,228,232};

7/ Declare ADC Channels
#define GYROXCHAN SCONV2

#define GYROYCHAN SCONVi

#define GYROZCHAN SCONVO

#define TEMPCHAN SCONVTEMP

// New Header Versions
#define POWERGOOD OxFF

50 #define POWER.MED OxFE

#define POWERSUCKS OxFD

// Time out thresholds
// For risc to fall timer
#define TIMERF OxFF

// For rise to rise timer
#define TIMERR OxFF

// Misc defines
60 #define VERSION x0C

#itdef PAN

#ifdef PAN50k

// Offset is 256-number of instruction
#define PANOFFSET OxF7

// Number of periods for 1 ns
#define PANITER 100

#endif

#ifdef PAN20k

70 // Offset is 256-number of instruction
#define PANOFFSET OxE9

// Number of periods for 1 ms
#define PANITER 40

#endif

#endit

// Variables
lu gyrox;

lu gyroy;
80 lu gyroz;

lu XT1;
lu Y1T1;
lu Y2T1;
lu ZT1;
bit under293,under263;

bit in.cycle,pause,dirty;

// Setup function
void init(void)

90 {

cycles for one period

cycles for one period

// Setup serial comm (using timer 1)
SCON = UART8BIT; // Setup serial port
TMOD = TITIMER I T18BITRELOAD; // Setup up serial timer

SET._TIMER(1,OxFD,OxOO); // 9600 Baud tinieout for 11.0592 MHz crystal
PCON = DOUBLEBAUD; // 19.2Kbps
TI = 1; // Ready to send
STARTTIMER(1);

// Setup ADC
100 ADCCON1 = ADCNORMAL I MCLKDIV4 | AQINI;

ADCCON3 = ADCCON3CLR;

// Setup power low interrupt
under293 = 0;
under263 = 0;
PSMCON = TRIP293;

//Setup accelerometer timer 0
TMOD 1= TOTIMER I T016BIT;

110

/Setup timed interrupt
T2CON = T2TIMER I T2RELOAD; // Reloading timer
SETTIMER(2,OxC9,OxFF); // Cycle start value is 0xC9FF since each tick
SET _TIMER2_-RELOAD(OxC9,OxFF); 77 is 1.085 us and (0x10000-OxC9FF)x1.085us =15ms

//Setup interrupts
IE = T20VERFLOW;
EA=1; // Make sure global interrupts are on

120 //Blank variables
gyrox.word = gyroy-word = gyroz.word = 0;
XT1.word = Y1T1.word = Y2T1.word = ZT1.word = 0;

// DC Balance each six bit block
pause=in-cycle=dirty=0; unsigned char in,out;

void collectAnalog(void)
{

/Collect data
130 ADCCON2 = GYROXCHAN;

while(ADCCON3&0x80); /7 Wait for operation to finish
STOREADC(gyrox);

ADCCON2 = GYROYCHAN;
while (ADCCON3&0x80);
STOREADC(gyroy);

ADCCON2 = GYROZCHAN;
while (ADCCON3&Ox8O);

140 STOREADC(gyroz);
I

void collectAccels(void)
{
7/ unsigned char timeout; 7/ Needed for timer macros

// Time the X pulse
TIMERRISETOFALLNOTIMEDUT(0,AccelX,TIMERF);
STORETIMER(0,XT1);

150 // Time the Y1 pulse
TIMERRISETOFALLNOTIMEOUT(0,AccelYi,TIMERF);
STORETIMER(,Y1T1);

#ifdef TWOY
// Time the Y2 pulse
TIMERRISETOFALLNOTIMEOUT(O,AccelY2,TIMERF);
STORETIMER(0,Y2T1);

*endif
// Time the Z pulse
TIMERRISETOFALLNOTIMEOUT(O,AccelZ,TIMERF);

160 STORETIMER(0,ZT1);
I

void checkPower(void)
{

if (!(PSMCON & POWERSTATMASK))
{

if (under293)
{

7/ Set flag and turn power monitor off
170 under263 = 1;

PSMCON = PSMOFF;
I
else

// Set flag and new trip point
under293 = 1;
PSMCON = TRIP263;

180 1

void trans3Nibbles(unsigned char high, unsigned char low)

in = low&Ox3F; //first six bits
out = lookup[in];
SEND(out);

190 in = low>>6 I high<<2;
out = lookup [in);
SEND(out);

}

void transmitData(void)

7/ Power/header byte
if (under263)

200 SEND(POWERSUCKS);
}
else if(under293)
{
SEND(POWERMED);

}
else
{
SEND(POWERGOOD);

}
210 SEND(OxO1); // Generic second header byte

//Send analog data
trans3Nibbles(gyrox.byte[0],gyrox.byte(1]);
trans3Nibbles(gyroy.byte[0],gyroy.byte[1]);
trans3Nibbles(gyroz.byte[0],gyroz.byte[1]);
//Send accel data
trans3Nibbles(XT1.byte[0],XT1.byte[1]);
trans3Nibbles(Y1Tl.byte[0],YIT1.byte(l1);

#ifdef TWOY
trans3Nibbles(Y2T1.byte[0],Y2T1.byte[l]);

220 #endif
trans3Nibbles(ZT1.byte[0],ZT1.byte[i);

#ifdef PAN
void pulsePANO
7/ This cannot run much faster than about 50kHz, because of loop instruction count
7/ Assume that timerO may be running on entry, but that value is not important

unsigned char oldTMOD,i;
230

// Setup timer
STOPTIMER(0);
oldTMOD = TMOD; /Store sfr
TMOD = (TMOD & OxFC) I T08BITRELOAD; // Blank timer 0 control register,

// reset it as 8 bit auto-reload timer
SETTIMER(0,PANOFFSET,x00); / Set timerO so that it resets at PAN interval

/Do it
for(i=0;i<PANITER;i++)

240 {
TFO=O; // reset flag
STARTTIMER(O); //Redundant after first loop, but who cares?
while(!TFO); 7/ wait for overflow
PANpin = ~PANpin; //flip PAN pin

}
PANpin = 0; //Set PAN pin low

// Clean up
STOPTIMER(O);

250 TMOD = oldTMOD; //Restore sfr
}
#endif

void time-int() interrupt 5
{

// Timter 2 interrupt routine. Clear flag. Clear pause. Set dirty is in cycle
TF2=0;
pause=0;
dirty=incycle;

260 }

void main(void)
{

inito;
while(1)
{

STARTTIMER(2); /7 So that it doesn't interrupt the first cycle
dirty=O;
in-cycle=l;

270 pause=1;
// Get accelerometer data
collectAccelso; // The PUTs are interleaved into the Accel calls (3 per call)
// Get gyro data
PUT(0x55);
collectAnalogO;
// Is the power OK?.
PUT(Ox55);
checkPowerO;
in-cycle=0;

280 // Pad data a bit
while(pause) {PUT(0x55);}
if(!dirty) {transmitData();}

#ifdef PAN
pulsePANO;

#endif
}

/* 812.h -- Stab at a collection of useful macros for the */
ADuC812 microController. */

/* Include SFR and sbit definitions */
#include "812SFR.h"

// Structures and unions
// Combination of two bytes and a word. Helpful for math.
typedef union {

10 int word;
unsigned char byte [2];

} lu;

// RS232
/* Blocking send. Check to make sure that the previous send isn't still

going, Reset TI bit, send. */
#define SEND(x) while(!TI);TI=0;SBUF=x;
/* Non- blocking send. Check if previous send is done, if so, send */
#define PUT(x) if(TI) {TI=0;SBUF=x;}

20

// Basic Timer Stuff
*define STARTTIMER(num) TR##num=i;
#define STOPTIMER(num) TR##num=O;
#define SETTIMER(num,high, low) TL##num=low;TH##num=high;
#define STORETIMER(num,un) un.byte [0] =TH##num;un. byte [1] =TL##num;
#define SETTIMER2.RELOAD(high,low) RCAP2H=high;RCAP2L=1ow;

// More timer stuff
30 // This is not really the place for the PUTs, but there is no other way.

#define TIMERRISETOFALL(num,bitname,time) \

timeout=time; \
STOPTIMER(num);
SETTIMER(num,OxOO,OxOO);
PUT(0x55); \
while(1) { timeout-1; if(timeout==0 || bitname==0){break;}} \
if(timeout!=0) {timeout=time;} \
PUT(Ox55); \
while(1) { timeout-=1; if(timeout==0 |1 bitname==1){break;}} \

40 STARTTIMER(num); \
if(timeout!=O) {timeout-time;} \
PUT(0x55); \
while(1) { timeout-=1; if(timeout==O || bitname==0){break;}} \
STOPTIMER(num); \
if(timeout==0) {SETTIMER(num,OxOO,OxOO);}

// Same as above, but without timeouts.
#define TIMERRISETOFALLNOTIMEOUT(numbitname,time) \

STOPTIMER(num); \
SETTIMER(num,OxOO,OxOO);

50 PUT(0x55); \
while(bitname==1); \
PUT(0x55); \
while(bitname==0); \
STARTTIMER(num); \
PUT(0x55); \
while(bitname==1); \
STOPTIMER(num);

// ADC storage stuff
#define STOREADC(un) un.byte[0]=ADCDATAH&OxOF;un.byte[1]=ADCDATAL;

118

Appendix E

MATLAB Code

119

function [gest,vars] = findgests3(vec,half,high,low,vars)

%findgests.ma

% Finds the gestures in a data set. Half is half the window size.
% This method uses a high and low threshold on a windowed variance.
% Gestures are returned in an array as their start and stop points.

10 usenew = ~exist(l'vars');
len = 2*half;
sumsq = cumsum(vec.^2);
summa = cumsum(vec);
numgests=1;
inGest = 0;

if(usenew)
vars = zeros(size(vec));

end
20

for i=half+1:length(vec)-half
if(~inGest)

%Find start
if (usenew)

vars(i) = (sumsq(i+half)-sumsq(i-half))/(len-1)
- (summa(i+half)-summa(i-half))^2/(len*(len-1));

end
if(vars(i) > high)

gest(numgests,1) = i;
30 inGest = 1;

end
else

%Find stop
if (usenew)

vars(i) = (sumsq(i+half) -sumsq(i -half))/(len- 1)
- (summa(i+half) -summa (i -half))^-2/ (len* (len-1))

end
if(vars(i) < low)

gest(numgests,2) = i;
40 inGest = 0;

numgests=numgests+1;
end

end
end
if (inGest) % If still in a gesture

gest(numgests,2)=length(vec)-half+1;
end

function [goodgests,badgests]= parsegests3(vec,gests);

% parsegests.m (For use with accels)

% Takes in an array of gesture start - stop points and spits out a parse of those
% potential gestures as an array of parameters of good gestures and an array of
% parameters of bad gestures.

10
% Constants
consthresh = 0.30; % How much slop is allowed?
ditherthresh = 50; % When is it dithering and not a second gesture?

% Misc
numgests = length(gests);
numgood = 1;
numbad = 1;
lastbad = 0;

20
for i=1:length(gests)

% Seperate out the gesture
gstr = floor(gests(i,1));
gatp = floor(geste(i,2));
gestvec = vec(gstr:gstp);
% Check the consistency
[newgood good newbad bad] = gestcons3(gestvec,consthresh);
% Add to lists
for i=1:newgood

30 goodgests(numgood,1) = gstr + good(i,1);
goodgests(numgood,2) = gstr + good(i,2);
goodgests(numgood,3:5) = good(i,3:5);
numgood = numgood+1;

end
for i=1:newbad

badgests(numbad,1) = gstr + bad(i,1);
badgests(numbad,2) = gstr + bad(i,2);
badgests(numbad,3:5) = bad(i,3:5);
numbad = numbad+1;

40 end
% Check for dither
if(newbad==l & numbad>2 & ((badgests(numbad-1,1) - badgests(numbad-2,2))<ditherthresh)

% Possible combo gest, do it all again
newstr = badgests(numbad-2,1);
newstp = badgests(numbad-1,2);
gestvec = vec(newstr:newstp);
numbad = numbad - 2;
% Check the consistency

[newgood good newbad bad] = gestcons3(gestvec,consthresh);
50 % Add to lists

for i=1:newgood
goodgests(numgood,1) = newstr + good(i,1);
goodgests(numgood,2) = newstr + good(i,2);
goodgests(numgood,3:5) = good(i,3:5);

numgood = numgood+1;
end

for i=1:newbad
badgests(numbad,1) = newstr + bad(i,1);

badgests(numbad,2) = newstr + bad(i,2);
60 badgests(numbad,3:5) = bad(i,3:5);

numbad - numbad+1;

end
end

end

function [numgood,good,numbad,bad] = gestcons3(gestvecconstresh)

% gestcons.r (For use with accc data)
%
% Takes in a gestures and checks the consistency.
% Takes an array that contains a potential gestures and the consistency threshold.
% Returns the number of good gestures, an array with their parameters
% and the same for bad gestures.

10 %

% Misc constants
numpeaks= 1;
winsize = floor(10);
sumthresh = 500;
minSize = 3000;

% Remove the baseline
numpoints = length(gestvec);

20 start = gestvec(1);
stop = gestvec(numpoints);
inc = (stop-start)/(numpoints-1);
if(inc~=0)

gestvec = gestvec - (start:inc:stop)';
else

gestvec = gestvec - start;
end

% Integrate and find peaks
30 summa(1) = gestvec(1);

abssum(l) = abs(gestvec(1));
totsum = 0;
totabs = 0;
window = winsize;

% Calculate the integrals
for i=2:numpoints

summa(i) = summa(i-1) + gestvec(i);
abssum(i) = abssum(i-1) + abs(gestvec(i));

40 if((window==0) & ((winsize+i)<numpoints) &
if((abssum(i) - totabs)>sumthresh)

% End of good-sizedpeak
sums(numpeaks) = summa(i) totsum;

sumabs(numpeaks) = abssum(i) - totabs;
ends(numpeaks) i;
totsum = summa(i);

totabs = abssum(i);
numpeaks = numpeaks + 1;
window = winsize;

sign(gestvec(i))~=sign(gestvec(i-1)))

50 else
%Conbine it will previous peak if there is one
if(numpeaks>1)

sums(numpeaks-1) = sums(numpeaks-1) + summa(i) - totsum;
sumabs(numpeaks-1) = sumabs(numpeaks-1) + abssum(i) - totabs;

ends(numpeaks-1) = i;
totsum = summa(i);

totabs = abssum(i);
end

end
60 else

% Decrease the window counter.

if(window~=0)
window = window-1;

end
end

end
% Deal with last peak
if((abssum(numpoints)-totabs)>sumthresh I numpeaks == 1)

sums(numpeaks) = summa(numpoints) - totsum;
70 sumabs(numpeaks) = abssum(numpoints) - totabs;

ends(numpeaks) = numpoints;
else

numpeaks = numpeaks-1;
sums(numpeaks) = sums(numpeaks)+summa(numpoints)-totsum;
sumabs(numpeaks) = sumabs(numpeaks)+abssum(numpoints)-totabs;
ends(numpeaks)= numpoints-1;

end
% Add dummy
sums(numpeaks+1) = sums(numpeaks);

80
% Check whole gesture.
if(totabs==O)

consistency = 1;
else

consistency = abs(summa(numpoints)/abssum(numpoints));
end
if(consistency < constresh & abssum(numpoints) > minSize)

% If it is a good gesture, then see if you can break it down
% Makes sure it is a single movement (peaks flip polarity)

90 numgood = 0;
good = [];
numbad = 0;
bad = [;
lastbreak = 1;
for i=2:numpeaks+1

if(sign(sums(i))==sign(sums(i-1))) % If same polarity, break gestures
totsum = sum(sums(lastbreak:i-1));
totabs = sum(sumabs(lastbreak:i-1));
%Check consistency

100 if(totabs==0)
consistency = 1;

else
consistency = abs(totsum/totabs);

end

%if(lastbreak =1)
% len= ends(i- 1) - ends(lastbreak- 1) + 2; % Start of gest
%clse
% len = ends(i-1);

110 %end
%consistency = abs(totsum/sqrt(len));
%7%%
if (consistency < constresh & (i-lastbreak)>1)

numgood = numgood+1;
if(lastbreak~=l)

good(numgood,l) = ends(lastbreak-1)+1; % Start of gest
else

good(numgood,l) = 1;
end

120 good(numgood,2) = ends(i-1); % end of gest
good(numgood,3) = i-lastbreak; % number of peaks
good(numgood,4) = totabs; % total mass

good(numgood,5) = consistency; % consistency
else

% If it is no good, leave it
numbad = numbad+1;
if (lastbreak~=1)

bad(numbad,l) = ends(lastbreak-1)+1; % Start of gest
else

130 bad(numbad,l) = 1;
end
bad(numbad,2) = ends(i-1); % end of gest
bad(numbad,3) = i-lastbreak; % number of peaks
bad(numbad,4) = totabs; % total mass
bad(numbad,5) = consistency; % consistency

end
% Deal with remaining stuff
lastbreak = i;

end
140 end

else
% If it is no good, leave it
numgood = 0;
good = [];
numbad = 1;
bad(numbad,1) = 1;
bad(numbad,2) = numpoints;
bad(numbad,3) = numpeaks; % number of peaks
bad(numbad,4) = abssum(numpoints); % total mass

150 bad(numbad,5) = consistency; % consistency
end
return;

function [goodgests,badgests]= parseggests(vec,gests);

% end
% parscgests.m (For use with gyros)

% Takes in an array of gesture start - stop points and spits out a parse of those
% potential gestures as an array of parameters of good gestures and an array of
% parameters of bad gestures.

10
% Constants

massthresh = 7500; % When is it noisc and when is it a real gesture?
dithertbresh = 30; % When is it dithering and not a second gesture?

% Misc
numgests = length(gests);
numgood = 1;
numbad = 1;
lastbad = 0;

20
for i=1:length(gests)

% Seperate out the gesture
gstr = floor(gests(i,1));
gstp = floor(gests(i,2));
gestvec = vec(gstr:gstp);
% Check the consistency
[newgood good newbad bad] = gestmass(gestvec,massthresh);
% Add to lists
for i=1:newgood

30 goodgests(numgood,1) = gstr + good(i,1);
goodgests(numgood,2) = gstr + good(i,2);
goodgests(numgood,3:5) = good(i,3:5);
numgood = numgood+1;

end
for i=1:newbad

badgests(numbad,1) = gstr + bad(i,1);
badgests(numbad,2) = gstr + bad(i,2);
badgests(numbad,3:5) = bad(i,3:5);
numbad = numbad+1;

40 end
% Check for dither
if(newbad==1 & numbad>2 & ((badgests(numbad-1,1) - badgests(numbad-2,2))<ditherthreah)

% Possible combo gest, do it all again
newstr = badgests(numbad-2,1);
newstp = badgests(numbad-1,2);
gestvec = vec(newstr:newstp);
numbad = numbad - 2;
% Check the consistency

[newgood good newbad bad] = gestmass(gestvec,massthresh);
50 % Add to lists

for i=1:newgood
goodgests(numgood,1) = newstr + good(i,1);
goodgests(numgood,2) = newstr + good(i,2);
goodgests(numgood,3:5) = good(i,3:5);

numgood = numgood+1;
end

for i=1:newbad
badgests(numbad,1) = newstr + bad(i,1);
badgests(numbad,2) = newstr + bad(i,2);

60 badgests(numbad,3:5) bad(i,3:5);
numbad = numbad+1;

end
end

function [numgood,good,numbad,bad] = gestmass(gestvec,massthresh)

% gestmass.rm (For use with gyro data)

% Takes in a gestures and checks the mass.
% Takes in an array which could contain a gesture and the mass threshold.
% Returns the number of good gestures, an array with their parameters
% and the same for bad gestures.

10 %

% Misc constants
numpeaks= 1;
winsize = 10;
sumthresh = 1000;

% Remove the baseline
numpoints = length(gestvec);
start = gestvec(1);

20 stop = gestvec(numpoints);
inc = (stop-start)/(numpoints-1);
if(inc=0)

gestvec = gestvec - (start:inc:stop)';
end

% Integrate and find peaks
summa(1) = gestvec(1);
abssum(1) = abs(gestvec(1));
totsum = 0;

30 totabs = 0;
window = winsize;

% Calculate the integrals
for i=2:numpoints

summa(i) = summa(i-1) + gestvec(i);
abssum(i) = abssum(i-1) + abs(gestvec(i));
if((window=0) & ((winsize+i)<numpoints) &

if((abssum(i) - totabs)>sumthresh)
% End of good-sizedpeak

40 sums(numpeaks) = summa(i) - totsum;
sumabs(numpeaks) = abssum(i) - totabs;
ends(numpeaks) =i;

totsum = summa(i);
totabs = abssum(i);
numpeaks = numpeaks + 1;
window = winsize;

sign(gestvec(i))~=sign(gestvec(i-1)))

else
%Combine it will previous peak if there is one
if (numpeaks>1)

50 sums(numpeaks-1) = sums(numpeaks-1) + summa(i) - totsum;
sumabs(numpeaks-1) = sumabs(numpeaks-1) + abssum(i) - totabs;

ends(numpeaks-1) = i;
totsum = suimma(i);

totabs = abssum(i);
end

end
else

% Decrease the window counter.
if(window~=0)

60 window = window-1;
end

end
% Deal with last peak
if((abssum(numpoints)-totabs)>sumthresh I numpeaks 1)

sums(numpeaks) = summa(numpoints) - totsum;
sumabs(numpeaks) = abssum(numpoints) - totabs;
ends(numpeaks) = numpoints;

else
70 numpeaks = numpeaks-1;

sums(numpeaks) = sums(numpeaks)+summa(numpoints)-totsum;
sumabs(numpeaks) = sumabs(numpeaks)+abssum(numpoints)-totabs;
ends(numpeaks)= numpoints-1;

end
% Add dummy
sums(numpeaks+1) = sums(numpeaks);

% Check whole gesture
if(abssum(numpoints) > massthresh)

80 % If it is a good gesture, then see if you can break it down
% Makes sure it is a single movement (peaks flip polarity)
numgood = 0;
good = [];
numbad = 0;
bad = [];
lastbreak = 1;
for i=2:numpeaks+1

if(sign(sums(i))==sign(sums(i-1))) % If same polarity, break gestures
totsum = sum(sums(lastbreak:i-1));

90 totabs = sum(sumabs(lastbreak:i-1));
%Get consistency
if(totabs==0)

consistency = 1;
else

consistency = abs(totsum/totabs);
end
if (totabs > massthresh)

numgood = numgood+1;
if(lastbreak~=1)

100 good(numgood,1) = ends(lastbreak-1)+1; % Start of gest
else

good(numgood,1) = 1;
end
good(numgood,2) = ends(i-1); % end of gest
good(numgood,3) = i-lastbreak; % number of peaks
good(numgood,4) = totabs; % total mass
good(numgood,5) = consistency; % consistency

else
% If it is no good, leave it

110 numbad = numbad+1;
if(lastbreak~=l)

bad(numbad,l) = ends(lastbreak-1)+1; % Start of gest
else

bad(numbad,1) = 1;
end
bad(numbad,2) = ends(i-1); % end of gest
bad(numbad,3) = i-lastbreak; % number of peaks
bad(numbad,4) = totabs; % total mass
bad(numbad,5) = consistency; % consistency

120 end
% Deal with remaining stuff
lastbreak = i;

end
end

else
% If it is no good, leave it
numgood = 0;
good = [];
numbad = 1;

130 bad(numbad,l) = 1;

bad(numbad,2) = numpoints;
bad(numbad,3) = numpeaks; % numbcr of peaks
bad(numbad,4) = abssum(numpoints); % total mass

bad(numbad,5) = consistency; % consistency
end
return;

Appendix F

(void*) Recognition Script

The following script was implemented by Matt Berlin, Jesse Gray and Ari Benbasat, and

is designed to recognize the (void*) gesture set:

127

from GestureRecognitionSystem import *
from Gesture import *
from Subgesture import *
from SubgestureDetector import *

from conjunctiveFunctions import *
from java.util import Random
from research. ayb. threeX. gesture import SubgestureDataConduit

10 // the default subgesture conparator
dAlpha = 1.1
dDuration = 10.0
def defaultComparator(myAlpha, myDuration, myDirection, \

theirAlpha, theirDuration, theirDirection):
return (myDirection == theirDirection) and \

(abs(myAlpha-theirAlpha)<dAlpha) and \
(abs(myDuration-theirDuration)<dDuration)

def directionComparator(myAlpha, myDuration, myDirection, \
20 theirAlpha, theirDuration, theirDirection):

return (myDirection == theirDirection)

subgestures follow the naming convention szyz, where
indicates the device - l(eft) or r(ight)

y indicates the sensor type - g(yro) or a(ccelcrometer)
z indicates the positive direction - f(orward), b(ackward), u(p),

d(own), l(eft), or r(ight)
a nurber following the subgesture narme indicates the nunbcr of peaks

left bun subgestures
slgf = Subgesture(0, 0, 2,
slgu = Subgesture(1, 0, 2,
slgl = Subgesture(2, 0, 2,
slab = Subgesture(3, 0, 3,
slad = Subgesture(4, 0, 3,
slal = Subgesture(5, 0, 3,
slab4 = Subgesture(3, 0, 4
slad4 = Subgesture(4, 0, 4

40 slal4 = Subgesture(5, 0, 4
slab2 = Subgesture(3, 0,
slad2 = Subgesture(4, 0,
slal2 = Subgesture(5, 0,

directionComparator)
directionComparator)
directionComparator)
directionComparator)
directionComparator)
directionComparator)
directionComparator)
directionComparator)
directionComparator)
directionComparator)
directionComparator)
directionComparator)

slgb = Subgesture(0, 0, 2, 0, 0, 0, directionComparator)
slgd = Subgesture(1, 0, 2, 0, 0, 0, directionComparator)
slgr = Subgesture(2, 0, 2, 0, 0, 0, directionComparator)
slaf = Subgesture(3, 0, 3, 0, 0, 0, directionComparator)

50 slau = Subgesture(4, 0, 3, 0, 0, 0, directionComparator)
slar = Subgesture(5, 0, 3, 0, 0, 0, directionComparator)
slaf4 = Subgesture(3, 0, 4, 0, 0, 0, directionComparator)
slau4 = Subgesture(4, 0, 4, 0, 0, 0, directionComparator)
slar4 = Subgesture(5, 0, 4, 0, 0, 0, directionComparator)
slaf2 = Subgesture(3, 0, 2, 0, 0, 0, directionComparator)
slau2 = Subgesture(4, 0, 2, 0, 0, 0, directionComparator)
slar2 = Subgesture(5, 0, 2, 0, 0, 0, directionComparator)

60 //## right bun subgesturcs
srgf = Subgesture(6, 0, 2, 0, 0, 1, directionComparator)

srgu = Subgesture(7, 0, 2, 0, 0, 1, directionComparator)
srgl = Subgesture(8, 0, 2, 0, 0, 1, directionComparator)
srab = Subgesture(9, 0, 3, 0, 0, 1, directionComparator)
srad = Subgesture(10, 0, 3, 0, 0, 1, directionComparator)
sral = Subgesture(11, 0, 3, 0, 0, 1, directionComparator)
srab4 = Subgesture(9, 0, 4, 0, 0, 1, directionComparator)
srad4 = Subgesture(10, 0, 4, 0, 0, 1, directionComparator)
sral4 = Subgesture(11, 0, 4, 0, 0, 1, directionComparator)

70 srab2 = Subgesture(9, 0, 2, 0, 0, 1, directionComparator)
srad2 = Subgesture(10, 0, 2, 0, 0, 1, directionComparator)
sral2 = Subgesture(11, 0, 2, 0, 0, 1, directionComparator)

srgb = Subgesture(6, 0, 2, 0, 0, 0, directionComparator)
srgd = Subgesture(7, 0, 2, 0, 0, 0, directionComparator)
srgr = Subgesture(8, 0, 2, 0, 0, 0, directionComparator)
sraf = Subgesture(9, 0, 3, 0, 0, 0, directionComparator)
srau = Subgesture(10, 0, 3, 0, 0, 0, directionComparator)
srar = Subgesture(11, 0, 3, 0, 0, 0, directionComparator)

80 sraf4 = Subgesture(9, 0, 4, 0, 0, 0, directionComparator)
srau4 = Subgesture(10, 0, 4, 0, 0, 0, directionComparator)
srar4 = Subgesture(11, 0, 4, 0, 0, 0, directionComparator)
sraf2 = Subgesture(9, 0, 2, 0, 0, 0, directionComparator)
srau2 = Subgesture(10, 0, 2, 0, 0, 0, directionComparator)
srar2 = Subgesture(11, 0, 2, 0, 0, 0, directionComparator)

dNothing detects the absence of subgestures
dNothing = SubgestureDetector([],1,gNOT)

90
dLiftLeft = SubgestureDetector([slau], 1, gOR)
dLiftRight = SubgestureDetector([srau], 1, gOR)
dLiftBoth = SubgestureDetector([slau, srau], 2, gAND)

dKickForwardLeft = SubgestureDetector([slgr], 1, gOR)
dKickForwardRight = SubgestureDetector([srgr], 1, gOR)
dKickForwardBoth = SubgestureDetector([slgr, srgr], 2, gAND)

dWalkl = SubgestureDetector([slgr, srgl], 2, gAND)
100 dWalk2 = SubgestureDetector([srgr, slgl], 2, gAND)

dKickSidewaysLeft = SubgestureDetector([slgf], 1, gOR)
dKickSidewaysRight = SubgestureDetector([srgb, 1, gOR)
dKickSidewaysBoth = SubgestureDetector([slgf, srgb], 2, gAND)
dCrossover = SubgestureDetector([slgb, srgf], 2, gAND)

dTwistLeft = SubgestureDetector([slgu, slgd], 1, gOR)
dTwistRight = SubgestureDetector([srgu, srgd], 1, gOR)
detectorORANDOR returns the logical AND of two single-argument gOR detectors

110 dTwistBoth = SubgestureDetector([dTwistLeft, dTwistRight], 2, detectorORANDOR)

a twirl consists of a 2, 3, or 4-peaked accelerometer gesture on two axes sniultaneously
dTwirlLeftl = SubgestureDetector([slal, slal4, slal2], 1, gOR)
dTwirlLeft2 = SubgestureDetector([slaf, slaf4, slaf2], 1, gOR)
dTwirlLeft = SubgestureDetector([dTwirlLeftl, dTwirlLeft2], 2, detector0RANDOR)
dTwirlRightl = SubgestureDetector([srar, srar4, srar2], 1, gOR)
dTwirlRight2 = SubgestureDetector([sraf, sraf4, sraf2], 1, gOR)
dTwirlRight = SubgestureDetector([dTwirlRightl, dTwirlRight2], 2, detectorORANDOR)

def fLiftLeft():
print "Gesture recognized!---lift left"

def fLiftRightO):
print "Gesture recognized!---lift right"

def fLiftBoth():
print "Gesture recognized!---lift both"

def fKickForwardLeftO:
print "Gesture recognized!---kick forward left"

130 def fKickForwardRightO):
print "Gesture recognized!---kick forward right"

def fKickForwardBothO:
print "Gesture recognized!---kick forward both"

def fWalk():
print "Gesture recognized!---walk"

def fKickSidewaysLeft():
print "Gesture recognized!---kick sideways left"

140 def fKickSidewaysRight():
print "Gesture recognized!---kick sideways right"

def fKickSidewaysBothO:
print "Gesture recognized!---kick sideways both"

def fCrossoverO:
print "Gesture recognized! ---crossover"

def fTwistLeftO):
print "Gesture recognized!---twist left"

def fTwistRightO:
150 print "Gesture recognized!---twist right"

def fTwistBothO):
print "Gesture recognized!---twist both"

def fTwirlLeftO):
print "Gesture recognized!---twirl left"

def fTwirlRightO:
print "Gesture recognized!---twirl right"

160 ## a lift is a lift subgesture with no following subgesture
gLiftLeft = Gesture([dLiftLeft, dNothing])
gLiftRight = Gesture([dLiftRight, dNothing])
gLiftBoth = Gesture([dLiftBoth])

gKickForwardLeft = Gesture([dKickForwardLeft])
gKickForwardRight = Gesture ([dKickForwardRight])
gKickForwardBoth = Gesture([dKickForwardBoth])

gWalki = Gesture([dWalk1])

170 gWalk2 = Gesture([dWalk2])

gKickSidewaysLeft = Gesture([dKickSidewaysLeft])
gKickSidewaysRight = Gesture([dKickSidewaysRight])
gKickSidewaysBoth = Gesture([dKickSidewayBoth])
gCrossover = Gesture([dCrossover])

gTwistLeft = Gesture([dTwistLeft])
gTwistRight = Gesture([dTwistRight])
gTwistBoth = Gesture([dTwistBoth])

180
gTwirlLeft = Gesture([dTwirlLeft])
gTwirlLeft2 = Gesture([dTwirlLeft2])
gTwirlRight = Gesture([dTwirlRight])
gTwirlRight2 = Gesture([dTwirlRight2)

grs = GestureRecognitionSystem()
grs.addGesture(gLiftLeft, fLiftLeft)
grs.addGesture(gLiftRight. fLiftRight)

190 grs.addGesture(gLiftBoth, fLiftBoth)

grs.addGesture(gKickForwardLeft, fKickForwardLeft)
grs.addGesture(gKickForwardRight, fMickForwardRight)
grs.addGesture(gKickForwardBoth, fKickForwardBoth)

/## the two versions of walk both call the same output function
grs.addGesture(gWalkl, fWalk)
grs.addGesture(gWalk2, fWalk)

200 grs.addGesture(gKickSidewaysLeft, fKickSidewaysLeft)
grs.addGesture(gKickSidewaysRight, fKickSidewaysRight)
grs.addGesture(gKickSidewaysBoth, fKickSidewaysBoth)
grs.addGesture(gCrossover, fCrossover)

gre.addGesture(gTwistLeft, fTwistLeft)
grs.addGesture(gTwistRight, fTwistRight)
grs.addGesture(gTwistBoth, fTwistBoth)

grs.addGesture(gTwirlLeft, fTwirlLeft)
210 grs.addGesture(gTwirlLeft2, fTwirlLeft)

grs.addGesture(gTwirlRight, fTwirlRight)
grs.addGesture(gTwirlRight2, fTwirlRight)

130

Bibliography

[1] Interactive Imaging Systems.
http://www.iisvr.com/99iis/Products/vfx3d/VFX3D.htm.

[2] Gyro Point, Inc. http://www.gyropoint.com.

[3] Analog Devices, Inc.
http://content.analog.com/pressrelease/prprintdisplay/0,1628,47,00.html.

[4] D. Mackenzie. Inventing Accuracy. MIT Press, 1990.

[5] Intersense, Inc. http://www.isense.com.

[6] Royal Academy of Engineering. http://www.raeng.org.uk/awards/robert/base.html.

[7] R.E. Bicking. Automotive accerometers for vehicle ride and comfort. In Nwagboso
[79], pages 125-140.

[8] S. Re Fiorentin. Sensors in automobile applications. In Nwagboso [79], pages 27-44.

[9] J. Bachiochi. Just one more mile. Circuit Cellar INK, (75):54-57, 1996.

[10] J. Elwell. Inertial navigation for the urban warrior. In Digitization of the Battlespace
IV, SPIE Proceedings Vol. 3709, pages 196-204, 1999.

[11] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: Real-time tracking
of the human body. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(7):780-785, 1997.

[12] L. Rabiner. A tutorial on Hidden Markov Models and selected applications in speech
recognition. Proceedings of the IEEE, 77:257-86, 1989.

[13] T. Starner and A. Pentland. Real-time American Sign Language recognition from
video using Hidden Markov Models. In Proceedings of the International Symposium

of Computer Vision, 1995.

[14] F. Sparacino, C. Wren, G. Davenport, and A. Pentland. Augmented performance in

dance and theater. In International Dance and Technology 99 (IDAT99), pages

80-89. FullHouse Publishing, 1999.

[15] A. Wilson. Adaptive Models for the Recognition of Human Gesture. PhD thesis,
Program in Media Arts and Sciences, Massachusetts Institute of Technology,
September 2000.

[16] F. Jensen. An Introduction to Bayesian Networks. Springer, 1996.

[17] Analogous Corporation. http://www.analogus.com/index1.html.

[18] J.A Paradiso, K. Hsiao, A. Y. Benbasat, and Z. Teegarden. Design and
implementation of expressive footwear. IBM Systems Journal, 39(3&4), 2000. To
appear.

[19] B. Blumberg, B. Tomlinson, M. P. Johnson, S.Yoon, M. Downie, A. Benbasat,
J. Wahl, D. Stiehl, and D. Nain. (void*): A cast of characters. In Conference
Abstracts and Applications, SIGGRAPH '99 [80], pages 169-170.

[20] Ascension Technology Corp.
http://www.ascension-tech.com/products/miniBird/minibird.htm.

[21] Intersense, inc. http://www.isense.com/products/prec/is900/index.htm.

[22] Crossbow Technology, Inc. http://www.xbow.com/html/gyros/dmu6x.htm.

[23] H. Sawada and S. Hashimoto. Gesture recognition using an accelerometer sensor and
its application to musical performance control. Electronics and Communications in
Japan, Part 3, 80(5):9-17, 1997.

[24] T. Marrin and J. Paradiso. The digital baton: a versatile performance instrument. In
Proceedings of the International Computer Music Conference, pages 313-316.
Computer Music Association, 1997.

[25] J.A Paradiso. The Brain Opera technology: New instruments and gestural sensors for
musical interaction and performance. Journal of New Music Research, 28(2):130-149,
1999.

[26] Teresa Marrin Nakra. Inside the Conductor's Jacket: Analysis, Interpretation and
Musical Synthesis of Expressive Gesture. PhD thesis, Program in Media Arts and
Sciences, Massachusetts Institute of Technology, February 2000.

[27] J.F. Bartlett. Rock 'n' scroll is here to stay. IEEE Computer Graphics and
Applications, 20(3):40-45, May/June 2000.

[28] D. Small and H. Ishii. Design of spatially aware graspable displays. In Proceedings of
CHI '97, pages 367-368. ACM Press, 1997.

[29] G. W. Fitzmaurice. Situated information spaces and spatially aware palmtop
computers. Communications of the ACM, 36(7):38-49, July 1993.

[30] Seymour Papert. Things that Think Meeting, October 1995.

132

[31] A. A. Santiago. Extended Kalman filtering applied to a full accelerometer strapdown
inertial measurement unit. Master's thesis, Department of Aeronautics and
Astronautics, Massachusetts Institute of Technology, 1992.

[32] B.P. Lathi. Modern Digital and Analog Communications Systems. Oxford University
Press, 1995.

[33] L. Baxter. Capacitive Sensors: Design and Applications. IEEE Press, 1997.

[34] A. Lawrence. Modern Inertial Technology. Springer, 1998.

[35] Fizoptika Co. http://www.fizoptika.ru/.

[36] Analog Devices, Inc.
http://www.analog.com/industry/iMEMS/products/ADXL202.html.

[37] J. Geen. Minimizing micromachined gyros, January 2000. MIT MTL VLSI Seminar
Series.

[38] J. Kang, Samsung Electronics. Personal Communication.

[39] J. Haartsen. The bluetooth radio system. IEEE Personal Communications,
7(1):28-36, February 2000.

[40] Cambridge Silicon Radio. http://www.cambridgesiliconradio.com/bluecore.htm.

[41] Tadiran U.S. Battery Division. http://www.tadiranbat.com/specs6/tl_5902.htm.

[42] E. Foxlin. Inertial head tracking. Master's thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, 1993.

[43] J. Anthes. Unique considerations for data radio UARTS.
http://www.rfm.com/corp/appdata/AN43.pdf.

[44] Synthetic Character Group, MIT Media Lab.
http://characters.www.media.mit.edu/groups/characters/.

[45] MathWorks, Inc. http://www.mathworks.com/products/matlab/.

[46] K. Novak, L. Miller, and J. Houk. Kinematic properties of rapid hand movements in
a knob turning task. Experimental Brain Research, 132:419-433, 2000.

[47] J. Hollerbach and T. Flash. Dynamic interactions between limb segments during
planar arm movement. Biological Cybernetics, 44:67-77, 1982.

[48] S. Emura and S. Tachi. Multisensor integrated prediction for virtual reality.
Prescence, 7(4):410-422, 1998.

[49] N. Barbour and G. Schmidt. Inertial technology trends. In Proceedings of the 1998
Workshop on Autonomous Underwater Vehicles, pages 55-63. IEEE Press, 1998.

[50] D. Catlin. Estimation, Control and the Discrete Kalman Filter. Springer Verlag, 1989.

133

[51] A. Gelb, editor. Applied Optimal Estimation. MIT Press, 1974.

[52] R. Brown and P. Hwang. Introduction to Random Signals and Applied Kalman
Filtering. Wiley, 3rd edition, 1997.

[53] E. Foxlin. Inertial head-tracker sensor fusion by a complementary separate-bias
Kalman filter. In Proceedings of the IEEE VRAIS 96, pages 185-195. IEEE
Computer Society, 1996.

[54] G. Welch and G. Bishop. Single-Constraint-at-a-Time tracking. In SIGGRAPH '97
Conference Proceedings, pages 333-344. ACM Press, 1997.

[55] D. Titterton and J. Weston. Strapdown Inertial Navigation Technology. IEE, 1997.

[56] K. Britting. Inertial Navigation Systems Analysis. Wiley, 1971.

[57] C. Verplaetse. Inertial proprioceptive devices: Self-motion-sensing toys and tools.
IBM Systems Journal, 35(3&4), 1996.

[58] A. Oppenheim. Discrete-time Signal Processing. Prentice-Hall, 2nd edition, 1999.

[59] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C: The
Art of Scientific Computing. Cambridge University Press, 2nd edition, 1992.

[60] R. Hogg and J. Ledolter. Applied Statistics for Engineers and Physical Scientists.
Macmillan, 1992.

[61] T. Flash and N. Hogan. The coordination of arm movements: An experimentally
confirmed mathematical model. Journal of Neuroscience, 5:1688-1703, 1985.

[62] C. Atkeson and J. Hollerbach. Kinematic features of unrestrained vertical arm
movements. Journal of Neuroscience, 5(9):2318-2330, 1985.

[63] R. Plamondon. A kinematic theory of rapid human movements. part i: Movement
representation and generation. Biological Cybernetics, 72:295-307, 1995.

[64] L. Rabiner and B. Juang. Fundamentals of Speech Recognition. Prentice Hall, 1993.

[65] A. Wilson, MIT Media Lab. Personal Communication.

[66] A. Wilson and A. Bobick. Parametric Hidden Markov Models for gesture recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(9):884-900,
1999.

[67] R. Marteniuk, C. MacKenzie, M. Jeannerod, S. Athenes, and C. Dugas. Constraints
on human arm movement trajectories. Canadian Journal of Psychology,
41(3):365-378, 1987.

[68] R. Plamondon. A kinematic theory of rapid human movements. part ii: Movement
time and control. Biological Cybernetics, 72:309-320, 1995.

[69] M. Lutz. Programming Python. O'Reilly, 1996.

134

[70] M. Masliah and P. Milgram. Measuring the allocation of control in a 6
degree-of-freedom docking experiment. In CHI 2000 Conference Proceedings, pages
25-32. ACM Press, 2000.

[71] C. Kline and B. Blumberg. The art and science of synthetic character design. In
Proceedings of the AISB1999 Symposium on AI and Creativity in Entertainment and
Visual Art, Edinburgh, Scotland, 1999.

[72] M.P. Johnson, A. Wilson, B. Blumberg, C. Kline, and A. Bobick. Sympathetic
interfaces: using a plush toy to direct synthetic characters. In CHI 1999 Conference
Proceedings, pages 152-158. ACM Press, 1999.

[73] C. Chaplin, director. The Gold Rush, 1925. 100 mins.

[74] M. Downie, MIT Media Lab. Personal Communication.

[75] M. Berlin, MIT Media Lab. Personal Communication.

[76] M.P. Johnson. Multi-dimensional quaternion interpolation. In Conference Abstracts
and Applications, SIGGRAPH '99 [80], page 258.

[77] J. Anderson. Skill acquisition: Compilation of weak-method problem solutions.
Psychological Review, 94(2):192-210, 1987.

[78] W. Balzer, M. Doherty, and R. O'Connor, Jr. Effects of cognitive feedback on
performance. Psychological Bulletin, 106(3):410-433, 1989.

[79] C. Nwagboso, editor. Automotive Sensory Systems. Chapman and Hall, 1993.

[80] Conference Abstracts and Applications, SIGGRAPH '99. ACM Press, 1999.

135

