
The Topological q-Expansion Principle

by

Gerd Laures

Mathematik Diplom, Universitit Heidelberg (1993)

Submitted to the Department of Mathematics
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Mathematics

at the

Massachusetts Institute of Technology

August, 1996

@ Massachusetts Institute of Technology 1996.
All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part, and to grant

others the right to do so.

Signature of the Author .......

Certified by ........ ...... .......

Department of Mathematics
August 9, 1996

Haynes R. Miller
Professor of Mathematics

Thesis Supervisor

A ccepted by ...................................
Richard Melrose

,,c:::-. s -: Chairman, Departmental Committee on Graduate Students
OF TECH"iOLOY:

OCT 1 0 1996 Scienc
UBaraMiES



/j

/



The Topological q-Expansion Principle
by

Gerd Laures

Submitted to the Department of Mathematics on August 9, 1996
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Mathematics

ABSTRACT

Imitating the classical q-expansion principle we use the elliptic character map to develop
the relation between elements in elliptic coh mology and their q-series in K-theory. We
show that, under certain exactness conditions, the integrality of elliptic objects is completely
controlled by their characters.

As an application, we obtain an interpretati n of the cooperations in elliptic cohomology
as was conjectured by F. Clarke and K. Johns n. It enables us to give a description of the
elliptic based Adams-Novikov spectral sequen e in terms of cyclic cohomology of modular
forms in several variables, and to set up a higiher e-invariant with values in N. Katz's ring
of divided congruences.

We show how the topological q-expansion principle can be used to equip elliptic coho-
mology with orientations which obey various Riemann-Roch formulas.
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INTRODUCTION

The most fundamental result about the relation between modular forms and their q-
expansions is known as the q-expansion principle. It captures the fact that the ring over
which a modular form is defined is determined by its q-expansion coefficients. Modular
forms have entered algebraic topology during the past decade by the construction of elliptic
cohomology [34][41][15], a complex oriented generalized cohomology theory attached to the
universal elliptic curve defined over the ring of modular forms. The point of this work is
to carry over the q-expansion principle into the topological framework and to develop the
relation between elliptic objects and their q-series in K-theory.

An algebraic technique due to P. Landweber [31] ensures the existence of a cohomology
theory corresponding to any elliptic curve which satisfies certain exactness criteria. For the

universal elliptic curves over the ring of modular forms these conditions are most easily

verified (1.2.1) by applying the classical q-expansion principle. We set up a character map

for these theories using the method of H. Miller [35]. The topological q-expansion principle

(1.2.4) then gives necessary and sufficient conditions on the elliptic homology and K-theory

of a space X for the integrality of a homology class to be controlled by its character. Its

cohomological version (1.3.2) provides a description of elements in elliptic cohomology in

terms of power series in virtual bundles over X which rationally behave in a modular fashion.

The assumptions are satisfied for all Landweber exact theories, many classifying spaces and

Thom spectra.

As a first application we identify the K-theory of elliptic cohomology (2.2.5) with Katz's

universal ring of divided congruences [24][25][26]. It allows to transform topological results

into algebraic geometrical ones and vice versa (2.2.6) as was already indicated by F. Clarke

and K. Johnson [11]. We then prove their conjecture [11] on the structure of the cooperations

in elliptic cohomology (2.3.1). It can be viewed as the elliptic equivalent to a well known

result of Adams, Harris and Switzer [6] on the structure of the ring K,K. More generally,
we show that the homotopy ring of an n-fold smash product of the elliptic spectrum can

be interpreted as ring of integral modular forms (2.3.3) in n variables and that it admits a

multivariate q-expansion principle.

Our results enable us to compute the one-line of the elliptic based Adams-Novikov spectral

sequence (3.1.6). Moreover, we establish a symmetry relation (3.2.4) to interprete the

rich mathematical structure of the two-line as first cyclic cohomology of modular forms

in several variables with coefficients in Q/Z (3.2.5). An embedding (3.2.3) in a version

of Katz's ring of didided congruences leads to the definition of the f-invariant, the higher

relative of the classical e-invariant. It associates to each even dimensional homotopy class

s between spheres an inhomogeneous sum of rational modular forms. In presence of a

certain congruence the f-invariant vanishes and s lies in third Adams-Novikov filtration.

Its relation to index theorems and to the rq-invariant still represents work in progress and

will be given somewhere else.



Finally, we show how the topological q-expansion principle can be used to equip elliptic

cohomology with orientations which obey various Riemann-Roch formulas (4.0.8). For

instance, the original Landweber-Ravenel-Stong elliptic cohomology admits an orientation

which leads to the Witten genus [48] of Spin manifolds with vanishing pl/ 2 .

1. THE TOPOLOGICAL q-EXPANSION PRINCIPLE

1.1. Rational Faithfulness. This section is meant to provide the algebraic context in

which the q-expansion principle is going to be developed. We start by looking at maps of
abelian groups whose rational behaviour characterizes their sources. We then ask under

which algebraic operations this property remains stable.

Definition 1.1.1. A morphism of abelian groups f : X -- + Y is rationally faithful if it

satisfies one and hence all of the following equivalent conditions

(i) the diagram

X YX f Y

fO Q

is a cartesian square.

(ii) ker f is a rational vector space and coker f is torsionfree.

(iii) tors X -+ tors Y is iso and cotors X ---+ cotors Y is mono, where the 'cotorsion'

cotors X of an abelian group X is X 0 Q/Z.

(iv) the sequence

(1, ) (f ®Q,-1)

is exact.

There are two faces to the source of a rational faithful map f. If Y is torsion free, the
elements of X are precisely the elements of its rationalization which lift under f 0 Q to Y.
On the other hand if f 0 Q is injective, we can describe the elements of X as the elements
of Y which rationally lift to X 0 Q.

Example 1.1.2. Let N be a positive integer and R be a torsionfree ring which contains
1/N and a primitive N'th root of unity (N. We denote by Mr'1(N)(R) the graded ring of
modular forms over R for the congruence subgroup

ri(N) = { mod N} C S12Z.



Let

(N) M1 (NR) (R -- + Z((q)) 0 R
f - f(q) = f(Tate(qN)/z((q)),R, Wcan, qj )

be the q-expansion ring homomorphism for some choice of N-division point ('qj 0 < i, j _

n - 1 and some weight k E N (cf. appendix A). Then the classical q-expansion principle

(cf. A.1.3, A.2.3) can be stated by saying A 'r (N) is rationally faithful on its homogeneous

components.

Lemma 1.1.3. (i) Every isomorphism of abelian groups is rationally faithful.

(ii) The composite of rationally faithful homomorphisms is rationally faithful.

(iii) If the composite X fY -2- Z is rationally faithful and g is mono or rationally

faithful then f is rationally faithful.

(iv) Let {fa : Xa ---+ Ya} be an inverse system of rationally faithful morphisms s.t. the

sources Xa are torsion free. Then limXa, limY, is rationally faithful.

(v) Let {fa : Xa ---+ Ya} be a direct system of rationally faithful morphisms. Then

colim Xa - colim Ya is rationally faithful. In particular, let M -- 4 N be a rationally

faithful R-module homomorphism between R-modules M, N and S be a multiplicative

set in R. Then M[S- 1] -+ N[S - 1] is rationally faithful.

(vi) Let X be a flat module over some ring R and f : M ---+ N a rationally faithful

R-module map. Then f ®R X : M ®R X ---+ N ®R X is rationally faithful.
(vii) Let M be a module over a Noetherian ring R such that M is torsionfree as an abelian

group. Then the completion

c: M RR[q] -- + M[q]

is mono and rationally faithful.

Proof. The first three claims are immediate from well known properties of cartesian squares.

To prove (iv) we use the second characterization of rational faithfulness in 1.1.1. Sources

Xa and targets Ya are torsionfree. Hence, it is enough to show that the map induced in

cortorsion is mono. In the diagram

cotors (lim Xa) -- cotors (lim Y,)

lim(cotors Xa) -- lim(cotors Y,)

the bottom map is a monomorphism. If we know that the left vertical arrow is another

monomorphism, we are done. Let (xa) 1/N E (limXa) Q represent an arbitrary element

in its kernel. Then x ®9 1/N = x' 0 1 for unique elements xb E X,. The sequence (x')

defines an element in (limXa) which agrees with (x,) 0 1/N in (lim X,) 0 Q.



(v) is immediate from 1.1.1(iv) because exactness is preserved by direct limits.
The statement (vi) follows trivially from 1.1.1(iv) since

(M 0 Q) ®R X (M Rn X) Q.

(vii) We first show the injectivity of the completion map for any (not necessarily torsionfree)
module N. Without loss of generality we may assume that N is finitely generated since
every module is the direct limit of its finitely generated submodules. Now the Artin-Rees
lemma applies [7] and states that the completion map for N is iso. It follows that the
completion map for M is monic. Also, for every prime p the completion map for M/p is
monic. It can be factorized in the form

M/p OR R[q] = (M ®R R[qj)/p / (M[qJ)/p -- + (M/p)[qJ

and so c/p is monic. Thus, Tor(coker c, Z/p) vanishes in the long exact sequence induced
by Tor( ,Z/p). That is, coker c is torsionfree and the assertion follows from 1.1.1(ii). O

1.2. The Elliptic Character in Homology. We are now able to give more examples of
rationally faithful homomorphisms. The universal elliptic curves give rise to formal groups
over the ring of modular forms

Mr,1(1) Mrl(1)(Z[1/ 6])
def

Mrl(N) = Mr'1(N)(Z[1/N,(N]) for N > 2.
def

In appendix A we have chosen parameters such that the exponentials f in these charts take
the explicit form

f(z) = -2p(z,7)/p'(z,r) for N= 1

f(z) = (z, 7) D(-2ri/N, ) for N > 2.
4(z - (2ri/N), r)

Formal group laws are classified by Lazard's universal ring. In algebraic toplogy this ring
is presented by the complex cobordism ring S.U due to the work of Quillen [4]. Hence, each
formal group law generates a genus, i.e. a ring homomorphism

MU, = RU -~ Mr,(N)

The genera induced by the exponentials f are known as Hirzebruch genera for levels N > 2
and coincide with the Landweber-Ravenel-Stong genus for N = 2 (cf. [18]).

Theorem 1.2.1. [34][15] There are complex oriented ring spectra Erl(N) s.t.

E. ( y(N)X M.r I ( N ) OMU. MU*X

are natural isomorphisms. Erl(N) is unique up to unique isomorphisms in the stable homo-
topy category.



Level 2 elliptic cohomology was originally defined in [34] and [32]. The level 1 case is
treated in [9] and an alternative proof was given in [20]. See also [15] for the existence and
uniquenes statement of the corresponding ring spectra.

The existence of elliptic cohomology for higher levels can be shown as in [15] with the
help of results from algebraic geometry. We are able to give an elementary proof below
which only uses the q-expansion principle. In fact, it also shows that there is an elliptic
cohomology to any congruence subgroup F C S12 Z for which a q-expansion principle is
available.

Recall that the coefficient ring of complex K-theory is the ring K. = Z[v +1 ] of finite
Laurent series in the Bott class v E KS 2. It is convenient to define

Krl(N) f K,[1/6] N = 1
def K*[[N, 1/N] N> 2

Then for any choice of cusp and N > 2, the q-expansion induces a map
Erl(N) MI M (N) ,,N " r'(N)E (N) Z((q)) 9Z Z[1/N,(N] C Z[1/N, N]((q)) - K" ((q))2k 2k 2kq

which we simply call A(N2  again. The case N = 1 is treated similarly. That is, we use
the coefficient ring of K-theory to keep track of the grading. In the sequel it will not be
necessary to refer to the level again and we let I be any of the congruence subgroups Fr (N).

Lemma 1.2.2. Ar : Er -- + K r ((q)) is rationally faithful.

Proof. Ar is the direct sum of rationally faithful maps. O

Proof of 1.2.1. We have to verify the Landweber exactness criterion [31] for the MU,-
modules Mr. Let p be a prime and Uk the the coefficient of xpk in the [p]-series of the
formal group law. Then the regularity of sequence (p, ul,v2,...) is to be shown. First
uo = p is not a zero divisor since M[r is torsion free. Next, we claim that multiplication by
ul is injective modulo p. For that we use the injectivity of the q-expansion map modulo p

Er p "- K*, ((q))/p " (Kr, /p)((q))

which is an immediate consequence of the lemma as the cokernel of Ar is torsionfree. Hence,
it is enough to verify that ul does not vanish identically modulo p. In A.2.6 we provide an
explicit strict isomorphism 0 between the formal group law Arlfr of the universal elliptic

curve viewed over the ring of power series and the multiplicative formal group law ,m. Let

u' denote the corresponding classes for Gm. Then we compute modulo p

O(Ek *(Uk)xpk) =([P]A rr(X)) [P]uxP (O(X)) -k Uk
and a comparison between coefficients gives

In particular, ul is even invertible over the ring of power series. Finally, it is sufficient
to verify that u 2 is invertible modulo (p, ul). For that we may use the well known proof



by contradiction due to J. Franke: Assume u2 is not invertible modulo (p, ul) and let m
be a maximal ideal containing p, ul and u2. Then the elliptic curve over the residue field
k = Mr,/m has height greater than two which is impossible (cf. [46]). O

H. Miller [35] has shown how to make the q-expansion into a map of ring spectra and
we recall his work here. Let us be given graded formal group laws F over a ring R and
F' over S, a ring homomorphism A : R - S and a strict isomorphism 0 : F' ---+ XF.
Assume further that (R, F), (S, F') satisfy the Landweber exactness conditions. Then there
is a natural transformation A, s.t. on X = * we have A., = A and, if L is a line bundle over
X and eR, es are the corresponding Euler classes of L, then A,(eR) = O(es). A is not a map
of MU,-modules. However, we may split A, into two parts

R OF MUX "-( S OAF MUX (-i, S OF/ MU*X

in which the first one is. The last two objects are entirely the same theory but with different
orientations. The isomorphism 0 guarantees that AF is a Landweber formal group. In the
case of our ring homomorphims Ar we give Kr((q)) the multiplicative (Todd) orientation,
which is isomorphic to theat Kr(X)((q)) is not repre-
sented by a spectrum. However, there is Landweber theory which agrees with KFr (X)((q))
for finite spectra X and serves as intermediary in

Er (X) + K1 g,((q)) 0Kgr Kr (X) _-c K*r (X)((q))

for arbitrary X. (It is a close relative of the function spectrum F(BSI, Kr) = Kr,.) The
completed Ar is the elliptic character. At the low risk of confusion we keep the old
notation Af.

We come now to the main result of this section, which we call the topological q-expansion
principle. It gives an equivalence between Landweber exactness criteria and the q-expansion
principle.

Theorem 1.2.3. Let X be a spectrum. The elliptic character

r : Er X --.+ KX ((q))

is rationally faithful if the following two conditions are satisfied

(i) ErX and K*X are torsionfree
(ii) for each prime p the multiplication by the Hasse invariant ul on E4rX/p is monic.

Moreover, if X has the weak homotopy type of a countable CW-spectrum then the converse
statement holds.

Proof. Let the two conditions be satisfied. Then the map

*A 1 : E, X E Er E Er X -- + K ((q)) OEr Er X



is an inclusion by assumption (i) since it is rationally monic. Moreover, it remains injective
modulo p. To see this, note that by assumption (ii) we may as well replace ErX by

u-1 EfX = colim(E r X + E r X 4 ...
def

and show that for any finite subspectrum Y C X the map

u 1 (A &® 1)/p: u-'Er Y/p ---+ K'r((q)) O®E E, Y/p

is an inclusion. Furthermore, if we write M(p) for the mod p Moore space and put Z =
Y A M(p), then by the universal coefficient theorem it suffices to verify the injectivity of

u-1(A' , 1) : u1 'E, Z -- + Kr((q)) ®Er E, Z.

A theorem by P. Landweber [31] says that MUZ is a finitely presented MU,-comodule
and admits a filtration of MUMU-subcomodules

MUZ D Fo 0  F1 ... ~ Fs=O

so that for 0 < i < s, Fi/Fi+l is isomorphic to the comodule

MU,/(uo, ul,, Un).

Tensoring the filtration with the Landweber exact MU,-modules u71- E r and K r ((q)) ®Ef E r

gives a filtration of source and target of u-1 (A' 0 1). Moreover, the dummy version of the
elliptic character u 1 (A(, ® 1) respects this filtration as it is a map of left MU,-modules.

Hence, without loss of generality we may assume E,'Z to be of the form E/rl(uo, ul,..., un)
for some n. Then in the only non-trivial cases n = -1 and n = 0 the map in question is an
inclusion as a consequence of the q-expansion principle 1.2.2.

We now conclude that

Ar: ErX -- + K, ((q)) ® Er X K• ((q)) ®OE Er, ®MU, MU*X

(id,O)

- Kr ((q)) OTate MUX K ((q)) ®Todd MU X
K r ((q)) Kr K r (X).

is rationally faithful as follows: In the long exact sequence induced by Tor,(A', Z/p) we
have

Tor 1 (coker Ar, Z/p) = 0

since Ar/p is monic and K,((q)) ®Kr Kr(X) is torsionfree. Thus, coker A is torsionfree

and 1.1.1(iii) applies.

Finally, the composite with the completion

Kr ((q)) Kr Kr (X) --c- K*r (X)((q))

gives the elliptic character. The assertion now follows from 1.1.3(vii) after a localization at
q since K r is Noetherian and KrX is torsionfree.



To show the converse, let X be of the weak homotopy type of a countable CW-spectrum
and Ar be rationally faithful. Then the induced map in torsion is an isomorphism. Hence,
condition (i) is a consequence of the fact that tors Er X is countable (cf. [13]VII 3) whereas
each torsion element in KgrX generates uncountably many torsion series in KrX((q)). Fur-
thermore, Ar is monic modulo p as its cokernel is torsionfree. Hence, mod p multiplication
by ul is monic as it is invertible in the ring of power series (Kr X/p)((q)). O

Corollary 1.2.4. The elliptic character

Ar Er X -- + rX ((q))

is rationally faithful if E, X is a flat Er -module.

Proof. Multiplication by p on E r and K r ((q)) and by ul mod p on E*, are monic and remain
so after tensoring with the flat module ErX over E r. Since Kr is a direct summand in
Kr((q)) we also verified the absence of torsion in K[rX so that 1.2.3 applies. O

Corollary 1.2.5. The elliptic character A, : Er F ---+ K, ((q)) is rationally faithful for
any Landweber theory F.

This is a consequence of

Lemma 1.2.6. Let E and F be Landweber exact theories. Then EF is a flat E,-module.

Proof. The lemma is well known but for the reader's convenience we repeat the argument.
Let M -- + N -- + O be an exact sequence of E,-modules and hence of MU,-modules. Then
tensoring with the flat MU,-module MU,MU yields an exact sequence

M ®MU, MUMU -- + N ®MU, MUMU -- * 0 ®MU, MUMU

of MUMU-comodules. The comodule structrure of each object comes from MU,MU. If
we tensor the exact sequence with F, from the right it still remains exact since

TorM U*MU(F,, O ®MU. MUMU) = 0.

To see the vanishing of Tor, one writes O O®Mu MU,MU as direct limit of finitely presented
comodules as in [36] 2.11 and uses the Lanweber exactness of F,. Finally, M® MUy MUF ý-

M ®E, E,F for any E,-module M. O

There are interesting universal examples which are not Landweber theories. Let
MString = MO (8) be the Thom spectrum of the 7-connected cover of BO. (The word
'String' in this context is due to H. Miller and will be explained later.)

Corollary 1.2.7. The elliptic character

Ar : E4rMString[1/2] -- + Kr MString[1/2]((q))

is rationally faithful.



Proof. Let p > 5 be a prime. Ravenel and Hovey [21] have shown that the reduced powers
in the Steenrod algebra act freely on the Thornm class in the mod p cohomology of MString.
This means MString is a wedge of BP's when localized at p. In particular ErMString(p)
is a flat E r module and 1.2.4 applies.

3-locally MString A X splits into a wedge of BP's where X is a finite spectrum with
cells in dimension 0,4 and 8 [21]. It suffices to prove that Ef,'X is a free Er-module, for
then Er (MString A X) is just ErMString ®Er ErX, and hence E4rMString is flat. Let
Y be the bottom two cells. Then we have a long exact sequence

... _+ ES 3 - So -- Ef Y -- , E* S4 -- ErS -+ ...

and ErSO is evenly graded. It follows that the sequence is actually short exact, and then
it has to split since Er,S3 is free. Similarly, we have a long exact sequence

... -+ ES -+ EY ---+ E rX ---+ ES' ---+ E Y --.

and the same argument applies. So EFrX is free, and we are done. Ol

1.3. The Elliptic Character in Cohomology. We now turn to the picture in cohomol-
ogy. For finte spectra the topological q-expansion principle gives criteria for the rational
faithfulness of the elliptic character by applying Spanier-Whitehead duality. However, we
are mainly interested in infinite spectra.

Definition 1.3.1. Let F, G be contravariant functors from a category D to abelian groups.
A natural transformation A : F ---+ G is pro-rationally faithful if

limxED F(X) 4 limxED G(X)

limxED(F(X) ® Q) - limxED(G(X) ( Q)

is a cartesian square.

Let X, F, G be spectra and A : F - G be a map. We say A* : F*X -- + G*X is pro-
rationally faithful if it is so as natural transformation on the category of finite subspectra
of X.

Theorem 1.3.2. The elliptic character A* : Er*X -- + K" X((q)) is pro-rationally faithful if
ErX(p) is a projective EYr -module for each rime p.

Corollary 1.3.3. The elliptic character

ZA : ErMString[1/2] -- KgMString[1/2]((q))
is pro-rationally faithful.

We prepare the proof of 1.3.2 with three lemmas.



Lemma 1.3.4. The p-local elliptic character

X (p) : Er ()X -- + Kr *)X ((q))

is pro-rationally faithful if Ep ,X is a projective E),-module.

Proof. Let E be an evenly graded Landweber exact theory such that EX is a projective

E,- module. Then the universal coefficient spectral sequence [3] [15]

EPIq = Extp 'q (MUX, E,) ==> Ep+qX

collapses and the edge homomorphism E*X -- + HomMu (MUX, E,) is an isomorphism.

In particular, lim1 vanishes since it is the kernel of

E*X -* lim E*Y -+ lim HomMu.(MU*Y, E*) - HomMu,(MU*X, E*).
YCX YCX

We may take E to be Eup), Kp) ((q)) or their rationalizations as with EfrX(p) also

K*r ((q)) OE Ef X(p) - Kr ((q)),X(p)

are projective. Hence, when evaluating the left exact functor HomMu, (MUX, ) on the
rationally faithful Ar of 1.2.2, we obtain the cartesian square

HomM, (MUX, E[,(p)) >r HomMU, (MUX, Kgr(p)((q)))

HomMu, (MUX, E r ® Q) -- HomMu, (MUX, Kr(p ((q)) ® Q)

in which each corner may be replaced by limycx E*Y. That is, there is a pro-rationally
faithful map. However, it is not yet the elliptic character. To finish the proof we have
to compose it with the natural automorphism on limycx KrY(p)((q)) induced by (id, 0) for
each KY((q)) - KrDY((q)) as we did in 1.2.3. (Here DY denotes the Spanier-Whitehead
dual of Y.) O

Lemma 1.3.5. Let A be an abelian group and P(A) be the set of all primes p s.t. there is

an element of order p in A. Assume P(A) is finite. Then the diagonal map

A -~+ p A(p)

is rationally faithful. Moreover, the completion

(1P A(p))Q --+ 0p (A 0 Q)
is mono.

Proof. We use the third characterization of rational faithfulness in 1.1.1. There is a splitting

(t) 1p A(p) = E(peP(A) A(p) e IpgP(A) A(p)



in which the second summand is a torsion free group. Now it is clear that the torsion parts
map isomorphically. It remains to show the monomorphy in cotorsion. For that compute

cotors A = A ® Q/Z = (p A ® Z/p" = •p A(p) 0 Q/Z = Ep cotors A(p)

Thus, the composition of cotors A with cotors 11 A(p) -- + J cotorsA(p) is mono as it is just
the inclusion of the sum in the product of cotorsions. The last statement is easily verified
by using (t). O

Lemma 1.3.6. Let M be a finitely generated module over a Noetherian ring R. Then

P(M) is finite.

Proof. Every p E P(M) lies in some associated prime ideal ap of M. That is, there exists
an element Xp E M whose annihilator is the prime ideal ap. Any other prime q E P(M) is
not contained in ap as xp has precise order p. We conclude that there are at least as many

associated prime ideals in M as primes in P(M). It is a well known fact that the set of

associated primes of a finitely generated module over a Noetherian ring is finite (cf. [28]VI

1.4, 4.9 and 5.5). 0

Proof of 1.3.2. From the first lemma we know that

Ar(p) : (E*Y)(p) -- + (K{Y)(p)((q))

is pro-rationally faithful on the category of finite subspectra Y of X. Let us now be given
a sequence (zY ) E limy KrY((q)) which rationally lifts to a sequence (yY) E limy EjY 0 Q.
Then for every prime p there is a unique sequence (x(Y)) e limy(E*Y)(p) which agrees

with (yY) rationally and whose character is (zp)) E limy(K*Y)(p)((q)). Thus, if we apply

1.3.5 to (xy)) eH (ErY)(p) for each finite complex Y, we find a unique sequence (xY) E
limy EjY with the desired properties. This is possible since EjY is finitely generated over

the Noetherian ring Er. 0

2. DIVIDED CONGRUENCES AND MULTIPLE EXPANSIONS

2.1. Formal Characters. In the previous sections we understood the elliptic cohomology

of various spectra by exploring the properties of the elliptic character map. It is useful to

generalize this concept slightly.

Definition 2.1.1. A multiplicative transformation X : R ---+ S between Landweber exact

theories is a formal character if X is monic in homotopy.

Obviously the elliptic character and the Chern character are formal characters. More

examples are given by the following simple

Lemma 2.1.2. Assume the formal groups F over a ring R and F' over S satisfy the

Landweber exactness conditions. Then so does F over R.S and the natural transforma-

tion R -- + R A S is a formal character.



Proof. We have to verify the sequence (uo, ul, U2 ,...) to be regular in R.S. As (R., F)

suffices the Landweber exactness conditions, un is not a zero divisor in R./(uo, ul ... , u-1).

Hence, when tensoring with the flat R,-module R.S (cf. 1.2.6), uk does not divide zero

in R,S/(uo, ul,... ,Un-1) and (R.S,F) is Landweber exact. In particular, we have that

R --- R.S - R.S Q R 0 S 0 Q is monic which shows the second claim. O

In case S is rational stable homotopy SQ and F' is the additive formal group one obtains

the Dold character

d : R,X --+ (R A SQ)X - R, 0 7r,X ® Q.

which is an inclusion if X is Landweber exact.

Consequently, if one wishes to determine the structure of the Hopf algebroid R,R of

cooperations, one can do so by embedding R.R in the trivial Hopf algebroid R, 9 R, 0 Q
via the Dold character. Before carrying out this program in the case of elliptic cohomology,
we compute the ring KE r

2.2. The Ring of Divided Congruences. K, ®Er ®Q is concentrated in even dimensions

and can be identified with the ring of inhomogeneous rational (meromorphic) modular forms

E fi where fi has weight i. We omit the redundant powers of the Bott class v to keep the
notation easy.

Proposition 2.2.1. KE r is the ring of sums E fi as above which satisfy the following

conditions: For each non zero integers k and for each choice of cusp the sum of q-series

Sk-ifi(q) takes coefficients in Zr[!] where Zr = roKr

Proof of 2.2.1. We first show that the integrality condition is necessary. For that recall the

Adams operations Ck which were originally constructed as unstable operations in [2]. To

obtain a map of spectra one has to introduce coefficients

V)k : K ---+ K[ 1 ].

Alternatively, Vk may be defined as in section 1 by the ring homomorphism which maps v

to kv and the strict isomorphism

k [k] : m -- k m.

Here [k] denotes the k-series of the multiplicative formal group law Gm. The

Adams operations pk A 1 act on KoEr by VCk(Zfi) = •k-ifi. Hence, if

: K A K -- + K denotes the multiplication map in K-theory, then p.I((q)) Ar (E k-ifi)

is the q-expansion of the whole sum and it takes coefficients in Zr.

The converse statement is a question about rational faithfulness. By 1.2.5 we know that

Ar : KoE r ErK -+ KorK((q))



is rationally faithful. Furthermore, we see from 2.2.2 below that

7ro(p(l A k))(())q) : Ko'K((q)) -- ( Z [ )((q)) J (Z[((q)))
kEZ-0 kEZ-0

is rationally faithful as well. Now the composite of the two homomorphisms reveals that
KoE r consists of sums E fi which satisfy the stated condition. O

Lemma 2.2.2. The map

wo0(p(Vbk A 1)) : KoK r -+ 0 (Zr )
kEZ-0

is rationally faithful.

Proof. Recall the classical result of Adams, Harris and Switzer [6] [3) which identifies KK

with the set of finite Laurent series in K.K 0 Q satisfying

f(t, kt) E Z[t, t-, 1/k] for all k eZ - 0.

The conditions can be reformulated to the equivalent statement that

K*K k II K'K[j] K K*[1]
kEZ-0 kEZ-0

is rationally faithful. Now let F be the congruence subgroup FI(N) for some N > 1. Then

K*K 0 Z[(N, N] -- ( roK[k) 0 Z[(N, (II roK[(N, k] 0 Z[N]
kEZ-0 kEZ-0

is rationally faithful by 1.1.3(vi). It remains to show the rational fidelity of the completion

( o1n IrOK[(y, 9 Z[ ] - (Zr[
kEZ-O kEZ-O

which is easily verified. The case N = 1 is similar. O

Example 2.2.3. For n > 1 and any congruence subgroup r define the elements

j2n = (B2n/4n)(1 - E 2n) E KoE r 0 Q.

The q-expansion of j2n is integral (cf. A.1). In order to check if j2n actually represents an

element in KoEr, it suffices to show the Z[1/k]-integrality of (B2n/4n)(1 - k-2nE 2n) for all

non zero integers k. The only term in question is the coefficient of qO

(1 - k-2n)B 2n/4n.

Let

.4n { Ext 14n = n E r4nK 0 Q: lL(a) - 77R(a) E K 4n K}/lr 4n K



be the class with e-invariant B2n/4n. Then

M(1 A 0k) (7L(La) - 77R(a)) = p(77L(V-2nB2n/4n) - qR((kv)-2n 2n/4n))

= v-2nB 2n/4n - (kv)-2nB2n/4n

= v-2n(1 - k-2n)B2n/4n

lies in r4nK and coincides with the 0-coefficient under the periodicity map

7r4nK - 7roK - Z.

Hence, we have shown j2n E KoE r .

The condition in 2.2.1 has a surprising refinement.

Lemma 2.2.4. Let E fi be an inhomogeneous sum of rational modular forms. Then the

following statements are equivalent:

(i) E fi lies in KoE r

(ii) E fi(q) takes coefficients in KoK r

(iii) E k-ifi(q) takes coefficients in Zr[1/k] for all non zero integers k.

(iv) E hifi(q) takes coefficients in Zr[1/h] for all non zero integers h.

(v) E(h)ifi(q) takes coefficients in Zr[1/hk] for all non zero integers h, k.

(vi) E aifi(q) takes coefficients in Zp) for all prime p4 N and a E Zp

(vii) E aifi takes coefficients in Zr for all prime p, f N and all a E Z .

(viii) E fi(q) takes coefficients in Zr.

Proof. The equivalences (i) 4== (ii) 4==* (iii) have already been established in 1.2.5 and

2.2.1. (iv) and (v) are equivalent to the previous by the symmetry KoK r 2 KorK and

2.2.2. (vi) is equivalent to (v) since

pthkN

Next, the implication (vii) =- (vi) follows from Z') C Zp and Z(p) = Zp n Q. As (viii)

is a trivial consequence of (iii), we are left with the statement (viii) ==- (vii) which is the

hard part. Let Fp[(N] = Fpd be the splitting field of (xN - 1) of degree d (the order of p in

(Z/N)x). Then Z r is the ring of Witt vectors of Fpd. Now the assertion is a consequence

of 1.7 in [23]. An alternative proof is provided in the appendix B.1.4. O

Theorem 2.2.5. The ring KoE r coincides with the ring of divided congruences Dr of

N. Katz [23]. In other words, for any choice of cusp

* : K.Er - Er K K_ KrK((q)) ) K ((q))

is rationally faithful.

Proof. KoE r is the ring of sums E fi of rational modular forms such that E fi(q) takes

coefficients in Z r by 2.2.1 and 2.2.4. 0



The theorem is a q-expansion principle for trivialized modular forms in which form it is due
to N. Katz [23]. Katz identified the ring of divided congruences with the coordinate ring of
the moduli space of elliptic curves together with isomorphisms of their formal groups with
the multiplicative group. It also can be found in [11]. As a consequence we obtain a proof
of a well known result of Serre [43] [11]:

Corollary 2.2.6. The denominator of B2k/2k is the largest one (away from N) occuring
as constant term of any modular form for Pi (N) of weight 2k with q-series in Q+Z r ((q)) C
C((q)).

Proof. Let f be a modular form such that

f(q) - qO(f) E Zr((q))

where qgo(f) denotes the O-coefficient of its q-expansion. Then f - qo(f) lies in KoE r.Thus
S1,4n

qO(f)(- 2k - 1) represents an element in ExtK[1N] which is well known to be a cyclic group

of order equal to the denominator of B 2k/2k. O

We also get an elliptic form of the Hattori-Stong theorem for free:

Corollary 2.2.7. The K-Hurewicz map Er, -+ K,Er is rationally faithful.

Proof. immediate from 1.1.3(vii), 1.2.2 and 2.2.5. O

2.3. Multivariate Modular Forms and Expansions. We are now prepared to give a
description of ErEr in terms of integral modular forms in two variables and a q-expansion

principle for such forms.

The theory K r splits into a direct sum of K[1/N]-theories. Using 2.2.5 we conclude that

the elliptic character

S: K Er Kr 0K. KEr K•_ K (9K. (Kr((q)) (Kgr (, Kr)((q))

is a rationally faithful map of left KIr-modules.

Let An E denote a A-product of n copies of a theory E. Likewise we use the notation
x M for a product of modules M over a ring R. Then we may consider the (qo, q1,... , qn)-

expansion

7r*(An+1 Er) E(AnEr) K ( Er)((q)) = @rn KEr ((qo))
SM(qo)) (®k=1,.',n(Kr ®OK Kr)((qk)))((qo))

c (n+l K) ((qo, qn))
"-fK* •'' "

Hence, in even dimension the (qo0, . , qn)-expansion takes coefficients in the tensor product

Z(n+l)r = &n+1 Zr
def



which is simply Z[1/2] for F = Fi(2). For this congruence subgroup and the case n = 1 the
following multivariate q-expansion principle was conjectured by F. Clarke and K. Johnson
in [11].

Theorem 2.3.1. The (qo, ql,... , qn) -expansion is rationally faithful. That is, 7r.(A n +1 Er)
is given by sums E fo 0 fl ... 0 fn of products of rational (meromorphic) modular forms
with integral (qo,... ,qn)-expansion.

Proof. The first map ,.r in the above is rationally faithful by 1.2.5. Next, we observe that
the tensor product of elliptic characters is the composite of n maps of the form 1 0... 0 1 0
•a 0 1 0 ... 0 1 each of which is rationally faithful by 1.1.3(vi) and the discussion above.
Hence, the product (~ r((qo)) is so by 1.1.3(iv). Finally, we use 1.1.3(iv), (vii) and an
obvious induction to show that the completion map is rationally faithful. O

There is a modular interpretation of the ring 7r, A n Er

Definition 2.3.2. A test object in n variables over a ring R is a sequence

(Eo/s, wo, Po) - (El1/s, wl1) - ... (En-1/s, wn-l, Pn-1)

consisting of

(i) elliptic curves Ei over an (@n R)-algebra S for each 0 < i < n
(ii) nowhere vanishing sections wi on Ei

(iii) points Pi of exact order N on Ei
(iv) isomophisms oi : Ei --+ Ei+I of formally completed formal groups s. t. • Wi +1 = w

when viewed over Ei.

A modular form for i(N) over R in n variables of weight k is a rule f which
assigns to each test object an element

f((Eo/s,wo, Po) - ... P (En-1/s, n-1, Pn- 1)) E S

satisfying the following conditions

(i) f only depends on the S-isomorphism class of the sequence
(ii) the formation f((Eo/s, wo, Po) - ... '2 (En-1/s,wn-1,Pn-1)) commutes with ar-

bitrary base change
(iii)

f ((Eo/s, Awo, Po) ... (En-1/s, Awn-l, Pn-1))

= "-kf ((Eo/s, Wo, Po) ... )2 (En-1/s, w n-1, Pn-1))

We denote by Manr(N)(R) the (®n R)-algebra of such forms.We dnot(R)~



The fundamental test object is the sequence of Tate curves

(2.1) (Taten (qN),wcan, {Pi}) =
def

(Tate(qoN), wcan, Po) - ... • (Tate(qN_1), wcan, pn_1)

over ZnrIi(N) ((q,... , qn-1)) with the canonical isomorphisms i : qi ý- qi+l between them
and any choice of N-division points

Pi = ,ki qi' for 0 < ki, li < N.

Let R be a ring in which N is invertible and which contains a primitive N-th root of unity

CN. Then the (qo, q1,... ,qn)-expansion at the sequence of cusps {Pi} is the ring
homomorphism

M (n+  
-

r(R) -+ Z((qo,... ,qn)) ® n+ R c-+ (n+1 R)((qo,... q, ))

defined by

f ý f(q) = f(Taten (qN)z((qo, ...,qn))®(®+1 R), {Pi})

We say f is holomorphic if f(q) already q-expands in (@n+1 R)[qo,... ,qn] and write

M!n+l)r (R) for the graded ring of such forms.

Corollary 2.3.3. There is a canonical isomorphism

7 An Er e M nr (Z r ) - Mnr
def

and the following q-expansion principle holds: If for some cusp f E Mkr(Q[(N]) has all its

(qo,... , q 1_l)-expansion coefficients in the ring Znr then it does so at all cusps and there
is a unique f E Mnr which gives rise to f by extension of scalars.

Proof. r(A n Er) corepresents the functor from graded rings to sets given by the following
data

(i) isomorphism classes (EiIR, wi, Pi) of n elliptic curves Ei,
nowhere vanishing sections wi and points Pi of order N.

R , ' (ii) a sequence of graded isomorphisms F0 - -..- 2 En-1
where Fi is the formal group law of Ei in the formal parameter

z = z(Ei, w) under which w = dz.

This is a consequence of the universal property of gn-1 MU*MU and the following com-

mutative diagram

@n MU4, @n E,

@MU, MUMU - n-1 E.Er - R,(&MU* (&Eý



Any ring homomorphism q gives rise to n elliptic curves via 77, n graded formal group

laws together with a sequence of isomorphisms of graded formal group laws classified by

(&nM- MU.MU and vice versa.
Likewise, there is a canonical map

®n M r __ Mnr

given by

(EC fo ... 0 f")((Eo/s, wo, Po) 24 ... 4 (En-1/s,Wn-1,Pn-1))

= E fo(Eo/s,wo, Po)... fn-1(En-1/S, n-1, Pn-1)

which induces n elliptic curves and graded formal group laws Fi over M,nr. Choosing the

identity isomorphism beween them, we get a graded ring homomorphism

7r, A n Er -- Mnr

On the other hand, any modular form f in n variables over Znr can be evaluated on the

obvious universal test object over r*, A n Er. One readily verifies that this gives a well

defined inverse.

The q-expansion principle for modular forms in n variables is now an immediate conse-

quence of 2.3.1. O

3. MODULAR HOMOTOPY INVARIANTS

3.1. The Elliptic Based Adams-Novikov Spectral Sequence. Recall the construction
of the Adams-Novikov spectral sequence (ANSS) [4]. Let E be a ring spectrum with unit

SqE : S-- E. Let E denote the fibre of 7rE and

S ---- E

be the exact triangle. Define spectra ES = A8 E and ES = E AAS E. By smashing the exact

triangle with E" and applying the functor 7r, one obtains an exact couple. The associated
filtration of lrs is given by

.P = im (ir, E ---+ 7S).

Our goal is an intrinsic description of the E2-term in terms of the coefficients E, by means
of a formal character. Such a description is only known for the character rE A E : E
SAE ---+ EAE.



Lemma 3.1.1. Let E, F be flat ring theories with torsion free coeficient groups. Let
r : E -- + F be a map such that r.(1) = 1. Under these assumptions the group of s-cycles
ZS satisfies

ZS = equalizer( E7r, ES  7r, (F A E s) ).

(rA) (F A )  *(FA^rEAE s)

n*(F A Es)
Proof. r fits into a commutative solid rombus

S r FAE

and makes the left triangle commute. After applying the functor r,(_ A Es) we have to
show that the cycles are precisely the classes in the upper corner irE' which make the right
triangle commute.

Let us refer to the elements in the image of 7rE* -- + 7rE as permanent cycles even
though they may be boundaries in the E 2-term. A permanent cycle certainly lies in the
equalizer by what we have said so far.

Next, let z be a arbitrary cycle in r*,E s . Then z lies in the kernel of the differential
7r, (d A E8 ) where

d:E -+EE--+ EEAE.

When smashing with F the last map in d becomes an inclusion of a direct summand since
the suspension of

FArAE -AE

FAEA E FAF•• A FA FAE

provides a retraction map. Thus, z generates an element in the kernel of the F-Hurewicz

map ir,*Es+l - F.EBs+ l. As rationally this map is an inclusion, we conclude that z
gives a torsion element in 7,E S + 1. Hence, by exactness N z is a permanent cycle for some
integer N. As we have seen earlier this implies that N(rF A ES - r A T/E A ES),z vanishes
in the torsion free group F, A E'. Consequently, any cycle lies in the equalizer.

Finally, let z lie in the equalizer. Then by exactness, z is annihalated by
7,(r(F A d A Es). Since the F-Hurewicz map 7rEES +l -- + FEE8+1 is injective z has
to be a cycle. O

Note that if F is rational stable homotopy SQ then a natural transformation r : E -- + SQ
with r,1 = 1 always exists. It is convenient to think of Er,*E Q as the quotient E, Q/Q.
More generally, define the tensor algebra

T,= ((O=o k E, ® Q)/I



of the algebra E. &Q. Here I is the two sided ideal generated by the relation [1] = 1 and e is

the direct sum of rational vector spaces. Then (7r~ E') 0 Q naturally agrees with the degree
s part of the graded algebra G. associated to the filtration im(fn<k ®n E, 0 Q -- + T,).

In detail, we have

(7r, ESE) 0 Q @ E* 0 Q/ E &i-' E* 0 Q Q 0(s-i E* Gs.

Proposition 3.1.2. Let E be flat with torsionfree coeficients. Let Z, B be the be the

groups of cycles and boundaries of the AN-E1 term, respectively. Then there are canonical

isomorphisms

Z* {z eG' :10ze im (EA E E- * E0 E* Q-+ E* G)}

B, im (E, AS-' E + s E, 0 Q --+ Gs)

induced by

p = r*(r A ^ E').
def

Proof. In the commutative diagram

Z* -- E E*Es - E, AsE

G - E, 9 Gs  E, 9 (- E, 9 Q
the left square is a pullback of monomorphisms by 3.1.1. Hence, a short diagram chase
gives the first isomorphism. Similarly, one sees from

E,* As-' E o E, s-1ES-1 Ir*d - E, sES

&s4 E4, Q -- E s-1'Bs-1 9 Q - Gs
that the subgroups of boundaries correspond. Ol

In the case of elliptic cohomology we can take r : Er -- SQ -HQ to be the 0-coefficient
in the elliptic character followed by the 0-dimensional term of the complexified Chern char-
acter. Then r is not a ring map, but r,(1) = 1. Each class of degree n of the graded algebra
G, contains an essentially unique representative f = 1 fl 0 ... 0 fn where non of the
rational modular forms fi is constant.

Corollary 3.1.3. The n-line of the Er-based AN-E2 term consists of sums

f = Eff' ...0 f" E Gn
of products of rational modular forms fk such that 10 f E Er 0 Gn admits a representative

with integral (qo, q1, ..., qn) - expansion.



The group of boundaries is given by sums which admit a representative with integral

(qo, ... , qn) -expansion.

Corollary 3.1.4. Let I = (i, i2 ... ,in) be a multi index with only non zero entries. Let
q' : G. -- Q be the map which sends a sum of products of modular forms to the q' =
o.. qn -coefficient of its expansion. Then q'(f) is integral for every cycle f.

Proof. 1 0 f has a representative of the form

v = 1 y& fl e... fn + En=1 g (9 hi . @ ghi-1 10 hi+ 1  ...0 hn

with integral (qo .... ,qn)-expansion. Hence,

q'(f) = q( 0,I)(1 f) = q(O,)(v)

is integral. O

Example 3.1.5. We can ask whether the divided Eisenstein series

E2k = E2kB2k/4k
def

are non zero elements in the 1-line. 1 0 E92k E E,"r 0 G 1 admits the representative 1 0 E2k -

E2k 0 1 with integral (qL, qR)-expansion. Hence it lies in the E 2-term. E2k is non trivial
since the 0-coefficient is not integral. Indeed, for level N modular forms we can define the
homomorphism

t1 : El,4 k  Z4k/Bk -- + Zr Q/Z; k > 0

sending a form to the 0-coefficient of its q-expansion. 01 is well defined for positive dimen-

sions. Any boundary has integral q-coefficients as it is its only representative in G1ik. We

claim that t1 is a monomorphism. Let f be an element in its kernel. Then by the corollary

all coefficients of f are integral. That is, f is an integral modular form and thus bounds.

Theorem 3.1.6. The 1-line E' ,4k of the Er-based ANSS is the cyclic group of order m(2k)

generated by the Eisenstein series E82k. Here, m(t) is the numerical function with

( 0 if t 0 mod(p-1) orl/p Zr

p(m(t))= + vp(t) if t =0 mod (p-l) and 1/p ~ Zr

for all odd primes p and

0 if 1/2EZ r

v2(rm(t)) = 1 if t 0 mod (p - 1) and 1/2 V Zr

2 + vp(t) if t =0 mod(p- 1) and 1/2 Zr

In this notation vp(n) is the exponent to which the prime p occurs in the decomposition of

n into prime powers, so that

n = 2v2(n) 33(n)5v"5(n) ...



Proof. We have just seen that E2k generates a cyclic subgroup of El,4k of order equal to the

denominator of B 2k/4k which is m(2k) up to invertible elements in Zr (c.f. [4]). Now let z

be any non constant rational meromorphic modular form of weight 2k. If z is a cycle and is

represented by some f, then all non zero q-coefficients are integral by 3.1.4. Furthermore,

qO(f) lies in Q + Zr c C as one easily verifies. It follows with 2.2.6 that there is a multiple

a E Z[1/N] such that qO(f) = qo(aE2k) mod Zr. We conclude that f - a E2k lies in the

kernel of tL and thus bounds. That is, z belongs to the cyclic subgroup of E2'4k generated

by E2k. O

3.2. The 2-Line and Cyclic Cohomology. In order to identify the second line of the

Er-based ANSS we set up the higher analogue of the monomorphism 01. For that a better

description of the group of boundaries is necessary.

Lemma 3.2.1. Let z be a 2-cycle of degree 2k. Then there is a representative E f 0 g
which satisfies

q(OO)(E f 0 g) E Q + Z2r

Proof. Let I denote the modular form over Q obtained from f E Mari(N)(Q[N]) by setting

CN = 1. Let E a ® b be any representative of z. We claim that

E f g = Ea b-ba l-E1®abdef
will do the job. Let u, w, s and t be such that

E10a®&b+u®l1 w+s®t®1=O modZ 3r.

In particular, we have

E1® a@b+uO®l@w+s&t® 1 - 0 mod Z3r

E1® ®&b+u®1®w+s®f®1 = 0 mod Z3r

Next, observe that for any f, g

Sq0 (f g) = E ZiEZ q'(f)q-'(g) = E EiZ q(i,-i)(f ® g)

(3.1) = ,iez q(i,-i)( f ® g) - q(O,O)(1 f ® g)

= q(O,o)(f g) =) qO(f) qO(g) mod Z2r

Hence, we have

q(,,) (1 & E f D g) E 1 (q(a) 0(b) -q(b ) qo(a) 0 1 - qo(5) 1 ® q°(b))

-E O(u) 1 9 qO(fv) + qO(s) qO(tO 0 1
- (qov() + qO(-(qo(u) + qo(s)) 0 1 0 1

Setting CN 0 1 0 1 = 1, we conclude

q(OO)(E f 0 g) = (qO( i) + qO(t)(qO(ii) + qO(,)) E Q mod Z2r.



Hence, when representing 2-cycles we may always assume them to be of the above
form. Note also, for every cycle E qo(g)f expands in (Q ® Zr)((qL, qR)) ( q(f)g in
(Zr 9 Q)((qL, qR)) respectively) up to series in Z2r((qL, qR)).

Lemma 3.2.2. Let E f Og represent a 2-cycle of degree 2k. Then the following statements
are equivalent

(i) C f 0 g is a boundary.

(ii) C f ® g + v ® 1 + 1 m w = 0 mod Z2r((qL, qR)) for some v, w of weight k.

(iii) there is a system of equations

E f q0O(g) +v 1 + 1 qo(w) - 0 mod Z 2r((q))

Eqo(f)®g+l1w+q'(v)®l1 0 modZ 2r((q))

for some v, w of weight k.

(iv) E qO(g) f h mod Q + Zr((q)) for some h of weight k.

(v) E qO(f) g h mod Q + Zr((q)) for some h of weight k.

Proof. The equivalence of the first two statements has already been established in 3.1.3.

The third statement follows trivially from the second by looking only at the left and right

series. On the other hand (iii) implies (ii) by 3.1.4. (iv) and (v) are trivial consequences

of (iii) by letting h be -v and -w respectively.

Now let (iv) be satisfied. Using 3.1.4 and 3.1 we know that

E f 9 - E q0 (g)(f @ 1) - E q0 (f)(1 9 g) + E q(f g)

has integral (qL, qR)-expansion. Setting qL = qR = q and (N 0 1 = 1 0 9N we conclude

(3.2) E f g - O(g)f - qO(f)g + E q0 (fg) E 0 mod Zr((q)).

Hence, we define v = -h and w = h - E f g and compute

f 0 q0 (g) + v +10q(w) f q0 (g)-h +1 qO(h- f g)

E f 9 q0(g) + q0 (h) 0 1 - q o(g) f 0 1

+qO(f)q0 (g) 0 1 + 1 0 q0 (h) - 1 0 qo(f) qO(g) _ 0

Z q0 (f) g + 1 w + q(v) 1 l qo(f)g + h - 1 f g-q(h) 01

, -1 0 qo(g)f + 1 ®qO(f g) + 1 0 h - q0 (h) 0 1

E 10 (-qo(g)f + h + qo(f)qo(g) - qo(h)) = 0.

(v) is similar. O

Filter the ring of divided congruences Dr by

D r = im(@• Mgr & Q -- + Dr & Q) n Dr

def



and define the subgroups of Dr 0 Q

Yk Q + Drk
de f

D df Q+ Dr + Mkr Q
k def

Proposition 3.2.3. The homomorphism

/2 2:2,k , 2E2  = Zk/B --+ D" 0 Q/Z

sending E f 0 g to , qO(g)f is injective.

Proof. t is well defined and injective by the equivalence (i) -== (iv) of the lemma. O

We may draw another useful consequence of equality 3.2.

Proposition 3.2.4. A cycle represented by E f 0 g satisfies the identity

Ef®g-fg01 = -Eg®f+1®fg mod Z 2 r .

In particular, we have

2(E f ®g) = -L2(E g ® f).

Proof. We have to verify the integrality of

q'(Ef ®g- fg 1 +g®f- 1 fg)

which is immediate from 3.2 and 3.1.4. O

The proposition suggests that we may restrict ourselves to antisymmetric cycles. For

that define the cocyclic object M!s+ l)r with faces di for i = 0,... , s, degeneracies sj for

j = 0,... , s and cyclic operators t, given by

di: M sr  + M(S+l)r; fo0 ... ® fs-l • Z fO .. fi- ® 1 ® fi.. . fs-1

sj : Ms+2)r  M!(s+1)r; o ... 0,+1 ý o o 0 D... o f fj+l +... O fS1

ts : M(s+1)r M(s+l)r, f f... E (-1)S0  ® ... fS fO

Then one easily verifies the identities

didi = didj- 1 fori<j

sjsi = sisj+1 for i < <j

disj-1 for i < j
sjdi = id for i = j, i = j + 1

di-lsj for i > j + 1
tsdi = -dits-1 for 1 < i < s, tsdo = (-1)Sds

tssi = -si-lts+l for 1 < i < s, tsso = (-1)st+l, tl = id



The difference between cyclic and cocyclic objects is not serious. Each cocyclic object gives
rise to cyclic one and vice versa (cf. [22]). Dualizing Connes original definition, we define
the cocyclic bicomplex CC M *r

1-t N 1-t N
M3r F i M3r Mar M3r
bI bI bI -bI
M2F ~ 2r M2 --M M2F

1-t N 1-t N
Mr -~- Mr --- Mr - Mr

where
s s-1

b (-1)di; b' (-1)idi
def defi=0 i=0

and N = 1 + t + ... + ts is the norm map corresponding to the cyclic operator t = ts. Let
Mr in the left hand corner have bidegree (0, 0) and write

HCS(M*r) = HS(Tot CCM*r )

for the s-cohomology of the total complex Tot CCM r.

Theorem 3.2.5. The canonical map

can : HS(Tot CCM*r, Q/Z) --- E'-• *

induced by the projection onto the first column

Tot CCM *r  b (Mr M2r M3r ... )

is an isomorphism in dimensions s = 0 and s = 1.

Proof. Let z = (f, a) e M +l)r l<r<s Mrr = TotSCCM*r be a cycle. Then b(f) is an
integral representative of 10 f E M,*r 0 Gs'+ 1 and thus a cycle in Es '*. Hence, can is well

defined as any b(g) E M(,+l)r bounds in E+l'*. In dimension s = 0 we have 1 - t = 0 and
the two cycle conditions 1 0 f - f 0 1 = 0 mod Z2r obviosly coincide.

Next, let s = 1 and let z = E f 0 g + h E Tot2CCM:*r be a cycle of degree 2k.
Then N(h) = h vanishes. We wish to verify the injectivity of can and assume can[z] be a
boundary in El. That is, mod Z2r we have

E f @g=v01+1®w

for some v, w of degree 2k. Then

0= (1-t)(Ef 9g) = Ef ®g +go f = (v+w) 1 + 1 (v +w)



shows v - qo(v) = qo(w) - w. Using

0 = q(o,',o) (b(- f 9 g)) = E q(f) qO(g) = qO(v) + qO(w)

we conclude that E f 9 g = v 0 1 - 1 0 v = b(v) bounds.

It remains to show the surjectivity of can. Let , = E f 9 g be a cycle in El. Then

z = Ef®g-Efg®1
def

satisfies (1 - t)(z) = 0 by the antisymmetry relation of 3.2.4. Moreover,

b(z)= =E1 f g-f 01® g+f®gl01-1®fg&1

is easily checked to be integral using the equalities 3.2 and 3.1. Ol

The complex

c,, : Mr b b+-4b...C,r :M r b M 2r M 3r b

coincides with the well known cobar complex CM.2r(Mr , M) (cf. [40] A.1.2.11) under the

isomorphism

M f .g .Mf .M --+ Mfr
(e (fl gl) f 2  g2l ... (f®g8)h) efl gl f 2 ® ... ® gs-lf gh.

Hence, for positive s we have

E2'* • HS CM2 r(M , M,r) Cotorr (Mr, M,r)

- Cotor-- (MU, M ® Q/Z) - HSCMr (Mr, M r 0 Q/Z)

SH"-(Cr,,Q/Z)

by the exactness of Cotor. Most results of this section can also be deducted from the cobar

complex. However, it is important to have explicit geomertical isomorphisms at hand.

3.3. d, e and f-Invariants. In this section we shall define some basic invariants of stable

homotopy groups. Throughout, we assume that E be a flat ring theory with evenly graded

coefficients E,.

Suppose given a stable homotopy class s E 7rS in the filtration group Fs of the E-based

ANSS. Then we can consider its image under the map

s,n+s .s / Ts+l , Es,n+s - Esn+s

If we take n = s = 0 then the invariant

e,0 : 7oS = F°o -+ Eo'o = roE
gives the degree d of s. Now let the dimension of s be positive. Then e',n vanishes as 7rnS

is all torsion. Hence, we get the 'Hopf-Steenrod invariant'
,n+ S = En+e2~n~ .rnS =.1 -- El2 "



In case E is elliptic cohomology Er and n = 4k - 1 the invariant may be composed with
the monomorphism 01 of 3.2.3 for some choice of cusp to yield

1,n+l 1

e:r nS - E2 ,n+ Q/Z

Proposition 3.3.1. e coincides with the classical Adams invariant [5] in dimensions 4k-1

for F = F 1(2) at the cusp 0.

Proof. Let s E lr4k-1S be represented by a manifold M with a framing on its stable tangent

bundle. Then M is the boundary of some Spin manifold N since the Spin-cobordism group

vanishes in dimension 4k - 1. The e-invariant of s is given by the relative A-genus of N (cf.

[8]). The manifold N represents an element in the first line of the MSpin-based ANSS (cf.

[12]). Now t1 takes N to the 0-coefficient in

r1 (2) Al( 2) -- r 1(2)
rMSpin 0 Q - 7rE Q -_+ 7r K ((q)) 0 Q.

Its value is the relative A-genus of N as Arl(2)(0) sends 6 to -1 and e to 0 [18]. OI

The e-invariant vanishes in even dimensions. Hence, for even n > 0 we have

e 2,n+2 : IrnS = 2 E2,n+2

which we may compose with the monomorphism t2 of 3.2.3 to obtain
2,n+2 2

f :~S e-+ 2,n+2 L D r

fr - 2 " *D nQ--n /Z.

The f-invariant permits a description in terms of Hirzebruch genera on manifolds with

corners, but the details shall be developed somewhere else. The next result shows that the

f-invariant already takes values in the smaller group of holomorphic divided congruences.

Proposition 3.3.2. The f-invariant admits a factorization

r 1 Q/Z
-- can-r

where

Dr = im( M-Dr DM.
Sdef

The kernel consists of elements in the higher filtration group F3 .

Proof. Let s E 7rS be a stable class of even dimension n > 0. Then s lies in second

MU-filtration and we can find a 9 E irn(MU A MU) which projects to s. Now recall that

the elliptic genus o : ,U ---+ M]r already takes values in the subring ifr of holomorphic



modular forms (c.f. [18] 1.7 6.4). Moreover, by looking at the (qL, qR)-expansion we see that
the map

ir,(o A o) : MUMU -- EEr M*2

already takes values in the subring 1!i2r of holomorphic modular forms in 2 variables. Hence,
we obtain the commutative diagram

7r,(E 2MU A MU) r ,(E 2 E r A Er)

jr*(2E MUAMU)®Q ._ *(E2ErAEr)®Q
MU. (EMU) Ef(EEr)

4= 4=
MU.®MU.®Q MýrMrOQ

MU U MU+MU +Q M2r+MMU. Q+QOM,

I I=
r@MrQ Mr®Mr®Q

/2 r +M•Q+Q®M M2,r+Mr®Q+Q®Mr

D__ ® Q/Z can Dr 0 Q/Z

in which 9 is mapped to the f-invariant of s in the lower right corner. Since ,(9) 2e ,n+2
in the MU-based ANSS we obtain a well defined factorization of the f invariant. The last
statement is clear. O

We are now going to compute the f-invariant of the periodic family P which was first
considered by L. Smith in [45]. Recall that the Hazewinkel generators v, are isomorphic to
un modulo the ideal generated by (p, ul,..., un- 1) (cf. [32]).

Theorem 3.3.3. [45]

(i) Let V(O) be the cofibre of p: S -+ S and p be an odd prime. Then there is a self map

o : : 2(p-1)V(O) -4 V(0)
inducing multiplication by vi in complex bordism.

(ii) Let V(1) be the cofibre of 4o and p > 5. Then there is a self map

41: E2(p2-1)V(1) _ V(1)

inducing multiplication by v2 in complex bordism.
(iii) Let f be the composite

S2(p2-1) % 2(p2-1)V(0) E 2(p2_)V(1) 4 V(1) 4 E2p-1V(0) 4 S2p



where io, il,po,pl come from the cofibre sequences above and p > 5. Then 3 represents
a non-trivial permanent cycle.

A useful result in this context is the Geometric Boundary

Theorem 3.3.4. [40] Let E be a flat ring spectrum and E. be commutative. Let

S 9 hW - X -4 Y r EW
be a cofibre sequence of finite spectra with E.(h) = 0. Assume further that [s] E E2*+t(Y)
converges to s E 7rt(Y). Then 6 [s] converges to h,(s) E 7r•t 1 (W) where 6 is the connecting
homomorphism to the short exact sequence of chain complexes

0 -- + E I(W) -+ E1(X) -+ E1(Y) -- + 0.

Consider the case E = E r '( 1). In [32] it was shown that for p > 3

2 = (_1)(p- 1)/2 A (p2 - 1)/12 mod (p, vi)

and we saw earlier already

v1 = Ep-1 modp.

bliiio : E 2(p2-1)S -+ V(1) is represented by

v2 E E',2(p2-1) (V(1)) C r2(p2_1)Erl(1)/(p, v).

Since Er'(1)(pl) = 0 we may apply the Geometric Boundary Theorem to the cofibre se-
quence

E2(p-1)V(o) _4 V(O) - V(1) 2- E2p-IV(o).

Thus, the boundary 6(v 2 ) converges to pl lilio. To determine the boundary, we view v2 as
an element in

E'2(p2_l)V(O) = 72(p2= Er1)/

compute its differential and divide by vi. It is customary to identify Er'(lt)EEr l (1) with the
augmentation ideal in the Hopf algebroid Er(lI)ErT(1). Then the first differential becomes
the difference 71L - T/R between left and right unit. Let mi be the coefficient of xp' in the
logarithm of the p-typicalized formal group law FEr (1). Let ti be the image of the standard
generators in BPBP under the classifying map. Then we have the formulas (cf. appendix
of [40], [30])

7R(mk) = (mO = to = 1)
i+j=k

pmn+1 = Z mjv +.
i+j=n



Hence, we obtain

rlR(VI) = prlR(m) =ptl + v1

77R(V2) = p7R (m2) -1R(m1) 7R(UV)
= pt2 + vl t + (v2 + vP+l/p) - (tl + t l/p) (p tl + Vl) P

- vitej +v 2 -tl v modp

and thus

6(v2) = t - Ptl E E',2(p2- 1)(V(O)).

Finally we apply 3.3.4 to the cofibre sequence

S2p-1 -+ S2p-1 2p-1V(0) -S 2p.

and see that 0 is represented by

1/lp d(t - vlltl) E E ,2 ((p 1)- p+ 1)

In our old notation this element carries the name

/p (1 ® (vi/p) - f 1 ® (v1/p)) -1/p2 ( -V 1 0 Vl) = -1/p2(EP- 1 ® Ep- 1).
We conclude with 3.2.4

Proposition 3.3.5.

f(3) = -p- 2 EPI- = p-2Ep_.

The Deligne congruence Ep- 1 - 1 mod p shows that 3 has order at most p. The
nontriviality of 3 is equivalent to the non existence of a congruence

1/p(Ep_1 - 1) - w - q0 (w) mod p

for any integral w - qo(w) of weight (p2 _ p).

4. ORIENTATIONS AND RIEMANN-ROCH FORMULAS

We can use the topological q-expansion principle to equip Er with orientations which
differ from the original complex ones. Recall that the Landweber-Ravenel-Stong elliptic
genus originated from the signature operator on the loop space of a compact Spin manifold
M after a transformation of variables. More precisely, E. Witten [48] formally identified
the Sl-equivariant signature with the index of

0+(TM) ® (/ k>O Aqk TM 0 SqkTM 9 C)

using the Lefschetz fix point formula. Here 8+(TM) is the Dirac operator of M and we
abbreviated At E= E•'=o(Ak E)tk and StE =f Elo(SkE)tk"

def def



As the signature is only a twisted version of the Dirac operator one might expect to obtain
a more powerful genus by using the Dirac operator itself. The corresponding expression

+ (TM) 0 &k>0 Sqk (TM - dim M) 0 C
-4k 4k

leads to the Witten genus (the factor q 24 24 included). The Witten genus gives an integral
modular form for every String manifold. We can ask if it arises from a map of ring spectra

w : MString -- + Er when restricting to the coefficients.

Lemma 4.0.6. Let f : M -- + X be a String-oriented map of smooth compact manifolds.

Then there is a unique map of ring spectra w : MString -- + K r ((q)) s.t. the Riemann-Roch

formula

w fMString) = f!A(k>O Sqk(dimvm - vM) 0 w(a) @)

holds for all a E MString*M. Here vM is the normal bundle of M.

Proof. We first show uniqueness. Let X be a smooth compact manifold. Then by the work

of D. Quillen [39] every element in MString4 dX is of the form f1MString(1 ) for a certain

f : M -- + X as above. The value of w on fMString ( 1 ) is given by the Riemann-Roch formula.

Furthermore every compact space has the homotopy type of a smooth manifold. Hence, w

is determined when restricted to the cofinal system of finite subspectra in MString. We

have seen earlier that all lim 1 vanish locally at each prime. Thus they vanish globally and

there can only be one map w with the required properties.

We could take the Riemann-Roch formula to show existence. However, there is a more

natural approach. Let A : MString ---+ MSpin -+ K r ((q)) be the usual orientation which

induces the (complexified) A-genus on String manifolds. Let uA(() be the induced Thom

class for an arbitrary String bundle (. Then u'W () = uA (ý) ( k>O Sqk (dim ( - () is another

natural Thom class as the twisting factor is a unit in the ring of power series. The limit of

all such Thom classes yields a map of spectra w : MString -- + K r ((q)). Moreover, the new

Thom class is multiplicative. To see this, let r be another String bundle. Then certainly

UA( + r) = uA() U (r). It remains to check the exponential behaviour of the symmetric

powers
oo oo

Sqk(F+?7) = Sn(t+i ) qk n= Sr () 0 S(j) ) qkn

n=O n=Or+s=n

ESr() q krESs()qk,= S'k( S'A

r=O s=O

Thus w is a map of ring spectra. The correct Riemann-Roch transformation follows as in

[14]. I

Theorem 4.0.7. There is a unique map of ring spectra w : MString -+ Er[1/2] s.t.

Arw = w. In particular, the Riemann-Roch formula holds

ch Arw fMString (a) = fHQ(A(TM) ch ( k>O Sqk (TM - dim TM) 0 w(a) 0 C)).



Proof. Consider the cartesian diagram of 1.3.3

ErMString[1/2] A r KrMString[1/2]((q))

Id  ch

H*(MString, E* 0 Q) _ H*(MString, K 9 Q) ((q))

in which the left vertical arrow is the Dold character. The lemma provides an element
w E KrMString((q)). In order to lift w to ErMString[1/2] it is enough to prove that

chw fiMString(1) = fHQ(A(TM) ch ((k>O Sqk (TM - dimTM) 0 C))

gives an element in Ho(X, E~ ®Q) for every String oriented map M -+ X. The argument
is well known (cf.[18](6.3)) but customly stated in terms of Chern numbers instead of Chern
classes. The computation of

A(TM) ch (®k>O Sqk (TM - dim TM) 0 C)

in formal Chern roots xi of TM leads to

2m i/2 (1 - qk) 2

sinh(xi/2) I= 1 - qkexi)(1 - qke-zi)
2m /0 2 2m

-- Xesinh(xi/2) H (1 - qkezi) L(Xi)

i=(1 k=1 i=

Here, the first identity holds since the first Pontrjagin class of vM and hence of TM vanish.
E2 denotes the divided second Eisenstein series. In the last equality aL, is the WeierstraB
a-function for the lattice L, (cf. [49]). The coefficients of the r-th homogeneous part of the
last expression are homogeneous lattice functions of weight r, and so modular forms with
respect to any congruence subgroup r C S12 (Z). Since fHQ is linear over the coefficients
its pushforward lies in H*(X, Er 0 Q). It remains to show that w is a map of ring spectra.
Obviously,

Er (MString A MString)[1/2] - K* K(MString A MString)[1/2]((q))

is injective. Thus the assertion follows from 4.0.6. O

The Witten genus w of Er in the above theorem coincides with the canonical orientation
recently provided in [19] by the theorem of the cube. Our approach is more direct and
elementary but less conceptual than the one of Mike Hopkins.

We do not wish to invert 2 but MString is not well understood at the prime 2. However,
the method described above applies for other Thom spectra as well.

Proposition 4.0.8. Let MG be a Thornm spectrum and Er MG(p) be projective for all prime
p. Let F : Er -+ Kr((q)) be an exponential class s.t.

ch F(V) E Ho(X, Er ®Q)



for all G-oriented vector bundles V over X. Then there is a unique orientation

w: MG -- E r

s.t. the Riemann-Roch formula

r w fMG(a) = Todd (F(vM) 9 Arw(c))
holds for all G-oriented f : M ---+ X and all a E MG*M.

Proof. The topological q-expansion priniple 1.3.2 applies. 0

APPENDIX A. THE CLASSICAL q-EXPANSION PRINCIPLE

In this appendix we recall the classical q-expansion principles of the basic elliptic curves
which lead to Landweber exact theories. The main references are the books of Silverman

[46] [47], Serre [42] and the articles of Katz [25] [26].

A.1. WeierstraB Cubics. Classically a complex modular form of weight k is a function

on the upper half plane bj = {7 E C; im(T) > 0} which obeys certain transformation laws

and is holomorphic in a suitable sense. In order to obtain the notion of a modular form over

any ring, we will view them as certain kind of 'distributions'. The test objects are elliptic

curves together with nowhere vanishing invariant differentials.

Let

GL + = {(wi,w2) E 2; Im(w2/w1) > 0}

be the space of oriented R-bases of C. Its orbit space L under the right action of Sl2(Z) is
the space of lattices L = Zwl + Zw2 in C. WeierstraB theory establishes a correspondence

between points L of L and elliptic curves given as cubics in the complex projective plane

by the inhomogeneous equations

E/c " y2 = 4x 3 - g2 (L)x - ga(L)

where

g2(L) = 60 O•0EL 1/14; g3 (L) = 140 OCE L 1/16.

Let A = 93 - 27g23 be the discriminant of E/c. Then L becomes the open subspace

Spec(C[g92,g 3 , A -1]) of C2 = Spec(C[g 2,93 ]). Physically, the WeierstraB cubic associated

to L is analytically isomorphic to the torus C/L:

z E CIL - (x = p(z, L), y = p'(z, L))

where p is the WeierstraBf function
1 1 1

p(z, L)= - + (z )2  12
z 0 ( - )L



Under this map the translation invariant 1-form dz is sent to the nowhere vanishing holo-

morphic differential

w = dx/y E Ho(E/c, E/c)

Conversely, any Weierstraft cubic with invariant differential w generates a lattice of periods

(cf. [25])
L = {f w;-y E HI(E/c,Z)}.

We will freely think of the Cx -space L as lattices with stretching action of Cx or as space
of pairs (E/c, w) with a (E/c, w) = (E/c, aw) for a E Cx . A function f : L -+ C is said

to be homogeneous of weight k E Z if it is equivariant under the action on C defined by
z - a-k z.

For instance, the global coordinates 92 and g4 have weight 4 and 6 respectively. They
are closely related to the Eisenstein series of weight 2k

G2k(L) = EO•lEL 1- 2k/2((21); C(s) = En>I n-S

as G4 = 12 g92 and G6 = 216 g3. A homogeneous function f gives rise to a periodic function

f(7) = f(2ri(Z + rZ)) on .b. If f viewed as a function of q = exp(2rir) extends to a

holomorphic function of q in Iq| < 1 it is called a modular form. In this case, its Fourier
series or q-expansion determines f completely.

g2 and g3 are of particular importance as they freely generate the ring of complex modular
forms

fr () (C) = C[G 2, G 3].

We associate to each modular form twice its weight, i.e. IG2kl = 4k, so that M.r"('(C)
becomes a graded ring. Furthermore, the universal Weierstrag cubic gives Spec(C[g2 , 93])
the structure of a one dimensional group scheme. Its formal completion is a formal group.
As it turns out, the Weierstral3 parametrization is in fact an isomorphism of groups. This
means that near the identity element oo = [0, 1, 0] the formal parameter

t = -2x/y = -2p(z, L)/p'(z, L) = z + En>2 a,,n

is the exponential of the group law in this chart. The series t = f(z), a priori with coefficients
an E r 1(1)(C) C C [q], actually gives an element in Z[1/6][w, q] for w = 1- exp(-z). This

can be seen from the q-expansion of p (cf. [18])
1 1 1

P(Z) (qn/ 2 ez/ 2 _ q-n/2 e-z/2 ) 2  12 + (qn/2 q-n/2) 2

nEZ 0 nEZ

It is more convenient to equip L, = 27ri(Z + rZ) with the differential 27ri dz rather than
dz. Then f (27ri z) is the unique parameter in terms of which dz = dx/y for the universal
Weierstraf3 cubic

y 2 = 4x3 - e 4 x + e6.



In this notation

12 e4 = E 4; 216 e3 = E 6

where E2k = (21ri) 2k G2k are the normalized Eisenstein series. We would like to give
an interpretation of the ring Z[1/6, E 4, E 6] in terms of integral modular forms.

Definition A.1.1. Let S be a R-algebra. A test object is a pair (Els,w) where E is an
elliptic curve over S (an abelian scheme of dimension one) and w is a nowhere vanishing
differential on E. A modular form over R is a rule which assigns to a test object (E/s, w)
an element

f (E/s,w) EES
satisfying the following conditions:

(i) f(E/s, w) only depends on the isomorphism class of the pair (E/s, w)
(ii) the formation of f(E/s, w) commutes with base change

(iii) for any a E S x we have f((E/s, aw) = a-kf((Es, w)

We denote by Mkr() (R) the R-algebra of such forms.

Alternatively, they can be thought of as global sections of certain invertible sheaves over
the moduli space of elliptic curves, but we will not pursue this point of view any further.

We wish to construct a q-expansion map for arbitrary modular forms, i.e. a ring em-
bedding of Mrl(1)(R) into some power series ring. The original complex q-expansion map
can be recovered by evaluating the modular forms on the test object given by the universal
Weierstraf3 cubic and its section pushed over the ring of finite tailed Laurent series C((q)) via
the Fourier expansion. We could use this process to define a q-expansion for modular forms
over any rings in which 6 is invertible by the following observation. Recall the development
of the Eisenstein series [42]

(A.1) E2k(T) = 1 4- 2k- 1)q
n=1 dIn

Here B2k denote the Bernoulli numbers determined by
00

z/(e' - 1) = Z(Bi/i!)xi.
i=O

An inspection of this formula at k = 2, 3 shows that the WeierstraB test object is already
defined over Z[1/6]((q)). This leaves us with rings R which do not contain 1/6. Under the
change of variables

x ý- x + 1/12 y + x + 2y

the WeierstraB3 equation takes the form

y2 +xy = x 3 + B(q)x + C(q)



where

B(q) = -1/48 (E4 (q)- 1) C(q) = 1/496(E 4 (q) - 1) - 1/864(E 6(q) - 1)

are power series with integral coefficients (cf. [26]). This is the famous Tate curve which
is defined over Z((q)) and restricts to the old if 6 is inverted.

Definition A.1.2. The q-expansion map is the ring homomorphism

Af(1). M,' (l)(R) -- + Z((q)) R C R((q))

given by

f '-+ f(q) = f(Tate/z((q))R, Wcan = dx/(2y + x)).
def

Needless to mention that the ring of complex meromorphic modular forms Mr'(1)(C) is
just C[E 4 , E6, A-1] and the two notions of q-expansions agree. If we define the ring of
holomorphic modular forms 1,rx(1) (R) to be the subring of M r (1) (R) with q-expansion in
Z[qJ] R, we again have Mr'(1)(C) = C[E4 ,E 6 ].

The most fundamental result about modular forms and their q-expansion is known as
q-expansion principle.

Theorem A.1.3. [13][24] If the q-expansion of a (possibly meromorphic) modular form f
over S of weight k has all its coeficients in a subring R C S then there is a unique modular

form f of weight k over R which gives rise to f by extension of scalars. Moreover, a modular

form of weight k is uniquely detemined by its q-expansion.

Corollary A.1.4. If R is a torsionfree ring, then the q-expansion map

A: MrI(l)(R) --+ Z((q)) 0 R

is rationally faithful.

In fact, the corollary is just a reformulation of the theorem for torsion free rings R. It is
also worth mentioning that the canonical map

M~r1(1)(Z) 9 R --+ Mr, (1)(R)

is an isomorphism (cf. [25]) if 2 and 3 are invertible in R.
A study of the q-expansion of the Eisenstein series E4 and E6 gives

Corollary A.1.5. Mr'(l)(Z [1/6]) - Z [1/6, E 4, E 6, A - 1]



A.2. Jacobi Quartics and Hirzebruch Curves. In the first paragraph we saw that
integral modular forms do not behave well at the primes 2 and 3. This is reason enough to
enlarge the concept of modular forms by varying the class of test objects.

Consider the family of Jacobi quartics given by the inhomogeneous equation

y2 = 1 - 26 x2 + E 4 .

Its closure in CP 2 is singular at oo = (0, 1, 0). However, viewed as curve in CP 3 under
the normalisation map [x, y, 1] '-4 [1, x, x2 , y] it becomes an honest elliptic curve whenever
A = 64E (62 - c) does not vanish. The universal one of these lives over Z [6, E, A -1 ], i.e.
any ring homomorphism into some ring R determines a Jacobi quartic over R.

We wish to investigate their relation with lattices. For that we restrict the action of Sl2Z
on the space of oriented based lattices GL + to the subgroup

r (2) = 1 1 )mod2}.

Then the half basis point w1/2 satisfies

(awi+cw2)/2-w1/2 modL for alla E ) r1(2).

Hence, it is not hard to verify that the orbit space

L1(2) = GL+/Fr(2)
def

is the space of lattices together with a distiguished 2-division point. In order to construct
the desired correspondence define the function [18]

f : C x L1(2) -- + C; f(z, L, wl/2) = 1/ /p(z, L) -p(w/2,L) = z +O(z 2)

which is elliptic with respect to the sublattice L = Z wl + Z 2 w2 of order 2 in L. f gives a
group homomorphism

(z E C/L, dz, wi/2) '- ((x = f(z, L, wl/2), y = f'(z, L, wl/2)), dx/y, oo).

Conversely, for arbitrary coefficients 6 and E with A / 0 we get a differential equation for
f which is uniquely solved with power series methods by a function f which is elliptic with
respect to a lattice L. This implies that L1(2) takes the form Spec C[6, e, A - 1 ]

By picking x as coordinate near the identity we identify f as exponential of the associated
formal group law. The distinguished point

f(w,/2) = oo E 2E/c = ker(E/c - -+ E/c)

of order 2 imparts an additional structure to each Jacobi quartic.
There is a natural generalization of this concept to higher levels N > 2. Jacobi quartics

belong to the family of Hirzebruch curves
1 N YN )N- N-1

-K + a 2Nx -) al( )+ ... aNl(-)+aN.
3Z; 3; 3; 3;:



Let f(z, L, wl/N) be the theta function for which fN is elliptic with respect to L, which has
divisor div f = (0)-(27ri/N) and whose Taylor expansion around 0 is of the form z+O(z2).
Again, f can be taken as exponential of a formal group law and wi/N generates a subgroup
of order N. Note that given an elliptic curve over an arbitrary ring the existence of a point
of order N on a curve over R implies that N is invertible in R (cf. [26]).

Definition A.2.1. A rl(N)-test object over R is a triple (E/s, w, P) where E is an elliptic

curve over an R-algebra S, w a nowhere vanishing differential on E and P is a point of

exact order N. A modular form for the congruence subgroup Fi (N) of weight k is
a rule f which assigns to a test object (E/s, w, P) an element

f(Es, w,P) E S

satisfying the analogous conditions of A.1.1. We denote by Mk1(N) (R) the R-algebra of
such forms.

Interesting test objects are the Tate curves Tate(q N)/((q)) with their canonical differ-

ential wean = dx/(2y + x) and any point of order N. They are deduced from (Tate(q), can)
by the extension of scalars Z((q) --+ Z((q)) q - qN. The Tate curves have multiplicative

reduction given by

qNk qNk

(e2 iz =u E */qZ, du/u) (x= Z (l qkz) 2 - 2Z 1 qNk
kEZ k=1

(qNkU)2  qNk

y= (1 - qNku)3 + 1 - qNkI dX/2y + x).
kEZ k=1

Thus, the points of order N in Tate(qN) correspond to the points of order N on C*/qNZ

and have the form

('q3  0 < i,j n -1
where CN denotes a primitive N'th root of unity. All Il(N)-structures are defined over

Z((q)) 0 Z[CN, 1/N].

Definition A.2.2. Let R be a ring in which N is invertible and which contains a primitive
N-th root of unity (N. Then the q-expansion map at the cusp C'q is the ring homomor-

phism

Ar M(N ) • M'r,(N)(R) -+ Z((q)) R C R((q))

defined by

f f(q) f(Tate(qN)/Z((q))OR W, cW, j).

We say f is holomorphic if f(q) already q-expands in R[q] for one and hence for all cusps
(cf. [27]) and write MIrl(N) (R) for the graded ring of holomorphic rl (2)-modular forms over
R.



Theorem A.2.3. [13][26] If for some cusp a (possibly meromorphic) F (N)-modular form
f over S of weight k has all its q-expansion coefficients in a subring R C S then it does
so at all cusps and there exists a unique F i(N)-modular form fo of weight k over R which
gives rise to f by extension of scalars. Furthermore, every q-expansion map is injective.

Corollary A.2.4. If R is torsionfree, then the q-expansion map Ar - 1(N) is rationally faith-

ful on its homogeneous components.

The expansions of E and 6 at the cusp 0, i.e. (Tate(qN), Wcan, q), are given by the formulas

[18]

1n
6(7) = - 3 (Z d)qn/2; E(r)3 )Qn/2

n>1 2{dln n>1 2{dln

From that it is easy to conclude

Corollary A.2.5.

Mr(2) (Z [1/2]) - Z[1/2,J6,,A-']

Mrj(2)(Z[1/2]) r Z[1/2,6,E]

The q-expansion map of M.r,(N) = M.r'(N) (Z[1/N, N]) can be used to push the formal
def

group Frl(N) defined by the exponential f to the ring of power series. Explicitly, at the

cusp co, i.e. at (Tate(qN), Wcan, (N), we have the formulas [18] AI.7/6.4:

f (z) = , )(-2ri/N,r)
4(z - (2ri/N),r)

where

D(z, -) = (ez/ 2 - e-,/ 2) (1 - qnez)(1 qne-z)
n=1 (1 - qn)2

A short calculation shows that f gives a power series in Z[1/n,N, ][w, q] where w = 1-

exp(-z). We conclude with the q-expansion principle

Corollary A.2.6. There are unique isomorphisms of formal groups over Z((q))®Z[1/N, (N]

Gm (N l(N) FTate(qN)-

In particular, the ring inclusion

Mir,(N) n Msgl(NM)

induces an isomorphism of formal groups. The equivalent statement also holds for

M.*r(') = Mr(1)(Z[1/6]).
def



APPENDIX B. THE p-ADIC q-EXPANSION PRINCIPLE

Modular forms over the p-adic numbers as defined in appendix A do not reflect the p-

adic topology in a serious way as they are just the tensor product of integral modular forms
with Zp. One wishes to allow limits of such forms in such a manner that forms with highly
congruent q-expansion are close. The first approach for such a theory was taken by Serre
[44]. He identified p-adic modular forms with their q-expansion and showed they can be
associated a weight which is a character X : Z --- Z '. Serre modular forms form a subring
of the ring of trivialized modular forms developed by N. Katz. Katz's theory is preferable

to us as it allows a modular interpretation and his ring is the p-adic counterpart of KoEr.

For a detailed and complete treatment of p-adic modular forms 'with growth conditions'

the reader is referred to the articles of Katz [24] [25] [26] and the overview given in [16].

B.1. Trivialized Modular Forms and Diamond Operators. Trivialized modular
forms were first introduced by Katz in [24]. Katz uses the expression 'generalized mod-

ular forms' as they include honest modular forms, modular forms in the sense of Serre and
'modular forms with growth condition 1'.

Let R be a p-adic ring. We will always assume that R contains a primitive Nth-root of

unity with p f N, and that it is a p-adically complete, discrete valuation ring or a quotient

of such a ring.

Definition B.1.1. A trivialized l' (N)-test object is a triple (E/s, ,, P) consisting of

an elliptic curve over a p-adically complete and seperated R-algebra S, a trivialization of
the formal group of E/s by an isomorphism

ý0 : t -~+ 6m
over S and a point P of exact order N. A modular form for P1 (N) over R is a rule f which

assigns to any trivialized Jl7(N)-test object a value

f(ESs, W, P) ES

satisfying the following conditions

(i) f(E/s, 7, P) depends only on the S-isomorphism class of (E/s, c, P)

(ii) the formation f(E/s, W, P) commutes with arbitrary base change.

We denote by Trl(N) (R) the ring of trivialized modular forms over R.

Note that we do not require these modular forms to have a weight. However, there is an

action of Z on Tr'(N)(R): For a E Z we define the diamond operator

([a] f)(E/s, W, P) = f (E/s, a- ,P).

It is clear that ordinary i (N)-modular forms f give rise to a trivialized by

f(E/s, W, P) = f(E/s, Wp*(dT/(1 + T)), P)



where dT/(1 + T) is the standard differential on Gm. The Tate curve admits a canonical
trivialization 'cean with

pOcan(dT/(1 + T)) = Wean

in the notation of appendix A.

Definition B.1.2. The q-expansion map of trivialized modular forms at (N qJ is the ring

homomorphism

Ar1(N) TrF(N)(R) ---+ R((q))

given by

f i- f(q) =f (Tate(qN)•, Ic a n ' i qj )

We say f is holomorphic if it already q-expands in the subring R[qJ and write Tri(N)(R)
for the resulting ring.

Theorem B.1.3. If a trivialized Fl(n)-modular form over S already q-expands in R((q))

for some subring R C S then there is a unique modular form f over R which gives rise to

f by extension of scalars. Moreover, a trivialized modular form is uniquely determined by

its q-expansion.

Proof. In [24] Katz gives two proofs of the theorem. The hard part is to show the injectivity

of the q-expansion for a field of characteristic p. It is a consequence of the irreducibility of

the moduli space of trivialized test objects for which Katz refers to Igusa or Ribet. O

Corollary B.1.4. Let W be the Witt vectors of a perfect field of characteristic p which

contains a primitive N 'th root of unity (N. Let E fi be a sum of true Fl (N)-modular forms

over W[1/p] which q-expands in W((q)) at some cusp. Then so does E a' fi for all a E Z'.

Proof. Let N be such that pN fi is a modular form over W. Then E pNfi gives rise to an

element in Tr'(N) (W) with q-expansion divisible by pN. Thus, by the q-expansion principle

EpNfi is uniquely divisible by pN. We conclude that E fi lies in Trl(N)(W) and so does

[a] E fi. But the effect of the diamond operator is

([a] fi)(E/s,Po,P) = (Efi)(E/s,a-1p, P)

= Efi(E/s,a-1 p*(dT/(1 + T)))

= Eaifi(E/s, c*(dT/(1 +T)))

= (E a'fi)(E/s, P, P).

Hence, any q-expansion of E aifi is integral.
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