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Abstract

This thesis examines wave-induced minority species transport in ion cyclotron ra-
diofrequency heated tokamak plasmas. ICRF heating generates highly energetic non-
Maxwellian tails in the resonant minority ion distribution function. Because of the
increase in perpendicular energy of minority ions due to cyclotron resonance inter-
action, most resonant minority particles are trapped with large banana-width orbits.
Fast ion orbits are studied in detail using the guiding-center theory formalism. An
area-preserving set of guiding-center equations is derived for computational study.
Moreover, a new set of coordinates for trapped particles is introduced to examine
the phase space distribution of barely confined particles. Diffusion coefficients for
resonant particles in full phase space are computed analytically. They show that
RF-induced convection due to asymmetric spectrum is usually much larger than the
RF-induced diffusion for symmetric spectra. A different mechanism of transport that
does not involve change in parallel momentum is also studied for the interesting case of
barely confined particles. This type of transport applies mainly to energetic trapped
particles whose banana widths are comparable to the minor radius of the tokamak.
Phase space diffusion coefficients are used to estimate the radial displacement of the
trapped particle orbit. Fluxes that arise from this transport are larger than the neo-
classical fluxes and RF-induced fluxes due to ICW asymmetric spectra. This thesis
also shows that the particle and energy loss rates are fairly independent of the RF
power for peaked RF power profiles and large confinement parameters.

Thesis Supervisor: Abraham Bers
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Chapter 1

Introduction

1.1 Theoretical background and motivation

Plasma heating using radio-frequency electromagnetic waves has been proven to be

one of the best means of auxiliary heating of tokamak plasmas in JET and TFTR

experiments [1, 2]. This method uses waves in the ion cyclotron range of frequen-

cies (ICRF) that resonate with the ion cyclotron frequency of one or two-ion species

of the plasma. The energy directly absorbed by the ions is also delivered to the

non-resonant particles through collisional damping. In particular, the two-ion hybrid

regime is probably the most effective heating mechanism [3]. This regime is based

on the resonant interaction of the fast magnetosonic wave with a small concentration

of hydrogen (usually called the minority species) in a deuterium plasma. Theoret-

ically, very little cyclotron absorption would be expected due to the right circular

polarization of the fast wave in a single ion species plasma. However, the presence

of a second ion species leads to an increment of the wave field rotating in the same

direction of the ion gyration, namely the left circularly polarized component of the

fast wave [4]. The result is that the minority species absorbs energy resonating at

its fundamental frequency from the fast wave. It is important to remember that the

majority species (deuterium) also absorbs energy, but it does so at a frequency which

is twice its fundamental frequency and therefore is less efficient by a factor of (k± p)2

[5]. If the relative concentration of the minority species is high, then the fast mode



can convert into a Bernstein wave near the two-ion hybrid layer and eventually deliver

its energy through electron Landau damping [6].

There is another scenario where the minority concentration is low and wave absorp-

tion is dominated by the ion-cyclotron damping of the minority species. This scenario

is assumed in this thesis. Resonant ions generally gain perpendicular energy through

cyclotron interaction. By doing so, their orbits become more trapped and their ba-

nana widths becomes larger. In a strong RF heating regime collisions are not fast

enough to prevent the formation of a minority tail. The very energetic minority ions

are subject to transport mechanisms that are qualitatively different from those that

govern the bulk ions and electrons. Such mechanisms are not fully understood and

are being studied vigorously.

The goal of my thesis is to shed more light on several theoretical aspects of minor-

ity transport as well as to examine a different mechanism of transport. To begin,

I examine the transport that originates directly from the wave-particle interaction

(RF-driven transport). Furthermore, the strong perpendicular anisotropy of the mi-

nority distribution function will be taken into account. Lastly, the wide banana orbits

also contribute to radial transport in a way that has not been thoroughly investigated

before.

This thesis is essentially divided into five chapters. In the first chapter, I provide

a general introduction to the problem of RF-induced transport in an ICRF-heated

plasma. In the second chapter, I examine fast ion orbits using the guiding-center

theory formalism. Their topological features need to be understood in detail before

venturing into the realm of transport and confinement. In the third chapter, full

phase space quasilinear coefficients are derived from first principles. The' advantage

of this approach is that the diffusion coefficients are a function of the invariants of

motion and lend themselves to treating finite banana width effects. In the fourth

chapter, I review the collision operator for fast minority ions. In the last chapter, I

compute RF-induced particle and energy fluxes at the edge of the plasma and give

suggestions for future research.



I have found that an effective loss of particles and energy is caused by diffusion in both

parallel momentum and perpendicular energy in full phase space. Non-neoclassical

particle and energy losses due to finite orbit effects and perpendicular velocity diffu-

sion generally outsize neoclassical, parallel momentum diffusion driven transport in

the trapped region for a minority species.

Since my reader may not be fully acquainted with some of the theoretical aspects of

plasma physics, I wrote this thesis to be self-contained and as clear as possible. Text

is accompanied by figures which appear in Appendix N. I hope that this thesis will be

helpful and inspirational to researchers developing new ideas outside the usual paths

in the challenging field of fusion plasma transport.



Chapter 2

Unperturbed Motion of Fast Ions

in a Tokamak

2.1 Guiding center motion and adiabatic invari-

ants

2.1.1 Introduction

The study of the transport and heating of ions requires an understanding of their un-

perturbed orbits. Charged particle motion can be conveniently studied in the frame-

work of guiding center theory. The Larmor radii of charged particles in a Tokamak

plasma are generally smaller than the average radius of curvature of the magnetic field.

Hence, the charged particle motion is best described by the motion of its guiding-

center position. The guiding-center formalism is based upon the small gyroradius

expansion of the equations of motion and their gyrophase averaging. This theory

has been developed and refined over the past thirty years. The works of Northrop,

Morozov and Solovev deserve particular mention [7, 8]. More recently, Littlejohn [9]

proved that the addition of second order terms in the guiding-center equations has

the advantage of keeping the Hamiltonian structure intact. This thesis adopts Lit-

tlejohn's formalism to study the unperturbed motion of fast ions in a tokamak. It is



important to mention that Littlejohn also developed a guiding-center theory based on

Lagrangian theory [10]. The two formulations are perfectly equivalent. We prefer the

Hamiltonian formulation since it has been studied more thoroughly, especially with

perturbation methods.

2.1.2 Guiding center Hamiltonian

The full unperturbed Hamiltonian for a charged particle in a magnetic field is

1
H = -(p - qA(x)) 2  (2.1)

2m

where the canonical variables are p and x, respectively, the particle momentum and

the particle position [11].

The vector potential A refers to the total equilibrium magnetic field. The magnetic

field is assumed to be time invariant and axisymmetric around the vertical axis to the

equatorial plane of the tokamak. These assumptions are of fundamental importance

to our treatment of unperturbed motion. Noether's theorem [11] guarantees the ex-

istence of invariants of motion for systems that are endowed with symmetry. Such

invariants simplify the particle orbit study tremendously.

The next step is to introduce the particle velocity v defined as

1
v = -(p - qA(x)) (2.2)

m

The Hamiltonian in equation (2.1) is not a guiding-center Hamiltonian yet. To make

use of the guiding-center Hamiltonian, new variables need to be introduced

Guiding-center position parallel velocity magnetic moment gyrophase

Xgc Vii k egc



These guiding-center variables are related to the particle position x and velocity v

through a set of invertible transformations (see Appendix A for details). It has been

shown [9] that our unperturbed Hamiltonian can be written in guiding-center vari-

ables as

12
Ho = -m 1 + pB(Xgc) + O(E2 ) (2.3)

where E = gyroradius/(magnetic scale length) is a small parameter. In practical

calculations, one truncates the Hamiltonian, neglecting terms that are quadratic or

higher order in E. The G.C. variables are a mixed combination of canonical and non-

canonical variables. In fact, only the magnetic moment and the gyrophase can be

regarded as canonical variables. The Poisson brackets for guiding-center variables are

listed in Appendix B. Finally, the equations of motion can easily be derived by starting

from equation (B.1), given the Hamiltonian in equation (2.3), the Poisson brackets

in equations (B.3), (B.4) and (B.5), and making use of the chain differentiation rule.

For further details we refer to the guiding-center treatment in Balescu [12].

In Appendix B, we derive the guiding-center equations of motion for a charged particle

in a tokamak with circular flux-surfaces using an Hamiltonian method.

2.1.3 Guiding-center equations of motion

The guiding center equations of motion relative to the Hamiltonian in equation (2.3)

are

1 1.
Xgc = (vllB* + Eb x -VB) (2.4)

B*
il B* (-AVB) (2.5)

mB*

f = 0 (2.6)



and
=qB (2.7)

m

The vector B* has been defined in Appendix B. The full system has three degrees of

freedom, and therefore, there are six scalar equations.

As established by previous research [7], the magnetic moment is an adiabatic invariant

to all orders, because the gyrophase dependence of the guiding center Hamiltonian

has been eliminated by a gyrophase-averaging method. Equations (2.4)-(2.7) satisfy

two important properties [10]:

* conservation of an approximate energy Ho = mV-- + B from (2.3)

* the existence of a Liouville's theorem for B*

In addition, the presence of B* in the equations guarantees that toroidal angular

momentum is conserved exactly in axisymmetric systems.

Our goal is to describe and study the motion of fast ions in a tokamak. This can be

accomplished through direct integration of the equations of motion. An alternate and

more efficient way to compute the full phase-space orbits is to use the Hamiltonian

properties of our system. Instead of directly integrating the full set of equations of

motion, one can write an algebraic equation that relates the radial coordinate to the

poloidal angle starting from the invariants of motion. The solution of the algebraic

equation gives the parallel and perpendicular velocities combined with the conser-

vation of momentum, energy, and magnetic moment. Since the fields are assumed

to be axisymmetric, the toroidal variable does not enter into the expressions of the

velocities. The time dependence as well as the toroidal angle can be obtained by

integrating the two respective equations of motion.

2.1.4 Normalized guiding-center equations in a tokamak

The radial and poloidal coordinates of a particle's trajectory in a tokamak can be

computed from its constants of motion.



However, to determine the time it takes for a particle to move from one point to an-

other in its path and to recover the toroidal angle position requires integration of the

equations of motion for the unperturbed Hamiltonian. Here we derive such equations

in a form that is suitable for both computational and analytical work. The equilib-

rium fields are assumed to be known and given a priori. They can be computed by

solving the Grad-Shafranov equation for given pressure and current profiles. To make

analytical work simpler, we adopt a simple tokamak geometry, where toroidal coordi-

nates are (r, 0, ). The equations of motion are written in non-dimensional variables.

The radial coordinate is normalized to the minor radius, where x = r/a.

The versor in the direction of the magnetic field is a flux-surface function

b(x) = f (x)ec + g(x)eo (2.8)

where

f 2 + g2 = 1 (2.9)

The magnitude of the total magnetic field is

JB 0= (2.10)hf

where h = 1 + x-cosO and Bo is the toroidal magnetic field magnitude at r = 0.

Important vectorial identities for the magnetic field versor b in equation (2.8) in

toroidal coordinates are listed in Appendix C.

We normalize time with respect to a standard bounce time defined as tb = Ro
Vth

The thermal velocity Vth = 2T/m corresponds to the temperature of the majority

ion species.



The normalized guiding-center equations for the poloidal and toroidal angles are re-

spectively

dO
d(t/tb)

(2.11)

and

Vllth B* .e
hB** Bo

+t 1 Rob x+ 2B COb x
2hB** wcotb a

Ro 1 1 g
A = vllth a XB**hf

Vj4th 1B = W•,tb
xB** WcOtb

RO) 2[ fcosO a
a h Ro

(2.14)

v llth Li 1C =
x B** 4w 2ot2

f 2g* a
-2 cosO - 2

h Ro

R o  gg*
(-) [g(a x

g2g* bf +
x h

ff* aS f f a cos) +
h Ro

cosO +
0 fbs + f*bo•

(2.16)D= 1 Ro 1 cos9 a
x 2B** a WcOtb fh2 Ro

d(
d(t/tb)

where

VB
a- ec

Bo
(2.12)

(2.13)

(2.15)



B* - ec 1 vllth Ro g9B- = [+ j( + 4] + (2.17)Bo h wcotba X
1 Ro f2[ * f2 f* a g2f* gb0+( o )[ C8O 9- 2 g*bo - gb*]2Wcotb a X h Ro X x

and finally

VB cosO a f*
b xa e7 = + ] (2.18)Bo f h2 Ro +f2

The vectorial identities that yield equations (2.11) and (2.12) are listed in Appendices

B, C and D. The normalized guiding-center equations for the poloidal and toroidal

angles are computed by dotting equation (2.4) for the guiding-center position vector

with the poloidal and toroidal unit vectors and dividing the result by the standard

bounce time tb to achieve normalization. This is done in Appendix D. Other nor-

malized quantities such as B**, co, bý, b^, f*, f**, g*, g** are listed in Appendix E. The

guiding-center equations for the parallel velocity vii and the radial coordinate r are

not listed because these variables are recovered through the constants of motion.By

doing so we are spared two integrations. This set of equations has all the properties of

a Hamiltonian system and therefore can be used for long-time integration of particle

orbits.

2.1.5 Guiding-center particle orbits in a tokamak

In order to find the particle orbits, we make use of three guiding-center constants of

motion:

* energy E = mv2

mv2" magnetic moment t - 2m-



* toroidal angular momentum p -= R(mvc + qA()

These constants will be written in non-dimensional form and customized to a given

set of equilibrium fields.

In MKS, the toroidal angular momentum is

Pc = hRo(mv( + qAC) (2.19)

The toroidal velocity is given by

v= V11= - -v 1 f (x) (2.20)

where f(x) is the toroidal component of versor b. By substituting equation (2.20) in

equation (2.19) the toroidal angular momentum becomes

Pc = -mhRovllf (x) + qh(x, O)RoAc(s) (2.21)

The parallel velocity can be written as

2 Bo
v11 = [E - A h

m hf
(2.22)

Rationalizing the toroidal momentum we get

PC
RovUth

= -hf v + qACRoh (2.23)
Vth myth

where x = r/a .

Furthermore,



a
h = 1 + xa cosORo

The normalized parallel velocity is

- -4-1
Vth
Vth

v2  21.Bo

V2 mhv2f
-= 2 - -Thf

where 0 and f are normalized velocity and magnetic moment which are defined in

equations (2.27) and (2.28).

A particle orbit can also be described by its position and velocity at any arbitrary

point along the particle trajectory. The following notation is used for initial conditions

Vlo0 v1 0 ro
Vth Vth a

The non-dimensional constants of motion are

* velocity

S=norm,,, = (Vo0th + V21Ith)1/2

(2.26)

(2.27)

e magnetic moment

f ALnorm = hofovi2Oth= hfV2ith

where
mvy2
2B

(2.28)

(2.29)mv 2B
2Bo

and

ho = 1 + xo 2cosoRo

(2.24)

(2.25)

(2.30)



* toroidal angular momentum

qA,(x=)hoRo qAc(z2)hRo-hofovijo + qA=(xO)hoRo -hfAT + (2.31)
myth mYth

We will make extensive use of normalized variables throughout this thesis. By con-

vention, these normalized variables are denoted by barred symbols.

2.1.6 A simple toroidal equilibrium and motion invariants

The problem of transport is related to the equilibrium fields of the tokamak. A mea-

sure of particle confinement is given by the toroidal momentum as shown in previous

research [13, 14, 8, 12, 15]. In turn, the toroidal momentum is a function of the

current density through the toroidal component of the vector potential. Equilibrium

will now be given to progress toward an understanding of the topology of the particle

orbits. The choice of equilibrium fields must be optimized to meet requirements of

simplicity and to preserve physical content. The equilibrium pinch [16, 17] is a simple

configuration that preserves some of the basic ingredients of the physics of equilibrium

confinement. The toroidal field is generated by external currents and has the usual

1/R dependence. It is given by
Bo

BC = h(,) (2.32)h(x, 0)

where Bo is the toroidal field intensity at R = Ro. We work in cylindrical coordinates

(r, 0, z). The poloidal field is given by Ampere's law

ld
~oJz = r (rBO) (2.33)r dr

If we make the current density a constant, then Maxwell's equation can be easily

integrated to yield the poloidal field inside the plasma



BO = /2a2 r
2wa2 (2.34)

where BO is the poloidal component of the equilibrium magnetic field and I is the

total toroidal current inside the plasma. The toroidal vector potential is obtained by

integrating B = V x A to give

Az = PoX 2

4r
(2.35)

The absolute value of the total magnetic field is

B 0IBI = Bo
hf

(Bo 2
= (h) + (2.36)

The toroidal component of the unit versor can be expressed as a function of the fields

by solving equation (2.36). This yields

f = (1 + 2 2raB 2 -1/2
2xaBo

(2.37)

The normalized toroidal momentum can now be written in explicit form

P = -h(x)f (x)iv + Acx2 (2.38)

where

p0oqI
AC 47rmvth (2.39)



Knowing how the constants of motion depend upon the radius and the poloidal angle,

in the next chapter we write and solve an algebraic equation for x = x(O) and recover

the parallel velocity and the perpendicular velocity through equations (2.27), (2.28),

and (2.31).

2.1.7 Summary

Guiding center equations have been derived for a tokamak plasma with circular flux

surfaces. A simple equilibrium model has been adopted to make equations suitable for

quantitative analysis. Constants of motion have been written as functions of particle

position and velocity. In the next step, we will use these relationships to study fast

ion motion in a tokamak.



2.2 Fast ion orbits in a tokamak

2.2.1 Introduction

Ion cyclotron heating increases the perpendicular energy of resonant minority ions.

As these particles gain energy, they become more trapped. Trapped particles are

generated when pitch-angle scattering is not fast enough to scatter the particles into

the passing region. Resonant ions can become so energetic that their orbits touch the

plasma's edge and their banana widths reach dimensions comparable to the minor

radius. The banana tips move toward the resonant layer as they gain perpendicular

energy crossing the resonant layer, see figure (2.1) 1. To understand the transport of

these energetic particles due to RF and collisions, their orbits need to be understood

in detail. A general treatment of particle orbit can be found in books by Balescu

[12] and White [15]. Also, Rome [14] studied the topology of tokamak orbits using

a set of phase space variables where the toroidal angular momentum is replaced by

the maximum value of the particle radial position. More recently, Putvinskii used a

reduced set of constants of motion to study alpha particle confinement [18]. In this

chapter we focus on barely confined trapped particles that touch the plasma's edge.

These particles are labelled by the position of their banana tips. We will also compute

the banana widths and their poloidal periods.

2.2.2 An algebraic equation for particle orbits

An algebraic equation for particle orbits can be derived by employing the integrals

of motion. These are energy, magnetic moment, and toroidal momentum. We make

use of equations (2.27), (2.28), and (2.31). We simplify the orbit equation by letting

f = 1. This simplification implies that the intensity of the poloidal magnetic field is

neglected with respect to the intensity of the toroidal magnetic field, which is a good

approximation for tokamaks [18]. By doing so, we obtain

'Figures are in Appendix N



V2
2 _ -

U th

p = hol 2

(2.40)

(2.41)

and

P = -h 1 ll + AcX 2 (2.42)

The parameter A, has been defined in equation (2.39). Next, solve for Vii and substi-

tute it into the expression (2.31) for the toroidal momentum to get an equation in 0

and x. The orbit equation is quartic in x 2

ax4 + c(O)x2 + d(9)x + e = 0 (2.43)

where

a = A ; c = -2pA, - ( • )2 2Cos28C Ro (2.44)

and

d = cos9(-2a 2 + a ) ; e = p2 _f2 + p (2.45)

Theoretically, a quartic equation can be solved analytically, however, the length of the

solutions are such that little information can be extracted from them. Moreover, we

2The coefficient a should not be confused with the minor radius a that appears only in the inverse
aspect ratio in this section.



are only interested in energetic trapped particles that have large orbits which touch

the plasma's edge [19, 20].

We will examine barely confined trapped particles in the next section of this chapter.

2.2.3 Barely confined trapped particles phase space

The orbit equation describes approximately all particle trajectories in a tokamak as

functions of the constants of motion. This is more information than required for our

study of barely confined particles. We let cosO = 1 in equation (2.43), which means

that we examine the particle orbit intersection with the outer midplane of a tokamak.

The algebraic equation becomes

ax4 + c 1x2 + dix + e = 0 (2.46)

where the coefficients are

C1 = -2.pAc - ( a-)2 2 (2.47)
Ro

dl = -2 a 2 + p (2.48)Ro Ro

We are interested in particles that are barely confined, therefore we let x = 1.

This yields an equation for the constants of motion

A - w - o-+V +A=0 (2.49)

Our choice of the constants of motion is now restricted to a two-dimensional space

rather than a three-dimensional one. In addition we assume the inverse-aspect ratio

equal 1. Indeed, most tokamaks have inverse-aspect ratios equal or quite close to this

value. Besides being physically evident, it can also be computed from equation (2.43)



that cosO = 1 is either a maximum or a minimum for x.

Since we search for a maximum in x, we will require the second derivative of x, with

respect to 0, to be negative

d2x dx -
2  d2x

= -(cosO d(cosO) sin2x d(cos(O))2 ) < 0 (2.50)

This leads to the following inequality that has to be satisfied by the constants of

motion when a/Ro =

_p2 + E
S3 <0 (2.51)

4A - 4Ac - I2 + 3

For a derivation of this inequality, see Appendix F.

Whenever the three constants of motion are given, we need to ensure that this in-

equality is satisfied.

2.2.4 Trapped particles whose tips are on the resonant layer

We begin by considering minority heating on axis because it is most commonly used

in experiments. Energetic trapped particles that interact resonantly with the fast

wave eventually end up having their banana tips close to the resonant layer [21].

These particles have a strong resonant wave-particle interaction and, therefore, will

be studied carefully.

They can be easily identified in phase space by examining their constants of motion.

By setting the parallel velocity to zero at their banana tips, one can easily derive the

following relationships for the energy and the momentum from equations (2.25) and

(2.38)

= Ac~ ; = p (2.52)



where x0 is the radial coordinate of the banana tip of the trapped particle.

By substituting these relations in equation (2.49) we get

4 2

2Axo 2 -9 V + A x°o = 0 (2.53)

This biquadratic equation can easily be solved for x2 to yield the following

x = (2.54)
1.0 - /D

The first root can be discarded because it gives a trajectory that goes beyond the

boundaries of the torus on the resonance layer.

Solving equation (2.54) for energy, we obtain

-2 9
2 = A (1 - )2  (2.55)

This equation is plotted out in figure (2.2) for a tokamak whose parameters are sim-

ilar to Alcator, namely a/Ro = 1/3, BT , 5T, I - 1MA, n,? e 1 x 1021 m-3 and

Te, ,, 3KeV [22]. The energy has been normalized to 1 KeV. We are interested in

particles whose energies are well above the thermal energy because these are the most

representative of the minority tail distribution function. One can see from figure (2.2)

that the most energetic trapped particles have their tips close to the center of the

plasma, as one can infer from toroidal momentum conservation. As the energy de-

creases, the tips move radially outward. For instance, the maximum energy that such

particles can have while being confined is 1.2MeV. In general, the maximum energy

is determined by the amount of toroidal current flowing within the tokamak. The

maximum confined particle energy changes proportionally to the squared toroidal



current

(Energy)max oc 12 (2.56)

Equation (2.56) is derived from equations (2.39) and (2.55).

2.2.5 General expressions for trapped particles

We will generalize the approach used to study the trapped particles whose tips touch

the resonant layer and extend it to trapped particles whose banana tips are located

anywhere in the torus. We let the parallel velocity be zero at some point and compute

the constants of motion as a function of the coordinate of this point. By doing so, we

obtain from equations (2.25) and (2.38)

1
p = (1 + 3cosoxo)v2 ; = Acx 2 (2.57)

3

where x0 and 90 are the radial and poloidal angle coordinates of the tip of the banana.

By substituting these expressions into equation (2.49) we obtain

9A ( - 1)2
V = -A2 (2.58)4 C1 - zocos9o

These expressions allow us to find the constants of motion when the location of the

banana tips is given.

The barely confined particle energy is plotted in figure (2.3). It is clear that highly

energetic particles are those whose banana tips are closer to the plasma center. As

the trapped particle banana tips move toward the inner part of the torus, their en-

ergy decreases. We need to verify whether equation (2.51) holds for these particles. If

we substitute for the constants of motion in the second derivative condition we obtain



a (11 - 15 x0 cos(0o) - 6 x 0
2 + 14 x03 cos(0 0) - 5 o4 + x05 cos(00))

-4 + 4 xo cos(00)

A numerical computation for 0 < x0 < 1 and 0 < 00 < 7r shows that this inequality

is indeed satisfied for barely confined particles.

2.2.6 Particle drifts for energetic trapped particles

Trapped particles that touch the plasma edge are very energetic. At the same time,

their parallel velocities become smaller as they approach their tip location. In such

instances, particle drifts cannot be neglected even at leading order in e. Stringer

[23] pointed out that the drift velocities of energetic particles cannot be ignored with

respect to their parallel velocities if one wishes to ascertain the domain of the trap-

ping region. Although his treatment was based on a study of alpha particle orbits, it

applies to fast minority ions as well. An additional reason for studying the particle

drifts is to compute the poloidal period of energetic particles. This can be carried out

as follows by computing the integral for trapped particles

fab dO
Tot = 2  /d(2.60)

J- 06 dO/dr

where the derivative is computed along the unperturbed orbit and Ob is the poloidal

bounce angle.

In Appendix D, the full expression for the poloidal angle velocity is given. Here we

keep all the linear terms in e for simplicity. The poloidal angle velocity is obtained

from equations (D.1)-(D.3) in Appendix D by letting f = 1 and B* = Bo/hf and

neglecting quadratic terms in E

dO 1 v119 VdcosO
- [ x] (2.61)dt az x: I



where a is the minor radius. The particle drift velocity is

v I2 + v2 /2
Vd =v11

woRo
(2.62)

and the rotational factor g is

Aqx
g (1 + A2x 2)1/2 Aqx (2.63)

(2.64)

where Aq is
2 0OI

A, 4aBo 4r

For Alcator parameters we get Aq a 1/5.

The poloidal velocity is now expressed in terms of the constants of motion. Substi-

tuting equation (2.63) and (2.64) into (2.61) yields the following expression for the

poloidal velocity

dO 1
d-= - [Aqvildt a

2E - B cosO
mwcoRo x;

We will work with normalized variables.

We divide the time by a standard bounce time tb = (vlj/Ro) - 1 to get

Ro  Vth AqwcoRo 2

a wcoR0 Vth
(2.66)h2 cos( 2f)2

x 2h

and we substitute the parallel velocity as a function of p from equation (2.42) to get

R o Vth AquoRo Acx 2 -R cosO (x- )2

a wcoRo Vth h x 2h
(2.67)

(2.65)

dO
dt



This expression can be simplified when we make use of the relation

AwcoRo Ro= 2Ac -R (2.68)
Vth a

yielding

dO Ro Vth Ro Acx2 - p COSO
= -- R [2Ac- (_ 2 ] (2.69)d t a wcoRo a h X 2h

Let's substitute Alcator parameters to get an order of magnitude for these velocities.

For a 1 KeV thermal plasma in a tokamak where the magnetic field intensity is 5

Tesla, 10 < Ac < 100. Substituting these numbers into equation (2.69) we obtain

dO 20x 2 5- cosO2 _
- Oc 120 ( (270)
dt h aX 2h

It is clear that the second term on the R.H.S. is much smaller than the first term on

the R.H.S. unless the particle gets very close to the plasma axis (x -+ 0) . Another

important factor is the cosO dependence of the drifts. This means that no matter how

close the particle gets to the plasma center, the drifts will be zero as long as the particle

moves along the vertical diameter. This explains the topology of certain classes of

trapped particles that have very large banana widths and move long distances along

the diameter. Some researchers [24] call them potato orbits, because their poloidal

projection resembles the contour of a potato.



2.2.7 Approximate analytical expressions for poloidal peri-

ods

In this section, poloidal periods are derived in terms of the constants of motion. For

a standard derivation, see Balescu [12]. We will begin by evaluating the bounce times

Tb. At leading order in e the guiding-center equation for the poloidal angle is

dO vii

dt qsRo

where q, = •RB is the safety factor. The parallel velocity can be written as

2 0
viI = a (E - pBo + EpBo) 1 - k 2sin2 -

m V2

(2.71)

(2.72)

where

k 22q2sBoE - yIBo + elLBO~ (2.73)

If the safety factor is a constant along the particle orbit, then the poloidal bounce

time for passing particles is given by

Tb =fdt=7

Assuming the departure from

can be written as a function of

(2.28) and (2.38)

qRo f21r dO

2(E - piBo + EpBo) 0 1 - k2Sin2!
(2.74)

the flux-surfaces is small, the normalized bounce time

the normalized constants of motion in equations (2.27),

Tb 4q,() K(k
bpass= th K(kp)

Ro v2 (lO
(2.75)



where the modulus of the complete elliptic integral of the first kind is

2kft

we define a radial position f

1 +
Ro AA

and the safety factor is given by

qsg(l

For trapped particles, the computation of the bounce time is somewhat similar

Tbtrapp = 8q.(Et)K( IVI 26 -t kt (2.79)

The only difference is that we take the average radial position from the tip of the

banana

et = W0;i c (2.80)

the modulus of the complete integral of the first kind is

v - (1 - Et )

and the safety factor is evaluated at the banana tip

(2.81)

(2.76)

(2.77)

(2.78)



qs(et) = t(2.82)
g(ft)

2.2.8 Poloidal period for trapped particles touching the plasma

edge

We now estimate the poloidal period for trapped particles whose orbits touch the

plasma edge using the results from section (2.2.7). An analytical expression for the

normalized poloidal period of thin bananas in the range x • 1 can be derived from

equation (2.79) using equations (2.63) and (2.78) to yield

T 8 aT ý ( - )1/2 K(1/kt) (2.83)
A, 2RofL

where the trapping parameter is

kt 2a ; )1/2 (2.84)
Ro u2 - (1 - a/Ro)p

The poloidal velocity tends toward zero as the trapped particle approaches the banana

tip. All spatial quantities in the expression for the poloidal period will be evaluated

at the banana tip location.

The normalized poloidal period can be written as a function of the location of the

trapped particle tip

8 a )/ 2 K( s i n 2 (9O/2)) (2.85)
A, 2R 0o V



For the normalized magnetic moment we use equations (2.57) and (2.58)

9 1 (2 1)
S= A(1 + -_cos0oxo) - (2.86)4 3 1 - zocos90

This approximation loses its accuracy for trapped particles that have their banana tips

close to the plasma axis. Fortunately, this does not change the validity of equation

(2.85) because those particles fill only a very small region in phase space. Normal-

ized poloidal periods are plotted as functions of the location of their banana tips.

See figure (2.4). The divergent behavior of the elliptic integral can be seen at the

passing-trapped region boundary where the poloidal angle of the tip of the banana

is 7r. The time scale of the bouncing motion can be easily obtained by computing tb.

For Alcator parameters [22]

R0
tb =- 2 x 10-6sec. (2.87)

Vth

2.2.9 Orbital widths for barely confined particles

Because barely confined particles have large orbital widths, they collide with majority

ions and electrons along their trajectories. Due to wide orbit effects, collision rates

can differ greatly along the orbit. For these reasons, it is important to estimate the

orbital widths in phase space. The maximum orbital width is between the two parti-

cle intersections at cosO = 1. One intersection is already known: it takes place at the

plasma's edge. The other must be found by solving equation (2.46). Before doing so,

we divide equation (2.46) by (x - 1) to simplify it, which yields a cubic equation that

can be reduced to the following form

x3 + 22 + Ax + B = 0 (2.88)



where

c) cl + dl
A=( 1+ ); B=(+' ) (2.89)

a a

The coefficients a, cl and dl have been defined in equations (2.44),(2.47), and (2.48).

Equation (2.88) has three solutions, two of which are complex. The real one gives

the abscissa of the inner intersection. The real solution can be obtained analytically,

but it is better to compute it numerically. By doing so, the maximum orbital width

is computed for Alcator parameters. In figure (2.5), we plotted the contour of the

maximum width for barely confined trapped particles as a function of the location

of their banana tips. There is a large region in phase space where the width is

approximately 0.9 times or more than the minor radius. This region is the potato

orbit region because of the shape of the orbit. This region becomes larger as the

poloidal angle of the tip approaches the inner edge of the torus midplane. The width

decreases almost linearly with the increasing radial position of the tip as soon as we

leave the potato region.

2.2.10 Summary

We examined barely confined trapped particles in phase space. We showed that

the location of their tips is the most logical phase space label for these particles.

Poloidal periods were computed at leading order in e. We also showed where these

approximations break down. The maximum radial excursions of these particles were

computed numerically. The results showed that there is a fairly large region in phase

space where barely confined particles have orbital widths comparable to the minor

radius: the potato orbit region. We would like to point out that passing particles

are of marginal interest in this analysis because only a small fraction of them have

barely confined orbits. In the next chapters, we study the effects that the fast wave

and collisions have on these particles.



Chapter 3

Resonant wave-particle in

ICRF-heated tokamaks

3.1 Introduction

In this chapter we study resonant wave-particle interaction for ICRF-heated toka-

maks. In the first section we briefly review the Hamiltonian formulation of charged

particle motion in a small amplitude wave. In the second section we list and dis-

cuss praises and limitations of past research on quasilinear theory. In the third and

fourth sections we derive a quasilinear operator for a resonant particle distribution

function along with formal expressions for the quasilinear diffusion coefficients. In the

fifth and sixth sections we derive an approximate expression for the diffusion tensor

using Hamiltonian perturbation theory. Finally, in the last section we compute the

magnitude and the scaling of the diffusion coefficients for standard tokamak param-

eters. The main goal of this chapter is to derive a simple, analytic expression for

the diffusion coefficients of resonant trapped particles which can be used to estimate

RF-heated minority transport.



3.2 Hamiltonian formulation of charged particle

motion in a small-amplitude electromagnetic

wave

Let us consider a static magnetic field B in a tokamak. We assume that this equi-

librium field is given and described by the Grad-Shafranov equation. In addition

to the equilibrium field, we have a high frequency electromagnetic wave. Given the

two corresponding vector potentials, A and A 1, the non-relativistic Hamiltonian of

a single-charged particle can be written in a straightforward manner as

1
H = -(p - qA(x) - qA1(x, t)) 2  (3.1)

2m

where we made use of the Coulomb gauge [8], which is equivalent to letting the

electrostatic potential 01 equal zero. If one has explicit expressions for the vector

potentials in terms of space and time, then one can simply write the canonical equa-

tions for (p, x) and solve them. However, we take a more interesting approach that

uses the guiding-center theory. To start, let's assume that the wave has a small am-

plitude with respect to the equilibrium field. This assumption is certainly valid in a

tokamak where the equilibrium fields are much larger than any other electromagnetic

perturbation. Let's introduce a small parameter A such that

A 1A - = O(X) << 1 (3.2)

This ordering allows us to use the approximate guiding-center Hamiltonian instead

of the full Hamiltonian given by equation (3.1). To derive the approximate guiding-

center Hamiltonian, we start by writing out the Hamiltonian in the following manner

H = 1 (p - qA)2 m AI.(p - qA) + A1 ' (3.3)
2m m 2m

guiding center motion linear w-p interaction quadratic term



or more concisely

H = Ho + AH 2 + A'H2  (3.4)

The exact Hamiltonian written in this form indicates that the particle motion is de-

scribed by its leading-order unperturbed motion given by Ho plus a small wave per-

turbation given by H1. The quadratic term H2 in A is small and therefore neglected.

In addition to being small, the quadratic term H2 is not needed to derive quasilinear

diffusion coefficients because these generally stem from linear wave-particle interac-

tion only. To make further progress, we introduce the velocity v

mvy p - qA (3.5)

This is the velocity of the particle. Our Hamiltonian can now be written as the sum

of two Hamiltonians: the first contains all information concerning the guiding-center

motion of a charged particle in a static magnetic field, while the second describes the

interaction between the particle and the wave. This can be summarized as

12
H =-1mv2 - qv - A1  (3.6)

The linearization of the full Hamiltonian in equation (3.1) has accomplished the goal

of separating the unperturbed motion from the wave particle interaction contribution

so that the complete motion is given by the linear superposition of two motions: one

due to the static fields and the other, due to the wave. The first Hamiltonian can be

written as a guiding center Hamiltonian



Ho -= mv = mV +IB(Xgc) + O( 2)(3.7)

Since this Hamiltonian was examined in the second chapter, we will focus on the

linearized Hamiltonian H1 in this chapter.

3.3 Quasilinear Theory and Diffusion Coefficients

in Phase Space

3.3.1 Introduction

A few specialized quasilinear operators have been derived to study the evolution of a

minority distribution function heated by the fast Alfven wave. However, little research

has been done to include spatial transport in a quasilinear formulation, primarily be-

cause present quasilinear-theory formalisms are designed to deal only with diffusion

in velocity space. The added complexity of working in the full phase space, instead of

just the usual velocity space, makes the formulation of a generalized diffusion equation

a difficult task. Before we address the problem of such a formulation, we discuss some

advantages and limitations of past and other research regarding quasilinear transport

studies of a heated minority. We will also examine past work toward a unified ap-

proach.

3.3.2 Quasilinear theories

The first quasilinear operator for a plasma in a homogeneous magnetic field was de-

rived independently by Yakimenko in 1963 [25] and by Kennel and Engelmann in 1966

[26]. This operator was meant to study the temporal and velocity space behavior of

a plasma in a homogeneous field under the action of an incoherent wave spectrum

due to some turbulent modes. The same operator has also been used to study the



effect of a coherent, externally induced wave, assuming (usually implicitly) that there

is some mechanism (chaos or collisions) that makes the wave-particle interaction in-

coherent. However, as a consequence of the equilibrium magnetic field inhomogeneity

in a tokamak, the resonance process is qualitatively different from that which occurs

in homogeneous magnetic fields. In a homogeneous magnetic field, the wave-particle

cyclotron resonance condition is satisfied at any location, while in an inhomogeneous

field, a particle escapes cyclotron resonance through its unperturbed motion. After

these resonant mechanisms were understood, it became clear that more sophisticated

quasilinear operators were needed to study cyclotron heating in tokamaks.

Stix's quasilinear operator for ion cyclotron heating

In 1975, Stix derived a quasilinear operator [3] by averaging the Kennel-Engelmann

operator over a tokamak flux surface. He included the effect of magnetic field inhomo-

geneity in tokamaks. Using a single-particle approach, he proved that wave-particle

resonances take place only at certain locations along the orbit. He then computed

the average perpendicular energy gained by a resonating particle. The averaged RF

power absorbed by the plasma in the single-particle model was equal to that calcu-

lated by using the flux-averaged quasilinear operator.

More recently, Stix also addressed the problem of stochastic interaction between a

particle and an ion cyclotron wave. The quasilinear description implies that a res-

onating particle gets small, random kicks in energy. In this case, Stix showed that

collisions can randomize the phase between the particle and the wave if the collision

time and the orbital periods satisfy a certain inequality [5]. His operator is remark-

able because it can be easily explained in terms of a simple model. However, it has

an important limitation: it does not take into account the interaction of trapped

particles with the waves.

While the parallel velocity of most passing particles can be considered as a constant

of motion in most of their phase space, the parallel velocity of trapped particles

ranges from zero at the tip to its maximum value on the low-field side of the toka-

mak. Hence, the quasilinear operator has to be weighted by the amount of time



that a particle spends at different locations in its orbit. This concept leads to a

bounce-averaged quasilinear operator. Incidentally, note that flux-surface averaging

and bounce-averaging are equivalent only in the limit of very passing particles. Stix's

quasilinear operator is

f rZ2e2 1 w-nwi 1 Of
=IE.) 12 V2Jn1(kI-p)j[2vi2l 1 ] f (3.8)

-t quas 2m2 1kll 1 i n vj_" k1l vj av

where Z is the electric charge of the resonating species, kll is the parallel component

of the wave vector, E+ is the left-hand circularly polarized component of the electric

field, Jn is the Bessel function of order n and S is the delta function. Moreover, the

parallel and the right-handed contributions to the electric field are neglected.

Bounce-averaged quasilinear operators

Several bounce-averaged quasilinear operators are described in the literature [21, 27,

28, 29, 30, 31].

For instance, Hammett derived a simple one in his doctoral thesis [21]. He started

from the Kennel-Engelmann operator for an infinite, spatially uniform plasma and

bounce-averaged the quasilinear operator using the small banana width approxima-

tion. To eliminate the resonant delta function in the quasilinear operator, he trans-

formed the velocity-space operator in the energy and magnetic moment space. Both

energy and magnetic moment are constants of motion to leading order in the fields,

which simplifies the bounce-average integral. Trapped particles whose banana tips

cross the resonance layer were also treated in his single-particle model. This was

accomplished by solving the integrable singularity that arises from banana particles

whose tips are in the vicinity of the resonance layer. The bounce-averaged quasilinear

operator was also written as a function of energy and pitch-angle cosine at the outside

midplane as

Of 1 rE ar (3< - >bfE (' +  (3.9)
&t (JIETb UE 8(



where the velocity-space coordinates are E = mv2/2 and ( = (vll/v) at the outer

midplane position, Tb is the poloidal bounce time, and the fluxes in velocity space are

re2 V kn12
rE = El II jkm ( )resLres f,n Ivll (v (kil ll + n•ci)

2ES

(3.10)

(3.11)

where 1 is the spatial derivative along the field line and (. is the cosine of a trapped

particle's pitch angle whose banana tips lie in the resonance layer. 0 k,n has units of

electric field per wavelength and is defined by

(3.12)0n,k = Ek+e-i'Jn-1 + Ek-ei'Jn+l + v- Ek Jn-
Vi

where the argument of the Bessel functions is kip and the fields are

1Ek- 2 (Ex ± iEv)k2 (3.13)

and the wavelength vector components are

kx = k 1coso ; ky = kjcsinV) ; k, = kil (3.14)

The velocity-space operator is

0 m0
Lrs = m ( 2 - 2) )

LE* 2=E (3
(3.15)



It is instructive to examine some aspects of the bounce-averaging procedure more

closely. The collision and the quasilinear operators are added in an ad hoc fashion

to the drift kinetic equation, which is the gyrophase-averaged version of the Vlasov

equation [30]

Of 8ff+ v 1 O = C(f) + Q(f) (3.16)

where C and Q are the collision and the quasilinear operator, respectively.

The drift velocity has been neglected because of the assumption of small drift veloc-

ity compared to the parallel velocity. Hammett also made the assumption that the

streaming term has the fastest time scale with respect to the collision and quasilinear

operators, and 2L by a factor 1/e, then he expanded the distribution function in E in

the form f = fo + ef 1 + to yield = 0 at leading order and at next order in E

9fo 1i1S+ V11 = C(fo) + Q(fo) (3.17)

The spatially-periodic f, term can be annihilated by bounce-averaging. The bounce

average of a phase-space quantity A is defined by

<1A > - J d/A (3.18)

Unfortunately, this definition of bounce average is not complete because we neglected

drifts in the averaging operation, where vil+ Vdrift should have been employed in equa-

tion (3.18) instead of v1i. A more exact bounce average would include the departure

of particles from field lines. This correction is substantial for trapped particles that

are highly energetic such as those present in minority tails. It is worth noting that

a perturbative approach that includes particle drifts in the kinetic equation has been

adopted by Chang [32] in his collisional treatment of radial transport. He adopted the

Kennel-Engelmann's quasilinear operator to compute the radial particle and energy



flux of tail ions. Chang concluded that the radial particle transport of tail ions by the

Coulomb slowing-down collisions on background electrons is of the order of a banana

width in a slowing-down time. He also concluded that the radial energy transport

by Coulomb slowing-down scattering is composed of convective and diffusive terms

and leads to a non-negligible loss of energy due to the strong anisostropy of the tail

distribution function.

Another important limitation is that Chang's and Hammett's quasilinear operator do

not treat off-axis heating.

An improved quasilinear operator that treats off-axis heating was derived by Catto

and Myra [30]. They derived a quasilinear operator for minority heating in a toka-

mak using the formalism of Bernstein and Baxter [27] to study relativistic electron

cyclotron heating in magnetic mirror confinement plasmas. They were able to smooth

the transition from correlated to decorrelated interactions by examining collisional

decorrelation to obtain diffusion coefficients that include both trapped and passing

particles. Their bounce-averaged quasilinear operator is

8f 1 & 2 f 8f 1 8 8f 8f< a- >= [v (Dv + Dx +)] + +[Tb(Dx Ž-+ Dx )] (3.19)
at quas (2 9V 19V a Tb a Uv aA

where the velocity space variable is given by A = Bovj/Bv2 and the diffusion coeffi-

cients are

D, = 47rewDA[Ai(za)]'/TbX11112/3 (3.20)

2 wco
DX - - A)DV (3.21)

V W
4 w 2

Dx = co - A)2D, (3.22)
V W

where E = r/Ro, Ai is the Airy function, za = (w - wco(1 E))/J ewo(v/qRo)2 (1-

A - ±eA)11/3 , A = Wco/Wctip and



Ze )2(n Ie+12
D = (  ) (3.23)m 2ew

where e+ is the left-hand polarized component of the n-th harmonic of the toroidal

angle of the electric field and the phase is given by

X('r.) = jd-r(w - lw) (3.24)

where I is the cyclotron harmonic number. The explicit expressions for the third

derivative of the phase X"' are mathematically involved, therefore we refer the in-

terested reader to Myra's and Catto's article [30] for further details. They used a

phenomenological collision model to study the effect of decorrelation due to colli-

sions.

Despite all these remarkable operators, further study is required to formulate a more

realistic quasilinear operator that accounts for the inclusion of the Doppler shifted

cyclotron resonance, finite banana width effects, and radial diffusion.

3.3.3 RF-induced transport of a heated minority

Whang and Morales [33], Riyopoulos et alia [34], and later Chen et alia [13] stud-

ied the problem of minority ion transport in ICRH tokamak plasmas. Whang and

Morales found that confinement improves rapidly with plasma current, which may

limit heating in low-current tokamaks with large RF power levels.They also pre-

dicted a depletion of heated minority protons from the plasma core due to radial

non-uniformity of the diffusion coefficient. Riyopoulos et alia found the electric field

amplitude Enc at which the induced RF diffusion becomes comparable to the neo-

classical.This is given by



Enc = (VUphIVA)BO (VlWci)11/2 6-1/2 qs

where Vph is the wave phase velocity, vA is the Alfven velocity, vei is the electron-ion

collision rate and q, is the safety factor. They concluded that for TFTR the directly

wave-induced diffusion poses no threat to confinement if the electric field does not

exceed a few tens of V - cm-'. Chen et alia made a distinction between RF driven

convection and RF driven diffusion. RF driven diffusion is always negligible compared

to RF driven convection. They also estimated RF driven flux with neoclassical flux

to obtain

FRF a2 1 1
- N -N (3.26)

Pneo R 2 qs TsUi

where N is the toroidal wavenumber, 7, is the collisional slowing-down time of mi-

nority ions on bulk electrons and vii is the ion-ion pitch-angle scattering rate. They

concluded that for a highly asymmetric wave spectrum in kyl and large RF power

making rvi smaller , the RF driven convection can dominate over the neoclassical

flux. Another source of transport is caused by the presence of energetic ions whose

banana widths may become so large that the orbits become unconfined. These effects

are not strictly defined as transport, because they can take place even if the particle

toroidal momentum is unchanged. They certainly deserve further study. More re-

cently, Core [35] formulated a quasilinear equation that includes radial transport. He

added a radial diffusion term to the kinetic equation

df= C + Q + Dr (3.27)
dt

where C,Q, and Dr are the collision operator, the Kennel-Engelmann's quasilinear

operator, and the radial diffusion operator, respectively. The radial diffusion opera-

(3.25)



tor is

D- 1 tDRFa  (3.28)Er t Et Et

where et = rtip/Ro gives the radial position of the banana tip of the resonant trapped

ion. The diffusion coefficient DRF is

DRF = ( )2 < 6v 1 6•v 1 > (3.29)
Roctwt

where < 6v1 6vI > is the time averaged energy gain by the ions as they pass through

the resonant layer. Core bounce-averaged the Fokker-Planck equation to obtain an

equation which is two-dimensional in velocity space and one-dimensional in radius.

Velocity-space diffusion is known to occur at a faster rate than radial diffusion. This

led to the introduction of different time scales. The Fokker-Planck equations for the

two different time scales were solved by assuming an ansatz solution for the distribu-

tion function. Core concluded that spatial diffusion can have important consequences

for heating efficiency.

For the JET experiment in particular, a reduction in the energy content of the reso-

nant ion tail was found to be the most important effect. This work used the transport

formalism developed for neoclassical transport, where distribution functions are de-

fined on a single flux surface.

If we deal with trapped particles whose orbits are shifted from flux surfaces, then the

radius of a flux surface cannot be considered a constant of motion. Thus, one has

to increase the number of phase-space variables by choosing a spatial location for a

particle along with its velocity or by adopting a toroidal invariant as a new variable.

A completely different approach to the problem of heating and transport is based on

the numerical integration of particle orbits and the use of Monte Carlo methods to

treat collisions and wave-particle resonance [36, 37]. A more refined version of the



Monte Carlo method is given by the orbital-averaging of the Fokker-Planck equation

to obtain a Monte Carlo operator [38]. These techniques have the advantage of in-

cluding finite-banana width effects, but require intensive numerical work because the

computation has to be practically performed in the entire phase space for all particles.

3.4 Quasilinear equation and transport in toka-

maks

3.4.1 Introduction

The purpose of this section is to develop a unified approach to heating and transport.

Several effects not extensively studied in previous research on transport by ICRF

waves in plasmas are: Doppler-shifted resonances, finite banana widths, and current

drive. We derive a quasilinear operator in the full phase space that formally retains

all of these effects.

The quasilinear diffusion coefficients are usually very complicated functions of veloc-

ity and space. The evaluation of the diffusion coefficients in phase space normally

requires numerical computation. However, approximate analytical expressions can be

obtained for diffusion coefficients in a tokamak by making simplifying assumptions.

Guiding-center equations are written to study resonances for energetic particles in

any region of phase-space. Among other applications, this formalism can be used to

study combined heating and current drive due to the lower-hybrid wave and the fast

wave.

Let's consider the problem of a single charged particle motion in a tokamak. We

assume that the equilibrium magnetic field is known. Moreover, the given field is

static and smooth enough so that a particle's Larmor radius is much smaller than the

inhomogeneity scalelength of the magnetic field. These assumptions make guiding-

center theory applicable to our problem.

Hamiltonian guiding-center theory has some advantages over other formulations of

guiding-center motion, the most significant being the existence of a Liouville's the-



orem in guiding-center space [9]. To examine it further, we must be more specific

about the equilibrium field.

In an ideal tokamak, the magnetic field is axisymmetric. Axisymmetry implies the

existence of an exact constant of motion: the toroidal angular momentum. However,

when we use guiding-center variables, it is not immediately clear that the toroidal

angular momentum remains a constant of motion. It is possible in the framework of

Hamiltonian guiding-center theory to define a conserved toroidal angular momentum

in guiding-center coordinates.

The magnetic moment has opposite properties: in general, it is not a constant of mo-

tion because the full equilibrium Hamiltonian is gyrophase-dependent. However, in

adiabatic systems 1, it is possible to derive a guiding-center Hamiltonian independent

of gyrophase. In such systems, the magnetic moment is a constant of motion to all

orders [7]. The guiding-center Hamiltonian is an infinite series expanded in terms of

a small parameter E = m/q. For practical purposes, we truncate our Hamiltonian

and retain only the leading-order contribution which allows us to make use of a third

constant of motion: the Hamiltonian itself. We will call it energy when we refer to it,

but we need to keep in mind that this Hamiltonian is only an approximate energy.

To summarize, we have introduced three phase-space variables and pointed out that

these are only approximate constants of motion for adiabatic systems. The more

spatially homogeneous the magnetic field is, the more accurate these approximate

constants are. Furthermore, in an RF-heated tokamak, the changes in the constants

of motion due to wave-particle resonance interaction are larger and faster than the

higher order terms in e added to the approximate constants of motion. Throughout

this study, we will assume these variables are exact constants of motion.

If we introduce collisions and waves into our scenario, then the three integrals of

motion are no longer constants of motion. In particular, we are interested in the

changes of the three constants due to a wave whose frequency is of the order of the

Iby adiabatic we mean that the inhomogeneity lengthscale of the static equilibrium field is much
larger than the particle's gyroradius



ion cyclotron frequency.

Generally speaking, the wave-particle interaction problem is non-linear. However, the

small amplitude wave assumption of equation (3.2) allows us to treat waves as a per-

turbation on the background fields. This approach simplifies this complex problem

considerably and makes it analytically tractable in certain cases. The wave-particle

interaction can be of two types: resonant and non-resonant. Here we examine only

resonant wave-particle interactions since these are the dominant heating mechanisms

for ICRF.

Resonant particles are confined to a region in phase-space where the following rela-

tionship is satisfied at least over part of their orbit

Iw - nwc - kvl .- k V -Vdriftd = 0 (3.30)

Resonant interactions by themselves do not lead to particle heating. To obtain heat-

ing, the wave-particle interaction must be stochastic. Stochasticity can be caused by

collisions or external noise (extrinsic stochasticity) or by the wave-particle interaction

itself (intrinsic stochasticity). Conditions for the onset of stochasticity in IC-heated

tokamaks have been established in literature [39, 40, 5, 33, 41]. Here, we focus on

the intriguing problem of combined heating and transport and point out that the

formalism used lends itself to the study of stochastic motion as well.

3.5 Derivation of a quasilinear equation

3.5.1 Guiding-center phase space

We begin with the usual assumptions for the validity of guiding-center theory. To

derive our quasilinear equations, we start by defining our constants of motion for

three species: passing, counterpassing and trapped particles as



J = (, E, p)

The direction of the parallel velocity a = V is a given parameter, which takes on

the following values depending on the species

passing particles: a = +1

counterpassing particles: a = -1

trapped particles: a = ±1

We introduce a six-dimensional phase-space (J, 8) which is equivalent to the stan-

dard guiding-center phase-space

(J, E) =<- (Xgc, vi, /I, qg9 ) (3.32)

We proceed to show that both spaces are equivalent.

First of all, we choose the vector 8 to be

8 = (0, = , (g0) (3.33)

where we use the toroidal coordinates (r, 0, ) in tokamaks with circular flux surfaces.

The symbol egc stands for the gyrophase in guiding-center phase-space.

We also introduce two relations which give the other guiding center variables, namely

vIl and r, as functions of the six phase-space variables.

These are

po = -mvlR(r) + qVp(r) (3.34)

(3.31)



where ,p = RAC is the poloidal flux and

2V1 = oU V (E - MB(r, 9)) (3.35)

If we give initial conditions for a particle, we can compute J and E. Conversely, if

J and E are known, we can in principle compute the parallel velocity and the radial

position using the relations in equations (3.34) and (3.35). This shows that every

particle is identified by its constants of motion or equivalently by its initial conditions

in phase-space.

3.5.2 Hamiltonian and Vlasov equation

To derive a quasilinear equation, equations of motion in phase-space and a Vlasov

equation in guiding-center space are required.

The equations of motion are known once we have a Hamiltonian and associated Pois-

son brackets.

We start by linearizing the Hamiltonian in terms of a small parameter A

H = Ho(J) + AH1(J, O, t) (3.36)

The zero-order Hamiltonian Ho is the same truncated Hamiltonian given in equation

(2.3). It yields equations of motion for a charged particle in equilibrium fields. The

linear Hamiltonian H 1 is the same linear Hamiltonian that appears in equations (3.3)

and (3.4). It accounts for the linear contribution due to the wavefield. Here A is

equivalent to the ratio between the wavefield and the equilibrium field as defined in

equation (3.2).

From this point on, every small-amplitude field quantity is assumed to be propor-



tional to A.

The covariant Vlasov equation can be written as [91

Of + .Of Of

+-' -j• .+  ' =0 (3.37)at aJ aE

The collision operator has not been included because collisions are assumed to occur

at a slower rate than wave-particle resonant interactions. A detailed treatment of the

Hamiltonian motion must be carried out whenever we compute the diffusion coeffi-

cients. This is described in section (3.6).

3.5.3 The distribution function

A quasilinear equation describes the evolution of a zero order in A distribution function

under the action of waves. The equations of motion are derived from two Hamilto-

nians ordered in A. Since they are linear in their Hamiltonians, it follows that they

are also ordered in A just as their respective Hamiltonians. To be consistent with the

ordering of the equations of motion, we linearize the distribution function as we did

with the Hamiltonian

f = fo(J, tQL) + Afl(J, 8, t) (3.38)

The result is two time dependences that have different time scales. The quasilinear

time present in the zero-order distribution function is the time scale over which dif-

fusion and transport occurs. Its time scale is usually much longer than the average

bounce period. The time dependence in the linear part of the distribution function

results from the oscillation time of the wave and therefore, is usually much faster than

the bounce time by over two orders of magnitude in a tokamak.



We can summarize the relations existing among the different times as

Twave << Tbounce << TQL (3.39)

The equation that governs the time evolution of the constants of motion is given by

the following formal equation

J= J 1  (3.40)

In this equation, J changes only in the presence of a wave.

The equation of motion for the angles contains a zero order term in A in addition to

a linear term to yield the following definition

6 = n + 81 (3.41)

This equation states that the time evolution of E is caused by both the unperturbed

and the perturbed fields. The zero order term E contains all the unperturbed motion

frequencies in the poloidal, toroidal and gyrophase angles. We are now seeking an

equation where the independent variables are the J's and the characteristic time is

the quasilinear time TQL.

3.5.4 Ansatz for linearized variables

To obtain a quasilinear equation, three time-averages are introduced to remove fast-

time variables from the equation. Before doing so, we must make a few assumptions

about the small-amplitude fields and distribution function. Further progress can be

made by adopting an eikonal expression for the perturbed quantities



J e = 12 (3.42)

and

fl Aei + c.c.
f = 2 (3.43)

The quantities J and f are slowly varying in time and space with respect to the

exponentials.

An alternative and more complex treatment of the fields and the distribution function

can be obtained only by solving the self-consistent problem of a wave equation where

the source term given by the current is related to the field through a conductivity

[42, 43], as a function of the distribution function, although desirable this approach

is not needed to pursue our investigation.

The phase for a monochromatic wave in a tokamak is given as

01 E -ge - wt + N( + MO - kir (3.44)

where M and N are, respectively, the poloidal and the toroidal wavenumbers.

3.5.5 Orbit-averaging operators

Here we define the orbit-averaging operators. The first phase-space average is over

the wave frequency. The averaging operation is carried out in the following manner

< A >2= -27 JA dt (3.45)



where A is any phase-space quantity. The next step is gyrophase averaging. Although

wave-frequency and gyrophase averaging deal with time scales of the same order of

magnitude, they are two distinct operations. Gyrophase averaging is defined as

<A >9C= = 'A dg (3.46)

The last averaging is a multi-dimensional integration along the unperturbed orbit.

Here we assume that the motion is periodic in both the poloidal and the toroidal

angles. We formally carry out this last averaging

< A >0-- "-b'A dtL (3.47)
Tb 0(3.47)

where tL is the Lagrangian time when we follow the particle along its orbit.

Since we assumed axisymmetric fields, we can treat the toroidal angle as a dummy

variable. Its purpose is to eliminate the E dependence in the quasilinear equa-

tion. This also means that the averaged equation deals with functions varying over

timescales certainly longer than the average bounce period.

The poloidal bounce period for passing particles is defined as

2-x dO

Tb- 6= (3.48)

where 00 gives the equation of motion for the poloidal angle given in Appendix D.

The poloidal bounce period for trapped particles is given by

fb dO
Tb = 2 t b(3.49)

where 0b is the poloidal angle of the tip of the banana.



3.5.6 The quasilinear equation

We are ready to derive the quasilinear equation. We substitute the zero-order and

linear variables of (3.38), (3.40), (3.41)-(3.43) into the Vlasov equation (3.37). See

Appendix H for details. By doing so, we obtain the quasilinear averaged equation

fo (J) 1 < . fl " 1fh •, af •5

at4 7 + (1 -ý7( + *1 + c.c. >W,•,,= (3.50)

The final result is that only zero order and quadratic terms survive the averaging

process, where we used the following identity to average out the linear terms

< ei"' >W,e,0,0 = 0 (3.51)

The next step in the derivation is to neglect the terms that contain derivatives in E.
This is justified because the poloidal, toroidal and gyrophase angles' diffusion do not

directly lead to radial transport. The resulting quasilinear equation becomes

afo 1 afl

at + 4 . + c.c. >W,4~oc,= 0 (3.52)

This quasilinear equation has been averaged over the gyromotion and the bounce

motion, therefore it is dependent only on the constants of motion and the quasilinear

time. We next use the following vectorial relation for the second term in equation

(3.52)

V. (fA) = fV. A + A- Vf (3.53)

In addition, the averaging process does not change the functions of the constants of



motion

< g(J) >,,o,q,= g(J) (3.54)

where g is any phase-space function. The derivative with respect to the constants J

can therefore be taken out of the averaging brackets. By using (3.53) and (3.54) the

quasilinear equation (3.52) becomes

8fo 1 • 1-+ 4 I < f,;J + c.c. >w,,0 -r,
at +4 5J *

<f ·Ji + c.c. >,,4,0= 0

We write the average of the second term in the quasilinear equation as

< fiJ1 >w,, < J 1 + 1 >w,,I fI >
4 J

(3.55)

(3.56)

The second term is the usual diffusion operator, while the last term yields the con-

vective operator. The presence of the convective operator stems from the formalism

for particle motion in an inhomogeneous magnetic field. In fact, if we were working

with true action-angle variables in a homogeneous magnetic field, it is easy to show

that the convective term would not be present in equation (3.55). In this instance,

the Vlasov equation [10, 39] can be written as

Ofat a a(fJ) + (f ) =
8J 88 (3.57)

When we angle-average out the

operator term. Equation (3.57)

last term in (3.57), the only term left is the diffusion

is valid only if

(3.58)V - i =0



where the vector z stands for the guiding-center variables (J, 0). Unfortunately, as

shown by Littlejohn [9], the correct relationship for the divergence contains an extra

term B*, which is the Jacobian of the transformation from (x, v) to z

V. (B*i) = 0 (3.59)

The comforting news is that B* is approximately a constant for a small inverse aspect-

ratio tokamak 2. In a sense, the appearance of a convective term resulted because

we adopted guiding center variables, which exhibit a Jacobian as a function of the

guiding-center phase space. We conclude that a quasilinear equation in a inhomoge-

neous magnetic field contains both diffusive and convective terms.

To find the perturbed distribution function, the linearized Vlasov equation is

af, + afo +ni 0
St+fo = 0 (3.60)

This equation is formally solved by applying the method of characteristics [44]. The

slowly varying term of the perturbed distribution function is

fl = -e-gL1j fo 00 i Ldt (3.61)

where the phase OL is

'L(o0, t) = (w -- w - Nw - AMwo)dtL (3.62)

2 At leading order B* B B Bo - -LBocos(9)



when the integrand set to zero yields the generalized cyclotron resonance condition.

See Appendix H for a detailed derivation. To be exact, the perturbed distribution

function should have included an extra term that represents the solution to the homo-

geneous differential equation. This term, called the "ballistic term", decays in time

by phase mixing [44, 5]. The phase is periodic because the orbital motion is periodic

at leading order, which allows us to write the following relation for the phase

)L(O, tL + Tb) = IL(O, tL) + -)"L(tL, tL + Tb) = PL(O, tL) + b0 (3.63)

Since the motion is periodic the integral fo7 ei*LdtL can be written as an infinite series

in the following manner [5]

J [Tb + 2Tb10 0 ]Tb6

00oo

S = In
n=-O

(3.64)

where

((n+1)Tb
In = T eiL (OtL)dtL

The following relations hold as a consequence of periodicity

In+1 = e- i °oln

(3.65)

(3.66)

and

In = e-in°o Io (3.67)

By using equations (3.64), (3.65),

converging series

(3.66) and (3.67) the phase integral results in a



fJe' i Ldt =
Io

1 - e -izO
fTb ei~LdtL1- e-i

1 - e-ioO (3.68)

We assume that the initial phase is a random variable [44].

We average equation (3.68) over the initial phase 0o, assuming the probability distri-

bution of the initial phase to be uniform. We take the real part of this average

1
Real( 27r f o27r 1 10 1 - e- i/oP 2

(3.69)

If we substitute equation (3.68) in the distribution function of equation (3.61) and

take the complex conjugate of it, the result is

f1= i-eiLjI* . foTb e-iLdtL
(3.70)

The averaged second term in equation (3.55) becomes

2< fJ > >0 =
eiVL >0 dl * l ° f fTb e-iPLdtL

(3.71)

(3.72)jjl *  fo I ffb e--i~iLdtLI2

4Tb

The quasilinear operator can be written as a divergence of a vector Q in the J space,

where Q is given by

- 4Tbl
(3.73)e- L 21 1 foe-i~dtll~j -j I



The convective term can be derived as well.

function obtained in equation (3.61) we find

S9

By using the perturbed distribution

.fo
(J (3.74)

Appendix H contains a derivation of equation (3.74).

The quasilinear equation finally becomes

Ofo -Difo
at J-i a -J

I ffb eiLdtL 12 (9
4Tb (9

.j )jl. afo* J ) -b

where the diffusion tensor is given by

1 f(o e '•dtL'Jl j3
Dij(J) = 4

The normalized diffusion equation is written in terms of normalized variables

afo =a fo
at Ji a4 a j

I fb eiL /tbdtL 12 a
4T'b 'J

I.* LI Ofo
"Ji)J - -aj

where the normalized diffusion tensor is

S(i\_ 1 Ifo-Tb

and the normalized quantities are defined as

tb Tb;
tb tb

ei.L ItbdtL J2J Il.3 (3.78)

(3.79)

I Tb ei LdtLl2 (-J >w,=( .ji)J
4Tb a

(3.75)

(3.76)

(3.77)

=.,y u --
Tb

tb rl



where tb = Vth/RO.

The normalized constants of motion were defined in Chapter 2. The tensor is nor-

malized to Jjo/tb where the three normalizing constants are

1 2

Jo = (-mviu, 2 mRovth) (3.80)

The next task is to compute the diffusion tensor of equation (3.78). The complex

diffusion tensor can be computed numerically. However, for the purposes of this

thesis we need only to find an approximation for the tensor in the limit of large

aspect-ratio and for tokamaks with circular flux surfaces, a task that will be carried

out in the next sections.

3.5.7 Wave Hamiltonian H 1 and relative equations of mo-

tion

The wave Hamiltonian in guiding-center coordinates is derived in Appendix G. The

derivation is based on the following assumptions for the fast Alfven-wave

* the parallel electric field component is set to zero

* the eikonal form for the electric field has two different space scales

* the amplitude of the electric field varies slowly in a gyroradius length

* k p << 1 ; k -~ k,

* Ikl >> Ik» I



Since we are interested in particle motion in a tokamak geometry, the wavevector

is written as a Fourier harmonic in poloidal and toroidal angles

N M
k = e( + -eo - kier (3.81)R r

where N and M are the toroidal and poloidal numbers, respectively. We also decide

to investigate the problem of fundamental harmonic, therefore we let n = 1 in the

resonance relationship given by (3.30). The final form of our Hamiltonian is

H 1 = H eiep1 (3.82)

where the phase is

1b (k) = N( + IO - k±r - wt + + ca + 7r/2 (3.83)

and

i q = Vq 2Bp/m[Joe-E+k + J 2eiEk] (3.84)

For a complete derivation of (3.82) see Appendix G. The toroidal harmonics N and M

are given by the antenna and reactor parameters, while the perpendicular wavevector

k is computed by solving the wave dispersion relation [5].

Once the wave Hamiltonian is computed, the linear equations of motion can be cal-

culated using the Poisson brackets in Appendix B. These are

X" 1 q b x Vo1 (k)HY (3.85)ge qB*

-~1- __ q H i  (3.86)
m



1 q &H1  (3.87)

i = - B*
mi1 mB* Vb 1(k)H 1  (3.88)

where the phase gradient is expressed in toroidal coordinates

N M
V41 (k) = e¢ + -eo - kIer (3.89)R r

Equation (3.89) is derived by taking the partial derivatives of the phase in equation

(3.83) over the spatial coordinates C, 0 and r.

3.6 Hamiltonian perturbation theory

The equation of motion in Hamiltonian theory is given by the Poisson bracket of the

dynamical variable. If A is any variable in phase space, then the equation of motion

can be formally written as

A = [[A, H]] (3.90)

The superscript 1 in the linear equations of motion means that they are linearly pro-

portional to A. A derivation of the linear equations of motion is given in Appendix I.

where the Poisson brackets for guiding center variables are defined in Appendix B.

Using our linearized Hamiltonian we can write the equation of motion as

A = [[A, Ho + H 1]] (3.91)



At zero order in A an operator - is defined asdtL

dA
dtL = A- [[A, Ho]] (3.92)
dtL

This operator is equivalent to a Lagrangian time derivative along the unperturbed

motion. The equation of motion can be rewritten as

dA
= [[A, Hi]] (3.93)

dtL

To evaluate the change in the phase space variable that a particle undergoes through

a resonance, equation (3.93) must be integrated along the unperturbed orbit

6Ares = e [[A, Hl]]dtL (3.94)

where the integral includes every resonance along the unperturbed motion. Since we

assumed an eikonal form for the linear Hamiltonian in equation (3.82), the resonance

integral can be approximated

6Are. [[A, Hi]]res fres ei*n dtL (3.95)

where HI1 is given by equation (3.84) and ?PL is the phase along the unperturbed orbit

as defined by equation (3.62). This approximation is valid as long as the slowly varying

part of the Hamiltonian is constant with respect to the change in phase. In a tokamak,

resonances due to the fast-Alfven wave are localized, hence the approximation used

above is valid.



3.6.1 Guiding-center variable changes caused by wave-particle

resonance

We calculate the resonant changes in guiding-center variables by integrating (3.85)-

(3.88) and using the approximate relation of (3.95). They are evaluated by stationary-

phase integration, using the following vectorial relation applied to equation (3.89)

b x Vi 1 = ( fM)er - fkjee + gkzecR r (3.96)

The phase integral that occurs in these calculations is denoted by

I = es ei L dtLd ES

The change in radial coordinate due to resonance is

fM gN 1
(6r)res K [( - ))- /(2mB)(Joe-"E, + J2eEaE_)]resI

r Rw

(3.97)

(3.98)

The change in poloidal angle is

(6)res [ fk l/(2mB)(Joe-'aE+ + J2eicE_)]re,,I (3.99)

The change in toroidal angle is

(6g)res, [- / /(2mB )( JoeE+ + e( E_ )]reB, (3.100)

The change in magnetic moment is



(6iy)res 0( ( )21 (mBu/2)(Joe-E± + J2e 2iE_))reJI (3.101)

The change in parallel velocity is

(6l)re N [( +g + fsinO) IB (Joe'E+ + J2eE_)]re,,,I (3.102)
R r cR 2mwv m

where we used the following approximation for the magnetic field

B* v11 fsin9
Sb- f er (3.103)

B We Ro

The change in gyrophase is:

()res d( q (2Bp/m)l/ 2(Joe-i E+ + J2eiaE_)),•, (3.104)

Equations (3.98)-(3.104) are derived in Appendix J. The changes in the guiding-center

variables are computed for a single resonance, while in general, a particle can have

multiple resonant interactions in one poloidal period. Extending the calculation of the

changes to multiple resonances requires an accurate study of the stochasticity of the

wave-particle interaction. In the next sections we will make use of the random-phase

approximation [44].



3.6.2 Analytical evaluation of resonance integrals

This section focuses on localized wave-particle resonances in a tokamak. For a given

equilibrium, the three constants of motion determine the magnitude of the interac-

tion. For instance, passing particles interact less with the wave than trapped parti-

cles because they spend less time near the interaction region. The calculation of the

changes in particle variables from a resonance involves the solution of a complex inte-

gral. We evaluate resonance integrals by using the stationary-phase approximation.

The changes in particle variables are given by applying equation (3.95) to an eikonal

quantity

AA = Al i lei*LdtL e A11~res eiL dtL (3.105)

where A is any phase-space quantity and PL is given by equation (3.62). A phase

integral in the resonance region is all that must be determined. To do so, the phase

integral is written as

I= ei dtL = tb i' dO (3.106)
-res jres dO

where tb = Ro/v1 1 and tL = tL/tb. The phase integral is evaluated along the unper-

turbed orbit in the resonance region. This integral will be calculated for both passing

and trapped particles for a particular equilibrium in the next section.



3.7 Diffusion tensor for ICRF-heated tokamaks

3.7.1 Resonance integrals for passing particles

The resonance integral for passing particles is easy to compute. This is intuitive since

passing particles have simple trajectories that follow the field lines at zero order in

e = m/q.

For these particles, the parallel velocity is fairly constant throughout their orbits in

most of the phase-space region. We ignore the Doppler shift for these particles by

letting M = N = 0 in PL given by equation (3.62) and evaluate the resonance integral

(3.106) as

S- J ei L()) dO (3.107)
tb Ro 9 Vllth(0)

We used the leading order guiding-center term for the derivative of the poloidal angle

from equation (D.2) and (D.3). We expand the phase 'bL in 0 around the resonance

angle 0r

dCL d2 L (_ - 8)2PL(0) -• L(0 8Or) + d 0=0 (0 - 8O) + 0=0' ( 2 + ... (3.108)
dOe d2 2

The resonance condition is derived by the first derivative of the phase set to zero.

This also yields the resonance poloidal angle

qB qBo 1w - =-- (3.109)
m m hf

where the equilibrium quantities f and g are given by equations (2.9) and (2.37). The

second derivative of the phase is



di- Wc)tb -)res •dO
a )2 W0otb X2 6

Ro fvIth 9
(3.110)

where we used

dwc
dO

I a
'_ Wco-xsinO (3.111)

and ! ;Villth •&1. The stationary-phase method for the resonance integral yields the

following result

Itb I t ei n res
tb (og gVJth ).es

Id

ei -(6-e,)2d2 (3.112)

Taking the limits of the integral to be +oo and -oo in (3.112), we obtain

I 2r
-~ VW -

(3.113)

where there is a + sign in the exponential when ('IP)re, < 0 and vice versa.

resonance integral can be written as a function of the constants of the motion

I 2i 1(
WcOtb 9(Xres)V'

The

3.114)

where Xes = (P + / ).

d2 nL
( 2 )res

de

d
dO

ein)L

/gjiv Ith sin8 TES'"



3.7.2 Doppler-shifted resonance integrals for passing parti-

cles

We turn our attention to integrals that include Doppler-shift. The phase integral

is analytically more complex than (3.107). The inclusion of the parallel velocity as

well as drifts in the resonance relation is important when treating highly energetic

particles. This section is restricted to the case of a passing particle interacting with a

monochromatic spectrum wave (1 poloidal and 1 toroidal harmonic), while the gen-

eral case of multichromatic waves is beyond the scope of this thesis. The resonance

integral (3.106) is approximately given by

I ei a x d (3.115)
tb R0 9 ;llth(O)

where we included only the parallel velocity term in the poloidal angle derivative from

(D.2) and (D.3) but the toroidal and poloidal wavenumbers M and N are different

from zero. Drifts cannot be neglected when the particle resonates near x = 0 because

the parallel velocity does not contribute to the poloidal angle motion. We expand the

phase around a resonant point defined by the particle position where the phase does

not change. At leading order in E, the resonance condition is equivalent to

d'L 1 ax fa
( )res (Wtb - Wcb) - - N = 0 (3.116)dO 011th W g gh Ro

where wtb = WtbWcb = Wctb and we made use of ! = .hL

To estimate the second derivative, we assume that the derivative of x with respect to

0 is negligible. The second derivative of the phase is then given by

d2 L dwb 1 a x ax 1 1 fa d 1
d02  d( ) - Wcb ( N -- () (3.117)d-- - de llth Rog Ro 9 de llth g R0 de



Other important relations are

dv11  /g Bo d 1
~ --- ( )hdt mr f dO h

and

d 1 tb a x diJith 1 xsinO a

dO Vl/lth VlthRO g dt 2D th f Ro

where we made use of the following relation for the magnetic moment

_= - th

2Bo

At leading order in e, the second derivative of the phase is

d2 L 2cob 1 Wcob f- 2 sin( - 2[ + ] +
d02 0 f 9 V11th hg2 2thli2 'Lith

(3.118)

(3.119)

(3.120)

(3.121)

where Wb = Wcob/(hf). The resonance integral can be evaluated asymptotically as

done in equation (3.112)

I a x 1 e- re 27 eFir/4
-tb Ro e-th V res I
tb R0 g VIlth I¢rs Ie

(3.122)

Equation (3.122) reduces to (3.113) if we neglect the last two terms on the right-hand

side of equation (3.121). Moreover, equations (3.122) and (3.113) state that the larger

the parallel velocity at resonance, the smaller the resonant interaction. This result

can also be understood in terms of an effective resonance time spent by the particle



in the resonance vicinity [45].

3.7.3 Resonance integrals for trapped particles

We treat the case of resonance integrals for trapped particles without the Doppler

shift. The integral can be written as

I = tb fres ei(Wtb-)dt (3.123)

where t = tL/tb , = f Wcbdt , Wtb = Wtb and wcb = Wctb.

Next, we consider the case of trapped particles whose tips are near the resonant layer.

Heating on axis is also assumed, which means WcbO = Wtb, where the normalized ion

cyclotron frequency is approximated by wcb c wcb0(1 - ECOSO).

To solve the integral, we expand the phase between the two resonances where VL = 0.

This is possible because 4, has two zeroes at its resonances. This entails the existence

of a zero for the second derivative in the interval included between the two. Inciden-

tally, the expansion point is roughly located near the tip because when neglecting

drifts, the relationship L" = 0 is equivalent to dO/dt = 0 which yields the location of

the tip.

The resonance integral can be written as

I tbe- i  i( t )d (3.124)

where the phase time derivatives are given by

S= (wtbt- wbd)tip (3.125)



¢ = wbo(CCOS9)tip

4 = W~0cb('COS$ - siOO 'E)tip = 0

/t = wcbo(E cosO - 2sinOO'E' - cosO(O')'2 - sine"•E)upt

To find an analytic expression for the resonance integral, we transform

dent variable

t3 3 z-Ot = 3
2

the indepen-

(3.129)

and take the asymptotic integral by letting the limits of integration be -oo and +oo.

The solution is the well-known Airy function [45, 21]

Ai(y)= f dxe(Yx+) (3.130)

The resonance integral becomes

I = tbeit 2r Ai( -' )
1t /211/3 1,,/211/3

(3.131)

where the + is for It' > 0 and vice versa. This integral will now be written as a

function of the constants of the motion, using the normalized constants. The first

derivative of the phase is
2/2

,M p_ •pC (3.132)

(3.126)

(3.127)

(3.128)



t  Vlth , = 0
qs qs

S-dth 2 -
Vdth -

1
f/2)

WcbO

0" t: 2
2q,

where the safety factor is given by

q ( )tip
g (Etip)

(3.136)

The third derivative of the phase can be further simplified to

" ;: -WcbO60 e W,
2

(3.137)

The argument of the Airy [21, 45] function becomes

2/3 - 2 1
y= i /4)1/3

Wb0 p4/3 (g/4)1/3
(3.138)

We can also approximate the Airy function with its asymptotic limit when y <

-0.3079 as

1 1
Ai(y) - l'27 I y 1 / 4 (3.139)

Using this approximation yields a simple form for our resonance integral

I27r 1 1

~WcbO (g/ 4 1/4 ]- 211/4 ip

When -0.3 < y < 0 we can approximate the Airy function as a constant:

(3.140)

Ai(y) -

0.28683. The effect of a finite Doppler shift is not important for trapped particles

(3.133)

(3.134)

(3.135)



since most trapped particles ultimately have their banana tips on the resonance layer

without Doppler-shift as shown by Hammett [21].



3.7.4 Analytical estimate of diffusion coefficients for pass-

ing particles

Next, we will derive an analytical approximation for the diffusion coefficient tensor of

equation (3.78) for passing particles. To simplify this task, we neglect Doppler-shift

and assume that the heating occurs on axis. The Doppler-shifted resonance integral

can be computed following the procedure in section (3.6.2), however, we will not carry

this out because it is not essential in finding the RF-driven fluxes.

The phase integral of equation (3.78) is given by equation (3.114). In evaluating

the resonance integral over one bounce period, one must take into account the fact

that there are two separate resonances occurring at 0 = ir/2 and 0 = 37r/2 on the

resonance layer. We assume these resonances are decorrelated by collision or wave

stochasticity and hence we add them in the following manner

To Ve, I + I2)
Real ( dt) = Real( ) = Real( (3.141)

S tb tb tb

Equation (3.114) yields

f e" 4dt 2 = (3.142)
S tb &cO b 9 (Xres) -(1

where Xres = ( V-•• f).

The bounce period for passing particles is given by equation (2.75) in Chapter 2.

The next step is to compute the J 's for the energy, magnetic moment, and toroidal

momentum.

The change 6J1 in normalized magnetic moment is from equation (3.101)

_ tbBoEo q2
-t qm2 p/-i(Jo(k- p)e-iE+(xres) + J2 aEic (Xres)) (3.143)

VthW m2



where the argument of the Bessel functions Jo and J2 at leading order in E is given

by

Ro 1
kip , ka

a Wcotb
(3.144)

and the fields are normalized to a spatial average of the electric field E0. The change

in normalized energy is given by

(3.145)

where the parallel energy change R11l has been neglected in equation (3.145). The

change in parallel and perpendicular energy are compared when we derive the follow-

ing relationship derived by differentiating the energy conservation relationship in the

wave frame vj + (vji - w/k11)2 = constant

v__/vlj. w/ kllVth 1 (3.146)

The change in the toroidal momentum pO is primarily due to resonant changes in

parallel velocity space 5vII, therefore we differentiate equation (2.23) with respect to

the parallel velocity to obtain

6pf x hf6 11th (3.147)

The change Sx in the guiding-center radial position is neglected in deriving equation

(3.147). 5x is due to the diamagnetic drift, which is small compared to the parallel

6V2 _ 6p



energy drifts in Tokamaks for frequencies of the order of the ion cyclotron frequency

[46]. We assume a monochromatic wave having a toroidal wavenumber N, then the

change in absolute value of the toroidal momentum is approximately given by

qEo f2N
Ip¢ JI qo 'f 2N (Joe-iE,+(Xres) + J 2eiaE_ (res))

mwvth 2
(3.148)

where we kept only the first term on the right-hand side of (3.102) for 6vll, divided

equation (3.102) by Vth and substituted tb for I for normalization. The diffusion coef-

ficient tensor for passing particles can be obtained from the diffusion tensor of (3.78),

using the poloidal period of (2.75), the phase integral of (3.142) and the changes 6J~

given by (3.143), (3.145) and (3.148)

Dpass = Apass

DpF DpV2 Dppo

D2 2p D2;V2 D 32p

A - r tbBoEoq2 )2E)
Apass -= ( )2(JE)2

Otb vthWm
(3.149)

and

(JE)2 = (Jo0 +)2 + (J2g-) 2

where

D- - D 2 D

(3.150)



The diffusion coefficients are

Da = Df,2 = D2,P = D,2f,2

Dp - =TAp I -=
Tbpass gv/-T 2 7T

The diffusion coefficient in toroidal momentum space is

f 2 N )2Da,
D,,, (2wc0tb ,

All spatial quantities (g, fields) are evaluated at x = xres where

xres = (p +

The diffusion coefficients of equation (3.151) relate to heating as they describe change

in the minority ion perpendicular energy, while the diffusion coefficient in (3.154)

relates to radial transport since any change in the minority ion toroidal momentum

can lead to a change in radial position as defined by equation (2.31).

where

(3.151)

and

(3.152)

f2 N
Dri = Dp2~g = DP= D ~,1 2wcotbD (3.153)

(3.154)

(3.155)



3.7.5 Analytical estimate of diffusion coefficients for trapped

particles

The diffusion coefficients for trapped particles are derived in the case of heating on

axis. If we neglect the Doppler shift effect, then resonant trapped particles have four

localized resonances per poloidal period. The resonance locus is given by the inter-

section of the orbit with resonant layer. If the banana tips are close to the resonant

layer then the two close resonances merge and can be treated as a single interaction

as done in section (3.6.3). We also assume, as we did for passing particles, that the

ion motion is stochastic so that resonances between the two tips are decorrelated.

The phase integral in a poloidal period is given by

f1b1 e2iI (3 + .156)
Real( dt) = Real( ) = Real( ) (3.156)

S tb tb tb

where the phase integral is approximated by equation (3.140) when y < -0.3079

T b ei dt = ei't 2/r -1/4 (3.157)

S tb JWcbO/gt/411/3

where y is defined by equation (3.138). The quantity y > 0 measures the distance

of the banana tip from the resonant layer and is defined to be negative when the tip

intersects the resonant layer from the high-field side of the torus. If the banana tip is

located on the low-field side of the torus, the resonant interaction can still occur, how-

ever, it is mild and can be neglected when y > 0. To avoid the singularity that arises

when the tip of the banana intersects the resonance layer, we take the asymptotic

limit of the phase integral when 0 > y > -0.3079, namely for banana tips almost on

resonance

2 1r dt i 47 /
[2r dt_ 0.28 _(3.158)

o tb 1 4 /3



where we let Ai(y) e 0.28. The diffusion coefficient tensor for trapped particles in a

large aspect ratio tokamak, at leading order in e when y < -0.3079 is given by

Dtrapp = Atrapp

Dpp Dfp2 DAPO

D 2p

Dpo

DV2V2 DV2p

Dp 2 Dpop

4 (r tbBoEoq2

Atrapp = )2(JE2
Wcotb Vthwlm 2

(JE)2 - 0E+)2 (2_) 2+

and

The diffusion coefficients are

DT = Dp2 = D;2p = DV2f)2

where

D 1

Tbtrapp-

where

(3.159)

(3.160)

(3.161)

(3.162)



and

f 2 N
D•p = Dy•. = D•pp = DP e2 = 2Wot D

= 2Uct
(3.163)

The diffusion coefficient in toroidal momentum for trapped particles is

Dp6,po = ( N )2D- ,p
2Wcotb

(3.164)

The diffusion coefficient tensor for trapped particles in a large aspect ratio tokamak

when 0 > y > -0.3079 using (3.158) is given by

Dtrapp = Atrapp

where

(0.287r
Atr'pp = (cOtb) 2

Dff DpFV2 Dft

DO2 DV2V2 DV2po

D(po D-) 2) Dp

)2 tbBOEOq)2(E)2
/3( vthW2 m 2

and

(JE)2 = (JoE+)2 + (J2E~ )2

(3.165)

(3.166)



The diffusion coefficients are

where

and

f 2 N
DTp = Dv2p- = Dpjp = D 2 = D

k 2 Wacotb

The diffusion coefficient in toroidal momentum for trapped particles whose tips are

near the resonant laver is

f2NDP ,• P = ( )2Dp,~p (3.170)

All spatial quantities (g, fields) are evaluated at x = xtip where

1
xtip V= P

,I

(3.171)

As pointed out in the passing particle section, the coefficients of (3.167) give heating,

while the coefficient in equation (3.170) gives the neoclassical radial transport of the

banana tips of the trapped ions.

(3.167)D,, = Dof2 = Dv24 = DD2i2

D$- = - )2/3Tbtrapp (g)2/3 (3.168)

(3.169)



3.8 Scaling of diffusion coefficients

3.8.1 Tokamak parameters

We will now evaluate diffusion coefficients for a standard tokamak with the following

parameters

* safety factor q - 2 ; major radius Ro = 1.5m

* inverse aspect ratio =

* toroidal magnetic field amplitude B = 4 T

* toroidal current I = 106 Ampere

* the ion minority species has 100 Key temperature

* the ion majority thermal speed is approximately 3.0 x 105m/sec

* the electron density is ne = 2.0 x 1013 m- 3

* the minority density is nmin = 0.05ne

* a typical toroidal wavenumber for tokamak experiments is N = 10.

The field amplitude can be roughly estimated if the average wave power density

< P > is known. The following formula [3, 21] relates the field amplitude to the

averaged power density < P >

< P > (W/m3 ) = nmin 2IE+12
m

1 10E+2

where the electric field amplitude is given in V/m. Equation (3.172) is written for

a Maxwellian plasma in the limit of resonance on axis and neglecting k1 and E_ as

pointed out by Hammett [21].

(3.172)



3.8.2 Passing particle diffusion coefficient evaluation

The characteristic bounce period is approximated as

S4q,8Tbpass = - 47r
VV _T (3.173)

where we let K(kp) r 7r/2 for a very passing particle.

The magnitude of the coefficient Apa,, is estimated to be

E2
Apass 0 (3.174)

where the electric field amplitude is measured in V/m. The overall diffusion coeffi-

cient for the normalized magnetic moment is

ApassDp p (3.175)
109 g

We recall that the heating coefficients are

Dpp = Dyz2 = DV2 = Df2r2 (3.176)

The cross-coefficients are given by

f2 N
D-- = De2p = D 2  t = DP,2 = D 0.5 x 10-2

2CWcotb
(3.177)

Equation (3.177) states that convective transport due to a change in toroidal mo-

mentum is a slow process compared to heating for passing particles. The diffusion

coefficient for the toroidal momentum is given by



2.5D(3.178)

Equation (3.178) indicates that spatial diffusion is slower than velocity space diffusion

by two orders of magnitude. This conclusion was also reached by Chen [13] using a

different approach.

3.8.3 Passing particle coefficients discussion

The overall diffusion coefficient dependence can be derived from equations (3.172)

and (3.175)

<P>pApass D, A 1010 (3.179)
1010 g

where < P > has the dimensions of MW/rm3 . The diffusion coefficient is linearly

proportional to fp. Since the diffusion is mainly in perpendicular energy, the heating

process becomes more efficient as the minority ion perpendicular energy increases

with time.

The normalized magnetic moment is equal to unity for thermal particles and is usually

one or two orders of magnitude larger for energetic particles. The coefficient is also

linearly proportional to the wave power density. This parameter is given by the

intensity of the RF source. A representative number for < P > can be 10MW/m3 ,

which entails a reasonable electric field amplitude of 10 V/cm [21, 13] according to

equation (3.172).

Finally, the coefficient is inversely proportional to g, which represents the projection of

the magnetic field versor in the poloidal direction. It is evident that g approaches zero

as we approach the magnetic axis. One might conclude that the diffusion coefficient

tends to infinity as we get nearer to the magnetic axis. In reality, our approximate

formula breaks down near the axis. This can be understood when we realize we are



not allowed to neglect drifts when a particle resonates near the magnetic axis. To

obtain a more exact diffusion coefficient, one has to compute the resonance integrals

including the full particle motion and the Doppler-shift.

We can approximate g e ' for standard tokamak parameters using equation (2.63).

The overall diffusion coefficient can span three orders of magnitude depending on the

phase-space region, wave power density, and equilibrium fields.

3.8.4 Trapped particle diffusion coefficients

The characteristic bounce period for trapped particles is given by

8q, 30
Tbtrapp - K(1/kt) (3.180)

For trapped particles whose tips touch the resonant layer on axis, the bounce period

does not differ more than one order of magnitude from this value. The constant Atrapp

is approximately given by

4 E2
Atrapp -710 (3.181)

The overall diffusion coefficient for trapped particles is

E2
AtrappDt 4 x 1083/2 (3.182)

The ratio ; is the safety factor, hence it is known to be of the order of unity. We also

recall that the following diffusion coefficients are related to heating

Df = Dpv2 = Dp2 = DT2,2 (3.183)



As for the passing particles, the cross-coefficients are given by

D,, = DZy2p = Dpa =D2 = Df2 p 0.5 x 10- 2DAP (3.184)
2wcotb

The last coefficient is given by

2.5
D,-, 2.5 Dpp (3.185)

The same conclusions drawn for passing particle coefficients also apply to trapped

particles.

3.8.5 Trapped particle coefficients discussion

The overall diffusion coefficient for trapped particles has the following dependence

<P> 1AtrappDpp 3/2 (3.186)t Xpp 4 x 10 092

Equation (3.186) applies to particles that have banana tips close to the resonance

layer. These particles are heated more efficiently than the passing ones.

This is because the diffusion coefficient in velocity space is proportional to p3/2. It is

worth noting that the only factor dependent on the particle position is '. This

factor becomes larger as the particle banana tips get closer to the resonance layer.

For trapped particles whose tips are exactly on the resonant layer, the singularity

of (3.186) is resolved by using the Airy function. The magnitude of the diffusion

coefficient can easily span three orders of magnitude depending on phase-space region,

power density and equilibrium parameters. It is important to point out that these

scalings are rough analytical approximations whose validity applies to a restricted

phase space domain and when the Doppler-shift can be neglected.



3.9 Summary

In this chapter, we derived general quasilinear coefficients for the constants of mo-

tion. They show that the minority heating time scale is much faster than convective

transport and diffusive transport time scales. Moreover, the heating process is more

effective for trapped particles and increases more than linearly with higher minority

temperature. This scaling is probably the main reason why fast wave minority heat-

ing is an effective method to heat the plasma. For future investigation, we note that a

parallel electric field component of the wave was not included in our model. Its pres-

ence in a quasilinear formulation may lead to an interesting mechanism for enhanced

transport. The importance of a parallel electric field component can be evaluated on

the basis of a self-consistent model since the parallel velocity diffusion arising from a

parallel electric field may lead to a considerable distortion of the distribution function

[47].



Chapter 4

Collision operators for fast

minority ions

4.1 Introduction

In this chapter, we treat the fast ion collision operator [3]. This operator is character-

ized by two fundamental time scales: the slowing-down time scale and the pitch-angle

scattering time scale. In the first section, the fast ion collision operator is presented.

In the second section, we compute the Coulomb collision coefficients to compare the

collision times due to electron and ion background species. In the last section, col-

lisions are examined through a Monte Carlo approach. This formulation is highly

instructive because it separates the convective collision terms from the diffusive ones.

4.2 Collision diffusion coefficients for fast ions

In a RF-heated tokamak, an anisotropic minority species is colliding with Maxwellian

electrons and ions. Minority ions heated by the fast wave can become much hotter

than the majority ion species in a strong RF-heating regime. However, the average

tail velocity is usually smaller than the electron thermal velocity because of the large

difference in mass between electrons and ions. We can, therefore, assume the follow-

ing inequality for the minority tail velocity



Vthi << Vmin < < Ve (4.1)

An example can be given for Alcator parameters where Tdeut = Te = 3keV and

Tmrin 50keV, computing the velocities yields

vthi 4.0 x 105(m/sec) << vmi, . 2.0 x 10'(m/sec) << v, ; 2.0 x 107(m/sec) (4.2)

Equation (4.1) is the fundamental assumption that leads to a relatively simple col-

lision operator for fast ions. The other assumption is that the minority density is

much smaller than the background species density, hence minority self collisions are

not included in the collision operator. In pitch-angle coordinates (v, (), the collision

operator is derived in Appendix K, equation (K.29) can be written as [3, 5]

af 1 + + V3 v 8 Of
( )c = r--[v (V + v) f + ff2-2-(1 - 2) -] (4.3)

where the critical velocity is given by

ve = (3VrmeZefl )1/3a the = 0.09( m H Zeff) 1/3 Vthe (4.4)
4mmin mnmin

and the effective charge is Zeffi = nemi

The slowing down time is given by

2 V3
°mv (4.5)S = e2e ZefflnelnA

The effective charge by the background ions is



niZ;
Zeff 2 = (4.6)

neZef fi

The electron drag is equal to the ion drag when the minority ion velocity is equal

to the critical velocity. In a strong minority RF-heating regime, minority ions can

exceed the critical velocity making the electron drag the main contribution.

4.2.1 Coulomb diffusion coefficients

An alternative and equivalent approach to the study of collisions is given by the

collision Coulomb coefficients [48]. The slowing-down Coulomb diffusion coefficient 1

is given by

< AvI >= -v C l f (1 + mm)G(lfv) (4.7)
f=i,e V mf

It is also called the dynamical friction coefficient and represents the rate at which

minority ions are slowed down in the direction parallel to their motion. The symbols

1I and I refer to the parallel and perpendicular direction of motion, respectively. The

other diffusion coefficient is the energy-exchange rate of increase

< (Av) 2 >= 2 E G(lfv) (4.8)
f=i,e

and the deflection rate is

< (Av) 2 >= v2  [Cf [2-I(lfv) - G(lfv)] (4.9)
f=i,e

where 12 = mf/2Tf and

Ithe terminology and the symbolism adopted in this chapter are consistent with Spitzer's and
Stix's works [48, 3]
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Cf = f (4.10)

The error function is defined as

N(x) = 2- j dye _
V/7r fo

(4.11)

The Chandrasekhar function is

G(x) = ) -
2x 2 (4.12)

Stix [3] computed two simple approximations for the error and the Chandrasekhar

function. These approximations give the right asymptotic behavior of the two func-

tions, while at intermediate energies give a fractional error that is less than thirty

percent.

These approximations are

Ex
G(z) ~ 1 + 2ex 3

3x + 2x 3

1 + 2Ex 3

and

(4.13)

(4.14)

where E = 2

We will use these approximations in computing the Coulomb coefficients numerically.



4.2.2 Ion contribution to Coulomb coefficients

Minority ions are much more energetic than majority ions, hence it is convenient to

use the asymptotic forms of the Coulomb functions.

For xi = liv >> 1, we have

1
G(x) 2' ; (-x) ~ 1 (4.15)

The energy-normalized diffusion coefficients due to ion-ion collision for a deuterium

majority species are

< Av | > C. mm IP= (1m+ )CL (4.16)

< v 2 > c (4.17)

< (AvL) 2 >  CJý
= 3 (4.18)V2  X3

4.2.3 Electron contribution to the Coulomb coefficients

The minority ion velocity is usually less than the electron thermal velocity, however,

for very energetic particles colliding with the cold edge of the plasma, x, = l,v can

become of the order of unity. For instance, this occurs when 1 MeV hydrogen ions

collide with 0.1 KeV electrons.

We keep the full functional dependence for the minority ion-electron diffusion coeffi-

cients to obtain

< A > C mm G(xe) (4.19)
V Xe me



< (Avll)2  > 3C G )

V2 = (e) - G(Xe)]
1 z3e

(4.20)

(4.21)

4.2.4 Comparison between the electron and ion Coulomb

coefficients

We now compare the minority ion-electron and the ion-ion collision coefficients. The

bulk electron and ion species can be taken to have the same density and approxi-

mately the same temperature

ne ; ni ; Te ; Ti (4.22)

The two constants Ce and Ci are approximately equal.

We also take a plasma density n a 1021 m-3 and an electron temperature of 1 KeV,

which represents standard Alcator C-Mod parameters. It is simpler to work with

one normalized velocity variable, therefore, we make the substitution in the ion-ion

coefficients

xi = 60.43 * x, (4.23)

The three characteristic collision times given by (4.6), (4.7) and (4.8) for both back-

ground electrons and ions are computed numerically versus xe and plotted in figures



(4.1), (4.2) and (4.3), respectively. In figure (4.1), the longitudinal slowing-down fre-

quency for backgorund ions is larger than the electron counterpart for x, < 0.1. For

mildly energetic ions (x, >= 0.2) the electron longitudinal slowing-down frequency

dominates the ion contribution. In figure (4.2), the energy-exchange rate electron

contribution is much larger than the ion contribution except for very small e,. Fi-

nally, the deflection frequency in figure (4.3) is primarily due to background ions

because of their large mass, but the electron contribution is of equal importance at

high energies.

4.2.5 Collision diffusion coefficients for delta distribution

function

An important class of simulation techniques is given by Monte Carlo methods. These

methods are based on the use of a random function to generate random kicks in veloc-

ity space. The probability function of random kicks is not generally known, however

moments of the probability function can be derived from the equations of motion and

conservation. In this case, we start from the collision operator to derive the moments

of random velocity kicks.

The collision operator is made up of diffusive and convective terms in velocity space.

If our distribution function is initially a delta function in energy and pitch-angle, col-

lisions will make the delta function spread in velocity and move toward lower energies.

The distribution function is

f = 6(v - vo)6( -~o) (4.24)

The convective coefficients are

v + 3 /V 2
< Av >= - it (4.25)



and

A< Z >= - ct (4.26)
, v3

The diffusive spreads in velocity space for fast ions are

< AvAv >= 0 (4.27)

and

< AZff >= (1 -ý)St (4.28)

These coefficients are derived in Appendix L.

The convective term (4.24) in energy is dominating over the other terms for highly

energetic minority ions. The spread in energy is zero to the leading order in Te/Tmin.

Pitch-angle scattering is both diffusive and convective with time scales of the same

orders. Pitch-angle scattering time scales are longer than the collision drag time scale

for minority ion velocity much larger than the critical velocity v >> v,.

4.3 Summary

Fast ion collisions were reviewed using three different approaches: the fast ion collision

operator, the Coulomb diffusion coefficients and the Monte Carlo discrete operator.

We have also examined the various collision times and compared the collision contri-

butions due to background ions and electrons.
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Chapter 5

Ion Fluxes in a Tokamak due to

RF heating

5.1 Introduction

The purpose of this chapter is to study the RF-driven fluxes of barely confined trapped

ions. The particle and energy fluxes are computed for a simple resonant distribution

function. The multi-dimensional flux integrals are approximated and solved numeri-

cally in the limit of trapped resonant ions whose tips are on the resonant layer. The

fluxes are plotted as functions of the total RF power and the RF-power density profile.

5.2 Banana tip motion for T rapped Particles

It has been observed experimentally that resonant trapped particles banana tips are

very close to the resonance layer [21]. This effect can be explained in terms of diffusion

in velocity space due to wave-particle resonance. In the case of ICRF heating, the

increase in perpendicular energy is much greater than the increase in parallel energy

I6VIIIRF << I6VIIRF (5.1)
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The ion parallel velocity is a function of space for a single particle orbit. If we neglect

the drifts, the parallel velocity can be written as

v11 2 (E - pBo + ePBo))1/2(1 - k2sin2 2 1/2 (5.2)
m 2

where k2 is the trapping parameter given by

k2 = 2B (5.3)
E - tBo + epBo

Trapped particles have trapping parameters greater than unity: k' > 1. The trapping

parameter also yields the poloidal angle of the banana tips

Otip = 2sin-'( ) (5.4)

It is evident from equation (5.4) that when k 2 increases, 9 tip decreases and vice versa.

When the poloidal angle of the banana tip decreases, then by definition, the trapped

particle becomes more trapped. Our goal is to show that this is exactly what hap-

pens when a trapped particle gains RF energy. The next step is to find a relationship

for the increase in energy with respect to the increase in magnetic moment. This

relationship can be readily derived by assuming that the total increase in energy is

equivalent to the total increase in perpendicular energy

SES=S E (5.5)
Bres

where Be, is the magnitude of the magnetic field at the resonance point. The varia-

tion of k2 yields
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k2 + 6k2 = 2c([, + 6J)Bo
D +6 J(Bre,,s - Bo +EBO)

where D = E -uBo + epBo > 0.

After some algebra, we have

(1 + 6pL(Bre, -
6k2 =-1B0 + kBo)D)- (1 - lj(Bres - Bo + EBo)/D)

Bo~~k +AB)D---=
(5.7)

If J• > 0, then 6k 2 > 0 for

(1 - p(Bres - Bo + EBo)/D) > 0 (5.8)

Manipulating inequality (5.8) yields

E - gBres > 0 (5.9)

Equation (5.9) is satisfied for all the trapped particles that intersect the resonance

layer. When the trapped minority ion gains perpendicular energy, its banana tips

move toward the resonance layer. If the minority ion orbit does not intersect the

resonant layer, it does not interact with the wave and, therefore, its banana tips do not

move. This simplified model does not account for collisions, Doppler-shift resonance,

and diffusion in parallel velocity. However, for highly energetic ions, collisions are rare

and the ion moves with its tips toward the resonant layer. Once the particle tips have

reached the resonance layer, they can move along it because of the parallel momentum

exchanged with the wave, while the resonant ion transfers its energy to the electron

and ion bulks along its path. The radial movement of the tips and the pitch-angle

scattering occur on a slower time scale than the angular movement of the banana tips
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given by equation (5.7). In a strong RF-heating regime where pitch-angle scattering

is not fast enough to make the resonant distribution function isotropic, most of the

resonant ions become trapped with their banana tips in the resonance layer region.

For this reason, the resonant distribution function is essentially comprised of trapped

ions.

5.3 Radial Motion of Trapped Particles

Trapped particles that are barely confined are subject to radial motion due to changes

in momentum and energy through wave interaction and collisions. We derive a rela-

tionship between the radial displacement of a particle and the amount of momentum

and energy that is exchanged between the minority ions and the wave. The starting

point of the derivation is the orbit equation (2.46) at the torus midplane

ax4 + Clx 2 + dix + e = 0 (5.10)

where x = - and a, is the minor radius of the torus. The coefficients of the polyno-
ar

mial are given in equations (2.44), (2.45), (2.47), and (2.48). The following relation-

ship holds for the orbit coefficients of a barely confined particle (x = 1)

a + cl + di + e = 0 (5.11)

Equation (5.11) also expresses a relationship among the constants of motion as func-

tions of the coefficients cl, dl, and e. We can arbitrarily choose any two constants

of motion, since the third constant has to satisfy equation (5.11) through the poly-

nomial coefficients. Small changes in the constants of motion cause small changes in

the coefficients of the orbit equation.

To derive an equation for the changes, we perturb the constants of motion by small
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variations given by 6/2, 6, 2 , and 6p. Since the constants of motion are also functions

of the polynomial coefficients of equation (5.10), the variation of the coefficients cl,

di, and e correspond to the variation of the constants of motion. The small changes

in the constants of motion lead to a small change 6x << x, of the radial intersection

of the ion orbit with the outer side of the midplane. To derive a relationship between

6x and (6/2, 6W2, Jp), we perturbed the orbit equation (5.10) as follows

a(x + 6x)4 + (cl + JC1)(x + 6x)2 + (dl + 6dl)(x + 6x) + e + 6e = 0 (5.12)

Equation (5.12) is solved in terms of 6x by keeping the perturbative linear terms to

yield

b6c + 6dl + 6e
4Ac(Ac - p) - 2a(1 + .), 2 +  (5.13)

where we used equations (2.44), (2.45), (2.47), and (2.48) to write the denominator

of equation (5.13) as a function of the constants of motion.

The radial displacement 6x can also be written in terms of the location of the banana

tips (x0 , o0) by using equations (2.57) and (2.58). By doing so, we obtain

1 6j 2(1 + a,/Ro) 2 - 6/(1 + arlRo) + 2A(1 - )p (5.14)
6x = A D(xo, Go)

where the denominator is given by

+ (1 - x2)2
D(xo, Oo) = 4(1 - x ) + (-1 + - (ocoso - 2)) (5.15)

Ro (1 + )(1 - ocos)

The denominator is always positive for the trapped particles that intersect the reso-

nant layer. The direction of the radial displacement is outward for a positive numer-
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ator and inward for a negative numerator. The changes in the phase-space variables

caused by cyclotron resonance satisfy the following relations

bf) = + 21 V1 IresVll (5.16)
hres

SP = -hresb6Vl (5.17)

where the subscript res refers to the resonance location. By using equations (5.16)

and (5.17), the change in energy is replaced by the change in parallel velocity to yield

a new expression for the radial displacement

1 6((l+a/R°o) 2 - (1 + ar/Ro)) + ,(2(1+ )212 _ res - 2(1 - x )h2s)
Jx -- hres hrs Ro 0 es

A2  D(xo,8o)
(5.18)

To analyze equation (5.18), we begin by neglecting the diffusion in parallel velocity,

letting RV11 = 0, as suggested by equation (5.1). The radial displacement is directed

outward for 6FT > 0 and vice versa. This behavior is explained by the fact that the

orbits of trapped particles become wider as they gain perpendicular energy.

We also find that the magnitude of the displacement increases when we move the

resonance layer toward the high field side of the tokamak. This dependence can be

understood by examining the orbit equation (5.18): for increasing hre, and 6/ > 0, 6x

decreases. The constants of motion are related to each other through the condition

of bare confinement given by equation (5.10), which restricts the phase-space domain

to two constants of motion. The radial displacement 6x is a linear combination of 5p

and 65 2 , therefore there are an infinite number of linear combinations of the changes

6V2 and 6p that make the radial displacement equal to zero. The ratio of the changes

is equal to a particular constant when 6x = 0
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C-2 = const(6x=o) (5.19)

On the other hand, when parallel velocity diffusion is negligible, the ratio of the two

changes is fixed as a function of the resonance layer position through hres, namely

jT = h.es (5.20)

We conclude that the radial displacement is different from zero except when hr,,

const(sx=o). It is also evident that the larger Ihres - const(6x=o) , the larger the radial

displacement 6x.

Strictly speaking, the widening of the banana from perpendicular heating is not a

neoclassical transport process. As a matter of fact, neoclassical transport theory [49]

treats the total change of angular momentum of plasma species caused by a paral-

lel collisional friction force. However, the radial displacement of wide banana orbits

leads to particle and energy loss and must be included in a more general definition of

transport. The essential feature of the radial displacement is its dependence on 6p.

Such dependence was not included in previous work on RF-driven transport [13, 50].

To study the properties of this transport mechanism, we have neglected the change

in parallel velocity because of equation (5.1). The radial velocity of trapped minority

ions due to a change in magnetic moment is given by

6X ar < > ((1+ar/Ro) - (1 + a/Ro))
< Vr >=< >= A, , (5.21)

t A TbtrappD(xO, 9O)

where we used the average change in radial coordinate in one poloidal period and

let 6t = Tbtrapp. Also < 6p > is the average change in magnetic moment that the

particle experiences in one poloidal period. This velocity can be compared to the
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drift velocity of banana tips when the wave spectrum is asymmetric. The radial drift

of the banana tips [13, 21] is given by

Sr =V 11  (5.22)
WcO

where the poloidal cyclotron frequency is we = qBo/m and is defined as positive

when the toroidal current has the same direction as the toroidal field. We can readily

obtain the change in toroidal momentum from the guiding center equations (3.101)

and (3.102). The result at leading order in E is

N
Sp, = NSE (5.23)

w

where N is the toroidal wavenumber of the fast wave. Combining equations (5.22)

and (5.23) yields the radial displacement of the trapped particle banana tips as a

function of the change in energy

N6E
Sr = - (5.24)

The average drift velocity is obtained by taking the average displacement and divid-

ing it by the bounce period, where the average gain in energy corresponds to the

energy averaged over an ensemble of particles that interact randomly with the wave.

By doing so, we obtain

N < SE>
< Vtip >= (5.25)

mRTbtrappwwcO

Chen and Hammett [13, 21] also obtained this expression. Since we neglected diffu-

sion in parallel velocity, we can compute the change in normalized magnetic moment

for a given change in energy
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6ES=6E (5.26)Ti

where Ti is the bulk ion temperature. When we substitute equation (5.26) in equa-

tion (5.21), we obtain the average radial velocity of the banana orbit widening as a

function of the change in energy

0.5a7  < 6E >< Vr > 0 (5.27)
SA TiD(xo, OO)Tbtrapp (5.27)

where a/Ro , 1/3. To compare the magnitude of the radial velocities given by equa-

tions (5.25) and (5.27), their ratio is

< Vtip > 10NArq 5D(xo, 0o)
< Vr> ( cotb )2

For instance let's take D ? 3 and N ; 10, then this ratio is smaller than unity for

typical tokamak parameters [22]. In the case of small-width banana orbits, D << 1

contributes to make the ratio in equation (5.28) even smaller. Chen [13] concluded

that RF-driven convection of fast minority ions due to an asymmetric wave spectrum

can certainly be comparable or larger than neoclassical transport. From the small

ratio of the radial velocities in equation (5.28), we deduce that the banana-widening

effect can lead to a substantial loss of minority ions. In particular, the loss of energy

can be even more critical because the trapped ions subject to this drift are highly

energetic.

In figure (5.1), the denominator D(xo, Go) is plotted as a function of the location of

the banana tip for an inverse aspect ratio a/Ro = 1/3. By examining equation (5.1),

we see that D is fairly independent of the poloidal angle of the banana tip. The de-

nominator D is slightly larger for banana tips located toward the high-field side of the

tokamak. D reaches its maximum for trapped particles whose tips are located near
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the plasma axis. The denominator is of the order of a few units in this region, hence

these trapped particles experience very little radial displacement for a fixed value of

change in perpendicular energy. As the banana tips drift out radially, the banana

width of barely confined ions becomes increasingly smaller as D approaches zero.

The radial velocity of thin banana particles is much larger than the thick bananas

(potato orbit particles). However, when computing the velocity we must account for

the spatial dependence of the magnitude of the resonant changes in velocity space.

These changes are a function of the electric field radial profile.

Before we derive an analytical expression for the changes in velocity space, we return

to equation (5.18) to estimate the contribution of &ST1 to radial displacement. The

direction of the change in parallel velocity must be given to find the direction of the

radial displacement. Signs of the changes in parallel velocity and radial position are

a function of the toroidal wavenumber sign, and the relative direction of the toroidal

magnetic field and toroidal current. When the ion perpendicular energy increases, the

signs of the change in parallel velocity and radial position are given by the following

table for 6d > 0

These relationships are based on equations (5.23) and (5.24) where N is the toroidal

wavenumber and aBJ is equal to ±1l, respectively, when the current has the same

direction of the toroidal field and vice versa. If we launch an asymmetric-spectrum

wave whose parallel wavevector is parallel to the magnetic field, by convention we

have N > 0. We assume that the poloidal flux is positive when the current and the

toroidal field are pointing in the same direction. We can readily derive a relationship

between the change in parallel velocity and perpendicular velocity by using equations

(3.83) and (3.84) at leading order in e
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N
1v 1 6vjR (5.29)

2RoWco

The 6Tll contribution to the radial displacement 6x in equation (5.18) can compensate

for the outward drift due to the increase in perpendicular energy if the spectrum of

our wave is asymmetric and negative (N < 0) and the current and the magnetic field

are antiparallel. However, the magnitude of radial displacement due to a change in

magnetic moment is usually larger than the one due to the change in parallel velocity,

as can be seen by examining the contributions ratio from equations (5.18) and (5.29)

Sll 2Ac(1 - x )NPLth (5.30)
6 t, Ro

The inverse of the ratio of the Larmor radius to the major radius for a 1 KeV thermal

particle is approximately 103 and N is of the order of ten. A typical number for A,

is 30 for one MA of toroidal current. If the total current is increased to the order

of tens of MA, then the parallel momentum inward drift can balance the outward

displacement due to 6pj. This balance between RF-driven convection and banana-

widening displacement leads to an interesting mechanism for profile control.

5.4 Evaluation of fluxes for a model minority dis-

tribution function

5.4.1 Introduction

We have examined the qualitative aspects of radial motion for resonant barely con-

fined particles in section (5.2). In this section, we will estimate the fluxes generated

by RF-heating using a simplified analytical model.

Let's consider a situation where strong RF-heating act to generate an anisotropic mi-
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nority distribution function. On average, the amount of energy that every minority

ion absorbs through resonant interaction depends upon the spatial distribution of the

wave field in the tokamak and its phase space variables. Furthermore, energetic ions

can span the entire cross-section of the tokamak and have barely confined orbits that

touch the plasma edge. The evaluation of the total flux due to radial displacement

given by equation (5.21) requires information on the resonant minority distribution

in the entire tokamak. Unfortunately, only a few approximate analytic and compu-

tational distribution functions on the resonant minority distribution are found in the

literature [3, 21, 51, 52, 47, 50, 32]. It is also likely that if the exact distribution

were known analytically, it would be unwieldy to use for analytical estimates of the

fluxes. For these reasons, we have adopted a simple distribution model that, despite

its simplicity, retains most of the physics of RF heating. The distribution used here

is a hybrid between Hammett's and Chang's formulations [21, 53].

5.4.2 Model distribution function

A model distribution function for resonant minority trapped ions in pitch-angle vari-

ables on the resonance layer may be given by

2 M 32 1 Mv2  
2

f = Nesn() (2  )3/2 e 2Teff e( (5.31)72 2Teff 60

where we assume heating on axis where x = r/a is the radial coordinate along the

resonant layer, n(x) is a radial profile and Nres is the total number of resonant mi-

nority ions. Teff is the effective temperature of the minority ion species. We assume

a strong-RF heating regime where the effective temperature is much higher than the

majority ion temperature. The pitch-angle variable ~, = vll/v is evaluated at the

resonant layer. When the banana tips touch the resonance layer, then V, = 0. The

pitch-angle spread 64 in equation (5.31) is much smaller than unity, since pitch angle

scattering occurs at a slower rate than heating
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6«1 << 1

Equation (5.32) indicates that most resonant trapped ions have their banana tips

near the resonant layer.

To verify that the distribution function in equation (5.31) is properly normalized, we

integrate over the entire velocity space yielding

Sd3v f = 2rv2 dv dVrf , e Nresn(x) (5.33)

The result of equation (5.33) would be exact if the extremes of integration in the

pitch-angle variable integration were plus and minus infinity. However, the approxi-

mation in equation (5.33) is nonetheless accurate, as shown by the following integral

-1

-o2e-</4d 60 (5.34)

Finally, the resonant minority distribution function is integrated over the strip vol-
ume that contains the resonant trapped particles and velocity space to yield the total

number of resonant trapped minority ions in the tokamak as

Nres la rdV d3vf (5.35)

This normalization is computed as

Nres = 2wRoa1 dx dy] 2 v2dv_ dVf (5.36)

where the horizontal strip width 6y R Ro03 is proportional to the pitch angle width
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in the linear approximation.

5.4.3 Discussion of the model distribution function

We justify the analytic model of equation (5.31) by examining the Fokker-Planck

equation structure for a RF-heated minority and comparing the various terms. A

generalized Fokker-Planck equation can be expressed by

&f _f f f Of Of
f f + - + (5.37)

-t O9t RF 9t coll.drag Ot pitch-angle Ot radialtransport

In strongly RF-heated tokamaks, the resonant wave interaction operator of equation

(5.37) has the shortest time scale among all other operators. The resonant particle

exchanges energy with the wave on a bounce time scale. Collision times are usually

longer. As seen in Chapter 4, the collision operator for energetic ions is essentialy

comprised of two terms: pitch-angle scattering and drag. For minority velocities

larger than the critical velocity, electron drag dominates over pitch-angle scattering.

This scaling conflicts with neoclassical theory [49], where pitch-angle scattering is the

dominant collisional effect. Finally, the transport time scale is the longest time scale.

Hammett and Chang found analytic solutions for a model Fokker-Planck equation

without the radial transport operator. In particular, Hammett [21] advanced the fol-

lowing model Fokker-Planck equation 1

Of 2TtaiPRF ) 2 f 2Ttait f Vii 12f
O-t 3nm 2  , M 2 1V6(+2  (5.38)

whose steady-state solution is

f = e-l 1l / 67 e - E / Ttail (5.39)

'In his thesis, Hammett omitted to label the temperature as Ttail in his simplified equation.
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where the tail temperature and the pitch-angle spread are

Ttail = PF- ; (JS)Hammett = Vis1/2 (5.40)3nm

Hammett's distribution function is similar to equation (5.31). In equation (5.31)

we adopt a Gaussian function for the pitch-angle dependence and normalize it in

phase space. Another method to recover the Maxwellian-energy dependence of equa-

tion (5.38) is to examine how the velocity dependence arises and balance the fastest

diffusion operators: wave heating and electron drag. Next, we average the two sim-

plified operators over the pitch angle variable to obtain the following balance equation

2TPRF a2 f 2T af
m +=0 (5.41)

3nm aE 2  Trs OE

whose solution is a Maxwellian distribution function with temperature Teff

E

f = foe Trf (5.42)

where the effective temperature is

Te PRFT (5.43)
ef - 3nm

Equations (5.41) and (5.43) state that the energy the minority species absorb is colli-

sionally damped on the majority species. Equations (5.41) and (5.43) are approximate

relationships because they are derived for resonant distribution functions defined on

a single flux surface. Large banana-width ions can collisionally transfer their energy

in any region of the torus instead of on a single flux surface of a tokamak. In fact,
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the collisional slowing-down time for a hydrogen minority species [5] is a function of

space through the density and temperature profiles of the majority species

1.3 * 10'8 T,/ 2(x)
Ts7, P ne W sec (5.44)

where the electron temperature is in KeV and the electron density is in m -3 .

The pitch-angle distribution is governed by the RF-diffusion operator. As we have

seen in Chapter 3 equation (3.105), the RF operator depends on the parallel veloc-

ity or pitch-angle at resonance Vr. More precisely, the phase integral has a singular

dependence on the pitch-angle of the type 1/Vr, which can be eliminated in several

ways. The simplest approach is based on computing the phase integral of two closely

correlated resonances. This yields the well-known Airy function [45], as derived in

equation (3.114). Another way of treating the singularity is to include H2 to our

wave-particle treatment [54]. The linear treatment of wave-particle interaction usu-

ally breaks down when the amount of energy exchanged in a resonant interaction

increases. For instance, we computed the change in the phase space variables by

integrating the changes in the constants of motion along the unperturbed orbit, how-

ever, when the interaction is very strong, the resonance integral must be computed

by updating the phase space variables to its new values along the resonant trajectory.

Fortunately, Becoulet [39] showed that the linear treatment is valid even for strong

wave-particle interaction.

Finally, collisions [55] can be an important detuning factor in a resonance process.

The pitch-angle of a resonant particle can change by pitch-angle scattering as does

the phase between the wave and the particle, resulting in a shifted resonance. In

general, collisions cause minority trapped particles to spread around the resonance

layer as shown by equation (5.31), whereas RF heating tends to push them toward

the resonance layer.

The pitch-angle distribution of the resonant ion density on the layer is a function of
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the collision times. We multiply Hammett's spread by two as an estimate of the pitch-

angle spread in the distribution function given by equation (5.31) to compensate for

the fact that the Gaussian function falls faster than e- x

4 ? vii (5.45)

The pitch-angle spread of equation (5.45) is smaller than unity since the electron drag

time scale is much shorter than the pitch angle scattering time scale for energetic ions.

In this section we discussed equation (5.31) and provided physical arguments to bol-

ster the validity of the model distribution function. In the next section, we will use

equation (5.31) to compute the minority fluxes due to orbit widening. Some analyti-

cal approximations must be made for density, temperature and field profiles to obtain

a closed analytic expression for the RF-induced loss of energy. We address this in the

next section.

5.4.4 Approximations for density, temperature and RF power

profiles

Approximate analytical formulae for the density profile n(x), temperature profile

Te(x), heating power density PRF, kinetic energy v (x), energy spread 6v(x), effective

temperature Teff(x) and radial velocity TV(x) are given as function of x = r/a, a

radial coordinate along the resonant layer.

Model functions for density, temperature and heating power profiles

We adopt the following model function for the density, power and temperature pro-

files as done in previous research [56, 57]

(1 - 2) 5
nm = = nmonox) ?0 1)nm (5.46)
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Te() = Teo (1 2) (5.47)
(yT + 1)- 1

PRF(X) = PRFO ( )- (5.48)
(_/p + 1)ýi

where -y,, YT and yp are positive parameters that yield the peakedness of the profiles,

while (•+ -0 , and PR are minority density, majority temperature and

RF power density at the plasma axis, respectively.

We also assume that the minority density and the majority density have the same

radial profiles because of the quasineutrality condition. Furthermore, an analytic

expression for the electric field profile IE+(x)l is also needed to compute the radial

velocity. The electric field profile can be obtained by using a linear relationship be-

tween the RF power density and the squared amplitude of the electric field

PRF oc D, , oc IE+12  (5.49)

The electric field profile is

(1 - .)7p/2
IE+I = IE+ol + 1)-/2 (5.50)

where yp/2 is the profile parameter and E+o is the wave amplitude at the plasma

axis.

An approximation for the kinetic energy in the flux integrals

Velocity vo is the velocity that a barely confined trapped particle has when its tips

are on the resonance layer. It is also a function of the tip radial position xo as in
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equation (2.55). The fluxes are computed to the limit of resonant barely confined

particles whose tips are on resonance, hence we can let v2 = vj in equation (5.31).

Moreover, since the distribution function of equation (5.31) is defined on the reso-

nance layer, the radial coordinate x and the radial location of the banana tips are

approximately equal. These approximations are given by

9 2
x Xo ; v2 2 v = P -A' V2h(X -- 1)2 (5.51)

The approximations in equation (5.51) break down for trapped ions whose banana

tips are located near the edge of the plasma, because the spread in velocity is no

longer negligible compared to the total velocity. However, the peaked power density

profile makes the error small near the edge of the plasma.

An approximation for the energy spread in the flux integrals

The energy spread Sv is challenging to compute. We can find an estimate for it by

initially assuming that most trapped ions have their tips on the resonance layer. They

eventually undergo a small pitch-angle scattering that moves the tips off resonance by

a distance (Sx, JO) from its original location (xo, Bo). We also have a rough estimate

of the magnitude of the pitch-angle spread from equation (5.45). It includes most

particles when it is approximately equal to two standard deviations

v162)resl = I-e-I = 2Vi r, (5.52)

Pitch-angle scattering at constant energy changes the toroidal momentum of the res-

onant particle. The change in toroidal momentum leads to a change in the radial

position of the trapped particle banana tips. This change can be estimated by tak-

ing the variation of the toroidal momentum in terms of its banana tip location yielding
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6p = 2Acxo5xo

The relationship between the absolute value of the change of the pitch angle upon

scattering and the absolute value of the change of the toroidal momentum is given by

Ii~re8I,= x 0 2 16ol = 2v (5.54)V 31- Xo

Equation (5.54) shows the radial position change of the banana tips when the toroidal

momentum changes occur due to pitch angle scattering using equations (5.52) and

(5.53). A barely confined resonant ion can also move along the resonant layer by

keeping the poloidal angle constant and changing its energy according to equation

(2.55). For small radial displacements along the resonant layer, the equivalent change

in energy can be computed by perturbing equation (2.55)

16; 21 = 9A xo(1 - x2)16x 1 (5.55)

Using the relation 16V 21 = 2V161 and equation (5.55), we obtain an expression for ab-

solute change in velocity as a function of the radial displacement along the resonant

layer

16D1 = 3AxolJxol (5.56)

By substituting equation (5.55) for Ixol in equation (5.53) we obtain the absolute

value of the velocity spread 16•] as a function of the magnitude of the pitch-angle

spread
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16vl = -Avth(1 - X)0 (5.57)
2

where we unnormalized the velocity spread by multiplying by Vth. Equation (5.57) is

not an explicit function of x because the collision times must be expressed as functions

of x. The collisionally dependent factors in equation (5.31) will be explicitly written

as a function of x in the next subsections.

Radial dependence of the effective temperature

The effective temperature Teff can be computed using density, temperature and the

power density profile given by equations (5.46), (5.47), and (5.48)

PRFOAsO (7P + 1)("/T + 1)3/2 - )(+ 37T/2-2 n) (5.58)
3nmn0 (yn + 1)2

where

1.3 1018Te03/2
T,0 = an (0.09)

ne0

and the parameter an = nmo/neo << 1 is the ratio between the minority species

density and the majority species density. Collision time -, should be averaged over

the orbital ion motion, but since trapped particles spend most of their time near the

banana tip location, the averaged collision time can be evaluated at the banana tip

radius with good approximation. The normalizing factor of the Maxwellian in equa-

tion (5.31) is

( M 3/2  3Mnmo (yn + 1)2 _ X2)(YP+3'YT/2-2n) (5.60)
2Teff 2PRFO7sO (YP + 1)(TT + 1)3/2
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Radial dependence of the pitch-angle spread

The pitch-angle spread is given by [21]

2A= ( Zeff )1/22A < Zj2/Aj > (1 + E3/2/Ec3/2)
(5.61)

where E is minority particle kinetic energy, A is the atomic number, the effective

charge is Zeff =< Zj > and the critical energy is

Ec = 14.8 A Te(KeV) < Z4/As >2/3 (5.62)

As pointed out in Chapter 4,

resonant particle energy E is

in a strong RF-heating regime we have E >> E,. The

given by equation (2.55) for barely confined orbits

E = 1 Mv A 4(1 - x)2 (5.63)

We also approximate -,- ! Mv h to obtain the pitch angle spread as a function of

the banana tip radius

1 60 1
~Vi~ ~(72= C _·). - (5.64)

Equation (5.64) indicates that the orbital average of collision times is roughly equiv-

alent to an estimate of collision times at the banana tips. The spread in energy can

now be computed as an explicit function of x0 using equations (5.57) and (5.64)
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J -9A 60 1 )3/4

2V 9 A2
X2)(Yr-1/2)Vth

Radial dependence of the Maxwellian factor in the model distribution

function

The energy-dependent exponent of the resonant distribution function can be written

as a function of the radial position of the banana tips when they are on the resonant

layer. Using equations (5.46)-(5.48) and (5.51) we obtain

1 my 2

2 Teff
27A• mv,2h70 (Y + 1)2 2 PT

a (1 - X )2+2y p 2
8 PRForsOs n (YT + 1)3/2(yp + 1) (5.66)

5.4.5 Calculation of power lost due to RF-induced flux

We can now compute the normalization factor for the resonant distribution function

using the density and temperature profiles given by equations (5.46) and (5.47). We

point out that the density and temperature profiles enter the normalization constant

through the collision times, which in their turn give the pitch-angle spread. The re-

sult is

NT e

f (x,I ) = m 9(n,7YT) (1
27waRo

AM
X-2 ) -n _

2rTef f

2
e-AIv / 2Tef f

V,

where

(5.68)@-Yn, nYT) = ( )4 fo' dx(1 - 42>+Y(n--2)
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We start with the model distribution function for minority particles as given by equa-

tion (5.31). The distribution function is bi-maxwellian in energy and pitch-angle. The

spread in pitch-angle space is given by equation (5.46) as a function of collision times.

We compute the energy lost through RF-driven flux when minority particles cross the

resonant layer and they are lost at the edge of the plasma. The energy lost can be

computed by estimating the number of particles that cross the plasma boundary in

a poloidal period. We compute the ratio of the maximum energy lost to the total

energy content of the minority species . The result is

Maximumenergy lost Vf d V, j AX f- d dv 2f b MAX (5.69)
total energy content f dV fo" f u., dV dv 27rv 2 f my 2 /2

where dV is the volume that comprises the resonant ions, vI = 9A~2v/4 and 6VMAX

is the positive kick in energy gained by a resonant ion in one semi-poloidal period.

The range of the velocity space integral is over all particles that are deconfined due to

RF; v2 is the energy of an ion which in the absence of the wave is confined, but which

in the presence of it gains an energy 6 VMAX that will deconfine it. The maximum

kick in energy is computed by integrating the equation of motion in the vicinity of

the plasma layer where most absorption takes place. The result is

J VMAX M -m vmBop1/2E+oI (5.70)

where the phase integral I is

0.561rRo
I f en ostw lsout (5.71)(plBo /m) 2/3 (1 WCORO)1/3

To compute the fraction of energy lost we also used equations (5.31), (5.35), (5.36),
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(5.44), (5.45), (5.53-5.57). We also assumed that the effective temperature is much

less than the maximum confined energy. The integrals over dx in equation (5.69) are

to be solved numerically for different values of the normalized power density.

5.4.6 Discussion of particle and energy fluxes

Before we compute the power loss integrals in equation (5.69), we obtain an estimate

of the magnitude of RF-driven tranport for barely confined particles and compare this

estimate to other sources of particle and energy loss such as neoclassical and classical

RF-driven transport. Previous work by Chen [13] shows that RF-driven convection

flux due to an asymmetry in the ICRF wave spectrum (with a typical asymmetry

kIjPL << 1) is larger than the RF-driven symmetric flux by a factor of

I |asymmetric/psymmetric = 1 a (5.72)kp (5.72)kllPn PO

where Po is the Larmor radius in a poloidal magnetic field. We also compare the

RF-driven asymmetric flux to neoclassical transport using the results from equation

(3.26). The result of this comparison is given by

pas y mmetric a2 1 1

pneoclassical klR2-- (5.73) Ti

In a strongly RF-heated tokamak where the average minority ion energy is higher

than the critical energy Ec, pitch-angle scattering is negligible with respect to elec-

tron drag. If kllR > 10, the RF-driven convective flux is larger than the neoclassical

one. We have already compared the RF driven flux due to finite orbit effects to

the asymmetric flux in section (5.2), the result being that barely confined particle

flux is usually larger than asymmetric flux for standard tokamak parameters [22]. In

addition, it is always present in a RF-heated tokamak, while the asymmetric flux is

generated only in the presence of an asymmetric spectrum.
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We can readily estimate the ratio between barely confined particle flux and the neo-

classical transport by using equations (5.28) and (5.75)

Ffiniteorbit a2 1 1 (WCtb) 2  (574)
,neoclassical R 2 q2 Ts ii A2Dxoo

This ratio is larger than unity for standard tokamak parameters [22]. The impor-

tance of RF-driven flux due to banana widening is underscored by the fact that the

lost resonant ions are highly energetic and, hence cause a significant loss in heating

efficiency.

We now compute the ratio energy loss to total RF power as function of the total

energy content of the minority species. This ratio is much less unity. If the heating

time is known, then we can obtain an estimate for the ratio between the power lost

and the power delivered to the minority species. Generally speaking, the heating

time should be of the order of the drag time rT. In equation (5.48), PRFO yields the

RF power density at the plasma axis, while Jyp gives the profile shape. We solve the

power loss integrals of equation (5.69) numerically and plot the power loss ratio as

a function of the total power loss. We adopt the following parameters in our com-

putation: a/Ro = 1/3, toroidal current I I1MA, electron thermal energy 1 KeV

and minority density 1018 m- 3 . We also take the RF power profile parameter yp = 5

and for standard tokamak parameters [22], we assume y,,T = 0(1) [57] because this

ordering is also observed experimentally. For computational purposes, we use the

following profile parameters

7y = 1 yTr = 2 (5.75)

In figure (5.2), the ratio energy loss to the total minority energy is plotted for dif-

ferent values of the total RF power for three different values of the toroidal current.

The range of RF power density is chosen so that Eo/Teffo >> 1. We plot the loss

126



fraction for a tokamak with a toroidal current of 1.3, 1.5 and 2 MA. From figure

(5.2), it is clear that the fraction of the energy lost increase with increasing RF power

for a given toroidal current, except at very low powers ( PRF < 1 MW) where the

fraction of the energy loss is always negligible and approximately constant. If we

examine the loss dependence at low currents we see even at 2 MW the fraction of

energy lost is relevant if one considers that the poloidal period is the timescale for

this process. The worst scenario occurs when the RF power exceeds 3MW, and the

increase in energy loss starts becoming substantial as the RF power increases. At

higher currents (I > 1.3MA) the energy loss is significantly reduced. An explanation

for this behavior is provided by the examination of the confinement parameter. The

confinement parameter Eo is the ratio between the energy of the most energeticTeffo

particle that a tokamak can confine and the minority-heated tail energy. A typical

value of this parameter can be obtained by considering a tokamak, where the central

electron density is ne = 1020m - 3 , the central electron temperature Te = 3KeV, and

the drag collision time is r, = 0.07sec. Furthermore, we assume that 4 MW of RF

power is distributed in a volume of 1 m3 with a minority fraction of one percent. This

leads to an estimate for the effective ion temperature of approximately 600 KeV using

equation (5.66). A toroidal current of 0.7 MA yields a confinement parameter equal

to unity: -E = 1. A ratio of unity for the confinement parameter is a disaster forTeffo

confinement because it means that most energetic particles are not well confined. It

is intuitive that the higher the confinement parameter, the less RF-driven power loss.

Since the confinement parameter is proportional to the square of the toroidal cur-

rent, we can keep the flux to a minimum by enhancing the current when RF power is

increased. We also see that even a small increase in the toroidal current has a tremen-

dous impact on the fraction of power lost through banana widening, this stems from

the fact that fewer and fewer particles touch the plasma edge as we increase the

toroidal current. This result suggests that an increase in RF-heating power may re-

quire additional toroidal current in tokamaks to reduce the particle and energy loss

due to RF-driven flux.
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5.4.7 Summary

We derived the radial displacement of barely confined particles caused by small

changes of its constants of motion. This displacement occurs with changes in per-

pendicular energy and parallel momentum of the resonating ion. The displacement

is computed for phase-space diffusion due to ICRF wave-particle interaction. The

RF-driven flux due to banana-width effects is comparable to or larger than the stan-

dard neoclassical flux and asymmetrically-driven flux, and becomes smaller when the

resonance layer is moved toward the low-field side of the torus. The combined effect

of perpendicular energy heating and parallel momentum leads to an improved con-

finement for a suitable asymmetric wave spectrum.

Finally,the ratio of power loss to the total RF power was computed for standard

tokamak parameters. We point out that our estimate of the power loss is an upper

limit because of our choice of the distribution function. As expected, the power loss

increases with increasing RF power. The confinement parameter is important to de-

termine the power loss dependence on RF power. A reduction of the confinement

parameter can be achieved by increasing the toroidal current for a given RF power.

5.5 Future research projects

Transport in the presence of ICRF heating is far from being completely understood.

We need to find an accurate solution for resonant species distribution functions and

their radial profiles. This can be achieved by generalized diffusion codes based on

sophisticated full phase-space quasilinear models. There is also a need to under-

stand the impact of mode conversion on transport of resonant species. This problem

requires computational work using ray-tracing or even full-wave codes in toroidal

geometry. Another related research topic is the inclusion of Doppler-shift in the res-

onance condition, which can lead to spatial asymmetries in the distribution function

for unidirectional waves and RF-induced transport. Our model based on banana

widening in the edge region of the tokamak could be extended to the entire tokamak
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plasma to study the challenging topics of RF current profile control and removal of

ashes from the tokamak. Last but not least, the role played by finite orbit resonant

particles on MHD instabilities needs to be understood since it may lead to different

growth rates than those given by current models.
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Appendix A

Particle and guiding-center

variables

Here we list the transformations from particle variables to guiding-center variables

up to a linear term in E[9] . In order to avoid confusion between the particle and

the guiding-center variables, only the guiding-center variables carry the subscript

'gc'. The guiding-center variables are: (Xgc, vllqcc, p0, M). The particle variables are:

(x, vil, 0, v±). The direct transformations are:

XgC = x a + O(E2) (A.1)
wc

vg•z = v11- [v(Z 2 - Zo + So) + 2vjv Fo] + O(0(E2) (A.2)
2

ego = q + 2 [2v±(-wcF2 + c- VwC) - wevliSi + 2w---FF]_ + O ( E2) (A.3)

3 + [vLa -Vw, + wcvIv1j(So - Zo) + 2wevIvFo] + 0(E2) (A.4)

All fields on the right-hand side are evaluated at the physical particle position x.

Here (a, b, c) is a right-handed rotating triad of unit vectors where b = . Also

Zo=b-Vxb; Z2 =b-Vc-a (A.5)
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Fo= b.Vb.a; F1 = b.Vb.c (A.6)

1
F2 = a.Vc a; So= 1(a-Vb.c+c-Vb.a) (A.7)

2

1
S1= (a- Vb a - c Vb c) (A.8)

2

Higher order and inverse transformations can be found in the original paper by Lit-

tlejohn [9].
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Appendix B

Poisson brackets and starred fields

The equations of motion are obtained in the framework of Hamiltonian dynamics [9].

Given a dynamical variable Y, the resulting equation of motion is

Y = [[Y, H]] (B.1)

where the double brackets are Poisson brackets for G.C. variables.

brackets are defined as

[[f, g]] = Al + Bl + C1

where f and g are any two phase-space quantities and

1
Al = q Vf (b x Vg)

qB"

mB*
*(Vf2 - - aLVg)

avi 0av1

C 1 = q 9m (-051
af agap 490

The Poisson

(B.2)

(B.3)

(B.4)

(B.5)
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The starred fields are defined as

B* = B + evilV x b + [b((V. b)2 - Vb: Vb)
2m

-2(V -b)b -Vb + 2b -Vb b - V x (bob)]

B* = b -B* = B + evllbo

+ [V2b -b + (V -b)2 + (b -Vb)2]2m

where b is the unit versor of the equilibrium magnetic fields and

b0 = b -(V x b)

where E = m
q

Equations (2.4),(2.5),(2.6) and (2.7) can be now derived by making use of the Poisson

brackets in equations (B.3),(B.4) and (B.5) and the Hamiltonian in equation (2.3).

The dynamical equation for the guiding center position vector is

cXgc = [[Xgc, Ho]] =

1
= -* VXgc - (b x VHo)+

qB*

B* Ot+ B* (VXgc

+ q (Xgc &Ho
m dq aSu

= * (vjIB* +

S0Xgc VHo) +
vil 1Vll

0Xgc Ho

aO a )

Eb x -EVB)
m

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)
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where we used the following identities:

.X 8HoVXgc = I; VHo = pVB; OXgc H

The dynamical equation for the parallel velocity is

11 = [[vll, Ho] =
1

= B -- (b x VHo)+
qB*

B* 9t

mB*. (Vvi

+ q vll Ho
m -o alt

B*
= oB (- tVB)mB*

where we used the following identities:

avil avVvIll = -• 0

The dynamical equation for the magnetic moment is

t = [[ps, Ho]] =

1
= BVp - (b x VHo)+

qB*

B* . VA19
mB* 49V

m (90 OlI

Ho VHo) +
vi Ovil

OB OHoo- I al = 0
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SVo VHo)+
Vii aVll

a9. 00 )

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)



where we used the following identities:

Q u bO aHo
V= 0

The dynamical equation for the gyrophase is

q= [[€, Ho]] =

1
= ~V - (b x VHo)+

qB*

+B*
mB*

aeH
8vll

+q ( aHoo
m (90ay

aO alHo =B
m

where we used the following identities:

go = aoVO 8 8=
V - 0
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(B.29)

(B.30)

aHo
0 B (B.31)
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Appendix C

Vector identities for the specified

equilibrium

We list some vectorial identities for the magnetic field versor in toroidal coordinates

that are used in the guiding-center equations of motion.

The curl of the versor is

16
Vx b = ( (Rbc))er -

rR xb

18 01(Rb()eo + (rbo)eg
R Orr or

A simple calculation yields

1
Vx b =- sinO0fer -

hRo
(hf ) e o + (+ + g)e(

h r Or r

The divergence of the versor is

V b= gsinO
R

f 2 Oh g2
(b -V)b = -b x (Vx b) = (-_f )er +h •r -r

Og fg
bo = b - (Vx b)= f -+Br r

f2 fgsin e eo - • sin0ec
hRo hRo

fg h Of
h Or ar
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(C.2)

Also

(C.3)

(C.4)

(C.5)



1 0
V x (bob) = [ (Rbof)]er -

rRH 0

The components of the Vb tensor are

8g(Vb),o = Or

8f(Vb)rý =O
r(Vb)o r = _o

f aR
(Vb)c, = R OrR r00

f OR

(Vb) = -R

More vectorial identities are

b Vb - Vb = [- sinO

1 g  f2g{ sin2 O]eo + [
r Or R2

V2 b b= [R(R jr Or

b x VB =

f2 g+ RsinOcosO]er +
R2

f2 Of
-f fcosO -

R Or

g fO rO
+ -) +  -r [r ( h f ) ] -r r rh hOr

g2 g2
-cosO - sin20

rR R2

gBo[- • )ej + f Bo[ (•)eo -
Or hf r hf

f2 Og
R- cosOR Or

g2 + fg 2

r r sin2 0]er dr R2

S ( sinO)+r aO R

+ r2h2(0)

I 1
r 0 hf)er

The full expression for B* is

SBo fg fg
B* = h + v [fg + r -R cosO - gf'] +

hf r R
e2M ,, g f22 4

+ f- [(g - ) + f f" COS2+2 - r2 R2
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I (Rbo f)eo + -- (rgbo)eR Or rOr (C.6)

(C.7)

(C.8)

(C.9)

(C.10)

(C.11)

(C.12)

Sgog f of OhVb : Vb =
r 7r h ar 'r

(C.13)

(C.14)

(C.15)

(C.16)

(C. 17)

(C. 18)

(C.19)



+ f 4 cos2 f2 2
+ + 2 cos9]R2  rR

The derivatives of the versor are

f' -4 ( )2f (C.20)
a aBo

fa ( )2( f + 3rf')f 2  (C.21)
a2 aBo

ff'g9 - (C.22)
9

f P2 + f f if
g" + - g' (C.23)9 9

where we let

f = (1 + 4x 2 (ACo/aBo)2)-1 /2 (C.24)
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Appendix D

Guiding-center equations for time

integration

We list the guiding-center equations relative to poloidal and toroidal guiding-center

position for a given equilibrium in terms of a magnetic field versor b. The equation

of motion for the poloidal coordinate is obtained by dotting equation (2.4) for the

guiding-center position vector with the unit versor in the poloidal direction yielding

dO 1
r- = -(vllB* + Eb x -VB) - eo (D.1)

dt B* m

The next step is to divide equation (D.1) by r to obtain

dO VI B* e0 + b x VB - eo (D.2)
dt rB* mrB*

where the right-hand terms in equation (D.2) are computed by using the relationships

in Appendices B and C to yield

=-B* -e -o = I Bo + cvl(-fcos9 - f')+ (D.3)rB* rB*hf R
E
21I gg' ff' f 2 g'+ (g(- + cos) - 2 cos0 -
2m r R R
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+2 / bof-2 g g  cos + fb'o + bof')]r R

E1 b c coseb x VB e CI f Bo[- cos
mrB* mrB* fhR

bo = f g' +- cosO - gf'
r R

S f' g + f g' f g gf" f g' + f' gcs
Sr r2  R cos

T~ 1
-gcos20 + fg"
R2

The toroidal angle motion equation is computed by dotting equation (2.4) with the

unit versor in the toroidal direction yielding

d( 1 IR = B-(vllB* + Eb x VB) - ec (D.7)

The next step is to divide equation (D.7) by R to obtain

1
B*R[VIIB*

- ec + e-b x VB -ec]
m

(D.8)

where the right-hand side terms are computed by using the vectorial relationships in

Appendices B and C yielding

+ Ev(' +
r

2 mL fgg'

2m r
f 2 f' g2

cosO - 2 f' -R r
gbo - g'bo - gb'o]
r

bx VB.e( =
cosO f'gBo[ t +fhR hf2
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(D.9)
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Appendix E

Normalized quantities for

normalized guiding-center

equations

This appendix contains a list of all normalized quantities used in the guiding-center

equations of Chapter 2. The normalized magnetic field is

1 1 Vilth b
hf Wcotb a/Ro 0

+ ( 1 ROt - ftco
2wcotb a

where the normalized quantity b0 is

fg fga
b = f g* + f  f acos9 - gf*x h Ro

g f2 4 f4COs28h 2'2 2co = g(g9* 2 a COSO)2 + 4 ( )2 + 2 cosO
2 hf Ro X) h2  Ro xh Ro

The derivatives of the components of the versor b are

f* = -4x(A )2f3
aBo
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(ACo )2(f 3 f*)f2
f** = -4( 0o 2 (f + 3xf*)f 2

aBo

* ff*
g = -

Sf*2 + f f**

9

+ff*
9

-f* g +fg* f g . fg * + f *g a
x X f h Ro

fg a 2

f cosO + f g **
h2 R
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Appendix F

Derivation of condition on

existence of maximal radial

position

We need to find d2x/d(cos9)2 to make sure that our particle in phase space has a

maximum radial excursion at x = 1 and cosO = 1.

The algebraic equation is

ax4 + (c2 + c3 * cos 2 (9)) * X2 + cos(8)dl * x + e = 0 (F.1)

Carrying out the implicit derivatives yields

dx
d(cos(O))

2c3cos9 * x2 + d, * x
4ax3 + 2 * (c2 + c3cos2 (9)) * x + cos(O)dl

(F.2)

We multiply the first derivative by -cosO. This yields an expression for the second

derivative. To have a maximum, we let d2x/d(cosO)2 < 0. This inequality can be

written as

2c3cos29 * x 2 + cos(9)di * x
<4 + * (c2 3 )) *

4ad3 + 2 * (c2 + c3cos2(8)) * x + cos(0)dl
(F.3)
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We take the point x = 1 and cosO = 1.

The inequality becomes

2c3 + di
<4a + 2c

4a + 2cl + dl
(F.4)

Since the numerator is always a negative quantity, we can write the inequality in

terms of the constants of motion as

8-2 +
SAc 2 -4 3A

4 * Ac2 - 4 * A- 2+
<0 (F.5)

This result completes our derivation.
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Appendix G

Wave Hamiltonian derivation

To start, we express the wave vector k in terms of the local triad

k = k1lb + k±(elcosa + e2sina) (G.1)

where a is the angle between kI and el. We assume that (el, e2, b) form a local

orthonormal basis.

Let's also define a rotating orthonormal frame (a, b, c) such that

a = elcosq59 c - e2sinq19 c

C = -elsin7b9 c - e2COS/gc

(G.2)

(G.3)

The gyroradius vector is p - Ec. We also make use of the following formulaWCe

(G.4)eigcoso = E J - (g) ein( /2)
n

The exponential in the eikonal for the field can be written as

(G.5)

where

On = k -Xgc - wt + n(¢ + a + 7r/2) (G.6)

145

,i(k~x-wt) , E J, (ki-p) e'O



We want to consider the case of fast-wave heating. A fairly good approximation is to

assume the parallel electric field to be negligible [39]. We also want to work with an

electric field rather than a vector potential. The linear Hamiltonian is given by

H1 = -qv - A1  (G.7)

neglecting the parallel electric field for the fast-Alfven wave and using Faraday's law

yields

H1 = -qv - A 1 = iqv (G.8)

The linear Hamiltonian can be written as

H1 = v- Elk - Jn(k p)ein(k) (G.9)
k n

where we used the eikonal dependence for the electric field given by equation (G.5)

We can manipulate H1 further by substituting vi = vic in H1 to obtain

H1 = , -/2B(Xgc)p/m[Jn-je-iaE, + Jn+leiaE_]ei. n(k) (G.10)
k n

where the electric field components are

Ei(Xgc) = El - (el ± ie2) (G.11)

In this thesis we deal with fundamental harmonic wave-particle resonance (n = 1)

due to a monochromatic fast-Alfven wave, therefore the wave Hamiltonian in (G.10)

simplifies to

H i = ~ 2B(X ~c)~/m[Joe-iE+ + J2eiE_]jei,,(k) (G.12)
H1 I`~C =
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The Hamiltonian given by equation (G.12) is employed in calculating the wave-

particle resonant changes of the guiding-center variables.
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Appendix H

Derivation of quasilinear equation

We substitute equations (3.38), (3.40) and (3.41) in the Vlasov equation given by

equation (3.37) to yield

(fo + fl)
at + j,

&(fo + f,)
aJ + (0 + 8) -a(f +fi)=

ae (H.1)

We now average the full Vlasov equation over the orbital frequencies to obtain

8(f0 + f l)
at

Sa(fo + fl)+ ~a *8 >w,,,9c,o= 0

where we used the following relationship based on equation (3.38)

afo0
= 000

(H.2)

(H.3)

We substitute the eikonal expressions into the linear terms. By doing so only the

zero and quadratic terms in A survive the operation of averaging because of equation

(3.51). The result is the following quasilinear equation
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afo 1 +a afci
tQL + 4 <  J + Q + c.c. >, ,0= 0 (H.4)

where the time variable is the quasilinear time since we averaged over the fast times.

The angles are given by

o = (9, (, 1ge) (H.5)

Equations (H.4) and (H.5) yield the quasilinear equation (3.50). We now derive the

slowly varying term of the perturbed distribution function given by equation (3.61).

We start by writing the linearized Vlasov equation given by equation (3.60)

af+w + wO + cf Of f0 (H.6)

where wo and we are respectively the poloidal and toroidal frequencies. We substitute

the eikonal expressions for the fields and the distribution function given by equations

(3.42) and (3.43) into the linearized Vlasov equation and take the derivative over the

phase given by equation (3.44) to obtain the following differential equation

dO dfl afo
-i(w - w, - Nw( - Mwo) f = -J]- (H.7)

where tL is the total time derivative along the unperturbed orbit. We assumed that

the slowly varying term of the linearized distribution function is a function of the

poloidal angle, but it is independent of the toroidal angle because the toroidal system

is axisymmetric and also independent of the gyrophase. We can also recognize the

resonance condition in the second term of the left-hand side of equation (H.7). We

proceed to integrate the linearized differential equation multiplying it by the integrat-
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ing factor given by

dtLexp(- i ( -w-Nw(- Mw)dtdOp-- 1- ( - Nc w( - Mwo)dtL)

The differential equation can be now written in the following form

dT(fexp(-i (w-wc-Nu Mw)d,)) = _j fo dexp(i
OJ dOe fJtL(w-wc-Nw(-Mwe)dtL)

(H.9)

which can be integrated to give

flexp(-i , (w-w,-Nw(-Mw)dt' ) = - lfoI e L I-aJ

I t
f dtL exp(--i00 t-(w-w_-NwC-Mwe)d4t)

(H.10)

We make the assumption of a system with no memory, therefore we can translate

the limits of integration in the time integrations without affecting the value of the

integral. By doing so we obtain the solution for the linearized distribution function

fl = -exp(i
It

Wy-WC-N w(-Mw(.11)
(H.11)

which can be written in the more compact form given by equation (3.61)

If = -ei-~ 5 jfO e-iL dt'

where the phase along the unperturbed orbit is given by
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L (0,tL) = w(w - - Nwu( - Mwue)dt,

We now derive equation (3.74). The convective term is

49 1 4919J- fl j J, >1o>o=2 - fil ai *Ail >W1010 (H.14)

We substitute equation (3.70) into the right-hand side of equation (H.14) and use

equation (3.56) to obtain

a
>,,e~ <eiLJ*. ai, T" , ~LdtL)

The orbit-averaging operator acts only on the fast varying phase ei4L to yield

< 1 f Tb ePLdL dtL I2

- f J 4 Tb 1

afo a4. A
aJ &J

Rearranging the right-hand side of equation (H.16) we obtain equation (3.74)

a
- < fi j.Ji

1 foTb eidtLI2 0 JI)J* . fo
>,4,0 Tb (- 1 J

This completes our derivation of equation (3.74).
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Appendix I

Derivation of the linear equations

of motion

We derive the linear equations (3.85)-(3.88). The linear equation of motion for the

guiding-center vector is found from equations (B.2)-(B.5). Substituting f = Xgc and

g = H1

1"
Xgc = [[Xgc, H]] = VXgc (b x VHj1 ) (b X VH 1) (I.1)qB* (1qB*

where the Poisson brackets given by equations (B.4) and (B.5) are zero because Xgc

is independent of the other guiding center variables and 9H1 /&llv = 0 where H1 is

given by equation (3.84). The spatial derivative acts on the phase to yield equation

(3.85)

Xgc= (b x IiVe') (b x VV HI) (I.2)
Le.(bx qB*

The linear equation of motion for the magnetic moment is derived from equations

(B.2)-(B.5) substituting f = M and g = H1 to obtain equation (3.86)
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S= [[p, Hj]] q H -- i H (1.3)
m 8€ m

where the Poisson brackets given by equations (B.3) and (B.4) are zero because I

does not depend on the other guiding-center variables and the derivative of the linear

Hamiltonian over the gyrophase yields unity because of equation (3.83).

The derivation of the linear equation for the gyrophase is obtained from equations

(B.2)-(B.5) substituting f = and g = HI to yield

- q 0 OH1 _ qH 1  (1.4)
mam a8 m By

where the Poisson brackets given by equations (B.3) and (B.4) are zero because 0

does not depend on the other guiding-center variables. The linear equation of motion

for vil is derived from equations (B.2)-(B.5) substituting f = vii and g = H1 to yield

B* iB*
v11 1 = - . VH 1 = - .* V4 1H1  (1.5)

mB* mB*

where the other Poisson brackets are zero because vii is independent of the other

guiding-center variables.
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Appendix J

Derivation of the guiding-center

variable changes caused by

wave-particle resonance

We derive the changes in the guiding-center variables caused by wave-particle reso-

nant interaction. The linear wave Hamiltonian is given by equations (3.82)-(3.84),

where we assumed the wave to be monochromatic. The Bessel functions Jo and J2 are

obtained by letting n = 1 in equation (G.9). The electric field is expressed in terms

of its left and right circularly polarized components E± defined in equation (G.11).

We begin by integrating the guiding-center vector position equation of motion (3.85)

along its unperturbed orbit to obtain

(JXgc)res = dXg= dtLz b x VibH1  (J.1)res res qB

We use the result in equations (3.95) and (3.96) and the linear Hamiltonian in (3.82)

to obtain

(6 Xgc)res =- , [( gN fMj)er - fkieo + gk±e(]II1 jt eidtL (J.2)qB* R r 'es

154



We substitute equation (3.84) into equation (J.2), use the leading order approxima-

tion B* - B from equations (C.19), (2.10) and (3.97), the resonant change in the

guiding-center position vector becomes

1 .[gN f M E r

(Xgc)re (2/mB)/2)er+fk±ee-gkLe](Joe-E+J 2  )]reI

(J.3)

By dotting equation (J.3) with er,eo and ec respectively, we obtain equations (3.98)-

(3.100).

The resonant change in the magnetic moment is obtained by integrating equation

(3.86) along the particle's unperturbed orbit to yield

(J5i)res = dp = iq dtLHl (J.4)

Using (3.95) the right-hand side of (J.4) becomes

(6 P)res `-(IH 1 )resf eiuLdtL (J.5)

Using (3.84) and (3.97) the right-hand side of (J.5) becomes

(S)res [( )[( 1 (mBy/2)11/2(Joe-`E+ + J2eiaE•)]resI (J.6)
m w

The resonant change in parallel velocity is computed by integrating (3.88) along the

particle's unperturbed orbit

), d iB*
(6VI)res = r dv = - dtL ,•-m V 1HI (J.7)

(a.res. resui =-l Mdt
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Using (3.95) and (3.97) the right-hand side of (J.7) becomes

iB*
(bvll )res -(mB*- V4i-)resl

From equation (B.6) the magnetic starred field to order E is given by

* ,
B*0. B + -vllV x b

q

The magnetic field vector can be written

at leading order in E

B* ; Bb -

as B = Bb, hence equation (J.9) becomes

m sinO
qvil ferq hRo (J.10)

where only the radial component of V x b from equation (C.2) has been kept since

the poloidal and toroidal component are dominated by B. We divide equation (J.10)

by B, where we approximated B* : B from (B.7) to obtain equation (3.103)

B* vil f sinG
B• w , erB we R (J.11)

Dotting equation (3.89) with (J.11) yields

B* vI fsin0 f0N gM kIvll-• V1 b - vRer - V1 - + -+ fsin0
B* w R R r weR

where we used the relation b = fee + geo. We now substitute (J.12)

obtain equation (3.102)

(J.12)

into (J.8) to
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(SVll)re, s [( +gM + fksinO) (2g2B/m)'/2(Joe-i'E + + J2eiOE_)]resI
R r wcR 2mw

(J.13)

The change in the gyrophase is obtained by integrating equation (3.87) along the

unperturbed particle's orbit

(65)res = de = q  dtL 4 -=- (/qaIq) (J.14)
res m res p m Op

The partial derivative acts only on I because HI1 is evaluated at resonance. Using

(3.84) the right-hand side of (J.14) becomes

(6J)res = ( 2w(2B-u/m)l/2 (Joe-''E+ + J2 e'•E_)),re, (3.15)2mw all

The phase integral I is a function of the constants of motion and therefore depends on

/p. There is no general analytic formula for OI/p, since it depends on the constants

of the motion, the resonance location and the topology of the particle's orbit.
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Appendix K

Derivation of a fast minority ion

collision operator

The starting equation is the Landau form of the Fokker-Planck collision operator [12].

The collision operator is

a9fj eT e2  1 8
( )c = !t lnAOt 2c0 mi 8v-

18- d3 v w - (Mi 8vi
18

S ) fi fjmj 8vj (K.1)

where the index i refers to the minority species, while the index j refers to the back-

ground species and

a2g
oviovi

1
= (g2I - gg)
93

The relative velocity is given by

g = Ig = Ivi - v3j

The collision operator can be integrated by parts to yield

(K.2)

(K.3)
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e oej In m &(2EO ;ýý avi - d3vwf, - -fi- dJ vjw fj]

where we made use of

Using the first expression for w, the collision operator can

af ee2  1
)c= 3 lriA;2-inojivthj 5- 0afiavi

a2vF(xi
(9vi(9vi

be written as

mmj ovi a2 F(x--)I
8viavi

where we define the function F as

F(zXj) = d'vjfjgij
nojUthi

where xij = Vi/Vthj.

Taking the derivatives in equation (K.6), the collision operator becomes

afiat e2 e2  1 0
= 2- -- InA-nojvthJ [Fv F2]

2 10 m1v

(K.6)

(K.7)

(K.8)

F1 = v ( v  F'
avi Oviavi

+ i i F")
- vi v i )

and
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afiat vfi(9vi (K.4)

,vi
(K.5)

where
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19 a2X_ 4
m2 F9, +9
M3 £v1 9vj£9vi £vi x'j zxy F" Zi+ 1 2 Fi F" xij xj ij Fil)'"avi avi +vi v vi vi avi Ovi Ovi

(K.10)

The collision operator terms F1 and F2 can be simplified by using the following rela-

tions

dxij
Dvi

1 vi

Vthj Vi

a2X:

d(9dyvi

19 dxij

dvi avi

2

Vthj Vi
(K.11)

(K.12)1 (V?I -ViVi)
Zhj V, 2

a (viXv
5 V-i dvi9vi

2 vi
Vth 3

vthj Vi
dxij
dvi

axi3j Dxii
Dv avi

The result of the simplification is

afiat Fij a
9vi

vfiavi

F3 =9v9vF
vivivx I
vi

F4 = F' - xijF" I- "2
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(K.13)

where

Mi Vi
-F3+ -m fi- vMj V,3 (K.14)

(K.15)

(K.16)



and

2 2

S i= eej lnAm n(K.17)

When the background species are Maxwellian, the integral for F can be derived to give

1 1
F(x) = (x + 1-)I(x)+ 1D'(x) (K.18)2x 2

where the error function and its derivative are

2 f,= 2 _2

=(x) 2 = e• dt; ; 5 = (K.19)

There are two asymptotic forms for F.

For x << 1 we have

2 X2  X4

F (x) (1 + + ...) (K.20)
3 30

For x >> 1 we have

1 e-32 3
F(x) = x + 1 _x(1 - + . (K.21)

22 2TV= 4  2

We neglect collisions between fast minority ions because the minority species density

is smaller than the majority species density. Minority ions are much more energetic

than majority ions, therefore Xm,i >> 1 is a good approximation.

Keeping the leading order terms, the ion-ion collision terms become
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The ion-ion collision operator becomes

Of 02v
9v Ov9v

mmin V
+2 f 7 ],

mion V3

It is convenient to use spherical coordinates (v, 0, 4) and make the assumption of

axisymmetric distribution function along the field.

The collision operator simplifies to

afi
at )c,ion

min(,ion (2 min af
-3 mion 19 (K.24)

where ( = vil/v is the pitch-angle. For minority ion-electron collisions, we assume

that xm,e << 1.

The collision terms at leading order are

F 3 2 Xm,eF 3 v '
2 3

F4 m3 xm,e (K.25)

Using the asymptotic form for the collision terms, the minority ion-electron collision

operator can be written as

afi
at(C~e

Of
09V+ 2 mm vf]

me v
(K.26)

The next step is to neglect the first term. This is equivalent to the following inequality

2m-x 2 >> 1
me

(K.27)
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02v2avi avi

afi( )c,ion
dt

(K.22)

(K.23)rmina

ý 2) O
0ý

rm ex (v r



The ion-electron collision operator simplifies to

a c,eat 8 3m Df__•' m,e m,me •mm v + 3f)3 ý m' V3 me, 9 (K.28)

Combining the ion and the electron contribution, the full collision operator becomes

1 8 r3 mm Of
• Trml•x,,,m (v j + 3f ) +
v1 3~i~ me 8v

mmin OIf
Fmin,ion (2 -mnv --

mion 1oV

2,Of- ( )-)]
(K.29)

This is the standard form of the collision operator for fast minority ions [3].
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Appendix L

Derivation of collision diffusion

coefficients for delta distribution

function

We derive the diffusion coefficients for a minority delta distribution function in pitch-

angle velocity space (v, () following Goldston [58]. The starting equation is the col-

lision operator given by (4.2). The distribution function is a delta function in the

velocity variables

f J= ( - vo)j(ý - ýo) (L.1)

We begin by calculating the moments in velocity space of the distribution function

change, which are defined as

Bav ( f/9ft)rv3 dvdý< T >=
dt f fv 2 dvdý

(v 2  f(8f /(ot) v 4dvdc
< >= ffvdvddt Jfy2dvdý

(L.2)

(L.3)
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Sf (aff/lat)cov2 dvd<< >= fv 2dvdat f fv2dvd<

aC2 f 2 (af/&t)cv2dvdC
at ffv 2 dvdC

(L.4)

(L.5)

The quadratic moment in velocity is easily evaluated by substituting the delta distri-

bution function in the integral

Sfv 2dvd = v= (L.6)

To carry out the other integrals, we make use of the following relation

J0 f (t)5' (t - a)dt = -f'(a)
-oo

(L.7)

The results are

J (f /&t)ev 3dvdc =

(of f/at)cyvdvd = 2vo(v 3 + v )

J(af/&t)cv2dvd = Zeff 2 VC

Ts Vo

(L.8)

(L.9)

(L.10)
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J2(af/at)cv2dvd = Zef f2 v (3ý - 1)
Ts Vo

(L.11)

The averaged derivatives can be written as functions of velocity and pitch-angle vari-

ables as

9v v + v 3/v2
< >= "-Bt 7,

(L.12)

av2  v 2 + /
< >= -2 T

at 7

Zeff2 V3
7-s

< >=- Z (32 - 1)
Te 7, s 3

The averaged displacement in velocity space is given by

Vv
vfin = vin + Jt < -- >= vin - Jt

Tt i
Vin + v /v2

7.
(L.16)

(L.17)O > Zef•2 2-V3
ýfin = ýin + Jt < >= ýin - St cin

166in

166

(L.13)

(L.14)

(L.15)

at



where the subscripts in and fin stand for the initial velocities and final velocities at

every step of integration.

The spread in velocity space is

< AvAv >=< (v - v>=< V + vi - 2vlv 2 >= (L.18)

=< v + 2 - 2vi(vi + v) <v2
>= 6t (< >at

av-2v < ->)at

< A(Aý >= it (< -- > -2ý <

The convective diffusion coefficients are

v + v+3/v 2
< Av >= -C t

and

T< i>= Zeff2 V3

7S V3 g

The diffusive spreads for fast ions are

< AvAv >= 0

>Zef 3
A< nA( >= (1 - (in)6tT" viI
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(L.19)

(L.20)

(L.21)

(L.22)

(L.23)

ý% a



The diffusion coefficients (1.20), (1.21), (1.22), and (1.23) can be used in a Monte Carlo

simulation to compute the velocity diffusion of fast minority ions.
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Appendix M

Derivation of a RF-driven flux

from the kinetic equation

We begin by writing the full kinetic equation

8f Of 8f-- " 9+" V - - Vdx = C(f) + Q(f) + T(f) (M.1)

where 1 is a spatial coordinate along the field lines, C, Q are the collision and quasi-

linear operator respectively and we introduced a radial operator

T= tx(M.2)St ax

where Sx is any radial displacement due to wave-particle interaction. We are inter-

ested in finding the flux in a steady-state case, therefore we let 2 = 0. We order theat

kinetic equation operators according to their time scales. To do so, we introduce a

small parameter At << 1. The ordering yields

& &
0•11 oc A° ; (Vd. , C, Q) Oc A ; T OC A' (M.3)

The next step is to expand the distribution function in terms of At
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f =A f 0 ±fo + A'f+ + (

Inserting the expanded distribution function in the steady-state kinetic equation

yields a zero order equation

Ofo= o
8l

(M.5)

which says that the zero order distribution function is constant along the field lines.

At first order in At the kinetic equation yields

vil a + Vdx fo = C(fo) + Q(fo)al ax (M.6)

We bounce average the linear equation in At to obtain

< C(fo) + Q(fo) >= 0 (M.7)

where we made use of the fact that < ... > is an annihilator for the streaming term

and < Vdz >= 0. Solving the bounce-averaged linear kinetic equation yields fo. At

second order in At we find

Vll + Vdx+ = C(fl) + Q(fl) + T(fo)

We proceed to bounce average the second order kinetic equation to obtain

< Vdx , >=< (C(fl) + Q(fi)) > + < T(fo) >ax (M.9)
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We now introduce the bounce-averaged radial flux in terms of the linear distribution

function

r. =<J flvdVzdv >= f < fV > d v (M.10)

We can pull the radial derivative out of the bounce-averaging operator in the second-

order kinetic equation and make use of the property c9vdz/c9 x = 0 to obtain

- < Vdx l >=< (C'(f1) + 12(Jl) > + < '(fo)>
8z

(M.11)

The spatial derivative of the flux can therefore be written as

9z = Jf < (C(fl) + Q(f,) > d3 + < T(fo) > dv3ax X f (M.12)

We now integrate the flux derivative from x = x* to +oo, assuming

+oo) = 0. The flux is

Fr(x*) = < (C(f1 )+Q(fi) > d3vdx+J < T(fo) > d3vdx = "

that f(x =

(M.13)

The total flux is the sum of two separate fluxes, the flux x, (x*) stems from collisions

and wave-particle velocity scattering, the other flux r2.(x*) is due to spatial displace-

ment caused by wave-particle interaction. The first flux requires knowledge of the

linear distribution function obtained by solving the second order kinetic equation.

The second flux can be estimated since it is a function of fo, a much easier function

to compute. We write the second flux fully as

171

p -/. / \ . N/p - -lfp

1% l (X*) +r~x (*)



2x(*) <T(fo) > dvdx = -J d3v f <6x dz (M.14)

where we made use of the fact that the bounce-averaging operator acts only the radial

displacement. The spatial integral is trivially solved if we specialize to the case where

< 5x > is only dependent on the localized resonance interaction position. The driven

flux can therefore be written as

2x(X*) = - d'v < fo (M.15)

This is the expression for the flux used in this thesis to study the radial transport of

minority ions due to banana-broadening.
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Appendix N

Figures

List of parameters used in numerical calculations [22]

* toroidal magnetic field intensity Bo= 5 T

* electron thermal temperature Te - 3Kev

* inverse aspect ratio a/Ro = 1

* majority ion density ni = 1021 m- 3

* toroidal plasma current I = 1MA
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Trapped particle orbits in Alcator
I
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Figure (2.1): Barely confined particles orbit cross-sections for three
different energies in a circular flux-surface tokamak. The orbits are computed for
standard Alcator C-Mod parameters [22].
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Energy as a function of radial position of a trapped particle
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Figure (2.2): Barely confined trapped energy versus radial position of its
banana tips for standard Alcator C-Mod parameters [22). The energy is normalized
to one KeV.
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Trapped particle energy versus its tip location
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Figure (2.3): Barely confined trapped energy versus radial and poloidal-
angle banana tip position for standard Alcator C-Mod parameters [22]. The energy
is normalized to one KeV.
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Normalized poloidal period for trapped particles; I = 1 MA
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Figure (2.4): Trapped particle poloidal period normalized to tb = Ro/Vth
versus radial and poloidal-angle banana tip position for standard Alcator C-Mod
parameters [22].
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Trapped particle orbit width ; I = 1MA

1 Tip point poloidal angleTip point minor radius

Figure (2.5): Barely confined trapped particle orbit width versus radial
and poloidal-angle banana tip position for standard Alcator C-Mod parameters [22].
The width is normalized to the minor radius a.
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LONGITUDINAL SLOWING-DOWN FREQUENCY
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Figure (4.1): Longitudinal slowing-down ion-ion and ion-electron coeffi-
cients < Avll > /v(sec - 1) as a function of the ratio ion tail velocity / electron thermal
velocity for standard Alcator C-Mod parameters [22].
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ENERGY-EXCHANGE FREQUENCY
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Figure (4.2): Energy-exchange ion-ion and ion-electron coefficients <
(AVll) 2 > /v 2 (sec- 1) as a function of the ratio ion tail velocity / electron thermal
velocity for standard Alcator C-Mod parameters [22].
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DEFLECTION FREQUENCY
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Figure (4.3): Ion-ion and ion-electron deflection rates < Av2 >
/v 2 (sec- 1) as a function of the ratio ion tail velocity / electron tlhermal velocity
for standard Alcator C-Mod parameters [22].
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Denominator of the radial displacement as function of the location of the banana tips
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Figure (5.1): Denominator D(xo, 8o) of equation (5.18) as a function of
the banana tip coordinates (zo, o) for a/Ro = 1/3.
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Figure (5.2): Ratio minority energy loss to the total energy of the
minority species as a function of the total RF power for standard Alcator C-Mod
parameters [22] and for three different values of the toroidal current.The full line
refers to a toroidal current of 1.5 MA, the '*' line refers to a toroidal current of 2 MA
and the 'x' line refers to a toroidal current of 1.3MA
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