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Abstract

We study the cohomology of invertible sheaves C on surfaces X, blowings-up of P2 at
points pl,...,p, in general position (generic rational surfaces). The main theme is
when such sheaves have the natural cohomology, i.e. at most one cohomology group
is non zero.

Our approach is geometrical. On one hand we are lead to deform the configura-
tion of points to a special position, notably surfaces with a reduced and irreducible
anticanonical divisor, for which, thanks to the extensive work of Harbourne, the co-
homology is known or computable. Semicontinuity theorems give then vanishing of
the cohomology for line sheaves on generic surfaces satisfying a kind of positivity
condition.

On the other hand we fiber our surfaces over the projective line, r : Xr -+ P1, and
reduce the problem to a cohomological estimate for locally free sheaves on the base.
Indeed, under mild numerical assumptions on £ = Ox,(dH - E=rmiE&) (where H
denotes the divisor on Xr for which Ox,(H) = a*(OpV(1)), a : Xr -+ P2 being the
blowing-up map and Ei the (-1)-curves a- 1 (ps)) the 7rC.£'s turn out to be locally free,
hence, thanks to the Birkhoff-Grothendiek theorem, sums of invertible sheaves on P .

We can thereby reduce a conjecture of Andr6 Hirschowitz -to the effect that
the invertible sheaves C have the natural cohomology provided c1((£).E > -1 for
any exceptional curve of the first kind E such that 2H.E < H.cl(C(£)- to the thesis
that certain locally free sheaves are direct sums of Ori(-1)'s, or, equivalently, are
semistable.
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CHAPTER 0

Introduction

La presence, en ecartant de nous la seule realit6, celle

qu'on pense, adoucit les souffrances, et l'absence les

ranime.

Marcel Proust

The aim of the present work is to give new insights toward the study

of invertible sheaves on Generic Rational Surfaces, that is the blowups

of the projective plane at points in general position. The expectation

is that such surfaces exhibit a Bott- Weil behavior (terminology due to

Fedor Bogomolov), meaning for a given class of invertible sheaves their

Hilbert polynomial grows asymptotically like the dimension of a single

cohomology group,
X(£ ®n ) , h'(£)(Eon),

as in the case of Abelian Varieties or generalized flag varieties (quo-

tients of reductive algebraic groups by parabolic subgroups -hence

the terminology). In the case of generic rational surfaces we can even

single out a class of invertible sheaves which should have at most one

cohomology group nonzero (the so called natural cohomology or non

speciality).

The Conjecture of Andre Hirschowitz we present in the first chap-

ter best formulates the question we want to ask. We first overview

the classical origins of the problem of determining the dimension of

incomplete linear systems of planar curves of degree d subject to the

condition of passing through r points with multiplicities and its al-

gebraic counterpart. Already the Italian school had recognized the

importance of a certain virtual dimension, called expressively Postu-

lation, and the defect of coinciding with such dimension as an index
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of speciality. As in the case of linear system of curves, the modern

viewpoint regards such speciality as the dimension of the first coho-

mology group of a coherent sheaf. Only here the sheaf in question is

an ideal sheaf of a 0-dimenensional scheme, rather than an invertible

sheaf. This (a feature common to higher dimensional geometry and

only recently tackled in the case of surfaces by Reider's theory [iR88])

is the main source of difficulty. Blowing up the fixed points of our sys-

tem we reduce the problem to the study of a complete linear system,
and the postulation becomes the Euler-Poincare characteristic of the

pull-back sheaf. Here we dwell on the motivations and the geometrical

setting of Hirschowitz's Conjecture giving a hopefully clear exposition

of the beautifully terse article that inspired us [aH89].

In the second chapter we give shorter proofs of results gotten by

Harbourne in the case of an irreducible reduced anticanonical divisor

(Harbourne Surfaces) corresponding to the condition of the points lying

on a cubic curve on Pk. (Harbourne [bH95] has recently extended his

description of numerically effective divisors to the case of arbitrary

effective anticanonical divisors -Anticanonical Surfaces.)

The aim is to derive vanishings for the first cohomology of invert-

ible sheaves on generic rational surfaces using the upper semicontinuity

theorem. To wit, we consider the family of blowups (as constructed

by [bH82] or [sK81]) of Pk within which the generic rational sur-

faces form an open subset. The Harbourne Surfaces will be at the

boundary of this open variety. If we prove vanishing on them, we can

then conclude the same for points in general position. This leads to

the study of the intersection pairing on Harbourne's surfaces as well
as generic ones. In particular the question arises whether there exist

curves with self-intersection less than -1. On generic rational surfaces

the absence of (-2)-curves is classically known [iD83]. In the case

of rational curves [MMM80] prove that there aren't rational curves

with self-intersection less than -1 as well as that, provided the an-

ticanonical dimension [fS83] of our surface is zero, neither irrational
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curves with such self-intersection exist. Deformation theoretical con-

siderations [fB93, fB95] suggest that (at least in characteristic zero)

this should be the case for arbitrary curves. Following a remark of

Hirschowitz's, we prove that his Conjecture implies the absence of such

curves. It is very likely that the converse is also true, and speculate

on the analogy with almost-complex deformations which characterizes

such condition as a property of generality.

The third chapter expounds an original direction of study for generic

rational surfaces. It is not hard to fiber them over a projective line.

The fibration is flat and allows us, through an easy argument involv-

ing Leray spectral sequences, to prove that. under mild assumptions

(weaker than the hypotheses of Hirschowitz's Conjecture), the direct

images of our invertible sheaves are locally free. This enables us to

reduce the computation of cohomology to a computation of degrees of

line sheaves on Pk.
This approach comes full circle in the concluding sections: we refor-

mulate Hirschowitz's Conjecture in terms of properties of direct images.

In particular we show how the presence of exceptional curves among the

components of effective divisors lead to bounding the dimension of the

first cohomology group of the corresponding line sheaf. Also we prove

that the surjectivity in cohomology of the restriction to the generic

fiber yields the vanishing of the first cohomolgy group. These results

can be regarded as proofs of Hirschowitz's conjecture under some ad-

ditional hypotheses. We expect to be able to relax such assumptions

so as to get a full proof of the conjecture.

The study of such direct images, as well as those of vector sheaves,

is interesting per se and we pursued it building on our knowledge of

elementary cases. in particular we can compute the direct images for

the linne sheaves with multiplicity equal to 1.

We hope such techniques will prove useful in dealing with the study

of vector sheaves on generic rational surfaces, especially the problem
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of stability and exceptionality (the Rudakov's school). Even more gen-

erally one could consider this method as a new tool to compute coho-

mology of vector sheaves on varieties which can be nicely fibered over

the projective line.

0.1. Terminology and notation. The language is that of mod-

ern Algebraic Geometry as in [rH78] or [EGA]. At the cost of several

repetitions and redundancies, which I hope the reader will forgive, I

have striven to make the mathematics accesible to anyone who has an

uninhibited acquaintance with [rH78].

We have departed from the convention of considering "vector bun-

dles" and "locally free sheaves" as synonyms to shorten the latter to
"vector sheaves" (a term coined by Serge Lang). Correspondingly, in-

vertible sheaves will be also called "line sheaves".

All the varieties considered are defined over an algebraically closed

field k of arbitrary characteristic unless otherwise specified. In par-

ticular, when explicitly calculating direct images we will make use of

the Kodaira and Ramanujam vanishing theorems. Hence we will have

to assume char(k) = 0 (by the so called Lefschetz principle, cf., e.g.,

[jH92, p.187], we can always derive results over an arbitrary field of

characteristic zero from the corresponding results over the complex

numbers).

Although we have tried to be consistent in the notation and denoted

sheaves with script upper case reserving Roman fonts for divisors, we

have been somewhat sloppy in the terminology. For instance, we have

spoken of intersection with a line sheaf C meaning with the corre-

sponding divisor cl (£). By "curve" we will mean a reduced irreducible

algebraic scheme of dimension 1. Generally we will deal with curves

on surfaces, that is one-dimensional closed subvarieties of the ambient

surface.

Given a real number a, we will denote by a+ (resp. a-) the positive

part, viz. (a + lal)/2 (resp. the negative part -(a - aI)/2). Often,
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whenever there is no danger of ambiguity, we will shorten X(Y)+ to x+

(where X is a coherent sheaf on a given variety).
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Department. Creative interaction with Prof.s Michael Artin, Sasha

Beilinson, Steve L. Kleiman and Yuri I. Manin has enlightened my
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CHAPTER 1

Hirschowitz's Conjecture

1. Classical Antecedents

It is a long standing problem in Algebraic Geometry to deter-

mine the dimension of linear systems of curves of degree d > 1 in
Pl (k being an algebraically closed field) passing through r (closed)

points Pi,... , pr in general position with assigned multiplicities, resp.

ml, ... ,mr _ 1.

Such a problem can be easily rephrased in a rather algebraic fashion.

let us denote the maximal ideal of forms vanishing at the point Pi by Ii

and by I" the corresponding ideal sheaf and we let R := k[To, T1, T2],
the homogeneous coordinate ring of p2. Then set I := -Il , A

R/I and let I(d) and A(d) denote the respective d-th graded compo-

nent. One easily realizes that we are looking for the integers:

dimk(I(d)) - ho(P 2 1z(d)),

where Iz is the structure ideal sheaf of Z, the (in general non-reduced-

as soon as one of the mi is greater than 1) punctual scheme Proj(Op / fI TI)
k

which gives rise to the 0-cycle Ej mipi in Pk.

On the algebraic side, the study of the Hilbert function,

Hz(d) = dimk(Id) = h0(P2,z(d)),

of such schemes, vividly called fat points, has been extensive (due to

our ignorance, we only mention in the bibliography the articles we felt

closer in spirit to our approach, such as [GG91, aG89, aG93, aG89,

sG89]). Obviously the knowledge of such function would amount to the

solution of the aforementioned problem. Unfortunately the state of the

art knowledge gives only estimates on what the range of the Hilbert
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function can be, focussing, e.g., on the first (as well as successive)

difference function

AHz(d) = Hz(d) - Hz(d - 1),

giving bounds for the minimal d for which Hz can have the expected

value (i.e. the postulation, cf. below) or trying to compute free resolu-

tion of the defining ideal "z. (It ought to be mentioned that all such

questions have their natural generalizations in higher dimension, as in,

e.g., [GM84, sG89, HS95].) Indeed note that the structure sequence

of Z twisted by Op2(d) gives in cohomology:

0 -+Ho(Pk,Izz(d)) -4 Ho (P, OI p(d)) -+ Ho (ZOz(d))

-+H1(p2 71Zz (d))" (1.1)

One is inclined to expect, for generic points,

Hz(d) = ho(P2, (Op(d)) - ho(Z, Oz(d)),

i.e. the (affine) dimension of the "space of planar projective curves of

degree d" minus the "number of conditions imposed by passing through

the point pi with multiplicity mi, classically termed Postulation, that is

the virtual dimension of the system. Hence the interest in the vanishing

of H (P2k, Zz(d)) and the resolutions of the structure ideal Zz.

Here the geometer would think in terms of spannedness at the points

of Z, but as these points aren't reduced we are unable to obtain sim-

ple conditions on the very explicit sheaf Op2(d) the way, for example,

Reider's theory does. We can still formulate (on the blowing-up of

P2 at the points pi) some destabilizing argument, but because of the

multiplicities we can't go far. Even the most sophisticated vanishing

theorems for ideal sheaves [aN90] can't circumvent this obstacle.

On the other hand, we can easily eliminate the difficulty of having

to deal with incomplete linear systems such as

JdH - Z mipiI
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the way classical algebraic geometers used to [oZ70] blowing up the

support of Z.

Let a : Xr = X(pl,... ,Pr) -+ P• be the blowing up of Pk2 at

PI,.. ,Pr, H a divisor on X, such that a*Op2(1) = Ox, (H), and

El,...,Er the exceptional curves corresponding to the pi's, then the

above mentioned systems are isomorphic by pull back to the complete

linear system 1

JdH - i= miEil. (1.2)

We should emphasize that the assumption on the pi's of being in

general position means that the pi's are in d-general position for any

positive integer d: viz. any 3 of them don't lie on a line (d = 1, or

linear general position), any 6 of them don't lie on a conic, and so on

(any (d + 1)(d + 2)/2 do not lie on a curve of degree d). This can be

formalized in the following definition [jB79] .

DEFINITION 1.1. A set of r (geometric) points pi,... ,Pr E P2 are

said to be in general position if:

(i) at most (d+1)(d+2) - 1 lie on a curve of degree d

(ii) for any Pi there is a curve C of degree

d:= min{d' E Z+: (d'+ 1)(d' + 2) > r}
2

such that p3 E C for any j # i and pi O C.

'More generally, for any locally free sheaf T on P2 Hi (P, F) t2- Hi(Xr, o*).
Indeed the Leray spectral sequence associated to a*.F degenerates at

E2 = HP(X, R.(*F)) = HP(Xr, *),

whence the isomorphism once one takes into account that (cf. [rH78, prop. V.3.4])

Ra.Ox,. = 0 for q> 1 so that

Rqaa*.* = .F ® Rqoa.Ox, = 0

(see the section on the Leray spectral sequence below for a similar argument).
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It is not hard to prove (cf. [jB79]) that this geometric character-

ization is equivalent to more algebraic conditions such as those of the

following proposition.

PROPOSITION 1.2. A set of r points Z= {pl,...,pr} C P2 is in

general position if and only if for any subset Y C Z of cardinality s

one has

h(Zy ® (Op9(d)) = max{(d + 1)(d + 2)/2- s, O}.

From this generality assumption and the adjunction formula 2 we

conclude all of the Ei's are irreducible smooth rational curves, or, equiv-

alently, no Ej - Ej for (i : j) is effective . Furthermore X, has to be

smooth. We will see that the generality of the pi's has actually much

stronger implications on the geometry of ,r.

Of course, one of the fundamental tools in computing the dimension

of linear systems is the Riemann-Roch theorem-let's recall it now:

THEOREM A (Riemann-Roch Theorem for Surfaces). If £ is a line

sheaf on a smooth algebraic surface Y,

x(C) = (ci(12) 2 - c1(/).Ky)/2 + X(Oy).

When Y is a rational surface, since y(Oy) is a birational invariant,

X(Oy) = (O = 1,

so that Theorem A can be rewritten as

x(C) = (c1(£) 2 - c1(£).Ky)/2 + 1. (1.3)

2Because the points Pi are different the exceptional divisors have to be irre-
ducible. Then the adjunction formula gives the arithmetic genus

pa(Ei) = (Ei + Kx,.Ei)/2 + 1 = 0,

whence it follows the E2 are smooth rational curves.
3This can happen if and only if some of the pi are infinitely near (cf. [mD80]).
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Since /Cx, = Ox, (-3H + E'=1 E), we get explicitly from (1.3):

x(Ox, (dH - E'= miEi)) =
=(2_E 1M2

= (d2  =1 m + 3d- 1 mi)/2+1= (1.4)

= (d + 1)(d + 2)/2 - :r=, mi(mi + 1)/2.

NOTATION . Henceforth we will denote the line sheaf Ox, (dH -

-=1 miEi) by £d,m, where by m we understand the vector of multi-

plicities (mi,... m, )

REMARK 1.3. Notice the first summand in (1.4) is equal to dimk(R(d))

- dim(space of curves of degree d in PF); moreover, the second term

amounts to deg(Z) or, in more classical terms, the number of condi-

tions imposed by passing through the points pi with multiplicities at

least mi.

It is classically known that

dimjdH - E71=miEil Ž (d + 1)(d + 2)/2 - E2r_ 1mi(mi + 1)/2,

a bound that can also be gotten from (1.4) if h2 (X~,LCd,m) = 0. It

turns out it is not difficult to prove this vanishing whenever d > 1, as

is natural to assume 4(the requirement being only d > -2):

LEMMA 1.4 (cf. [mD80]). On a smooth rational surface Y for a

Cartier divisor D, if h°(Oy(D)) # 0, then h2(OY(D)) vanishes. Fur-

thermore, if we take Y to be a generic rational surface Xr = X (pl, ..., Pr)

as defined above we have:

(i) if D.H < 0, then ho(Xr, Ox, (D)) = 0;

(ii) if D.H > -2, then h2 (Ox", Ox, (D)) = 0;

(iii) under the hypotheses of (iii), if moreover D 2 - D.Kx, > 0, then

ho(Ox,(D)) does not vanish.

PROOF. For the first claim notice that by Serre's duality

H 2(Oy(D)) - Ho(Oy(Ky - D)).

4We are considering linear systems of curves of some assigned degree d in P.

which correspond to divisors of the same H-degree on the blowing-up X,. A non
positive degree would not make sense.
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Since, by assumption, D is effective, the cohomology group on the

left injects into Ho((Oy(Ky)) which is known to vanish for rational

surfaces (birational invariance of the genus, and, more generally, of the

plurigenera).

(i) If ho(Xr, Oxr (D)) =A 0, then D is effective, so that H, which is

numerically effective, can't intersect it negatively.

(ii) Applying Serre's duality as at the beginning, the non vanishing

of h2(Xr, Ox,.(D)) would imply that Kx - D is effective. Then

H would intersect it nonnegatively, while, by assumption,

Kx,.H - D.H = -3- D.H < 0.

(iii) From the previous item we know H 2(Xr, Oxr (D)) vanishes, then,

by Riemann-Roch:

h (Xr, Ox,.(D)) = (D2 - D.Kx,)/2 + h'(Xr, Ox, (D)) + 1 > 1.

2. The Conjecture

2.1. Some Heuristics. First of all assume

d > mi , m 2 ... >_ mr > 1. (2.1)

Notice that the ordering on the mi's is not restrictive, nor the con-

dition d > 1 is; on the other hand d > mi is natural to ask if we hope

for a (generically) nonzero ho(Ld,m).

REMARK 2.1. By Lemma 1.4,

C1((£d,m).H = d > -2 =: h2(Xr, £Cd,m) = 0.

Hence we have the following cases:

1. X(,Cd,m) > 0 # hO(X,, id,m) 0,
2. X(Cd,m) = 0 = ho(Xr,1d,m) = h(Cd,m),

3. X(Ld,m) < 0 h'(Xr, 4d,m) 0.



2. THE CONJECTURE

Since a great deal of the geometry of Xr depends on the Ei's, it

is natural to look for bounds of C1(£d,m).Ei, or more generally for

c1 (£d,m).E where E is an exceptional curve. Let's first consider the

following basic case.

PROPOSITION 2.2. Let L be the proper transform of a line through

pj and Pk with j # k and define X- := -(x - IxI)/ 2. Then

h (,d,m) = X X 1 CcCd,m).L > -1 - X-

PROOF. Let's consider the structure sequence associated with L:

0 -+IL Ox, (-H + Ej + Ek) -- 0, -- OL -+ 0.

Tensoring with £d,m we get

r
0 -+Ox,((d-1)H- 1 minE+Ej+Ek) *Cd.m -+OL(d-mj-mk) -+0.

Now the long exact cohomology sequence yields

H1 (£d,m) -+H'(OL(d - mj- ink))
-+g2X,((d- 1)H - m, E, + E, + Ek)) = 0,

where the vanishing of the last term follows from Lemma 1.4. Since

L - Pk, the Riemann-Roch Theoremon curves and the numerical as-

sumption give

X- - hl (OL(d - m - ink)) = h(OL(- 2 - d + mj + mk))

> -1 - d + mj +mk = -1 - Cl(•d,m).L. (2.2)

It turns out it is possible to generalize such inequalities to any

intersection with an exeptional curve.
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2.2. First digression on exceptional curves. By exceptional

curve (of the first kind) we mean an irreducible curve which can be

smoothly contracted to a point. Castelnuovo's criterion gives a nu-

merical characterization for such curves (which thereby are also called

(-1)-curves E) on a smooth surface Y:

E 2 = -1 = Ky.E. (2.3)

The adjunction formula then yields

2h'(OE) - 2 = E.(E + Ky) = -2,

so that -taking into account the irreducibility- E 2 Pk.
If Y is the blowing-up of a surface Y' at r points, Pic(Y) = Pic(Y')E

Zr. In particular, for our Xr we choose the obvious basis for PicXr

{eo, f, ... ~Er }, where e0 := [H] and e := [Ei]; and we fix a coordinate

system by giving the isomorphism

PicXr -+Zr+1 (2.4)
[noH + Er 1 niE ] - (no, -nl, ... ,-nf).

(2.3) then can be rewritten as

e- = e2 = -1 = -3e 0 + =1 e, (2.5)

for an exeptional curve of class [E] -+ (eo,..., er).

We can now generalize Proposition 2.2 to any exceptional curve.

2.3. Necessary Conditions.

PROPOSITION 2.3. Let E be an exceptional curve of degree eo :=

E.H < d+2 on Xr, then (using the notation of the previous subsection)

h'l(d,m) = X- •# cl(.d,m).E> -1 - X -.
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PROOF. Here too we tensor the structure sequence of E -, eoH +

Z1=1 eiE 1 by Cd,m taking into account that ZE - O x r (-eoH+E=1 eEi) =
,-1 .
eoe•

0 L+-Cdo,m-e o+d,m -OE(deo- 1 me) -+0.

Now the long exact cohomology sequence gives:

H'(Xr, £d,m) -4 H'(E, OE(deo - =1 miei)) -4H 2 (Xr, Cd-eo,m-e).

The last cohomology group vanishes because of the assumption on

the degree of E and Lemma 1.4. Hence

x- = h'(Id,m) > h1 (E(deo - _ E mee))=
i=1

= h0 (OE(-2 - deo + miee)) Ž (2.6)

> -1 - deo + 1miei = -1 - C1 (1d,m).E.

REMARK 2.4. Notice if X- = 0 (i.e. X(Cd,m) _ 0), Proposition 2.3

yields necessary conditions for the vanishing of hl(Cd,m).

On the other hand, if X- > 0 and ho(Cd,m) = 0, obviously hl(Cd,m) =

X- and we obtain necessary conditions for the vanishing of ho(Cd,m).
We can summarize this saying that the above are necessary condi-

tions for Cd,m to be non special after the following definition.

DEFINITION 2.5. A line sheaf C on an algebraic variety V is said

to be special if at least two of the cohomology groups Hi(V, C) don't

vanish. Otherwise we will say that C is non special or that has the

natural cohomology.

2.4. The Conjecture. Let us consider what happens if the inter-

section of c1 (£Cd,m) with some exceptional curve E of large degree is

not bounded below.
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PROPOSITION 2.6. If for an exceptional curve E of class (eo, el,... , er)

with H-degree eo > d/2 we have cl(£d,m).E < -1 then ho(Ed,m) = 0.

PROOF. Consider the structure sequence of the scheme E (2)

Spec(Oxr/Oxr (-2E)) tensored by Ld,m:

0 -4Cd-2eo,m-2e +Ld,m -'OE(2) ( 9 d,m -0.

The beginning of the corresponding long cohomology exact sequence

is

0 -+ Ho(Xr, Id-2eo,m-2e) 4 Ho(Xr, £d,m) -+ Ho(E(2), £d,mIE(2)).

Since, by assumption, d < 2e0 the first cohomology group in this

sequence vanishes. To derive the vanishing of the last cohomology

group we will make use of the exact sequence

0 -+ZE/2E -+OE(2) -+OE -+0. (2.7)

Notice that ZE/I2 E- /''X, OE(-E) (which follows from ten-

soring the structure sequence of E by Oxr (-E)). Now tensor (2.7) by

Cd,m and pass to cohomology:

0 -+H0 (E, OE((d - eo)eo - E(m - ej)ej))-+H0 (E(2), Zd,mlE(2))

-+Ho(E, OE(deo -_ _ mei)).

Both side terms vanish as they are groups of global sections of line

sheaves on E P with negative degree:

rdErm e re? • -17deo - miee < deo - miee - e- 0+ eEi  <%-
ieo --1 i- 1 i=-1

and Ho(E(2), d,mIE(2)) vanishes.
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None the less examples of special line sheaves are ready at hand: for

such is the line sheaf £ = Oxr (2E), where E is an exceptional curve.

Indeed h2(C) = 0 by Lemma 1.4, and Riemann-Roch yields

ho(£) = ((2E) 2 - Kx,.(2E))/2 + 1 + h (L) = h (£)

which, together with the non vanishing of ho(£), gives the speciality

of C.

Hirschowitz conjectures that the necessary conditions (cf. Remark

2.4) for the non speciality of line sheaves on Xr are sufficient as well.

In view of Proposition 2.6 we don't need to intersect the line sheaf

£d,m with exceptional curves of degree e0 > d/2. On the other hand,
the above example, illustrates the necessity of intersecting with curves

of degree up to d/2. This motivates the following:

CONJECTURE 2.7 (Hirschowitz [aH89]). A line sheaf Cd,m with d >

m1 > m 2 ... mr > 1 is non special, if for any exceptional curve E on

Xr of class (eo, el,..., er) with el > e2 > ... > er one has

C((£d,m).E > -1.

REMARK 2.8. Conjecture 2.7 gives the dimension of the space of

global sections of line sheaves on Xr. Indeed, if a line sheaf £d,m satisfies

the hypotheses of the Conjecture, then

ho°(Cd,m) = X+ := x(Cd,m)+;

otherwise, we can use the following Lemma.

LEMMA 2.9. Let Ld,m be a line sheaf on X, for which there is an

exceptional curve E of class (eo,... ,er) with cl(£d,m).E =:-s < -1

then

Ho(Xr, £d,m ® Ox, (-sE)) c Ho(Xr, Id,m)

PROOF. Tensoring the structure sequence of the nonreduced scheme

E(s) := Spec(Ox,/Ox,(-sE)) by £Cd,m and passing to cohomology we

obtain
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0 -Ho(Xr, Oxr ((d - seo)H - E_ (mi - sei)Ei)) -4Ho(Xr~ £Cd,m)

4 Ho(E('), Ld,m I E()), (2.8)

so that we have to prove the cohomology group on the right vanishes.

This can be achieved by considering the exact sequence

0 -*E-1E / -OE() OE(- --+0.

Tensoring by Ld,m and taking into account that ZE-1 / OE(-(S -

1)E) - O p k (s - 1) and the very definition of s we obtain the cohomol-

ogy exact sequence:

S-+Ho (P1, Opi(-1)) -+Ho(E(8) Cd,mlE('))

-+Ho(E('-1), £d,mlj(-1) ) -*+H'(Pk, Opi (-1)).kk

The vanishing of the first and last group yields

Ho(E("), £d,mIE0,) H0(E('-1), d,m E(-1_) ) .

which, by descending induction, gives in turn the sought for vanishing

of the group on the right in (2.8) and concludes the proof. O



CHAPTER 2

Curves on Generic and Harbourne's Surfaces

1. Symmetries of Generic Rational Surfaces

Any treatment of generic rational surfaces would be incomplete

without mention of the beautiful symmetry inherent in the different

ways they can be gotten as blowups of Pk [bH85a]. Indeed the set of

"basic" exceptional curves Ei, an Exceptional Configuration in Har-

bourne's terminology', can be carried into another such configuration

resulting from a different blowing-up. It is better practice not to re-

gard any exceptional configurations as priviledged and correspondingly

to keep in mind that the choice of generators of the Picard group is

non canonical.

The group operating on the exceptional configurations is the Weyl

group associated to a generalized root system that can be defined in

terms of an exceptional configuration. Its geometric significance is ex-

pressed by the representation to the group of Cremona transformations

(birational transformations) of the geometric quotient (cf. footnote be-

low) parametrizing ordered blowups. Such representation is faithful for

generic rational surfaces X, with r > 9 [DO88, p.102]. Moreover, if

one extends the field of definition to the field of rational functions over

the (2r - 8)-dimensional quasi-projective variety parametrizing generic

rational surfaces 2 K = k(T1, ... T2r-8s), Hirschowitz [aH88] constructs

'As Brian Harbourne kindly pointed out this terminology was actually coined
by Looijenga in [eL81]. Harbourne's definition, which is what we adopt, slightly

differs from the original one.
2To be more precise, Hirschowitz only requires that the r points to be blown

up are in linear general position. This gives an open condition in (Py)r. Then
he quotients by the diagonal action of PGL(3). K will be the field of rational
function on this quotient, which is a quasi-projective variety, for, as PGL(3) acts

23
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a representation of the Weyl group into the automorphism group it-

self. As for generic rational surfaces the automorphism group over the

ground field is trivial [mK88], the automorphisms coming from the

Weyl group act as Galois morphisms in Gal(K/k).

Ample treatment of these beautiful results is given in the original

work of Dolgachev [iD83, DO88], Harbourne [bH82] and Hirshcowitz

[aH88]. We would like at least to recall the basic notions of root sys-

tems and Weyl groups of a generic rational surface in order to motivate

a reformulation of Hirschowitz's Conjecture which will be utilized in the

sequel. (For a recent and far reaching perspective of the r6le of Weyl

groups in geometry cf. [kM95].)

1.1. Reminder on root systems and Weyl groups. We refer

to [vK90] as the standard reference for root systems and to [DO88]

for geometrical variants.

By generalized Cartan matrix we mean a matrix A = (aij) with

aij E Z, aii = 2, aij < 0 if i $ j and a, = 0 if aji = 0.

A realization of A is a triple (r, Hf, l) where I is a C-vector space,

H:= {ali,..., an} C f and f := {di,... ,d,,} C 63 (the dual space)

are subsets of linearly independent vectors such that aij = ci(aj), and

verifying the dimensional relation n - rk(A) = dim([) - n.

transitively on the 4-tuple of points in ]2, the fixing of the first four points will give

a section of the quotient. This can therefore be considered as an open in (p2)r-4.

We could repeat the same costruction starting for the open of r-tuples of points in

general position and get an open subset of the quotient considered above, hence the

same function field. It is intuitive that a coarse moduli space for the surfaces Xr is

given by this quotient. See [DO88] for a construction using Mumford's geometric

invariant theory. One could argue also using Kodaira-Spencer deformation theory

[kK86, p.220-226] that the number of moduli is 2r - 8 = h'l(Xr, Tx,), and these

are all effective moduli.

We should say that below we will make use of the universal family of ordered

blowups and in particular of the open in such family that corresponds to generic

rational surfaces.
'We depart from the original definition in [vK90] in that we define the roots

are element of the space 4 rather than its dual, and similarly for the coroots.
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Hl is called the root basis, fl the coroot basis and the free abelian

group Q := •D, Zai endowed with the intersection pairing coming

from duality the root lattice.

DEFINITION 1.1. A standard hyperbolic lattice is a lattice Hr :=

i=0 Zfi endowed with the unimodular intersection pairing defined by
2 = 1, --1 and ei.e = 0.

A geometric marking of a surface X, is an isomorphism : Hr -+

Pic(Xr) defined by a choice of generators of the Picard group, that is

€(fo) = [H] and ¢(fi) = [Ei] for i > 0, which is also a lattice morphism,
that is, it respects the intersection forms. 4

PROPOSITION 1.2. Any blowing-up X, with a geometric marking

gives rise to a realization of the Cartan matrix A = 2I.

PROOF. Define ai := ei - Ei+ if i < r and cr := Eo - 61 - 62 - 3;

let Q be the associated root lattice, [ := Q ® C and take as pairing

the negative of the intersection pairing in the hyperbolic lattice . Be-

cause of dimensional reasons we can define coroots as identical to the

corresponding roots 5 . The rest follows by mere computation. O

REMARK 1.3. The Lie algebra associated to such realizations is

generally an infinite dimensional Ka6-Moody algebra.

One can also prove that the Root lattice Q C Pic(Xr) is the or-

thogonal of the canonical class - 3Eo + 61 + " " + cr.
4Whenever there is no danger of confusion we will identify the Picard group

and the standard hyperbolic lattice for some fixed geometric marking.
5It is remarkable that this theory can be generalized to punctual blowups of

higher dimensional projective spaces even at infinitely near points (generalized Del
Pezzo varieties; cf [DO88]). But in this more general context the root and coroot
basis will be subsets of the the complexified Chow groups of one-dimensional and
one-codimensional Chow groups respectively, and the coefficients of the last root
and coroot will differ to reflect the higher dimension. It is also worth remarking the
formal analogy with the intersection lattice of K3-surfaces which is hyperbolic as
well. Harbourne [bH87 and bH91] makes this analogy more precise for a certain
class of special surfaces. Furthermore, the Cremona representation itself could be
regarded as a weak Torelli Theorem for generic rational surfaces.
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The Weyl group W associated to a root lattice Q is defined to be

the subgroup of the group of isometries O(Q) (intersection preserving

isomorphisms) generated by the reflections with respect to the hyper-

planes defined by the zeroes of the simple coroots, that is

Si
x F-+ x + i(X) ai.

The Weyl group W, associated to a geometric marking gives the ap-

propriate symmetry group for the space parametrizing ordered blowups

via an action on the set of geometric markings. Certainly we want the

symmetric group Er on r elements to give rise to such symmetries-and

E>r C Wr. On the other hand the whole group of isometries O(H,) does

not necessarily preserves geometric markings. Because it is canonically

defined in terms of the root basis, the Weyl group will.

On a generic rational surface one can prove that Wr acts transitively

on the set of exceptional curves, that there are no (-2)-curves and that

there is a faithful representation Wr -+Bir((p2)r/PGL(3)).

1.2. An equivalent form of Hirschowitz's Conjecture. Let

us start with a definition that a priori seems much more restricitive

than the hypotheses of Hirschowitz's Conjecture.

DEFINITION 1.4. A line sheaf £d,m is said to be adequate if

mi = c1(£d,m).Ei --

-= min{cl(Ed,m).E: E exceptional curve, E 0 Ei+i,... ,Er}.

Any line sheaf Id,m intersecting exceptional curves in at least -1

can be rendered adequate tensoring with ideal sheaves of suitable ex-

ceptional curves (viz. those which intersect its divisor class in low

intersection numbers). More elegantly, one could consider the orbit

of the class of £d,m in the Picard group under the action of the Weyl

group Wr. Then the very definition of W, insures that such an orbit

will intersect the set of adequate classes non emptily. Furthermore,
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considering the cohomology long exact sequence coming form the in-

clusion of the above mentioned sheaves one realizes that it is enough

to prove the Conjecture for adequate sheaves.

Hirschowitz [aH89] proves that adequacy follows form a particu-

larly simple condition.

LEMMA 1.5. A line sheaf 2 d,m on a generic rational surface satis-

fying

d > m 1 + m 2 + m 3

is adequate.

In virtue of the above considerations we can now reformulate Hirschowitz's

Conjecture as follows.

CONJECTURE 1.6. Under the assumption that d > ml, ... ,> Mr >n

1 the line sheaf £d,mis non special if

d > mi1 + m2 + mT3.

This formulation has actually an important interpretation in terms

of root systems. Indeed one can express the hypotheses as

C1(Cd,m).0(ai) > 0

for i = 1,... , r and some geometric marking : Hr -4+Pic(X,.). In this

form the conjecture had already been proposed by Harbourne [bH86,
p. 102] who calls classes of line sheaves satisfying the above condition

&-standard (6 denoting a fixed geometric marking, in the terminol-

ogy we adopted or an exceptional configuration in Harbourne's.). One

of the main points of Hirschowitz's contribution [aH89] is to prove

that such root system formulation is equivalent with the one involving

intersections with exceptional curves which has a distinct Mori cone

flavor.



2. CURVES ON GENERIC AND HARBOURNE'S SURFACES

2. Harbourne Surfaces

2.1. Using semicontinuity theorems. Thanks to the work of

Brian Harbourne (cf. [bH82, bH85] and, for analogous results under

much more general assumptions, the recent [bH95] ), we have exten-

sive knowledge of the cohomology of line sheaves on blowups of the

projective plane at points lying on a cubic curve. One easily realizes

that this is equivalent to having an irreducible and reduced divisor, a

curve of arithmetic genus one, in the anticanonical linear system. This

inspires the following definition:

DEFINITION 2.1. By Harbourne Surface we mean a blowup X, of

P~ such that there is a reduced irreducible divisor (a curve) D E I-
Kx, -

NOTATION . Below we will always denote this section by D.

We find it useful to consider a subclass of Harbourne surfaces en-

joying a genericity property:

DEFINITION 2.2. A Harbourne Surface will be called generic if the

" restriction homomorphism"

Pic(X,) - Pic(D)

induced by the inclusion j : D -+ Xr is injective.

One easily realizes that this means the trace of the exceptional
curves Ei on D spans a Z-linearly independent sublattice of Pic(D).

This can generically happen because Pic(D) is much larger then Pic(Xr).

Indeed, if D is smooth, Pic(D) a Pico(D) EZ and PicO(D) - D as an

algebraic variety. In the analytic category this condition of genericity

corresponds to an open condition in Dr.

The reason we are considering Harbourne rather than generic ratio-

nal surface is that we would like to derive vanishing theorems for the

latter by semicontinuity.
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More specifically, following a method of Kleiman (cf. [sK81, DO88]

for a general approach and [bH82] for the projective plane and the

functoriality), we can construct the family of ordered blowups of IP2 by

induction as follows. Let X0 = {p} C P2 be a point and X 1 = P. Sup-

posing Xr-1 constructed, we define X, as the blowup of X,_ 1 xx,•

Xr•1 along the diagonal. ( The blown up diagonals account for the

different ways r-tuple of points can "converge".) Then one can prove

[bH82] that the family X,+1 -+ X, satisfies the functorial properties

of the universal family of ordered blowups of the projective plane at

r points. Moreover, there is a morphism 0 : X, -+ (PF)T which is a

composition of blowups and is an isomorphism outside the preimage of

the diagonal.

In this family we will consider the open subfamily comprising generic

rational surfaces. If one can prove vanishing theorems for cohomology

of line sheaves at the boundary of such family, that is, for blown up

points in special position (e.g., Harbourne surfaces), then the theorem

of upper semicontinuity of the dimension of cohomology will yield the

corrresponding generic vanishing. We are going to see that generic Har-

bourne surfaces are a "right" kind of special surfaces for this purpose.

2.2. nef divisors on Harbourne surfaces. Using more geomet-

rical techniques we are able to give a simplified proof of a vanishing

theorem of Harbourne under the assumption of genericity (on the other

hand, our result is slightly stronger in that we don't assume the inter-

section with the anticanonical divisor is strictly positive).

LEMMA 2.3. A nef line sheaf M with cl (M) on a generic Har-

bourne surface has vanishing first cohomology.

PROOF. Harbourne recently proved [bH95] that a nef line sheaf

on an anticanonical rational surface-so, in particular, on a Harbourne

surface---is effective. We are therefore able to apply a well-known van-

ishing Theorem of C.P. Ramanujam [cR72] which grants h'(X,, M-1) -=
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0. Serre duality (as JCx, - Ox, (-D)) then gives the vanishing of

HI (Ir , AM4(- D)).

But this last cohomology group fits in the long exact sequence com-

ing form the structure sequence of D tensored by M:

H'(Xr,M(-D)) --+H' (Xr,7 ) -+H'(D, MjAJ).

Because of the assumption of injectivity of the restriction homo-

morphism of Picard groups the class of MID in Pic(D) is non zero. D

has arithmetic genus one, and the Riemann-Roch Theorem for embed-

ded curves [BPV84, p. 51] gives the vanishing of the last cohomology

group. E

REMARK 2.4. In the recent [bH95] Harbourne studies the vanish-

ing of the first cohomology of nef line sheaves C on anticanonical ratio-

nal surfaces X. It turns out in this more general case we don't always

have vanishing. A necessary condition is that the intersection with

the anticanonical divisor is zero. Moreover, if we don't have vanishing,

h' (C) + 1 will give the number of connected components of a generic

section of £(-Kx), a measure of the disconnectedness of c,(£). This

also corroborates the intuition that, in ordered to get natural cohomol-

ogy for nef line sheaves, one cannot relax the condition of genericity as

reflected by the injectivity of the morphism of Picard groups induced

by the restriction to the anticanonical divisor Pic(Xr) -+ Pic(D) 6

2.3. A vanishing theorem. Using Lemma 2.3 we are able to

derive the vanishing of the first cohomology of line sheaves on generic

6As B. Harbourne remarked [bH95c], this injectivity condition, rather than

the irreducibility of the anticanonical divisor, is the crucial assumption in studying

vanishing of cohomology on anticanonical surfaces. Indeed [bH95, Theorem 1.1]

the non-vanishing of the first cohomology group of a line sheaf £ on an anticanonical

surface implies that cl (£) has components disjoint form those of the anticanonical

divisor, hence non-trivial elements in the kernel of Pic(Xr) -+ Pic(D). It follows

that a nef line sheaf has vanishing first cohomology on a generic anticanonical

surface (obvious generalization of the above terminology).
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rational surfaces which are not too negative in the sense of Theorem

2.6 below.
In the proof of the theorem we will have to resort to the Zariski

decomposition for effective line sheaves [oZ62] 7which we recall now.

LEMMA 2.5. Given any effective line sheaf L on an algebraic sur-

face, we can find two Q-divisors M and N with M nef and N effective

such that ci (£) = M + N and :

1. M intersects every component of N trivially.

2. If N # 0 and Ni are the irreducible components of N, the qua-

dratic form E (N.NYj)xixj (the x being abstract variables) is neg-
ative definite.

We are now able to prove the following vanishing theorem.

THEOREM 2.6. If an effective line sheaf £ with ci(C) > 0 on a

generic rational surface Xr intersects the anticanonical divisor and any

exceptional curve non negatively, then hl (Xr, £) = 0.

PROOF. Since the canonical divisor and exceptional curves as well

as intersection pairings curves are stable under algebraic deformations

[kK63, wF84], we can specialize to a generic Harbourne surface and

there prove the vanishing by semicontinuity.

Suppose that Xr is generic Harbourne and take a Zariski decompo-

sition cl (£) = M + N. As will be remarked in the next section, on a

generic Harbourne surface the only curves with self-intersection nega-

tive are exceptional curves and the anticanonical curve D. Hence the

components of N must be so. But, by assumption, cl (C).N > 0, while

the very definition of Zariski decomposition would imply cl(£).N < 0.

Therefore N = 0 and £ is nef, so that Harbourne Lemma 2.3 gives the

assertion. O

REMARK 2.7. Thanks to Harbourne's recent contribution [bH95]

we can do without the assumption of positivity of the self-intersection

'In [tF79] Fujita generalizes this decomposition to pseudo-effective divisors.
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of the line sheaf (specializing to anticanonical surfaces on which he

proves the vanishing).

REMARK 2.8. The condition on the intersection with exceptional

curves it is actually not restrictive from the point of view of Hirschowitz's

Conjecture. Indeed, if the Conjecture is true for any effective line sheaf

intersecting exceptional curves non negatively, then it will be true for

any effective line sheaf intersecting them in no less than -1.

This claim can be proved as follows. Suppose that £ is effective

and satisfies the hypotheses of the Conjecture, then it will intersect

at most a finite number of exceptional curves Ck in -1. Tensor-

ing C by Ox,. (- Z Ck) we obtain a line sheaf £' C L that inter-

sects any exceptional curve non negatively. Moreover, the Ck have

to be disjoint, for if Ck.CL > 0, the Riemann-Roch Theoremwould give

ho(Xr, Ox,.(Ck + C)) > 2 so that the linear system ICk + CI would

move and we would get the contradiction cl (£).(Ck + C1) Ž 0 : -2.

From the structure sequence of E Ck tensored by L, we get

H'(Xr,L') -+Hi(Xr,, £) --+Hi( Ck, JEck).

H1I(Xr, £') vanishes because of the assumptions, while the second

does because c (Z).Ck > -1.

REMARK 2.9. Thanks to this vanishing result we can restrict our

investigation of Hirschowitz's Conjecture when the Euler-Poincard char-

acteristic is non negative to the case in which our line sheaves Cd,m in-

tersect the anticanonical sheaf negatively. If hi(X,, £d,m) : 0 we have

a non trivial extension of Ox, by Ld,m

0 -+ d,m -+ -+OXr -- 0

and we could conclude that h'(Xr, £Ld,m) < 1 provided h'(Xr, ) =

0. We remark that if c1 (6)2 = cl(d,m)2 > 0 (the non negativity of

X(£d,m) implies that this number is not smaller than cz (£d,m).Kx, -

2, and we assumed the intersection with the canonical divisor to be

positive), the sheaf E would be Bogomolov unstable (see, e.g., [rL94,
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OSS80]). On the other hand, Brun [jB79] proves that we would have

the vanishing of the first cohomology of & if " were stable. This give a

further insight of how the "hard" cases of Hirschowitz's Conjecture are

below the numerical threshold for which the vanishing or the bounding

of first cohomology is known.

We conclude this section mentioning the strongest vanishing Theo-

remof which we are aware, due to Hirschowitz as well [aH89, p.212].

THEOREM 2.10. If a line sheaf Cd,m on a generic rational surface

Xr is such that d > mi > ... > mr > 0 and

Er J (d + 2)(d + 4)/4 if d is even,
i=1 (d + 3)2 /4 if d is odd,

then h'(Xr, £d,m) = 0.

A clever case by case specialization gives the proof by semicontinu-

ity.

v

3. Curves with Negative Self-intersection

From the discussion and motivation of Hirschowitz's Conjecture
it was already apparent that, for the Conjecture to be true, our line
sheaves can't contain (regarded as divisors) curves with very negative
self-intersection.

In dealing with such problems on any smooth algebraic surface
Y the main tool is the generalized adjunction formula for embedded
curves which expresses [BPV84, p. 68] the arithmetic genus of a curve

CcYas

Pa(C) = degc(ICy ® Oc(C))/2 + 1.
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Just assuming that C2 < 0 we have the following three possibilities

depending on the sign of the intersection with the canonical divisor

Ky:

1. If Ky.C < 0, then pa(C) = 0 and C2 = -1 = Ky.C, so that, by

Castelnuovo's criterion, C is an exceptional curve.

2. If Ky.C = 0, then Pa(C) = 0 as well. It follows that C2 = -2

and C is an exceptional curve of the second kind. We recall that

such curves cannot exist on a generic rational surface.

3. If Ky.C > 0, then pa(C) > 0 and nothing can be said in general.

On a Harbourne surface we are more interested in checking the sign

of the intersection with the reduced and irreducible anticanonical di-

visor D. We can rephrase the above considerations saying that among

the curves with negative self-intersection only exceptional curves (pos-

sibly also of second kind) can intersect D nonnegatively, while the third

case can happen only if C = D (in which case C2 = Ky = 9 - r).

REMARK 3.1. On a generic Harbourne surface the only curve with

negative self-intersection are the (-1)-curves and D. That the second

case above is not possible follows from the injectivity of the homomor-

phism of Picard groups.

In dealing with a generic rational surface, the lack of informa-

tion on the anticanonical divisor doesn't allow such strong limita-

tions. Nevertheless, Miranda, Miyanishi and Murthy [MMM80] prove

that there are no rational curves with negative self-intersection besides

the (-1)-curves, so we can restrict our attention to irrational curves.

If we assume the anticanonical dimension of our surface is zero (i.e

diml - nKx,. < 0 and there is at least an integer for which equality

is attained -see, for example, [fS83]), then they also conclude that

irrational curves with negative self-intersection can't exist.

A different insight, at least in characteristic zero, comes from the

theory of pseudoconvex complex spaces. In [fB93] Bogomolov proves
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that almost complex deformations of Stein neighborhoods (the alge-

braic geometer can read "affine") of curves on a smooth complex sur-

face with negative self-intersection destroy the complex structure on

the curve, unless it is an exceptional curve. Since the notion of com-

plex and almost complex structure for a curve coincide (for dimensional

reasons), one can view the absence of such curve as a genericity condi-

tion for almost complex structures [fB95]. We believe this is the case

also for complex (algebraic) deformations hence for generic rational

surfaces:

THESIS 3.2. On generic rational surfaces there are no curves with

negative self-intersection except for exceptional curves of the first kind.

REMARK 3.3. A positve answer to this question would virtually

give the structure of the Mori cone NE(Xr).

In the fundamental paper [aH89, p.211], Hirschowitz shows how

from his Conjecture follows the above thesis. We give a detailed proof

below. We.also remind that in [bH94] Harbourne shows that his con-

jecture, to the effect that on blowups of the projective plane at suffi-

ciently general points nef line sheaves have natural cohomology and the

only integral curves with negative self-intersection are the exceptional

curves of the first kind, is equivalent to Hirschowitz's.

PROPOSITION 3.4. If line sheaves £ on generic rational surfaces

which intersect exceptional curves E as

cl (£).E > -1

are non special, then on such surfaces the only curves with negative

self-intersection are the exceptional curves of the first kind.

PRooF. Suppose there is a curve C on X, with C2 = -n < -2.

Take £= Ox, (C). As C itself cannot be exceptional and is reduced and

irreducible, for any exceptional curve E we have C.E > 0. Therefore

£ satisfies the hypotheses of Hirschowitz's Conjecture 2.7.
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Tensoring the structure sequence of C with £ we get

0 --+Ox, -+ -+ £Ic -+0.

Passing to cohomology, we obtain

0 -4+Ho(X ,Ox,) -+Ho(Xr,C) -*-Ho(C,£Ic)

-+4H'(Xr7, Ox,) --+Hl(Xr, £) -+H' (C, £1c)

--+ *H2(Xr, Ox,).

(3.1)

Now, since degCIc = -n < -2, the first cohomology group of LIc

does not vanish8 , while the zeroth does. Therefore both the zeroth

and the first cohomology group of L don't vanish, which contradicts

Hirschowitz's Conjecture.

8By virtue of the Serre duality Theorem on an embedded curve (see, for exam-

ple, [BPV84 p.55])

h'(C,C£jc) = ho(C,Lc - 1 ®Wc).

Then, the Riemann-Roch Theoremand adjunction formula for embedded curves

[BPV84 resp. p. 51 and p.68] yield

ho(C, £1cI ®wc) > -deg(£Lc) + deg(wc) + X(Oc) = n + x(wc) _ 1



CHAPTER 3

The Rational Fibration Structure and Direct

Images

1. The Geometric Idea

Instead of focussing on the blowing-up X, - Pk, we find it very

useful to cosider a different strucure on N, namely Xr can be regarded

as a fibration over P1 whose generic fiber is P.. This is gotten as follows:

start from the projection P2 P• lP from p,': -r is only a rational map,
but if we blow up pj we obtain a morphism. We keep blowing up

the other points pi (i # j) so as to get a morphism X, - P1. It

is clear that for any q e Pk with q / q, := *rj(pi) if i : j), the

fiber ir-(q) - Pk. On the other hand the degenerate fibers ir-(qi)

are isomorphic to two lines intersecting transversally and we have the

linear equivalence •r- (qi) , F + Ei for i 3 j (where F denotes the

generic fiber F - H + Ej).

REMARK 1.1. It is worth noting that the simple structure of such

a fibration is a consequence of the points p, being in linear general

position. Otherwise we wouldn't be able to conclude that the fibers

degenerate in at most two lines.

1fj is the rational map defined by the subvector space of global sections of
Op2(1) that vanish at pj. Up to a projective transformation we can assume pj
has homogeneous coordinates [0, 0, 1], so that, if T, are the standard homogeneous
coordinates (corresponding to the polarization given by Op2 (1)) the map is given
by

[To, Ti, T2] 1- [TO, T0 .



38 3. THE RATIONAL FIBRATION STRUCTURE AND DIRECT IMAGES

We will study the direct image of Cd,m on P' and find that it has a

remarkably simple nature. The problem of computing the cohomology

of Ld,m can be easily reduced to the corresponding one for the direct

image by a standard spectral sequence argument which is described in

the next section.

1.1. The Leray Spectral Sequence of 7r•F. Consider a coher-
ent sheaf F on Xr, it is well known that the cohomology of Y can

be approximated by the cohomology of its direct images thanks to the

particular version of the Grothendieck spectral sequence of composite

functors commonly known as Leray spectral sequence [aG57, rG58]2.

In more precise terms, one says the Leray spectral sequences con-

verges to H'(Xr, F), in symbols:3

E2= HP(Pk, Rqr.F) •.HP+q(X, F).
By this, we mean there exist an ascending filtration

F : (0) = F C F 2 C ... Fp+ q = HP+q(X,,.F)

of the cohomology of Fwhose associated graded module is isomor-

phic to a suitable stable value of Er q4

E Grp(Hp +q (Xr7, F)) = F /F p + .

2Here we consider the composition of the functor of global sections and its

derived cohomology with the direct image and its derived functors. The terminology

is due to the analogy with the Leray spectral sequence of a fibration in topology.
3Henceforth we will mostly omit the subscript j in irj for the sake of brevity.
4That is the common value of the modules

= -... =-E~

Such collapsing is granted if, for example, the sequence is bounded, i.e. for
each r and a fixed total degree d, there are only a finite number of possibly nozero
terms EP'q on the "line" p + q = d. Being a first quadrant spectral sequence, the
Leray spectral sequence is bounded.
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If a spectral sequence has only the first two rows (E2p'q with q = 0 or

q = 1) possibly non zero, EP' = Ker(dP,1) and EP o °  E2'/Im(dj-2'1

Therefore we have the exact sequence:

0 -E' -Ep' E• _ E +2' ° - E + 2,0 + 0

The triviality of E' q for q 0 0, 1 gives a constraint on the filtration

F'so that

E 1 = FP/FP+l = HP+i(Xr,7F)/FP+l = H- +(Xr,.)/E +1,°

which yields

0 --+E +1,o -H-+H 1 (X, 7F) --+EPJ -+0.

Finally, combinng the last two short exact sequences, we obtain the

Gysin exact sequence

-EHP-1(X,.I F) _4Ef -2,1 E ,o

-+H (Xr, F) -+ E2- 1,' --+ E +1,' -+ (1.1)

-+4HP+ (Xr, 7F) -+E2, 1 -+ E2+ 2,0 +.

In our particular case dim(P') = 1, so that if p > 1 then E 'q = 0.

Moreover, since for any y E Pk we have dim(i-r(y)) = 1, E2j = 0 as

soon as q > 1. Hence the Leray spectral sequence associated with r..F

can be nonzero at the level of E 2 only in the square 0 < p, q < 1. From

this follows the vanishing of the differential d2 : E 'q -+ E2+2 ,q- 1 and

Eoo = E2 . Furthermore all the above considerations apply. Plugging

in our data in the Gysin sequence we finally obtain the fundamental

exact sequence

0 -+H'(Pk,•rF) -+ H'(Xr, ) -+ H0 (P, R7r,) -+0.

(1.2)
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2. The R'vr*,d,m

It turns out it is not difficult to prove the vanishing of the first

direct image of Cd,m, as well as the local freeness of its direct image.

To this end, we will make use of the following basic result of Grauert

(cf. [rH78, III.12.9] and, for the analytic category, [GR84, 10.5, p.

211])

LEMMA 2.1. Let V -• W be a projective morphism of noetherian

schemes, Y a coherent ir-fiat sheaf, W integral and

h'(w) := dimk(w)H'(VY, Flv.)

constant on W (here V,, = V xw Spec(k(w)).

Then RirFJc is locally free and Vw E W

R'*,TF ®ow k(w)) - H'(VY, F .l).

Recall that the morphism 7r : Xr -+P was gotten by resolving the

indeterminacy of the rational projection from pj E Pk by means of the

blowing-up at pj. It is clear that 7r satisfies the hypotheses of Lemma

2.1 and the vanishing of R'7r*Ld,m easily follows under assumptions

weaker than those of Hirschowitz's Conjecture:

PROPOSITION 2.2. Suppose for Cd,m we have for all i: d > mi +

mj, mm>_ -1, then

R1 7r*Ld,m = 0

PROOF. The proof consists in applying Lemma 2.1 after showing

h'(7r-'(q),Cd,mr-(q)) = 0 , Vq ) P .
Let qi := r(pi) with i #: j (the projections on Pk of the points of P2

before we blow them up), U:= Pi-Uio j{qi} and F the generic fiber of

ir. Obviously 7r is smooth at any q E U and r-'(q) '2 F. Furthermore

we have the linear equivalence F - H - Ej so that we can conclude:

h'(F, CdmIF) = h'(Pk, Opi(d - mj)) = 0.
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Incidentally we notice that this already proves Rlr*,1d,m is a skyscraper

sheaf with support on Ui,•j{qi} (cf. [EGA, III (4.6.1)] and the Lemma
2.1 itself).

Let's denote by Fi the strict transform of the line in PI passing

through pi and pj. Clearly F, - H - Ej - Ej and for all degenerate

fibers we have ir-l(qi) -. Fi + E2 = F. Tensoring the decomposition

sequence of the reducible curve F + E2 (cf. [BPV84, p. 48 ]) with £d,m
we get

0 --+•Cd,m (9Ox, (-Ei) IF, -+ (2.1)
Ed,m Fj+Ei -"f-d,mjEj -+0.

The long cohomology exact sequence then gives

H1(Fi, Cd,m ( Ox, (-E) F) -4+
H'(Fi + Ei, Cd,mIFj+Ej) -4H (Ei, d,mnI E) )

But

Hi(Fi, 4 d,m 9 (OX, (-Ei)IF1) ) H (P, (Opi (d - mj - mi - 1)) = (0)

and

H'(Ei, -d,miE,) H'(Pl, Opi (mi)) = (0)

by the hypotheses. O

It turns out that the zeroth direct image of £d,m is a vector sheaf.

THEOREM 2.3. Under the same hypotheses as in Proposition 2.2,

the direct image lr,*d,m is a vector sheaf of rank d - mj + 1.

PROOF. By Lemma 2.1 it is enough to show that

ho(Xrq, d,mIxq,,) = d - mj + 1 , Vq E Pk.

If q 54 q,, we have

ho(Xrq, Id,mlXq,, = ho(P 1 , Opi(d - mj)) = d - mj + 1
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For degenerate fibers Xrq, ,i- Fi+ Ei, with i # j, we will make use of

the decomposition sequence tensored with Cd,m as in (2.1) once again.

Its long exact cohomology sequence at the level of H' now gives the

short exact sequence:

0 -+H o(Fi,4d,m 0 Oxr,(-Ei)IFi) + (2.2)
Ho(Fi + Ei, d,mlFi+Ei) -4 H0 (Ei, £4d,mlEi) -+0,

where the surjectivity on the right follows from the vanishing of the

first cohomology group of £d,m 0 Ox, (-Ei) IFi proved in the previous

Proposition. Now the group on the left is isomorphic to Ho (P, Op (d-(kO kd-
mj - mi - 1)), and the one on the right to Ho(Pk, Op (mi) so that we

can conclude

h0 (Xr,q,, Cd,mXrq,) = d - mi - mi + mi + 1 = d - mi + 1.

REMARK 2.4. In the above proof, after showing that the dimension

of Cd,m restricted to the fibers is generically constant, we could have

argued that, since the direce image r,£Cd,m is torsion free it has to be

locally free because the codimension of the singularity set (the set on

which a coherent sheaf fails to be locally free) has to be at least two

(see [OSS80, Corollary p. 148]). We also note that the vanishing of

the first direct image implies that [dM74, Corollary 3 p. 53]

7r*dm (®op, k(q) H- H°(r-1(q), )d,m1r-1(q))k
REMARK 2.5. We can consider the last two results as generaliza-

tions of standard facts for Hirzebruch surfaces (cf. [rH78, Lemmas

V.2.4 and 2.1]). In fact, in the course of the proof of Proposition 3.1

below we will see that the projection 7r can be factored through the

blowing-up of r - 1 exceptional curves and the standard fiber bundle

map P(Opi @ Op (1)) -+ P.
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3. Computation of Direct Images

3.1. Bounding Cohomology. First of all notice that Proposition

2.2, along with the fundamental exact sequence (1.2), yield

H (Xr Cd,m) " H'(Pk, I,Ld,m)-
This along with the general fact (following from the Gysin exact

sequence or the very definition of direct image) that

Ho(Xr, ILd,m) Ho (P, r*,C£4,m),

allows us to check the non speciality of Cd,m via the cohomology of

its direct images.

A famous Theoremof Grothendieck [aG57a] which, in different

guise, goes back to Birkhoff, C. Segre and others [OSS80], asserts ev-

ery vector sheaf on Pk is decomposable into a direct sum of line sheaves

(a dissocid vector sheaf in the terminology of linkage theory), so that

we can write
ek0 Opi (ak),

where we assume

al g a2 <... g aR,

and R:= d-m +1. (Notice for each '£d,m we have r direct images, each

indexed by j, so that we should denote the degrees of the components

of the direct image by akj; we will keep suppressing the index of the

projection as long as that does not harm clarity.)

A more accurate study of the fibration 7r yields coarse upper bounds

for the degrees ak as follows

PROPOSITION 3.1. Under the above hypotheses one has

ak k + d - 1.

PROOF. The blowing-up Xr -4 P2 is an ordered one, i.e. it depends

on the order in which we blow up the pi's. One can decompose a as
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X, = X, ..- Xjr - )4 Xi I,
where Xi, -~- Xi-1I is the blowing-up of pi, (and, properly speaking,

a depends on the permutation (i1 , i2,..., ir)).

It is classically known that Xil, the blowing-up of one point, is

isomorphic to the first Hirzebruch (ruled) surface P(OpQ ) OpI(1)); if
one puts il = j, obviuosly 7r = 7rj factors trough ai:

7r:Xr-2 4 Xj24- P(Opj(0O,,(1))14Pk ,

where aj := oi2 o ai, o... o ai, and 3I is just the projection to IPk.
As for our line sheaves on Xr, one has5

aj,£d,m -=Ox,(dH - mjEj) fn,,l " C Ox.(dH - mjEj).

The direct images on the base scheme Y of tensor powers of the

tautological line sheaves O,(,)(n) for a vector sheaf & on Y are known

to be the symmetric powers S"(E) (cf. [EGA, III.2.1.15]). Then

using the projection formula [rH78, Ex. III.8.3] with Y = PI and

9 = Op EDOp,(1), we get (here O(6)(1) = 0.x, (Ej) 6 and Ox, (H-

Ej) = •jOp,(1))

Oj OX41 (dH-mjEj) = Sd-mj (OEDO,(1))®Op,(d) = e dm  Opi(k).

Note the rank of such direct image is exactly R = d - mj + 1. Our

direct image of £d,m is therefore a subvector sheaf (not a subbundle in

5Here we identify the points pi E P', with pi different from pj, with the corre-
sponding preimages through aj .

6It is known that [rH78 , section V.2] for some section D of the projective
bundle P(Op, E Opi(1)) -24 P we have Op( )(1) = Op(g)(D). Moreover D has
to have self-intersection equal to -1. Therefore the divisor D has to be linearly
equivalent to the unique exceptional curve Ej on the blowing-up of ]P at the point

Pi.
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the terminology of [sS77] and [sL751!) of maximal rank of the above

vector sheaf:

R ~2d-m~,Em = k=1 ~P(ak) C jgxi • (dH - mE 3) -=•k d  Op 1(k)r*,Cdm = ek=1 k (dHk=d ,k

and this is only possible if the inequalities of the claim are satisfied.

E

REMARK 3.2. If hl(Ld,m) = 0, then
R

Zk=l ak = X(Cd,m 0 Oxr (Ej - H))

(The proof is by brutal computation using Oxr (H-Ej) = 7r* Op• •(1).)

This can be rephrased to say that if the first cohomology group of

Cd,m (hence 7r*Cd,m) vanishes then the degree of its direct image is

determined by the twisting w.r.t. the generic fiber of the projection

(Fj d H - Ej); and is better understood in connection with the more

general result which follows.

THEOREM 3.3. Consider a line sheaf L on a surface Xr such that:

a) R'7rC = 0;
b) let F be the generic fiber of 7 (recall F ~ H + Ej) and assume

that the restricion map

Ho(XrC) r H(F, |IF)

is surjective.

Then

H'(Xr,£) = (0) = H'(Xr, L® Oxr(-F))

and the degrees ak in 7r.£ = EkOp1(ak) are nonnegative.

PROOF. The short exact sequence

0 -+,C Ox, (-F) -+,C -+ £IF -+0

yields in cohomology
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0 -+Ho(Xr,C(9 Ox,(-F)) -+Ho•(Xr,£) , HO(F,£[IF)

4 H'(Xr,£ ®Oxr(-F)) + H'(X 7 , £) --+0.

The vanishing of HI(£1IF) following from that of the first direct

image of Cd,m-

Since resF is onto, a -- 0 and # is an isomorphism. Hence it

suffices to prove that one of the cohomology groups in the assertion

vanishes. To this effect, note that the vanishing of the first image

of £ implies, by virtue the fundamental exact sequence (1.2), that

HI(Xr, £) ' HI(Pk, ,£). Furthermore, the projection formula yields

(taking into account that 7r*QOp(1) = Ox,. (F))

R'ir,(£ C Ox,(-F)) R1 ird, L O1(-1) = 0,

so that the same isomorphism of first cohomology groups holds for

£0 Ox, (-F) too.
We can then conclude that 0 descends to an isomorphism of coho-

mology groups on Pk:

g'(kl 7, •r,£)-- g H1(Pk7, £ 0 Op(-I))

which, as 7r,£ is sum of line sheaves, is possible only if both groups

vanish.

The vanishing of the second of these cohomology groups yields at

once the lower bound for the degrees ak.

REMARK 3.4. Even more generally, if a line sheaf C on X, has

positive Euler-Poincard characteristic and intersects the generic fiber F

positively, then from the cohomology of the structure sequence of F ten-

sored by £ it follows x(L(F)) > ci(£).F and ho(Xr,1£) > ho(F, LIF).

REMARK 3.5. Notice that the line sheaf 1 = Ox, (H- E- - E7),

with i # j, corresponding to the strict transform of the line passing

through the points pi and py satisfies the above theorem, but does
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not meet the requirements of the second formulation of Hirshowitz's

Conjecture 1.6.

Indeed, it is easy to prove the vanishing of Hi(Xr, £(-F)) for i =

0, 1, so that the whole cohomology of £ is cocentrated on the generic

fiber F ,, H- Ep. The same is still true if one takes £ = Ox, (H -
E - Ej), where E is any exceptional curve that intersect F trivially.

We would like to raise the following question:

PROBLEM 3.6. Under what conditions on the line sheaves £Cd,m are

their direct images ample vector bundles?

An effective answer to such a question would give lower bounds for
the degree of direct images as and ample vector on Pk has to be direct

sum of ample line bundles (cf. [rH66]). hence their degreees have to

be positive.

We hope that careful application of Viehweg's theory on the weakly

positiveness of vector sheaves and their direct images will lead to some

results in this direction at least in characteristic zero. On the other

hand, we are already able to establish the ampleness of direct images,
and actually give a full computation, in the case of few points blown

up or of invertible sheaves whose sections are "not too singular", viz.

the multiplicities mi's are equal to 1.

We ought to mention that the problem of determining ampleness

on generic rational surfaces is much harder than that of determining

effectivity covered by Hirschowitz's Conjecture. It is not even clear

what conditions one should impose in order to expect ampleness (cf.

[AH92]). However the study of line sheaves with multiplicities mi = 1

has lead to some results [eB83]. More recently Reider's theory [oK94]
as well as a defomation theoretic argument [gX95] have yielded the

following characterization of such sheaves:

PROPOSITION 3.7. An invertible sheaf Ox. (dH-E 1-E 2 -- -.- Er)

with d > 3 is ample if and only if it has positive self-intersection.
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REMARK 3.8. The necessity is well known to be required by Nakai's

criterion, so the non trivial, or, better, original part consists in estab-

lishing the sufficiency of this condition. Here, as in the thesis 3.2, a

lower bound for the self-intersection of curves plays a major role.

3.2. The case of two blown up points. Let us first remark

that the problem of computing the cohomology of line sheaves on Xr

for r < 8 was solved classically. Indeed in this case Xr admits an ample

anticanonical sheaf and is, by definition, a Del Pezzo surface. It can

easily be proved that the diophantine equations defining an exceptional

class have only a finite number of solutions [yM86, Ch. 7 §25-26], so

that we have only a finite number of exceptional curves El,... , E,.
Mori's theory then insures [sM82, Theorems (1.2) p.1 3 5 and (2.1)

p.141] that the cone of effective divisors NE(Xr) C Num(Xr) ®z R =:

N'(Xr) (hence the ample cone Na,(X,) C N'(Xr) = Ni(Xr) which, by

Kleiman's criterion, is its dual) is a finitely generated polyhedral cone

explicitly determined by the exceptional curves:

NE(Xr) = k= R+ [Ek].

Therefore given the "Picard coordinates" (d, m,..., mr) of a line

bundle Cd,m, we are able to determine whether it admits non trivial

global sections as well as well as the vanishing of its first cohomology

group (e.g. checking if [Ld,m 9 Kjx] E Na(X,.) and applying Kodaira's

vanishing in characteristic zero-cf., e.g., [EV92, p. 4]).

When r = 9, Xr is a rational elliptic surface and KCx,. = Ox,, but

one can still obtain the Conjecture (cf. [mN60a], [fS84]).

Complications arise for r > 10: here the anticanonical sheaf is nu-

merically indefinite and the infinite number of exceptional curves, hence

([sM82, Theorem(2.1) p. 141]) of extremal rays, makes the effective

cone beyond reach of computation. Hirschowitz's Conjecture would

give an alternative finite algorithm for the determination of effective

divisors on the surfaces Xr.
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We would like to illustrate our approach to the Conjecture by com-

puting direct images in the case of X2 defined over a field k with

char(k) = 0. This will give a flavor of what we can expect in the

general case.

In this case, if a - 1 (Pi) = Ei (i = 1, 2), the effective cone is

NE(X2 ) = •[El] + R+ [E2] + R+[H - E, - E2 ],

while the ample one is

Na(X 2 ) =R+[H- E] + R+ [H - E 2 + R+[H].

A line sheaf Ox2,(dH - mE 1 - m 2 E2) will admit non trivial global

sections iff

mi > 0, m 2 > 0, d > mi + m 2,

and will be ample iff

d>ml, d>m2, d>0.

It is clear that a line sheaf satisfying the hypotheses of the Conjec-

ture 1.6 (which in this case read d > ml+m 2) imply Ox,(dH - m1E 1 - m 2 E 2)

as well as

Ox,(dH - m1E1 - m 2E 2)®/Cx = Ox,((d+3)H-(mi+1)E1 -(m 2+1)E 2)

are ample, hence, by the Kodaira vanishing theorem, h1'(Ox2 (dH - m E1 - m 2E 2 ))

vanishes. This means that Hirschowitz's Conjecture is true (similar

consideration yield it for any Xr with r < 8). Insofar as direct images

are concerned, rjOx,(dH - m1E 1 - m 2 E 2) is a vector sheaf on P1 of

rank d- mj + 1=: R, say

rj,0x2(dH - m1E1 - m 2E2) =: klR p(ak).

with a, 5 a2 < ... < aR. Our objective is to find the degrees ak's.

Note that, depending on the size of the multiplicities mi1 , m 2 the

direct images range between two extremal cases:

1. d = m1 + m 2 which is the least required by Proposition 2.3 to

yield a locally free sheaf.
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2. mI = 1 = m2.

(This, with obvious modifications, makes sense also in the the gen-

eral case of r points blown-up.)

We are going to deal with such cases in the following

PROPOSITION 3.9. Under the above assumptions we have

(i) If d = mi + m2 and d > mi > m 2 > O, then

rj ,Ox2(dH - miE 1 - m 2E2) = Op,(m)ed-mj+1l

(ii) If mi = 1 = m2,

rj, Ox 2(dH-El-E 2) = Op1(1) EO p• (2)eD. .0p (d-2)op (d-1)2.

PROOF. (i) Notice

Ox 2(dH - mtEl - m2E 2 )&/@ICj = Ox2((d+3)H-(ml+1)E1 -(m 2+1)E2)

is ample (it lies in the ample cone), hence Kodaira vanishing

grants the vanishing of h'(Ox,(dH - miE 1 - m2E2 )). A simple

calculation then yields

ho°(rj.Ox,(dH - m1Ej - m2 E2)) = h(Ox2(dH - mjE 1 - m2E2)) =

X(Ox 2(dH m - iE - m2E 2)) =m 1 m2 + d + 1.

Whence we obtain the degree of the direct image vector sheaf
R

Zk+1 ak = mr(d - m, + 1) = mj rk(7r,Ox2(dH - mlE 1 - m 2 E2)).

Because of Proposition 3.1 and the fact that 1rjOx2 (dH - miE 1 - m2 E2 )

has a vanishing first cohomology group we have v

-1 <ak g d + k - 1.

ROn the other hand, as Ek=l ak = mjrk(7rj,Ox2(dH - mE 1 - m2E2))

one has the upper bound

mj <5aR.

Suppose we had strict inequality, then, taking i 0 j,
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1 < ho(7jOx2(dH - m1 E1 - m 2E2) 0 Op (-aR)) =

= ho(Ox 2((d - aR)H + (aR - mj)Ej - (d - mj)Ej) = 0, (3.1)

since d - aR < d - mj. We can therefore conclude the proof

of the first item.

(ii) Here too the line sheaf

Ox2 (dH - El - E 2 ) ® KC- = Ox2 ((d + 3)H - 2E 1 - 2E2 )

is ample, so that the Kodaira vanishing Theoremimplies that

hl(Ox2 (dH - El - E2)) = 0. We can then obtain the dimension

of the space global sections of Ox2(dH - mlE1 - m 2E 2 ) as in

the above case:

h0 (rj.Ox2(dH - El - E2)) = X(Ox 2(dH - El - E2))

= (d+1)(d+2)/2 - 2 = d(d+3) -1.

Proposition 3.1 along with the vanishing of the first coho-

mology group gives the following bounds for the degrees of the

direct image of Ox 2 (dH - El - E 2)

-1 < ak d+ k - 1.

Notice that we cannot have (here R = d) ad = d since this

would imply (again taking i : j)

1 < h0 (irj0x2(dH-E 1-E 2 )®O(P (-d)) = h0(Ox2((d-1)Ej-Ej)) = 0.

On the other hand note that since ho(rj.Ox2 (dH - El -

E2)) = d(d + 3)/2 - 1 we have

Sakk= +2+3+...d-1.

We are going to prove by induction on the degree d that the

string (a 1,... , ad) can be filled only in the way we claimed.
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For d = 2 one can directly compute (using cohomological

dimension count as in the previous argument) that 7rjOx,(2H-

El -E 2) = Op (1)e 2 (similarly 1rjOx2 (3H-E 1 -E 2) = Op(1)e

Op (2)e2).

Suppose the claim true for d - 1. Then

Op(1)EDOp(2) ... Opii(d-2) e 2 = irjOx2((d-1)H-Ei-E 2) C (x 2(dH-E 1-E 2)

Therefore for any 1 < k < d - 1 we have the lower bound

k < ak. It is now clear that the only possibility for the ak to

satisfy the above cohomological count is to be as claimed.
Li

Based on these and other considerations, we venture the following

educated guess:

THESIS 3.10. The larger the multiplicities mi 's, the smaller the

maximal gap maxlak - a.

In particular we would expect that for borderline multiplicities (case

1) the direct image tend to be direct sums of the same line sheaf, while

for multiplicities mi = 1, the ak tend to grow in an increasing sequence

without gaps. This latter behavior resembles the notion of character of

a set of points in Pk that Gruson and Peskine introduced in the study of

space curves [GP78]. The "spread" of the ak's also appears in results

on semistable vector bundles a la Grauert-Miilich [hS79] [mM81].

REMARK 3.11. In the previous Proposition a few technical facts

appear:

Sub-direct images tend to fit at the beginning of the larger direct im-

age: i.e. ifZ C M, 7rjI = @=R Opi(ak) and ir•,•M = (S= Opi(bk),

then
S

w e e/at ri K e khea1oP (bk)

where K is a torsion sheaf on Pk.
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REMARK 3.12. As, in general, using vanishing Theoremsuch as

Kodaira's, we can much more easily obtain the dimension of the space

of global sections of a certain direct image and form this its degree as

a vector sheaf on Pk, the problem of the determination of the direct

image itself is reduced to a question about combinatorial partition of

the degrees ak. We wonder if techniques from combinatorics, which

have already succesfully been applied to the study of Chern classes,

could also be employed in this connection.

3.3. The general case. In principle, because the cone of effective

divisors is finite polyhedral, we have a finite algorithm to compute the

global sections of any line sheaf on a Del Pezzo surface. Therefore we

can mimic the computations in the case of the toy model of two points

blown up to yield explicit direct images for line sheaves on X, for r < 8.

In the general case, the knowledge of the direct images would yield

Hirschowitz's Conjecture. Conversely, the vanishing of one of the co-

homology groups determines the degree of the direct image as a vector

sheaf on P). ' This enables us to recover the entire direct image in

some particular case.

THEOREM 3.13. Consider a line sheaf £ = Ox, (dH - E1 - E2 -

-. Er) on a surface Xr such that h 1(£) = 0 and r < d. Then

d-r-1 d
=c OP1 (k) E@k=d_.Op9(k- 1)@k=1 / kd- k

PROOF. We will argue by induction on the number of points blown

up r. For r = 2 the statement has already been proved in Proposition
3.98. Suppose for r - 1 and L' = Ox, (dH- E, - E2 - ..- -- - Er-1)

7Perhaps, the Hirzebruch-Riemann-Roch Theoremgives a more elegant way to

relate this two quantities. It will be argued below that the case of Euler-Poinca6

characteristic zero plays a crucial role exactly because in this case the vanishing of

both cohomology groups would determine the direct image uniquely and viceversa.
8Then we supposed the characteristic of the ground field was zero in order

to apply the Kodaira vanishing theorem and obtain the sought for direct image.
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we have the thesis. Since C c L', from the left exactness of the direct

image functor it follows

d
7r, := 1 Opi (ak) C 7r*,'. (3.2)

From the vanishing of the first cohomology group of C we can obtain

the dimension of the space of global section of 7r,C as the Euler-Poincar6

characteristic of £:

h0o(IC) _ (d + 1)(d + 2)
( k l - ___) = 2 _ - r.

9

Translating this in a condition for the degrees ak as in Proposition

3.9 we have

ak = 1 + 2 + ---+ d -r.

Using again the vanishing of the first cohomology group of C and

the containment in (3.2) we derive upper and lower bounds

-1• ak k if k < d-r,(33)

-1•ak<k-1 if k>d-r+1.

It is now obvious that the only way we can "fill" the string of degrees

ak for 7rC is the one claimed. O

REMARK 3.14. If char(k) = 0, the vanishing of the first coho-

mology group would follow from the Ramanujam vanishing theorem.

Indeed, letting £ = Ox, (dH- E1 - ... Er),

h'(Xr, £) = h1 (Xr, £ - ' ® KCx,) = h'(XY, Ox, ((-d - 3)H)).

REMARK 3.15. A similar result holds for line sheaves Ox, (dH -
E - ...- -- - E,) without the assumption r < d. This can still be proved

Obviously, if we suppose the vanishing of the first cohomology group, the same

proof is still valid.
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by induction using the above theorem. The notation for the direct

image is awkward though.

PROPOSITION 3.16. For an exceptional curve E on Xr we have

7rj,.Ox, (E) = Op i(-1) Op

where R = E.(H - Ej); and either

rjOx, (-E) = Op(-1),

or

7rj, Ox, (-E) = 0

depending whether R = 0 or R > 0 respectively.

PROOF. By Lemma 2.1, if 7rjOX, (E) is locally free it has to have

rank (denoting again the generic fiber with F and recalling that F

H - E3)H-Es)

ho(F, Ox, (E)IF) 12 ho (P, Op(E.(H- Ej)).

Now the fact that 7rj,Ox, (E) is a vector sheaf can be derived from

the vanishing of the first direct image [EGA, III (9.)]. This, in turns

follows form the fact that the intersection of E with every fiber is

bounded below by -1, hence h'(ir-'(q), Ox,(E)j -I(q)) = 0 for any

q e P-. Using 1 = ho(Xr, Ox, (E)) = ho(P, 7r Ox, (E)) and (cf. (1.2))

0 = h'(Xr, Ox,(E)) = h'(P', 7r. Ox, (E)), we obtain the degrees of the

direct image.

As for the second claim, the local freeness of 7r.Ox,(-E) is got-

ten in exacly the same way. Because -E.F < 0 (E is a curve!),
ho(F,0x,(-E)IF) _ 1, so 7r Ox,(-E) has at most rank one. If such

direct image is non zero, then it has to be Op (-1) because both its

cohomology groups vanish. O
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As a consequence of this direct image computation we have a new

strategy to prove Hirschowitz's Conjecture (see corollary below) at our

disposal, in the case of effective line sheaves Cd,m, or, equivalently, of

non negative Euler-Poincard characteristic. In such case the Conjec-

ture would follow from the presence of an exceptional curve among the

components of a section of Ld,m which intesect the genaric fiber of ir3
as £d,m itself. Note that here we can take advantage of the fact that

we have r fibration structures and, correspondingly, r possibilities for

the intersection number.

COROLLARY 3.17. If a line sheaf 1d,m contains an exceptional curve

E, with E.(H - Ej) = d - mi, then its first cohomology group vanishes.

PROOF. Because of the previous Proposition the direct image of

Ox, (E) is a vector sheaf on Pk with degrees bounded below by -1. The

left exactness of the direct image functor and Theorem2.3 now prove

that x.*Oxr (E) is a subbundle of maximal rank of pist£d,m. Therefore

the same lower bound for the degrees of the latter holds, and from this

we can conclude the vanishing of hI(P, hrCd,m) = h 1(Xr, Id;m).

REMARK 3.18. This condition on the intersection of E with the

generic fiber F H - E, is compatible withHirschowitz's Conjecture.

Indeed, if E - eoH-eE 1-- -. -erEr, and E.F = d-m, = c(L(d,m).F,

then d - mj = eo - ej. The second formulation of the Conjecture 1.6

assumes that

d > mi1 + m 2 + M3,

while Noether inequality [DO88, p. 77] for exceptional curves im-

plies

eo < ei + e2 + e3 .

If one assumes, as we do, the non restricitive ordering eo > el _

S-. er and notices that the containment Ox, (E) C Cd,m gives bounds
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mi <• ei, then one realizes that the two above inequalities can be satis-

fied simultaneously.

Furthermore, even if E.F < d - mj, we would still have, taking

direct images, a suvector sheaf of r*,Cd,m with lower bounds for its

degrees. This would give corresponding lower bounds on some of the

degrees of 7r, Cd,m, hence a limitation, albeit not a vanishing, on the

dimension of its first cohomology group.

We hope that using the action of the Weyl group on exceptional

configurations, we can arrange exceptional curves so as to bound all

the degree of *.Cd,m.

It is also worth noticing how the bound provided by this direct

image approach to the Conjecture are essentially stronger than the

previous approach.

Indeed, if we just assumed the containment of an exceptional E

curve in £d,m, the cohomology exact sequence and the bound cl (£d,m).E >

-1 would only give

h1 (Xr,Ed,m) _ h'(Xr, 4d.m(-E)),

no matter how large the intersection E.F.

It is worth noticing that the universal family of blowups we consid-

ered in the previous chapter carries the structure of rational fibration

we have been using in the present chapter. Then we cpould consider

family of direct images of line shaves on surfaces Xr.

To see how direct images can change under specialization consider

the example of the anticanonical sheaf Ox,. (-Kxr). One checks im-

mediately that -Kx,.F = 2 and that -Kx, intersects degenerate

fibers positively as well. Therefore the first direct image vanishes and

7r*O, xr(-Kx,) is a vector shef of rank ho(F, OF(2)) = 3. Let

7.Ox, (-Kx,) =: Op (a) E Op, (b) @ Op (c),
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with a < b < c as usual. As the cohomology is preserved and

(for r > 9) ho(Xr, Ox,(-Kx,)) = 0, we obtain for the Riemann-Roch

theorem

h'(P• , r*,Ox,(-Kx,)) = -(K, + 1) = r - 10.

Serre duality on P1 along with the vanishing of the zeroth cohomol-

ogy give now conditions on the degrees

a+b+c=-7-r

and

a, b, c < -1.

On the other hand, if we specialize our surface to an anticanoni-

cal surface, the anticanonical divisor will admit a section, so at least

one degree will have to become non negative. If we specialize further

to a Harbourne surface, Op will be among the direct summand of

r*,Ox,(-Kx,)). Indeed, in this case h(Xr, Ox, (-Kx,)) = 1 because

the anticanonical section D doesn't move in its linear system.

We would like to conclude this section with an observation on the

structure of the set Ti(Xr) C N1 (Xr) of line sheaves with vanishing

first cohomology.

Invertible sheaves on generic rational surfaces enjoy a property of

"homogeneity" with respect to the vanishing of the first cohomology:

tensoring a positive enough line sheaf with vanishing first cohomology

with a non negative one, the resulting line sheaf has zero first coho-

mology as well. One could say the set P(Xr) of "positive" (with the

properties of S in the proposition below) line sheaves, or more generally

vector sheaves, is a cone in Ti(Xr) and that Pi(Xr)+Ti(Xr) C T, (Xr)
9

9 Although in our case the Picard scheme Pico(Xr) is trivial, it would be inter-

esting to explore possible connections with the Green-Lazarsfeld theory of generic

vanishing (cf. [GL87, GL91 and AGL91]).
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This can be formulated using direct images and easily generalized to

vector sheaves. (Incidentally, this will be the only place where we will

consider direct images of higher rank vector sheaves.) The conditions

of positivity we alluded to above can be precisely formulated using the

degrees of the direct images. In the case of line sheaves we are claiming

that the locus in Num(Xr) of sheaves with vanishing first cohomology

is not convex, but we can find a subset which, after being translated

by a suitably positive line sheaf, will be convex and homogeneous with

respect to the tensor product.

PROPOSITION 3.19. Consider two vector sheaves ( and Fon Xr

such that the "restricion homomorphism" in cohomology induced by the

embedding of the generic fiber j : F --+ Xr is surjective , h' (X,, ) =

0 = hl(Xr, F) and such that their direct images 7r. = (Op i(ak) and

•rF = ( Opi (bl) have degrees bounded below as 0 < ak and -1 < bl.

Then, the morphism induced by the cup product on the O-th coho-

mology

7r*,6 0 7rj. --+ rr*(E ® F)

is generically an isomorphism on P1 and h1 (Xr, (9 F) = 0

PROOF. Grauert's Theorem2.1 gives the isomorphism 6.r ® k(q) -

Ho(F, 6IF) and the analogous for F and ®F- for generic q e Pk. Then

the claim of the isomorphism follows from the assertion that the cup

product is indeed surjective for vector sheaves over a F 2 P].
Now, the condition on the degrees of the direct images of & and F

implies that the degrees of 7r. 0 F are no less than -1. O

4. A Reformulation of Hirschowitz's Conjecture

4.1. Reduction to the case X(£Cd,m) = 0. It turns ou that in the

statement of Hirschowitz's Conjecture 1.6 we can assume X(£d,m) = 0.

This is not hard to prove reduce to this specific case:

PROOF. 1. X(£d,m) < 0.
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By decreasing multiplicities we can find another line sheaf

L := Ox,(dH - ErlnEi) with ni <_ mi such that x(£) = 0.

From the exact sequence

0 -+Cd,m -+L -+Q -+0,

we obtain

0 -+ Ho(Xr, Cd,m) -+ Ho(Xr, IL).

Now, if the Conjecture is true for line bundles of Euler-

Poincard characteristic zero, since C satisfies the hypotheses of

the Conjecture (its degree are bounded by those of £d,m which

does), it will have both cohomology groups zero, hence ho(Ld,m) =

0, that is £d,m verifies the Conjecture as well.

2. X(Ld,m) > 0.

Consider additional points Pr+i, . . . , p, e P such that pl, ... , p,

are in general position (this is possible for any positive integer

s > r, see, e.g., [jB79]).
Choose s such that £ := Ox, (dH - -1 miEi- ' r+1 Ei)

satisfies X(C) = 0.

We have the exact sequence

0-+£ C-+£d,m E=- + E1 -+0.

which, passing to cohomology, yields

0 -+Ho°(X,, £) -+Ho(X,, £d,m) -+Ho(X,, O=.+1 Ei

-+H'(X7, C) -+ H'(Xs, Cd,m) -4 H'(X,, O .ar+ Es) = 0

Now if £d,m satisfies the hypotheses of the Conjecture, so

does C, and if the Conjecture holds for L, the latter will have

first cohomology group zero which implies the same vanishing

for Cd,m. (All the way we are identifying cohomology groups of

£dm on X. and X7.)
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We have also obtained the dimension of the space of global

section of Cd,m as:

ho(Xr, Cd,m) = X(1d,m) = h°(X, O •.r+I Ej).

4.2. Relations with Semrnistability of Vector Bundles. The

isomorphism of the cohomology groups of Ld,m and those of its direct

image gives in particular the equality

X(Cd,m) = X(r*Id,m)

Then the Theoremof Riemann-roch for vector bundles on a curve

(viz. P1) or the general Grothendieck-Riemann-Roch Theoremgives

X(aCd,m) = deg(lr.*d,m) + rk(7r.*d,m)
R

SZk1 ak + d - mj + 1k=1

In the key case X(£d,m) = 0 we can therefore conclude

R

ak=1 a = -(d- mj - 1) (4.1)

In particular this last equality would be satisfied if

Vk: ak = -1 (4.2)

This is what we have to prove to establish the Conjecture (in order

for £d,m to have both cohomology group zero).

REMARK 4.1. In particular we would derive the Conjecture if we

could prove that

h1 (P1, End(ir.d,m)) = 0.

I
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In general this expresses a condition of rigidity on the vector sheaf:

the dimension of the first cohomology group of the endomorphism sheaf

is the number of moduli of the deformation of a vector sheaf , or, in

other words, the dimension of the tangent space to the local defor-

mations. But, since moduli of vector sheaves on 1P are discreet (a

consequence, for example, of Grothendieck's theorem), we can't use

this vanishing to express geometrical constraints on our direct image.

From (4.1) follows that the slope of r,£d,m is

A(7r*(£4,m)) = -1..
As a dissocid vector sheaf is semistable if and only if it is direct sum

of semistable subvector sheaves with the same slope (cf. e. g. [sL75])

we can reformulate Hirschowit's Conjecture as follows:

CONJECTURE 4.2. An invertible sheaf £d,m on X, such that d >

m1 + m 2 +-m3 has the natural cohomology if the invertible sheaf L with

X(£) = 0 derived from Cd,m as in the previous section has semistable

direct image 7r,.
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