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ABSTRACT

The ultrafiltration of plasma in the mammalian glomerulus is the first step in the
processing of blood by the kidney. Proper functioning of this process is critical to the kidney's
ability to effectively eliminate waste and retain desirable substances. The glomerular barrier has
long been regarded as both a size and charge selective screen for plasma solutes. The origin of
this selectivity is found in the unique three-layered structure of the glomerular capillary wall
(GCW), consisting of a fenestrated endothelium, the interdigitating foot processes of the
glomerular epithelium, and the shared glomerular basement membrane (GBM). The selectivity
properties of the GCW have commonly been probed by measuring the sieving coefficients of a
variety of tracers, both proteins and exogenous polymers, across the intact glomerular barrier and
across isolated components of the GCW. It was found previously that the sieving coefficients of
the tracers Ficoll and Ficoll sulfate across isolated GBM were greatly elevated when BSA was
present at physiological levels (Bolton et al. 1998). It was suggested that most of this increase
was the result of steric interactions between BSA and the tracers which increased tracer
partitioning from the bulk into the GBM. Such an effect, if present, would have important
implications for the interpretation of macromolecular sieving studies, both in vivo and in vitro.
The goals of this thesis research were to model the effect of an abundant protein on the
partitioning of a dissimilar tracer molecule, to incorporate that effect into models for glomerular
sieving, and to test the partitioning model by measuring the effect of protein concentration on the
partitioning of protein and Ficoll in agarose gels.

The theoretical effects of solute size on partition coefficients in straight pores or
randomly oriented fiber matrices have been investigated previously for very dilute solutions,
where solute-solute interactions are negligible, and also for more concentrated solutions
consisting of spherical solutes of uniform size. For concentrated solutions it has been found that
steric and other repulsive interactions among solutes increase the partition coefficient above the
dilute limit. To extend the results for porous or fibrous media to include concentrated mixtures
of solutes with different sizes or shapes, we used an excluded volume approach. In this
formulation, which describes steric interactions only, partition coefficients were computed by
summing all volumes excluded to a solute molecule by virtue of its finite size, the finite size of
other solutes, and the presence of fixed obstacles (pore walls or fibers). For a mixture of two
spherical solutes, the addition of any second solute at finite concentration increased the partition
coefficient of the first solute. That increase was sensitive to the size of the second solute; for a
given volume fraction of the second solute, the smaller its radius, the larger the effect. When the



total volume fraction of solutes was fixed, an increase in the amount of a second, smaller solute
increased the partition coefficient of the first solute, whereas an increase in the amount of a
second, larger solute had the opposite effect. Results were obtained also for oblate or prolate
spheroidal solutes and for fibrous media with multiple fiber radii. For constant total fiber
volume fraction, an increase in the amount of a second, smaller fiber decreased the partition
coefficient of a spherical solute, whereas an increase in the amount of a second, larger fiber had
the opposite effect. Overall, the theory suggests that the introduction of heterogeneity, whether
as mixtures of solute sizes or mixtures of fiber sizes, may cause partition coefficients to differ
markedly from those of uniform systems.

Using the excluded volume partitioning model, the theory for the sieving of
macromolecular tracers was extended to account for the presence of a second, abundant solute.
Using that theory, we returned to the experimental data of Bolton et al. (1998) and attempted to
model the effect of protein concentration on Ficoll sieving. The osmotic reduction in filtrate
velocity caused by an abundant, mostly retained solute will also tend to elevate the tracer sieving
coefficient. The osmotic effect alone explained only about one third of the observed increase in
the sieving coefficients of Ficoll and Ficoll sulfate, whereas the effect of BSA on tracer
partitioning was sufficient to account for the remainder. At physiological concentrations,
predictions for tracer sieving in the presence of BSA were found to be insensitive to the assumed
shape of the protein (sphere or prolate spheroid). The effect of plasma proteins on tracer
partitioning is expected to influence sieving not only in isolated GBM, but also in intact
glomerular capillaries in vivo.

To test the predicted effects of solute concentration on the equilibrium partitioning of
single macromolecules and macromolecule mixtures, measurements of the equilibrium partition
coefficients of BSA and four narrow fractions of Ficoll were made in agarose. Solutions of each
test macromolecule were equilibrated with a known volume of gel, final liquid concentrations
measured, and partition coefficients calculated by applying a material balance. The partition
coefficient of each molecule was measured under dilute conditions and under conditions where
BSA was present at concentrated levels. All measurements were made for two different gel solid
volume fractions (4 and 6%). As expected, the partition coefficients decreased with increasing
gel solid volume fraction and with increasing molecular size. Increasing BSA concentration
caused an increase in the partitioning of BSA itself and that of all four sizes of Ficoll. This effect
was most significant for the largest molecules. A subset of the measurements repeated at a
higher ionic strength demonstrated that electrostatic interactions were unimportant. The
experimental results were compared with predictions generated from the excluded volume
partitioning theory. Agarose was represented as a randomly oriented array of cylindrical fibers,
BSA was modeled as a prolate spheroid, and Ficoll was treated as a sphere. Comparisons of the
theoretical predictions with the experimental data produced generally good agreement, indicating
that steric interactions among solute molecules and between solute molecules and gel fibers
could explain the partitioning behavior.

Thesis Supervisor: William M. Deen
Title: Carbon P. Dubbs Professor of Chemical Engineering and Bioengineering
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Chapter 1

Background

1.1 Introduction to Renal Physiology and Pathophysiology

The primary function of the mammalian kidney is the clearance of toxic metabolic waste

products from the blood and the maintenance of water and electrolyte homeostasis. The functional

units in the kidney responsible for the processing of blood and the formation of urine are the

nephrons, of which there are roughly one million per human kidney (Tisher and Madsen 1986). A

schematic of a mammalian nephron is shown in Fig. 1-1. The processing of blood and formation

of urine by the nephrons is essentially a two-part process involving the ultrafiltration of plasma and

subsequent reabsorption of desirable substances from the ultrafiltrate. The site of plasma

ultrafiltration is the glomerulus, an anastomosing network of capillaries surrounded by Bowman's

capsule. As will be discussed in further detail, the walls of the glomerular capillaries have a unique

structure which is responsible for its special permeability properties. Blood enters the glomerulus

through the afferent arteriole, and is ultrafiltered across the walls of the glomerular capillaries. The

retained portion of the plasma exits via the efferent arteriole. The glomerular ultrafiltrate collects in

Bowman's space and passes through the various sections of the tubule where water and salts are

reabsorbed by the tubular cells at a homeostatic rate. In humans, the tubule can be up to 55 mm in
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Figure 1-1: Schematic of the mammalian nephron. Blood enters the glomerulus through the

afferent arteriole and exits via the efferent arteriole. In the glomerulus, plasma is ultrafiltered across

the walls of the capillaries. The glomerular ultrafiltrate collects in Bowman's space and then passes

through the tubule where water and salts are reabsorbed and other substances are secreted directly

into the tubular fluid for excretion.



length, beginning at Bowman's capsule and ending at its junction with the urinary collecting ducts

(Burkitt et al. 1993). The proximal convoluted tubule is responsible for the bulk of the

reabsorption of water and electrolytes from the glomerular ultrafiltrate (Burkitt et al. 1993). At its

distal end, the proximal tubule gives rise to the loop of Henle, a section of the tubule which is

initially very thin and abruptly widens near its end. The loop begins in the outer region, or cortex,

of the kidney, descends down into the inner region, or medulla, and then returns to the cortex where

it empties into a collecting tubule. The collecting tubules of multiple nephrons empty into a

common collecting duct. Other substances are secreted into the tubule lumen for excretion. In

humans, approximately 150 L of glomerular ultrafiltrate is produced per day. Approximately 99%

of that volume is reabsorbed by the tubule, so that the daily urine volume is roughly 1.5 L

(Campbell 1990). In addition to its separatory function, the kidney is also involved in several

hormone-regulated processes (Burkitt et al. 1993). For example, the kidney is responsible for the

secretion of renin and angiotensin, which are involved in the maintenance of proper blood pressure,

and the secretion of erythropoetin, a hematopoetic factor that stimulates the production of red blood

cells in the bone marrow.

Renal diseases affect every major structural component of the kidney and result in a

complex set of symptoms. The structure and function of the individual components of the renal

microanatomy predisposes each to particular types of injury (Cotran et al. 1999). For example,

many glomerular diseases are caused by the deposition of immune complexes which are trapped by

the glomerular barrier, while tubular disorders are frequently caused by the action of toxic

substances which are endocytosed by the cells which line the tubule (Cotran et al. 1999). Here we

will briefly discuss some aspects of the clinical manifestations and pathology of glomerular disease.

As a result of the interdependence of the various structures in the kidney, however, injury to one

component often results in secondary damage to the other components. Glomerular diseases

constitute a significant grouping of disorders in renal physiology and are common forerunners of

chronic renal failure (Cotran et al. 1999). In some cases, glomerular injury is the result of a

disorder in which the kidney is the primary site of involvement. In other cases, however, glomerular



injury is the secondary result of some systemic disease, such as lupus erythematosus or diabetes

mellitus. Whether the glomerular injury is secondary or primary, the clinical manifestations and

structural alterations to the glomerular architecture are often very similar. One of the most common

results of glomerular disease is the nephrotic syndrome. Clinical manifestations of the nephrotic

syndrome are proteinuria (elevated levels of protein in the urine), hypoalbuminemia (low plasma

levels of albumin), edema (accumulation of fluid in the interstitial spaces in the body), hyperlidemia

(elevated lipid levels in the blood) and lipiduria (elevated lipid in the urine). In all cases, the initial

event that precipitates this constellation of symptoms is a structural change to the glomerular

capillary wall, resulting in an increased permeability to marcomolecules. The direct result of that

increase in permeability is proteinuria. Protein loss in the urine is so high that it exceeds the ability

of the liver to replace albumin in the blood, resulting in albuminemia. Edema is the direct result of

the loss of plasma oncotic pressure, causing fluid accumulation in the interstitial spaces of the body.

1.2 Structure and Composition of the Glomerular Capillary Wall

1.2.1 Microstructre. The glomerular capillary wall is unusual in having three layers: a

fenestrated endothelium, the glomerular basement membrane (GBM), and the foot processes of

glomerular epithelial cells. Between the epithelial foot processes are "filtration slits" bridged by

slit diaphragms. Because of the low water permeability of most cell membranes, it is generally

accepted that glomerular filtrate follows an extracellular path: through the fenestrae, across the

GBM, and through the slits (passing through the slit diaphragms). To describe this flow,

Drummond and Deen (1994b) proposed that the glomerular capillary wall be viewed as an

assembly consisting of many repeating subunits. The basic structural subunit, as shown in Fig. 1-

2, consisted of a single filtration slit, an associated area of GBM, and several fenestrae. The key

geometric quantities in this model are the width of the structural unit (W), the thickness of the GBM

(L), the width of the filtration slit (w), the dimensions of a fenestra, and the number of fenestrae per

filtration slit. Representative values gleaned from various morphometric studies in rats
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Figure 1-2: Idealized structural unit of the glomerular capillary wall, corresponding to one filtration

slit. Modified from Edwards et al. (1999).
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(Abrhamson 1987; Furukawa et al. 1991; Kondo 1990; Lea et al. 1989; Rodewald and Karnovsky

1974; Ryan 1986; Shea and Morrison 1975; Takami et al. 1991; Webber and Blackbourne 1970)

are summarized in Table 1-1. Typical dimensions for rats are W = 360 nm, L = 200 nm, and w =

39 nm. The extent to which the GBM surfaces are blocked by cells is described by the fraction of

the surface area occupied by slits (E, = wlW = 0.11) and the fraction of the area occupied by

fenestral openings (f = 0.20). As depicted in Fig. 1-2, the fenestrae have been reported to have an

hourglass shape (Lea et al. 1989). The value of Ef is based on the minimum cross-sectional area.

Other information needed to model the fenestrae is discussed in Drummond and Deen (1994b).

Data for healthy humans suggest a slit width similar to that in rats, w = 43 nm (Ellis et al.

1987), but a significantly larger subunit width and GBM thickness, W = 500 nm and L = 400 nm

(Lafayette et al. 1998; Squarer et al. 1998). A morphometric index used to describe slit spacing is

the filtration slit frequency (FSF), which is related to the subunit width by W = (2/n)(1/FSF); the

factor 2/n accounts for the random angle of sectioning (Drummond et al. 1994). A much more

comprehensive discussion of glomerular anatomy is available elsewhere (Kanwar and

Venkatachalam 1992).

1.2.2 Slit diaphragm. Among the key nanostructural dimensions are those which describe

the openings in the slit diaphragm. Figure 1-3(a) shows an enlarged view of the slit diaphragm,

oriented as in Fig. 1-2. The most frequently cited configuration for the slit diaphragm is that of

Rodewald and Karnovsky (1974), who described a structure consisting of a central filament

oriented parallel to the podocyte membranes, and regularly spaced bridge fibers, alternating from

side to side, that connect the central filament to the membranes. This arrangement, which we term

the "zipper" structure, is depicted in Fig. 1-3(b). The reported dimensions of the openings were

40 x 140 A. These dimensions are problematic in that they imply a much more size-selective

barrier than that shown by functional measurements, as will be discussed. A simpler structure,

motivated by the observations of Hora et al. (1990), is shown in Fig. 1-3(c). This "ladder"

structure remains quite tentative, and specific dimensions for it are not available from electron

microscopy.



Width of structural unit,W, nm 360

Thickness of GBM, L, nm 200

Width of filtration slit, w, nm 39

Fractional area of fenestrae, Ef 0.20

Fractional area of filtration slits, e- 0.11

Number of fenestral openings per slit, nf 3

Table 1-1: Microstructural parameters representative of normal rats.
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Figure 1-3: Representations of the epithelial slit diaphragm: (a) view perpendicular to the flow

direction, as in Fig. 1-1; (b) view parallel to the flow direction, showing the "zipper" configuration;

(c) another view parallel to the flow direction, showing the "ladder" configuration. From Edwards

et al. (1997).



Recent efforts to elucidate the structure of the slit diaphragm have centered on its

component molecules, particularly the newly identified protein nephrin. Nephrin has a molecular

weight of -~ 150 kD and has been shown to be expressed exclusively by glomerular podocytes in the

slit diaphragm region (Holthofer et al. 1999; Ruotsalainen et al. 1999). Lack of proper expression

of the nephrin gene has been shown by Tryggvason and co-workers (Lenkkeri et al. 1999;

Tryggvason 1999) to be linked to congenital nephrotic syndrome of the Finnish type, a glomerular

disorder which results in severe proteinuria and which is associated with normal GBM and the loss

of foot processes and slit diaphragms. Genetic analysis of the coding region of the nephrin gene

has demonstrated that it is a single-pass membrane spanning protein with 8 Ig motifs and a type III

fibronectin domain (Tryggvason 1999). It has been hypothesized that nephrin molecules extending

out from adjacent podocytes might interact in a homophilic manner to form the zipper structure

(Tryggvason 1999). Such proposals remain speculative, as the interaction of nephrin with other

protein components of the slit diaphragm is not yet known. It has been demonstrated that cultured

podocytes form linking structures which are similar to filtration slits in vivo, and that these

intercellular linking structures contain the proteins zonula occludens-1, P-cadherin, and c, P3 and y-

catenin (Reisner et al. 2000).

1.2.3 Glomerular basement membrane. The GBM is a gel-like material which is 90-93%

water by volume (Comper et al. 1993; Robinson and Walton 1987). Structural integrity is

conferred by a heteropolymeric network of type IV collagen, laminin, fibronectin, entactin and

heparan sulfate proteoglycan (Laurie et al. 1984; Maddox et al. 1992). Collagen IV, a triple helical

polypeptide, is thought to form an interconnected network of fibers within the GBM, to which other

matrix components are attached. Laminin, an asymmetrical four-armed structure, is thought to play

an important role in the structural integrity of the GBM and in its interactions with the cellular

layers of the glomerular capillary wall. The sulfated glycoprotein entactin, or nidogen, binds to

collagen IV, heparan sulfate proteoglycan, and laminin, and thus may play an important role in

linking GBM components to one another. Similarly, fibronectin, a 500 kD glycoprotein, binds to

laminin, collagen IV, and heparan sulfate proteoglycan, suggesting that it too may have a role in



linking GBM constituents together. Heparan sulfate proteoglycan has been shown to comprise

approximately 1% of the dry weight of the GBM (Kanwar and Farquhar 1979). The predominant

GBM proteoglycan is made up of a 400 kD core protein called perlecan and four to five heparan

sulfate chains bound to one end of the core protein (Vogel 1994). These anionic heparan sulfate

chains are made of repeating disaccharide units of glucosamine and glucuronic acid (Kanwar and

Venkatachalam 1992).

1.2.4 Endothelial glycocalvx. The glycocalyx that covers the luminal surface of the

endothelial cells and fills the fenestrae may also be an important determinant of glomerular

permeability. This layer is thought to be composed principally of sulfated proteoglycans

(Sorensson 2000) and glycoproteins (Simionescu and Siomionescu 1986). Recent electron

microscopy studies (Rostgaard and Qvortrup 1997) demonstrated a 300 nm thick filamentous

surface coating which appeared to be present over both fenestral and interfenestral surfaces. The

thicknesses of endothelial surface coatings reported by Rostgaard and Qvortrup (1997) exceed

those previously observed by other authors (Luft 1966; Shirahama and Cohen 1972) by a factor of

three to five. This difference was attributed to a novel method of tissue fixation, combined with a

treatment that enhanced micrograph contrast.

1.3 Water Permeability of the Glomerular Capillary Wall

1.3. 1 Structure-based model. The structural unit depicted in Fig. 1-2 was used by

Drummond and Deen (1994b) to formulate a hydrodynamic model for the filtration of water across

the glomerular capillary wall. The objective of the model was to predict values of the effective

hydraulic permeability (k). Because the three layers of the capillary wall act as resistances in series,

the overall hydraulic permeability is related to those of the individual layers by

1 1 1 1
- + +- [1-1]k ken kbm kep



where ken, kbm, and kep are the hydraulic permeabilities of the endothelium, GBM, and epithelium,

respectively. Thus, the problem is reduced to that of analyzing each layer in turn, and adding the

results as shown in Eq. [1-1].

Finite-element solutions of Stokes' equation (the low-Reynolds-number form of the

Navier-Stokes equation) have been used to characterize flow in the epithelial filtration slits

(Drummond and Deen 1994a). The results indicated that the slit diaphragm is the dominant

resistance to water flow between the foot processes, implying that the slit length is not an important

parameter for water filtration. Using the zipper structure, with all dimensions as given in Rodewald

and Karnovsky (1974), the permeability of the slit diaphragm (in SI units) was estimated as k, = 7.9

x 10'8 m/s/Pa. Because what is desired is a filtrate velocity (or volume flux) averaged over an entire

structural unit, and because the slits only occupy a fraction es of the surface area, the epithelial

permeability is kep = E, k. Using the representative dimensions for the rat given above, e, = 0.11 and

kep = 8.6 x 10-9 m/s/Pa. It was shown that the resistances to water flow of the zipper and ladder

structures are similar, provided they are assumed to have the same ratio of wetted cylinder area to

cross-sectional area (Drummond and Deen 1994a).

Finite element solutions of Stokes' equation were used also to characterize the hydraulic

resistance of a water-filled fenestra (Drummond and Deen 1994b). Using the dimensions given in

Lea et al. (1989), the permeability of a single fenestra was estimated as k. = 1.0 x 10-6 m/s/Pa. With

the fenestrae occupying 20% of the filtering surface (Ef = 0.20), it was found that ken = ,kf = 2.0 x

107- m/s/Pa. Comparing this with the epithelial result, it is found that kjk, = 20. This suggests

that the dominant cellular contribution to k is that of the slit diaphragms, and that the water flow

resistance of the fenestrae is negligible. This assumes, however, that the flow resistance of the

glycocalyx is unimportant.

Water flow through the GBM was described by Drummond and Deen (1994b) using

Darcy's law,



v= -- VP [1-2]

where v is the local fluid velocity vector, icis the Darcy permeability, y is the fluid viscosity, and VP

is the local pressure gradient. This relation is commonly used to model flow through porous or

fibrous materials in situations where the pore spacings or interfiber spacings are much smaller than

the dimensions of the sample. Microstructural details such as fiber concentration and fiber size are

ignored, except as they influence the value of c (units of m2). This approach is suitable when the

underlying structure is complex, but pressure-flow data are available from which acan be evaluated.

Such data are provided by studies of filters made by consolidating isolated GBM, an approach used

by Robinson and co-workers (Robinson and Walton 1989; Walton et al. 1992) and by Daniels and

her associates (Bolton et al. 1998; Daniels et al. 1992; Edwards et al. 1997a). Typical results are K

= 1-3 nm2 .

Equation [1-2] was combined with that which describes local conservation of mass (V-v)

and solved for the idealized GBM geometry showin in Fig. 1-2 (Drummon and Deen 1994b).

Setting cc= 2.7 nm 2 and using the dimensions for the rat, it was found that kbm = 8.3 x 10-9 m/s/Pa

(Drummond and Deen 1994b). Because kbm = ke >> ken, it was concluded that the GBM and

epithelial resistances to water filtration in the normal rat are about equal, and that the resistance of

the endothelium is negligible. From Eq. [1-1], the overall hydraulic permeability was predicted to

be k = 4.1 x 10-9 m/s/Pa. This is well within the range of values estimated from micropuncture

measurements, which is roughly 3 x 10-9 to 5 x 10-9 m/s/Pa (Drummond and Deen 1994b).

The hydraulic resistance of the GBM is proportional to 1/r (Drummon and Deen 1994b),

and the Darcy permeability used above is larger than more recent estimates, including Kc= 1.5 nm2

(Edwards et al. 1997a) and iK= 1.2 nm2 (Bolton et al. 1998). Thus, the GBM may actually account

for somewhat more of the overall resistance than indicated. Using K = 1.2 nm2 instead of K = 2.7

nm 2, the contribution of the GBM increases from 50% to 69% of the total resistance. Although the



overall hydraulic permeability is then reduced by 38% to k = 2.5 x 10-9 m/s/Pa, the predicted value

is still in reasonable agreement with the experimental range.

There are uncertainties also in the cellular contributions to the hydraulic permeability. The

value of ken quoted above was computed by assuming that a fenestra is a short, water-filled channel

of varying radius. An alternative model is that it is a gel-filled channel, due to the endothelial

glycocalyx. When that possibility was explored by solving Brinkman's equation (related to

Darcy's law) in a fenestra, with K-= 2.7 nm 2 as for the GBM, ken was decreased to 1.3 x 10-8 m/s/Pa

(Drummond and Deen 1994b). That change alone decreases the overall hydraulic permeability

from 4.1 x 10-9 to 3.2 x 10-9 m/s/Pa, with the endothelium now accounting for 24% (instead of just

2%) of the total resistance. The main obstacle to refining the estimate of ken is the unknown Darcy

permeability of the glycocalyx.

Whereas the hydraulic resistance of the endothelium may have been underestimated,

depending on the actual properties of the glycocalyx, that of the epithelium may have been

overestimated. As already mentioned, the zipper structure is far too "tight" a barrier to be

consistent with the relatively large test macromolecules that appear in normal glomerular filtrate.

Larger openings in the slit diaphragm would also tend to increase the value of kep. To refine models

either for water flow or for macromolecule movement through the filtration slits, an improved

representation of the slit diaphragm geometry is needed.

Uncertainties in the individual contributions notwithstanding, the success of the water flow

model in predicting the overall hydraulic permeability suggests that the overall balance between the

GBM and cellular resistances is approximately correct. Indeed, the tendency to underestimate the

endothelial contribution may well have canceled a tendency to overestimate the epithelial

contribution.

1.3.2 GBM nanostructure and Darcv permeabilitv. The Darcy permeability (rc) of a

fibrous membrane or gel can be evaluated by using Eq. [1-2] to interpret measurements of fluid

velocity as a function of applied pressure, as done in deriving the values for rat GBM used above.

The value of iccan also be predicted, in principle, from nanostructural information. Numerous



theoretical results are available to predict icfor media consisting of arrays of cylindrical fibers with

fluid-filled interstices; in some, the fibers are assumed to have a regular, spatially periodic

arrangement, whereas in others the fiber orientation is random. The results of several approaches

are reviewed in Jackson and James (1986). More recent results for random arrays of fibers include

those of Clague and Phillips (1997) and Clague et al. (2000). A model developed specifically for

the GBM is that of Palassini and Remuzzi (1998), who adopted a tetrahedral fiber arrangement,

based on the structure of collagen IV. The application of several theories to GBM is discussed in

Bolton and Deen (2001). For fibers of uniform radius (rf), the results for regular or random arrays

are typically of the form

-- = f() [1-3]
rf

where 0 is the volume fraction of fibers and the theory provides the specific function j(), which

always decreases as 4 increases. This implies that, for a fibrous material with a specified solids

content, ic rf2. In other words, the predicted value of c is extremely sensitive to the value chosen

for the fiber radius.

With 0 0.1, as has been reported for GBM (Comper et al. 1993; Robinson and Walton

1987), realistic values for lc (in the range 1-2 nm 2) are obtained from any of the theoretical

expressions if the fiber radius is assumed to be about 1 nm (Bolton and Deen 2001). However, if rf

= 3-4 nm is employed, corresponding to the radii of fibers visible in electron microscopic images,

the predicted value of icis an order of magnitude too large. This led to the suggestion that GBM be

modeled as a mixture of coarse and fine fibers, the former corresponding roughly to collagen IV

fibrils and the latter to glycosaminoglycan chains (Bolton and Deen 2001; Edwards et al. 1997a).

Underlying this suggestion is the presumption that the fine fibers would not have been resolved in

the electron micrographs. With coarse and fine fiber radii of 3.5 nm and 0.5 nm, respectively, and

roughly a 1:1 mixture (by volume) of the two fiber types, it was possible to reconcile the measured



values of Ic and 0 with the electron microscopic appearance of GBM. Parameter values for this

two-fiber model of the GBM, which should be viewed as quite tentative, are summarized in Tablel-

2.

Additional quantitative information on the composition and the spatial arrangement of

proteins and proteoglycans would be invaluable in efforts to reach more definite conclusions about

the nanostructural basis for K in the GBM. Analogous information is needed to estimate rin the

endothelial glycocalyx, and thereby better define the endothelial resistance to water flow.

1.4 Macromolecular Permeability of the Glomerular Capillary Wall

1.4.1 General relationships. This section begins with a discussion of physical phenomena

that underlie efforts to relate macromolecule permeability to the structure of the glomerular capillary

wall. Several key quantities are defined. In keeping with the microscopic viewpoint adopted for

water filtration, this discussion focuses on the local sieving coefficient, which is the filtrate-to-

plasma concentration ratio at a particular point along a capillary. This must be distinguished from

the sieving coefficient for a whole kidney (or representative capillary), which is the average

concentration in Bowman's space divided by that in afferent plasma. It is the average sieving

coefficient which is accessible experimentally (e.g., from the fractional clearances of exogenous

tracers). Even if the structure of the capillary wall is uniform along its length, the local sieving

coefficient will vary with position, mainly because of the progressive increase in plasma protein

concentration from the afferent to the efferent end. It has long been recognized that the resulting

increase in oncotic pressure along a capillary will tend to slow filtration, which in turn will affect

local sieving. Proteins may also have other effects on barrier performance, as will be discussed.

The calculation of the average (measurable) sieving coefficient from local solute and volume fluxes

(generally not measurable) has been described (e.g., Maddox et al., 1992). Although the local and

average sieving coefficients are not identical, factors which affect the former will have a qualitatively

similar influence on the latter.



Radius of coarse fibers, rl, nm 3.5

Radius of fine fibers, r2, nm 0.5

Volume fraction of coarse fibers, A 0.046

Volume fraction of fine fibers, 02 0.054

Total volume fraction of solids (fibers), 0 0.10

Table 1-2: Parameters for 2-fiber model of GBM nanostructure.



The relationship between the overall sieving coefficient at any position along a capillary (6)

and those of the individual layers can be approximated as

Se enO bn ep [1-4]

For example, eb.b is the concentration at the downstream edge of the GBM divided by that at the

upstream edge, with both concentrations evaluated just inside the GBM. To the extent that e, --> 1

for layer i, that layer will not contribute to the observed selectivity of the barrier. It is important to

note, though, that the product in Eq. [1-4] implies that a 10% change in any individual Q, will affect

the overall Oby the same 10%, whether layer i is highly selective (e.g., 6e = 0.001) or not (e.g., e9

= 0.9). This contrasts with the situation for water flow, where the additive series-resistance

relationship (Eq. [1-1]) implies that if layer i contributes a negligible fraction of the overall

resistance (i.e., if 1/k, << 1/k), then a 10% change in ki will have no noticeable effect on k. Thus, the

layers combine to influence macromolecule selectivity in a fundamentally different way than they

combine to influence water filtration. To obtain a more precise relationship between the overall e

and those of the individual layers, additional factors must be included in Eq. [1-4] to account for the

effects of soluble proteins (e.g., albumin) on the equilibrium partitioning of macromolecules, as

discussed in Chapter 3.

Another important distinction between water filtration and macromolecule sieving is that the

individual &e's affect one another, whereas the individual k,'s could be computed independently.

Moreover, the 6e's depend in general on the filtrate velocity, whereas the k,'s could be

approximated as constants. (Constancy of k assumes, of course, that the applied pressures are not

so large as to alter the structure of the capillary wall). The interdependence of the layer sieving

coefficients and the effects of filtrate velocity are illustrated next by a somewhat simplified model

for transport in the GBM.



As in the application of Darcy's law (Eq. [1-2]), the GBM will be regarded as an isotropic

medium, such as an array of randomly oriented fibers. In such a material the local flux (N) of an

uncharged macromolecule may be expressed as

N= -KdD,VC+KcvC [1-5]

where D, is the solute diffusivity in free solution, v is the local fluid velocity vector, C is the solute

concentration, and Kd and Kc are hindrance factors for diffusion and convection, respectively. The

local solute concentration is based here on total volume (water plus solids), as is usually done in

describing equilibrium partitioning or transport in gels. Just as Eq. [1-2] relates the local fluid

velocity to the pressure gradient, Eq. [1-5] relates the local solute flux to the concentration gradient

and the fluid velocity.

The diffusivity and hindrance factors in Eq. [1-5] all depend on molecular size. In general,

steric and hydrodynamic interactions between a macromolecular solute and the fixed polymeric

fibers of a membrane or gel will cause Kd and Kc to be less than unity, with both decreasing as r,

increases. The experimental estimation of these hindrance factors in GBM is discussed later.

Another property of a fibrous membrane or gel that influences transport and depends on r, is the

equilibrium partition coefficient (0). The partition coefficient is a thermodynamic quantity that

describes the tendency of steric and/or electrostatic interactions to exclude macromolecules from the

material. As with the hindrance factors, it is typically less than unity and decreases with increasing

rs. As defined here, if the GBM were in equilibrium with plasma, then C = 0 CP, where Cp is the

plasma concentration. Steric exclusion from the GBM is important, but it appears that electrostatic

interactions are not (Bolton et al. 1998). Although the partition coefficient does not appear in Eq.

[1-5], it enters the analysis when concentrations within the GBM are related to those in plasma or

the other structures.



Assume for the moment that the GBM extends from z = 0 to z = L, that the solute

concentration depends only on z and that the solute flux and fluid velocity (magnitudes N and v,

respectively) are each constant. This "one-dimensional" model, involving just z, corresponds to a

hypothetical GBM with fully accessible surfaces (i.e., Ef = Es = 1). As shown in Deen et al. (2001),

only a slight modification of the results is needed to describe the more realistic situation where the

surfaces are largely blocked by cells. In the one-dimensional model the solute concentration profile

in the GBM can be derived analytically for any specified values of ee and ep. This allows the

sieving coefficient in the GBM to be evaluated. The result is

bm= [1-6]
bm e 1- e-Pe)+Kce- Pe

where Pe is the P6clet number,

Pe= (PKc)vL [1-7]
(JKd )Do,

Notice in Eq. [1-6] that the sieving coefficient in the GBM depends on that for the epithelium

(filtration slits). Notice also the effect of v, which is in the numerator of Pe (Eq. [1-7]). The

physical significance of the P6clet number is that it measures the importance of convection relative

to diffusion; convection tends to dominate for large Pe and diffusion for small Pe. Equation [1-7]

has been written with the common factor I in the numerator and denominator to emphasize that,

because only the products OK, and PKd appear there and in Eq. [1-6], those two lumped quantities

are sufficient to describe the intrinsic size-selectivity of a membrane such as the GBM. That is, q,

K,, and Kd need not be known separately. Although the simplified model employed here assumes

that 0 for a tracer (e.g., Ficoll) has the same value at both sides of the GBM, a more detailed theory



indicates that it depends on the local concentration of albumin and other abundant proteins (see

Chapter 3). Accordingly, it is expected to differ at the two sides of the GBM, as discussed later.

The dependence of Obm on Oep predicted by Eq. [1-6] is illustrated by the curve in Fig. 1-4.

In these calculations Pe and OKc were held constant at values representative of a macromolecule

with r, = 35 A in rat GBM. It is seen that ebnm is predicted to range from values above unity for a

highly selective filtration slit (Oep - 0) to values below unity for a nonselective one (Q, = 1). The

behavior for highly selective slits reflects concentration polarization within the GBM, as noted in

Edwards et al. (1999). That is, a concentration increase in the direction of flow arises to provide a

diffusional driving force in the other direction. The opposing contributions of diffusion and

convection in the GBM reduce N to what can be accommodated by the slit, thereby maintaining the

steady state. Inspection of Eq. [1-6] reveals that the upper limit of the polarization effect in the

GBM is Ob,, - exp(Pe) for eep -> 0. It is seen also that GBM polarization disappears exactly

(i.e., Ob = 1) if ep = OK,, for any Pe. Only for ep > (K, is the slit permeable enough to allow

the basement membrane to enhance the overall selectivity (i.e., 0O,, < 1), rather than degrade it. A

final noteworthy aspect of Eq. [1-6] is that it shows that O1b,, --> I as Pe -> 0, for any positive values

of Qe and (K,. This is an example of a well-known phenomenon in ultrafiltration, which is the

tendency for filtrate and retentate concentrations to equilibrate as diffusion becomes more

important. In this instance, the equilibration is just across the GBM.

The simplified, one-dimensional analysis just discussed illustrates an important, general

point, which is that the individual sieving coefficients depend on one another and on the relevant

P6clet number(s). Although the P6clet number discussed was that for the GBM, analogous P6clet

numbers for the fenestrae and filtration slits can be expected to influence e,, and Oep, respectively.

Such effects have been discussed in models of the slit diaphragm (Drummond and Deen 1995;

Edwards et al. 1999). A consequence of the dependence of the sieving coefficient on the P6clet

numbers is that great care must be taken in extrapolating results from one experimental situation to

another. For example, one cannot expect a sieving coefficient measured for GBM in vitro to equal

that in vivo, even if the isolated GBM preparation is perfect. The thickness of a filter made by
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Figure 1-4: Dependence of the GBM sieving coefficient (Ob,,) on that in the epithelial filtration slit

(0,), for a molecule with r, = 35 A. The predictions are based on Eq. [1-6], with Pe = 0.065.
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consolidating GBM fragments will greatly exceed that of a single layer of GBM and the filtrate

velocity is unlikely to equal that in vivo; both of these differences will affect Pe (Eq. [1-7]).

Moreover, the modifying effect of the epithelial sieving coefficient will be absent.

1.4.2 Experimental assessment of GBM and cellular contributions. As mentioned earlier,

measurements of water filtration rates across filters prepared from isolated GBM have permitted the

evaluation of its Darcy permeability. Sieving experiments using similar isolated GBM preparations

have been valuable in assessing its selectivity to macromolecules, including proteins, neutral and

charged derivatives of dextran, and neutral and charged derivatives of Ficoll (Bolton et al. 1998;

Cochrane et al. 1997; Cochrane and Robinson 1995; Daniels 1994; Daniels et al. 1992; Edwards et

al. 1997b; Walton et al. 1992). Ficoll has been preferred in the more recent studies, because it

diffuses as an ideal, neutral sphere (Bohrer et al. 1984; Davidson and Deen 1988) and because it

can be used also in fractional clearance studies in vivo [e.g., (Blouch et al. 1997; Oliver et al. 1992;

Remuzzi et al. 1993)]. An example of sieving data obtained in isolated rat GBM with uncharged

Ficoll is shown in Fig. 1-5. The data are those of Bolton et al. (1998), as replotted in slightly

modified form (see Chapter 3). As shown by the lower set of symbols, which are results for

protein-free solutions, there was a gradual decline in sieving coefficient with increasing molecular

size, from about 0.6 at r = 20 A to about 0.03 at r, = 50 A. Not shown in Fig. 1-5 are results

obtained for Ficoll sulfate, which were indistinguishable from those for Ficoll (Bolton et al. 1998).

The sieving results for Ficoll and Ficoll sulfate in protein-free solutions were analyzed by

Lazzara and Deen (2001) (Chapter 3) to estimate values of 'Kd and OK, for GBM. The data were

fitted using a sieving relationship similar to Eq. [1-6] (but with eO = 1) and assumed expressions of

the form

cPKd= exp(-Ars ) [1-8]

OKKc= exp(-Brs ) [1-9]
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Figure 1-5: Sieving coefficient of Ficoll (OF) as a function of Stokes-Einstein radius (rs) for

isolated rat GBM. The symbols with error bars represent the data of Bolton et al. (1998).

Theoretical curves are shown for a solution without BSA and for a BSA solution with osmotic

effects. From Chapter 3 and Lazzara and Deen (2001).



The values of the empirical constants A and B were very similar for Ficoll and Ficoll sulfate, with

averages of A = 0.130 A*-' and B = 0.072 A ' for the two sets of data. Equations [1-8] and [1-9]

have no theoretical basis, except for the expectation that both quantities should be near unity for

small rs, and should decline to zero for very large molecules. Nonetheless, as shown by the lower

curve in Fig. 1-5, excellent fits to the data for 20 < r, _ 50 A were obtained with just the two

adjustable parameters. Empirical expressions similar to Eqs. [1-8] and [1-9] were also employed

previously (Bolton et al. 1998; Edwards et al. 1999).

The use of Eqs. [1-8] and [1-9] to make inferences about the glomerular capillary wall

assumes, of course, that the isolated GBM was not functionally different from that in vivo. The

possibility that GBM is altered during the isolation process has been examined using a variety of

methods. Immunofluorescent microscopy of consolidated GBM filters demonstrated the presence

of type IV collagen, laminin, and the core protein of heparan sulfate proteoglycan (Daniels et al.

1992), the main components of GBM. The sulfated side chains of GBM proteoglycans are also

present in GBM isolated using N-lauryl sarcosine to lyse cells (Daniels 1994), the procedure

employed to obtain the data from which Eqs. [1-8] and [1-9] were derived (Bolton et al. 1998). The

permeability of GBM filters was not changed when a milder detergent, Triton X-100, which has

been shown to preserve heparan sulfate proteoglycan, was used to lyse glomerular cells (Daniels

1994). That isolated GBM is relatively intact is suggested also by electron microscopy studies: the

spatial distribution of cationic ferritin has been found to be similar to that in vivo (Kanwar and

Venkatachalam 1992).

A technical advance due to Daniels and co-workers that has permitted the measurement of

diffusional permeabilities for macromolecules is the use of confocal microscopy to monitor the

movement of fluorescent tracers across segments of isolated glomerular capillaries (Daniels et al.

1993; Edwards et al. 1997b). Experiments have been performed with intact glomeruli, freshly

isolated from rats, and with glomeruli in which the cells have been removed by detergent lysis,

leaving only GBM. Thus, it has been possible to compare the diffusional permeability of intact



capillary walls (p) with that of bare GBM (Pb,,). Diffusional permeabilities of series barriers obey a

resistance formula like Eq. [1-1], so that

1 1 1 1 1 1
-= -+-+--= --- +- [ 1-10]
P Pen Pbm Pep Pbm Pcell

The two cellular contributions, which cannot be distinguished using this approach, have been

lumped together in the second equality as Pce,. Edwards et al. (1997b) measured p and Pb,, for four

narrow fractions of Ficoll (r, = 30-62 A), and found that Pb,, for each molecular size was an order

of magnitude larger than p. It was calculated that the GBM contributes only 13-26% of the

diffusional resistance of the intact capillary wall (depending on r). The finding that p,,,e << Pb for

Ficoll is qualitatively similar to earlier results for dextran (Daniels et al. 1993).

The experimental estimates of the GBM hindrance factors for Ficoll are plotted in Fig. 1-6.

The results for PKd and IKc derived from sieving data (Eqs. [1-8] and [1-9]) are compared with

values of OKd calculated from pr. The relationship between the diffusional permeability and

diffusional hindrance factor is Pbm = PKDJ/L, where L (the GBM thickness) was taken to be 200

nm. The agreement between the two independent estimates of PKd is remarkably good, given the

different experimental preparations and the several assumptions required in making this

comparison. The finding that OKc >> PKd for Ficoll is qualitatively consistent with data for

globular proteins and Ficoll in agarose gels (Johnson et al. 1996; Johnston and Deen 1999, 2002).

Using v = 4 pm/s as a typical average filtrate velocity for the rat (corresponding roughly to

single nephron glomerular filtration rate of 40 nl/min), Pe calculated from Eqs. [1-7]-[1-9] ranges

from 0.016 at r = 20 A to 0.22 at rs = 50 AO. These small values of Pe indicate that diffusion within

the GBM is relatively rapid in vivo (compared to convection), even for relatively large molecules. A

consequence of this is that concentration polarization within the GBM will tend to be minimal, even

if the filtration slits are highly selective barriers. This tends to mitigate objections that are

sometimes made to a glomerular capillary "design" in which the limiting barrier is the one farthest
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downstream. Although diffusion in the GBM is rapid relative to convection, it is still much slower

than diffusion in water. This is indicated by the small values of PKd in Fig. 1-6. For example, cKd

= 0.01 (the value for r, = 35 A) means that the diffusional permeability of the GBM is only 1% of

that of a film of water of equivalent thickness.

Not considered in Fig. 1-6 are the possible effects of GBM compressibility on

macromolecule partition coefficients and diffusive or convective hindrance factors. In particular, the

sieving data used were obtained at an applied pressure of AP = 60 mmHg (Bolton et al. 1998),

whereas the diffusion experiments (Edwards et al. 1997b) corresponded to AP = 0. The hydraulic

and/or Darcy permeabilities of filters made from isolated GBM have been found to decrease with

increases in applied pressure (AP) (Daniels et al. 1992; Edwards et al. 1997a; Robinson and

Walton 1989; Walton et al. 1992). Becausef(4) in Eq. [1-4] decreases with increasing 0, one

would expect icto decrease if compression of the GBM forces out water and thereby increases the

volume fraction of solids. Based on theories for fiber matrices, increases in 0 are expected to result

also in decreases in 1 (see Chapter 2) and Kd (Johnson et al. 1996; Phillips 2000). Experimental

results for proteins and Ficoll in agarose suggest that Kc would decrease as well (Johnson et al.

1996; Johnston and Deen 1999, 2002; Phillips 2000). Attempts have been made to model the

effects of pressure on IKd and OKc (Edwards et al. 1997a; Edwards et al. 1999), but these efforts

are confounded by the lack of an adequate theory for Kc in fibrous materials and by the probable

effects of BSA on the values of 0 for Ficoll (see Chapters 2 and 3). The effects of BSA are an

issue because BSA has been present in some sieving experiments with isolated GBM, but not

others.

The interpretation of pc,,e depends, of course, on the relative contributions of the endothelium

and epithelium to the diffusional resistance of the intact capillary wall. Assuming that the cellular

resistance resides in the slit diaphragm, and modeling that structure as a row of parallel cylinders

(as in the "ladder" of Fig. 1-3), it was found that the diffusion results could be explained by a

cylinder spacing that followed a lognormal distribution, with small areas (-0.2%) devoid of

cylinders (Edwards et al. 1997b). That representation of the cellular barrier was incorporated into



later simulations of macromolecule filtration in vivo (Edwards et al. 1999). The one significant

difference was that in healthy subjects, at least, there was no evidence for "shunts" created by small

areas of the slit diaphragm devoid of cylinders.

As already stated, it was found that sieving curves measured in isolated GBM for Ficoll and

its anionic derivative, Ficoll sulfate, were indistinguishable. Only when the ionic strength of the

solutions was reduced below physiological levels, thereby amplifying the effects of electrostatic

interactions, was Obm for Ficoll sulfate less than that of neutral Ficoll (Bolton et al. 1998). This

finding of little or no charge-selectivity is generally consistent with other studies of isolated GBM.

That is, Bray and Robinson (1984) found only small differences in sieving curves for dextran and

dextran sulfate and Bertolatus and Klinzman (1991) noted only small differences in the filtration

rates of native (anionic) and cationized BSA. Procedures used in those laboratories to neutralize

GBM charge, including methylation of carboxyl groups (Bertolatus and Klinzman 1991) and

reductions in pH from 7.4 to 5.7 (the isolectric point of GBM) (Robinson and Walton 1987) had

little effect on the sieving of BSA. Likewise, Daniels (1994) found that treating the GBM with

heparatinase to remove heparan sulfate proteoglycan, adding protamine to neutralize GBM

polyanions, or reducing the experimental pH to the isoelectric point of the GBM or BSA, had little

or no effect on the sieving coefficient of BSA. Thus, to the extent that the glomerular barrier is

charge-selective, it is the cellular layers, and not the GBM, which appear to be responsible.

The charge-selectivity of the intact glomerular capillary wall is discussed below.

1.4.3 Charge-selectivity. Research in the 1970s and 1980s led to the view that the

glomerular capillary wall discriminates among macromolecules on the basis of their net charge, as

well as their size (Maddox et al. 1992). The pattern seen was that, for a given r, and molecular

conformation, anionic polymers passed through the capillary wall less readily than did neutral

polymers, which in turn passed less readily than cationic polymers. Differences due to molecular

charge tended to be diminished in proteinuric disorders. The inference was that fixed negative

charges in one or more parts of the capillary wall normally make entry into and passage through the

barrier less favorable for polyanions (such as albumin) than for neutral molecules of similar size



and configuration. Much of the evidence for charge-selectivity was based on comparisons between

the fractional clearances in rats of dextran (uncharged) and dextran sulfate (anionic) [e.g., (Chang et

al. 1975)]. Other influential studies employed native (neutral) and anionic horseradish peroxidase

(nHRP and aHRP, respectively) [e.g., (Rennke et al. 1978)]. Technical concerns have been raised

in recent years concerning both sets of test molecules, motivating a reexamination of the concept of

charge-selectivity. Indeed, arguments against glomerular charge-selectivity are the main theme of a

review by Comper and Glasgow (1995). What follows is a summary of certain key issues and a

review of the most recent findings.

At least two factors may complicate the interpretation of fractional clearance data for dextran

sulfate (DS). First, it has been shown that DS binds to plasma proteins (Guasch et al. 1993; Mayer

et al. 1993). This binding was studied extensively by Guasch et al. (1993), using ultrafiltration and

equilibrium dialysis experiments with 3H-DS and/or unlabeled DS added to Krebs buffer solutions

or to human serum. For the relatively small sizes of 3H-DS examined, only some 45% of the

activity in serum was not protein-bound. Using total radioactivity to determine the plasma

concentration of a protein-bound tracer will tend to overestimate the concentration of free tracer and

therefore underestimate its urinary clearance. Nonetheless, when corrections were made for protein

binding, the fractional clearance of 3H-DS with rs = 15-18 A in normal rats (68) or humans

(Guasch et al. 1993) was still only 0.5-0.7, much smaller than that for dextran of similar size

((Abrhamson 1987). This charge-selectivity was almost abolished in the nephrotic syndrome, the

fractional clearance of 3H-DS increasing from 0.68 in healthy humans to 0.95 in nephrotics

(Guasch et al. 1993).

Another concern with the use of dextran sulfate is cellular uptake and intracellular

desulfation, as examined in a series of studies by Comper and co-workers (Abrhamson 1987;

Burne et al. 1998; Burne et al. 1997; Comper et al. 1994; Tay et al. 1991; Vyas et al. 1996; Vyas et

al. 1995). When 3H-DS was added to isolated kidney perfusates or administered i.v. to rats, most

of the tritiated polymer in urine was found to be desulfated (Burne et al. 1998; Comper et al. 1994;

Vyas et al. 1995). This occurred without a significant change in molecular size (Burne et al. 1998;



Comper et al. 1994). Evidence was found for uptake of 3H-DS, but not uncharged dextran, by

glomerular cells (Tay et al. 1991; Vyas et al. 1996), and it was argued that the glomerulus is a

primary site for desulfation. Increases in the urinary clearance of intact DS with increasing DS

concentration showed the uptake and/or desulfation to be saturable (Burne et al. 1998; Burne et al.

1997; Vyas et al. 1996).

The significance of the cellular processing of DS depends on where the uptake occurs, and

the time required for intracellular levels to become constant. The half-time for accumulation of label

in the glomeruli of isolated perfused kidneys (IPK) was < 5 min (Tay et al. 1991), indicating that

for clearance measurements done over much longer periods, time-dependent accumulation in the

glomerulus will be unimportant. This is true for the studies of Mayer et al. (1993) and Guasch et

al. (1993), where bolus doses of 3H-DS were followed by constant infusions, and sample

collections not begun until after 45-60 min of equilibration. Thus, the rate at which the tracer

crossed the glomerular barrier in those studies should have equaled its rate of appearance in urine,

as assumed in the fractional clearance methodology. Under such steady state conditions, if the

cellular uptake and desulfation were downstream of the barrier (i.e., by epithelial cells from

Bowman's space fluid), total tritium in urine (reflecting both intact and desulfated DS) would

accurately reflect filtration of anionic DS and no new interpretation would be needed. Other

possibilities include uptake by the foot processes from the filtration slits or GBM, and uptake by

the endothelial cells from the GBM or plasma. Potentially most significant is endothelial uptake of

DS from plasma. If uptake by glomerular endothelial cells were rapid enough to compete with

movement through the fenestrae, and if desulfation and release on the contraluminal side of the cells

were slow, then entry of DS into the GBM would be slowed by the cellular processing. This

would have the effect of reducing the fractional clearance of DS relative to uncharged dextran.

In support of the concept of DS processing in glomerular endothelial cells, Vyas et al.

(1995) cited evidence for endothelial endocytosis of sulfated polysaccharides in other organs.

Moreover, following an i.v. bolus of 3H-DS in rats, some 78% of the label remaining in plasma was

found by affinity chromatography to be desulfated within 2 hr (Comper et al. 1994). However, the



evidence for uptake by glomerular endothelial cells, specifically, tends to be ambiguous. Processing

of DS by those cells was not rapid enough to allow detection of an increase in desulfated DS in

perfusate collected from the IPK (Comper et al. 1994). The finding that DS isolated from

glomerular digests (Tay et al. 1991) or vesicles (Vyas et al. 1995) has a similar size distribution to

that in plasma could mean that it is of endothelial origin, as argued, or that size-based fractionation

occurs mainly at the level of the epithelium. Likewise, the finding of similar amounts of DS in

vesicles isolated from filtering and non-filtering perfused kidneys (Vyas et al. 1995) is consistent

with either cellular source. That is, the very small values of Pe estimated for the GBM (as

discussed above) imply that diffusion is rapid enough that water filtration will not greatly speed

access of macromolecules to the epithelial cells.

The criticism of the data with horseradish peroxidase is based on the finding that aHRP is

preferentially degraded in the kidney (Osicka and Comper 1995). Accordingly, the use of an

enzymatic assay to detect aHRP in kidney tissue and urine leads to a systematic underestimate of its

sieving coefficient, relative to that of nHRP. The apparent charge-selectivity was reduced, but not

eliminated, when radiolabels were employed (Osicka and Comper 1995, 1998). The ratio of nHRP

to aHRP sieving coefficients was reduced to 2-3, as compared to a value of 8-9 in the original report

(Rennke et al. 1978).

We turn now to more recent studies by Haraldsson and co-workers, which provide

additional evidence in favor of glomerular charge-selectivity. Using the IPK preparation at 8 'C to

inhibit tubular activity, Ohlson et al. (2000) found the fractional clearances of albumin and Ficoll of

comparable size (r, = 36 A) to be 0.0019 and 0.021, respectively. Using the cooled IPK

preparation to examine the filtration of somewhat larger proteins (rs = 40-42 A), Lindstrom et al.

(1998) showed that the fractional clearance of anionic lactate dehydrogenase (LDH) was less than

that of a slightly cationic isoform.

In comparing the forms of HRP and LDH with differing charge, variations in molecular

shape are not an issue. However, Ficoll is spherical and albumin is modeled more accurately as a

prolate spheroid with an axial ratio of about 3.3 ((Al-Malah et al. 1995; Johnson et al. 1995;



Lazzara et al. 2000; Tanford 1961). To what extent would that difference in molecular shape

account for the ten-fold difference in sieving coefficients between Ficoll and albumin? The link

between membrane partitioning and sieving (e.g., Eq. [1-6]) suggests that a partial answer would be

provided by the theoretical effect of molecular shape on p in a random fiber matrix such as that

used to represent GBM. Applying the excluded volume theory presented in Chapter 2 to the

parameter values in Table 1-2, the results were 0 = 0.0234 for BSA and 0 = 0.0219 for Ficoll.

This difference is not only very small but is in the wrong direction to contribute to the low sieving

coefficient for albumin. Supporting the conclusion that the non-spherical shape of albumin is of

minor importance are data for K,, and iK, in agarose gels of varying concentration, which show

little difference between the results for Ficoll and various globular proteins, including BSA

(Johnson and Deen 1996; Johnston and Deen 2002).

Another recent finding with the cooled IPK is that reductions in the ionic strength of the

perfusate decreased the fractional clearances of both aHRP and albumin, without affecting those of

Ficoll (Sorensson et al. 1998). Because low ionic strengths amplify electrostatic interactions by

reducing Debye screening, this was the taken as evidence for functional, fixed negative charges.

However, as with experiments with isolated GBM at reduced ionic strength (Bolton et al. 1998), this

shows only that charge was influential at the lower ionic strength. Because charge interactions will

tend to be fully suppressed above a certain ionic strength (i.e., when the Debye length is very small

relative to the spaces accessible to permeating macromolecules), examining normal and reduced

ionic strengths does not exclude the possibility that the charges are fully screened under normal

conditions. A more definite conclusion would be reached by showing that an ionic strength above

physiological elevates the fractional clearances of aHRP and albumin, making them more like those

of a neutral test solute such as Ficoll.

A crucial aspect of the controversy over charge-selectivity is the manner and extent to which

the glomerular barrier restricts the passage of albumin. Two very different hypotheses have

emerged. The conventional view, recapitulated recently in Ohlson et al. (2000, 2001), is that the

sieving coefficient for albumin is normally quite low, on the order of 10' to 10-3,due in part to



electrostatic interactions between albumin and fixed negative charges in the glomerular capillary

wall. An alternative hypothesis proposed in Osicka et al. (1996) is that the sieving coefficient of

albumin is unaffected by charge and roughly 100-fold higher; using various drugs (including

NH4Cl) to inhibit tubular protein reabsorption in the IPK at 37 TC, they inferred an albumin sieving

coefficient of 0.07. This high sieving coefficient was reconciled with the low concentrations of

albumin normally found in proximal tubule fluid by postulating a high-capacity absorption pathway

that returns intact albumin from tubular fluid to plasma (Osicka et al. 1996).

A critique of the alternative hypothesis for albumin handling is given in Ohlson et al.

(2000), who measured fractional clearances of albumin and Ficoll in IPK preparations at both 8 TC

and 37 TC. Using NH4C1 at 37 TC, they too found a high fractional clearance for albumin (0.02),

approaching that for similarly-sized Ficoll under those conditions (0.04). They argued that the

apparent loss of barrier selectivity for albumin in the IPK at 37 TC, and especially the loss of

charge-selectivity, is the result of irreversible glomerular injury due both to hypoxia-reperfusion and

to drugs used to inhibit tubule function. They also criticized the concept of rapid reabsorption of

intact albumin, citing inconsistencies with the finding of Maunsbach (1966) that practically all

albumin is degraded during reabsorption. Finally, they noted the electron microscopic evidence of

Ryan and Karnovsky (1976) that albumin is efficiently excluded from the glomerular capillary wall,

and micropuncture measurements by Tojo and Endou (1992) which confirm that albumin

concentrations in early proximal tubule fluid are very low. This last study is noteworthy in that a

technique was devised to avoid the difficult problem of sample contamination with subcapsular

fluid; the sieving coefficient estimated for albumin was 6 x 10-4 (Tojo and Hitoshi 1992). We find

all of these arguments persuasive.

To summarize our conclusions from the various experimental studies, the concept that

charge-selectivity contributes to the exclusion of albumin and other polyanions from glomerular

filtrate remains viable, despite technical concerns. It is certain that dextran sulfate is not as inert a

tracer as once believed, and it is likely that earlier studies (e.g., with dextran sulfate and aHRP)

overestimated the effects of charge. Indeed, a major lesson has been how difficult it is to design



experiments to test charge-selectivity in vivo. Nonetheless, recent results with the IPK tend to

reinforce, rather than negate, the conclusions from earlier fractional clearance studies in vivo.

1.4.4 GBM nanostructure and macromolecule filtration. As with the Darcy permeability,

efforts to predict the values of OKd and OKc in the GBM have been based largely on representing it

as an array of randomly oriented fibers with fluid-filled interstices. Before considering the GBM

specifically, we first survey the various theoretical results which might be used for this purpose.

For media containing fibers of uniform size, theories for the partitioning of neutral macromolecules

have been developed for dilute (Ogston 1958) or concentrated (Fanti and Glandt 1990b) solutions

of rigid spheres, for dilute or concentrated mixtures of rigid solutes of arbitrary shape , and for

dilute solutions of random-coil chains (White and Deen 2000). For neutral, rigid solutes, mixtures

of fiber sizes are considered in the model presented in Chapter 2. Hydrodynamic models to predict

Kd in fiber matrices have been described in Johnson et al. (1996), Clague and Phillips (1997), and

Phillips (2000), but there is a paucity of information on K,. The convective reflection coefficient (t)

for a random fiber matrix is related to K, as " = 1 - OKe, and it has been assumed that a= (1 - 0) 2

(Curry and Michel 1980), a relationship derived originally for the osmotic reflection coefficient in

cylindrical pores (Anderson and Malone 1974). This prediction for o (or OK,) has been found to

be unreliable for proteins in polyacrylamide gels (Kapur et al. 1997) and for proteins or Ficoll in

agarose gels (Johnston and Deen 2002; Johnston et al. 2001). The same is true for an early

diffusion model (Ogston et al. 1973), frequently quoted in the literature, which has been reported to

greatly overestimate Kd in agarose gels (Johnson et al. 1996). In contrast, the theories for

partitioning and the recent theories for diffusion appear to be reasonably accurate (Johnson 1995;

Johnson et al. 1996; Johnson and Deen 1996; Phillips 2000).

In an effort to model the sieving results for Ficoll (without BSA) shown in Fig. 1-5, Bolton

and Deen (2001) represented the GBM as an array of fibers of uniform radius. They evaluated

OK,, using the theory of Ogston (1958) for P and that of Johnson et al. (1996) for Kd, but chose to

employ an empirical expression for OKc similar to Eq. [1-9]. It was found that a fiber-matrix

model based on a single population of fibers could accurately predict both the sieving curve for



Ficoll and the value of ic, but only if the volume fraction of fibers was assumed to be unrealistically

large. It was concluded that fiber matrix models based on a uniform fiber size do not adequately

relate the microstructure of the GBM to its permeability properties. The success of the two-fiber

model in describing the Darcy permeability, as discussed above, suggests that a promising direction

for future research is the development of analogous hindered transport models.

1.5 Effects of Proteins on the Sieving of Tracers

As already noted, Ficoll and Ficoll sulfate sieving coefficients measured in isolated GBM

were found to be indistinguishable, at any given value of rs (Bolton et al. 1998). However, the same

study revealed a pronounced upward shift in the sieving curves of both tracers when BSA was

added at a concentration of 4 g/dL. The results for Ficoll, with and without BSA, are shown in Fig.

1-5. Because the hydraulic permeability of the GBM filters was unaffected by BSA, the shift in the

sieving curves apparently was not due to an alteration of the intrinsic properties of the GBM (i.e., a

result of binding of BSA to the membrane). An increase in O would result from the measured

reduction in filtrate velocity in the presence of BSA, caused by its osmotic pressure; this is the

P6clet number effect discussed in connection with Eq. [1-6]. However, as shown by the theoretical

curve in Fig. 1-5 labeled "osmotic only", this was calculated to account for only about one-third of

the increase, on average. It was suggested that the remainder of the BSA effect might be due to

another physical phenomenon, namely, a tendency of steric interactions with BSA to facilitate entry

of the tracers into the membrane (Bolton et al. 1998). That phenomenon had been the subject of

several previous theoretical and experimental investigations, which showed that the equilibrium

partition coefficient of a macromolecule between a bulk solution and a porous or fibrous material is

dependent on its concentration (Anderson and Brannon 1981; Brannon and Anderson 1982; Fanti

and Glandt 1990a; Glandt 1981). In essence, steric interactions between molecules in a

concentrated solution cause entry into the porous or fibrous material to be more favorable

thermodynamically than if the solution were dilute. As shown in Eq. [1-6], increases in 0 will tend



to increase e. Thus, the sieving coefficients of Ficoll and BSA in synthetic membranes were found

to increase with increasing solute concentration (Mitchell and Deen 1986).

Proteins may also have more specific effects on glomerular permeability. Orosomucoid is a

serum protein which is thought to have a role in determining capillary permeability by maintaining

and reinforcing the charge barrier (Curry et al. 1989; Haraldsson and Rippe 1987). Haraldsson et

al. (1992) and Johnsson and Haraldsson (1993) demonstrated that orosomucoid influences the

glomerular barrier by showing that the clearance of albumin in the IPK was four to five times lower

when orosomucoid was present.

1.6 Motivation and Thesis Overview

As already mentioned, at the time this work was begun, the effect of solute concentration on

colloidal partition coefficients had been demonstrated in a number of theoretical and experimental

investigations (Anderson and Brannon 1981; Brannon and Anderson 1982; Fanti and Glandt

1990a; Glandt 1981). A detailed survey of previous models for macromolecular partitioning in

pores and fibrous media is presented in Chapter 2. The previously available models, however, only

addressed concentration effects for uniform systems of spherical solutes. In many situations of

interest, important interactions may exist among unlike solutes, as in the case of the isolated GBM

sieving experiments of Bolton et al. (1998) using BSA and Ficoll. In addition, models for the

hindered transport of macromolecular solutes through isotropic media, and across the intact

glomerular capillary wall, were restricted to dilute solutions. As shown by the data in Fig. 1-5, the

effect of plasma protein concentration may significantly augment tracer sieving beyond the ability

of the reduced P6clet number effect to describe the change. As will be discussed in further detail in

Chapter 3, the effect of protein concentration on tracer partitioning is expected have important

effects on solute transport across the intact glomerular barrier as well. There is some experimental

evidence from the literature in support of this idea. Ohlson et al. (2001) recently reported Ficoll

sieving data in the isoalted perfused kidney (at 8 oC) in the presence of either 1.8 g/dL or 5.0 g/dL



albumin. The fractional clearances over much of the size range examined were significantly

elevated at the higher protein concentration, qualitatively consistent with the effects previously

described. Thus, the effect of plasma protein concentration on tracer partitioning and sieving has

important implications for the interpretation of data from a wide variety of experimental techniques

used to measure the permeability properties of the glomerular barrier.

In order to test the hypothesized effect of protein concentration on tracer sieving for studies

of glomerular macromolecular permeability, we pursued a combined modeling and experimental

approach. The specific objectives of this thesis work were: (1) to develop a partitioning theory for

mixtures of rigid, spheroidal macromolecules of arbitrary concentration in porous and random-fiber

media; (2) to extend the theoretical description of macromolecular sieving across single-layered

membranes and the intact glomerular capillary wall to account for the presence of a second,

abundant solute and reanalyze the isolated GBM sieving data of Bolton et al. (1998); and (3) to

experimentally demonstrate the effect of solute concentration for dissimilar solutes and to test the

applicability of the newly developed partitioning model for random-fiber media.

The development and discussion of a novel model for the partitioning of systems of unlike

spheroidal solutes based on excluded volume concepts is presented in Chapter 2. The extension of

hindered transport models to include effects of concentrated solutes for single-layer membranes

and the intact glomerular capillary wall is presented in Chapter 3. Presented there also is a

reanalysis of the isolated GBM sieving data of Bolton et al. (1998) making use of the newly

developed models. Experimental measurements of the concentration effect on macromolecular

partitioning for dissimilar solutes and synthetic random-fiber media is presented in Chapter 4. A

summary of this work and a discussion of future directions are contained in Chapter 5. Chapter 6

contains the various FORTRAN codes used in the modeling portions of this work.

This Chapter contains excerpts (Sections 1.3, 1.4, and 1.5) from a recent review article by

Deen, Lazzara, and Myers (2001). Chapters 2 and 3 have already been published and appear in

substantially the same form as they appear here in Lazzara et al. (2000) and Lazzara and Deen

(2001), respectively. Chapter 4 is pending submission for journal publication.



Chapter 2

Effects of Multisolute Steric Interactions on Membrane Partition Coefficients

2.1 Abstract

A key parameter in membrane and chromatographic separations is the partition coefficient,

the equilibrium ratio of the solute concentration in a porous or fibrous material to that in bulk

solution. The theoretical effects of solute size on partition coefficients in straight pores or

randomly oriented fiber matrices have been investigated previously for very dilute solutions, where

solute-solute interactions are negligible, and also for more concentrated solutions consisting of

spherical solutes of uniform size. For concentrated solutions it has been found that steric and other

repulsive interactions among solutes increase the partition coefficient above the dilute limit. To

extend the results for porous or fibrous media to include concentrated mixtures of solutes with

different sizes or shapes, we used an excluded volume approach. In this formulation, which

describes steric interactions only, partition coefficients were computed by summing all volumes

excluded to a solute molecule by virtue of its finite size, the finite size of other solutes, and the

presence of fixed obstacles (pore walls or fibers). For a mixture of two spherical solutes, the

addition of any second solute at finite concentration increased the partition coefficient of the first

solute. That increase was sensitive to the size of the second solute; for a given volume fraction of



the second solute, the smaller its radius, the larger the effect. When the total volume fraction of

solutes was fixed, an increase in the amount of a second, smaller solute increased the partition

coefficient of the first solute, whereas an increase in the amount of a second, larger solute had the

opposite effect. Results were obtained also for oblate or prolate spheroidal solutes and for fibrous

media containing fibers of different radii. For constant total fiber volume fraction, an increase in the

amount of a second, smaller fiber decreased the partition coefficient of a spherical solute, whereas

an increase in the amount of a second, larger fiber had the opposite effect. Overall, the theory

suggests that the introduction of heterogeneities, whether as mixtures of solute sizes or mixtures of

fiber sizes, may cause partition coefficients to differ markedly from those of uniform systems.

2.2 Introduction

The equilibrium distribution of a solute between a bulk liquid solution and a fibrous or

porous material is a critical factor in various membrane and chromatographic separation processes.

The ability of solute i to enter the confined phase (membrane or chromatography bead) is described

by its partition coefficient,

I i = CiCi Ci[2-1]

where Ci and Ci are the equilibrium solute concentrations in the confined phase and external

solution, respectively. (Overbars are used throughout this chapter to denote quantities evaluated in

the confined phase). For porous materials Ci is an average over the pore (liquid) volume, whereas

for fibrous materials or gels it is based on total volume (including solids). The importance of PQi

for various types of separations has motivated numerous efforts to predict its value from the size

and shape of a solute molecule and the structural characteristics of various materials. As in most

previous work, we are concerned here with systems in which the linear dimensions of the solute

molecule are much larger than those of the solvent, so that the solute behaves as a particle in a liquid



continuum. The confined phase is represented in one of two ways. A fibrous material or polymeric

gel is modeled as a matrix of randomly oriented fibers with fluid-filled interstices (Fig. 2-1 a); the

prototypical model for a porous material is a parallel array of uniform cylindrical pores (Fig. 2-1 b).

The steric exclusion of rigid solutes from fibrous or porous materials has been thoroughly

investigated for dilute solutions, where solute-solute interactions are negligible. For a spherical

solute of radius ri in a matrix of long, randomly oriented, uniform fibers, the classical result is that

of Ogston (1958), which can be written as

0(O) = exp - + + ri [2-2]
Rf

where Rfis the fiber radius, and 4 is the volume fraction of fibers. [The "(0)" is used to denote

results for dilute solutions.] The corresponding expression for spherical solutes in circular pores

of radius Rp which dates at least to the work of Pappenheimer et al. (1951), is

0(0) 1- ri [2-3]i R)

Both of these expressions illustrate the central feature of steric exclusion: for a given material, /i

decreases with increasing ri. The partitioning theory for dilute solutions has been extended to

arbitrary combinations of solute shape and pore cross-section (Giddings et al. 1968; Limbach et al.

1989), and has been developed also for random-coil polymers in pores (Casassa 1967; Davidson

and Deen 1987). The effects of membrane-solute electrostatic interactions have been investigated

for spheres (Smith and Deen 1983) and random coils (Lin and Deen 1990) in pores, and for

spheres in random fiber arrays (Johnson and Deen 1996).



(a) random fiber array

Figure 2-1: Schematic of the partitioning of a spherical molecule of radius ri in (a) a randomly

oriented matrix of fibers of radius Rf and (b) cylindrical pores of radius Rp.

(b) cylindrical pore



Theoretical and experimental studies that are not restricted to dilute solutions have shown

that the partition coefficient depends not just on geometric factors and electrical charge, but also on

the solute concentration in bulk solution (Ci). Although it is often neglected in membrane transport

models, this effect of solute concentration can be quite significant, especially when Pi is small.

Concentration effects were examined for uncharged spheres in pores by Anderson and Brannon

(1981) and Glandt (1981), who used a statistical mechanical approach. The effects of concentration

on the partitioning of spheres in random fiber arrays were investigated using density functional

theory (Fanti and Glandt 1990a) and Monte-Carlo simulations (Fanti and Glandt 1990b).

Electrostatic effects on the partitioning of concentrated solutions of spherical molecules in pores

have also been analyzed (Anderson and Brannon 1981; Mitchell and Deen 1984). In general,

repulsive interactions among solutes, whether purely steric or longer range, are predicted to increase

0 above its value for a dilute solution. This trend has been confirmed experimentally (Brannon and

Anderson 1982).

Theories which describe the effects of bulk solute concentration on partitioning have been

limited to spherical solutes of uniform size. However, in many real systems there may be important

interactions among unlike solutes. In the use of ultrafiltration membranes to fractionate blood

plasma, for example, there are two classes of abundant proteins, serum albumin and

immunoglobulins (Saksena and Zydney 1997). A second example involves the use of polydisperse

macromolecules to characterize the permeability properties of kidney capillaries in vivo (Blouch et

al. 1997) or in vitro (Bolton et al. 1998). In such experiments tracer molecules of varying size are

accompanied by at least one abundant protein. Many other such situations can be imagined that

involve mixtures of unlike particles, at least one of which is present at significant concentrations.

The objective of the present work was to obtain a theoretical description of the equilibrium

partitioning of mixtures of rigid solutes in fibrous or porous materials.

To describe steric interactions among multiple solutes of varying size and shape, we adopted

an excluded volume approach. The present analysis is similar to that used previously to describe

the partitioning of proteins in phase-separated solutions of polyethylene glycol (Zimmerman and



Trach 1990) and to predict the partition coefficients of spherical proteins in aqueous, phase-

separated solutions of cylindrical micelles (Nikas et al. 1992). In the excluded volume formulation

the partition coefficient is calculated by adding all volumes excluded to a particle in each phase due

to its own size and shape, the presence of other particles, and the presence of fixed structures (fibers

or pore walls). This approach is very simple to implement, largely because it avoids the very

difficult intermediate problem of computing spatially dependent concentration profiles in the

vicinity of a fiber or within the cross-section of a pore. A benefit of its simplicity is that the

excluded volume formulation is readily applied not just to unlike spherical particles, but to

nonspherical particles and to fibrous materials containing mixtures of two or more fibers of

different radii. Thus, it provides a way to examine the effects on partitioning of several kinds of

heterogeneity. The results suggest that partition coefficients for mixtures of unlike spherical

solutes may differ significantly from those for systems of uniform particles. Likewise, partition

coefficients in mixed fibrous materials may be quite different than those for fibers of uniform size.

2.3 Theoretical Development

2.3.1 General considerations. Let r and Q denote the center-of-mass position and

orientation, respectively, of a rigid solute molecule. The orientation vector fl consists of two

spherical angles. Defining pi(r,() as the probability of successfully fitting a test solute in the

confined phase, relative to that in the external solution, the partition coefficient is given by

(Giddings et al. 1968)

i = Pi(r, Q)drd [2-4
idr• [2-4]

fJdrdQ

For fibrous or porous materials the position integrals extend over the entire volume of the confined

phase and the pore volume, respectively. With a deformable solute (e.g., a linear polymer), it would



be necessary also to integrate over all possible conformations (Giddings et al. 1968; Lin and Deen

1990). For uncharged spherical solutes there is no effect of particle orientation, and Eq. [2-4]

reduces to

f pi(r)dr
i dr  [2-5]

Idr

For dilute solutions of spheres in cylindrical pores of uniform cross-section, pi = 0 in an annular

region of thickness ri next to the pore wall, and Pi = 1 elsewhere. Integrating this step function over

the pore cross section, Eq. [2-5] leads directly to Eq. [2-3]. The original derivation of Eq. [2-2] was

considerably more complicated, in that it was based on calculating the probability of finding a free

space of radius 2 ri within a random array of fibers (Ogston 1958). The integrals in Eq. [2-5] were

not evaluated explicitly. As will be seen, the excluded volume approach also bypasses the

specification ofpi(r,Q), and evaluates the integrals in Eqs. [2-4] and [2-5] indirectly.

2.3.2 Fibrous materials. If all intersections of a test particle with fixed structures and/or

other particles are random, independent events, the probability of a given number of such

intersections can be calculated using a Poisson distribution. (A consequence of the assumed

independence of intersections is that fibers and particles with which the test solute interacts are

mutually penetrable, as will be discussed later.) As shown in Meyer (1965), the Poisson

distribution can be viewed as a limit of the binomial distribution, in which the number of trials in an

experiment (n) approaches infinity and the probability of an event occurring in a single trial (p)

approaches zero, such that np = yis finite, where yis the parameter of the Poisson distribution. To

evaluate yfor the partitioning problem, it is useful to think in terms of the binomial parameters, n

and p. Consider a single spherical particle placed inside an empty box of volume V. If a random

fiber matrix is then constructed by placing a series of identical fibers in the box, one at a time, there

is a constant probability of intersection p between the particle and any fiber. That probability is the



fractional excluded volume, which is the excluded volume between the particle and a single fiber

divided by the volume of the box. The excluded volume for any pair of objects is defined as the

volume that is inaccessible to the center of mass of either object, taking into account all possible

center-of-mass positions and orientations of the objects. If the excluded volume between objects i

and j is denoted as Uij, then ij= Uij/V. For the example of a spherical test solute and a random

fiber matrix, the number of trials n is equivalent to the number of fibers added. An analogous

experiment can be done by adding other particles to the box. In general, for a test solute of type i

and a set of objects of type j,

yij = CUij [2-6]

where Cj is the number concentration of objects of typej. Thus, from the Poisson distribution, the

probability of k intersections between test particle i and objects of typej is

[2-7]P4(k) = k! 1 [2-7]

The probability of successfully placing a solute molecule in a space is the probability that

there will be zero intersections with other objects. Setting k = 0 in Eq. [2-7], the probability of

avoiding objects of typej is

(Pij(O) = e-Y [2-8]

Because all test solute intersections are assumed to be independent events, the probability of zero

total intersections in either phase (membrane or bulk) can be written as the product of the

probabilities of zero intersection with each type of object in that phase. This product accounts for



intersections between the test particle and one or more other types of particles, intersections with

one or more types of fibers, and simultaneous intersections with particles and fibers. Similar

considerations apply in the bulk solution, except that no fibers are present. Thus, the partition

coefficient is given by

m+n

- Pij(O)
j= 1
c n - [2-9]

j=1

where m and n denote the numbers of fiber and particle types, respectively. There are no integrals

to be evaluated in Eq. [2-9], because the sampling of all possible particle positions and orientations

is inherent in the calculation of the fractional excluded volumes.

The result for a dilute solution in equilibrium with a random fiber matrix is obtained by

ignoring solute-solute interactions and considering only one type of solute-fiber interaction. In this

case Eq. [2-9] reduces to

P0(O) = e- , [2-10]

for solute i and fibers of type j. Neglecting fiber end effects, the excluded volume per fiber equals

that of a cylinder of radius ri + Rj. Thus, the expression for ,ij is

ij = 0 1+ aij(s,f) [2-11]



The notation %oj(x,y) indicates the interaction of test particles of type x with objects of type y (s =

sphere, f= fiber). Substitution of Eq. [2-11 ] in Eq. [2-10] yields Eq. [2-2]. Thus, the excluded

volume approach provides an independent derivation of the result of Ogston (1958). The validity of

Eq. [2-2] was confirmed also by Fanti and Glandt (1990a; 1990b) using two other methods.

2.3.3 Porous materials. The excluded volume formulation must be modified slightly for

media containing identical pores, where the calculations are based on a single pore. In this case the

test solute can intersect at most one pore wall, and the Poisson distribution is not applicable to the

solute-pore interactions. However, the probability of avoiding a solute-pore intersection just equals

the partition coefficient for dilute solutions, ei(0). Replacing the solute-fiber terms in Eq. [2-9] by

Pi(0), we obtain

n

SPi(0)
i =j i(0) j =l  [2-12]

HI- P(0)
j=1

Note that for dilute solutions Fj(0) = Pij(O) = 1 for all j, and Pi =  if(O). As already mentioned,

Oi(0) for spheres in cylindrical pores is given by Eq. [2-3]; similar calculations can be made for

other solute shapes and other pore cross-sections.

2.3.4 Evaluation of excluded volumes. The excluded volumes for spherical particles can be

calculated from simple geometric considerations. The expression for yij for a spherical particle of

radius ri and fibers of radius Rj has been given already by Eq. [2-11], in terms of 4 and the

geometric parameter aij(sf). For spherical molecules of radii ri and rj, the excluded volume per

molecule ofj equals the volume of a sphere of radius ri + rj. It follows that if the volume fraction

of solute j is Xj, then the fractional excluded volume is



3
Yij = 1 ri Xjaij(s,s) [2-13]

For identical spheres we obtain aij(s,s) = 8. Also note that when yij is to be evaluated, the particle

volume fraction needed is the value in the confined phase, Xi. For either fibrous or porous

materials the partition coefficient is the ratio of internal to external particle volume fractions (as well

as the ratio of particle concentrations), so that the internal and external volume fractions of solute i

are related as Xi = iXi .

In order to implement the excluded volume approach for solutes of arbitrary shape, a

general expression for Uij is required. As given in Jansons and Phillips (1990),

Uij = Vi + V + (Si Mj + S Mi) [2-14]

where Vi is the volume, Si is the surface area, and Mi is the integral of the local mean curvature over

the surface, all for object i. With this expression, partition coefficients for any set of particles can

be calculated for an arbitrary fibrous or porous membrane. The excluded volume for sphere-sphere

interactions (Eq. [2-13]) is recovered from Eq. [2-14] by noting that the local mean curvature at all

points on the surface of a sphere of radius ri is 1/ ri. Hence, Mi= 4ntr i for a sphere. The

corresponding result for sphere-fiber interactions (Eq. [2-11]) is found by recognizing that the local

mean curvature on the surface of a cylinder of radius Rj (neglecting the ends) is 1/(2Rj).

2.3.5 Systems with two spherical solutes. The simplest multi-solute mixture consists of two

types of spherical solutes. For such a solution in contact with a fibrous material containing two

types of fibers, Eq. [2-9] reduces to

01 = exp[-l 1al I(s, f) - 2 a 12 (s,f) + al 1(s,s)(1 - Q1)ZX + a 12 (S,s)(l - 02)Z2] [2-15]



For a porous material, the corresponding result from Eq. [2-12] is

01 = 1(0) exp[a 1 (s,s)(1- 0I)X1 + al2(s,s)(1- ( 2 )X2] [2-16]

Note that the cross-sectional shape of the pores affects only 0 1(0), which for cylindrical pores is

given by Eq. [2-3]. Equations [2-15] and [2-16] are each accompanied by complementary

expressions for the partition coefficient of the second solute, .2. To evaluate the partition

coefficients, each set of two equations was solved simultaneously for I1 and •P by Newton-

Raphson iteration, using the dilute solution values as initial guesses.

2.3.6 Nonspherical solutes. The theory can be applied to nonspherical solutes by using the

appropriate expressions for Vi, Si, and Mi in evaluating Uij and ij. The necessary information for

prolate and oblate spheroids (and certain other shapes) is provided by Jansons and Phillips (1990).

A prolate (rod-like) spheroid i is characterized by the three semiaxes ri, r i, and rli ri, where rii > 1;

for an oblate (disk-like) spheroid, b7i < 1. To illustrate the approach, we will consider mixtures of

two solutes, only one of which is nonspherical. The development for two nonspherical solutes is

very similar. Because we will be considering mixtures of spherical and nonspherical solutes, we

will need (in addition to Eqs. [2-11] and [2-13]) expressions for the excluded volume between two

nonspherical objects as well as the excluded volume between a sphere and a nonspherical object.

The expression for yj between prolate spheroid i and a set of prolate spheroids j is

i i 3 r f(i)(j) 3 ri  )(i)
Yij = rXj 1 +i + +- 3 -f() i)] jaij(p,p) [2-17]

werrj 4 rj c7j 4 r rj

where the functions f(ri) and g(r/i) are defined as



f(77i) 1+ 77i2 (i2 _1)
-1/2 COS-1 

[1

1± - if cos-l(n1) [2-18]

g(mli)= Ti +(i 2 -_ 1)-1/2 cosh- 1(i) [2-19]

The expression for yj between a prolate spheroid i and a set of spheres j is

yij = Xj i + i +3 f()+ g+i) 'XjaiU(p,s) [2-20]

For a sphere i and a set of prolate spheroids j, it is found that

ij = Xj[l + + ri 3  3ri2g(rj) +3 j r (77J Xai(s,p) [2-21]
ijrJ r 2r rj 7j 2 r•- j)7j i

Finally, the expression for yij between a prolate spheroid i and a set of fibers j is

1 ri f-
rij = +j 1+ f(ii) j(i)] ijaij(p, f) [2-22]

where we have assumed that V» >> Vi as before for spherical particles.

The excluded volume expressions for oblate spheroids are very similar to those just given.

The expression for y between oblate spheroid i and a set of oblate spheroids j is



[ i ry 33 23 i )g(Wi)
i =j + +- i ) 4 7j ii (o, o) [2-23]

where the functions f(ri) and g'(qi) are defined as

f'(1i) - + i2 (1i 2)-1/2 cosh-1 (i - 1) [2-24]

g'(Ri) = i7 + (1- l2 -1/2 COS- 1 (i) [2-25]

The remaining expressions for j needed for oblate spheroids are analogs of Eqs. [2-20]-[2-22] for

prolate spheroids. By substituting f(7i) and g'(i7i) for f(Ai) and g(ni), respectively, expressions

are obtained for ai(o,s), aij(s,o), and aij(o,f).

For a mixture of prolate spheroids (particle 1) and spheres (particle 2) in a material with two

types of fibers, the partition coefficients are given by

•= exp[-0all(p,f)- 02al2 (p,f) + all (p, p)(1 - )X + a12 (p,S)(1 - (2)X2] [2-26]

2 = exp[-Ola 2 1(s, f) - 2 a22 (s, f) + a 2 1 (s, p)(l - )ZX1 + a 22 (s,s)(1- 2)X2] [2-27]

2.4 Results and Discussion

2.4.1 Comparisons with previous work. This section begins with a brief description of the

methodology used in previous studies to describe the effects of solute concentration on partition

coefficients, and then compares previous results with the predictions of the excluded volume

formulation.



To describe the partitioning of uniform spheres in fibrous materials, Fanti and Glandt

(1990a) used density functional theory to compute the solute density (concentration) profile around

a single fiber. The partition coefficient was calculated by using a superposition approximation to

average that result over all fibers in the membrane, for all possible configurations of fibers. In

calculating the density profile around a single fiber, a nonlocal density approximation was

employed, which accounts for the effect of the surrounding environment on the particle density at

each point. This nonlocal density approximation relies upon the use of a weighting function, which

is itself expressed as a truncated virial expansion in density. A limitation of this approach, which is

inherent also in the Ogston derivation and in the excluded volume model, is that all spaces in the

fiber matrix are assumed to be accessible. In reality, especially for high number densities of fibers,

some of the spaces large enough to accomodate a solute molecule may be prevented from doing so

because they are completely surrounded by spaces that are too small.

Fanti and Glandt (1990a) reported results from density functional theory only for fibers of

zero thickness. The fibrous medium was characterized by a dimensionless fiber length per unit

volume, l* = 1(2ri)2, where 1 is the (dimensional) fiber length per unit volume and r i is the sphere

radius. The case of infinitely thin fibers is treated with the excluded volume model by noting that

the volume excluded to a particle per unit fiber length is just 7rri2, so that yd = r 21. Using this

result in Eq. [2-15], and also omitting the terms arising from the second solute and fiber types, we

obtain

Oi = exp[-Ir 2 1 + 8(1 - Pi)Zi] [2-28]

The excluded volume predictions for a single size of sphere and infinitely thin fibers were obtained

by solving this equation iteratively for Oi. Figure 2-2 compares the partition coefficients computed

in this manner with those obtained from density functional theory. In all cases Oi was predicted to

increase as the solute volume fraction (Xi) increases. The results of the two theories agreed well
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Figure 2-2: Partition coefficient (0i) as a function of solute volume fraction (Zi) for uniform

spherical particles in a fiber matrix composed of infinitely thin fibers. The dimensionless

concentration of fibers is l* (see text). Results from the density functional theory of Fanti and

Glandt (1989) are compared with those from Eq. [2-28].



overall, with the excluded volume theory tending to yield somewhat smaller values of Oi. The

differences between the theories became larger as l* was increased.

To describe the partitioning of uniform spheres in pores, Anderson and Brannon (1981)

used a statistical mechanical formulation to express the local particle concentration inside a pore as

a virial expansion in the bulk concentration. The second virial coefficient in that expansion (the

order Ci2 term) involved integrals which were difficult to evaluate numerically. The integrations

were facilitated by invoking the Percus-Yevick approximation, which suggests that certain terms

cancel one another. In the limit • i -> 0, however, the Percus-Yevick approximation was shown to

underestimate the second virial coefficient. Although the comparisons here focus on the results of

Anderson and Brannon (1981), similar results were presented by Glandt (1981).

The Anderson and Brannon (1981) model expressed the partition coefficient as a series

expansion in powers of the bulk solute concentration,

Pi = 0)[l+alCi +Ca2 2 +...] [2-29]

Curve fits to the computational results were used to develop convenient expressions for the

parameter al, for both cylindrical and parallel-plate (slit) pores. Anderson and Brannon observed

that, independent of the pore geometry, a1 and Pi(0) were related to good approximation by

=a 1 --0.990o) - 1.06 (( 0 ) 2 + 1.05( 0))3  [2-30]

where vi is the volume of a single particle. Results for a2 were provided as a plot of a2/vi2 versus

(Pi(0). Figure 2-3 compares partition coefficients for cylindrical pores computed from Eq. [2-29]

with those obtained from the excluded volume approach (Eq. [2-12]). As with fibrous materials, in

all cases Oi was predicted to increase as Xi increases. In general, the two theories were in excellent
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Figure 2-3: Partition coefficient (0i) as a function of solute volume fraction (xi) for uniform

spherical particles in cylindrical pores. Results obtained either from Eq. [2-29] [the Anderson and

Brannon (1981) theory] or from the excluded volume theory are shown for three ratios of solute

radius to pore radius (rilRp).
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agreement. Including the a2 term, as done in generating the curves for the Anderson and Brannon

theory in Fig. 2-3, did not cause the partitioning behavior to deviate significantly from that predicted

using only the first virial coefficient.

The excluded volume approach has its own set of approximations. A central assumption is

that all pairwise steric interactions are independent. A consequence of this in applications to fibrous

media is that this method, like the Ogston theory, permits fiber overlap. Thus, the true fiber volume

fraction, 0, is less than the nominal value used in the theory, 0. The value of 0 can be calculated

by recognizing that a point-size test solute will have a partition coefficient equal to Pi = 1 - 90, and

noting that for ri -- O, Eq. [2-2] predicts that Pi = exp(-O). Equating these two expressions for Oi

gives 0 = l-exp(-4). Accordingly, 0 -> 0 only for small values of 0. Moreover, when using the

excluded volume approach to describe solute concentration effects in any system, there is a similar

ambiguity in the particle volume fraction. Reasoning analogous to that used to describe the effects

of fiber overlap leads to the conclusion that the true solute volume fraction, ZO, and the nominal

value, X, are related by Xo = 1-exp(-X).

In summary, each of the methods discussed above involves certain approximations, and it is

not readily apparent which will provide more accurate results for a given situation. However, the

fact that the results of the various methods are in reasonably good agreement, in situations where

direct comparisons are possible, lends credence to each approach. The excluded volume method

stands out in the sense that it is much simpler to implement than the other two approaches.

Accordingly, all results presented hereafter are based on the excluded volume theory.

2.4.2 Fibrous media. We begin a more general discussion of randomly oriented fibrous

media with the most basic system, in which the fibers are of uniform radius and the solutes are

spheres of uniform size. The dependence of Oi on ri/Rf , 9, and Xi is shown in Fig. 2-4. As one

would expect, the partition coefficient decreased as the solute radius was increased relative to that of

a fiber (larger ri/Rf), or as the fiber concentration was increased (larger 0); such trends are predicted

by the Ogston theory for dilute solutions (Eq. [2-2]). The effect of increasing the volume fraction
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Figure 2-4: Partition coefficient for uniform spherical solutes in a fiber matrix, as a function of the

ratio of solute radius to fiber radius (rilRf) and the volume fraction of fibers (0). Results are shown

for infinite dilution (Xi = 0) and finite concentration (X/ = 0.1).



of solute in the bulk solution was to increase 0j, as already illustrated in Fig. 2-2 for infinitely thin

fibers.

The effects of solute shape on partitioning in fibrous media are illustrated in Fig. 2-5, in

which results are presented for solutions of uniform oblate or prolate spheroids. Here Oi is plotted

as a function of the axial ratio parameter (?ri) for various values of ri/Rf and Xi. Each curve shows a

monotonic decrease in Oi2 with increasing r7. Oblate spheroids (tri < 1) are shorter along one

principal axis than spherical particles, which reduces their volume (if ri is fixed). Combined with

the change in shape, the reduced volume increases the probability of being able to fit an oblate

spheroid into a fibrous network. Hence, Pi for oblate spheroids exceeds that for spheres (77i = 1).

The opposite effect occurs for prolate spheroids (r1i > 1), where there is an increase in volume

relative to that of a sphere of equivalent ri. As shown, larger values of ri/Rf were found both to

reduce Pi and to make the effects of particle shape more pronounced. As with spherical particles,

there was always an increase in (Pi with increasing Xi.

An unexpected aspect of the results in Fig. 2-5 was that for 2X 0 the partition coefficient

increased rapidly towards unity as b7i -+ 0, whereas for Xi = 0 it leveled off. For sufficiently small

r7i, there was a noticeable difference even between the results for very small particle concentrations

(e.g., Xi = 10-3) and X' = 0. This singular behavior is explained as follows. For any fixed volume

fraction of particles (as in any one curve in Fig. 2-5), the number of particles in the bulk must

increase as r1i becomes smaller. In general, distributing a given volume among many particles

increases the excluded volume associated with those particles. This general effect was noted by

Nikas et al. (1992), who found that, for a fixed volume fraction of micelles, smaller spherical

micelles excluded proteins more effectively than larger cylindrical micelles. Since the partition

coefficient is generally less than unity, the increased particle number causes a larger increase in the

excluded volume in the bulk solution than in the confined space. That disproportionate increase in

the bulk excluded volume tends to increase 0i. Consequently, the effects of solute concentration

are greatly amplified as Ti -- 0, for any fixed, nonzero value of Xi. A similar effect was already

observed for like spherical particles as ri decreased in Fig. 2-4, and will be seen again for mixtures
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Figure 2-5: Partition coefficient for uniform spheroidal solutes in a fiber matrix, as a function of

the axial ratio of the solute, iri. Oblate spheroids have b7i < 1; spheres have 77i = 1; prolate

spheroids have iTi > 1. Results are shown for two ratios of characteristic solute size to fiber radius

(ri/ Rf), both for infinite dilution and for finite concentration. In all cases 0 = 0.1.



of spherical particles in the discussion which follows. Overall, these results suggest that caution is

needed in applying the infinite dilution approximation (i.e., Xi = 0) to systems where particle

dimensions are very small. Another consideration in modeling the behavior of small solutes is that

the continuum approximation applied to the solvent will break down when the solute dimensions

approach those of the solvent molecules.

The system becomes more complicated when two or more types of solutes are present.

Consider first a situation where spherical solute 1 is present at tracer levels and spherical solute 2 is

abundant. In this case the partitioning of solute 2 will be affected only by interactions with like

molecules, so that P2 will behave as shown in Fig. 2-4. For solute 1, on the other hand, the

interactions with like solutes are negligible, but those with solutes of type 2 will affect its partition

coefficient. The predicted behavior of 01 is shown in Fig. 2-6. As one would expect from the

results already discussed, there was a monotonic increase in 41 with increasing X2. More

noteworthy is the finding that the magnitude of this increase was strongly dependent on the ratio of

solute radii (r2/rl). Specifically, the sensitivity of 01 to X2 increased as r2/rl was reduced. This

may be understood by recognizing that, for equivalent values of X2, a smaller r2 requires a larger

number of such particles in the bulk solution. It is the excluded volume due to the type 2 particles,

of course, which creates the dependence of 01 on X2 in this system.

When two types of particles are present at finite concentration, each experiences steric

interactions with solutes of its own type and with solutes of the other type. The effects of these

interactions are illustrated in Fig. 2-7, in which I1 is plotted as a function of X2 for several values

of r2/r 1 . In these calculations the total particle volume fraction in the bulk solution, ZX = X1 + X2,

was held constant. Thus, when the two particle sizes were taken to be identical (r2/rl = 1), 01 was

unaffected by variations in X2. For dissimilar particles, however, 0 1 was quite sensitive to X2. For

r2/rl < 1, 01 increased with increasing X2, whereas for r2/rl > 1 it decreased. As with the effects of

r2/r1 in Fig. 2-4, underlying this trend is the fact that a greater excluded volume results when one

distributes a given volume among a larger number of objects. Thus, for r2/rl < 1 and Xt fixed,

increasing X2 assigns more of the given particle volume to the smaller (type 2) particles, thereby
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Figure 2-6: The partition coefficient of a tracer (01) as a function of the volume fraction of an

abundant solute (12), for a mixture of two spherical solutes in equilibrium with a random fiber

matrix. Results are shown for various values of the ratio of solute radii (r2/rl). In each case =

0.1 and rl/Rf= 2.
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Figure 2-7: The partition coefficient of one solute (01) as a function of the volume fraction of the

other solute (Z2), for a mixture of two spherical solutes in equilibrium with a random fiber matrix.

Both solutes were assumed to be present at finite concentration, such that their total volume fraction

was fixed at Zt = Xl + X2 = 0.1. In each case 0 = 0.1 and rl/Rf= 2.



elevating the excluded volume in the bulk solution and increasing 01. For r2/rl > 1, increasing X2

has the opposite effect.

The results just discussed focused on the effects of nonuniform particle sizes. Analogous

effects of heterogeneity are observed in fiber matrix systems in which there are at least two sizes of

fiber. Consider a system in which there is only one type of (spherical) solute, but fibers of radii R1

and R2 . Values of Oi for this case are plotted in Fig. 2-8 as a function of 02, for various choices of

R2/ R1. Here the total fiber volume fraction, Ot = 01 + 02, was held constant. It was found that 'i

increased with increasing ~2 for R2/ R1 > 1, remained constant for R2/ R = 1, and decreased for

R2/ R1 < 1. In this situation, increasing the number of small fibers (i.e., increasing 02 for R2/ R 1 < 1)

augmented the excluded volume in the confined phase, and thereby reduced Oi. The opposite effect

occurred when the number of small fibers was reduced.

Results for systems with two particle sizes and two fiber sizes can be computed if desired

from Eq. [2-15], but will not be presented. Some additional findings for fibrous media are

presented later, in connection with certain experimental systems, after the behavior of porous

materials is discussed briefly.

2.4.3 Porous media. The results presented next are for materials modeled as assemblies of

straight, circular pores of uniform radius, Rp. Because the partition coefficient for a single solute in

such a system has been presented already in Fig. 2-3, we focus here on the effects of interactions

among two types of spherical solutes with different sizes. Fig. 2-9 depicts results for a system in

which solute 1 is a tracer and solute 2 is abundant. In most respects, the dependence of 01 on X2

and r2/rl was very similar to that found for fibrous media (Fig. 2-6). The only qualitative

distinction is that the curve for r2/rl = 3 does not fall completely below the curves for smaller

values of r2/r1. This increase in 01 with increasing r21rl seems to contradict the reasoning already

presented for the observed trends in systems of mixed particles, but it can be understood in terms of

a competing effect. As r2/rl increases and the concentration effect diminishes, 0 2 also falls. This

simultaneous decrease in the ability of the second particle to occupy pore volume tends to increase

I1, thereby counteracting the diminishing concentration effect. This competing effect due to



A0
'.U

0.6

(D 0.4

0.2

0

0 0.05 0.1 0.15 0.2

Figure 2-8: The partition coefficient of a spherical solute in a fibrous material containing two types

of fibers with different radii. The partition coefficient is plotted as a function of the volume fraction

of one fiber (02), with the total volume fraction of fibers fixed at Ot = 01 + 02 = 0.2. Results are

shown for various values of the ratio of fiber radii (R2/R 1). In each case Xi = 0.1 and ril/ R1 = 2.
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Figure 2-9: The partition coefficient of a tracer (01) as a function of the volume fraction of an

abundant solute (X2), for a mixture of two spherical solutes in equilibrium with cylindrical pores of

radius Rp. Results are shown for various values of the ratio of solute radii (r2/rl). In each case

rl/Rp = 0.2.



decreasing 02 also occurs in fiber matrix systems, but is not readily apparent with the parameter

values chosen for Figs. 2-6 and 2-7.

Partitioning results for pores with two concentrated solutes are shown in Fig. 2-10. Again,

the results were qualitatively similar to those for fibrous media (Fig. 2-7), the main distinction being

the non-monotonic behavior observed for r2/r1 = 3. The basis for that non-monotonic behavior is

the same as that described for Fig. 2-6.

2.4.4 Some experimental implications. Agarose gels have been used in a number of

experimental investigations of partitioning and diffusive or convective transport of macromolecules

(Dubin and Principi 1989; Johnson et al. 1995, 1996; Johnston and Deen 1999; Kong et al. 1997).

The a-helical polysaccharide chains of agarose bundle together to form larger, relatively rigid

fibers, which in turn are physically crosslinked in an apparently random pattern (Arnott et al. 1974).

Agarose gels have been modeled often as randomly oriented arrays of fibers of uniform size,

although results from small angle x-ray scattering (SAXS) indicate a bimodal distribution of fiber

radii (Djabourov et al. 1989). Specifically, the SAXS results suggest that 42% of the fiber volume

is accounted for by fibers with a radius of 1.5 nm and the remaining 58% by fibers with a radius of

4.5 nm. This corresponds to a model where, by number, 87% of the fibers have a radius of 1.5 nm

and 13% have a radius of 4.5 nm; this yields a number-average radius of 1.9 nm. Theoretical results

are available to describe the effects of such a bimodal distribution on water flow (Darcy

permeability) (Clague and Phillips 1997), but there have not been analogous results for equilibrium

partitioning. Figure 2-11 compares partition coefficients calculated using the number-average

radius ("one fiber") and the bimodal distribution ("two fibers"), for various sizes of spherical

solute. The total volume fraction of fibers was held constant at 0.08, which is at the high end of

typical experimental values for agarose. It is seen that for any given combination of solute size and

solute volume fraction, Oi for the bimodal distribution was greater than that for the uniform fiber

model. The partition coefficients were higher in the bimodal representation because the fibers with

a radius much larger than the average value, although fewer in number, had a more important effect

than the more abundant small fibers. The differences between the two models were typically only



0.95

0.9

0.85
0.85

0.8

0 75
0 0.05 0.1 0.15 0.2

X2

Figure 2-10: The partition coefficient of one solute (0 1) as a function of the volume fraction of the

other solute (X2), for a mixture of two spherical solutes in equilibrium with cylindrical pores of

radius Rp. Both solutes were assumed to be present at finite concentration, such that their total

volume fraction was fixed at Xt = X1 + X2 = 0.2. In all cases rl/ Rp = 0.2.



0.9

0.8

(D. 0.7

0.6

0.5

04
0 0.05 0.1 0.15 0.2

xi

Figure 2-11: Partition coefficients predicted for spherical particles in agarose, in which the agarose

gel was represented as a random fiber array having either uniform fibers ("one fiber,"Rf = 1.9 nm)

or a bimodal distribution of fiber radii ("two fibers," see text). Results are shown for t = 0.08

and solute radii ranging from 2 to 4 nm.



about 10%, however. This is consistent with the observation that, for dilute solutions of spherical or

nearly spherical macromolecules, partitioning predictions with the single fiber model for agarose

have generally been quite accurate (Johnson et al. 1995, 1996; Johnson and Deen 1996). The

predicted effects of fiber heterogeneity on partitioning are proportionately similar to the predicted

effects on the Darcy permeability of agarose (Clague and Phillips 1997). Note that the opposite

trend was shown in Fig. 11 of Lazzara et al. (2000). The model predictions for the bimodal

distribution shown there were made by setting the individual fiber volume fractions equal to the

product of the total fiber volume fraction and the corresponding fraction of fibers based on number,

rather than volume. The present calculations reflect a more accurate physical description of the gel.

Nonspherical solutes, including globular proteins, are often treated as spheres to simplify

partitioning or transport calculations for fibrous or porous media. The radius of an equivalent

sphere is usually calculated from bulk solution diffusivity data, using the Stokes-Einstein equation.

Although the bulk-phase diffusivity of the model solute is thereby guaranteed to be correct, the

equivalent-sphere approach may not yield accurate partition coefficients, as is well known for dilute

solutions (Giddings et al. 1968). As an example of the effects of solute shape in more concentrated

solutions, we focus on a situation resembling that studied by Bolton et al. (1998), in which the

transport of Ficoll through isolated glomerular basement membrane was studied in the presence or

absence of bovine serum albumin (BSA). Ficoll, a crosslinked polysaccharide that appears to

behave as a neutral sphere, was present in tracer amounts, whereas BSA (when present) was

relatively concentrated. In the results to be described, the confined phase was modeled as a fibrous

medium of uniform radius, and particle 1 (e.g., Ficoll) was assumed to be a spherical tracer with r1

= 2.0 or 4.0 nm. Particle 2 is BSA, which was represented either as a sphere or as a prolate

spheroid. The Stokes-Einstein radius of BSA is 3.6 nm (Johnson et al. 1995), and reported values

of its axial ratio (172) range from 3.3 to 4.9 (Oncley et al. 1947; Tanford 1961). The absolute

dimensions of a given prolate spheroid were computed from the Stokes-Einstein radius and axial

ratio using diffusivity relationships given in Happel and Brenner (1983). Results for 01 as a

function of X2 are shown in Fig. 2-12 for r72 = 1.0, 3.3, or 4.9. For all sizes of tracer considered,
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Figure 2-12: Predicted effect of BSA on the partitioning of a spherical tracer in a random fiber

matrix. BSA was represented either as a sphere (772 = 1) or as a prolate spheroid (7r2 = 3.3 or 4.9),

with a Stokes-Einstein radius of 3.6 nm in each case. The major and minor semi-axes of the prolate

spheroids were 7.0 and 2.1 nm, respectively, for i72= 3.3, and 8.4 and 1.7 nm, respectively, for

'q2 = 4.9. Results are shown for tracer radii of 2 and 4 nm, with Rf = 2 nm and 0 = 0.10.



increasing the assumed axial ratio of BSA increased the partition coefficient of the tracer and made

it more sensitive to the concentration of BSA. For any given tracer, the effects of the assumed axial

ratio vanished as X2 -- 0, because the BSA-tracer interactions became negligible in that limit. For

the particular conditions considered in Fig. 2-12, the errors in modeling BSA as a sphere are seen

to be relatively small for r1 = 2 nm, but more significant for r1 = 4 nm. Although the curves were

omitted for clarity, the sensitivity to the assumed axial ratio was even greater for r, = 6 nm.

2.5 Conclusions

The excluded volume formulation provides a computationally simple method for estimating

partition coefficients for dilute or concentrated solutes in equilibrium with fibrous or porous media,

provided that steric interactions are dominant. Whereas previous models for rigid solutes

addressed concentration effects only for spheres of uniform size, the excluded volume theory

allows for the presence of multiple solute sizes and/or shapes. The excluded volume results reduce

exactly to certain well-known expressions for the partitioning of dilute solutions of spheres, and

they are in reasonable agreement with previous results for the partitioning of concentrated solutions

of uniform spheres. In addition to facilitating calculations for multiple solute sizes and/or shapes,

the simplicity of the excluded volume formulation permits the incorporation of multiple fiber radii

in models of fibrous media. Overall, the theory suggests that the introduction of heterogeneities,

whether as mixtures of solute sizes or mixtures of fiber sizes, may cause partition coefficients to

differ markedly from those of uniform systems.



Chapter 3

Effects of Plasma Proteins on the Sieving of Macromolecular Tracers in

Glomerular Basement Membrane

3.1 Abstract

It was found previously that the sieving coefficients of Ficoll and Ficoll sulfate across

isolated glomerular basement membrane (GBM) were greatly elevated when BSA was present at

physiological levels, and it was suggested that most of this increase might have been the result of

steric interactions between BSA and the tracers (Bolton et al. 1998). To test this hypothesis, we

extended the theory for the sieving of macromolecular tracers to account for the presence of a

second, abundant solute. Increasing the concentration of an abundant solute is predicted to increase

the equilibrium partition coefficient of a tracer in a porous or fibrous membrane, thereby increasing

the sieving coefficient. The magnitude of this partitioning effect depends on solute size and

membrane structure. The osmotic reduction in filtrate velocity caused by an abundant, mostly

retained solute will also tend to elevate the tracer sieving coefficient. The osmotic effect alone

explained only about one third of the observed increase in the sieving coefficients of Ficoll and

Ficoll sulfate, whereas the effect of BSA on tracer partitioning was sufficient to account for the

remainder. At physiological concentrations, predictions for tracer sieving in the presence of BSA



were found to be insensitive to the assumed shape of the protein (sphere or prolate spheroid). For

protein mixtures, the theoretical effect of 6 g/dL BSA on the partitioning of spherical tracers was

indistinguishable from that of 3 g/dL BSA and 3 g/dL IgG. This suggests that for partitioning and

sieving studies in vitro, a good experimental model for plasma is a BSA solution with a mass

concentration matching that of total plasma protein. The effect of plasma proteins on tracer

partitioning is expected to influence sieving not only in isolated GBM, but also in intact glomerular

capillaries in vivo.

3.2 Introduction

In a study designed to test the effects of molecular charge on the barrier properties of

glomerular basement membrane (GBM), the sieving of polydisperse Ficoll and Ficoll sulfate was

examined in vitro using filters prepared from isolated rat GBM (Bolton et al. 1998). Sieving

coefficients (e, the ratio of filtrate to retentate concentration) were determined for Stokes-Einstein

molecular radii (r) ranging from 20 to 50 A. The principal finding was that the values of O for any

given size of Ficoll and Ficoll sulfate were indistinguishable when buffer solutions of physiological

ionic strength were employed. This indicates that the GBM is only a size-selective barrier, and does

not exhibit charge selectivity. Although the experiments failed to detect an effect of molecular

charge, there was a very pronounced upward shift in the sieving curves (plots of O vs. r,) of either

tracer when BSA was present in the retentate at a concentration of 4 g/dL. Because the hydraulic

permeability of the GBM filters was unaffected by BSA, the shift in the sieving curves apparently

was not due to an alteration of the intrinsic properties of the GBM (i.e., a result of binding of BSA

to the membrane). One alternative explanation for the increase in O is the reduction in filtrate

velocity (or volume flux) caused by the osmotic pressure of BSA. A well-known finding in

ultrafiltration is that small filtrate velocities promote diffusional equilibration between the filtrate and

retentate, causing O to approach unity even for large solutes if the velocity is small enough. Thus,

slow rates of filtration diminish the apparent size-selectivity. However, calculations based on the



measured filtrate velocities with and without BSA revealed that this could explain only about one

third of the increase in O. It was suggested that most of the BSA effect might be due to a second

physical phenomenon, namely, a tendency of steric interactions with BSA to facilitate entry of the

tracers into the membrane. It is this second phenomenon, known for some time in the membrane

science literature but not widely recognized in microvascular physiology, which was examined in

more detail in the present work.

Several theoretical and experimental investigations have shown that the equilibrium

partitioning of a macromolecule between a bulk solution and a porous or fibrous material is

dependent on its concentration. In essence, steric interactions between molecules in a concentrated

solution cause entry into the porous or fibrous material to be more favorable thermodynamically

than if the solution were dilute. The net effect is that the partition coefficient (0, the concentration

in the membrane divided by that in the external solution, at equilibrium) increases with the external

concentration. For uniform pores of various shapes and for solutions containing a single type of

rigid, spherical solute, this effect was predicted by Anderson and Brannon (1981) and by Glandt

(1981) using statistical mechanical arguments. Fanti and Glandt (1990) used density functional

theory to obtain similar results for spheres partitioning in randomly oriented arrays of fibers. More

recently, Lazzara et al. (2000) (Chapter 2) used an excluded volume formulation to extend the

results for rigid solutes to arbitrary mixtures of spheres or spheroids, and White and Deen (2001)

used Monte Carlo methods to predict the partitioning of concentrated solutions of flexible polymer

chains. Experimentally, increases in 0 with increasing solute concentration have been

demonstrated, for example, by Brannon and Anderson (1982) for both dextran and BSA in

controlled pore glass, and by White and Deen (2001) for dextran in agarose gels. Additionally, the

sieving coefficients of Ficoll and BSA in synthetic membranes were found to increase with

increasing solute concentration, consistent with theoretical predictions for porous media (Mitchell

and Deen 1986).

Most of the work just cited involved concentrated solutions of single solutes, whereas what

is of primary interest here is the effect of an abundant solute (e.g., BSA) on the partitioning of a



dissimilar tracer (e.g., Ficoll). The partitioning of a spherical tracer molecule between a solution

and a fiber matrix is depicted in Fig. 3-1. When only the tracer is present, as in the top panel,

solute-solute interactions are negligible and steric exclusion of the tracer by the fibers causes 0 to

be less than unity. This is the situation considered in the classical analysis by Ogston (1958). The

balance is altered when a second solute is added at high concentration, as in the bottom panel.

When very little of the abundant solute is able to enter the membrane, it will tend to exclude the

tracer from the solution, partially canceling the effects of the fibers. Accordingly, while 0 for the

tracer is still less than unity, it is larger than for a very dilute solution.

Bolton et al. (1998) were unable to satisfactorily model the effect of BSA on Ficoll or Ficoll

sulfate partitioning or sieving because the theories for concentrated solutions that were available at

that time were limited to single solutes. The results of Chapter 2, which may be applied to any

number of spheroidal solutes, make it possible to further analyze the data and test whether the

predicted effect of BSA on partitioning is sufficient to explain its influence on Ficoll and Ficoll

sulfate sieving in GBM. That was the objective of the work reported here.

This chapter is organized as follows. The next section begins with a discussion of the

relationship between the sieving coefficient and partition coefficient, including the effects of filtrate

velocity and the novel behavior caused by the presence of an abundant solute. The key partitioning

relationships from Chapter 2 are then summarized, to complete the description of the theory. After

some general results are presented to illustrate the effects of solute concentration and filtrate

velocity on sieving coefficients, a comparison is made between the theoretical predictions and the

data for the GBM. We conclude with predictions of the effects of mixed solutions of proteins (e.g.,

serum albumin and globulins) and with a discussion of the physiological significance of this

phenomenon. As will be explained, abundant, poorly filtered proteins such as albumin are likely to

influence the sieving behavior of test macromolecules in vivo in much the same way that they

influence their sieving in isolated GBM.



Figure 3-1: Schematic of the partitioning of a spherical tracer (open circles) into a randomly

oriented matrix of fibers. In the top panel, only tracer is present and its partitioning is determined by

steric interactions with the fibers only. In the bottom panel, tracer interactions with the abundant

solute (filled circles) tend to exclude tracer molecules preferentially from the bulk solution and

increase the partition coefficient of the tracer.
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3.3 Model Development

3.3.1 Relationship between sieving and partitioning. In an isotropic medium, such as an

array of randomly oriented fibers, the flux (N) of a macromolecular solute may be expressed as

N= -KdDVC+KcvC [3-1]

where D. is the solute diffusivity in free solution, v is the fluid velocity vector, C is the solute

concentration, and Kd and Kc are hindrance factors for diffusion and convection, respectively. In

general, steric and hydrodynamic interactions between a macromolecular solute and the fixed

polymeric fibers of a membrane or gel will cause Kd and Kc to be less than unity, although K, may

exceed unity for small solutes. This has been demonstrated, for example, for Ficoll and globular

proteins in agarose gels (Johnson et al. 1996; Johnston and Deen 1999). Consider a membrane

extending from x = 0 to x = L that is in contact with solutions of concentration CO and CL,

respectively. For steady transport in the x direction, integration of Eq. [3-1] reveals that the solute

flux is related to the external concentrations and filtrate velocity by

tCo=o - CLlPLe-Pe
N= Kc e -Pe 3-2]

where 00 and OL are the equilibrium partition coefficients at the upstream and downstream surfaces,

respectively, and Pe is the membrane P6clet number. The partition coefficient is the concentration

just inside the GBM, divided by that in the adjacent external solution. The P6clet number is

Pe= K 3-3]
KdDo[.



An implicit assumption in Eq. [3-2] is that there is an approximate thermodynamic equilibrium

between the membrane and the external solutions at x = 0 and x = L. In ultrafiltration, the filtrate

concentration is determined by the ratio of the solute and volume fluxes (i.e., CL = N/v), and the

membrane sieving coefficient is defined as O= CLCo. These substitutions allow Eq. [3-2] to be

rearranged as

(09= - [3-4]
1-(1- _LKc) e-Pe

Similar expressions for the sieving coefficient have been employed in many studies of ultrafiltration

across synthetic or biological membranes. The one novel feature of Eq. [3-4] is the distinction

between the upstream and downstream partition coefficients. Whereas with dilute solutions 00 =

,., an abundant solute in the retentate will tend to make o0 > 'L for the tracer.

The effects of filtrate velocity are described by the term in Eq. [3-4] that contains Pe. With

high filtrate velocities and/or thick membranes, such that Pe >> 1, we obtain

lim O = JoKc [3-5]
Pe -+o

In this limit the sieving coefficient depends on the upstream partition coefficient and convective

hindrance factor, and is insensitive to filtrate velocity. This standard result is often expressed in

terms of a reflection coefficient (t), where c0K, = 1 - a. Because P0Kc < i, we expect that 9 < 1

for any macromolecular tracer if the filtrate velocity is large enough. The limit for low filtrate

velocities and/or thin membranes is

lim e9= 0 [3-6]
Pe---O OL



In contrast to the usual result of O 1 for Pe 0, the sieving coefficient is determined now by the

ratio of the partition coefficients. Because a large, abundant solute will tend to make 4 0 > 4,, the

sieving coefficient of an uncharged tracer could exceed unity. Although perhaps counterintuitive,

this prediction has a firm physical basis. In general, Eqs. [3-4] - [3-6] indicate that an abundant

solute will increase the sieving coefficient of a tracer at all values of Pe, by increasing 0 0. The

extent of the increase will depend also on Kc and Pe.

3.3.2 Effects of concentration on partitioning. The effects of solute concentrations on

partition coefficients were modeled using the excluded volume theory from Chapter 2. In that

theory, partition coefficients are calculated by summing the volumes excluded to a solute in the

membrane and bulk phases due to the fixed structures of the membrane and to other solute

molecules which may be present. Long-range intermolecular forces are ignored, limiting this

method to media where steric considerations dominate and the effects of electric charge are

negligible. As indicated earlier, this appears to be a valid approximation for GBM. The model

generates a coupled set of nonlinear algebraic equations for the partition coefficients, one for each

solute present. The most complicated situation to be considered here is a three-solute system of

Ficoll, serum albumin, and IgG partitioning into a fibrous membrane composed of two distinct

types of fibers. We will treat Ficoll and IgG as spherical molecules and BSA as a prolate spheroid.

In the equations that follow, the solute indices 1, 2, and 3 refer to Ficoll, serum albumin, and IgG,

respectively; there are also indices 1 and 2 for the two types of fibers. Using the notation from

Chapter 2, the expressions for the partition coefficients in such a system are

41 = exp[-ol cx (s, f )-2al 2 (s, f ) + l (S,s)(1 - )X1 [3-7a]
+ a12(s, p)(1 - 02)Z2 + 13( s , s ) (1 - 0 3 ) Z 3 1

02 = exp[--Oa 2z1(p, f )- z2a22( P,f )+ C 1(p,s)(l - I )X1 [3-7b

+ o22(P,P)(1- P2 )X2 + a23(p,S)(1- (3)XZ3



03 = exp[--•la 3 1(s,f)- 22a 32(s,f )+ a31(s,s)(1 - )Z1 [3-7c]
+ a32(s, p)(1 - 2 ) 2 

+ a33(s,s)(1 - 3)XZ31

where 4~ denotes the volume fraction of fibers of type i in the membrane and j denotes the volume

fraction of solutes of typej in the bulk solution. The quantities oai(x,y) are dimensionless geometric

parameters which are used to describe the interaction of a test solute i of shape x with a set of

objects j of shape y (s = sphere, p = prolate spheroid, f= fiber). For example, a ll(s,s) describes the

steric interaction between two spheres of type 1. For spheres of radius ri and rj, the excluded

volume parameter is

1j (s,s)= + r [3-8]

Expressions for the remaining aj(x,y) parameters, some of which are quite lengthy, can be found in

Chapter 2. Once those parameters were specified, Eqs. [3-7a] - [3-7c] were solved using Newton-

Raphson iteration, using the dilute solution values for the partition coefficients as initial guesses.

All other systems considered here may be viewed as special cases of Eqs. [3-7a] - [3-7c],

obtained by setting certain terms equal to zero. Thus, the dilute solution values of the partition

coefficients were found by setting xj = 0 for all j. Results for just two solutes (Ficoll and albumin)

were computed by setting x3 = 0 and dropping Eq. [3-7c]. Calculations for membranes with just

one type of fiber were done by setting 42 = 0. Among the results that may be recovered in this

manner is the partitioning expression of Ogston (1958) for dilute solutions of spheres in random

arrays of a single type of fiber; it corresponds to Eq. [3-7a] with 42 = 0 and all X = 0.



3.4 Results and Discussion

3.4.1 General trends. Examples of the theoretical increase in the partition coefficient of a

spherical tracer due to BSA are shown in Fig. 3-2. The tracer partition coefficient is denoted as OT

and the volume fraction of BSA in bulk solution is XBSA These results were computed for a

hypothetical fiber array with a volume fraction of 4 = 0.2 and a fiber radius of Rf = 10 A. Those

parameter values were selected so that BSA would be largely excluded from the membrane (PBSA

0.01 for dilute solutions), as is true for GBM; otherwise, the choices are arbitrary. As discussed

previously (Chapter 2), BSA was represented as a prolate spheroid with an axial ratio of q7 = 3.3

(major and minor semiaxes of 70 and 21 A, respectively). With this assumed shape, the mass

concentration that corresponds to XBSA = 0.1 is 8.6 g/dL. Results are shown for tracers with r, =

20, 30, 40, and 50 A. It is seen that OT increases with increasing SA, in each case. The greatest

percentage variations in O were obtained for the largest molecule, where the dilute-solution

partition coefficient (OT for XBSA = 0) was smallest. These results demonstrate that the effect of an

abundant solute on the partition coefficient of a tracer can be quite large.

Figure 3-3 shows the predicted effects of BSA on the sieving coefficient of a spherical

tracer with r, = 30 A, for the same fiber matrix as in Fig. 3-2. As shown in Eq. [3-4], which was

applied here to both the tracer and BSA, the sieving coefficient depends on Kc and Pe, as well as the

partition coefficients. Because there is not yet a reliable theory for predicting the convective

hindrance factor in a random fiber matrix (Johnston and Deen 2002), Kc = 0.75 was used as a

representative value, both for the tracer and for BSA. Since r, = 36 A for BSA, its Kc in the same

fiber matrix would probably be smaller than that of a 30 A sphere. Additionally, one would expect

that Pe for BSA would be larger than that of a 30 A sphere, in part because of the reduced value of

D., and perhaps also because of larger values of the ratio K/Kd. Eq. [3-4] indicates that using too

large a K, and/or too small a Pe for BSA would increase its predicted sieving coefficient. In other

words, the filtrate concentration of BSA was probably overestimated. Because anything that tends

to reduce the transmembrane concentration difference for BSA also tends to minimize its effect on
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Figure 3-2: Partition coefficient of a spherical tracer (OT) as a function of BSA volume fraction

(ZXSA). Results are shown for various tracer Stokes-Einstein radii (r,). The volume fraction of

fibers was # = 0.2, the fiber radius was Rf= 10 A, and BSA was treated as a prolate spheroid with

axial ratio 7 = 3.3.
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Figure 3-3: Sieving coefficient of a spherical tracer (OT) as a function of BSA volume fraction

(XBSA) and membrane P6clet number (Pe). Results are shown for r, = 30 A and Kc = 0.75, with

other conditions as in Fig. 3-2.



tracer sieving, the effects shown in Fig. 3-3 should be viewed as conservative estimates. Results

were computed for a wide range of Pe values and BSA concentrations in the retentate. As seen in

Fig. 3-3, the sieving coefficient of the tracer (OT) is predicted to be elevated as the BSA

concentration is increased, for any fixed value of Pe > 0. Note that increasing the BSA

concentration would also tend to decrease Pe, because of the osmotic pressure opposing filtration.

Thus, the usual effect of adding BSA would be to move toward the higher curves in Fig. 3-3,

making 0 , even more sensitive to the BSA concentration. In contrast to the situation discussed in

connection with Eq. [3-6], eO in Fig. 3-3 does not exceed unity even for Pe = 0 and large

concentrations of BSA. The reason is that, with identical assumed values of Kc for the tracer and

BSA, and with their roughly comparable molecular sizes, Bsa A 1 as Pe -- 0, much as O, 1.

As the BSA concentration in the filtrate approaches that in the retentate, the tracer partition

coefficients at the two membrane surfaces become equal. With LL -- 0 0, Eq. [3-6] indicates that

ST•- 1, consistent with the behavior in Fig. 3-3 for Pe - 0. For O to exceed unity at small Pe,

BSA (or another abundant protein) would have to be excluded from the membrane much more

efficiently than the tracer.

3.4.2 Sieving in isolated GBM. In order to predict the effects of BSA on Ficoll and Ficoll

sulfate sieving in isolated GBM, values were needed for the convective and diffusive hindrance

factors for the range of molecular sizes studied by Bolton et al. (1998). Because it was not possible

to measure K, and Kd independently under those experimental conditions, and because there is not

yet a reliable theory for predicting hindrance factors in a material as complex as GBM, we elected to

estimate the necessary quantities by fitting the Ficoll and Ficoll sulfate sieving curves measured in

the absence of BSA. With protein-free solutions, the partition coefficients at the two sides of the

membrane are equal; that is, k0 = OL = ( . Equations [3-3] and [3-4] indicate that knowledge of the

products OKc and OKd is sufficient to find the P6clet number and sieving coefficient. Both of these

products are expected to decline from values of near unity for very small molecules to nearly zero

for large molecules. Accordingly, the empirical forms chosen for the fitting were



OKd = exp(-ars)

OKKc= exp(-brs ) [3-9b]

The constants a and b were evaluated by using Powell's method to minimize the norm of the error

between the data and the sieving coefficients predicted using Eq. [3-4]. The resulting values were a

= 0.126 A' and b = 0.075 A-1 for Ficoll, and a = 0.134 A-1 and b = 0.069 A-' for Ficoll sulfate.

The nearly identical values of a and b computed for Ficoll and Ficoll sulfate reflect the fact that the

sieving curves of these neutral and anionic tracers in GBM were indistinguishable. The values of a

and b given here for Ficoll differ slightly from those reported by Bolton et al. (1998). The reason

is that, in the present work, an effort was made to correct for nonselective "shunts" or "leaks" in

the filters made by consolidating cell-free glomeruli. This was done by subtracting from each

sieving coefficient the value measured for the largest Ficoll or Ficoll sulfate studied, where r, = 80

A. Although this had only a modest effect on the results to be shown for 20 < rý < 50 A, the

"corrected" sieving coefficients are the ones plotted. Note that the known limiting behavior of

QKd and OKc for point-sized solutes in random arrays of fibers can be incorporated into Eqs. [3-

9a] and [3-9b] by changing the pre-exponential coefficients from unity to [1 - (5/3)0] and [1 - 0],

respectively. Using these modified expressions had virtually no effect on the ability to fit the

sieving data without BSA or on the predicted sieving curves with BSA. Thus, although the

modified forms are more exact for rs -> 0, that had little consequence for the range of molecular

sizes studied here.

The central element of the theory used to predict the effects of BSA on Ficoll and Ficoll

sulfate sieving was the partitioning model. It has been argued recently that representing GBM as a

randomly oriented array of uniform fibers fails to account for its electron microscopic appearance,

its measured volume fraction of solids, and its measured hydraulic (or Darcy) permeability (Bolton

and Deen 2001). However, assuming it to consist of a mixture of coarse and fine fibers, which

correspond roughly to collagen IV and glycosaminoglycan chains, leads to behavior consistent with

[3-9a]



all of those properties. Accordingly, we adopted a two-fiber model with parameter values as

suggested in Bolton and Deen (2001): the radii of the coarse and fine fibers were taken to be 35 A,

and 5 A, respectively; the corresponding volume fractions were 0.046 and 0.054, for a total solid

fraction of 0.10. Also needed for the partitioning calculations are the concentrations of BSA at the

upstream and downstream surfaces of the GBM layer studied in vitro. Correcting the retentate

value for concentration polarization and using the measured sieving coefficient for BSA (OBSA =

0.085) (Bolton et al. 1998), the upstream and downstream concentrations were found to be 6.2 and

0.53 g/dL, respectively. With BSA represented as a prolate spheroid, as described above, the

corresponding volume fractions are XBsA = 0.072 and 0.0061. Determining its concentrations in

this manner from experimental data, it was not necessary to specify Kc and Kd for BSA.

Theoretical sieving curves are compared with the GBM data for Ficoll and Ficoll sulfate in

Figs. 3-4 and 3-5, respectively. As shown by the lower curves in each plot, the simple expressions

adopted for the hindrance factors (Eqs. [3-9a] and [3-9b]) yielded excellent fits to the sieving data

obtained in the absence of BSA. Shown also in Figs. 3-4 and 3-5 are the respective sieving curves

measured in the presence of BSA, and two predictions for that case. One prediction includes only

the osmotic effect of BSA. In those calculations BSA was assumed to reduce Pe (due to the lower

filtrate velocity) without affecting the tracer partition coefficients. As shown in both figures, and as

noted in Bolton et al. (1998), this purely osmotic effect of BSA accounts for only about 1/3 of the

upward shift in the sieving curves. The remaining curves in each plot are based on the complete

theory, including both partitioning and osmotic effects. It is seen that the predicted effect of BSA is

more than sufficient to account for the upward shifts in the Ficoll and Ficoll sulfate sieving curves.

The tendency of the theory to overestimate the effect of BSA, especially for the largest solutes,

might be the result of limitations in the representation of the GBM as an array of randomly oriented

fibers. Indeed, although glycosaminoglycan chains (and possibly other components) may be

relatively disordered, there is evidence from electron microscopy that collagen IV fibers assemble

into a branching polygonal network in at least some basement membranes (Yurchenco and Ruben

1987). Thus, it might be more accurate to model GBM as a partially ordered fibrous structure filled
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Figure 3-4: Sieving coefficient of Ficoll (Q F) as a function of Ficoll radius (r,) for isolated rat

GBM. The symbols with error bars represent the data of Bolton et al. (1998). Theoretical curves

are shown for a solution without BSA, for a BSA solution with osmotic effects only, and for the

complete theory with osmotic and partitioning effects.
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Figure 3-5: Sieving coefficient of Ficoll sulfate (9FS) as a function of Ficoll sulfate radius (rs) for

isolated rat GBM. The symbols with error bars represent the data of Bolton et al. (1998).

Theoretical curves are shown for a solution without BSA, for a BSA solution with osmotic effects

only, and for the complete theory with osmotic and partitioning effects.
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with smaller, randomly oriented fibers. Predictions for such mixed structures, however, are beyond

the capabilities of current partitioning theories.

3.4.3 Effects of protein size and shape. Although our calculations have focused on BSA,

any abundant protein should influence the partition and sieving coefficients of tracer

macromolecules. This leads to the question of whether protein size and/or shape are important

factors. This was examined in two ways: first, to see if modeling BSA as a sphere would alter the

predictions in Figs. 3-4 and 3-5; and second, to see if a mixture of albumin and globulins would

behave differently than an albumin solution.

In the preceding calculations BSA was treated as a prolate spheroid with an axial ratio of 3.3

and major and minor semiaxes of 70 and 21 A. This model appears to be most consistent with its

partial specific volume (Al-Malah et al. 1995), intrinsic viscosity (Tanford 1961), and Stokes-

Einstein radius (Johnson et al. 1995; Lazzara et al. 2000). However, a much simpler representation

is a sphere of radius rs = 36 A (the Stokes-Einstein radius of BSA). If the spherical model is

adopted, then ZBs, = 0.1 corresponds to a mass concentration of 5.8 g/dL. Repeating the

calculations in Figs. 3-4 and 3-5 for a spherical BSA molecule resulted in curves that were virtually

indistinguishable from those for the prolate spheroid. Thus, the shape of BSA does not appear to

be an important determinant of its effect on the partitioning of tracers in GBM, for the protein

concentrations considered here. This is not a general finding, in that molecular shape has been

shown to influence the effects of solute concentration on partitioning in other hypothetical

situations (see Chapter 2, Section 2.4.4).

To examine the effects of a protein mixture, we simulated partitioning into GBM from a

BSA solution or a "plasma" represented as a 1:1 mixture (by mass) of BSA and IgG. Once again,

the two-fiber GBM model was employed, and BSA was treated as a prolate spheroid. For

simplicity, we did not attempt to model the "Y" shape of IgG, representing IgG instead as a sphere

of 52 A radius (Potschka 1987). The results are shown in Fig. 3-6 as plots of tracer partition

coefficient vs. tracer size for various protein solutions. The presence of BSA at 6 g/dL is predicted

to roughly double the partition coefficient of a tracer of intermediate size. For the smaller
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Figure 3-6: Partition coefficient of a spherical tracer (In) as a function of tracer radius (rs).

Results are shown for a protein-free solution and for solutions containing albumin and/or IgG.
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molecules the percentage changes are lower than for the larger molecules. Interestingly, if the total

protein consists of 3 g/dL albumin and 3 g/dL IgG, the predicted partition coefficients are barely

distinguishable from those for 6 g/dL albumin. This suggests that, from a partitioning viewpoint, a

good experimental model for plasma is a BSA solution with a mass concentration that matches that

of total plasma protein. (Such a solution is less accurate from an osmotic viewpoint, in that the

osmotic pressure of BSA exceeds that of mixed plasma proteins, for a given mass concentration.)

If the total protein content is reduced to 3 g/dL (either BSA or an albumin-IgG mixture), the

augmentation of the partition coefficient is very nearly half that for 6 g/dL. Thus, the effects of

abundant proteins on partitioning in the GBM are predicted to be nearly linear in the protein

concentration.

3.4.4 Application to intact capillaries. Attempts to extrapolate these findings to glomerular

filtration in vivo are complicated by the fact that the barrier properties of the capillary wall are

determined only partly by the GBM. The various factors to be considered will be identified first,

and then some conclusions will be reached concerning filtration in intact capillaries. The overall

sieving coefficient at any point along a glomerular capillary (0, the concentration in Bowman's

space relative to plasma) depends on two kinds of quantities. First, there are the individual sieving

coefficients for each of the three layers of the capillary wall: em for the endothelial fenestrae, b,,

for the GBM, and 8ep for the epithelial filtration slits. As used here, ei is the concentration at the

downstream edge of layer i divided by that at the upstream edge. These are "internal" sieving

coefficients in the sense that the upstream and downstream concentrations are evaluated just inside

the layer under consideration. As exemplified by Eq. [3-4], these sieving coefficients are dynamic

quantities that depend on filtrate velocity, as well as on the respective diffusive and convective

hindrance factors and thicknesses of the layers. Second, there are equilibrium partition coefficients

that describe the step changes in concentration that occur at the phase boundaries. At the boundary

between layer i and layerj, we denote the concentration in i divided by that in j as O. Of

importance, il4 depends not just on the structural characteristics of layers i andj, such as their pore
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sizes or fiber spacings, but also on the concentration of albumin (or other abundant proteins) in the

vicinity of the boundary. With these definitions, the overall sieving coefficient is given by

9 = 1en/p bm/en'ep/bmb/lepeen bnlPep [3-10]

where p and b denote plasma and Bowman's space, respectively. Thus, seven quantities are needed

to describe the concentration changes that occur across the three layers and at the four boundaries,

as one moves from plasma to Bowman's space. If the partition coefficients were not affected by

the local protein concentrations within the glomerular capillary wall, then their concentration ratios

would cancel (see below) and Eq. [3-10] would simplify to

9 = oenObnep [3-11]

as used previously (Edwards et al. 1999). Thus, it is the steric effect of proteins on tracer

partitioning that requires the four additional terms in the more general expression. In the absence of

protein effects, the partition coefficients obey relationships of the form 0,, = Oi,,. The

cancellation of terms in Eq. [3-10] follows from that and the fact that, without proteins, qb = 1.

Among the many possibilities that can be imagined, in which proteins might affect any or all

of the four partition coefficients in Eq. [3-10], we focus now on two of the more likely scenarios.

Both are motivated by the finding of Ryan and Karnovsky (1976) that albumin is almost completely

excluded from the GBM. Thus, the common aspect of the two scenarios is the assumption that

almost no protein reaches the downstream side of the GBM and the filtration slits, from which it

follows that Pep/b, =b/ ep•m = 1/Ob, where b,,, is the partition coefficient that would apply if

the GBM were in direct contact with Bowman's space (or simply water). Suppose now that

albumin passes freely through the endothelial fenestrae, and that the limiting step for it is entry into

the GBM. In other words, assume that the fenestrae act only as wide, water-filled channels. This
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assumption corresponds to 0e, = 0,,, = 1 and ,b,, = ' bn-2. Thus, for water-filled fenestrae, Eq.

[3-10] reduces to

e = Obrp ep [3-12]

The steric effect of albumin (and other retained proteins) would be to make 1,,~f ,, > 1.

Accordingly, in this scenario the effect of albumin on the overall sieving coefficient will closely

resemble its effect on isolated GBM, as already described.

Alternatively, one could assume that the endothelial glycocalyx is the limiting barrier, and

that only the upstream sides of the fenestrae are exposed to protein. For this situation, algebraic

manipulations like those above reduce Eq. [3-10] to

O = enOb tep [3-13]
(Pen/b

The first term is similar to Eq. [3-12], except that the partition coefficients are now those for the

fenestral glycocalyx. Because the steric effect of abundant proteins on tracer partitioning will be

directionally similar for any porous or fibrous material, we expect that 1ewd/, > 1. Thus, for

either of the situations represented by Eqs. [3-12] and [3-13], the effects of abundant proteins on

partitioning will be to increase the overall sieving coefficient of a tracer macromolecule.

In obtaining Eqs. [3-12] and [3-13] it was assumed that the limiting barrier for albumin and

other abundant proteins was upstream of the GBM. However, qualitatively similar trends are

predicted if the limiting barrier is at the level of the slit diaphragm. In other words, no matter what

the limiting barrier is for the protein, there will be a tendency for an abundant, poorly filtered protein

to augment the sieving coefficient of a tracer. Although the location of the protein barrier does not

influence the direction of the effect, it will determine its magnitude. If the effect is mediated by
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partitioning in the GBM, it can be estimated from our analysis of sieving data for isolated GBM. If

it is mediated by partitioning elsewhere (e.g., between plasma and glycocalyx), then the paucity of

information on material properties makes its magnitude more uncertain.

The likelihood that steric interactions with plasma proteins elevate tracer sieving coefficients

has an interesting implication for studies of human disease. That is, it suggests that the low plasma

protein concentrations characteristic of the nephrotic syndrome will tend to mask some of the

glomerular injury revealed by fractional clearance measurements with tracer molecules such as

Ficoll. Although the Ficoll (or dextran) sieving coefficients in nephrotic subjects might still be

much higher than in healthy individuals, they will not be as high as if plasma proteins levels were

normal. In this sense, the true extent of the injury will be partly concealed. Likewise, variations in

perfusate protein concentration in studies using the isolated perfused kidney (IPK) (Ohlson et al.

2000, 2001; Osicka et al. 1996) complicate efforts to assess the intrinsic size-selectivity of the

barrier. The steric effects we have described would cause apparent (calculated) pore radii to

increase with increasing protein concentration, even without any structural change in the capillary

wall.

3.4.5 Other effects of proteins. This paper has focused mainly on the idea that steric

interactions with plasma proteins tend to elevate the glomerular sieving coefficients of tracers. Such

steric effects are entirely physical and non-specific, and will be present to varying degrees with any

globular protein and any ultrafiltration membrane. Several other effects of proteins on

microvascular permeability have been reported, some of them quite specific. The glycoprotein

orosomucoid has been shown to influence the permeability of both glomerular and peripheral

capillaries by maintaining charge-selectivity (Curry et al. 1989; Haraldsson and Rippe 1987;

Haraldsson et al. 1992; Johnsson and Haraldsson 1993). Studies using frog mesenteric capillaries

have revealed effects of albumin itself: omitting albumin from perfusates increased the hydraulic

permeability and decreased the reflection coefficients for Ficoll (Mason et al. 1977; Michel 1988;

Michel et al. 1985). Specificity was demonstrated by showing that the effect was abolished by

chemical modification of arginine residues of albumin (Michel et al. 1985). It was hypothesized
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that albumin (and also ferritin) might influence capillary permeability by ordering the fibers of the

glycocalyx (Michel 1988). Lowered protein concentrations have been shown to increase the

permeability of capillaries in a variety of other vascular beds (Mann 1981; McDonagh 1983; Rippe

and Folkow 1977; Watson 1983). In contrast, micropuncture studies in rats have shown that

decreases in plasma protein concentration reduce the glomerular ultrafiltration coefficient, the

product of hydraulic permeability and surface area for filtration (Baylis et al. 1977; Tucker and

Blantz 1981). The underlying mechanism for this remains unknown, but the observation that BSA

did not affect the hydraulic permeability of isolated GBM (Bolton et al. 1998) suggests involvement

of endothelial cells and/or epithelial foot processes, rather than the GBM.

3.5 Conclusions

The theory presented here suggests that BSA (or other abundant proteins) can markedly

increase the sieving coefficients of tracer macromolecules in the GBM, largely as a consequence of

steric interactions that favor tracer partitioning into the membrane. The predicted effect of these

steric interactions, combined with the osmotic effect of BSA, is large enough to account for the

marked elevation of Ficoll sieving coefficients in isolated GBM when BSA is present, reported

previously (Bolton et al. 1998). The magnitude of this protein effect is predicted to be less

dependent on protein size and shape than it is on the total concentration of protein. It is a factor that

should be taken into account in efforts to characterize the intrinsic barrier properties of the

glomerular capillary wall.
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Chapter 4

Effects of Protein Concentration on the Partitioning of Macromolecular

Tracers in Agarose Hydrogels

4.1 Abstract

Measurements of the equilibrium partition coefficients of the protein bovine serum albumin

(BSA) and four narrow fractions of Ficoll, a copolymer of sucrose and epichlorohydrin, were made

in agarose hydrogels. The measurements were made by equilibrating solutions of known

concentration of each macromolecule with a known volume of gel and then applying a material

balance. The partition coefficient of each molecule was measured under dilute conditions and under

conditions where BSA was present at concentrated levels. All measurements were made for two

different agarose solid volume fractions. As expected, the partition coefficients decreased with

increasing solid volume fraction and with increasing molecular size. Increasing BSA concentration

caused an increase in the partitioning of BSA itself and that of all four sizes of Ficoll. This effect

was most significant for the largest molecules. A subset of the measurements repeated at a higher

ionic strength demonstrated that any electrostatic interactions between the solutes and the agarose

and among solutes were well-screened and that steric interactions were the dominant intermolecular

force at the standard ionic strength. The experimental results were compared with predictions

107



generated from a previously developed excluded volume theory for the partitioning of rigid,

spheroidal macromolecules in fibrous media. Using that theory, agarose was treated as a

population of randomly oriented uniform cylindrical fibers. BSA was modeled as a prolate

spheroid, and Ficoll was treated as a sphere. Comparisons of the theoretical predictions, which are

valid for steric interactions only, with the experimental data produced generally good agreement.

The experimental results compared best with the theory for the highest solid volume fractions of

agarose.

4.2 Introduction

The equilibrium distribution of a macromolecule i between a solution and a membrane or

other porous phase is described by its partition coefficient,

-i = Ci / C i  [4-1]

where Ci and C, are the concentrations of i in the porous phase and the adjacent solution,

respectively. The partition coefficient is an important determinant of the performance of membrane

separations such as ultrafiltration and chromatographic separations such as gel filtration

chromatography. The partitioning of macromolecules in certain biological tissues plays a key role

in the functioning of a variety of physiological processes in both health and disease. As a result of

the importance of solute partitioning in such a wide range of processes, there has been a great deal

of effort to elucidate the factors which govern solute partitioning in a variety of media.

Steric and electrostatic interactions between the partitioning solute and the fixed structures

of the membrane are important factors in determining the magnitude of the partition coefficient.

Theoretical results are available for the steric exclusion of neutral spheres from both random fiber

matrices (Ogston 1958) and pores (Pappenheimer et al. 1951). The effects of membrane-solute

electrostatic interactions have been investigated theoretically for spheres in random fiber matrices

108



(Johnson and Deen 1996). Solute-membrane electrostatic interactions for spheres (Smith and

Deen 1983) and random coil polymers (Lin and Deen 1990) have been studied for pores as well.

In addition to membrane-solute steric and electrostatic interactions, the concentration of the solute

itself can have an effect on Oi. This effect, although rarely incorporated into models of membrane

transport, can be quite significant for a number of systems of interest. The concentration effect has

been modeled using a variety of theoretical approaches and demonstrated in several experimental

settings. Almost universally, the results of these studies have shown that increasing the

concentration of a solute causes an increase in its partition coefficient. Concentration effects were

investigated for the partitioning of neutral spheres in random fiber matrices using density functional

theory (Fanti and Glandt 1990a) and Monte Carlo simulations (Fanti and Glandt 1990b). White

and Deen (2001) developed a theory to describe the effects of polymer concentration on the

partitioning of linear polymers in random fiber matrices. The effects of concentration on the

partitioning of neutral spheres in pores has been examined as well (Anderson and Brannon 1981;

Glandt 1981). A statistical mechanical approach developed by Buck et al. (2001) incorporates the

effects of membrane-solute and solute-solute electrostatic interactions in modeling the effect of

concentration on the partitioning of spheres in random fiber arrays. Electrostatic effects on the

partitioning of concentrated solutions of spherical molecules in pores have also been analyzed

(Anderson and Brannon 1981; Mitchell and Deen 1984).

Perhaps the earliest experimental demonstration of the concentration effect was performed

by Brannon and Anderson (1982) who showed that the partition coefficients of the proteins BSA

and a-lactalbumin in controlled pore glass were each increasing functions of their respective bulk

concentrations. White and Deen (2001) found that the partitioning of dextrans in agarose could be

augmented by increasing the concentration of dextran in the bulk. Buck et al. (2001) measured

concentration effects on BSA and a-lactalbumin partitioning in agarose gels at two different ionic

strengths. While they found little effect of concentration at the higher ionic strength, there was a

pronounced effect at the lower ionic strength. For BSA, the increased concentration caused an

increase in BSA partitioning, whereas increases in a-lactalbumin concentration caused a decrease in
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the partitioning of that molecule. The latter finding was apparently the result of attractive solute-

solute interactions between a-lactalbumin molecules.

In order to understand the basis for the physical effect of concentraiton, let us first note that

the partition coefficient of a given solute can be thought of as the probability of being able to

randomly place a single test solute molecule in the membrane phase without it intersecting other

objects relative to the same probability in the adjacent bulk solution (see Section 2.3.1). Under

dilute conditions, where solute molecules essentially interact only with the membrane fibers and not

with eachother, and first considering the case where solutes only experience steric interactions with

other objects, Oi is less than unity due to the steric exclusion of solute molecules from the

membrane phase due to the presence of the fibers. Because Oiis less than one, the addition of more

solute particles causes a larger increase in the volume excluded to a test solute in the bulk than in

the membrane phase. This disproportionate increase in the bulk excluded volume tends to increase

0r. In addition to these steric solute-solute effects, electrostatic interactions among similarly

charged solutes will further magnify the effect of concentration.

For the most part, work on concentration effects on partitioning has been limited to

spherical solutes of uniform size. In many situations, however, there may be important interactions

among solutes which are not alike. The fractionation of blood plasma via ultrafiltration, for

example, involves at least two classes of abundant proteins, serum albumin and immunoglobulins

(Saksena and Zydney 1997). A second example involves the use of polydisperse macromolecular

tracers to characterize the macromolecular permeability properties of kidney capillaries in vivo

(Blouch et al. 1997) and in vitro (Bolton et al. 1998). In those experiments tracers of different

sizes are accompanied by at least one abundant protein. Many other such situations can be

imagined which involve mixtures of unlike particles, at least one of which is present at significant

concentrations. While these experimental situations have been used before where concentration

effects among unlike solutes presumably existed, the effect of a concentrated solute on the

partitioning of a dissimilar molecule has never been directly measured by experiment. In addition

to the effects of solute heterogeneity, many membrane materials may be composed of multiple types
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of fibers, as opposed to just a single size. To our knowledge, the only theoretical treatment of

solute partitioning where the effects of solute and fiber heterogeneity are included is the excluded

volume theory from Chapter 2. In that theory, which is valid for steric interactions only, partition

coefficients are calculated based on purely geometric arguments by summing up the volume

excluded to a test solute in the membrane and in the bulk because of the presence of fibers and

other solutes.

We measured the partition coefficients of BSA and four narrow fractions of Ficoll in

agarose gels under dilute conditions and under conditions where BSA was present at concentrated

levels. Measurements were made for two different solid volume fractions of agarose. The partition

coefficients of both BSA and Ficoll increased with increased levels of BSA. Experimental results

generally agreed very well with the predictions from the model, the agreement between the two

being best for the highest solid volume fraction of agarose.

4.3 Methods

4.3.1 Materials. Agarose type VI (high gelling temperature), bovine serum albumin

(fraction V), 5-(4,6-dichlorotriazin-2-yl]amino)fluorescein (DTAF), and 2,000 kDa fluorescein

isothiocyanate dextran were purchased from Sigma (St. Louis, MO) and used without further

purification. The BSA product chosen (Sigma catalog number A-2153) was the fraction V powder

prepared via a modification of the Cohn method (Cohn et al., 1946). According to the

manufacturer, this product has a minimum purity of 96% as measured by gel electrophoresis. All

lots used in these experiments were at least 99% pure, according to the specification sheets on the

individual lots obtained from the vendor. BSA solutions were prepared in PBS at concentrations

ranging from 0.4 to 16 g/dL (mass of BSA to volume of buffer). The buffer used here and

throughout, unless otherwise noted, was a 0.1 M PBS at pH 7.4. Trace sodium azide was used in

all buffers as a bactericide. Four narrow fractions of Ficoll with Stokes radii r, in the range of - 30

to 60 A were obtained from Amersham-Pharmacia (Uppsala, Sweden) by special order. The Ficolls
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were labeled using DTAF following the method of DeBelder and Grannath (1973). After the

labelling reaction had been carried out, the Ficoll solutions were eluted through disposable 10 mL

EconoPac 10DG desalting columns (Bio-Rad, Hercules, CA) with 1.0 M NaCl to remove bulk

quantities of the free DTAF. The resulting mixture was then ultrafiltered with distilled, deionized

water in a 200 mL ultrafiltration cell (model 8200, Amicon, Danvers, MA) using a 5 kDa molecular

weight cutoff regenerated cellulose membrane (Millipore, Bedford, MA) in order to remove the

remaining free DTAF. Successive ultrafiltrations were repeated until there was no detectable free

fluorescein, as determined by size-exclusion chromatography. Ficoll samples were then freeze-

dried and reserved at -20 'C until use. Ficoll solutions were prepared in PBS and used at a

concentration of 0.5 mg/mL in all experiments. The molecular weights and r, of each of the

macromolecules used are summarized in Table 4-1.

4.3.2 Partition coefficient measurements. Agarose gels were prepared by mixing dry

agarose powder with buffer at room temperature to create a finely dispersed slurry in glass vials

with plastic screw tops. A correlation from Johnson et al. (1995) was used to create gels with a

desired 0 based on initial solid concentration in the slurry. [Henceforth, we shall refer to the value

of 0 as a percent for a given gel, so that a gel with 0 = 0.04 shall be referred to as a "4%" gel.]

The vials containing the agarose slurry were placed in an oven at 90 'C to dissolve the powder.

While heated in the oven, the vials were periodically shaken and rotated to create a homogeneous

gel mixture. The gels were kept in the oven for four to six hours (longer times for higher mass

concentrations of agarose) until all powder had dissolved and the gel was free of bubbles.

Approximately 30 mL of gel was then poured into a disposable polystyrene petri dish. The dish

was rotated to distribute the gel evenly along the surface of the dish, and a lid was placed on top of

the dish and weighted down to minimize water vapor loss from the hot, solidifying gel. Some water

vapor accumulated on the inside of the lid during gel solidification. By collecting and weighing this

accumulated liquid for several samples, it was determined that this resulted in a negligible loss of

water from the actual gel (i.e., the loss of water did not cause a significant change in the nominal

solid volume fraction of the gel). The gels were allowed to solidify at room temperature for at least
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solute

Ficoll, fraction 1

Ficoll, fraction 2

Ficoll, fraction 3

Ficoll, fraction 4

BSA

MW (Da)

21,300

37,400

60,700

93,200

68,000

Stokes radius, r, (A)

29.7

37.7

46.4

58.7

36.0

Table 4-1: Molecular weights (MW) and Stokes radii (rs) of test macromolecules.
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3 hours after pouring and then either used in an experiment immediately or stored at 7 'C until later

use.

To begin an experiment, the agarose gel was placed on a clear glass plate with a paper

backing on which a 3 mm x 3 mm grid was printed. Using a clean razor blade and the grid as a

guide, the gel was cut into pieces which were approximately 3 mm x 3 mm cross-sectionally.

Measurements of several gel samples showed that the gels could be cast with a fairly uniform

height. The maximum height of the gel measured was 2.3 mm, so that the largest gel "cube"

contained in any sample would have dimensions of 3 x 3 x 2.3 mm3. The method used here for the

preparation of the agarose gel cubes is similar to that used by Buck et al. (2001). A single

partitioning experiment consisted of adding a known mass of gel and volume of equilibrating

solution to an empty 20 mL glass vial; roughly equivalent volumes of gel and equilibrating solution

(-5 mL for each) were used for each experiment. Four samples were prepared from each gel

casting. For statistical analysis, the number of experiments run for a given condition n was taken as

the number of vials prepared. The vials were stored in a dark refrigerator at 7 'C for sufficient time

to ensure diffusional equilibration of the samples. OBSA was measured using BSA solutions

prepared at concentrations of 0.4, 4.0, 8.0, 12.0, and 16.0 g/dL. 0i was measured for each of the

four narrow fractions using Ficoll solutions prepared at a concentration of 0.5 mg/mL both with

and without 8 g/dL BSA added to the buffer.

Once the samples had equilibrated, the bulk solution was separated from the gel by

decanting the solution into a separate vial. i was then calculated by applying a material balance of

the form,

= I j 0 [4-2]
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where V, is the volume of the equilibrating solution, Vg is the volume of the gel, Ci(O) is the

concentration of i at the beginning of the equilibration, and Ci(oo) is the concentration of i at

equilibrium. Gel masses were converted to volumes by dividing by gel densities p which were

measured for the all combinations of 0 and buffer ionic strength used. p was measured by casting

gels between two glass plates separated by a plexiglass spacer. After the gels had solidified,

circular plugs of known radius were cut from the gel sheet using a metal punch and then weighed.

The height of the plugs, which was very uniform because the gels were cast between plates, was

measured with a micrometer by placing the gel plugs between two glass microscope slides. The

measured p values for the three different gel preparations used in these experiments are listed in

Table 4-2.

Cs, was assayed by measuring the absorbance of the equilibrated bulk solution and

comparing it to a set of standards prepared via the dilution of the initial stock; absorbance

measurements were made at 280 nm using a BioSpec 1601 spectrophotometer (Shimadzu,

Columbia, MD). Ci for the four Ficolls was assayed by measuring the fluorescence of the

equilibrated bulk solution and comparing it to a set of standards prepared via the dilution of the

initial stock; fluorescence measurements were made with an excitation wavelength of 488 nm and a

detection wavelength of 515 nm using an RF-551 spectrofluorometric analyzer (Shimadzu). For

samples where both Ficoll and BSA were present, the background absorbance of the dilute Ficoll at

280 nm was negligible so that CBs, could be reliably measured without interference from the Ficoll.

Similarly, the background fluorescence of BSA was low enough that it could be neglected in

assaying Ficoll concentrations.

The use of the material balance method employed here requires that the samples be

completely equilibrated by the time the bathing solution is separated from the gel. In order to

determine the time required for diffusional equilibration to occur, a set of measurements of the

apparent partition coefficient as a function of contact time with the equilibrating solution were taken.

An extensive set of experiments including some 10 discrete time points was performed for BSA

and 4% agarose. Measurements were taken at four different times for BSA and 6% agarose. The
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buffer ionic strength (M)

0.1

1.0

0.1

p (g/cm3)

1.084 ± 0.007

1.142 ± 0.012

1.095 ± 0.008

Table 4-2: Gel densities (p) for all combinations of gel solid volume fraction (0) and buffer used.

Values are shown as mean ± s.d., with n = 16 for all conditions.
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results of those experiments are plotted in Fig. 4-1. Based on the data for BSA equilibration with 4

and 6% gels, we chose equilibration times of 24 and 48 hr, respectively. A preliminary set of

experiments with Ficoll and 4% and 6% gels suggested minimum equilibration times of 48 and 72

hr, respectively. Although the smallest Ficolls should equilibrate approximately as quickly as BSA,

all Ficoll samples were equilibrated for the same amount of time for a given 4. In addition to the

two experimental curves for BSA shown in Fig. 4-1, two theoretical curves are shown for the

apparent cQBSA in 4% and 6% agarose gels. These curves were generated by solving the solute

concentration profiles within an agarose cube of dimensions 3 x 3 x 2.3 mm3 as a function of time

Ci(x,y,z,t) by employing a finite Fourier transform (FFT) method (Deen 1998), which is similar to

the method of separation of variables. In generating the solution for Ci(x,y,z,t) we assumed a

well-stirred bulk solution of infinite volume. Although the vials were not stirred continuously

during equilibration, the well-stirred approximation is not without some basis since the relevant

liquid and solid length scales are of the same order of magnitude and macromolecular diffusion

within the gel is slower than in the bulk. The assumption of an infinite solution volume simplifies

the solution greatly as it uncouples the solid and liquid phase concentration fields. The coupled

problem can be solved relatively easily for a one-dimensional case, however the coupled solution in

three dimensions is extremely computationally intensive. Comparisons between a coupled and

uncoupled solution for a one-dimensional solid, however, suggest that the uncoupled solution

should provide a more conservative estimate of equilibration times. The FFT solution was

generated by placing the origin of a Cartesian coordinate system at one corner of an agarose cube.

The lengths of the agarose prism in the x, y, and z directions were defined as a, b, and c,

respectively. The solution for Ci(x,y,z,t) is given by

64 ti2 t D
Ci(x,y,z,t)= OCi(0 1- -7 111 ' a sin nx- sin mCr sin 17- [4-3]

7r n=lm=l1=1 nml a b c
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Figure 4-1: Apparent BSA versus time for 4% and 6% agarose gels. Experimental results are

shown as mean ± s.e., with n = 4 for each point. Theoretical results were generated from the FFT

model for an agarose "cube" of dimensions 3 x 3 x 2.3 mm3 .
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where Di is the solute diffusivity within the gel, and c is

2 a 2a2 2.= n2 + m +2 1 [4-4]

Note that C,(0) is treated as a constant in the FFT calculations because of the assumption of an

infinite solution volume. Although not shown in the figure, theoretical equilibration curves were

generated for the 58.7 A Ficoll as well. Values of Di for BSA and Ficolls in agarose gels at 20 oC

measured by fluorescence recovery after photobleaching are available from the studies of Johnson

et al. (1996). These values were corrected to 7 'C and used in the FFT model. The values of DB,_

used for 4% and 6% gels were 2.20 x 10-7 cm 2/s and 1.40 x 10-7 cm2/s, respectively. The values of

D, for the 58.7 A Ficoll in 4% and 6% gels were 0.87 x 107 cm2/s and 0.58 x 10-7 cm2/s,

respectively. In making the calculations, 0, was set equal to the experimentally observed value at

each condition. This should not affect the computed approach to equilibrium as the characteristic

time for diffusion within a medium is influenced only by the macromolecular diffusivity in that

medium and the relevant length scales, not by the value of OI. In order to calculate the apparent (P

as a function of time from the FFT model, Ci(x,y,z,t) was averaged over the volume of an agarose

cube via numerical integration at discrete time points. The theoretical predictions for BSA

equilibration agree well with the data, despite the assumptions made in the theory. The equilibration

times rused in the experiments and the predictions from theory are reported in Table 4-3. The

theoretical values for rreported are those times when the predicted apparent 'P reached 99% of the

observed, equilibrated value.

In order to check for the influence of electrostatic interactions on the partitioning

measurements, a subset of the 4% agarose experiments were repeated using gels and solutions

prepared with a 1.0 M PBS at pH 7.4. Measurements were made with BSA at nominal BSA

concentrations of 0.4, 8.0 and 16.0 g/dL, and with the 46.4 AS Ficoll with and without 8 g/dL BSA.
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r, experiment (hr)

24

48

48

96

r, theory (hr)

12

20

31

47

Table 4-3: Equilibration times (r) used experimentally and determined theoretically for BSA and

58.7 A Ficoll with gel solid volume fractions (0) of 0.04 and 0.06.
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4.3.3 Other methodological considerations. 4.3.3.1 Agarose gel stability over time. After

a three-hour solidification at room temperature, gels were either used immediately or stored at 7 'C

for later use. In order to assess the time for which gels could be stored prior to use in an

experiment without drying out or changing in some other way, a series of dilute Oa measurements

was made with gels which were stored at 7 oC between one and seven days prior to use in an

experiment. The experiments were done using a CBsA(O) = 0.4 g/dL and 4% agarose gels, and all

samples were equilibrated for 24 hr. Measurements were taken for gels stored for 1, 3, 5, and 7

days, in addition to a data set taken using gel which was used immediately after a 3 hr solidification

at room temperature. The measured BSA as a function of gel storage time is plotted in Fig. 4-2.

The results suggest that gels can be stored for up to one week without any detectable change in

partitioning behavior. For all other experiments reported here, gels were used within four days of

casting.

4.3.3.2 Gel swelling. Some hydrogels, such as polyacrylamide, are known to swell or

shrink in solution. To determine if the volume of the agarose changed in solution, we measured the

change in thickness h of pieces of gel equilibrated with pure buffer orl2 g/dL BSA. Gels were cast

between glass plates to create a uniform thickness and then cut into rectangular strips. The initial

thickness hi of a gel strip was measured with a micrometer by placing it between glass microslides.

Single strips, each weighing approximately 1 g, were then equilibrated with 5 mL of solution. 4%

gels were equilibrated for 24 hr, and 6% gels for 48 hr. After equilibration, the gels were removed

from solution, blotted dry, and h was measured again between glass microslides. The fractional

change in thickness of the gel strips Ah/h i is reported for the various conditions in Table 4-4. The

largest Ah/h i was 1% for the 6% gel and 12 g/dL BSA. If gel cubes swell by 1% on all sides, the

gel volume would increase by 3%. Combined with the concamitant 3% reduction in solution

volume, this swelling would result in a 6% reduction in the calculated (P. This would be slightly

offset by a reduction in the actual 0 due to swelling. Since we we observed Ah/h i values •< 1%, we

concluded that it would be acceptable to calculate the equilibrated gel volume based on the initial

mass of gel.
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Figure 4-2: BSA partition coefficient (IBSA) measured in 4% gels using 0.4 g/dL BSA solutions

for gels which were used immediately after a three hr casting or which were first stored at 7 OC

between one and seven days. All samples were equilibrated for 24 hr. Data are shown as mean +

s.e., with n = 4 for all measurements.
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equilibrating solution

pure buffer

12 g/dL BSA

pure buffer

12 g/dL BSA

Ah/h i

0.0009 ± 0.0065

0.0037 ± 0.0112

0.0082 ± 0.0047

0.0108 ± 0.0069

Table 4-4: Fractional change in gel thickness (Ah/hi) for 4% and 6% agarose equilibrated with

pure buffer or 12 g/dL BSA. Values are shown as mean ± s.d., with n = 6 for all conditions.
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4.3.3.3 Background signals from gel. The use of the mass balance technique assumes that,

aside from the protein or Ficoll, there is no source of light absorbing or fluorescing material in the

equilibrating solution. To test this assumption, we equilibrated cubes of 4% and 6% agarose with

buffer alone and measured the absorbance of the equilibrated solution. 4% gels were equilibrated

for 24 hr, and 6% gels for 48 hr. Surprisingly, a significant background signal, -5% of the typical

absorption read in a partitioning experiment, was generated by the agarose when equilibrated with

buffer. The level of the background signal roughly doubled going from 4% to 6% gel, which is a

good indication that the agarose was the source of the signal. The background signal would only

have a significant effect on the calculation of BA for the dilute samples, for which no dilution is

necessary prior to protein assay. The most severe case would be that of dilute BSA and 6% gels,

where the background signal would lower the apparent partition coefficient by approximately 20%.

Prior to analysis, BSA samples at concentrations of 4 g/dL and higher are diluted by a factor

sufficiently high to guarantee that the background signal does not interfere with the measurement.

That the source of the background signal was in fact the agarose was further confirmed by casting

gels between glass plates instead of in the plastic dishes and by checking the absorbance of buffer

after contacting it with all other disposable materials used in the experiments. Short-term

equilibration studies on the order of 5 min generated equivalent levels of signal, suggesting that the

material generating the signal was present only on the surface of the gels. Additional studies

showed that samples of 4% agarose which were pre-soaked in excess buffer for 24 hr at 7 'C and

subsequently equilibrated with fresh buffer as in a partitioning experiment did not generate any

significant level of background signal. Experiments with 4% and 6% gels which were pre-soaked

in this way and then used in a dilute BSA experiment resulted in measured values of sA which

were higher than as measured previously without pre-soaking; in fact, they were within 6% of the

values calculated by correcting for the average background signal in a dilute experiment using

unwashed gels. This suggests that the diffusible material which generated the background signal

does not affect the partitioning of the test molecules within the system. A summary of these BSA

results for 4% and 6% washed and unwashed gels can be found in Table 4-5.
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,BSA' unwashed

0.648 ± 0.002

0.419 ± 0.002

Bs4, corrected

0.713 a 0.003

0.507 ± 0.003

,BSA' washed

0.675 ± 0.004

0.507 ± 0.008

Table 4-5: Comparisons of BSA partition coefficients (.BsA) in washed and unwashed agarose

gels with solid volume fractions (0) of 0.04 and 0.06. Data are also given for 'BSA values calculated

by correcting for the average background signal measured at each 4. Values are shown as mean +

s.e., with n = 32 for the unwashed and corrected 0 = 0.04 values, n = 36 for the unwashed and

corrected 0 = 0.06 values, and n = 4 for the washed 4 = 0.04 and 0.06 values.
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4.3.3.4 Stability of BSA absorbance as a function of time. Over time and under the

appropriate conditions, proteins can denature and/or aglomerate. In order to assess the extent to

which the BSA absorbance may change in solution during the course of an equilibration experiment

as a result of these or other phenomena, the absorbances of samples of 2 g/dL BSA prepared in

PBS were tracked over a seven day period. 5 mL aliquots of BSA were placed in 20 mL glass vials

and either (1) placed on an orbital shaker at room temperature, (2) stored at room temperature

unshaken, or (3) stored in a refrigerator at 7 oC. Four such samples were prepared for each

condition, and the absorbances of the samples and that of a freshly prepared BSA solution were

measured at 280 nm using a spectrophotometer at 48 hr intervals for up to seven days. The

absorbances of the samples relative to that of a freshly prepared solution are plotted for the three

conditions in Fig. 4-3. The data show that the relative absorbances of solutions stored at 25 oC,

whether shaken or not, increased steadily with time whereas that of solutions stored at 7 oC did not

change. After the second day, the protein solutions which were kept at 25 oC became increasingly

turbid by visual inspection; those kept at 7 oC remained clear.

4.3.3.5 BSA oligomerization. BSA is well-known to oligomerize in solution via the

formation of disulfide bonds formed between cysteine residues on adjacent BSA monomers (Peters

1985). In order to quantify the amounts of BSA oligomers which may have been present in our

samples and to look for the presence of impurities, several samples of BSA were chromatographed

on a size exclusion chromatography column packed with Superdex 200 prep grade gel (Amersham-

Pharmacia, Uppsala, Sweden). The eluent, 0.1 M PBS at pH 7.4, was supplied by a constant flow

rate, high precision pump (P-500, Amersham-Pharmacia) at a rate of 1.5 mL/min. The column was

calibrated using the four narrow fractions of Ficoll and a fluorescently labelled 2,000 kDa dextran.

Based on the Ficoll and dextran standards, r, correlated with elution time t as r, = exp(6.05 -

0.046t). When running samples of BSA, the column was run in-line with a spectrophotometer

(BioSpec 1601, Shimadzu) set to measure absorbance at 280 nm. Samples of 0.4 g/dL BSA were

prepared in PBS and chromatographed immediately. A smaller set of samples were stored at 7 "C

between 2 and 4 days prior to chromatography. A represntative BSA chromatogram is shown in
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Figure 4-3: Absorbance of 2 g/dL BSA stored between one and seven days relative to the

absorbance of a freshly prepared BSA solution. Samples were stored at 7 'C, 25 'C, or 25 'C on

an orbital shaker.

127

- -1- - 7 oC

- -0- - 25 oC

-- - 25 0C, shaken
- fresh

'-Y

I I I I I I I I... I I . J I I I

I I I

e( 0
N -,- -111'



Fig. 4-4. Each of the BSA samples had a large, secondary peak which eluted at an r,= 36 A,

preceded by a small leading peak at r, = 49 A. The r, of the second peak is in close agreement with

the rs = 49 A reported for dimeric by Squire et al. (1968). Low molecular weight impurities were

not detected in any sample. To quantify the mass fraction of the dimeric BSA present, we

numerically integrated the chromatograms, assigning the local minimum between the two peaks as

the cutoff between dimeric and monomeric BSA. Assuming that the absorbance of dimeric BSA is

twice that of monomeric BSA, the maximum dimer mass fraction found in any sample was 0.1.

This mass fraction of dimer is within the range of values cited previously (Peters 1985). Samples

stored for up to four days showed equivalent dimer levels.

4.3.4 Partitioning modeling. The excluded volume theory from Chapter 2 was used to

generate predictions for BSA and Ficoll partition coefficients in agarose. In that model, partition

coefficients are calculated by summing the volumes excluded to a solute in the membrane and bulk

phases due to the fixed structures of the membrane and other solute molecules which may be

present. Long-range forces among solutes and between the membrane and solutes are ignored,

limiting this method to media where steric interactions dominate and the effects of electric charge

are negligible. Although agarose is essentially uncharged, BSA is net negative at physiological pH.

Ficoll is uncharged, however the fluorescein conjugate may impart a slight degree of negative

charge to those molecules. As will be seen in the results section, the data from the experiments

performed at 1.0 M suggest that any electrostatic interactions were effectively screened, so that the

assumption of steric interactions only should be valid for the experimental conditions used here.

The application of the excluded volume models to generate predictions for the various Oi in

agarose requires the specification of a set of physical parameters for the solutes and the gel. While

BSA is well-represented hydrodynamically as a sphere of 36 A radius, its actual structure is more

cigar-shaped than spherical (Chapter 2). For this reason, BSA was treated as a prolate spheroid

with an axial ratio of 3.3 and major and minor semiaxes of 70 and 21 A. This model is most

consistent with its partial specific volume (Al-Malah et al. 1995), intrinsic viscosity (Tanford 1961),

and r, (Johnson et al. 1995; Lazzara et al. 2000). Ficoll is often used as an ideal tracer in

128



1.2

1

0.8

S0.6
0

CnO 0.4

0.2

(0
0 20 40 60 80 100

time (min)

Figure 4-4: Representative size exclusion chromatogram of BSA The second, larger peak

corresponds to an r,= 36 A, equivalent to the known r, of monomeric BSA. The smaller leading

peak corresponds to an r= 49 AO, which is close to a value of r,= 47 A for dimeric BSA cited by

Squire et al. (1968).
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sieving studies because its actual structure is very nearly spherical (Bohrer et al. 1984; Davidson

and Deen 1988). Accordingly, the Ficolls were treated as spheres with radii equal to their respective

Stokes radii. There is considerable variation in previously reported values of agarose fiber radius r.

Since the predicted Ok is sensitive to the value of the fiber radius, rf was estimated by fitting the

model to the dilute partitioning data shown in Figs. 4-7 and 4-8. Fits were performed by assuming

a uniform population of fibers and setting X, = X2 = 0 in Eq. [4-5] and [4-6]. The best-fit values

for 4 and 6% gels were 16.0 and 16.8 A, respectively. Thus, model results are based upon an

agarose fiber radius of 16.4 A. The natural input parameter for modeling solute concentration

effects using the excluded volume theory is the bulk solute volume fraction X,, rather than the

concentration. For the purpose of comparing the experimental results with those from theory,

calculations of Zi were based on the known molecular weights and sizes of each solute.

The model generates a coupled set of nonlinear algebraic equations for the partition

coefficients, one for each solute present. A good example of the calculations made here is for the

case of a two-solute system, consisting of BSA and Ficoll, partitioning into agarose. In the

equations which follow, the solute indices 1 and 2 refer to Ficoll and BSA, respectively; there is a

single index 1 for the fibers present in agarose. Using the notation from Chapter 2, the expressions

for the partition coefficients are

1 = exp[-Olal (s, f) + a 1 (s,s)(l - •1)X1 + a 12 (s, p)(l - • 2 )X2] [4-5]

0 2 = exp[-Oa 2 (P, f) + a 2 1(p,s)(1 - 1) + a 22 (p, p)(1 - 2)2] [4-6]

The quantities ao(x,y) are dimensionless geometric parameters that describe the interaction of a test

solute i of shape x with a set of objects j of shape y (s = sphere, p = prolate spheroid, f = fiber). For

example, a1,,(s,s) describes the steric interaction between two spheres of type 1. For spheres of

radius ri and rj, the excluded volume parameter is
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3
ai (s,s)= 1 + ri [4-7]r.

Expressions for the remaining ait(x,y) parameters can be found in Chapter 2. Once those

parameters were specified, Eqs. [4-5] and [4-6] were solved using Newton-Raphson iteration with

the dilute solution values for the partition coefficients as initial guesses. Most of the other systems

considered here may be viewed as special cases of Eqs. [4-5] and [4-6], obtained by setting certain

values equal to zero. The dilute solution values of the partition coefficients were found by setting Xj

= 0 for all j. Results for BSA alone were found by dropping Eq. [4-5] and setting X1 = 0. A more

complex set of equations, incorporating a third solute, was used to model the effect of BSA dimer

on BSA and Ficoll partitioning. Those calculations, where the dimer was treated as a sphere with a

radius of 47 A, suggested that the dimer would have a very small effect on the partitioning of BSA

and Ficoll in agarose of either 4. For that reason, BSA was treated as pure monomer for all model

predictions presented hereafter. For details on the general application of the excluded volume

theory to arbitrarily complex systems, see the complete model development section in Chapter 2.

4.4 Results

Experimental and theoretical results for BSA as a function of ZBSA in 4% agarose are shown

in Fig. 4-5. The most dilute data shown (,BsA = 0.003) are the results from the washed gel

experiment. All other data were obtained using gels prepared as usual. As expected, B

increased with increasing XBSA, the most concentrated result being 30% higher than the value

measured under dilute conditions. The model does a fairly good job of predicting increases in oBSA

with increasing XBSA, though there is an increasing disparity between model results and experimental

data for increasing XZSA. On average, the theory tended to underpredict the effect of BSA

concentration in 4% agarose gels by 6%. As will be shown, the ability of the model to predict

experimentally observed increases in BSA was better for 6% gels.
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Figure 4-5: Comparison of experimental and theoretical results for BSA partition coefficient (QBsA)

versus bulk volume fraction of BSA (XBsA) in 4% agarose gels. The most dilute data point is taken

from the experiments using a prewashed gel (n = 4). For all other points, n = 8, except the most

concentrated point for which n = 12. BSA, and XBA, values are shown as mean ± s.e.
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Experimental and theoretical results for BSA partitioning in 6% gels are shown in Fig. 4-6.

Again, (BA increased with increasing XBSA . For the 6% gels, the agreement between experiment and

theory was improved relative to 4% gels. Here, the model predictions agree closely with the

experimental data over the entire range of X~BA. There was a very slight tendency of the theory to

overestimate the experimental data, although the agreement between the two is remarkably good.

On average, the model overpredicted the experimental data by 3%. The data contained in Figs. 4-5

and 4-6 can also be found listed in Tables 4-6 and 4-7, respectively.

Results for Ficoll partitioning in 4% agarose are shown in Fig. 4-7. As expected, the

measured Pi for the narrow Ficoll fractions decreased with increasing rs. The addition of 8 g/dL

BSA to the equilibrating solution caused a statistically significant increase in the partitioning of all

Ficolls. The greatest augmentation was observed for the 58.7 A Ficoll, where BSA caused a 40%

increase in the partitioning of that tracer. The good fit of the theory to the dilute data, which is

expected since rf was chosen by fitting the model to this data, indicates the validity of the random

fiber matrix model for agarose gels. While predicting the correct order of magnitude of the

experimentally observed increase in Ficoll partitioning, the theory tended to underestimate the

observed increase by an average of 7%.

Results for Ficoll partitioning in 6% agarose are shown in Fig. 4-8. Again, as expected,

the measured Pi for the narrow Ficoll fractions decreased with increasing rs. As with 4% gels, the

addition of 8 g/dL BSA caused a statistically significant increase in Ficoll partitioning at every rs.

Again, the greatest augmentation in Ficoll partitioning was observed for the 58.7 A fraction, where

BSA caused a 67% increase in the partitioning of that tracer. As with BSA and 6% gel, there was

excellent agreement between both the dilute Ficoll measurements and those taken with 8 g/dL BSA

in the initial equilibrating solution. The Ficoll data shown in Figs. 4-7 and 4-8 are listed in Tables

4-8 and 4-9, respectively.

Results from the 1.0 M BSA and Ficoll partitioning experiments in 4% are shown in Table

4-10. The close agreement between thek, values for BSA and Ficoll at the two ionic strengths for

the most dilute solutions, where solute-agarose interactions predominate, suggests electrostatic
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Figure 4-6: Comparison of experimental and theoretical results for BSA partition coefficient (OIBSA)

versus bulk volume fraction of BSA (XBsA) in 6% agarose gels. The most dilute data point is taken

from the experiments using a prewashed gel (n = 4). For all other points, n = 8. SA and ,SA

values are shown as mean ± s.e.
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Figure 4-7: Comparison of experimental and theoretical results for partition coefficients (Qi) of

Ficolls in 4% agarose. Values are shown as mean ± s.e., with n = 8 for all Ficoll data, n = 16 for

BSA points from Ficoll experiments, and n = 8 for BSA points from experiments with BSA alone.
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Figure 4-8: Comparison of experimental and theoretical results for partition coefficients (0I) of

Ficolls in 6% agarose. Values are shown as mean ±t s.e., with n = 8 for all Ficoll data, n = 16 for

BSA points from Ficoll experiments, and n = 8 for BSA points from experiments with BSA alone.
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CRsA(0) (g/dL)

0.4

4

8

12

16

XBSA

0.003 ± 0.00004

0.026 _ 0.0004

0.047 _ 0.0006

0.066 ± 0.0010

0.082 ± 0.0007

'p
BSA

0.675 ± 0.004

0.741 ± 0.010

0.801 ± 0.007

0.856 ± 0.013

0.878 ± 0.011

Table 4-6: BSA partition coefficients (PBsA) in 4% agarose for nominal BSA concentrations

(CBsA(O)) from 0.4 to 16.0 g/dL. Values of BSA volume fraction (XBsA) and -BSA are shown as mean

± s.e.
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CBsA(0) (g/dL)

0.4

4

8

12

16

XBSA

0.003 _ 0.00004

0.028 a 0.0003

0.051 a 0.0004

0.073 ± 0.0010

0.089 ± 0.0006

'p
BSA

0.507 ± 0.008

0.577 ± 0.011

0.630 ± 0.012

0.664 ± 0.017

0.713 ± 0.0006

Table 4-7: BSA partition coefficients (OBsA) in 6% agarose for nominal BSA concentrations

(CBsA(O)) from 0.4 to 16.0 g/dL. Values of BSA volume fraction (lBSA) and 'BSA are shown as

mean ± s.e.
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Pi , Ficoll only

0.712 ± 0.014

0.655 ± 0.007

0.564 ± 0.018

0.459 ± 0.034

,•, with 8 g/dL BSA

0.859 ± 0.010

0.795 ± 0.006

0.725 ± 0.007

0.647 ± 0.005

Table 4-8: Ficoll partition coefficients (0i) in 4% agarose for samples with dilute Ficoll only and

with 8 g/dL BSA. Values are shown as mean ± s.e., with n =8 for all conditions.
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P, Ficoll only

0.593 ± 0.007

0.509 ± 0.009

0.437 ± 0.015

0.270 ± 0.013

0,, with 8 g/dL BSA

0.732 ± 0.004

0.656 ± 0.006

0.551 ± 0.008

0.451 ± 0.007

Table 4-9: Ficoll partition coefficients (i) in 6% agarose for samples with dilute Ficoll only and

with 8 g/dL BSA. Values are shown as mean ± s.e., with n =8 for all conditions.
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I , 0.1 M

0.648 _ 0.002

0.801 ± 0.0006

0.878 ± 0.011

Ficoll, 46.4 A 0.05 0.564 ± 0.018

( k, 1.0 M

0.645 + 0.004

0.795 + 0.0002

0.844 ± 0.011

0.548 ± 0.005

Ficoll, 46.4 A 0.05 0.725 ± 0.007 8 0.742 ± 0.009 4
with 8 g/dL BSA

Table 4-10: Comparison of BSA and Ficoll partition coefficients (0) in 4% agarose at 0.1 and

1.0 M. Values are shown as mean ± s.e.

141

solute i

BSA

BSA

BSA

C,(0)

0.4

8.0

16.0



interactions between the test solutes and agarose do not influence the measurements. At

intermediate values of CBs there is virtually no effect of electrostatic interactions on the value of

'PS, while there may be a very slight effect for the most concentrated case of CBs(0) = 16 g/dL.

The difference between the measurements at that concentration was less than 5%, however, and the

effect BSA-BSA electrostatic interactions was essentially negligible over the entire range of CBsA.

Furthermore, the data for Ficoll partitioning at 1.0 M with 8 g/dL BSA demonstrate the absence of

significant electrostatic interactions between BSA and Ficoll at 0.1 M.

Shown also in Figs. 4-7 and 4-8 are the BsA, values (r = 36 A) measured for the Ficoll

samples which contained 8 g/dL BSA. The BSA partitioning data for CBsA(O) = 0.4 and 8 g/dL

shown previously in Figs. 4-5 and 4-6 are also included. For both the dilute and concentrated

cases, the measured OBS values fall in line with the Ficoll curves, suggesting that the difference in

shape between BSA and Ficoll is not a significant determinant of solute partitioning, at least for the

systems used here. This small dependence on solute shape is captured by the excluded volume

theory. For example, for 4% gel XBs = 0.05, the theory predicts a BSA = 0.750 and a Oi for a 36 A
sphere of 0.761. Note also that the close agreement between the BSA values at 8 g/dL for

experiments both with and without Ficoll confirms our expectation that the background absorbance

of Ficoll had a negligible effect on the measured value of SA"

4.5 Discussion

While the effect of solute concentration on macromolecular partitioning has been previously

demonstrated experimentally for systems containing one type of solute, the effect of the

concentration of one solute on the partitioning of a dissimilar macromolecule has not previously

been shown. Here, in addition to the effect of protein concentration on protein partitioning, we have

demonstrated that elevated levels of protein augment the partitioning of dilute tracers which may

also be present in solution. The magnitude of the effect is dependent on the size of the tracer and is

greatest for the largest tracer size. In addition to the novelty of the experimental findings, this work

also demonstrates the applicability of the excluded volume model developed by Lazzara et al.
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(2000) for multi-solute partitioning in fibrous media. That theory, which incorporates effects of

solute concentration for spherical and spheroidal solutes as well as effects of fiber heterogeneity,

produced predictions which agreed remarkably well with the experimental data. The agreement was

best for the largest value of 0.

Experimentally, relatively little work has been done to demonstrate the effect of solute

concentration on equilibrium partitioning, and until now work has only been done for single-solute

systems. One of the earliest demonstrations of the effect was performed by Brannon and Anderson

(1982) who showed that the partition coefficients of the proteins BSA and a-lactalbumin in

controlled pore glass beads were both increasing functions of their respective bulk concentrations.

More recent work by White and Deen (2001) demonstrated an increase in dextran partitioning in

agarose gels with increasing dextran concentration. The closest set of experiments to those

presented here is contained in a recent paper by Buck et al. (2001) where the partition coefficients

of BSA and a-lactalbumin were measured as a function of their respective concentrations in

agarose hydrogels with solid volume fractions in the range of 1 to 5%. The experiments were

carried out in both 0.15 and 0.01 M KCI to investigate the effects of electrostatic interactions in the

system. In addition to the experimental results presented in that paper, Buck et al. (2001) also

developed a statistical mechanical model for the partitioning of spherical solutes in random fiber

matrices. That model included first-order effects of concentration on solute partitioning as well as

effects of charge interactions among solutes and between solutes and membrane fibers. They chose

to present their results, both experimental and theoretical, in terms of a virial expansion for solute

partitioning of the form

i = Oi (0) + aXi [4-8]

where Pi(°) is the value of the solute partition coefficient at infinite dilution and a is a parameter

describing first order concentration effects on solute partitioning. A comparison between the
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experimental and theoretical results for BSA partitioning from the work by Buck et al. (2001) and

the present work is presented in Table 4-11. In order to make the closet possible comparisons with

the results of Buck et al. (2001), we also reported values of 1sA•(0 and a for the present results.

For the experiments, we were instrumentally restricted to a lower limit of CBs(O) = 0.4 g/dL. Thus,

we computed experimental values of PBSA~0~ for 4 and 6% agarose by performing a linear data fit to

the first three points in Figs. 4-5 and 4-6. Experimental values of a were generated from the same

fits. Theoretical values of oBSA(0) can be readily generated from the model, whereas theoretical

values of a were generated via a linear data fit between OB values generated by the model at XBsA of

0 and 0.01.

Buck et al. (2001) were able to experimentally detect the influence of electrostatic

interactions on both BSA-agarose and BSA-BSA interactions. In 5% gels, they found that BsA~$ ,

decreased with decreasing ionic strength. This trend is predicted by their theory, but significantly

underestimated. In general, however, their experimental and theoretical values of BSA
°(0) agree well.

What is more relevant to our own work is the extreme difference in the effect of solute

concentration they found between 0.01 and 0.15 M ionic strengths. While BSA concentration had

very little effect on solute partitioning at 0.15 M, an effect was clearly present at 0.01 M where

BSA-BSA repulsive interactions were apparently magnified. Again, this trend was captured by their

theory, but significantly underestimated. Looking at the present results, one notices a favorable

comparison between the experimentally and theoretically obtained values for both BA,°> and a.

The extreme discrepancy between the values of a, both theoretical and experimental, found by Buck

et al. (2001) and those found in the present work is puzzling. From an electrostatics standpoint, the

Buck et al. (2001) experimental results at 0.15 M should be directly comparable to our own since

we found no significant change in OBS between 0.1 and 1.0 M. While our results suggest that

increases in BSA concentration have a significant effect on BSA partitioning under conditions

where steric interactions dominate, the results of Buck et al. (2001) indicate a very weak effect.

Experimentally, this disparity might be explained by differences in protocol. Perhaps the

most significant difference is that the experiments of Buck et al. (2001) were run at 25 'C in saline
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Buck et al. (2001),
0.15 M KCI

present results

0.04

0.05

0.04

0.06

o), experiment

0.58

0.46

0.67

0.50

0o), theory

0.62

0.55

0.65

0.52

a, experiment

0.38

0.49

2.86

2.57

Table 4-11: Comparison of experimental and theoretical infinite dilution partition coefficients

(4O)) and a values for BSA from Buck et al. (2001) and the present results.
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only, as opposed to buffered saline. Our own preliminary experiments suggested that the

absorbances of even buffered BSA solutions stored at 25 'C changed over the course of a few days,

whereas the absorbance of BSA in PBS stored at 7 'C did not. We also noticed by visual

inspection that BSA solutions stored at 25 'C became turbid after a few days. It is unlikely that

bacterial growth was responsible for this turbidity as sodium azide was used in all buffers as a

bactericide. Our observations with BSA stored at 25 oC may have been the result of protein

denaturation and/or agglomeration. This may have been a factor in the relatively large error bars

reported by Buck et al. (2001) for their 0.15 M KCI data. This stands in contrast to their data for

BSA partitioning at 0.01 M, however, where the error was much smaller and an effect of

concentration was very pronounced. An additional indication of differences in the experimental

methodology is their finding that their BSA samples did not equilibrate until 5 or 6 days after

beginning an experiment. BSA was the largest solute used in their experiments, and 5% the most

concentrated agarose gel. We found that 48 hr was more than sufficient to equilibrate BSA with

6% agarose. While their gels were poured to a height of 3 mm as opposed to the maximum of 2.3

mm for ours, the experiments were run at a higher temperature which will increase the diffusivity of

the BSA. The FFT model we created, which compared favorably with our own equilibration data,

suggests that 5% agarose cubes with dimensions of 3 x 3 x 3 mm3 should equilibrate with BSA

within 11 hr. For that calculation, we used a value of DBs = 3.051 x 10-7 cm2/s, which is the

average of the values reported previously, temperature-corrected to 25 oC, for BSA in 4 and 6%

gels.

A separate issue is the disparity between the values predicted for a by the theory of Buck et

al. (2001) and the excluded volume model from Chapter 2. Here the potential sources of the

difference between the two sets of results are less clear. While the excluded volume theory is fairly

simple to implement, the statistical mechanical approach used by Buck et al. (2001) is much more

complex, making a detailed comparison between the two theoretical approaches and their

implementation impractical. In Chapter 2, comparisons were made between the excluded volume

model predictions and those of two previously published theories which incorporated solute
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concentration effects for uniform, uncharged, spherical solutes. Comparisons were made with the

density functional theory results of Fanti and Glandt (1990a) for the case of infinitely thin fibers

over a range of fiber densities. Since the excluded volume theory can also be applied to membranes

composed of straight pores, the theory was also compared to theoretical results of Anderson and

Brannon (1981) who employed a statistical mechanics approach. In that case, comparisons were

made between the excluded volume theory and the predictions of Anderson and Brannon (1981)

through the second order term. For the cases where direct comparisons could be made between

excluded volume and these two other models, the excluded volume results were in quite good

agreement with the results from the other two theories. While this favorable comparison does not

necessarily guarantee the validity of the results presented in Chapter 2, it does lend them some

credence.

As is the case with protein partitioning in agarose, there is relatively little data on Ficoll

partitioning in agarose, or any other porous material for that matter. The only data available are

those of Laurent (1967) who measured the partitioning of narrow fractions of Ficoll in agarose gel

beads of various solid volume fractions by packing a column with the beads and eluting samples of

the Ficoll through the columns. This method for measuring partition coefficients is based on the

assumption that the macromolecule equilibrates almost instantaneously with the gel beads as it

flows through the column (Laurent and Killander 1964). This assumption should be valid for small

enough gel beads and slow enough flow rates. A comparison between our dilute Ficoll partitioning

data for both 4 and 6% agarose and that of Laurent (1967) is shown in Fig. 4-9. In general the data

compare well. Both sets seem to demonstrate a similar dependence of Oi on rs. The 4% data of

Laurent et al. (1967) fall slightly above our own, the data for 6% agarose agree almost exactly. This

favorable comparison lends further credence to our experimental methodology and results,

particularly those for Ficoll.
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Figure 4-9: Comparison of dilute Ficoll partition coefficients (0k) as a function of Stokes radius

(r) in 4 and 6% agarose with data obtained by Laurent et al. (1967) using a chromatography

method. The lines shown for the present, narrow fraction data are best fits to the four data points

obtained at each agarose solid volume fraction.
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4.6 Conclusions

We measured the partition coefficients of BSA and four narrow fractions of Ficoll in

agarose gels at two different solid volume fractions. The experiments were done under dilute

conditions and also with concentrated levels of BSA. The addition of concentrated BSA was found

to increase the partition coefficient of BSA itself as well as the partition coefficients of each of the

four Ficolls. This effect was most significant for the largest Ficoll. Comparisons were made

between the experimental data and predictions made using the excluded volume theory developed

in Chapter 2. In general, the predictions agreed well with the experimental data, the agreement being

best for the highest solid volume fraction of agarose used. To our knowledge, this is the first

experimental demonstration of an effect of solute concentration between dissimilar molecules. This

work also demonstrates the applicability of the excluded volume partitioning model for protein and

Ficoll partitioning in fibrous media such as agarose hydrogels.

149



Chapter 5

Summary and Future Work

5.1 Summary

The principal motivation for this work was the experimental observation by Bolton et al.

(1998) that physiological concentrations of BSA increased the sieving coefficients of the tracers

Ficoll and Ficoll sulfate across isolated GBM. The osmotic reduction in filtrate velocity caused

by the concentrated, mostly retained BSA will tend to increase tracer sieving coefficients, but

this effect alone explained only about one-third of the observed increase. It was suggested that

the majority of the increase was the result of a steric effect of the concentrated protein on the

partitioning of the dilute tracers. In order to test this hypothesis, we set out to investigate the

effect of solute concentration on solute partitioning and sieving for systems of interest through a

combined modeling and experimental effort. The specific objectives of this thesis work were:

(1) to develop a partitioning theory for mixtures of rigid, spheroidal macromolecules of arbitrary

concentration in porous and random-fiber media; (2) to extend the theoretical description of

macromolecular sieving across single-layered membranes and the intact glomerular capillary

wall to account for the presence of a second, abundant solute and reanalyze the isolated GBM

sieving data of Bolton et al. (1998); and (3) to experimentally demonstrate the effect of solute
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concentration for dissimilar solutes and to test the applicability of the newly developed

partitioning model for random-fiber media.

At the time this work was begun, the dependence of colloidal partition coefficients on

concentration had been demonstrated in a number of experimental and theoretical investigations.

For systems where steric interactions predominate, the general trend observed was that the solute

partition coefficient increased with increasing concentration (Anderson and Brannon 1981;

Brannon and Anderson 1982; Fanti and Glandt 1990). A variety of approaches, including

density functional theory and statistical mechanics approaches, had been used to model

concentration effects for uniform, uncharged, spherical solutes in both random fiber matrices and

straight pores (Anderson and Brannon 1981; Fanti and Glandt 1990). Prior to this work,

however, it was not possible to predict the effect of concentration of one solute on the

partitioning of a dissimilar solute. In many situations of interest, however, important interactions

may exist among unlike solutes, as in the sieving experiments of Bolton et al. (1998). To address

the multi-solute partitioning problem, we adopted an excluded volume approach, as described in

Chapter 2. In that formulation, which is valid for steric interactions only, partition coefficients

were computed by summing all volumes excluded to a solute molecule by virtue of its finite size,

the finite size of other solutes, and the presence of fixed obstacles (pore walls or fibers). As

shown in Chapter 2, results from the excluded volume theory reduce exactly to certain well-

known expressions for the partition coefficients of dilute solutions of spheres (Ogston 1958;

Pappenheimer et al. 1951). Results from the excluded volume theory were also found to be in

reasonable agreement with previous results for the partitioning of concentrated solutions of

uniform spheres (Anderson and Brannon 1981; Fanti and Glandt 1990). In addition to

facilitating calculations for multiple solute sizes and/or shapes, the simplicity of the excluded

volume formulation permits the incorporation of multiple fiber radii in models of fibrous media.

Overall, the theory suggests that the introduction of heterogeneities, whether as mixtures of

solute sizes or mixtures of fiber sizes, may cause partition coefficients to differ markedly from

those of uniform systems.
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Previous models of hindered transport through fibrous or porous media, and across the

intact glomerular capillary wall, were limited to dilute solutions (Bolton et al. 1998; Deen 1987;

Edwards et al. 1997; Edwards et al. 1999). In Chapter 3, we extended the sieving theory for

single-layered membranes to account for the presence of an abundant solute. The new feature of

that model was the distinction between the equilibrium partition coefficients at the upstream and

downstream surfaces of the membrane. This distinction is necessary because variations in the

local concentration of the solute itself, or of some other solute, can cause the partition

coefficients to differ from one another. Using the excluded volume method to model tracer

partitioning, we returned to the data of Bolton et al. (1998) to see if the combined predicted

effects of lowered filtrate velocity and augmented tracer partitioning could explain the increase

in tracer sieving observed with the addition of BSA (see Figs. 3-4 and 3-5 of Chapter 3). GBM

was modeled as a random fiber matrix composed of two types of fibers, the larger fibers

representing collagen IV fibrils and the smaller fibers representing GAG chains. For both Ficoll

and Ficoll sulfate, the predicted effect was more than sufficient to account for the upward shift in

the sieving curves. The model predictions agreed with the data well at the lower rs, but tended to

overpredict the sieving coefficients at higher rs. Among the possible explanations for this

tendency to overpredict is the potential limitation in the representation of GBM as a random fiber

matrix . This and other possibilities are addressed in Section 5.2 in a discussion of future

directions for this research.

In addition to models for sieving across single-layered barriers, we also applied the

concentration-effect concept to models for macromolecular sieving across the intact glomerular

capillary wall (Section 3.4.4). In general, the glomerular sieving coefficient is a product of seven

terms, four partition coefficients, representing the solute distribution at each of the four

interfaces, and three sieving coefficients, one for each layer of the barrier. Under dilute

conditions, the partitioning effects cancel one another, and the total sieving coefficient depends

only upon the sieving coefficients for the individual layers. Fairly limited, and somewhat

conflicting, information is available on how deeply plasma proteins penetrate into the capillary
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wall, so it is difficult to say with certainty where concentration effects are most likely present for

the intact barrier. Several investigators have proposed that the endothelial glycocalyx may

represent the major glomerular charge barrier. If this is so, then albumin would be restricted

primarily to the capillary lumen, and concentration effects would be important mainly at the

plasma/glycocalyx interface. More information is needed to further develop this model, as is

discussed briefly in Section 5.2.

In order to demonstrate the concentration effect for dissimilar solutes and to test the

applicability of the excluded volume theory to random fiber media, we measured the partition

coefficients of BSA and four narrow fractions of Ficoll in agarose prepared at two different solid

volume fractions, 4 and 6%. The results of this work are contained in Chapter 4. Agarose

represents a good choice of material as it is easily manipulated and has been shown to behave as

a random fiber matrix in partitioning experiments. The experiments were carried out under

dilute conditions and also with concentrated levels of BSA. The addition of concentrated BSA

was found to increase the partition coefficients of BSA itself and that of each of the four Ficolls.

The magnitude of the effect varied with solute size and was most significant for the largest

Ficoll. A subset of the experiments repeated at a higher ionic strength confirmed that

electrostatic interactions between the solutes and the agarose or among the solutes were not a

factor and that steric interactions were the primary determinant of solute partitioning.

Comparisons were made between the experimental data and model predictions generated using

the excluded volume theory. Agarose was modeled as a random fiber matrix, BSA was treated

as a prolate spheroid, and Ficoll was treated as a sphere. In general, the model predictions

agreed well with the experimental data for both BSA and Ficoll. The good agreement between

the data and model over a wide range of protein concentrations demonstrates the applicability of

the excluded volume theory for modeling concentration effects among dissimilar solutes in

random fiber media. To our knowledge, this is the first experimental demonstration of the

concentration effect for systems of dissimilar solutes.
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In total, the results of this work confirm the hypothesis that physiological concentrations

of protein can significantly augment the partitioning and sieving of macromolecular tracers such

as Ficoll in studies of the macromolecular selectivity of the glomerular capillary wall. The

models created here were sufficient to capture the effect of BSA on the sieving of Ficoll and

Ficoll sulfate in the isolated GBM sieving studies of Bolton et al. (1998). The tendency of the

model to overestimate the concentration effect for high tracer r, is likely related to limitations in

the representation of GBM as a random fiber matrix. This possibility seems especially likely in

light of the good agreement between model predictions and the experimental data for BSA and

Ficoll in agarose, which behaves as a random fiber matrix. In addition to studies involving

isolated components of the capillary wall, the effect of plasma proteins on partitioning has

important implications for the interpretation of data from a wide variety of experimental

techniques involving the intact glomerular barrier.

5.2 Future Work

The observation that the model presented in Chapter 3 tended to overpredict the isolated

sieving data at high r, motivates several directions for future work in the area of fiber matrix

modeling. The first, and perhaps most likely, explanation for the overprediction at high r, is that

there may be limitations in the representation of GBM as a random fiber matrix. Instead, a more

structurally, and functionally, accurate model might include an ordered arrangement for at least

some of the fibers. It has been shown, for example, that collagen assembles into polygonal

networks in some basement membranes (Yurchenco and Ruben 1987). Were fibers arranged in

such a way in the basement membrane, openings of fixed size would exist and molecules above a

certain size would be completely excluded from the matrix. In other words, such a regular

arrangement of fibers would confer a molecular weight cutoff to the GBM. The excluded

volume theory applied here assumes a completely random distribution of fibers and no such

molecular weight cutoff is implied. Returning to the thought experiment developed in Section
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2.3.2, we see that the excluded volume theory begins with the assumption that the test solute is in

the confined space before the fiber matrix is assembled around it. Further, the exponential form

of the probability distribution used there ensures that the partition coefficient will always have

some finite values greater than zero. Comparing the tracer sieving curves under dilute and

concentrated conditions, it is clear that some GBM molecular weight cutoff exists. Given what

is known about the regular assembly of collagen in some basement membranes, it seems that it

might be more appropriate to model GBM as a partially-ordered fiber matrix in which the larger

collagen fibers are arranged in some regular way and the smaller GAG chains are randomly

distributed. The development of such a partitioning model for partially-ordered fibrous media is

a good candidate for the further development of macromolecular partitioning theories for

physiological membranes such as GBM.

Another potential explanation for the tendency of the theory to overpredict the

concentrated sieving data at high tracer rs may lie in the absence of any consideration of

percolation effects in partitioning and sieving theories presented in Chapters 2 and 3,

respectively. More specifically, the model assumes that if a molecule is able to enter the

membrane at all, then its flux across the membrane will be permitted. For media such as random

fiber matrices, however, there may not be a sufficient connectivity of spaces which are large

enough to permit the passage of the solute. These types of considerations, termed percolation

effects, are not considered in any of the models presented here, and, to our knowledge, no

percolation theories exist for fiber matrices. The development of such a theory would no doubt

present a significant challenge, but it would be a valuable contribution to the effort to model

hindered transport through fibrous media.

A final potential explanation for the tendency of the theory to overpredict is the

possibility that the amounts of fine and coarse fibers used in the model representation of GBM

may be incorrect. As stated in Chapter 3, the fractional amounts of the total GBM solids content

assigned to collagen and GAGs were chosen by matching the measured value of the Darcy

permeability for the isolated GBM with a value generated by a two-fiber model for water
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permeability. Specifying the total solids volume fraction and fiber radii at values taken from the

literature, the model suggested that roughly equivalent volumes of collagen IV and GAGs are

needed to describe GBM water permeability. While the identities of the primary constituents of

GBM are known, virtually no quantitative information on their concentrations is available. Of

the limited data available, one study found that heparan sulfate proteoglycan makes up

approximately 1% of the dry weight of GBM (Kanwar and Farquhar 1979). Thus, it seems

possible that the GBM model we used in Chapter 3 may contain an unrealistically high relative

amount of GAG. Interestingly, lowering the relative amount of GAG in the GBM model while

maintaining a total solids content of 10% produces model predictions which more closely match

the experimental data. More detailed quantitative information on GBM composition would be

extremely valuable for the purpose of refining our fiber matrix model of GBM.

As mentioned previously, the role of the endothelial glycocalyx in determining the

permeability properties of the glomerular capillary wall is a subject of some debate. From a

macromolecular permeability standpoint, the highly sulfated glycocalyx represents a candidate

location for the charge barrier which is associated with the capillary wall. This possibility is

strengthened by the finding of Bolton et al. (1998) that GBM, although it too has a fixed negative

charge content, does not appear to have charge selective properties at physiological ionic

strength and pH. Much as with GBM, however, little firm quantitative data is available on the

exact composition of the glomerular endothelial gylcocalyx. More detailed information would

be invaluable to the development of models for the water and macromolecular resistance

properties of this layer and its contribution to the overall permeability properties of the capillary

wall.

The slit diaphragm represents another area where more detailed structural information

would be valuable. As mentioned in Chapter 1, various structures have been proposed for the slit

diaphragm based on findings from electron microscopy studies. These proposed structures

remain tentative, but new information on the chemical constituents that form the diaphragm has

been emerging recently. The protein nephrin, for example, has received a great deal of attention
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(Holthofer et al. 1999; Lenkkeri et al. 1999; Ruotsalainen et al. 1999; Tryggvason 1999). As

more information becomes available on the complete set of building blocks which make up the

slit diaphragm, it may be possible to develop more refined models for the contribution of this

piece of the capillary wall to the permeability properties of the capillary wall.

In addition to the partition coefficient, the coefficients of hindered convection (K,) and

diffusion (Kd) are important parameters for the description of hindered transport through fibrous

media. These appeared in the sieving model developed in Chapter 3. While several

hydrodynamic models exist for predicting Kd in fiber matrices (Clague and Phillips 1997;

Johnson et al. 1996; Phillips 2000), there is a paucity of information on K,. For lack of an

appropriate alternative, a common practice has been to use the result of Anderson and Malone

(1974) for pores. In conjunction with the development of models for Kc and Kd in fibrous media,

it would be useful to develop experimental techniques for measuring these parameters in fibrous

media similar to GBM. White and Deen (2002) developed an agarose-dextran composite

hydrogel for use as a synthetic GBM model in water and macromolecular permeability studies.

Interestingly, the composite with a 10% total solids content, 80% of which was agarose and 20%

of which was dextran, exhibited water permeabilities in the range which has been reported for

isolated rat GBM. Studies of hindered diffusion in these gels are currently being conducted in

our lab using the fluorescence recovery after photobleaching (FRAP) technique. Planned also

are studies of simultaneous hindered convection and diffusion in the composites by inducing

flow in the sample during the FRAP measurement.
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Chapter 6

Appendix: FORTRAN code

Iterative Solver for Partition Coefficients
using Newton's Method with Two Spherical Solutes
and Two Fibers

/mlazzara/partmodel/phinewt.f

PROGRAM PHISOLVE

DOUBLE PRECISION K1,K2,chil,chi2,phil,phi2
DOUBLE PRECISION rpl,rp2,rfl,rf2
DOUBLE PRECISION allsf,al2sf,a2lsf,a22sf
DOUBLE PRECISION allss,al2ss,a21ss,a22ss
DOUBLE PRECISION delKl,delK2,det,f,g
DOUBLE PRECISION dfdKl,dfdK2,dgdKl,dgdK2,count

PARAMETER (rpl = 36)
PARAMETER (rp2 = 22)
PARAMETER (rfl = 16.4)
PARAMETER (rf2 = 45)
PARAMETER (chil = 0.0)
PARAMETER (chi2 = 0.0)
PARAMETER (phil = 0.04)
PARAMETER (phi2 = 0.00)

! BSA, Angstrom units
! tracer

! BSA
! tracer

open(unit=8,file='data.txt',status='unknown')

WRITE (*,*) 'spheres'

158



! Angstrom units

K1=0
K2=0

2 allsf= (+ (rpl/rfl))**2
al2sf= (+ (rpl/rf2))**2
a2lsf= (+ (rp2/rfl))**2
a22sf= (+ (rp2/rf2))**2

allss= (1+ (rpl/rpl)) **3
al2ss= (1+ (rpl/rp2)) **3
a2lss= (1+ (rp2/rpl)) **3
a22ss= (1+ (rp2/rp2)) **3

f=K1-exp(-phil*allsf-phi2*al2sf+allss* (-K1)*chil
&+al2ss* (-K2)*chi2)
g=K2-exp(-phil*a21sf-phi2*a22sf+a21ss* (-K) *chil

&+a22ss* (-K2)*chi2)

dfdKl=l+exp(-phil*allsf-phi2*al2sf+allss* (-K1)*chil
&+al2ss* (-K2)*chi2)*allss*chil
dfdK2=exp(-phil*allsf-phi2*al2sf+allss* (-K) *chil

&+al2ss* (-K2)*chi2)*al2ss*chi2

dgdK1=exp(-phil*a21sf-phi2*a22sf+a21ss* (-K1)*chil
&+a22ss* (l-K2)*chi2)*a2lss*chil
dgdK2=1+exp(-phil*a21sf-phi2*a22sf+a21ss* (-K1)*chil
&+a22ss*(1-K2)*chi2)*a22ss*chi2

det=dfdKl*dgdK2-dgdK1*dfdK2

delKl=(/det) * (-dgdK2*f+dfdK2*g)
delK2= (/det)*(dgdKl*f-dfdKl*g)

K1=K1+delK1
K2=K2+delK2

IF (abs(delKl).GT.0.0001 .AND. abs(delK2).GT.0.0001) THEN
count=count+l1
GO TO 2

ENDIF

WRITE (*,*) rp2,K1

IF (rp2.LT.50) THEN
rp2=rp2+2
GO TO 2

ENDIF

STOP
END
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Iterative Solver for Partition Coefficients
using Newton's Method with Two Spherical Solutes
and Cylindrical Pores

/mlazzara/partmodel/phiporenew.f

PROGRAM PHISOLVE

DOUBLE PRECISION Kl,K2,chil,chi2,phil,phi2
DOUBLE PRECISION rpl,rp2,R
DOUBLE PRECISION allsf,al2sf,a2lsf,a22sf
DOUBLE PRECISION allss,al2ss,a2lss,a22ss
DOUBLE PRECISION delKl,delK2,det,f,g
DOUBLE PRECISION dfdKl,dfdK2,dgdKl,dgdK2,count
DOUBLE PRECISION lambdal,lambda2

PARAMETER (rpl = 2.0)
PARAMETER (rp2 = 0.75)
PARAMETER (rfl = 10)
PARAMETER (rf2 = 4.5)

* PARAMETER (chil = 0.0)
PARAMETER (chi2 = 0.0)
PARAMETER (phil = 0.2)
PARAMETER (phi2 = 0)
PARAMETER (R=10.0)

open(unit=8,file='data.txt',status='unknown')

WRITE (*,*) 'spheres'

chil=0.2
chi2=0.0

K1=0
K2=0

2 allsf= (1+ (rpl/rfl))**2
al2sf= (+ (rpl/rf2))**2
a2lsf= (1+ (rp2/rfl)) **2
a22sf= (1+ (rp2/rf2)) **2

lambdal=rpl/R
lambda2=rp2/R

allss= (1+ (rpl/rpl)) **3
al2ss= (1+ (rpl/rp2)) **3
a2lss= (1+ (rp2/rpl)) **3
a22ss= (+ (rp2/rp2))**3

f=Kl- (l-lambdal) **2*exp (allss* (l-K1) *chil
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&+al2ss*(1-K2)*chi2)
g=K2-(1-lambda2)**2*exp(a2lss* (-K1)*chil
&+a22ss*(1-K2)*chi2)

dfdKl=1+ (1- lambdal) **2*exp (allss* (1-K1) *chil
&+al2ss* (l-K2)*chi2)*allss*chil
dfdK2= (1-lambdal)**2*exp(allss* (-K1)*chil
&+al2ss*(1-K2)*chi2)*al2ss*chi2

dgdKl= (1- lambda2) **2*exp(a21ss* (1-K1) *chil
&+a22ss* (-K2)*chi2)*a2lss*chil
dgdK2=1+ (1- lambda2) **2*exp (a2lss* (1-K1) *chil

&+a22ss* (l-K2)*chi2)*a22ss*chi2

det=dfdKl*dgdK2-dgdK1*dfdK2

delKl=( /det)*(-dgdK2*f+dfdK2*g)
delK2= (/det)*(dgdK1*f-dfdKl*g)

K1=K1+delK1
K2=K2+delK2

IF (abs(delKl).GT.0.0001 .AND. abs(delK2).GT.0.0001) THEN
count=count +1
GO TO 2

ENDIF

WRITE (*,*) chi2,K1,K2

IF (chi2.LT.0.2) THEN
chi2=chi2+0.01
chil=0.2-chi2

GO TO 2
ENDIF

STOP
END

Iterative Solver for Partition Coefficients
using Newton's Method with One Prolate Spheroid,
One Sphere, and Two Fibers

• /mlazzara/partmodel/phiprosph.f

PROGRAM PHISOLVE

DOUBLE PRECISION K1,K2,chil,chi2,phil,phi2
DOUBLE PRECISION rpl,rp2,rfl,rf2
DOUBLE PRECISION allpf,al2pf
DOUBLE PRECISION allpp
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DOUBLE PRECISION delKl,delK2,det,f,g
DOUBLE PRECISION dfdKl,dfdK2,dgdKl,dgdK2
DOUBLE PRECISION fetal,getal
DOUBLE PRECISION etal
DOUBLE PRECISION al2ps,a21sp,a21sf,a22sf,a22ss
DOUBLE PRECISION d acosh

PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER

(rpl =
(rp2

(rfl =

17.1)
= 36)
5)

(rf2 = 35)
(chil

! in Angstrom units

= 0.0564)
(chi2 = 0.0)
(phil
(phi2
(etal

= 0.015)
= 0.085)
= 4.9)

open(unit=8,file='data.txt',status='unknown')

WRITE (*,*) 'prolate'

rp2=20 ! Angstrom units

1 a21sf=(1+
a22sf= (1+

(rp2/rfl))**2
(rp2/rf2))**2

a22ss=8

fetal=l+(etal**2)*(etal**2-1)**(-0.5)*acos(etal**(-1.0))
getal=etal+(etal**2-1)**(-0.5)*d acosh(etal)

allpf=l+(rpl/rfl)*getal+(0
al2pf=l+(rpl/rf2)*getal+(0

.5)

.5)
*(rpl/rfl)**2*fetal
*(rpl/rf2)**2*fetal

allpp=2+(1.5)*(1/etal)*fetal*getal

al2ps=l+etal*(rpl/rp2)**3+(1.5)*getal*(rpl/rp2)+(1.5)*fetal
$* (rpl/rp2) **2.0

a2lsp=l+(1/etal)*(rp2/rpl)**3+(1.5)*(getal/etal)*(rp2/rpl)**2
$+(1.5)*(fetal/etal)*(rp2/rpl)

S WRITE (*,*) a21sp*(4.0/3.0)*3.14158*etal*rpl**3

2 f=Kl-exp(-phil*allpf-phi2*al2pf+allpp*(l-Kl)*chil
&+al2ps* (1-K2)*chi2)
g=K2-exp(-phil*a21sf-phi2*a22sf+a21sp*(1-Kl)*chil
&+a22ss*(1-K2)*chi2)

dfdKl=l+exp(-phil*allpf-phi2*al2pf+allpp* (-K1)
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&*chil+al2ps* (-K2)*chi2)*allpp*chil
dfdK2=exp(-phil*allpf-phi2*al2pf+allpp* (1-Kl)
&*chil+al2ps* (1-K2)*chi2)*al2ps*chi2

dgdK1=exp(-phil*a21sf-phi2*a22sf+a21sp* (1-K) *chil
&+a22ss*(1-K2)*chi2)*a2lsp*chil
dgdK2=1+exp(-phil*a21sf-phi2*a22sf+a21sp* (-K1)*chil

&+a22ss* (-K2)*chi2)*a22ss*chi2

det=dfdK1*dgdK2-dgdKl*dfdK2

delKl=(1/det)*(-dgdK2*f+dfdK2*g)
delK2= (/det)*(dgdKl*f-dfdKl*g)

K1=Kl+delK1
K2=K2+delK2

IF (abs(delKl).GT.0.0001 .AND. abs(delK2).GT.0.0001) THEN
GO TO 2

ENDI F

WRITE (*,*) rp2,K2

IF (rp2.LT.50) THEN
rp2=rp2+2
GO TO 1

ENDI F

WRITE (*,*) log(etal+(etal**2-1)**(0.5))
WRITE (*,*) d acosh(etal)

STOP
END

Iterative Solver for Partition Coefficients
using Newton's Method with One Oblate Spheroid,
One Sphere, and Two Fibers

* /mlazzara/partmodel/phioblsph.f

PROGRAM PHISOLVE

DOUBLE PRECISION K1,K2,chil,chi2,phil,phi2
DOUBLE PRECISION rpl,rp2,rfl,rf2
DOUBLE PRECISION allof,al2of
DOUBLE PRECISION delKl,delK2,det,f,g
DOUBLE PRECISION dfdKl,dfdK2,dgdKl, dgdK2
DOUBLE PRECISION etal
DOUBLE PRECISION a21sf,a22sf,a22ss
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DOUBLE PRECISION fpetal,gpetal,alloo,al2os,a2lso
DOUBLE PRECISION d acosh

PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER

(rpl
(rp2
(rfl 1
(rf2
(chil

= 40)
= 50)
= 20)
= 45)
= 0.1)

(chi2 = 0.0)
(phil = 0.1)
(phi2 = 0.0)
(etal = 1.01)

open(unit=8,file='data.txt',status='unknown')

WRITE (*,*) 'oblate'

etal=0.01

K1=0
K2=0

a2lsf=(1+(rp2/rfl))**2
a22sf=(1+(rp2/rf2))**2

a22ss=8

1 fpetal=l+(etal**2)*(1-etal**2)**(-0.5)*d acosh(etal**-l)

gpetal=etal+(l-etal**2)**(-0.5)*acos(etal)

allof=l+(rpl/rfl)*gpetal+(0
al2of=l+(rpl/rf2)*gpetal+(0

.5)*(rpl/rfl)**2*fpetal

.5)*(rpl/rf2)**2*fpetal

al2os=l+etal*(rpl/rp2)**3+(1.5)*gpetal*(rpl/rp2)+(1.5)*fpetal
$* (rpl/rp2) **2

a2lso=l+ (/etal)*(rp2/rpl) **3+(1.5)*(gpetal/etal)*(rp2/rpl)**2
&+(1.5)*(fpetal/etal)*(rp2/rpl)

alloo=2+(1.5)*(1/etal)*fpetal*gpetal

2 f=K1-exp(-phil*allof-phi2*al2o0f+alloo* (-K1)*chil
&+al2os* (-K2)*chi2)
g=K2-exp(-phil*a21sf-phi2*a22sf+a21so*(1-K1) *chil

&+a22ss* (1-K2) *chi2)

dfdK1=l+exp(-phil*allof-phi2*al2of+alloo* (-K1)*chil
&+al2os*(1-K2)*chi2)*alloo*chil
dfdK2=exp ( -phil*allof-phi2*al2of+alloo* (1-KI) *chil
&+al2os*(1-K2)*chi2)*al2os*chi2
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dgdKl=exp(-phil*a21sf-phi2*a22sf+a21so* (1-
Kl) *chil+a22ss*(1-K2)

&*chi2)*a2lso*chil
dgdK2 =+exp ( -phil*a21sf -phi2*a22sf+a21so* ( 1 -

K1)*chil+a22ss*(1-K2)
&*chi2)*a22ss*chi2

det=dfdK1*dgdK2-dgdKl *dfdK2

delK1=(1/det)*(-dgdK2*f+dfdK2*g)
delK2= (/det) * (dgdK1*f-dfdKl*g)

K1=K1+delKI
K2=K2+delK2

IF (abs(delKl).GT.0.0001 .AND. abs(delK2).GT.0.0001) THEN
GO TO 2

ENDIF

WRITE (*,*) etal,K1

IF (etal.LT.0.98) THEN
etal=etal+0.02
GO TO 1

ENDIF

STOP
END

Iterative Solver for Partition Coefficients
using Newton's Method with Two Prolate Spheroids
and Two Fibers

/mlazzara/partmodel/phinewtpro.f

**********************************************************

PROGRAM PHISOLVE

DOUBLE PRECISION Kl,K2,chil,chi2,phil,phi2
DOUBLE PRECISION rpl,rp2,rfl,rf2
DOUBLE PRECISION allpf,al2pf,a2lpf,a22pf
DOUBLE PRECISION allpp,al2pp,a2lpp,a22pp
DOUBLE PRECISION delKl,delK2,det,f,g
DOUBLE PRECISION dfdKl,dfdK2,dgdKl, dgdK2
DOUBLE PRECISION fetal,feta2,getal,geta2
DOUBLE PRECISION etal,eta2
DOUBLE PRECISION d acosh

PARAMETER (rpl = 20)
PARAMETER (rp2 = 50)
PARAMETER (rfl = 20)
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PARAMETER (rf2 = 45)
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER

(chil = 0.05)
(chi2 = 0.0)
(phil = 0.1)
(phi2 = 0.0)
(etal = 1.2)
(eta2 = 1.05)

open(unit=8,file='data.txt',status='unknown')

WRITE (*,*) 'prolate'

chil=0
Kl=0
K2=0

fetal=l+(etal**2)*
feta2=l+ (eta2**2) *

getal=etal+(etal**
geta2=eta2+(eta2**

allpf=l+(rpl/rfl)
al2pf=l+ (rpl/rf2)
a2lpf=l+ (rp2/rfl)

(etal**2-1)**(-0.5)*acos(etal**(-1))
(eta2**2-1)**(-0.5)*acos(eta2**(-l))

2-1)**(-0.5)*d acosh(etal)
2-1)** (-0.5)*d acosh(eta2)

*getal+(0.5)*(rpl/rfl)**2*fetal
*getal+
*geta2+

(0.5)*(rpl/rf2)**2*fetal
(0.5)*(rp2/rfl)**2*feta2

a22pf=l+(rp2/rf2)*geta2+(0.5)*(rp2/rf2)**2*feta2

allpp=2+(1.5)*(1/etal)*fetal*getal

al2pp=l+((etal*rpl)/(eta2*rp2))**3+(0.75)*(rpl/rp2)**2*(l/eta2)
$*fetal*geta2+(0.75) * (rpl/rp2) * (/eta2)*feta2*getal

a21pp=l+((eta2*rp2)/(etal*rpl))**3+(0.75)*(rp2/rpl)**2*(1/etal)
$*feta2*getal+(0.75)*(rp2/rpl)* (/etal)*fetal*geta2
a22pp=2+(1.5)*(l/eta2)*feta2*geta2

2 f=Kl-exp(-phil*allpf-phi2*al2pf+allpp*(l-Kl)*chil
&+al2pp* (l-K2)*chi2)
g=K2-exp(-phil*a2lpf-phi2*a22pf+a21pp*(1-K1)*chil
&+a22pp*(1-K2)*chi2)

dfdKl=l+exp(-phil*allpf-phi2*al2pf+allpp* (l-K1)*chil
&+al2pp*(l-K2)*chi2)*allpp*chil
dfdK2=exp(-phil*allpf-phi2*al2pf+allpp*(l-Kl)*chil
&+al2pp*(l-K2)*chi2)*al2pp*chi2

dgdKl=exp(-phil*a2lpf-phi2*a22pf+a2lpp*(l-K1)*chil
&+a22pp* (-K2) *chi2)*a2pp*chil
dgdK2=l+exp(-phil*a2lpf-phi2*a22pf+a21pp* (-K1)
&*chil+a22pp* (l-K2) *chi2)*a22pp*chi2

det=dfdKl*dgdK2-dgdKl*dfdK2

delKl= (/det) * (-dgdK2*f+dfdK2*g)
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delK2= (/det)*(dgdKl*f-dfdKl*g)

K1=Kl+delK1
K2=K2+delK2

IF (abs(delKl).GT.0.0001 .AND. abs(delK2).GT.0.0001) THEN
GO TO 2

ENDIF

WRITE (*,*) chil,K1

IF (chil.LT.0.20) THEN
chil=chil+0.01
GO TO 2

ENDIF

STOP
END

Iterative Solver for Partition Coefficients
using Newton's Method with Two Oblate Spheroids
and Two Fibers

* /mlazzara/partmodel/phinewtobl.f

PROGRAM PHISOLVE

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

K1,K2,chil,chi2,phil,phi2
rpl,rp2,rfl,rf2
allof,al2of,a21of,a22of
alloo,al2oo,a2loo,a22oo
delKl,delK2,det,f,g
dfdKl,dfdK2,dgdKl,dgdK2
fpetal,fpeta2,gpetal,gpeta2
etal,eta2
d acosh

PARAMETER (rpl = 40)
PARAMETER (rp2 = 50)
PARAMETER (rfl = 20)
PARAMETER (rf2 = 80)
PARAMETER (chil = 0.0)
PARAMETER (chi2 = 0.0)
PARAMETER (phil = 0.1)
PARAMETER (phi2 = 0.0)
PARAMETER (etal = 0.8)

PARAMETER (eta2 = 0.9)

open(unit=8,file='data.txt',status='unknown')

167



WRITE (*,*) 'oblate'

etal=0.05
K1=0
K2=0

1 fpetal=l+(etal**2)*(1-eta
fpeta2=1+(eta2**2)*(1-eta

gpetal=etal+(l-etal**2)**
gpeta2=eta2+(1-eta2**2)**

1**2)**(-0.5)*d acosh(etal**(-l))
2**2)**(-0.5)*d acosh(eta2**(-l))

(-0
(-0

.5)*acos(etal)

.5)*acos(eta2)

allof=1+
al2of=1+
a2lof=1+
a22of=1+

(rpl/rfl)
(rpl/rf2)
(rp2/rfl)
(rp2/rf2)

*gpetal+
*gpetal+
*gpeta2+
*gpeta2+

.5)

.5)

.5)

.5)

* (rpl/rfl)
* (rpl/rf2)
* (rp2/rfl)
* (rp2/rf2)

**2*fpetal
**2*fpetal
**2*fpeta2
**2*fpeta2

alloo=2+(1.5)*(1/etal)*fpetal*gpetal

al2oo=l+((etal*rpl)/(eta2*rp2))**3+(0.75)*(rpl/rp2)**2* (/eta2)
$*fpetal*gpeta2+(0.75)*(rpl/rp2)*(1/eta2)*fpeta2*gpetal

a21oo=l+((eta2*rp2)/(etal*rpl))**3+(0.75)*(rp2/rpl)**2* (/etal)
$*fpeta2*gpetal+(0.75)*(rp2/rpl)*(1/etal)*fpetal*gpeta2
a22oo=2+(1.5)*(1/eta2)*fpeta2*gpeta2

2 f=Kl-exp(-phil*allof-phi2*al2of+alloo* (-K1)*chil
&+al2oo*(1-K2)*chi2)
g=K2-exp(-phil*a2lof-phi2*a22of+a21oo* (1-K) *chil

&+a22oo*(1-K2)*chi2)

dfdKl=l+exp(-phil*allof-phi2*al2of+alloo* (-K1)*chil
&+al2oo*(1-K2)*chi2)*alloo*chil
dfdK2=exp(-phil*allof-phi2*al2of+alloo* (-K1)*chil
&+al2oo*(1-K2)*chi2)*al2oo*chi2

dgdK1=exp(-phil*a21of-phi2*a22of+a21oo* (1-K1) *chil
&+a22oo*(1-K2)*chi2)*a2loo*chil
dgdK2=1+exp(-phil*a210of-phi2*a22of+a21oo* (1-K)
&*chil+a22oo* (1-K2)*chi2)*a22oo*chi2

det=dfdKl*dgdK2-dgdK1*dfdK2

delKl=(1/det)
delK2=(1/det)

K1=K1+delK1
K2=K2+delK2

*(-dgdK2*f+dfdK2*g)
*(dgdK1*f-dfdKl*g)

IF (abs(delKl).GT.0.0001
GO TO 2

ENDIF

.AND. abs(delK2) .GT.0.0001)

WRITE (*,*) etal,K1
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IF (etal.LT.0.95) THEN
etal=etal+0.05
GO TO 1

ENDIF

STOP
END

****************************************************************

Iterative Solver for Partition Coefficients

using Newton's Method with One Prolate Spheroid,

Two Spheres and Two Fibers

. /mlazzara/partmodel/phipro2sph.f

***WW*WWWWWWWWWWWWWWWWWWW******W**WW*WWW*W*WWWWWWW*WWWW*W******

PROGRAM PHISOLVE

DOUBLE PRECISION K1,K2,K3,chil,chi2,chi3,phil,phi2
DOUBLE PRECISION rpl,rp2,rp3,rfl,rf2
DOUBLE PRECISION allpf,al2pf,a2lsf,a22sf,a3lsf,a32sf
DOUBLE PRECISION allpp,al2ps,al3ps
DOUBLE PRECISION a21sp,a22ss,a23ss
DOUBLE PRECISION a31sp,a32ss,a33ss
DOUBLE PRECISION delKl,delK2,delK3,det,f,g,h
DOUBLE PRECISION dfdKl,dfdK2,dfdK3
DOUBLE PRECISION dgdKl,dgdK2,dgdK3
DOUBLE PRECISION dhdKl,dhdK2,dhdK3
DOUBLE PRECISION fetal,getal
DOUBLE PRECISION etal
DOUBLE PRECISION dl, d12,dl3,d21,d22,d23,d31,d32,d33
DOUBLE PRECISION d acosh

PARAMETER (rpl = 21.2)
PARAMETER (rp2 = 47.1)
PARAMETER (rp3 = 52)
PARAMETER (rfl = 16.4)
PARAMETER (rf2 = 15)
PARAMETER (chil = 0.09)

PARAMETER (chi2 = 0.01)
PARAMETER (chi3 = 0.0)
PARAMETER (phil = 0.06)
PARAMETER (phi2 = 0.00)
PARAMETER (etal = 3.3)

! in Angstrom units

! chi = 0.0564 upstream for GB's

! fine fiber

open(unit=8,file='data.txt',status='unknown')

WRITE (*,*) '3 solutes - 1 prolate, 2 spherical'
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! Angstroms

K1=0
K2=0
K3=0

fetal=l+(etal**2)*(etal**2-1)**(-0.5)*acos(etal**(-1.0))
getal=etal+(etal**2-1)**(-0.5)*d acosh(etal)

allpf=l+(rpl/rfl)*getal+(0.5)
al2pf=l+(rpl/rf2)*getal+(0.5)
a2lsf= (+ (rp2/rfl))**2
a22sf= (1+ (rp2/rf2)) **2
a3lsf= (+ (rp3/rfl)) **2
a32sf= (+ (rp3/rf2))**2

* (rpl/rfl) **2*fetal
*(rpl/rf2)**2*fetal

allpp=2+(1.5)*(1/etal)*fetal*getal

al2ps=l+etal*(rpl/rp2)**3+(1.5)*getal*(rpl/rp2)+(1.5)*fetal
$*(rpl/rp2)**2.0

al3ps=l+etal*(rpl/rp3)**3+(1.5)*getal*(rpl/
$* (rpl/rp3) **2.0

a2lsp=l+ (/etal)*(rp2/rpl)**3+(1.5)*(getal/
$+(1.5)*(fetal/etal)*(rp2/rpl)
a22ss=8
a23ss= (+ (rp2/rp3)) **3

a3lsp=l+ (/etal)*(rp3/rpl)**3+(1.5) * (getal/
$+(1.5)*(fetal/etal)*(rp3/rpl)
a32ss= (1+ (rp3/rp2)) **3
a33ss=8

rp3)+(1.5)*fetal

etal) * (rp2/rpl) **2

etal) * (rp3/rpl) **2

2 f=K1-exp(-phil*allpf-phi2*al2pf+allpp* (-K1)*chil
&+al2ps* (-K2)*chi2+al3ps*(1-K3)*chi3)
g=K2-exp(-phil*a21sf-phi2*a22sf+a21sp*(1-K1)*chil
&+a22ss* (-K2)*chi2+a23ss*(1-K3)*chi3)
h=K3-exp(-phil*a31sf-phi2*a32sf+a31sp*(1-K1)*chil
&+a32ss* (-K2)*chi2+a33ss*(1-K3)*chi3)

dfdKl=1+exp(-phil*allpf-phi2*al2pf+allpp* (1-K1)
&*chil+al2ps* (-K2)*chi2+al3ps* (l-K3)*chi3)*allpp*chil
dfdK2=exp(-phil*allpf-phi2*al2pf+allpp* (1-K)
&*chil+al2ps* (-K2)*chi2+al3ps* (-K3)*chi3)*al2ps*chi2
dfdK3=exp ( -phil*allpf-phi2*al2pf+al Ipp* (1-K1 )
&*chil+al2ps* (-K2)*chi2+al3ps* (-K3)*chi3)*al3ps*chi3

dgdKl=exp(-phil*a21sf-phi2*a22sf+a21sp*(1-K1)*chil
&+a22ss* (-K2)*chi2+a23ss*(1-K3)*chi3)*a21sp*chil
dgdK2=1+exp (-phil*a21sf-phi2*a22sf+a21sp* (1-K1) *chil
&+a22ss*(1-K2)*chi2+a23ss*(1-K3)*chi3)*a22ss*chi2
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dgdK3=exp(-phil*a2sf-phi2*a22sf+a21sp* (1-K) *chil
&+a22ss* (-K2)*chi2+a23ss* (-K3)*chi3)*a23ss*chi3

dhdK1=exp ( -phil*a31sf-phi2*a32sf+a31sp* (1-KI) *chil
&+a32ss*(1-K2)*chi2+a33ss* (-K3)*chi3)*a31sp*chil
dhdK2=exp(-phil*a31sf-phi2*a32sf+a31sp* (1-K) *chil

&+a32ss* (-K2)*chi2+a33ss* (-K3)*chi3)*a32ss*chi2
dhdK3=1+exp(-phil*a31sf-phi2*a32sf+a31sp* (-K1)*chil
&+a32ss* (-K2)*chi2+a33ss*(1-K3)*chi3)*a33ss*chi3

det=dfdKl* (dgdK2*dhdK3-dhdK2*dgdK3) -dfdK2*(dgdKl*dhdK3
&-dhdK1*dgdK3)+dfdK3*(dgdKl*dhdK2-dhdKl*dgdK2)

dll=dgdK2 * dhdK3-dhdK2 * dgdK3
dl2=dgdKl * dhdK3-dhdKl * dgdK3
dl3=dgdKl * dhdK2-dhdKl * dgdK2
d21=dfdK2*dhdK3-dhdK2*dfdK3
d22=dfdKl*dhdK3-dhdK1*dfdK3
d23=dfdKl*dhdK2-dhdKl*dfdK2
d31=dfdK2*dgdK3-dgdK2*dfdK3
d32=dfdKl*dgdK3-dgdKl*dfdK3
d33=dfdKl*dgdK2-dgdKl*dfdK2

delK1=(1/det)*(-dll*f+d21*g-d31*h)
delK2= (/det)*(dl2*f-d22*g+d32*h)
delK3= (/det)*(-dl3*f+d23*g-d33*h)

K1=K1+delK1
K2=K2+delK2
K3=K3+delK3

IF (abs(delKl) .GT.0.0001 .AND. abs(delK2).GT.0.0001 .AND.
& abs(delK3).GT.0.0001) THEN

GO TO 2
ENDIF

WRITE (*,*) rp3,K3

IF (rp3.LT.50) THEN
rp3=rp3+2
GO TO 1

ENDIF

STOP
END
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***********************************************************

FFT solution for transient diffusion from a 1D solid
to a stirred solution of infinite volume

/mlazzara/fftsolutions/infinitefft.f

PROGRAM FFT1D

VARIABLE DECLARATIONS
'**********************************************************

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

INTEGER n

L=0.3
xtil=0.05*L
ttil=3600*0

D=0.53*6e-7
pi=3.14159

gamma=1

phi=0.7
c0=2.0

x,y,z,a,b,gamma, lamn
an,terml,term2,term3
term4,alpha,pi
A,L,D,xtil,ttil
sumsol,sumliq
cm,cl,co,phi

! centimeters

! centimeters**2/s

! g/dl

COMPUTING FFT SOLUTION FOR SOLID AND LIQUID PHASES

sumsol=0.0
sumliq=0.0

DO n=0,30
lamn=(n+0.5)*pi
terml= (2**0.5) *lamn*sin (lamn) / (lamn**2)
term2=(lamn**2)*ttil*D/L**2
term3=l-exp(-term2)
term4=(2**0.5)*cos(lamn*xtil/L)
sumsol=sumsol+terml*term3*term4

ENDDO

cm=sumsol*c0*phi
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WRITE (*,*) ttil/3600,cm/(c0*phi)

IF (ttil.LT.200*3600) THEN
ttil=ttil+4*3600
GO TO 1

ENDIF

STOP
END

* FFT solution for transient diffusion from a 1D solid
* to a stirred solution of finite volume

/mlazzara/fftsolutions/coupledfft.f

PROGRAM FFT1D

VARIABLE DECLARATIONS

DOUBLE PRECISION x,y,z,a,b,gamma,lam(15)
DOUBLE PRECISION an,terml,term2,term31,term3s
DOUBLE PRECISION term4,alpha,M,fc,c
DOUBLE PRECISION A,L,D,xtil,ttil
DOUBLE PRECISION sumsol,sumliq
DOUBLE PRECISION cm,cl,co,phi

INTEGER n

i FINDING THE EIGENVALUES FROM CHARACTERISTIC EQUATION

char equation : lambda(n) = -gamma*tan(lambda(n))

L=0.3 ! centimeters
xtil=0.01*L
ttil=3600*0

D=0.53*6e-7 i centimeters**2/s

n=l
gamma=1.0

alpha=1
M=1
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phi=0. 7
c0=2 i g/dl

1 a=(2*n-1)*3.14159/2.0
b=(2*n+1)*3.14159/2.0

a=a+0.0005
b=b-0.0005

2 c=(a+b)/2.0

fc=gamma*tan (c) +c

IF (fc.LT.0)
a=c

ENDIF

IF (fc.GT.0)
b=c

ENDIF

THEN

THEN

IF (abs(fc)
GOTO 2

ENDIF

.GT.0.00001) THEN

lam(n)=c

IF (n.LT.15) THEN
n=n+l
GOTO 1

ENDIF

COMPUTING FFT SOLUTION FOR SOLID AND LIQUID PHASES

3 sumsol=0.0
sumliq=0.0

DO n=1,15
an=(0.5+sin(2*lam(n))/(4*lam(n))+(1/gamma)*

$(cos(lam(n))**2) ) **(-0.5)
terml=ttil*D*(lam(n)**2)/(L**2)
term2=exp (-terml )
term3l=cos (lam(n)) *an**2
term3s=cos (lam(n) *xtil/L) *an**2
term4=cos (lam(n))/gamma
sumsol=sumsol+term2*term3s*term4
sumliq=sumliq+term2*term31*term4

ENDDO

sumsol=sumsol+gamma/(gamma+ 1 )
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sumliq=sumliq+gamma/(gamma+l)

cm=sumsol* cO*phi
cl=sumliq*cO

WRITE (*,*) ttil/3600,'sol',cm,'liq',cl
WRITE (*,*) ttil/3600, cm/(gamma*c0*phi/(gamma+l))

IF (ttil.LT.200*3600) THEN
ttil=ttil+4*3600
GO TO 3

ENDIF

STOP
END

FFT solution of transient diffusion for an
equilibrating agarose prism, infinite solution volume

/mlazzara/fftsolutions/prismfft.f

DOUBLE PRECISION ct,phi,c0,D
DOUBLE PRECISION x,y,z,t,sum,kappa,pi
DOUBLE PRECISION a,b,c
INTEGER n,m,l

pi=3.14159
D=0.53*6e-7 i cm2/s
a=0.3 ! cm
b=0.3
c=0.15
phi=0.7
cO=2

! cm
! cm

sum=0
kappa=0

t=2*3600

x=0.015
y=0.06
z=0.03

n=l
m=l
1=1

DO n=1,40,2
DO m=1,40,2

DO 1=1,40,2
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kappa=(n**2+(m*a/b)**2+(l*a/c)**2)*(pi**2)*D/(a**2)
sum=sum+exp(-kappa*t)*sin(n*pi*x/a)*

$sin(m*pi*y/b)*sin(l*pi*z/c)/(n*m*l)
ENDDO

ENDDO
ENDDO

ct=phi*cO* (- (64.0/(pi**3))*sum)

WRITE (*,*) t/3600,ct

IF (t.LT.60*60*20) THEN
t=t+60*60*.1
sum=0
GO TO 1

ENDIF

STOP
END

FFT solution of transient diffusion for an
equilibrating agarose prism, infinite solution volume

**calculating apparent partitiong coeff versus time**

/mlazzara/fftsolutions/apppart.f

PRECISION ct,phi,c0,D
PRECISION x,y,z,tau,sum,
PRECISION a,b,c,h(21,21)
PRECISION xspace,yspace,
PRECISION partapp,cmavg

kappa,pi
,g(21) ,temp(21)
zspace

INTEGER i,n,m,l,r,s,t

pi=3.14159
D=0.53*6e-7
a=0.3
b=0.3
c=0.3
phi=0.7
c0=2.0
sum=0
kappa=0

xspace=a/20.0
yspace=b/20.0
zspace=c/20.0

tau=3600*0.5

! cm^2/s
! cm
i cm
Scm

!g/dL

DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
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FIRST CALCULATE h(y,z)

DO s=1,21
DO t=1,21
DO r=1,21

sum=0.0

x= (r-1) *xspace
y=(s-l)*yspace
z=(t-l)*zspace

DO n=1,40,2
DO m=1,40,2
DO 1=1,40,2

kappa=(n**2+
$(pi**2)*D/ (a**2)

(m*a/b)**2+(l*a/c)**2) *

sum=sum+exp(-kappa*tau)*sin(n*pi*x/a)*
$sin(m*pi*y/b)*sin(l*pi*z/c)/(n*m*l)

ENDDO
ENDDO

ENDDO

ct=phi*c0*(1-(64.0/(pi**3)*sum)

temp (r)=ct

ENDDO ! for r=1,21

h(s,t)=0.0

DO i=2,20,2
h(s,t)=h

ENDDO
DO i=3,19,2

h(s,t)=h
ENDDO

(s,t) +4*temp (i)

(s, t) +2*temp (i)

h(s,t)=(1.0/3.0)*xspace*(h(s,t)+temp(1)+temp(21))

ENDDO
ENDDO

NOW CALCULATE g(z) at 21 points

DO t=1,21

g(t)=0.0
z=(t-1)*zspace

DO i=2,20,2
g(t) =g(t)+4*h(i,t)

ENDDO
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DO i=3,19,2
g(t)

ENDDO
=g(t) +2*h (i,t)

g(t)=(1.0/3.0)*yspace*(g(t)+h (, t)+h(21,t))

ENDDO

! NOW INTEGRATE OVER

cmavg=0.0

DO i=2,20,2
cmavg=cmavg+4*g (i)

ENDDO
DO i=3,19,2

cmavg=cmavg+2*g (i)
ENDDO

cmavg=(1.0/3.0)*zspace*
cmavg=cmavg/(a*b*c)

(cmavg+g (1) +g (21))

partapp=cmavg/c0

WRITE (*,*) tau/3600,partapp

IF (tau.LT.60*60*20)
tau=tau+60*60*0.5
sum=0
GO TO

ENDIF

THEN

STOP
END
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**************************************************

Iterative Solver for Partition Coefficients
using Newton's Method with One Prolate Spheroid,
One Sphere, and Two Fibers

* /mlazzara/partmodel/sieving.f

. *calculates chiL of BSA at specified Pe

PROGRAM SIEVING

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

PARAMETER (rpl =
PARAMETER (rp2 =
PARAMETER (rfl =
PARAMETER (rf2 =
PARAMETER (chil
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER

K1,K2,chil,chi2,phil,phi2
rpl,rp2,rfl,rf2
allpf,al2pf
allpp
delKl,delK2,det,f,g
dfdKl,dfdK2,dgdKl,dgdK2
fetal,getal
etal
al2ps,a21sp,a21sf,a22sf,a22ss
d acosh
phidil,phi0,phiL,theta,Kc,Pe
chiL,chi0

21.2)
30)
10)
45)
= 0.0)

(chi2 = 0.0)
(phil = 0.2)
(phi2 = 0)
(etal = 3.3)
(Pe = 10)

in Angstrom units

! conc = 0.0564

fine fiber

open(unit=8,file='data.txt',status='unknown')

chiO=0.0

1 chil=0 ! Angstrom units

K1=0
K2=0

2 a2lsf=(1+(rp2/rfl))**2
a22sf= (1+ (rp2/rf2)) **2

a22ss=8

fetal=l+(etal**2)*(etal**2-1)**(-0.5)*acos(etal**(-1.0))
getal=etal+(etal**2-1)**(-0.5)*dacosh(etal)
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allpf=l+(rpl/rfl)*getal+(0.5)*(rpl/rfl)**2*fetal
al2pf=l+(rpl/rf2)*getal+(0.5)*(rpl/rf2)**2*fetal

allpp=2+(1.5)*(1/etal)*fetal*getal

al2ps=l+etal*(rpl/rp2)**3+(1.5)*getal*(rpl/rp2)+(1.5)*fetal
$*(rpl/rp2)**2.0

a2lsp=l+(1/etal)*(rp2/rpl)**3+(1.5)*(getal/etal)*(rp2/rpl)**2
$+(1.5)*(fetal/etal)*(rp2/rpl)
WRITE (*,*) a21sp*(4.0/3.0)*3.14158*etal*rpl**3

3 f=Kl-exp(-phil*allpf-phi2*al2pf+allpp*(l-K1)*chil
&+al2ps*(l-K2)*chi2)
g=K2-exp(-phil*a21sf-phi2*a22sf+a21sp*(1l-K)*chil

&+a22ss* (1-K2)*chi2)

dfdK1=l+exp(-phil*allpf-phi2*al2pf+allpp* (-K1)
&*chil+al2ps* (l-K2)*chi2)*allpp*chil
dfdK2=exp(-phil*allpf-phi2*al2pf+allpp* (-K1)
&*chil+al2ps* (l-K2)*chi2)*al2ps*chi2

dgdK1=exp(-phil*a21sf-phi2*a22sf+a21sp*(1-K1)*chil
&+a22ss*(1-K2)*chi2)*a2lsp*chil
dgdK2=1+exp(-phil*a21sf-phi2*a22sf+a21sp* (-K1)*chil
&+a22ss*(1-K2)*chi2)*a22ss*chi2

det=dfdK1*dgdK2-dgdKl*dfdK2

delK1= (/det)*(-dgdK2*f+dfdK2*g)
delK2= (/det)*(dgdK1*f-dfdK1*g)

K1=K1+delK1
K2=K2+delK2

IF (abs(delK1).GT.0.0001 .AND. abs(delK2).GT.0.0001) THEN
GO TO 3

ENDIF

WRITE (*,*) chil,K1

IF (chil.EQ.0) THEN
phidil=K1

ENDIF

IF (chil.LT.chi0 ) THEN
chil=chi0
GO TO 2

ENDIF
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phi0=K1
phiL=phidil

Kc=0.75

5 theta=phi0*Kc/(1-(l-phiL*Kc)*exp(-Pe))
chiL=theta*chi0

chil=chiL

K1=0
K2=0

4 f=K1-exp(-phil*allpf-phi2*al2pf+allpp*(l-Kl)*chil
&+al2ps*(1-K2)*chi2)
g=K2-exp(-phil*a21sf-phi2*a22sf+a21sp*(1l-K)*chil
&+a22ss*(1-K2)*chi2)

dfdK1=l+exp(-phil*allpf-phi2*al2pf+allpp*(1-K1)
&*chil+al2ps* (l-K2)*chi2)*allpp*chil
dfdK2=exp(-phil*allpf-phi2*al2pf+allpp* (-K1)
&*chil+al2ps* (l-K2)*chi2)*al2ps*chi2

dgdKl=exp(-phil*a21sf-phi2*a22sf+a21sp*(1-K1)*chil
&+a22ss*(1-K2)*chi2)*a2lsp*chil
dgdK2=1+exp(-phil*a21sf-phi2*a22sf+a21sp*(1-K1)*chil
&+a22ss*(1-K2)*chi2)*a22ss*chi2

det=dfdKl*dgdK2-dgdKl*dfdK2

delK1=(1/det)*(-dgdK2*f+dfdK2*g)
delK2= (/det)*(dgdKl*f-dfdKl*g)

K1=Kl+delK1
K2=K2+delK2

IF (abs(delK) .GT.0.0001 .AND. abs(delK2).GT.0.0001) THEN
GO TO 4

ENDIF

IF (abs(K1-phiL).GT.0.001) THEN
phiL=phiL+0.1*(Kl-phiL)
GO TO 5

ENDIF

WRITE (*,*) chiL

IF (chi0.LT.0.2) THEN
chi0=chi0+0.01
GO TO 1

ENDIF

STOP
END
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Powell's Method Code

/mlazzara/powells/glenmod5.f

implicit real*4(a-h,o-z), integer(i-n)
common/datal/tetbm(50000),phi(50000),tetslit(50000),pe(5000
0)
common/data2/rs(50000),sv(50000),flw(50000),xm0(20),xml(20)
common/ data3/ ndata,nparamsfit,xdel,void,gbmeq,cix, rfx
common/ array/ params(4),theta(16),thetac(16)
common/ results/ res(50000),avres,rms,tetabmth(50000)
dimension p(4),xi(4,4),stnderr2(4),covar(4,4)
dimension fjv(5000),fji(5000),ci(5000)

C INPUT PARAMETERS

nparamsmax = 2
nparamsfit = 2

ftol = 1.0e-7

WRITE (* *) 'Initial value for a =
READ (*,*) a
WRITE (*,*) 'Initial value for b =
READ (*,*) b

a=0.1
! b=0.1

WRITE (*,*) '
WRITE (*,*) 'Initial guesses'
WRITE (*,*) 'a =',a,'b =',b
WRITE (**) ' '

C DEPOSIT ALL PARAMETERS (TO BE FIXED AND TO BE FIT) IN
PARAMS (I)

params(1) = a
params(2) = b

c params(3) = c
c params(4) = d
c params(5)= e
c params(6)= f

do 240 i=l,nparamsmax
p(i) = params(i)
do 230 j=l,nparamsfit

xi(i,j) = 0.0
if (i.eq.j) xi(i,j) = p(i)*0.l

230 continue
240 continue
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C OBTAIN BEST FIT OF P VECTOR TO DATA

print *, 'Beginning powell fitting . .'
call powell(p,xi,nparamsfit,nparamsmax,ftol,iter,fret)
print *, 'Done.'
WRITE (*,*) ' '

C RESET FIT PARAMETERS IN PARAMS TO VALUES IN P
do 260 i=l,nparamsmax

params (i)=p(i)
260 continue

C FINAL VALUES
a = params(1)
b = params(2)

! 280 continue
do 281 i=l,nparamsfit

print*,'parameter ',i,' is : ',params(i)
write(2,*)'parameter ',i,' is :',params(i)

281 continue

print*,' '
print*,'value of function',fret
WRITE (*,*) 'number of iterations',iter
WRITE (*,*) ' '

WRITE (*,*) ' data calculated Kc
Kd'

WRITE (*, *) '

WRITE (*,*) '

DO i=1,16
rstokes=20+(i-l)*2
WRITE (*,*) theta(i)-0.0113,thetac(i)

ENDDO

end

C FUNCTION TO CALCULATE CHI-SQUARE VALUES FOR A GIVEN
* PARAMETER VECTOR

function chisq(pms)
implicit real*4(a-h,o-z), integer(i-n)
DOUBLE PRECISION vel,kappa,visc,temp,delta
DOUBLE PRECISION Peclet
DOUBLE PRECISION phiKc,phiKd,rstokes,part(16)
DOUBLE PRECISION Rfl,Rf2,phil,phi2
DOUBLE PRECISION F,dp,littlef,S,Kc,Kd
common/ datal/

tetbm(50000),phi(50000),tetslit(50000),pe(50000)
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common/
data2/rs(50000),sv(50000),flw(50000),xm0(20),xml(20)

common/ data3/ ndata,nparamsfit,xdel,void,gbmeq,cix
common/ array/ params(4),theta(16),thetac(16)
common/ results/ res(50000),avres,rms,tetabmth(50000)
dimension pms(4)

C ASSIGN CURRENT VALUE OF FITTED PARAMETERS

chisq = 0.0
ntotal = ndata

vel=1.72e-6
kappa=1.38e-23
visc=.8516e-3
temp=300
delta=6.02e-6

theta () =0.
theta(2)=0.
theta(3)=0.
theta(4)=0.
theta(5)=0.
theta(6)=0.
theta(7)=0.
theta(8)=0.
theta(9)=0.
theta(10)=0
theta(11)=0
theta(12)=0
theta(13)=0
theta(14)=0
theta(15)=0
theta(16)=0

m/s
Boltzman constant
Pa s
Kelvin
m

58
503
421
349
279
226
182
146
121
.0975
.0814
.0666
.0565
.0481
.0414
.0358

do 10 i=l,nparamsfit
params (i) =pms (i)
if (pms(i) .It. 0.0)

10 continue
chisq = 1.0e30

C THIS SECTION
A=params(1)
B=params(2)

c C=params(3)
c D=params(4)
c E=params(5)
c F=params(6)

NOT GENERAL: MAKE ASSIGNMENTS FROM PARAMS

avres = 0

Rfl=10
Rf2=35

! in Angstroms
! in Angstroms

phil=0.1
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phi2=0.0

dp=1.15*100 D

DO i=1,16
rst

arcy permeability of GBM in A**2

.okes=20+(i-1)*2 ! Angstroms
littlef=phil*(l+rstokes/Rfl)**2+phi2*(l+rstokes/Rf2)**2
S=exp(-0.84*littlef**l.09)
F=(l+rstokes/sqrt(dp)+(1/9.0)*(rstokes/sqrt(dp))**2)**-

part(i)=exp(-phil*(l+rstokes/Rfl)**2-
phi2*(l+rstokes/Rf2)**2)

Dinf=(kappa*temp)/(6*3.14159*visc*rstokes*le-10)
Kd=F*S
Kc=a*exp(-b*rstokes)
WRITE (*,*) rstokes,Kd,Kc
phiKd=exp(-a*rstokes)
phiKc=exp(-b*rstokes)

Peclet=(phiKc*vel*delta)/(phiKd*Dinf)
thetac (i) = (phiKc) / (1- (1-phiKc) *exp (-Peclet
chisq=chisq+(1.0/16.0)*((thetac(i)-theta(i

$/(theta(i) -0.0113) )**2
ENDDO
chisq=chisq**(0.5)

) )
)+0.0113)

return
660 FORMAT

end
(A4,F7 . 3 ,A4,F7 . 3 ,A4,F7 . 3 ,A4, F7 . 3 ,A4, F7 . 3)

C POWELL'S ROUTINE

* subroutine powell *

SUBROUTINE POWELL(P,XI,N,NP,FTOL, ITER,FRET)
PARAMETER (NMAX=40, ITMAX=400)
DIMENSION P(4),XI(4,4),PT(nmax),PTT(nmax),XIT(nmax)
FRET = chisq(P)
DO 11 J=1,N

PT(J)=P(J)
11 CONTINUE

ITER=0
1 ITER=ITER+l

FP=FRET
IBIG=0
DEL=0.
DO 13 I=1,N

DO 12 J=1,N
XIT(J) =XI (J,I)

12 CONTINUE
FPTT=FRET
CALL LINMIN(P,XIT,N,FRET)
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IF (ABS (FPTT-FRET) .GT.DEL) THEN
DEL=ABS (FPTT-FRET)
IBIG=I

ENDIF
13 CONTINUE

IF(2.*ABS(FP-FRET) .LE.FTOL* (ABS (FP) +ABS (FRET)) )RETURN
IF(ITER.EQ.ITMAX) then

print*, 'Powell exceeding maximum iterations.'
return

endif
DO 14 J=1,N

PTT (J) =2. *P (J) -PT (J)
XIT (J)=P (J) -PT (J)
PT(J)=P(J)

14 CONTINUE
FPTT =chisq(PTT)
IF(FPTT.GE.FP)GO TO 1
T=2. * (FP-2.*FRET+FPTT)*(FP-FRET-DEL)**2-DEL*(FP-FPTT)**2
IF(T.GE.O.)GO TO 1
CALL LINMIN(P,XIT,N, FRET)
DO 15 J=1,N

XI (J, IBIG) =XIT (J)
15 CONTINUE

GO TO 1
END

* subroutine linmin *

SUBROUTINE LINMIN(P,XI,N,FRET)
PARAMETER (NMAX=80,TOL=1.E-4)
EXTERNAL FIDIM
DIMENSION P(n),XI(n)
COMMON /F1COM/ NCOM,PCOM(NMAX) ,XICOM(NMAX)
NCOM=N
DO 11 J=1,N

PCOM (J)=P (J)
XICOM(J)=XI(J)

11 CONTINUE
AX=0.
XX=1.
CALL MNBRAK(AX,XX,BX,FA,FX,FB)
FRET=BRENT (AX,XX, BX, TOL, XMIN)
DO 12 J=1,N

XI(J)=XMIN*XI(J)
P(J)=P(J)+XI(J)

12 CONTINUE
RETURN
END

* subroutine mnbrak

SUBROUTINE MNBRAK(AX,BX,CX,FA,FB,FC)
PARAMETER (GOLD=1.618034, GLIMIT=100., TINY=1.E-20)
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FA=fldim (AX)
FB=fldim (BX)
IF (FB.GT.FA) THEN

DUM=AX
AX=BX
BX=DUM
DUM=FB
FB=FA
FA= DUM

ENDIF
CX=BX+GOLD* (BX-AX)
FC=fldim (CX)

1 IF(FB.GE.FC)THEN
R= (BX-AX) * (FB-FC)
Q= (BX-CX) * (FB- FA)
U=BX- ((BX-CX) *Q- (BX-AX) *R) / (2. *SIGN (MAX (ABS (Q-

R) ,TINY) ,Q-R))
ULIM=BX+GLIMIT*(CX-BX)
IF((BX-U)*(U-CX) .GT..)THEN
FU=fldim (U)
IF (FU.LT.FC) THEN
AX=BX
FA=FB
BX=U
FB=FU
RETURN

ELSE IF(FU.GT.FB)THEN
CX=U
FC=FU
RETURN

ENDIF
U=CX+GOLD* (CX-BX)
FU=fldim (U)

ELSE IF((CX-U)*(U-ULIM).GT.O.)THEN
FU=fldim (U)
IF (FU.LT.FC) THEN
BX=CX
CX=U
U=CX+GOLD* (CX-BX)
FB=FC
FC=FU
FU=fldim (U)

ENDIF
ELSE IF((U-ULIM)*(ULIM-CX).GE.O.)THEN

U=ULIM
FU=fldim (U)

ELSE
U=CX+GOLD* (CX-BX)
FU=fldim (U)

ENDIF
AX=BX
BX=CX
CX=U
FA= FB
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FB=FC
FC=FU
GO TO

ENDIF
RETURN
END

* function brent *

FUNCTION BRENT (AX,BX, CX, TOL, XMIN)
PARAMETER (ITMAX=1000,CGOLD=.3819660,ZEPS=1.OE-10)

A= MIN (AX, CX)
B=MAX (AX, CX)
V=BX
W=V
X=V
E=0 .
FX=fldim (X)
FV=FX
FW=FX
DO 11 ITER=1,ITMAX

XM=0 . 5* (A+B)
TOL1=TOL*ABS (X) +ZEPS
TOL2=2 .*TOL1
IF(ABS(X-XM).LE. (TOL2-. 5*(B-A)))
IF(ABS(E) .GT.TOL1) THEN

R= (X-W) * (FX-FV)
Q= (X-V) * (FX-FW)
P= (X-V) *Q- (X-W) *R
Q=2.* (Q-R)
IF(Q.GT.O.) P=-P
Q=ABS (Q)
ETEMP=E
E=D
IF(ABS(P) .GE.ABS(.5*Q*ETEMP) .C

D t- f*tD-V\\ inmr 1

D=P/Q
U=X+D
IF(U-A.LT.TOL2 .OR.
GOTO 2

ENDIF
IF(X.GE.XM) THEN

E=A-X
ELSE

E=B-X
ENDIF
D=CGOLD*E
IF(ABS(D) .GE.TOL1) TH

U=X+D
ELSE
U=X+SIGN (TOL1, D)

ENDIF
FU= fldim(U)

GOTO 3

)R.P.LE.Q*(A-X) .OR.

B-U.LT.TOL2) D=SIGN(TOL1,XM-X)

EN
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IF(FU.LE.FX) THEN
IF(U.GE.X) THEN

A=X
ELSE

B=X
ENDIF
V=W
FV=FW
W=X
FW=FX
X=U
FX=FU

ELSE
IF(U.LT.X) THEN

A=U
ELSE

B=U
ENDIF
IF(FU.LE.FW .OR. W.EQ.X) THEN

V=W
FV=FW
W=U

ELSE IF(FU.LE.FV .OR. V.EQ.X .OR. V.EQ.W) THEN
V=U
FV=FU

ENDIF
ENDI F

11 CONTINUE
PAUSE 'Brent exceed maximum iterations.'

3 XMIN=X
BRENT= FX
RETURN
END

* function fldim *

FUNCTION F1DIM(X)
PARAMETER (NMAX=80)
COMMON /FlCOM/ NCOM,PCOM(NMAX) ,XICOM(NMAX)
DIMENSION XT (nmax)
DO 11 J=1,NCOM

XT(J)=PCOM(J)+X*XICOM(J)
11 CONTINUE

F1DIM = chisq(XT)
RETURN
END

FUNCTION EPART(rs,rf,qs,gbmeq,ci,void)
double precision n, tau,B,as,agbm

c rs=20.
c rf=2.e-9
c qs=-0.0489
c gbmeq=-7.6
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c ci=0.01
c void=.93

phi=-log(void)
xrs=rs/lel0
temp=300.
eps=78.3*8.854e-12
as=xrs*96500*qs/(8.314*temp*eps)
agbm=xrs*96500*(48250*gbmeq/phi*rf)/(8.314*temp*eps)
kap=(ci*2*1000.*96500.**2/(8.314*temp*eps))**.5
tau=xrs*kap
B=rf/xrs
h=0.
epart=0
dh=l.e-10
1=0

100 continue
1=1+1
n=h*kap
gh=2*phi*(h+xrs+rf)/(rf**2)*exp(-

phi*(h+xrs+rf)**2/(rf**2))
EA=as*agbm*2.3523*tau**-1.2472*B**.7599
EB=exp(-1.0956*n)
EC=as**2*.357*tau**- .9512*B**.5052
ED=exp(-3.7684*n)
EE=agbm**2*.4473*tau**-1.1512B** .931
EF=exp(-2.4987*n)
E=(8.314*temp/96500)**2*eps*xrs/(temp*1.38e-23)*

$ (EA*EB+EC*ED+EE*EF)
c print*,n, E, EA*EB+EC*ED+EE*EF
c write (*,111)'gh=',gh,'E=',E

epart=epart+exp(-E)*gh*dh
c print*, exp(-E)*gh*dh,n

if (l.gt.50)then
if (exp(-E)*gh*dh.1t.le-6) then

goto 200
endif
endif
h=h+dh
goto 100

200 continue
111 format(a4,fl6.3,a4,f16.3)

c print*,'part=', epart
return
end
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