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Abstract

Random sampling has found numerous applications in computer science, statistics, and
physics. The most widely applicable method of random sampling is to use a Markov chain
whose steady state distribution is the probability distribution r from which we wish to
sample. After the Markov chain has been run for long enough, its state is approximately
distributed according to 7r. The principal problem with this approach is that it is often
difficult to determine how long to run the Markov chain. In this thesis we present several
algorithms that use Markov chains to return samples distributed exactly according to r. The
algorithms determine on their own how long to run the Markov chain. Two of the algorithms
may be used with any Markov chain, but are useful only if the state space is not too large.
Nonetheless, a spin-off of these two algorithms is a procedure for sampling random spanning
trees of a directed graph that runs more quickly than the Aldous/Broder algorithm. Another
of the exact sampling algorithms presented here is much more efficient and may be used on
Markov chains with huge state spaces, provided that they have a suitable special structure.
Many Markov chains of practical interest have this structure, including some from statistical
mechanics, and this exact sampling algorithm has already been implemented by the author
and others.

One example from physics is the random cluster model, which generalizes the Ising and
Potts models. Of particular interest are the so-called critical exponents, which characterize
the singular behavior of quantities such as the heat capacity and spontaneous magnetization
at a certain critical temperature. In this thesis we also see how to use these sampling
algorithms to generate (perfectly random) "omnithermal" random cluster samples. Given a
single such sample, one can quickly read off a random Potts configuration at any prescribed
temperature. We include preliminary results on the use of omnithermal samples to estimate
the critical exponents.

Thesis Supervisor: James G. Propp
Title: Assistant Professor
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You need to study probability. It is your weak area.

- Charles E. Leiserson, summer 1991.

sinclair@icsi.berkeley.edu
random sample from Ising (hard?)

sample subgraphs, works for many functionals
connected component M.C. (lattice?)

pick random base from matroid, oracle for independence
random tree from undirected graph
random directed spanning tree from directed graph

- notes taken some years ago after discussing with Alistair Sinclair possible research topics.
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Chapter 1

Introduction to Exact Sampling

1.1 Introduction

Random sampling of combinatorial objects has numerous applications in computer science
and statistics. Random sampling algorithms often make use of Markov chains, that is they
repeatedly apply randomizing operations that preserve the probability distribution 7r from
which one wishes to sample. After enough randomizing operations, under mild assumptions,
the probability distribution of the state of the system will approach the desired distribution.
Despite much work at determining how many randomizing operations are "enough" [27] [47]
[29] [62] [70] [28], this task remains quite difficult if not impossible.

In this thesis we give a number of novel random sampling algorithms that make use of
Markov chains, run in finite time, and then output a state distributed exactly according to
the desired distribution - the steady state distribution of the Markov chain. The principle
advantage of this approach is that, when applicable, one can obtain the desired random
samples, and be confident that they are indeed properly distributed, without first having to
solve difficult math problems.

The first technique, called coupling from the past, works for any monotone Markov
chain. When viewing a Markov chain as a sequence of randomizing operations, one can
apply a particular randomizing operation to any number of states. Typically a monotone
Markov chain will have two extremal states, extremal in the sense that if the same sequence
of randomizing moves is applied to all possible initial states, and the two extremal states
get mapped to the same value, then any other state necessarily gets mapped to this same
value. (Refer to the glossary for a more detailed definition.) A surprisingly large number
of interesting Markov chains satisfy this monotonicity condition, including several that have
origins in statistical mechanics. One example is the Ising model, which was introduced to
model magnetic substances (see Figure 1-1). In truth, coupling from the past (CFTP) works
for any Markov chain, but the monotonicity condition makes it particularly efficient.

The second technique is called cycle popping, and it too works for any Markov chain.
While cycle popping does not take advantage of monotonicity like CFTP does, for general
Markov chains it is faster.

A generic exact sampling algorithm takes a Markov chain as its input, meaning that it is
able to observe the Markov chain in action or simulate it, and generates a sample from the
steady state distribution of the Markov chain. A few years ago this was shown to be possible,



Figure 1-1: An equilibrated Ising state at the critical temperature on a 2100 x 2100 toroidal
grid, generated using monotone coupling from the past (Chapters 2 and 3).

provided the algorithm is told how many states the Markov chain has, but the algorithms
given here are much better. In the passive setting the algorithm is given a NextState()
procedure which allows to observe the state of a Markov chain as it evolves through time.
We give a version of CFTP that for the passive setting is within a constant factor of optimal.
In the active setting the algorithm is given a RandomSuccessor() procedure, which is similar
to NextState(), but first sets the state of the Markov chain to some specified value before
letting it run one step and returning the random successor state. Clearly any passive case
algorithm will work in the active setting, but the cycle popping algorithm is more efficient
than any passive case algorithm. We don't give lower bounds on active case algorithms, but
cycle popping is so natural that it is hard to imagine a better algorithm. See section 1.3 for
comparisons with previous algorithms.

Both CFTP and cycle popping are intimately connected with random spanning trees,
and both algorithms may be used to efficiently generate random spaning trees of directed
weighted graphs. Figure 1-2 shows a random spanning tree of an undirected unweighted
graph. More generally we are given a weighted directed graph G and wish to output an
in-directed spanning tree of G such that the probability of outputting a particular tree is
proportional to the product of the weights of the edges in the tree. Without going into
details, applications of random spanning trees include

* the generation of random Eulerian tours for

- de Bruijn sequences in psychological tests [32]
- evaluating statistical significance of DNA patterns [7] [34]' [10] [51]

1[34] does not use random spanning trees, and generates biased Eulerian tours



* Monte Carlo evaluation of coefficients of the network reliability polynomial [22] [65] [20]

* generation of random tilings of regions[77] [18] (see Figure 1-3 and also Chapter 8)

enter

t Ph.D.

Figure 1-2: A spanning tree of the 30 x 30 grid with a 90 1st outer vertex adjoined (the
boundary), chosen randomly from all such spanning trees.

There is a natural Markov chain on these spanning trees, and while the chain appears
to have no monotone structure, the CFTP algorithm may still be efficiently applied to this
Markov chain. Here too one can consider in turn the passive and active cases of tree sampling
with Markov chains. In the passive case (Chapter 6), the tree sampling algorithm first calls
the general Markov chain sampling algorithm to pick the root of the tree, and then does some
additional coupling from the past to pick the rest of the tree. In the active case (Chapter 7),
on the other hand, the general Markov chain sampling algorithm calls the tree sampling
algorithm, and simply returns the root of the tree.

Random spanning tree generation algorithms have been studied quite a lot. These algo-
rithms may be placed into two categories, those based on computing determinants, and those
based on random walks. Of the random walk based algorithms, the ones given here are both
the most general and most efficient. No direct comparison is possible with the determinant
based algorithms, as the relative efficiency would depend on the input. Section 1.4 compares
these tree algorithms at greater length.

As mentioned earlier, some of the examples of monotone Markov chains come from statis-
tical mechanics. One such example is a Markov chain for sampling from the random cluster
model introduced by Fortuin and Kasteleyn. The random cluster model is closely connected
with the Ising and Potts models, and this connection is utilized in most Monte Carlo studies
of these models. (The Ising state shown in Figure 1-1 was generated using a random cluster
sample.) It turns out that this random cluster model Markov chain is monotone in two
different ways. The first monotonicity allows CFTP to be applied, while the second makes
it possible to generate samples at not just one temperature, but essentially all temperatures
simultaneously. Figure 1-4 shows two physical parameters (energy and magnetization) plot-
ted as a function of temperature using an omnithermal random cluster sample. Chapter 5
discusses how omnithermal sampling might be used to estimate physical parameters.
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1.2 A Simple Exact Sampling Algorithm

To illustrate the simplicity of the sampling algorithms in this thesis, we give an example
here. Assume that we have a Markov. chain with states numbered 1 through n, and a
randomized procedure RandomSuccessor O, which when given a state of the Markov chain,
returns a random successor state with appropriate probabilities (the active setting). Define
a two-dimensional array M with the rules

Mo,i = i (i = 1 . .. n)

and
Mt,i = Mt+1,RandomSuccessor(i) (t < 0, i = 1... n)

If the Markov chain is ergodic, then with probability 1, eventually for some T all the entries
of the array MT,, will have the same value. In Chapter 2 we show that this value is a perfectly
random sample from the steady state distribution of the Markov chain.

1.3 History of Exact Sampling Algorithms

Just a few years ago Asmussen, Glynn, and Thorisson [8] gave the first algorithm for sampling
from the stationary distribution 7r of a Markov chain without knowledge of the mixing time
of the Markov chain. They give a general procedure, which given n and a Markov chain on
n states, simulates the Markov chain for a while, stops after finite time, and then outputs a
random state distributed exactly according to r. However, their procedure is complicated, no
bounds on the running time were given, and the authors described it as more of a possibility
result than an algorithm to run. Aldous [1] then described an efficient procedure for sampling,
but with some bias 5 in the samples. Let 7 denote the mean hitting time of the Markov
chain, i.e. the expected number of Markov chain steps to travel from one state i distributed
according to 7r to another state j distributed according to 7r but independent of i. Aldous's
procedure runs within O(r/6 2) time. Intrigued by these results, Lovasz and Winkler [63]
found the first exact sampling algorithm that provably runs in time polynomial in certain
natural parameters associated with the Markov chain. Let EiTj denoted the expected number
of steps for the Markov chain to reach j starting from i. The maximum hitting time h is the
maximum over all pairs of states i and j of E Tj. A (randomized) stopping time is a rule
that decides when to stop running a Markov chain, based on the moves that it has made so
far (and some additional random variables). Let Tmi x be the optimal expected time of any
randomized stopping stop that leaves a particular Markov chain in the stationary distribution
(the parameter T'mi x is one measure of how long the Markov chain takes to randomize, and
is defined as ri2) in [5]). The Lovasz-Winkler algorithm is a randomized stopping rule (i.e.
it works by simply observing the Markov chain) and runs in O(hT'ixn log n) _ O(h 2n log n)
time.

Meanwhile, Jim Propp had been studying random domino tilings of regions. After dis-
cussing the problem of how long to run an associated Markov chain, we devised monotone
coupling from the past. In contrast with the previous algorithms, this one relies on mono-
tonicity to deal with Markov chains with huge state spaces (e.g. 235,000,000 states). Upon



learning of the previous work on exact sampling, we went about optimizing the coupling-
from-the-past technique as applied to general Markov chains. The result was an algorithm
that ran within the cover time of the Markov chain - the cover time is the expected time
required by the Markov chain to visit all states, starting from the worst possible start state.
If the running time of this algorithm were squared, the result would still be smaller than the
previous fastest running time.

Exact Sampling Algorithm

Asmussen, Glynn, Thorisson [8]

Aldous [1] (F bias in sample)

Lovasz, Winkler [63]

new (requires monotonicity)

new

Fill [33]

new

Expected running time

finite time

817/e 2

O(hTmixn log n)

O(Tmix log 1)

15T, or O(Tmixn log n)

(not yet analyzed)

227

n = number of states

1 = length of longest chain (monotone Markov chains only). Usually log 1 = O(log log n).

7r = stationary probability distribution

EiTj = expected time to reach j starting from i

-- = mean hitting time = i, 7r(i)r(j)EiTj (7 < h < T,)

h = maximum hitting time = maxi,j EiTj

EiC = expected time to visit all states starting from i

T, = cover time = maxi EiC

Tmix = mixing time threshold; time for Markov chain to "get within 1/e of random"

Tmix = optimal expected stationary stopping time

Table 1.1: Summary of exact sampling algorithms. See [5] for background on the Markov
chain parameters. In all the cases for which the expected running time is given, the proba-
bility of the actual running time deviating by more than a constant factor from its expected
value will decay exponentially fast. Perhaps "self-verifying sampling algorithms" would have
been a more inclusive title for this table, but only one of these algorithms is approximate
rather than exact.

It has been noted that any passive exact sampling algorithm that works for any Markov
chain must necessarily visit all the states. If not, then the algorithm can't output the
unvisited state (for all we know this state might be almost transient), and it can't output
any other state (for all we know the unvisited state is almost a sink). Therefore, of the passive
sampling algorithms, the cover time algorithm is within a constant factor of optimal. But in
the active setting, where the algorithm is also allowed to reset the state of the Markov chain,



Aldous's O(r/e 2) approximate sampling algorithm suggested that an O(r) time active exact
sampling algorithm should be possible. After making several changes in Aldous's algorithm,
and completely redoing the analysis, the result is not only an O(r) exact sampling algorithm,
but also a random spanning tree algorithm faster than the Aldous/Broder algorithm. The
running time compares favorably with all the previous algorithms, except the ones that rely
on the Markov chain having special structure.

Jim Fill [33] has found another exact sampling method which may be applied to either
moderate-sized general Markov chains or huge Markov chains with special structure. His
method requires the ability to simulate the reverse Markov chain. Because the algorithm is
new, the running time has not yet been determined.

It is worth mentioning that in the physics community it's not uncommon to use a Markov
chain to do sampling while having no rigorous bounds on its convergence rate. In these
cases experimenters often heuristically estimate the rate of convergence by using auxillary
procedures that attempt to measure the correlation between sample points separated by
some number of random steps. This approach will not rule out the possibility that the
system is in some metastable state [71]. Independently of this work Johnson [50] proposed
using monotonicity when testing for convergence, but didn't notice how to bring the bias to
zero in finite time.

1.4 History of Random Tree Generation

There is a long history of algorithms to generate random spanning trees from a graph. We are
given a weighted directed graph G on n vertices with edge weights that are nonnegative real
numbers. The weight of a spanning tree, with edges directed towards its root, is the product
of the weights of its edges. Let T,(G) be the probability distribution on spanning trees
rooted at vertex r such that the probability of a tree is proportional to its weight, and let
T(G) be the probability distribution on all spanning trees, with probabilities proportional to
the weights of the trees. The goal is to sample a random spanning tree (according to T(G)),
or a random spanning tree with fixed root r (according to Tr(G)).

The first algorithms for generating random spanning trees were based on the Matrix
Tree Theorem, which allows one to compute the number of spanning trees by evaluating
a determinant (see [16, ch. 2, thm. 8]). Guinoche [42] and Kulkarni [57] gave one such
algorithm that runs in O(n 3 m) time2, where n is the number of vertices and m is the number
of edges. This algorithm was optimized for the generation of many random spanning trees to
make it more suitable for Monte Carlo studies [22]. Colbourn, Day, and Nel [21] reduced the
time spent computing determinants to get an O(n3 ) algorithm for random spanning trees.
Colbourn, Myrvold, and Neufeld [23] simplified this algorithm, and showed how to sample
random arborescences in the time required to multiply n x n matrices, currently O(n2.376)
[25].

A number of other algorithms use random walks, Markov chains based on the graph G.
For some graphs the best determinant algorithm will be faster, but Broder argues that for
most graphs, the random-walk algorithms will be faster [17]. Say G is stochastic if for each

2Guinoche used nm < n2 and stated the running time as O(ns).



n = number of vertices

m = number of edges

M(n) = time to multiply two n x n matrices

7r = stationary probability distribution

EiTj = expected time to reach j starting from i

7- = mean hitting time = ij 7r(i)r(j)EiTj

h = maximum hitting time = maxi,j ETJ3
EiC = expected time to visit all states starting from i

T, = cover time = maxi EiC

Table 1.2: Summary of algorithms for generating random spanning trees of a graph. The
top three are based on computing determinants, the bottom six are based on random walks.
Of the random walk algorithms, the top three are in the passive setting, and the bottom
three are in the active setting.

vertex the weighted outdegree, i.e. the sum of weights of edges leaving the vertex, is 1. If
G is stochastic, then in a sense it already is a Markov chain - the state space is the set of
vertices, and the probability of a transition from i to j is given by the weight of the edge from
i to j. Otherwise, we can define two stochastic graphs G and G based on G. To get G, for
each vertex we normalize the weights of its outdirected edges so that its weighted outdegree
is 1. To get G, first add self-loops until the weighted outdegree of each vertex is the same,
and then normalize the weights. Markov chain parameters written with overbars refer to G,
and parameters written with tildes refer to G. Running time bounds give in terms of G will
be better than similar bounds given in terms of G.

Broder [17] and Aldous [4] found the first random-walk algorithm for randomly generating
spanning trees after discussing the Matrix Tree Theorem with Diaconis. The algorithm
works for undirected graphs and runs within the cover time T, of the random walk. The

Tree Algorithm Expected running time

Gue"noche [42] / Kulkarni [57] O(n 3m)

Colbourn, Day, Nel [21] O(n 3)

Colbourn, Myrvold, Neufeld [23] M(n) = O(n 2 376 )

Aldous [4] / Broder [17] O(Tc) (undirected)

Kandel, Matias, Unger, Winkler [51] O(T,) (Eulerian)

new O(T,) (any graph)

new O(7) (undirected)

new O(min(h, f)) (Eulerian)

new O(f) (any graph)



cover time Tc of a simple undirected graph is bounded by O(n 3), and is often as small as
O(n log n); see [17] and references contained therein. Broder also described an algorithm for
the approximate random generation of arborescences from a directed graph. It works well
when the out-degree is regular, running in time O(T1), but for general simple directed graphs,
Broder's algorithm takes O(nT,) time. Kandel, Matias, Unger, and Winkler [51] extended
the Aldous-Broder algorithm to sample arborescences of a directed Eulerian graph (i.e., one
in which in-degree equals out-degree at each node) within the cover time T,. Chapter 6
shows how to use coupling from the past to sample random arborescences from a general
directed graph within 18 cover times of G. Most of this running time is spent just picking
the root, which must be distributed according to the stationary distribution of the random
walk of G. (A sample from the stationary distribution of G may be obtained with the cover
time of G using a continuous-time simulation.)

All of these random-walk algorithms run within the cover time of the graph G -the
expected time it takes for the random walk to reach all the vertices. Chapter 7 gives another
class of tree algorithms that are generally better than the previous random walk algorithms
(except possibly the one given in chapter 6). The time bounds are O(1) for undirected graphs,
O(min(h, f)) for Eulerian graphs, and O(f) for general graphs. One wonders whether or not
a O(i) algorithm exists for general graphs.

The mean and maximum hitting times are always less than the cover time. Broder
described a simple directed graph on n vertices which has an exponentially large cover time
[17]. It is noteworthy that the mean hitting time of Broder's graph is linear in n. Even for
undirected graphs these times can be substantially smaller than the cover time. For instance,
the graph consisting of two paths of size n/3 adjoined to a clique of size n/3 will have a cover
time of 0(n 3 ) but a mean hitting time of 0(n 2 ). Broder notes that most random graphs
have a cover time of 0(n log n); since most random graphs are expanders and have a mixing
time of O(1), their maximum hitting time will be 0(n). Thus these times will usually be
much smaller than the cover time, and in some cases the difference can be quite striking.



Chapter 2

Coupling From The Past

2.1 General Coupling From the Past

Suppose that we have an ergodic (irreducible and aperiodic) Markov chain with n states,
numbered 1 through n, where the probability of going from state i to state j is pi,j. Ergodicity
implies that there is a unique stationary probability distribution 7r, with the property that
if we start the Markov chain in some state and run the chain for a long time, the probability
that it ends up in state i converges to 7r(i). We have access to a randomized subroutine
RandomSuccessor() which given some state i as input produces some state j as output,
where the probability of observing RandomSuccessor(i) = j is equal to pi,j; we will assume
that the outcome of a call to RandomSuccessor() is independent of everything that precedes
the call. This subroutine gives us a method for approximate sampling from the probability
distribution 7r, in which our Markov-transition oracle RandomSuccessor() is iterated M
times (with M large) and then the resulting state is output. For convenience, we assume
that the start and finish of the simulation are designated as time -M and time 0; of course
this notion of time is internal to the simulation being performed, and has nothing to do with
the external time-frame in which the computations are taking place. To start the chain,
we use an arbitrarily chosen initial state i*: We call this fixed-time forward simulation.

i-M +-- i* (start chain in state i* at time -M)
for t = -M to -1

it+l - RandomSuccessor(it)
return oi0

Figure 2-1: Fixed time forward simulation.

Unfortunately, it can be difficult to determine how big M needs to be before the probability
distribution of the output gets close to 7r.

We will describe a procedure for sampling with respect to 7r that does not require fore-
knowledge of how large the cutoff M needs to be. In essence, to pick a random element with
respect to the stationary distribution, we run the Markov chain from the indefinite past until
the present, where the distance into the past we have to look is determined dynamically, and



more particularly., is determined by how long it takes for n runs of the Markov chain (starting
in each of the n possible states, at increasingly remote earlier times) to coalesce.

We start by describing an approximate sampling procedure whose output is governed by
the same probability distribution as M-step forward simulation, but which starts at time 0
and moves into the past; this procedure takes fewer steps than fixed-time forward simulation
when M is large. Then, by removing the cutoff M - by effectively setting it equal to infinity
- we will see that one can make the simulation output state i with probability exactly 7r(i),
and that the expected number of simulation steps will nonetheless be finite. (Issues of
efficiency will be dealt with in section 2.2 for general Markov chains, and in Chapter 3 in
the case where the Markov chain is monotone.)

To run fixed-time simulation backwards, we start by running the chain from time -1 to
time 0. Since the state of the chain at time -1 is determined by its history from time -M to
time -1, it is unknown to us when we begin our backwards simulation; therfore we run the
chain from time --1 to time 0 not just once but n times, once for each of the n states of the
chain that might occur at time -1. That is, we can define a map f_ 1 from the state space
to itself, by putting f_1(i) = RandomSuccessor(i) for i = 1,..., n. Similarly, for all time t
with -M < t < -- 1, we can define a random map ft by putting ft(i) = RandomSuccessor(i)

(using separate calls to RandomSuccessor() for each time t); in fact, we can suppress the
details of the construction of the ft's and imagine that each successive ft is obtained by
calling a randomized subroutine RandomMap() whose values are actually functions from the
state space to itself. The output of fixed-time simulation is given by FoM(i*), where Ft2 is
defined as the composition ft 2-1 o ft 2-2 O ... ft1+1 o ft.

If this were all there were to say about backward simulation, we would have incurred a
substantial computational overhead (vis-a-vis forward simulation) for no good reason. Note,
however, that under backward simulation there is no need to keep track of all the maps ft
individually; rather, one need only keep track of the compositions Fo, which can be updated
via the rule Ft =- F° o ft. More to the point is the observation that if the map Ft° ever
becomes a constant map, with Ft(i) = F°(i') for all i, i', then this will remain true from
that point onward (that is, for all earlier t's), and the value of FoM(i*) must equal the
common value of F°(i) (1 < i < n); there is no need to go back to time -M once the
composed map FJ has become a constant map. When the map Fot is a constant map, we
say coalescence occurs from time -t to time 0, or more briefly that coalescence occurs from
time -t. Backwards simulation is the procedure of working backward until t is sufficiently
large that Fot is a constant map, and then returning the unique value in the image of this
constant map.

We shall see below that as t goes to -oo, the probability that the map F° is a constant
map increases to 1. Let us suppose that the pij's are such that this typically happens with
t - -1000. As a consequence of this, backwards simulation with M equal to one million
and backwards simulation with M equal to one billion, which begin in exactly the same
way, nearly always turn out to involve the exact same simulation steps (if one uses the
same random numbers); the only difference between them is that in the unlikely event that
Fo,000,000 is not a constant map, the former algorithm returns the sample F 1,000,000o(i*) while
the latter does more simulations and returns the sample Fo1,ooo,ooo,ooo0*).-

We now see that by removing the cut-off M, and running the backwards simulation
into the past until Ft is constant, we are achieving an output-distribution that is equal to



t e- 0
Ft +-- the identity map

while Ft is not collapsing
t+-t-1
ft +- RandomMap()

F _ Ft,+, o ft
return value to which Ft collapses

Figure 2-2: Coupling From the Past (CFTP)

the limit, as M goes to infinity, of the output-distributions that govern fixed-time forward
simulation for M steps. However, this limit is equal to 7r. Hence backwards simulation, with
no cut-off, gives a sample whose distribution is governed by the steady-state distribution of
the Markov chain. This algorithm is summarized in Figure 2-2.

We remark that the procedure above can be run with O(n) memory, where n is the
number of states. In the next section we will give another implementation of the RandomMap ()
procedure that can significantly reduce the running time as well.

Theorem 1 With probability 1 the coupling-from-the-past protocol returns a value, and this
value is distributed according to the stationary distribution of the Markov chain.

Proof: Since the chain is ergodic, there is an L such that for all states i and j, there
is a positive chance of going from i to j in L steps. Hence for each t FtL(.) has a positive
chance of being constant. Since each of the maps FoL(-), F-L(.),... has some positive
probability 6 > 0 of being constant, and since these events are independent, it will happen
with probability 1 that one of these maps is constant, in which case FoM is constant for
all sufficiently large M. When the algorithm reaches back M steps into the past, it will
terminate and return a value that we may as well call F_ . Note that F 1  is obtained

-o1 -- ofrom F-__o by running the Markov chain one step, and that T 1F_ and F__ have the same

probability distribution. Together these last two assertions imply that the output FToo is
distributed according to the unique stationary distribution 7r. El

In this set-up, the idea of simulating from the past up to the present is crucial; indeed,
if we were to change the procedure and run the chain from time 0 into the future, finding
the smallest M such that the value of FoM(x) is independent of x and then outputting that
value, we would obtain biased samples. To see this, imagine a Markov chain in which some
states have a unique predecessor; it is easy to see such states can never occur at the exact
instant when all n histories coalesce.

It is sometimes desirable to view the process as an iterative one, in which one successively
starts up n copies of the chain at times -1, -2, etc., until one has gone sufficiently far back
in the past to allow the different histories to coalesce by time 0. However, when one adopts
this point of view (as we will do in Chapter 3), it is important to bear in mind that the
random bits that one uses in going from time t to time t + 1 must be the same for the many
sweeps one might make through this time-step. If one ignores this requirement, then there



will in general be bias in the samples that one generates. The curious reader may verify this
by considering the Markov chain whose states are 0, 1, and 2, and in which transitions are
implemented using a fair coin, by the rule that one moves from state i to state min(i + 1, 2)
if the coin comes up heads and to state max(i - 1, 0) otherwise. It is simple to check that
if one runs an incorrect version of our scheme in which entirely new random bits are used
every time the chain gets restarted further into the past, the samples one gets will be biased
in favor of the extreme states 0 and 2.

We now address the issue of independence of successive calls to RandomSuccessorO()
(implicit in our calls to the procedure RandomMap ()). Independence was assumed in the proof
of Theorem 1 in two places: first, in the proof that the procedure eventually terminates, and
second, in the proof that the distribution governing the output of the procedure is the steady-
state distribution of the chain. We can relax this independence condition, but successive
calls to RandomMap() need to remain independent, and we still need some guarantee that
the process will terminate with probability 1.

To treat possible dependencies, we adopt the point of view that ft(i) is given by Ot(i, Ut)
where 0t(', -) is a deterministic function and Ut is a random variable associated with time
t. One might have several different Markovian update-rules 0 on a state-space, and cycle
among them, as long as each one of them preserves the distribution 7r. We assume that the
random variables ..., U- 2, U-1 are independent, and we assume that the random process
given by the Ut's is the source of all the randomness used by our algorithm, since the other
random variables are deterministic functions of the Ut's. Note that this framework includes
the case of full independence discussed earlier, since for example one could let the Ut's be
i.i.d. variables taking their values in the n-cube [0, 1]n with uniform distribution, and let
lt(i, u) be the smallest j such that pi,i + Pi,2 + + pi,j exceeds the ith component of the
vector u.

Theorem 2 Let ..., U-3, U- 2, U- 1 be independent random variables and let (, ) (t < 0)
be a sequence of deterministic functions. Define ft(i) = t(i, Ut) and Fto = f-1 o f-2 o... ft. -
If we assume (1) for all t and j,

Sr(i) Pr[Ot(i, Ut) = j] = r(j),

and (2) with probability 1 there exists T for which the map FT is constant, then the constant
value of F1 is a random variable with probability distribution governed by 7r.

Proof: Let X be a random variable on the state-space of the Markov chain governed by
the steady-state distribution r, and for all t < 0 let Yt be the random variable Fo(X). Each
Yt has distribution 7r, and the sequence Y- 1, Y-2, Y-3,... converges almost surely to some
state Y-oo, which must also have distribution 7r. But the constant value of F1' is Y-,. L.

Usually it is not hard to show condition (2) of Theorem 2. For instance, if all the functions

t are identical, and the Ut are identically distributed, and there is a nonzero probability
that some FT is constant, then with probability 1 some FT9 is constant.



2.2 Random Maps for Passive Coupling From the Past
Here we give a RandomMap() procedure which makes the coupling-from-the-past protocol of
the previous section run in time proportional to the cover time - the expected time for
the Markov chain to visit all the states. This procedure outputs a random map from X to
X satisfying conditions 1 and 2 of Theorem 2 after observing the Markov chain for some
number of steps.

Recall that if f = RandomMap (), we don't need f(ii) and f(i 2 ) to be independent. So we
will use the Markov chain to make a suitable random map, yet contrive to make the map
have small image. Then the algorithm will terminate quickly. The RandomMap () procedure
consists of two phases. The first phase estimates the cover time from state 1. The second
phase starts in state 1, and actually constructs the map.

Initialization phase (Expected time < 3T,)

* Wait until we visit state 1.
* Observe the chain until all states are visited, and let C be the number of steps required.

* Wait until we next visit state 1.

Construct Map phase (Expected time < 3T,)

* Randomly set an alarm clock that goes off every 40 steps.
* When we next visit some state i for the first time, commit to setting f(i) to be the

state when the alarm clock next goes off.

The following two lemmas show that this implementation of RandomMap () (see Figure 2-3)
satisfies the two necessary conditions.

Lemma 3 If X is a random state distributed according to 7r, and f = RandomMap(), then
f(X) is a random state distributed according to 7r.

Proof: Let c be the value of clock when state X is encountered for the first time in the
Construct Map phase. Since clock was randomly initialized, c itself is a random variable
uniform between 1 and 4C. The value f(X) was obtained by starting the Markov chain in
the random state X and then observing the chain after some number (40 - c) of steps, where
the distribution of the number of steps is independent of X. Hence f(X) is also distributed
according to 7r. El

Lemma 4 The probability that the output of RandomMap () is a constant map is at least 3/8.

Proof: Let C' be the number of steps it takes the Markov chain to visit all the states
in the Construct Map phase, and let A denote the number of steps in the Construct Map
phase before the alarm clock first goes off. If C' < A, then the output of RandomMap() will
be constant.

Since C and C' are independent identically distributed random variables,

Pr[C' < C] > 1/2.



Wait until we visit state 1
Observe the chain until all states are visited, and let C be the number of steps required
Wait until we next visit state 1

clock +-- random number between 1 and 4C
for i - 1 to n

status[i] -- UNSEEN
numassigned 4- 0

status[l] 4- SEEN
ptr -- 0
stack[ptr + +] 4- 1
while num._assigned < n

while clock < 4C
clock 4- clock + 1

s 4- NextState()
if status[s] = UNSEEN then

status[s] - SEEN
stack[ptr + +] 4- s

clock +- 0
numassigned -- numassigned + ptr

while ptr > 0
f[stack[- - ptr]] - s

return f

Figure 2-3: Pseudocode for RandomMap (). The Construct Map phase starts out looking at
state 1. The variable status[i] indicates whether or not state i has been seen yet. When i is
first seen, status [ii] gets set to SEEN and i is put on the stack. When the alarm clock next
goes off, for each state i in the stack, f[i] gets set to be the state at that time.

On the other hand, since the alarm clock was randomly initialized

Pr[A > C] = 3/4.

Since A and C' are independent (even when conditioning on C),

Pr[C' < C < A] = Pr[C' C] -Pr[C < A] > 3/8.

Theorem 5 Using the above RandomMap() procedure with the coupling-from-the-past pro-
tocol yields an unbiased sample from the steady-state distribution. On average the Markov
chain is observed for < 15T, steps. The expected computational time is also O(T,), the
memory is O(n), and the expected number of external random bits used is O(log T,).

Proof: Since the odds are > 3/8 that a given output of RandomMapO() is constant,



the expected number of calls to RandomMap() before one is constant is < 8/3. Each call
to RandomMap() observes the chain an average of < 6T, steps. Before sampling we may
arbitrarily label the current state to be state 1 and thereby reduce the expected number of
steps from 16To to 15T,. Ii

The algorithm is surely better than the above analysis suggests, and if the Markov chain
may be reset, even faster performance is possible. Also note that in general some external
random bits will be required, as the Markov chain might be deterministic or almost deter-
ministic. When the Markov chain is not deterministic, Lovasz and Winkler [63] discuss how
to make do without external random bits by observing the random transitions.

2.3 The Voter Model

The CFTP procedure in Figure 2-2 is closely related to two stochastic processes, known as
the voter model, and the coalescing random walk model. Both of these models are based on
a Markov chain, either discrete or continuous time. In this section we bound the running
time of these two processes, and then give a variation on the CFTP procedure (in the active
setting) and bound its running time. This section is not essential to the remainder of this
thesis, except that here we define the variation distance and the mixing time of a Markov
chain, which will be used in one section of Chapter 3.

Given a (discrete time) Markov chain on n states, in which state i goes to state j with
probability pi,j, one defines a "coalescing random walk" by placing a pebble on each state
and decreeing that the pebbles must move according to the Markov chain statistics; pebbles
must move independently unless they collide, at which point they must stick together. (For
ease of exposition we work with discrete time, but there are no difficulties in generalizing to
continuous time. One could adjoin self loops to the Markov chain and pass to a limit to get
the continuous time case.)

The original Markov chain also determines a (generalized finite discrete time) voter model,
in which each of n voters starts by wanting to be be the leader. At each time step each of
the voters picks a random neighbor (voter i picks neighbor j with probability pi,j), asks
who that neighbor will vote for, and at the next time step changes his choice to be that
candidate. (These updates are done in parallel.) The voter model has been studied quite a
lot in continuous time case, and usually on a grid where pi,j is nonzero only if i and j are
neighbors on the grid. See [45], [39], and [61]) for background on the voter model.

These two models are dual to one another, in the sense that each can be obtained from
the other by simply reversing the direction of time (see [5]). Specifically, suppose that for
each t between t, and t 2, for each state we choose in advance a successor state according
to the rules of the Markov chain. We can run the coalescing random walk model from time
tl to t 2 with each pebble following the choices made in advance. Or we can run the voter
model from time t 2 to time t, using the choices made in advance. The pebble that started
at state i ends up at state j if and only if voter i plans to vote for j.

Note that a simulation of the voter model is equivalent to running the CFTP procedure
in Figure 2-2. Since the CFTP algorithm returns a random state distributed according to
the steady state distrubtion 7 of the Markov chain, or else runs forever, it follows that if all
the voters ever agree on a common candidate, their choice will be distributed according to



the steady state distribution of the Markov chain. This result holds for both discrete and
continuous time versions of the voter model. (For certain special cases, such as the grid, this
result can also be derived using other techniques.)

In this section we analyze the running time of this process. We will show

Theorem 6 The expected time before all the voters agree on a common candidate is at most
O(nTmix) steps, where Tmix is the "mixing time" of the associated Markov chain.

Up until now we have not found it necessary to formally define the mixing time, the time it
takes for the state of a Markov chain to become approximately randomly distributed, but
we will do so in a moment.

Since every step of the CFTP algorithm, or a simulation of the voter model, takes 0(n)
computer time, this implies that one can obtain random samples within O(n 2Tmix) time.
However, we give a variation of the algorithm that runs in O(n log nTmix) time. We can
do this by taking advantage of the connection with the coalescing random walk model.
As time moves forward, the pebbles tend to get glued together into pebble piles, and less
computational work is needed to update their positions. Of course simply waiting until all
the pebbles get glued together will in general result in a biased sample- we give the actual
variation on the CFTP algorithm after proving the following theorem about the coalescing
random walk model.

Theorem 7 The expected time before all the pebbles coalesce is at most O(nTmix) steps,
where Tmix is the "mixing time" of the associated Markov chain. The number of pebble piles
added up for each time until coalescence is at most O(n log nTmix).

Theorem 6 is immediate from theorem 7.
The time Tmix is defined using the variation distance between probability distributions.

Let p and p be two probability distributions on a space X, the variation distance between
them, Ii - p|, is given by

II' - pl-= max I(A) - p(A) = (x) - p(x).ACX 2 (x) - P(x)2x

Let p;k be the probability distribution of the state of the Markov chain when started in state
x and run for k steps. Define

d(k) = max -p
k  k

Then the variation distance threshold time Tmix is the smallest k for which d(k) < 1/e.
It is not hard to show that d(k) is submultiplicative, and that for any starting state x,

I p* - _ < d(k).
To prove Theorem 7 we make use of the following lemma.

Lemma 8 Let px denote the probability distribution given by px(y) = Px,y. Suppose that for
each x the variation distance of px from 7r is at most F < 1/2. Then the expected time before
all the pebbles are in the same pile is O(n), and the sum of the number of pebble piles at
each time step, until they're all in the same pile, is O(nlogn).



Proof: Suppose that there are m > 1 piles. Let 0 </3 < 1 and 1/2 < a < 1. Say that x
avoids y if px(y) < 37r(y). Call a state lonely if it is avoided by at least (1 - a)m piles. We
have

(1-03)(1-a)rm >j 7r(y) < (1-/3) (y)
lonely y pile at xy

ple at x
x avoids y

< 7r ()-P (Y)
x,y

pile at x
x avoids y

-< 117 -P l

pile at x

< mE

Let
\7= -(Y) - 1 a=1- 1- c~ /3'

y

where '(y) = 7r(y) if y is good, and 0 if y is lonely. Since E < 1/2, we may choose a and 3
so that -y > 0.

Let AY be the number pile mergers that happen at state y - AY is the number of piles
that get mapped to y, minus one if a pile gets mapped to y.

Suppose y is good. There are at least [am] piles which have at least a /37r(y) chance of
being mapped to y. If we suppose that there are exactly [am] piles that get mapped to y
with probability /37r(y), and no other piles get mapped to y, we can only decrease Ay. Thus
we find

E[Ay] > [ram]/3(y)- 1 + (1 - 03(y))raml

which is also true even if y is lonely.
Since [am] > 1, the above expression for E[Ay] is convex in t(y), and we get

E[Ay] > n [ram] -y/n- 1+ (1-+ 7/n) [ aml
y

[ [ml aml aml
> [am]f3 - n + n 1 - (/3y/n) ([a1) + (i3y/n)2([ 2]) - (/y/n) 3([r3])]

> ()2  ml)(Faml - 1)
3n

as ([aml - 2) <n and/3Oy < 1.
Group the time steps into phases so that in phase k the number of piles m satisfies

n/ 2 k + 1/a > m > n/2k+1 + 1/a. All the pebbles are in one pile when phase [lg[n/(2 - 1/aI)]]
starts. Let R = n(/3ya)2/2 2k+2 /3. For each step i after phase k begins and before phase
k + 1, let Vi be the random variable denoting the reduction in the number of piles. After
phase k + 1 begins, let Vi = R. Then for all i E[V] > R. Let s = 12/(/3ya) 2 .

2 k, and
V = 1•Vi + (s - [sJ)Vrl. E[V] _ n/ 2 k, and V < 2 n/ 2 k + 1, so by Markov's inequality,
Pr[V > (1/2)n/2k] > 0(1). There is at least a constant chance that the next phase has



started, so the expected number of steps in phase k is at most O(s) = O( 2k). The expected
sum over phase k of the number of piles is O(n), completing the proof.

M
Proof of Theorem 7: Following Lovasz, Winkler, and Aldous [63] [3], we work with
a Markov chain derived from the original Markov chain. We can let one step in the derived
Markov chain be T steps (say T = Tmix) in the original chain. If two pebble piles coalesce
in the derived chain, they must have coalesced in the original chain, so the theorem is a
straightforward consequence of the above lemma.

We remark there is some flexibility in choosing T, we could for instance let T = 2Tmix,
and because of submultiplicativity, we would get e < e- 2. If E < 1/8, the optimal choice of
the constants in the lemma is about a = = = 1 - E1/3. Optimizing (1 - E1/3) - 6 In 1/
yields E " 1.5769 x 10- 4 . E]

For the variation on coupling from the past, we want to spend most of the time following
the pebbles forward in time, because they will tend to coalesce, and less work will be required
at subsequent time steps. Initialize T to be zero. Then if FoT is not collapsing, run the
coalescing random walk process and count the number of steps before all the pebbles are
in the same pile. Increment T by this amount, and try again. The expected number of
Markov simulation steps is at most six times the number of steps required to simulate the
coalescing random walk process until all the pebbles are in the same pile - O(n log nTmix).
The computational overhead can be kept similarly small.



Chapter 3

Monotone Coupling From the Past

The coupling-from-the-past algorithm using the RandomMap() procedure given in section 2.2
works fine if the Markov chain is not too large, but it is not practical for Markov chains with
235,0o00,00ooo states, since it needs to visit all of the states. However, many Markov chains from
which we wish to sample have a special property, called monotonicity. One nice example
is the Ising model, which we will discuss further in section 4.2.1. In the Ising model there
are a collection of sites, usually on a grid, each site is either spin up or spin down, and
neighboring sites prefer to be aligned with one another. Given two spin configurations, if
every site in the first that is spin up is also spin up in the second configuration, then we
may simultaneously update the two spin configurations with a Markov chain, preserving
this domination property. In this chapter we give a variation of the coupling-from-the-past
algorithm that takes advantage of this monotonicity condition, and derive bounds on the
running time. In Chapter 4 we give a number of examples of monotone Markov chains.

3.1 Monotone Markov Chains

Suppose now that the (possibly huge) state space S of our Markov chain admits a natural
partial ordering <, and that our update rule 4 has the property that x < y implies 4(x, U0) <
4(y, Uo) almost surely with respect to U0. Then we say that our Markov chain gives a
monotone Monte Carlo algorithm for approximating 7r. We will suppose henceforth that S
has elements 0, i with 0 < x < i for all x E S.

Define 12 (x, u) = st-( -2(. . .( t (x, Uti), Ut+1),. . . , Ut-2),Ut2 1), where u is short

for (..., U- 1, u0). If U-T, u-T+, ... , U-2, u- 1 have the property that 01(O, u) = #_(i, u),
then the monotonicity property assures us that OT(x, u) takes on their common value for
all x E S. This frees us from the need to consider trajectories starting in all ISI possible
states; two states will suffice. Indeed, the smallest T for which V0 T(. , u) is constant is equal
to the smallest T for which V°T(O, u) = TI(1, u).

Let TL denote this smallest value of T. It would be possible to determine T, exactly by a
bisection technique, but this would be a waste of time: an overestimate for T, is as good as
the correct value, for the purpose of obtaining an unbiased sample. Hence, we successively
try T = 1,2,4,8,... until we find a T of the form 2 k for which (OT(, u) = #_T(1, u). The
number of simulation-steps involved is 2(1 + 2 + 4 + -. + 2k) < 2 k+2, where the factor of



2 in front comes from the fact that we are simulating two copies of the chain (one from 0
and one from 1). However, this is close to optimal, since T, must exceed 2 k-1 (otherwise
we would not have needed to go on to try T = 2 k); that is, the number of simulation steps
required merely to verify that V0T(0, u) = 10(1, u) is greater than 2 .2k-1 = 2

k . Hence our-T. U)=DT.(
double-until-you-overshoot procedure comes within a factor of 4 of what could be achieved
by a clairvoyant version of the algorithm in which one avoids overshoot.

Here is the pseudocode for monotone coupling from the past. Implicit in this pseudocode

T +- 1
repeat

upper - 1
lower 0- 0
for t = -Tto -1

upper +- t(upper, ut)
lower +- Ot(lower, ut)

T e- 2T
until upper = lower
return upper

Figure 3-1: Monotone coupling from the past.

is the random generation of the ut's. Note that when the random mapping 4t(', ut) is used
in one iteration of the repeat loop, for any particular value of t, it is essential that the same
mapping be used in all subsequent iterations of the loop. We may accomplish this by storing
the ut's; alternatively, if (as is typically the case) our ut's are given by some pseudo-random
number generator, we may simply suitably reset the random number generator to some
specified seed seed(i) each time t equals -2 .

In the context of monotone Monte Carlo, a hybrid between fixed-time forward simulation
and coupling from the past is a kind of adaptive forward simulation, in which the monotone
coupling allows the algorithm to check that the fixed time M that has been adopted is
indeed large enough to guarantee mixing. This approach was foreshadowed by the work
of Valen Johnson [50], and it has been used by Kim, Shor, and Winkler [56] in their work
on random independent subsets of certain graphs; see section 4.3. Indeed, if one chooses
M large enough, the bias in one's sample can be made as small as one wishes. However,
it is worth pointing out that for a small extra price in computation time (or even perhaps
a saving in computation time, if the M one chose was a very conservative estimate of the
mixing time), one can use coupling from the past to eliminate the initialization bias entirely.

In what sense does our algorithm solve the dilemma of the Monte Carlo simulator who is
not sure how to balance his need to get a reasonably large number of samples and his need
to get unbiased samples? We will see below that the expected run time of the algorithm
is not much larger than the mixing time of the Markov chain (which makes it fairly close
to optimal), and that the tail distribution of the run time decays exponentially quickly.
If one is willing to wait for the algorithm to return an answer, then the result will be an
unbiased sample. More generally, if one wants to generate several samples, then as long as
one completes every run that gets started, all of the samples will be unbiased as well as



independent of one another. Therefore, we consider our approach to be a practical solution
to the Monte Carlo simulator's problem of not knowing how long to run the Markov chain.

We emphasize that the experimenter must not simply interrupt a run and discard its
results, retaining only those samples obtained prior to this interruption; the experimenter
must either allow the run to terminate or else regard the final sample as indeterminate (or
only partly determined) - or resign himself to contaminating his samples with bias. To
reduce the likelihood of ending up in this dilemma, the experimenter can use the techniques
of section 3.2 to estimate in advance the average number of Markov chain steps that will be
required for each sample.

Recently Jim Fill has found an interruptible exact sampling protocol. Such a protocol,
when allowed to run to completion, returns a sample distributed according to 7r, just as
coupling from the past does. Additionally, if an impatient user interrupts some runs, then
rather than regarding the samples as indeterminate, the experimenter can actually throw
them out without introducing bias. This is because the run time of an interruptible exact
sampling procedure is independent of the sample returned, and therefore independent of
whether or not the user became impatient and aborted the run.

As of yet there remain a number of practical issues that need to be resolved before a
truly interruptible exact sampling program can be written. We expect that Fill and others
will discuss these issues more thoroughly in future articles.

3.2 Time to Coalescence

In this section we bound the coupling time of a monotone Markov chain, i.e. a chain with
partially ordered state space whose moves preserve the partial order. These bounds directly
relate to the running time of our exact sampling procedure. We bound the expected run
time, and the probability that a run takes abnormally long, in terms of the mixing time of
the Markov chain. If the underlying monotone Markov chain is rapidly mixing, then it is
also rapidly coupling, so that there is essentially no reason not to apply coupling from the
past when it is possible to do so. If the mixing time is unknown, then in it may be estimated
from the coupling times. We also bound the probability that a run takes much longer than
these estimates.

Recall that the random variable T, is the smallest t such that Fot(O) = Fot(i). Define T*,
the time to coalescence, to be the smallest t such that Fj(O) = Fj(i). Note that Pr[T, > t],
the probability that Fo,(.) is not constant, equals the probability that Fo(.) is not constant,
Pr[T* > t]. The running time of the algorithm is linear in T,, but since T, and T* are
governed by the same probability distribution, in this section we focus on the conceptually
simpler T*.

In order to relate the coupling time to the mixing time, we will consider three measures
of progress towards the steady state distribution 7r: Exp[T*], Pr[T* > K] for particular or
random K, and d(k) = max,1 ,, 2 I k - Il for particular k, where uk is the distribution
governing the Markov chain at time k when started at time 0 in a random state governed
by the distribution p. Let po and pl be the distributions on the state space S that assign
probability 1 to 0 and 1, respectively.



Theorem 9 Let 1 be the length of the longest chain (totally ordered subset) in the partially
ordered state-space S. Then

Pr[T* > k]
T > < d(k) < Pr[T* > k].
1 -

Proof: If x is an element of the ordered state-space S, let h(x) denote the length of
the longest chain whose top element is x. Let the random variables X k and Xk denote the
states of (the two copies of) the Markov chain after k steps when started in states 0 and 1,
respectively. If Xk Xk then h(Xo) + 1 < h(X') (and if X k = Xk then h(Xk) = h(Xk)).
This yields

Pr[T*> k] = Pr[XJk  X]1

= Pr[h(X k) - h(Xk) > 1]

< E[h(Xk) - h(Xok)]
= Ek[h(X)] - E k[h(X)]

1 _|Pk- Pkl [maxh(x)- min h(x)

< d(k) 1,

proving the first inequality. To prove the second, consider a coupling in which one copy
of the chain starts in some distribution p1 and the other starts in distribution P 2. By the
monotonicity of the coupling, the probability that the two copies coalesce within k steps is
at least Pr[T* < k]. Hence our coupling achieves a joining of ,i and pk such that the two
states disagree only on an event of probability at most Pr[T* > k]. It follows that the total
variation distance between the two distributions is at most Pr[T* > k]. E

Next we show that Pr[T* > k] is submultiplicative. At this point we will assume that
the randomization operations at each time step are the same. So for instance, if a random
process operates on red vertices and then on blue vertices, these two operations together are
considered one step.

Theorem 10 Let K1 and K 2 be nonnegative random variables (which might be constant).
Then

Pr[T* > K, + K2] 5 Pr[T* > K1 ] - Pr[T* > K2].

Proof: The event that Fo0 ' is constant and the event that F Kj+K2 is constant are
independent, and if either one is constant, then FOK '+K2 is constant. 0

Next we estimate tail-probabilities for T* in terms of the expected value of T*, and vice
versa.

Lemma 11
k Pr[T* > k] < Exp[T*] < k/Pr[T* < k].

Proof: The first inequality follows from the non-negativity of T*. To prove the second,
note that if we put e = Pr[T* > k], then by submultiplicativity, Pr[T* > ik] _ 6'. Hence
Exp[T*] < k + k + kE2 +... = k/Pr[T* < k]. El



Now we can say what we meant by "if the Markov chain is rapidly mixing then it is
rapidly coupling" in the first paragraph of this section. The mixing time threshold Tmix is
defined to be the smallest k for which d(k) < 1/e [5]. Let I be the length of the longest
chain in the partially ordered state space. Since d(k) is submultiplicative (see [2]), after
k = Tmix(1 + lnl) steps, d(k) < 1/el, so Pr[T* > k] < 1/e by Theorem 9, and by Lemma 11,

Exp[T*] < k/(1 - 1/e) < 2k = 2Tmix(1 + lnl).

It has been noted [27] that many Markov chains exhibit a sharp threshold phenomenon:
after (1 - E)Tmix steps the state is very far from being random, but after (1 + e)Tmix steps
the state is very close to being random (i.e. d(k) is close to 0). In such chains the coupling
time will be less than O(Tmix log 1).

In addition to being useful as a source of random samples, our method can also be used
as a way of estimating the mixing time of a random walk. One application to which this
might be put is the retrospective analysis of someone else's (or one's own) past simulations,
which were undertaken with only the experimenter's intuitive sense to guide the choice of
how long the chain needed to be run before the initialization bias would be acceptably small.
Using our technique, one can now assess whether the experimenter's intuitions were correct.

For instance, suppose one takes ten independent samples of the coupling time random
variable T*, and obtains O1Test = T1 + - - - + T10 = 997. Then one can be fairly confident
that if one were to run the Markov chain from an arbitrary starting point for 1000 steps
(or if someone had done so in the past), the residual initialization bias would be less than
2-10. Assertions of this kind can be made rigorous. Specifically, we can argue that if one
treats Test as a random variable, then the initialization bias of the Markov chain when run
for random time O1Test is at most 2-10. By symmetry we have Pr[T* > Tj] < 1/2, and then
by submultiplicativity we get

Pr[T* > T1 +... + To10] < 2- 10.

Since d(k) is bounded by Pr[T* > k], the initialization bias is at most 2- 10. (We cannot
make any such rigorous assertion if we condition on the event O10Test = 997, nor should we
expect to be able to do so in the absence of more detailed information about the nature of
the Markov chain.)

Another approach would be to consider the maximum coupling time of a number of runs.

Theorem 12 Let TI,... ,Tm and T* be independent samples of the coupling time. Then

j!m!
Pr[T* > Jmax(Ti,... ,Tm)] (jm)!U. + m) !

Proof: Let Tmax denote max(Ti, . . . ,T Tm). We will construct coupling times S, . . . , S
and T* such that T*, T1I,... ,Tm are mutually independent and T.,... , Tm, S1,... , Sj are
mutually independent, but Si,..., Sj and T* are dependent. Each coupling time is deter-
mined by the random variables (earlier called Ut) that are used in simulating the Markov
chain; call these random variables "moves". Let the first Tmax of the moves for the time Si
be used for moves (i - 1)Tmax through iTmax - 1 of time T*, and let the remaining random



moves for Si be independent of the other random moves. If for any i we have S- < Tmax, then
moves (i- 1)Tmax through iTmax- 1 of time T* are coalescing, whence T* < jTmax. Thus,
Pr[T* > jTmax] < Pr[Si > Tmax, i= 1,... ,j] Pr[Si > Tk, i= 1,...,j, k = 1,... ,m].
But if we have j + m i.i.d. random variables, the probability that the last j are strictly larger
than the first first m is at most 1/(J+m).

In the above example with m = 10, if we take j = 6 then Pr[T* > 6Tmax] < 1/(166)
1/8008. If the longest of the ten runs takes 150 steps, then the randomized upper bound
6Tmax is 900. Calculations of this sort clearly can help an experimenter determine when her
initialization bias is likely to be acceptably small.

3.3 Optimizing Performance

As we mentioned in section 3.1, when applying coupling from the past in the context of
monotone Monte Carlo algorithms, it would be grossly inefficient to consider For for each
positive integer T. We may restrict T to take on the values To < T1 < --.. Earlier we
recommended taking the simulation start-times to be -Ti = -2 i . We shall see that this
choice is close to optimal.

Let T. denote the minimum value of T for which For(O) = For(i). One natural choice
is to take T1 = rlo, T 2 = rT 1, etc., for some initial trial value To and some ratio r. Then the
number of simulation steps required to find the value of FoTO() = FoT,(1) is 2To + 2rTo +
2r 2T0 +.. + 2rkT 0, where k is the least k such that rkTo > T.. (The factor of 2 comes from
the fact that we must simulate using both 0 and 1 as initial states.) The number of required
steps is

rk+l_ r2  r2
2T0 < rk-12To - 2T,

r -1 r-1 r -1
where in the second inequality we assumed To < T.. On the other hand, if one could
magically guess T., then computing FrT (0) and ForT. (1) (and in so doing verifying that the
value of T. is no greater than claimed) would take a full 2T. simulation steps. The ratio
between the two -- worst-case and best-case - is at most r 2/(r - 1), which is minimized at
r = 2, where it takes the value 4. Hence, if our goal is to minimize the worst-case number
of steps, we should take r = 2.

One might be concerned that it is better to minimize the expected number of steps,
rather than the worst case. Indeed, we argue that to minimize the expected number of steps
one should pick r = e (= 2.71828...--). Let u be the fractional part of logr(To/T.). It is a
reasonable heuristic to suppose that u is approximately uniformly distributed. In fact, by
randomizing the choice of To, we can force this assumption to be true. In any case, the
number of simulation steps needed to find the unbiased sample is

rU

2rUT. + 2ru-T. + 2ru- 2T. +... < 2 T..
1 - 1/r

The expected value of ru is (r- 1)/ln r, so the expected number of steps is bounded above
by 2T.r/ In r. To minimize r/ In r we set r = e, with the expected number of steps equal to
2eT, - 2.72(2T,).



In practice, we do not expect to make great savings in time from this randomization
strategy. Indeed, using r = 2 we find that the expected number of steps required is approxi-
mately 2.89 times 2T., which is quite close to the optimal achieved by r = e. Hence we have
adopted the simpler doubling-procedure.



Chapter 4

Examples of Monotone Markov
Chains

4.1 Attractive Spin Systems and Distributive Lattices

Define a spin system on a vertex set V as the set of all ways of assigning a spin a(i) ("up"="
or "down"=4) to each of the vertices i E V, together with a probability distribution r on
the set of such assignments o(.). We order the set of configurations by putting a > r iff
a(i) > r(i) for all i C V (where f >), and we say that 7r is attractive if the conditional
probability of the event a(i) =T is a monotone increasing function of the values of a(j) for
j i. (In the case of the Ising model, this corresponds to the ferromagnetic situation.)

More formally, given i C V and configurations o, 7 with a(j) < r(j) for all j h i, define
configurations at, oq,, 7t, and T1 by putting ot(i) =1T, at(j) = a(j) for all j i, and so on.
We say 7r is monotone iff 7r(a)/7r(at) > 7r(T,)/r(,T), or rather, if ir(a,)/ir(it) Ž ir(t)/lr(qT),
for all a < 7 and all i E V.

A heat bath algorithm on a spin-system is a procedure whereby one cycles through the
vertices i (using any mixture of randomness and determinacy that guarantees that each i
almost surely gets chosen infinitely often) and updates the value at site i in accordance with
the conditional probability for 7r. One may concretely realize this update rule by putting

ft (a) Ut) O if Ut < w(o,)/(w(o4) + 7r(Ort))
,t if Ut > 7i(o,)/(Tr(ao) + 7r(Ort))

where t is the time, ut is some random variable distributed uniformly in [0, 1] (with all the
Ut's independent of each other), and a is some configuration of the system. If 7r is attractive,
then this realization of 7r gives rise to a coupling-scheme that preserves the ordering (just use
the same ut's in all copies of the chain). To see why this is true, notice that if a < 7, then
the Ut-threshold for a is higher than for 7, so that the event ft(a, ut)(i) =T, ft(T, Ut)(i) =4
is impossible.

We now may conclude:

Theorem 13 If one runs the heat bath for an attractive spin-system under the coupling-
from-the-past protocol, one will generate states of the system that are exactly governed by the



target distribution 7r.

In certain cases this method is slow (for instance, if one is sampling from the Gibbs distri-
bution for the Ising model below at the critical temperature), but in practice we find that
it works fairly quickly for many attractive spin-systems of interest. In any case, as shown in
section 3.2, in a certain sense the coupled-from-the-past version of the heat bath is no slower
than heat bath.

We point out that, like the standard heat bath algorithm, ours can be accelerated if one
updates many sites in parallel, provided that these updates are independent of one another.
For instance, in the case of the Ising model on a square lattice, one can color the sites so
that black sites have only white neighbors and vice versa, and it then becomes possible to
alternate between updating all the white sites and updating all the black sites. In effect,
one is decomposing the configuration u as a pair of configurations Twhite and rblack, and one
alternates between randomizing one of them in accordance with the conditional distribution
determined by the other one.

4.1.1 Omnithermal sampling

In many cases, one is studying a one-parameter family of spin systems in which some quantity
is varying. For instance, in the Ising model one can vary the strength of an external field,
or in the random cluster model (see subsection 4.2.2) one can vary the temperature. If
some parameter (say the temperature T) affects the ratio 7r(o) : 7r(cr) in a monotone (say
increasing) way, then it is possible to make an "omnithermal" heat bath Markov chain, one
that in effect generates simultaneous random samples for all values of the temperature. An
omnithermal state o assigns to each vertex i the set c(i) of temperatures for which site i
is spin-down. The sets c(i) are "monotone" in the sense that if a temperature is in c(i),
so is every lower temperature; that is, when the temperature is raised, spin-down sites may
become spin-up, but not vice versa. Given a site i of configuration a and a random number
u between 0 and 1, the heat bath update rule defines c(i) to be the set of T for which
Ut < 7rT(OrT,4)/(7rT(aT,4) + 7T(rT,t)), where OT denotes a at temperature T. For each T
this update rule is just the ordinary heat bath, and monotonicity ensures that the new set
c(i) is monotone in the aforementioned sense. The omnithermal heat bath Markov chain is
monotone with a maximum and minimum state, so monotone coupling from the past may
be applied.

In the case where all the spin sites are independent of one another, the trick of simulta-
neously sampling for all values of a parameter has been used for some time in the theory of
random graphs [6, chapter 10] and percolation [41]. Holley [44] used an omnithermal Markov
chain with two temperatures to give an alternate proof of the FKG inequality [36] governing
attractive spin systems. More recently Grimmett has given a monotone omnithermal Markov
chain for the bond-correlated percolation model [40] (another name for the random cluster
model described in subsection 4.2.2), and used it to derive a number of properties about
these systems. Interestingly, Grimmett's Markov chain is different from the omnithermal
heat bath chain. See subsection 4.2.2 and Chapter 5 for further discussion of omnithermal
sampling and its uses.



4.2 Applications to Statistical Mechanics

When a physical system is in thermodynamic equilibrium, the probability that the system
is in a given state a is proportional to e- E i/ kT where E, is the energy of state o, T is the
absolute temperature, and k is Boltzmann's constant. This probability distribution is known
as the Gibbs distribution. In effect, kT is the standard unit of energy; when kT is large,
the energies of the states are not significant, and all states are approximately equally likely,
but when kT is small, the system is likely to be in a low-energy state. In some cases, a very
small change in some parameter (such as the temperature) causes a significant change in the
physical system. This phenomenon is called a phase transition. If changing the temperature
caused the phase transition, then the temperature at the phase transition is called the critical
temperature.

In the study of phase transitions, physicists often consider idealized models of substances.
Phase-transition phenomena are thought to fall into certain universality classes, so that if
a substance and a model belong to the same universality class, the global properties of the
model correspond well to those of the real-world substance. For example, carbon dioxide,
xenon, and brass are thought to belong to the same universality class as the three-dimensional
Ising model (see [9] and [13], and references contained therein). Other models that have
received much attention include the Potts model [82] (which generalizes the Ising model)
and the related random cluster model [35].

In Monte Carlo studies of phase transitions, it is essential to generate many random
samples of the state of a system. Sampling methods include the Metropolis algorithm and
multi-grid versions of it. However, even after the Markov chain has run for a long time, it is
not possible to tell by mere inspection whether the system has converged to a steady-state
distribution or whether it has merely reached some metastable state. In many cases, we can
use the method of coupled Markov chains to eliminate this problem and provide samples
precisely according to the steady-state distribution.

In subsection 4.2.1 we review the definition of the Ising model and describe a simple
algorithm for obtaining unbiased Ising samples that works well if the system is above (and
not too close to) the critical temperature. We also define the Potts model, which generalizes
the Ising model to the situation in which there are more than two possible spins.

In subsection 4.2.2 we consider the random cluster model. This model turns out to be
very useful, in large part because random Ising and Potts states can be derived from random-
cluster states. In many cases the best way to get Ising or Potts states is via the random
cluster model. We show how to apply the method of monotone coupling from the past to
get unbiased samples, and include a picture of a perfectly equilibrated Ising state obtained
by this method (Figure 1-1).

Finally, in subsection 4.2.3 we show how to apply our methods to the square ice model
and the dimer model on the square and honeycomb grids.

We also mention that interest in these models is not restricted to physicists. For in-
stance, in image processing, to undo the effects of blurring and noise one may place a Gibbs
distribution on the set of possible images. The energy of a possible image depends on the
observed pixel values, and nearby pixels tend to have similar values. Sampling from this
Gibbs distribution can be effective in reducing noise. See [38] and [11] for more information.



4.2.1 The Ising model

Here we introduce the Ising model, and the single-site heat bath algorithm for sampling
from it. The efficiency of the heat bath algorithm has been the object of much study [78]
[73] [37] [46] [69] [64]. To summarize, it runs quickly at temperatures above the critical
temperature, but below this temperature it takes an enormously long time to randomize.
(In subsection 4.2.2 we will describe a different algorithm which does not suffer from this
"critical slowing down"; however, that algorithm does not apply when different parts of the
substance are subjected to magnetic fields of different polarity, which makes that algorithm
less suitable for some applications, such as image processing.)

The Ising model was introduced to model ferromagnetic substances; it is also equivalent to
a lattice gas model [9]. An Ising system consists of a collection of n small interacting magnets,
possibly in the presence of an external magnetic field. Each magnet may be aligned up or
down. (In general there are more directions that a magnet may point, but in crystals such
as FeC12 and FeCO 3 there are in fact just two directions [9].) Magnets that are close to each
other prefer to be aligned in the same direction, and all magnets prefer to be aligned with
the external magnetic field (which sometimes varies from site to site, but is often constant).
These preferences are quantified in the total energy E of the system

E = - aijoioj - Bioi,
i<ji

where Bi is the strength of the external field as measured at site i, ai is 1 if magnet i is
aligned up and -1 if magnet i is aligned down, and ai,j Ž 0 represents the interaction
strength between magnets i and j.

Often the n magnets are arranged in a 2D or 3D lattice, and ai,j is 1 if magnets i and j
are adjacent in the lattice, and 0 otherwise.

Characterizing what the system looks like at a given temperature is useful in the study
of ferromagnetism. To study the system, we may sample a random state from the Gibbs
distribution with a Markov chain. The single-site heat bath algorithm, also known as Glauber
dynamics, iterates the following operation: Pick a magnet, either in sequence or at random,
and then randomize its alignment, holding all of the remaining magnets fixed. There are
two possible choices for the next state, denoted by at and or, with energies E, and E. We
have Pr[at]/ Pr[a,] = e-(Er-Eý)/kT = e- (A E)/kT. Thus a single update is simple to perform,
and it is easy to check that this defines an ergodic Markov chain for the Gibbs distribution.

To get an exact sample, we make the following observation: If we have two spin-
configurations a and r with the property that each spin-up site in a is also spin-up in
T, then we may evolve both configurations simultaneously according to the single-site heat
bath algorithm, and this property is maintained. The all spin-up state is "maximal", and
the all spin-down state is "minimal", so we have a monotone Markov chain to which we can
apply the method of coupling from the past. Indeed, this is just a special case of our general
algorithm for attractive spin-systems.

It is crucial that the ai,js be non-negative; if this were not the case, the system would not
be attractive, and our method would not apply. (A few special cases, such as a paramagnetic
system on a bipartite lattice, reduce to the attractive case.) However, there are no additional
constraints on the aij's and the Bi's; once the system is known to be attractive, we can be



sure that our method applies, at least in a theoretical sense.
Also note that we can update two spins in parallel if the corresponding sites are non-

adjacent (i.e., if the associated aij vanishes), because the spin at one such site does not
affect the conditional distribution for the spins at another. For instance, on a square grid,
we can update half of the spins in parallel in a single step, and then update the other half
at the next step. Despite the speed-up available from parallelization, there is no guarantee
that the heat bath Markov chain will be a practical one. Indeed, it is well-known that it
becomes disastrously slow near the critical temperature.

An important generalization of the Ising model is the q-state Potts model, in which each
site may have one of q different "spins". Wu [82] gives a survey describing the physical
significance of the Potts model. In a Potts configuration a, each site i has spin oi which is
one of 1,2, 3,... , q. The energy of a Potts configuration is

F = -aiy(I - S,,,,J) + 3 BI(1 - iei ),
i<j

where S is the Kronecker delta-function, equal to 1 if its subscripts are equal and 0 otherwise,
aij > 0 is the interaction strength between sites i and j, Bi is the strength of the magnetic
field at site i, and ei is the polarity of the magnetic field at site i. As before, adjacent sites
prefer to have the same spin. When q = 2, the Potts-model energy reduces to the Ising-model
energy aside from an additive constant (which does not affect the Gibbs distribution) and a
scaling factor of two (which corresponds to a factor of two in the temperature).

4.2.2 Random cluster model

The random cluster model was introduced by Fortuin and Kasteleyn [35] and generalizes
the Ising and Potts models. (The random cluster model is also closely related to the Tutte
polynomial of a graph (see [12]).) The Ising state shown in Figure 1-1 was generated with
the methods described here.

In the random cluster model we have an undirected graph G, and the states of the system
are subsets H of the edges of the graph. Often G is a two- or three-dimensional lattice. Each
edge {i,j} has associated with it a number pi. between 0 and 1 indicating how likely the edge
is to be in the subgraph. There is a parameter q which indicates how favorable it is for the
subgraph to have many connected components. In particular, the probability of observing a
particular subgraph H C G is proportional to

fi (A3H - pkl) qC (H),{i~J}6H ) {fi13*10H

where C(H) is the number of connected components of H (isolated vertices count as com-
ponents of size 1). To derive a random q-spin Potts state from a random H, one assigns a
common random spin to all the vertices lying in any given connected component (see Sokal's
survey [71] for more information on this).

Sweeny [74] used the results of Fortuin and Kasteleyn to generate random q-spin Potts
states near the critical temperature. He used the "single-bond heat bath" algorithm (i.e.



Glauber dynamics) to sample from the random cluster model, and then converted these
samples into Potts states. The single-bond heat bath algorithm for sampling from the ran-
dom cluster model is a Markov chain which focuses on a single edge of G at a time and,
conditioning on the rest of H, randomly determines whether or not to include this edge in
the new state H'. It turns out that the random clusters are in some ways more directly
informative than the Potts states themselves, since for instance they can be used to obtain
more precise information on spin correlations.

Swendsen and Wang [75] proposed a different Markov chain based on the relation between
the random cluster and Potts models. Given a random-cluster sample, they compute a
random Potts state consistent with the clusters. Given a Potts state, they compute a random
subgraph of G consistent with the Potts state. Their chain alternates between these two
phases. In another variation due to Wolff [81], a single cluster is built from the spin states
and then flipped. One major advantage of these approaches over the single-bond heat bath
algorithm is that they obviate the need to determine connectivity for many pairs of vertices
adjacent in V. Determining the connectivity can be computationally expensive, so Sweeny
gave an algorithm for dynamically maintaining which vertices remain connected each time
an edge is added or deleted. The dynamic connectivity algorithm is limited to planar graphs,
but the Markov chain itself is general.

We will now argue that the single-bond heat bath algorithm is monotone for q > 1, so
that the method of monotone coupling from the past applies to it. Here the states of the
Markov chain are partially ordered by subgraph-inclusion, the top state is G, and the bottom
state is the empty graph. We claim that when q _ 1, this partial order is preserved by the
Markov chain. At each step we pick an edge (either randomly or in sequence) and apply the
heat bath Markov chain to this particular edge. If the two sites connected by this edge are
in separate clusters in both states, or in the same cluster in both states, then the probability
of including the edge is the same, so the partial order is preserved. If in one state they are
in the same cluster while in the second state they are in separate clusters, then 1) the first
state is the larger state, and 2) the probability of putting a bond there is larger for the first
state. Hence the partial order is preserved, and our approach can be applied.

We have been unable to find monotonicity in the Swendsen-Wang or Wolff algorithms.
Recent developments in dynamic connectivity algorithms [43] may make the single-bond heat
bath algorithm a viable option, given that one can obtain exact samples at effectively all
temperatures simultaneously using the heat bath algorithm. (See the discussion at the end
of section 4.1, and also Chapter 5.)

While we know of no good rigorous bounds on how long monotone coupling from the past
will take with the random cluster, in practice it runs fairly quickly. Jerrum and Sinclair solved
the related problem of approximating the partition function (defined as the normalizing
constant in the Gibbs distribution) in polynomial time [48].

4.2.3 Ice and dimer models

In the square ice (or "six-vertex") model whose residual entropy was determined by Lieb [60],
states are assignments of orientation to the edges of a square grid, such that at each internal
vertex there are equal numbers of incoming and outgoing edges (the "ice condition"). The
six vertex configurations correspond to the six ways in which a water molecule in an ice



crystal can orient itself so that its two protons (hydrogen atoms) are pointing towards two
of the four adjacent oxygen atoms, and the ice condition reflects the fact that the protons
from adjacent molecules will repel each other. The assumption that the ice condition is
satisfied everywhere is tantamount to the assumption that the system is at temperature
zero, so that in particular the Gibbs distribution is just the uniform distribution on the set
of minimum-energy configurations.

Let us assume that our square grid is a finite rectangle, where sites along the boundary
have edges that lead nowhere but nonetheless have a definite orientation. To turn ice-
configurations on this rectangle into elements of a distributive lattice, we first pass to the
dual model by rotating each directed edge 90 degrees clockwise about its midpoint. This
gives a model on the dual square grid in which every internal square cell must be bounded by
two clockwise edges and two counterclockwise edges. One may think of such an orientation
as a "discrete conservative vector field" on the set of edges of the grid; here conservativity
means that if one travels between two points in the grid, the number of forward-directed
edges along which one travels, minus the number of backward-directed edges, is independent
of the path one takes between the two points.

One can then introduce an integer-valued function on the vertices, called a height function,
with the property that adjacent vertices have heights that differ by 1, such that the edge
between vertex i and vertex j points from i to j if and only if j is the higher of the two
vertices. (If one pursues the analogue with field theory, one might think of this as a potential
function associated with the discrete vector field.) Height functions for the six-vertex model
were first introduced by van Beijeren [80].

The set of height functions with prescribed boundary conditions can be shown to form
a distributive lattice under the natural operations of taking the maximum or minimum of
the heights of two height functions at all the various points in the grid [67]. Hence one can
sample from the uniform distribution on the set of such height functions, and thereby obtain
a random sample from the set of ice-configurations.

Note that this approach applies to models other than square ice; for instance, it also
applies to the "twenty-vertex" model on a triangular grid, in which each vertex has three
incoming edges and three outgoing edges. However, in all these applications it is important
that the finite graph that one uses be planar. In particular, one cannot apply these ideas
directly to the study of finite models with free periodic boundary conditions (or equivalently
graphs on a torus), because such graphs are not in general simply connected.

Another class of models to which our methods apply are dimer models on bipartite planar
graphs. A dimer configuration on such a graph is a subset of the edges such that every vertex
of the graph belongs to exactly one of the chosen edges. This model corresponds to adsorption
of diatomic molecules on a crystal surface, and the assumption that every vertex belongs to
an edge corresponds to the assumption that the system is in a lowest-energy state, as will
be the case at zero temperature.

Here, as in the case of ice-models, one can introduce a height function that encodes the
combinatorial structure and makes it possible to view the states as elements of a distributive
lattice. This approach can be traced back to Levitov [59] and Zheng and Sachdev [83] in
the case of the square lattice, and to B16te and Hilhorst [15] in the case of the hexagonal
lattice. An independent development is due to Thurston [79], building on earlier work of
Conway [24]. A generalization of this technique is described in [67].



Thurston's article describes the construction not in terms of dimer models (or equivalently
perfect matchings of graphs) but rather in terms of tilings. That is, a dimer configuration
on a square or hexagonal grid corresponds to a tiling of a plane region by dominoes (unions
of two adjacent squares in the dual grid) or lozenges (unions of two adjacent equilateral
triangles in the dual grid).

Figure 4-1: A random tiling of a finite region by dominoes.

Using the distributive lattice structure on the set of tilings, and applying coupling from
the past, one can generate random tilings of finite regions. This permits us to study the effects
that the imposition of boundary conditions can have even well away from the boundary. One
such phenomenon is the "arctic circle effect" described in [49]; using our random-generation



procedure we have been able to ascertain that such domain-wall effects are fairly general,
albeit associated with boundary conditions that may be deemed non-physical.

For instance, Figure 4-1 shows a particular finite region and a tiling chosen uniformly at
random from the set of all domino-tilings of that region. To highlight the non-homogeneity
of the statistics of the tiling, we have shaded those horizontal dominoes whose left square is
black, under the natural black/white checkerboard coloring of the squares. The heterogeneity
of the statistics is a consequence of the "non-flatness" of the height function on the boundary;
this phenomenon is given a more detailed study in [19]. The tiling was generated using
software written by the Jim Propp's undergraduate research assistants, using the methods
described in this article.

Computer programs for generating random configurations of this kind can used as ex-
ploratory tools for the general problem of understanding the role played by boundary con-
ditions in these classes of models.

4.3 Combinatorial Applications

Order ideals and antichains
Let P be a finite partially ordered set, and call a subset I of P an order ideal if for all

x E Iand y < x, we havey E I. The set of order ideals of P is denoted by J(P); it is
a distributive lattice under the operations of union and intersection, and it is a standard
theorem (see [72]) that every finite distributive lattice is of the form J(P) for some finite
partially ordered set P.

To turn J(P) into a spin-system, we let V be the set of elements of P, and we associate
the order ideal I with the spin-configuration a in which a(i) is T or . according to whether
i E I or i ' I. Let us give each spin-configuration that arises in this fashion equal probability
7r(a) = 1/IJ(P)I, and give the rest probability 0. Then it is easy to check that the ratio
r(at)/7r(ao) is 1/0, 0/1, or 1/1, according to whether a \ {i} is not an order ideal, a U {i}
is not an order ideal, or both sets are order ideals. Indeed, it is not much harder to see
that r is attractive, so that by running the heat bath algorithm in a coupling-from-the-past
framework, we can generate a uniform random element of J(P).

We remind the reader that there is a one-to-one correspondence between order ideals
of P and antichains of P (sets of pairwise-incomparable elements of P); specifically, for
every order ideal I of P, the set of maximal elements of I forms an antichain, and every
antichain determines a unique order ideal I. Hence, sampling uniformly from the elements
of a finite distributive lattice is equivalent to sampling uniformly from the set of order ideals
of a general finite poset, which is in turn equivalent to sampling uniformly from the set of
antichains of a general finite poset.

We also point out that the heat bath procedure can often be done in parallel for many
i E P at once. Suppose we color the elements of P so that no element covers another element
of the same color. (If P is graded, then its Hasse diagram is bipartite and two colors suffice.)
We use these vertex-colors to assign colors to the edges of the Hasse diagram G of J(P). For
definiteness, let us focus on one color, called "red". If I is an order ideal, and K is the set
of all red elements of P whose adjunction to or removal from I yields an order ideal, then
a "red move" is the operation of replacing I by the union of I \ K with a random subset



of K. If one alternates red moves with blue moves and so on, then one will converge to the
uniform distribution on J(P).

Cautionary note: While in many cases of interest this procedure will quickly find a
random order ideal of a poset, it is not difficult to construct examples where the run time is
very large. For instance, let P be the poset of 2n elements numbered 1,..., 2n, such that
x < y if and only if x < n < y in the standard order on the integers. Then the Hasse diagram
G of J(P) will be two hypercubes joined at a single vertex, and the time for the upper and
lower order ideals to coalesce will be exponential in n. Note however, that because of the
bottleneck in this graph, the (uncoupled) random walk on this graph also takes exponential
time to get close to random.

In the next two examples, there are other methods that can be applied to sample from
the desired distribution, but it is still interesting to see how versatile the basic approach is.

Lattice paths. First, consider the set of all lattice-paths of length a + b from the point
(a, 0) to the point (0, b). There are (a+±) such paths, and there are a number of elementary
techniques that one can use in order to generate a path at random. However, let us define the
number of inversions in such a path as the number of times that an upward step is followed
(not necessarily immediately) by a leftward step, so that the path from (a, 0) to (a, b) to
(0, b) has ab inversions, and let us decree that each lattice-path should have probability
proportional to q to the power of the number of inversions, for some q > 0. It so happens in
this case that one can work out exactly what the constant of proportionality is, because one
can sum q# of inversions over all lattice-paths with two fixed endpoints (these are the coefficients
of the so-called "Gaussian binomial coefficients" [72]), and as a result of this there exists an
efficient bounded-time procedure for generating a random q-weighted lattice-path. However,
one also has the option of making use of coupling from the past, as we now explain.

If we order the set of the unit squares inside the rectangle with corners (0, 0), (a, 0), (0, b),
(a, b) by decreeing that the square with lower-left corner (i',j') is less than or equal to the
square with lower-left corner (i,j) if and only if i' < i and j' < j, then we see that the unit
squares that lie below and to the left of a lattice-path that joins (a, 0) and (0, b) form an
order ideal, and that there is indeed a one-to-one-correspondence between the lattice-paths
and the order ideals. Moreover, the number of inversions in a lattice path corresponds to
the cardinality of the order ideal, so the order ideal I has probability proportional to q"lI. It
is not hard to show for any finite distributive lattice, a probability distribution of this form
always makes it an attractive spin system. Therefore, the method applies. When q = 1,
roughly n3 log n steps on average are needed in order to generate an unbiased sample, where
a r b - n.

Independent sets. A natural way to try to apply the heat bath approach to generate a
random independent set in a graph G (that is, a subset no two of whose vertices are joined by
an edge) is first to color the vertices so that no two adjacent vertices are the same color, and
then, cycling through the color classes, replace the current independent set I by the union
of I \ K with some random subset of K, where K is the set of vertices of a particular color
that are not joined by an edge to any vertex in I. It is simple to show that for any fixed
color, this update operation preserves the uniform distribution on the set of independent
sets, since it is nothing more than a random step in an edge-subgraph whose components are
all degree-regular graphs (hypercubes, in fact). Since the composite mapping obtained by



cycling through all the vertices gives an ergodic Markov chain, there is at most one stationary
distribution, and the uniform distribution must be it.

Unfortunately, we do not know of any rigorous estimates for the rate at which the pre-
ceding algorithm gives convergence to the uniform distribution, nor do we know of a way
to use coupling-ideas to get empirical estimates of the mixing time. However, in the case
where G is bipartite, a pretty trick of Kim, Shor, and Winkler [56] permits us to apply
monotone CFTP. Specifically, let us suppose that the vertices of G have been classified as
white and black, so that every edge joins vertices of opposite color. If we write the in-
dependent set I as Iwhite U Iblack, then the set of independent sets becomes a distributive
lattice if one defines the meet of I and I' as (Iwhite n Iwhite) U (Iblack U black) and their join
as (Iwhite U w'white) U (Iblack !lack) Hence one can sample from the uniform distribution on
the set of independent sets in any finite bipartite graph. (This Markov chain may be slowly
mixing for some graphs; for instance, in the case of the complete bipartite graph on n + n
vertices, the Markov chain is isomorphic to the slowly-mixing Markov chain mentioned in
the earlier cautionary note.)

Permutations. Recall that inv(7r) denotes the number of inversions of 7r, that is, the
number of pairs (i,j) such that i < j and 7r(i) > r(j). For certain statistical applications,
it is useful to sample permutations 7r E Sn on n items such that the probability of 7r is
proportional to qinv(r); this is sometimes called "Mallows' phi model through Kendall's tau".
For background see [52] and [27] and the references contained therein. We represent the
permutation 7r by the n-tuple [r(1), .. .,r(n)].

Consider the following Markov chain which samples according to the aforementioned
distribution. Pick a random pair of adjacent items. With probability 1/(q + 1) put the two
in ascending order, i.e. "sort them", and with probability q/(q + 1) put them in descending
order, i.e. "un-sort" them. It is clear that this Markov chain is ergodic and preserves the
desired probability distribution.

Define a partial order on S, by 7r < o, if and only if r can be obtained from cr by sorting
adjacent elements (no un-sorting moves); this is called the weak Bruhat order [14]. The
bottom element is the identity permutation 0 : i -+ Zi and the top element is the totally
reversing permutation 1 : I -+ n + 1 - i. The above Markov chain is a random walk on the
Hasse diagram of this partial order. (See [72] for background on partially ordered sets.) This
Markov chain, coupled with itself in the obvious way, does not preserve the partial order,
even on S3. However, it is still true that when the top and bottom states coalesce, all states
have coalesced, as we will show below. In symbols, the claim is that F"(O) = Ft(i) implies
that Ft2(.) is constant. Therefore the technique of coupling from the past can be applied to
this Markov chain.

The reason that the top and bottom states determine whether or not all states get
mapped to the same state is that suitable projections of the Markov chain are monotone.
Given a permutation 7r, let Ok(7r) be an associated threshold function. That is, Ok(7r) is a
sequence of 0's and l's, with a 1 at location i if and only 7r(i) > k. Just as the Markov chain
sorts or un-sorts adjacent sites in a permutation, it sorts or un-sorts adjacent sites in the
0-1 sequence. Indeed, these sequences of 0's and l's correspond to lattice-paths of the sort
considered in the first example.

A sequence sl of O's and l's dominates another such sequence s2 if the partial sums of s,
are at least as large as the partial sums of S2, i.e., =1 s 1 (i) =1 s 2 (i) for all 0 < I < n.



The Markov chain preserves dominance in sequences of 0's and l's. This may be checked
by case-analysis. For each k, we have that if Ok(F()) = Ok(Ftl(1)), then Ok(F1())is
constant. But note that if two permutations differ, then they must differ in some threshold
function. Hence these threshold functions determine the permutation, and Ft2(.) must be
constant if it maps 0 and i to the same state.

Recently Felsner and Wernisch generalized this monotone Markov chain to sublattices of
the weak Bruhat lattice. Given two permutations rl and r2 with r1 _< 7r2, the random walk
is restricted to those permutations oa such that 7r < o < 7r2 . This Markov chain can be used
to sample random linear extensions of a two-dimensional partially ordered set [31].

Even more recently, Kendall has shown how extend monotone coupling from the past
to sample from a continuous state space known as the area-interaction point process, and
reports that it works well in practice [53].



Chapter 5

Omnithermal Sampling

In the course of collecting examples of monotone Markov chains, the one that caught our
attention as perhaps being the most interesting to people in another field was the heat bath
Markov chain for sampling from the random cluster model. I went about implementing
monotone coupling from the past as applied to this Markov chain principally to see how
well it worked, and to serve as a demonstration that monotone CFTP is something that
can be done. It turned out that (for q not too large) a relatively small number of "sweeps"
through the lattice were necessary to achieve convergence. However, due to the time needed
to compute connectivity queries that the Markov chain needed, it seemed unlikely that a
physicist might be persuaded to use this exact sampling mechanism rather than put up with
initialization bias from the related but non-monotone Swendsen-Wang or Wolff algorithms.
However, as it turns out, the heat bath Markov chain can be extended to generate a sample
state that encodes within it random samples of the random cluster model at all possible
temperatures. Such "omnithermal samples" are much more informative than their single
temperature counterparts that the Swendsen-Wang and Wolff algorithms produce. After all,
many times one is interested in the shape of certain curves as a function of temperature,
usually to characterize the singular behavior of the function around the critical temperature,
and a single omnithermal sample yields an entire sampled curve, whereas a great many single-
temperature samples would be required to get similar information. Given some quantity of
computer time, a priori it is not obvious whether it is better to spend it generating a small
number of very informative samples, or a larger number of less informative samples. This
chapter serves as a preliminary report on experiments using perfectly random omnithermal
samples.

5.1 Connectivity Algorithms

Since the vast majority of time spent simulating the single bond heat bath Markov chain
for the random cluster model is spent determining connectivity, it is worth spending some
time implementing good connectivity algorithms. Sweeney [74] gave an efficient dynamic
algorithm for the case when the underlying graph is planar. Since the Markov chain incre-
mentally updates the current subgraph, a dynamic algorithm can repeatedly update a data
structure that is then used to answer the connectivity queries. Recently there has been much
research in dynamic connectivity algorithms, some relying on the geometry associated with



the graph, and some working for general graphs (see e.g. [43]).
The xrc program, which performed all of the simulations described in this chapter,

contains within it three connectivity algorithms, each of which works for general graphs,
and none of which are dynamic. One is used for generating single-temperature samples,
the second for generating omnithermal samples, and the third, for analyzing omnithermal
samples. The reader is refered to [26] for background on algorithms.

For the straightfoward single temperature single bond heat bath, the Markov chain needs
to determine whether or not two vertices u and v (adjacent in the underlying graph) are
connected in the current subgraph. For these queries, xrc does two interleaved breadth-first-
searches, one starting from u and the other from v. If either u or v is in a small connected
component, then the algorithm will quickly determine the answer one way or the other.
(Note that if one did a search starting from just u, it might be that u is in a percolating
component 1 but that v is not. In that case the procedure would take a very long time, and
hence the reason for two interleaved searches.) If both u and v are in large components,
then because of the geometry of the grid, chances are that these are the same component,
and that there is a short path between u and v, which the procedure will quickly find. Thus
we have a heuristic argument that the interleaved two-source breadth-first-search is usually
fast, and this seems to be borne out in practice.

There is more than one omnithermal single bond heat bath Markov chain for the random
cluster model, but both of them require the same connectivity information. We are given
two vertices u and v (as before adjacent in the underlying graph), and what we wish to
determine is the first value of p at which u and v become connected. One approach is to do
a binary search on the possible values of p, using the above interleaved breadth first search.
This approach works reasonably well, say with 16-bit values of p, but for increased precision,
another algorithm becomes desireable: two-source interleaved Dijkstra's algorithm.

Once some omnithermal samples have been generated, it is necessary to analyze them.
To do this, we sort the edges by their p value, and adjoin them one at a time to the current
graph, initially empty. Each time an edge is adjoined, certain physical quantities such as the
expected internal energy can be updated. For doing this, xrc uses the standard subset-union
algorithm.

The implementation of the monotone coupling-from-the-past version of the single-bond
heat bath algorithm, in both single-temperature and omnithermal versions (see subsec-
tion 4.1.1), appears to work well in practice, provided that q is not too large. For instance,
when q = 2 on a 512 x 512 toroidal grid, at the critical temperature it is only necessary
to start at around time -30 to get coalescence by time 0. (Here one step, also called a
sweep, consists of doing a single-bond heat bath step for each edge of the graph.) Using
the above connectivity algorithm, each sweep takes about twenty seconds on a Sparcstation.
Omnithermal sweeps (see subsection 4.1.1) take longer, in part because determining con-
nectivity is somewhat more involved, but principally because in the single-temperature case
a large fraction of the heat bath steps do not require a connectivity query, whereas in the
omnithermal case they all do. Since nearly all of the computer's time is spent computing

1A percolating component is an infinite component, so technically finite graphs do not have them.
Nonetheless finite graphs will have very large components when their infinite counterparts have percolating
components, and u might be in such a large component.



connectivity, the incentive for improving on current dynamic connectivity algorithms is clear.

5.2 Empirical Results

The preliminary omnithermal results are striking; in Figure 1-4 one can see quite clearly
the critical point, and how the internal energy and spontaneous magnetization vary with
temperature on the three-dimensional grid when q = 2. Other macroscopically-defined
quantities may also be graphed as a monotone function of p. This makes it possible to
obtain estimates of the critical exponents from just a single (omnithermal) sample, whereas
other approaches require a large number of samples at a number of different values of p close
to criticality.

It is generally thought that the internal energy, spontaneous magnetization, and other
quantities follow a power law near the critical. Figures 5-1 and 5-2 show log-log plots of
these quantities. In both log-log plots there are two curves, one for the region p < pc, and
one for the region p > Pc, though for the spontaneous magnetization only the p > Pc curve
is interesting. The slopes of these curves will be the critical exponents. There remains much
work to do, but these figures should give an indication of what one can do with omnithermal
samples.
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Figure 5-1: A log-log plot of the internal energy minus the critical energy versus the difference
between p and pc.
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Chapter 6

Random Spanning Trees via Coupling
From the Past

In this chapter we see how to obtain random spanning trees (arborescences) from a directed
graph within O(Tc) time. Most graphs have exponentially many arborescences; the complete
graph has nn- 1 of them. Visiting all the states in the space of trees is infeasible, but we need
only wait a constant multiple of the time needed for the random walk on the underlying graph
to visit all the vertices. First we describe how to sample arborescences with prescribed root
efficiently, and then we extend the algorithm to sampling arborescences with unconstrained
root.

Consider the following Markov chain on directed spanning trees, with edges directed to
the root. Take the root, move it one step according to the underlying Markov chain on the
graph. The new vertex becomes the new root. Make an arc from the old root to the new one,
and delete the out-going edge from the new root. See Figure 6-1. It is easy to check that the
stationary distribution of this Markov chain is such that the probability of a directed tree is
proportional to the product of the edge transition probabilities of its arcs.

Figure 6-1: Example move of the Markov chain on arborescences. The root, shown in white,
moves according to the underlying Markov chain.

Broder and Aldous used this Markov chain to sample random spanning trees of undirected
graphs. They used the fact that the simple random walk on an undirected graph is a
reversible Markov chain to make an algorithm that outputs a random tree in finite time.
Kandel et al. also use this Markov chain in their sampling of spanning arborescences of
Eulerian directed graphs. We will apply the method of coupling from the past to the tree
Markov chain to sample from the spanning arborescences of a general directed graph.



Consider the following Markov chain Mr on the set of spanning trees rooted at r: Given
a spanning tree rooted at r, perform the random walk as above until the root returns to
r. Call the path the walk takes from r to r an excursion. The resulting spanning tree is
the next state of the Markov chain. The following two easy lemmas show that this Markov
chain's steady state distribution is random on the set of spanning trees rooted at r.

Lemma 14 Mr is irreducible and aperiodic if the underlying graph is strongly connected.

Proof: Since the graph is strongly connected, there is a trajectory r = uo, ul, ... ,ul = r
that visits every vertex. Consider a tree T rooted at r. For i from I - 1 down to 1, perform
an excursion(s) that goes to ui via the trajectory, then returns to r via the path in T. For
each vertex v other than r, the last time v was reached, the succeeding vertex is its parent in
the tree. Regardless of the initial starting tree, after a fixed number of excursions the final
tree is T. Thus MAr can be neither reducible nor periodic. E

Lemma 15 Mr preserves the right distribution on trees rooted at r.

Proof: It is straightforward to see that M preserves the distribution on trees. Pick a
random tree, and do the walk N steps. Each tree in the walk is random. If the ith tree is
rooted at r, then it is a random tree rooted at r. Consider the subsequence of trees rooted
at r. Each tree occurs in the subsequence with the proper frequency, and each tree (other
than first) is obtained from the previous tree by running Mr one step. El

We can use the Markov chain Mr to in making a RandomMap () procedure that satisfies
the requirements of the CFTP procedure: (1) RandomMap() preserves the steady state dis-
tribution on trees, (2) maps returned by RandomMap () may be easily composed, and (3) it
is easy to determine whether or not a composition of random tree maps is collapsing.

We will represent spanning trees with arrays of size n, with the ith array entry giving the
parent of vertex i, and the array entry of the root being blank. We will also represent maps
from the set of trees rooted at r to the set of trees rooted at r with an array of size n. Each
array entry is either blank, or else contains a vertex label. (We won't be able to represent
all such maps in this way, but this does not matter.) Given a map M (represented as an
array) and a tree T rooted at r, the new tree can be obtained by performing the following
operation for each array index i: if M[i] is not blank, copy it into T[i]. The way we construct
the map array will guarantee that the result will always be a tree.

Given an excursion from the root to itself, if we visit vertex x, set M[x] to be the next
vertex we visit. If we visit x multiple times, it is the next vertex of the last time the
excursion visits x. If the excursion does not visit x, M[z] is blank. Finally, set M[r] to be
blank. Applying the map defined by M to a tree has the effect of running the Markov chain
Mr one step. Thus condition (1) is satisfied.

It is straightforward to compose two spanning tree maps M1 and M 2. If the map M2 is
applied before M1 , the composition map is obtained by setting (M1 o M2)[i] to Mi[i], unless
Mi[i] is blank, in which case we set (M1 o M2 )[i] to M2[i]. Thus we can compose tree maps
efficiently. We can also test if a map is collapsing - it is collapsing if the only blank entry
is at the root. Hence all the requirements for CFTP are satisfied:



Theorem 16 The procedure shown in Figure 6-2 returns a random arborescence with root
r. The expected number of times we observe the Markov chain is < 3To, and the memory is
O(n).

Proof: The procedure repeatedly samples excursions which define random tree maps as
described above, and composes them, prepending new maps to the current map as prescribed
by CFTP, and returns the resulting tree. The expected runtime is at most three cover times:
we wait until we see the root, then visit all the vertices, and then return to the root. O(n)
memory is used to store the directed tree and remember which vertices were discovered
during the present excursion. OI

Note that the 3To time bound is rather pessimistic. If many arborescences with the given
root are desired, then the average time per directed tree is one cover-and-return time.

Corollary 17 We may sample random arborescences within 18 cover times.

Proof: The root of a random arborescence is distributed according to 7r, the stationary
distribution of the underlying Markov chain. So we may pick a random root using the
unbiased state-sampler treated in Chapter 2, and then pick a random tree given that root.
We need only observe the Markov chain for 15+ 3 cover times on average. The computational
effort is also O(Tc), and the memory is O(n). El

Suppose one is given a weighted directed graph and a random directed spanning tree
is desired, with probability proportional to the product of the edge weights. If all the
weighted out-degrees are the same, then we may normalize them to be one, and directly
apply the above algorithm on the associated Markov chain. Even if the out-degrees are
different, we may still sample a random arborescence with prescribed root. The only potential
difficulty lies in picking the root of a random arborescence. But this problem is readily
resolved by considering the continuous time Markov chain associated with the graph. It is
straightforward to generalize the unbiased sampler, specifically the RandomMap() procedure,
to work in continuous time. The waiting time for a transition is an exponential random
variable. If we define T, to be the expected number of transitions before the graph is
covered, then the runtime is O(T,).



wait until we visit r
for i - to n

status[i] ,- UNSEEN
Tree[r] +- nil
status[r] +- DEFINED

numassigned -- 1
while num.assigned < n

ptr +- 0
S ý- r

repeat
t +-- NextState(O
if status[s] = UNSEEN then

status[s] +- SEEN
stack[ptr + +] +- s

if status[s] = SEEN then
Tree[s] +-- t

s5+--t

until s = r
numassigned +- numassigned + ptr
while ptr > 0

status[stack[- - ptr]] +- DEFINED
return Tree

Figure 6-2: Pseudocode for generating a random arborescence with prescribed root within
3 cover times. The parent of node i is stored in Tree[i]. If node i has not been seen, then
status[i] = UNSEEN. The nodes seen for the first time in the present excursion from the
root are stored on a stack. If i is such a node, then status[i] = SEEN and Tree[i] may be
changed if i is seen again in the present excursion. When the root is encountered the present
excursion ends; status[i] is set equal to DEFINED, making Tree[i] immutable for the nodes
i seen so far and thereby effectively prepending the excursion just finished to the preceding
excursions.



Chapter 7

Random Spanning Trees via Cycle
Popping

7.1 Cycle Popping Algorithms

In this chapter we describe a process called cycle poppingn that is quite effective at re-
turning random spanning trees of a directed weighted graph. As with CFTP, we give
a couple of variations, some being simpler, others being more general. One variation,
RandomTreeWithRoot (), will return a tree with a specified root. When the root is not
specified, then sometimes it is possible to randomly select the root so that the problem is re-
duced to a single call to RandomTreeWithRoot (). This is the case for undirected or Eulerian
graphs. For general graphs, one can use RandomTree().

Recall from section 1.4 that for a given graph G we can define two different Markov
chains, G and G, where in G we first adjoin self loops to make the graph out-degree reg-
ular. RandomTreeWithRoot() uses G since T,(G) = T,(G). RandomTree() uses G since
T(G) = T(G). Both procedures use a subroutine RandomSuccessor(u) that returns a
random successor vertex using the appropriate Markov chain. As before, Markov chain
parameters written with overbars refer to 0, and parameters written with tildes refer to G.

RandomTreeWithRoot () (see Figure 7.1) maintains a "current tree", which initially con-
sists of just the root. While there remain vertices not in the tree, the algorithm does a
random walk from one such vertex, erasing cycles as they are created, until the walk encoun-
ters the current tree. Then the cycle-erased trajectory gets added to the current tree. It has
been known for some time that the path from a vertex to the root of a random spanning tree
is a loop-erased random walk (see e.g. [66] and [18]), but this is the first time that anyone has
used this fact to make a provably efficient algorithm. See [58] for background on loop-erased
random walks.

Theorem 18 RandomTreeWithRoot(r) returns a random spanning tree rooted at r.

The proofs of this and subsequent theorems in the introduction are in section 7.2.
Suppose that what we want is a random spanning tree without prescribing the root. If we

can easily pick a random vertex from the steady state distribution r of the random walk on
G, then pick a -- random root, and call RandomTreeWithRoot () with this root. The result



RandomTreeWithRoot (r)
for i <- 1 to n

InTree[i] +- false
Tree[r] <-- nil
InTree[r] +- true
for i - 1 to n

U +-I
while not InTree[u]

Tree[u] -- RandomSuccessor(u)

u <-- Tree[]u
U +-i

while not InTree[u]
InTree[u] +- true

u +-- Tree[u]

return Tree

Figure 7-1: Algorithm for obtaining random spanning tree with prescribed root r.

is a random spanning tree. Aldous calls this theorem "the most often rediscovered result in
probability theory" [51; [17] includes a nice proof.

For undirected graphs and Eulerian graphs, " is just the uniform distribution on vertices.
In the case of undirected graphs, since any vertex r may be used to generate a free spanning
tree, it turns out to be more efficient to pick r to be a random endpoint of a random edge,
sample from Tr, and then pick a uniformly random vertex to be the root.

Theorem 19 The number of times that RandomTreeWithRoot (r) calls RandomSuccessor()
is given by the mean commute time between r and a hr-random vertex. (The running time is
linear in the number of calls to RandomSuccessor ().)

With EiTj denoting the expected number of steps for a random walk started at i to reach j,
the mean commute time between i and j is EiTj + EjTi, and is always dominated by twice
the cover time.

The mean hitting time is the expected time it takes to go from a ir-random vertex to
another r-randomrn vertex:

7 = 3 ir(i)r(j)EiTj .
i~j

(A nice fact, which the proofs will not need, is that for each start vertex i, r = 3 r(j)EiTj
[5].) If G is stochastic, and we have a ir-random vertex r as root, RandomTreeWithRoot ()
makes an average of 2T calls to RandomSuccessor (). For undirected graphs, a random
endpoint of a random edge is #r-random, so the variation described above runs in 27 time.
In these cases it is perhaps surprising that the running time should be so small, since the
expected time for just the first vertex to reach the root is T. The expected additional work
needed to connect all the remaining vertices to the root is also T.



For general graphs RandomTree() (see Figure 7.2) may be used to sample a random

spanning tree within O(f) time. Note that since the root of a random tree is distributed
according to -T, the second algorithm automatically yields a random sampling procedure for
generic Markov chains: return the root of a random spanning tree.

RandomTree ()
E +-- 1
repeat

eE - /2
tree -- Attempt ()(E)

until tree Failure
return tree

Attempt ()(e)
for i +- 1 to n

InTree[i] +-- false
numroots +- 0

for i +- 1 to n
u+-i

while not InTree[u]
if Chance(E) then

Tree[u] +- nil
InTree[u] - true

numroots - numroots + 1

if numroots = 2 then
return Failure

else

Tree[u] +- RandomSuccessor(u)
u -- Tree[u]

u +-- z
while not InTree[u]

InTree[u] +- true

u +- Tree[u]

return Tree

Figure 7-2: Algorithm for obtaining random spanning trees. Chance(s) returns true with
probability -.

The second algorithm is essentially the same as the first algorithm, except that it adjoins
an extra vertex labeled "death" to the graph. The probability of a normal vertex moving to
death is e, and the other transition probabilities are scaled down by 1 - 6. Since the death
node is a sink, it makes a natural root from which to grow a spanning tree. The death node
is then deleted from the spanning tree, resulting in a rooted forest in the original graph. If
the forest has one tree, then it is a random tree. Otherwise E is decreased and another try
is made.



Theorem 20 If Attempt () returns a spanning tree, then it is a random spanning tree. Fur-
thermore, RandomTree() calls RandomSuccessor() on average < 227r times, so the expected
running time of RandomTree() is O(r).

7.2 Analysis of Cycle Popping

We will describe a randomized process that results in the random generation of a tree with a
given root r. The procedure RandomTreeWithRoot () simulates this process. Then we reduce
the problem of finding a random tree to that of finding a random tree with a given root, and
analyze the running time.

Associate with vertex r an empty stack, and associate with each vertex u r an infinite
stack of random vertices Su = SI, Su,2 , Su,3,... such that

Pr[Su,i = v] = Pr[RandomSuccessor(u) = v],

and such that all the items in all the stacks are mutually independent. The process will pop
items off the stacks. To pop an item off u's current stack Su,i,Su,i+1, Su,i+2,..., replace it
with Su,i+l , Su,i+2 ....

The tops of the stacks define a directed graph G, which contains edge (u, v) if and only
if u's stack is nonempty and its top (first) item is v. If there is a directed cycle in G, then
by "popping the cycle" we mean that we pop the top item of the stack of each vertex in the
cycle. The process is summarized in Figure 7.2. If this process terminates, the result will

while G has a cycle
Pop any such cycle off the stacks

return tree left on stacks

Figure 7-3: Cycle popping procedure.

be a directed spanning tree with root r. We will see later that this process terminates with
probability 1 iff there exists a spanning tree with root r and nonzero weight. But first let us
consider what effect the choices of which cycle to pop might have.

For convenience, suppose there are an infinite number of colors, and that stack entry S,,
has color i. Then the directed graph G defined by the stacks is vertex-colored, and the cycles
that get popped are colored. A cycle may be popped many times, but a colored cycle can
only be popped once. If eventually there are no more cycles, the result is a colored tree.

Theorem 21 The choices of which cycle to pop next are irrelevant: For a given set of stacks,
either 1) the algorithm never terminates for any set of choices, or 2) the algorithm returns
some fixed colored tree independent of the set of choices.

Proof: Consider a colored cycle C that can be popped, i.e. there is a sequence of colored
cycles C1, C2 , 03, ... , Ck = C that may be popped one after the other until C is popped.
But suppose that the first colored cycle that the algorithm pops is not C1, but instead C. Is
it still possible for C to get popped? If C shares no vertices with Ci,... , Ck, then the answer



is clearly yes. Otherwise, let Ci be the first of these cycles that shares a vertex with C. If Ci
and C are not equal as cycles, then they share some vertex w which has different successor
vertices in the two cycles. But since none of Cl,... , Ci_ 1 contain w, w has the same color in
Ci and C, so it must have the same successor vertex in the two cycles. Since C and C, are
equal as cycles, and C shares no vertices with C1,... , Ci1, C and Ci are equal as colored
cycles. Hence we may pop colored cycles C = Ci, C 1, 02,... , Ci-1, Ci+1, ... , k = C.

If there are infinitely many colored cycles which can be popped, then there always will be
infinitely many colored cycles which can be popped, and the algorithm never terminates. If
there are a finite number of cycles which can be popped, then every one of them is eventually
popped. The number of these cycles containing vertex u determines u's color in the resulting
tree. E

To summarize, the stacks uniquely define a tree together with a partially ordered set of
cycles layered on top of it. The algorithm peels off these cycles to find the tree.

An implementation of the cycle popping algorithm might start at some vertex, and do a
walk on the stacks so that the next vertex is given by the top of the current vertex's stack.
Whenever a vertex is re-encountered, then a cycle has been found, and it may be popped. If
the current tree (initially just the root r) is encountered, then if we redo the walk from the
start vertex with the updated stacks, no vertex encountered is part of a cycle. These vertices
may then be added to the current tree, and the implemenation may then start again at
another vertex. RandomTreeWithRoot () is just this implementation. RandomSuccessor(u)
reads the top of u's stack and deletes this item; in case this item wasn't supposed to be
popped, it gets stored in the Tree array. The InTree array gives the vertices of the current
tree.

If there is a tree with root r and nonzero weight, then a random walk started at any
vertex eventually reaches r with probability 1. Thus the algorithm halts with probability 1
if such a tree exists.
Proof of Theorem 18: Consider the probability that the stacks define a tree T rooted
at r and a set C of colored cycles. By the i.i.d. nature of the stack entries, this probability
factors into a term depending on C alone and a term depending on T alone- the product
of the cycle weights, and the weight of T. Even if we condition on a particular set of cycles
being popped, the resulting tree is distributed according to Tr. O

The proof of Theorem 18 also shows that if we sum the weights of sets of colored cycles
that exclude vertex r, the result is the reciprocal of the weighted sum of trees rooted at r.
Proof of Theorem 19: How many times will RandomSuccessor(u) get called on aver-
age? Since the order of cycle popping is irrelevant, we may assume that the first trajectory
starts at u. It is a standard result (see [5]) that the expected number of times the random
walk started at u returns to u before reaching r is given by 7r(u)[ET,r + ErTu], where the
"return" at time 0 is included, and EiTj is the expected number of steps to reach j starting
from i. Thus the number of calls to RandomSuccessor() is

E 7r(u)(EuTr + ErTu)
U

uL



If the root r is 7r-random, then the expected number of calls to RandomSuccessor () is

E w(u)w(r)(ETr + ErTu) = 27.
u,r.

Since the number of calls to RandomSuccessor() is at least n - 1, we get for free

n-1T > 2-- 2

This inequality isn't hard to obtain by other methods, but this way we get a nice combina-
torial interpretation of the numerator.
Proof of Theorem 20: Consider the original graph modified to include a "death node",
where every original node has an E chance of moving to the death node, which is a sink.
Sample a random spanning tree rooted at the death node. If the death node has one child,
then the subtree is a random spanning tree of the original graph. The Attempt () procedure
aborts if the death node will have multiple children, and otherwise it returns a random
spanning tree.

The expected number of steps before the second death is 2/E, which upper bounds the
expected running time of Attempt (). Suppose that we start at a 7r-random location and do
the random walk until death. The node at which the death occurs is a 7r-random node, and
it is the death node's first child. Suppose that at this point all future deaths are suppressed.
By Theorem 19, the expected number of additional calls to RandomSuccessorO() before the
tree is built is at most 2r. This bound has two consequences. First, the expected number of
steps that a call to Attempt() will take is bounded above by 1/e + 2r. More importantly,
the expected number of suppressed deaths is bounded by 2re. Thus the probability that a
second death will occur is bounded by 2re. But the probability of aborting is independent of
which vertex Attempt () starts at. Hence the probability of aborting is at most min(1, 2re).

The expected amount of work done before 1/E becomes bigger than r is bounded by O(r).
Afterwards the probability that a call to Attempt () results in Failure decays exponentially.
The probability that Attempt () gets called at least i additional times is 2

- O(i 2 ), while the
expected amount of work done the ith time is T2 O (i). Thus the total amount of work done
is O(r). (0)

If constant factors do not concern the reader, the proof is done. The constant factor of
22 is derived below for the more diligent reader.

Let ej be the value of E the jth time RandomTree() calls Attempt() procedure. The
expected number of times T that RandomTree() calls RandomSuccessor() is bounded by

00 i-1

T < min(2/ei, 1/ei + 2r) min(1, 27rj).
i=1 j=1

Suppose Ej = s - j (we will set s below, the algorithm uses s = 2). Let k be the smallest j with
2rEj < 1, and let n = 2TEk; 1/s < , < 1. Breaking the sum apart and using ej = K/(27)S k - j



we get

k-1 00 
i-1_ Sk + +i-k27 K/Sjk

i=1 . i=k j=k

T k- 2 1  00 ( is- <_1 -. 1 -= t + 1 K/s'

2T i=1 - i=0 j=0

2 1 00 St.
2- + E - + ii SiS-i(i-1)/2 i

K S i=0

2/r + i(i3)2 i1 + S-i(i-1)/2 i
s-1

i=0 i=0

Now since this expression is concave up in n, we may evaluate it at n = 1 and K = 1/s,
and take the maximum as an upper bound. It should not be surprising that evaluating at
these two values of K yields the same answer. With s = 2 we get a bound of T < 21.85T.

n
Suppose that the initial E is chosen to be 1/s raised to a random power between 0 and

1. Then n is 1/s raised to a random power between 0 and 1, and we have

z 40(1--1/s iE [ K'] = -in 0
1 i= 0

Then when s = 2.3 we get T < 2 1T.

64



Chapter 8

Trees and Matchings

8.1 Generalizing Temperley's Bijection

Temperley [76] observed that asymptotically the m x n rectangular grid has about as many
spanning trees as the 2m x 2n rectangular grid has perfect matchings. Soon afterwards he
found a bijection between trees of the m x n grid and perfect matchings in the (2m + 1) x
(2n + 1) rectangular grid with a corner removed [77]. Propp, and, independently, Burton
and Pemantle [18], generalized this bijection to map spanning trees of general (undirected
unweighted) plane graphs to perfect matchings of a related graph. Here we consider the
directed weighted case. This final generalization turns out to be just what is needed to
generate random matchings of hexagonal and square-octagon lattices, even though these
lattices are themselves unweighted and undirected. Analyzing the directed weighted case
also yields some interesting identities.

Let G be a plane graph with a distinguished face (the "outer face") and a distinguished
vertex. We make a new weighted graph H based on G, and to avoid confusion, we will
say that H has nodes and links whereas G has vertices and edges. Figure 8-1 provides an
illustration of this construction. We will have some liberty in choosing the link weights, but
otherwise G and its embedding will determine H.

The nodes of H are the vertices, edges, and faces of G. Each edge of G is incident to
two vertices of G (its endpoints) and two faces of G (the faces which it borders). Every edge
node of H is linked to the two vertex nodes and two face nodes to which it is incident in
G. The links between an edge node and a vertex node are always given weight 1, but the
links between an edge node and a face node may be given any nonnegative weight; weight 0
is equivalent to omitting the link.

Let the directed weighted graph F have as its vertices the face nodes of H. Given two
face nodes u and v, there is a directed edge from u to v with weight w in F if and only H
has an edge node e incident to u and v, and the link between e and u has weight w.

Another graph V can be defined from H analogously, except using vertex nodes rather
than face nodes. This graph V is just G with edges made bidirectional and given weight 1.

Intuitively, H contains within it both G, and the dual of G with edges bidirectional
and weighted. Now H won't have any matchings because the number of vertex nodes and
face nodes is two more than the number of edge nodes, but if we let H' be H with the
distinguished vertex node and the distinguished face node omitted, then H' will in general



have matchings. Let the weight of a matching be the product of the weights of edges. The
generalized Temperley bijection takes a matching of H' to a spanning tree of G rooted at the
distinguished vertex, and a spanning tree of G's dual, rooted at the distinguished face, such
that the two spanning trees share no edge nodes, but together contain all the edge nodes.
Either spanning tree is enough to determine the matching of H', so instead of picking a
uniformly random spanning tree from G's dual, we may choose a spanning tree of G's dual
so that the probability is proportional to the product of the link weights in F. Now it's clear
that the weight of a matching in H' is the product of the weights of the two spanning trees,
and the weight of the spanning tree in V is 1, so the weight of a matching is the weight
of the spanning tree in F. If we pick a random spanning tree in F, the result is a random
matching in H'.

8.2 The Hexagonal Lattice

In this section will illustrate the above technique in Figure 8-1 by giving a bijection be-
tween spanning trees of a directed graph and matchings in the hexagonal lattice. Here G
is itself a hexagonal lattice, and H' is a hexagonal lattice with about three times as many
hexagons. Jim Propp and I, and independently Rick Kenyon [55], found the hexagonal lattice
application of the above technique.

8.3 The Square-Octagon Lattice

For the square-octagon lattice, an excerpt is shown in Figure 8-2, if one tries to generalize the
tree-matching bijection by assigning V's, E's, and F's to the vertices in a compatible fashion,
then with much work you can show that there is in fact, no way to do it. Nonetheless, it is
possible to generalize the bijection to this lattice. To do it we need to do two transformations
on the lattice. The first transformation is called "urban renewal", a term coined by Jim
Propp who learned of the method from Greg Kuperberg. In the second transformation, we
adjust the edge weights. At that point, if a square-octagon region has suitable boundary
conditions, it will possible to assign V's, E's, and F's to the vertices in a way that allows us
to use the generalized Temperley bijection described in section 8.1. Before actually doing
this, we outline some the results that will follow.

First of all, using the random tree generator of Chapter 7, and the bijection between
spanning trees of a weighted graph and matchings of the square-octagon regions, random
such matchings can be sampled in linear time. The expected number of steps to create the
random spanning tree is bounded by 1.27025 times the number of vertices (this constant is
R, defined below), and the remaining steps are readily done deterministically in linear time.

Secondly, this tree formulation gives rise to a closed-form formula for the number of
matchings of a certain class of regions. Taking large regions, and dividing the log of the
number of matchings by the number of octagons gives that twice the entropy per octagon is

ln(2) + j ln(5/2 + cos(7rx) + cos(iry))dx dy,
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Figure 8-1: Panel (a) contains the plane graph G, with vertices shown as small disks. The
outer face and upper left-most vertex are distinguished. Panel (b) shows the graph H derived
from G. Vertex nodes are shown as small disks, face nodes are shown as circles (except the
outer face node, which is not shown), and edge nodes are shown as even smaller disks. The
links between edge nodes and vertex nodes are prescribed to have weight 1. For the links
between edge nodes and face nodes, we choose some of them to have weight 1 (the ones
drawn with solid lines) and others to have weight 0 (the ones drawn with dashed lines).
Panel (c) shows the graph H', which is H with the nodes corresponding to the outer face
and distinguished vertex deleted. Links with weight 0 are not shown here, and the edge nodes
have been displaced slightly from there positions in panel (b). Panel (d) shows the graph F,
also derived from H. The links in F are directed, and the links of weight 0 have been omitted.
Directed spanning trees of F rooted at the outer face are in one-to-one correspondence with
matchings of H'.



Figure 8-2: A portion of the square-octagon lattice.

or about 1.507982602. This is the maximal entropy, as the tree method only works for regions
of maximal entropy. (This value for the entropy also follows from formulas given in [30].)

Thirdly, the connection with trees yields the probability that a given vertex is matched
with its neighbor that borders the same two octagons: 0.11892523996.... Analytically, this
probability is 1/2 - (3/10)R where R is given by

R= 1 1 (ry)dxdy
o Jo 1 - 2/5 cos(7rx)- 2/5 cos(y)

or the more computationally efficient

R = 2 (1/5)2k
k=O

or the closed form
R = (2/7r)K(4/5)

with K(k) denoting Legendre's complete elliptic integral of the first kind. This last formula
for R was derived by Henry Cohn from the second formula. Richard Stanley pointed out
that the transcendence of R is proved in [68].

The reader is also refered to [54], where Kenyon develops a procedure for computing
entropy and placement probabilities of perfect matchings in bipartite planar lattices without
using trees.



8.3.1 Urban renewal

The mapping between square-octagon matchings and spanning trees makes use of a trick
called "urban renewal". Tricks such as urban renewal have been used by researchers in the
statistical mechanics literature for decades, but since understanding it is essential for what
follows, a description is included here. This cute name comes from viewing the square-
octagon lattice as a set of cities (the squares) that communicate with one another via the
edges that separate octagons. Now the graph of cities is itself bipartite, so we may say that
every city is either rich or poor, with every poor city having four rich neighbors and vice
versa. The process of urban renewal on a poor city merges each of its four vertices with its
four neighboring vertices, and then multiplies each of the edge weights of the poor city by
1/2, as shown in Figure 8-3.

9-

-* I

---------------------------------------------------------------------------------------4

Figure 8-3: Urban renewal. The poor city is the inner square in the left graph, and is
connected to the rest of the graph (not shown) via only four vertices at the corners, some
of which may actually be absent. The city and its connections are replaced with weight 1/2
edges, shown as dashed lines.

Prior to urban renewal, every matching will match either 0, 2, or 4 of the poor city's
vertices with the rest of the graph, and if 2 vertices, then these vertices are adjacent. If zero
vertices, then since the city has two possible matchings, a pair of matchings in the before
graph get mapped to one matching of the same weight in the after graph. If two vertices,
then the matching in the before graph gets mapped to a matching in the after graph that
uses the weight 1/2 edge connecting the corresponding two vertices in the after graph. Those
matchings which use four vertices get mapped to a pair of matchings in the after graph, each
using two weight 1/2 edges. Thus urban renewal on a poor city will reduce the weighted
sum of matchings by 1/2, and given one random bit, a random matching in the before graph
is readily transformed into a random matching in the after graph, and vice versa.

Along the boundaries, some of the poor cities won't have four neighbors, but urban
renewal can still be done. One way to see this is to adjoin a pair of connected vertices to the
graph for each missing poor city's neighbor, and connect one of these vertices to the poor
city. This operation won't affect the number of matchings or placement probabilities, and
after urban renewal, the pair may be deleted again, again without affecting the matchings

- so if some of the poor city's vertices don't have neighbors, these vertices are deleted by
urban renewal. Doing urban renewal on each of the poor cities in the square-octagon lattice
will yield the more familiar Cartesian lattice.



8.3.2 Weighted directed spanning trees

The following derivations for the formulae for entropy and the placement probabilities closely
follow the derivation for entropy of regular domino tilings. Consider the square-octagon
region shown in Figure 8-4. It has 3 octagonal bumps on the left, and four on top, so by
convention let's call it a region of order 3,4. (In a region of order L, M, there are 2LM
octagons.) An octagonal column and octagonal row meet at a unique square, these will be
the rich cities. The rich cities have been labeled by their coordinates to enhance clarity. The
other (L + 1)(M + 1) squares will be the poor cities, and we will do urban renewal on them
as shown in Figure 8-4. We will compute the weighted number of matchings of the resulting
graph, and multiply by 2(L1)(M+1)

Now for any vertex, we may reweight all the edges incident to the vertex without affecting
the probability distribution on matchings. Reweight them as follows: For the square (rich
city) with coordinates i,j, multiply the weights of the edges incident to the top left and
lower right corners by 2- `- , the other two corners by 2i+j.

2-2-3 2i+3

21+J 2-i-3

Edges that are internal to the rich cities remain weighted by 1. The long edges come in
pairs. The lower or right edge of the pair gets its weight doubled, to become 1, while the
upper or left edges of the pair get their weight halved to become 1/4.

The next thing we need to do is interpret this graph as a plane graph and its dual (see
Figure 8-5). The upper left vertices of the small squares represent vertices, the lower right
vertices represent faces, and the other two vertices represent edges. The result is the graph
shown in Figure 8-5, which has LM + 1 vertices- LM of them on a grid, and one "outer
vertex" (not in the original graph) that all the open edges connect to. A random spanning
tree on the vertices of this graph rooted at the outer vertex, determines a dual tree on the
faces of this graph, rooted at the upper left face, which together determine a matching of
the graph in Figure 8-4. The weight of the matching equals the weight of the primal tree,
since the reweighting left every dual tree with weight one. So now we need to compute the
weighted sum of directed spanning trees of the graph F in Figure 8-5, where the weight of
a tree is (1/4)# tree edges directed up or left

Remark These trees may be sampled quickly via a biased random walk and one of the tree
algorithms given in Chapter 7. At this point we note that in the case of sampling spanning
trees of the plane with these edge weights, the straightforward Aldous/Broder style process
does not work as it does in the unweighted case, as this random walk is non-recurrent. In
contrast, the new tree algorithm can in principle be extended to the plane. Start at some
vertex, with probability one the random walk will eventually never return to that vertex,
and drift away to infinity, leaving a path behind. There are four possibilities for the first
edge in the path, and their probabilities will be computed below. In principle one could
write a procedure, which given a set of vertices and information on whether each vertex is
in the infinite path, and if so, what the next vertex is. Such a procedure would take a lot of
work to construct, and I don't know how to go about doing it. But given this procedure as a
black box, and a finite region of the plane, one could determine those vertices of the region
in the infinite path. Then starting from each of the other vertices, do a random walk until
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Figure 8-4: Region of order 3,4 before and after urban renewal. The poor cities on which
urban renewal is done are labeled with "ur", the rich cities are labeled with their coordinates.
Dashed edges have weight 1/2.
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Figure 8-5: The region from Figure 8-4 after reweighting - dashed edges have weight 1/4.
A distinguished vertex and distinguished outer face have been adjoined to give a graph H
which nicely decomposes into a graph G and a weighted directed graph F.

the infinite path is encountered. (This encounter may happen outside the finite region, but
it will happen with probability 1.) At that point we will have a partial view of a random
weighted spanning tree of the plane. Naturally we won't be able to view the entire spanning
tree of the plane, but we would be able to view any finite portion of the tree.

8.3.3 Entropy

To count the weighted sum of spanning trees of the above region, we can appeal to the matrix
tree theorem. Make a (LM + 1) x (LM + 1) matrix A with entry A,,y equal to the negative
of the weight from node x to node y, and Ax, set to make the row sums zero. Delete the
row and column of the root vertex, which is conveniently the outer face node, and compute
the determinant.

We compute the determinant using the same method that worked for ordinary domino
tilings, i.e. we use Fourier analysis. Compute all the eigenvalues, and multiply them. With
1 < k, < L and 1 < k2 < M, the (kl, k2)th eigenvector Ek1 ,k2 is given by

Ek 1 ,k2 (i,j) = 2
i+i sin(iirkl/(L + 1)) sin(jrk2 /(M + 1))

and its eigenvalue is 5/2 - cos(7rki/(L + 1)) - cos(7rk 2/(M + 1)).
It can be checked that these eigenvectors are linearly independent. Since there are only

LM eigenvalues, multiplying them gives the weighted sum of trees.
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Therefore, the number of matchings of a region of order L, M shown above is given by

L M

2 (L+I)(M+1) x J 1 (5/2 - cos(rwkl/(L + 1)) - cos(wrk 2/(M + 1))
k1=1 k2 =1

which may be rewritten as

L M

2 (L+1)(M+I) x JJ 1 (5/2 + cos(7rki/(L + 1)) + cos(wrk 2/(M + 1))).
k1=1 k2 =1

(For our working example with L = 3 and M = 4, the answer is 28295974656, which may be
double-checked using a program called vaxmacs.) Taking the logarithm, dividing by LM,
and passing to the limit of large L and M gives the above formula for the entropy.

8.3.4 Placement probabilities

Consider a vertex in the spanning tree of the face graph of Figure 8-5. If its successor is to
the right or down, then in the square-octagon graph it is paired with another vertex of its
city, otherwise it is paired with a vertex of a different city. Chapter 7 gives an algorithm
for sampling random spanning trees, and by analyzing it we can compute the probability of
these two events. We can sample the path from a vertex to root of a random tree by doing
a loop-erased random walk from that vertex until it reaches the root. The moves are right
or down with probability 4/10 and up or left with probability 1/10, since in the face graph
the links going to the left or up have 1/4 the weight of the other links. For large graphs, the
random walk drifts to the right and down, so we consider this biased random walk on Z2.
Starting at the origin, with probability 1 the origin is visited finitely many times. Consider
the last visit, we seek the probability that the walk left the origin by going up or to the left.

Let p+ be the probability of returning to 0 given that we just left 0 going up or left, and
p- is the probability of return given that we just left going right or down.

Any path of length 21 > 0 by which the random walk returns to the origin has probability
(4/100)1. If we reflect the path so that the up and right moves switch, and the left and down
down moves switch, we get a probability-preserving bijection between the paths that leave
going by going up and the paths that leave by going down. Adding up these probabilities
gives the equation

1 + 4
10 10

The probability that the random walk returns to the origin k times, and then leaves going
up-left and never returns, is given by (p+/5 + 4 p-/ 5 )k x (1 - p+)/5. Summing over k, we
find the probability of last exit going up or left is

(1 - p+)/5 1 3/10 1 3
1 - 2p+/5 2 1 - 2p+/5 2 10



where R is the expected number of visits to the origin, counting the visit at time 0:

00 o+ 1

R = (2p+ /5) k  1 - 2p+/5
k= 1 - 2p±/5~k=0

The above infinite sum formula for R is easy to derive. The integral formula follows from
some Fourier analysis on large finite grids, but since this formula doesn't appear appear to
be exceedingly useful, its derivation is omitted.

8.4 Recontiling Markov chain

Sections 8.2 and 8.3 generalize the tree-based algorithm for generating random matchings of
regions with certain boundary conditions to work for the hexagonal lattice and the square-
octagon lattice with certain boundary conditions. The tree algorithm in Chapter 7 makes
it possible to generate the necessary trees quickly. But for regions with other boundary
conditions, the tree approach does not seem to work, at least not directly. In this section
we give another monotone Markov chain for generating random matchings of a bipartite
plane graph. It relies on our ability to find matchings of certain regions very quickly, and
monotonicity allows us to use monotone coupling from the past (Chapter 3) to generate
perfectly random samples.

Let A and B be regions of Z2. We wish to randomly tile A, and we are able to randomly
tile B. Regard the tilings as matchings of points on a grid. (Then heights are defined on
the squares.) If there is a simple cycle in A such that every other edge is in the matching,
then by "alternate the cycle" we mean "replace all edges of the matching contained within
the cycle with edges of the cycle not contained in the matching." Consider the following
Markov chain on the tilings of A. Randomly tile B, and then look at the union of the two
matchings. Alternate all cycles in this union.

Theorem 22 This Markov chain satisfies detailed balance, and hence preserves the uniform
distribution.

Proof: Consider two tilings T1 and T2 of region A. Let S be the set of tilings of region
B that take T+ to T2 under the above Markov chain, and let S' be the tilings that take T2 to
T1. Suppose that in addition to alternating the cycles in T1, we alternate them in the tiling
R of region B as well. Each modified tiling R' is in S', and this mapping is reversible, so
IS'l > IS. By symmetry S'| = SI. Since the tilings of B are chosen uniformly at random
independent of the tiling of A, the probability of going from T1 to T2 equals the probability
of going from T2 to T1 . E

Here we assume the reader is familiar with the notion of height functions for mathcings
of planar bipartite graphs - see e.g. [79].

Lemma 23 Alternating the edges in a cycle either raises the heights of all interior squares
by 4, or lowers them all by 4.

Theorem 24 This Markov chain is monotone.



Proof: Consider a matching R of region B, and two matchings U and L of region A
with U > L. Let R(X) denote the matching of A obtained by updating matching X of
A with matching R of B. The proof is by induction on the number of cycles in (R U U)
plus the number of cycles in (R U L). If this number is 0, then R(U) = U > L = R(L).
Otherwise we may suppose that (RU U) has a cycle (the other case is symmetric). Consider
an innermost such cycle, i.e. a cycle which itself does not contain other cycles in its interior
besides 2-cycles. If alternating this cycle raises the heights, then alternate it to get U' > L.
By induction we have R(U) = R(U') > R(L). Otherwise, alternating the cycle lowers the
height of U. Shade the squares within the cycle whose height in U equals their height in
L, and consider a boundary edge e of this shaded region. If e is an edge of the cycle, then
either 1) it belongs to R or 2) it belongs to U. If case 2), then the height in U crossing the
edge goes down by 3, and so it must go down by 3 in L as well since L < U, and hence e
belongs to L. Either way e belongs to (R U L). If e is interior to the cycle, then either 1)
the height in U goes up 1 crossing the edge, but the height in L goes down by 3, or 2) the
height in U goes up by 3 crossing the edge, but the height in L goes down by 1. In case 1)
e belongs L, while in case 2), e belongs to U, but since edge e is interior to an innermost
cycle, e must also belong to R. Either way e belongs to (R U L). In any case, the boundary
of the shaded region consists of one or more alternating cycles in (R U L), which can't be
pushed up, so they will get pushed down. Alternate these cycles in L, and also the one in
U. We have U' > L', and by induction R(U) = R(U') > R(L') = R(L). 1I

Note that we can take B to be a superset of A, or we may instead use a sequence of
different B's which cover region A. The Markov chain given in section 4.2.3 effectively uses
a sequence of squares for the B's. Even if using a square grid for B is not optimal for tilted
regions A, there is still considerable flexibility, and it seems likely that one can improve on
the previous Markov chain.



Glossary

aperiodic: in reference to Markov chains, one for which the gcd of all cycles with positive
probability is one

approximate sampling: the process of generating sample points from some probability
distrubtion 7r' that is in some sense close to a desired probability distribution 7r. See
also "exact sampling".

bipartite graph: a graph whose vertices may be partitioned into two sets, such that every
edge connects two vertices from opposite sets

bond-correlated percolation model: see "random cluster model"

CFTP: see coupling from the past

coalescing random walk model: see section 2.3

coupling from the past: a general protocol for obtaining exact samples from a Markov
chain (see section 2.1). Specializations include monotone-CFTP (Chapter 3), tree-
CFTP (Chapter 6), voter-CFTP (section 1.2), cover-CFTP (section 2.2), and coalescing-
CFTP (section 2.3).

critical exponents: see section 4.2

cycle popping: a simple technique for generating random spanning trees - see Chapter 7

de Bruijn sequence: A de Bruijn sequence of order n is a cyclic string of 2' 0's and l's
such that each possible string of n 0's and l's occurs in the de Bruijn sequence exactly
once.

degree: the number of edges incident to a vertex in a graph. For directed graphs the in-
degree is the number of edges directed in to a vertex, while the out-degree is the number
of edges directed away from a vertex. In a weighted graph, rather than counting edges,
their weights are added.

detailed balance: If 7 is a probability distribution, and a Markov chain has transition
probabilities given by pij,, then the Markov chain has detailed balance if for all i and
j, 7r(i)pi,j = 7r(j)pi,j. If a Markov chain satisfies detailed balance, then it preserves the
probability distribution 7r.

distributive lattice: A lattice for which x V (y A z) = (x V y) A (x V z) and x A (y V z) =
(x A y) V (x A z). Every finite distributive lattice is isomorphic to the lattice of order
ideals of some partially ordered set.

edge: a pair of vertices



ergodic: in reference to Markov chains, one that is irreducible and aperiodic. Note: some-
times "ergodic" is used to mean irreducible without regard to periodicity.

Eulerian graph:: A directed graph for which the in-degree of each vertex equals its out-
degree.

exact sampling: the process of generating sample points from some desired probability
distribution 7r. See also "approximate sampling".

Gibbs distribution: See also "partition function". The probability distribution for which
Pr[state is s] = Z-leES/kT, where E. is the energy of state s, k is Boltzmann's constant,
T is the temperature, and Z is the partition function.

graph: A set of points, called vertices, together with a set of pairs of vertices, called edges.
If the pairs are unordered, the graph is undirected, otherwise it is directed. If the edges
have weights associated with them, the graph is weighted.

heat bath: A randomizing operation based on a partitioning of the state space. Given a
state, the randomizing operation determines its part of the state space, and then picks
a random state in that part. A heat bath Markov chain uses many different partitions.

irreducible: in reference to Markov chains, one for which there exists a vertex x such that
every other vertex y has a path of positive probability leading to x

Ising model: A statistical mechanical model originally introduced by Ising to model ferro-
magnetic systems. Given a weighted undirected graph, an Ising state is associates with
each vertex (also known as a site) a spin up state 1 or a spin down state 4. The energy
of an Ising state is the sum over all edges which connect sites with opposite spin, the
weight of the edge.

Las Vegas: an algorithm which uses randomness for efficiency, but always outputs the
correct answer

lattice: a partially ordered set such that every pair of elements x and y have a least upper
bound x V y and a greatest lower bound x A y

lattice: an infinite graph, which may be embedded in the plane, has translational symmetry,
and such that there are only finitely many equivalence classes of vertices modulo the
translations

matching: A partition of the vertices of a graph into pairs, such that each pair is given by
the endpoints of an edge of the graph.

Markov chain: A state space together with a state and a randomizing operation. As time
goes forward, the state is updated according to the randomizing operation.

monotone: In reference to Markov chains, one whose state space has a partial order <,
such that if x < y and both states are updated via the same randomizing operation,
then the updated x is < the updated y.

Monte Carlo: an algorithm which uses randomness for efficiency, and which might possibly
output an incorrect answer

omnithermal sample: An object which maps any temperature to a random sample at that
temperature.



order ideal: A subset A of some partially ordered set X, such that x < y and y E A implies
x E A. The order ideals of a poset, together with the partial order of subset-inclusion,
form a distributive lattice.

partial order: a binary relation < on some set, such that 1) x < y and y < z implies x _< z,
and 2) x < y and y < x implies x = y

partition function: usually denoted with Z, Z = Estates s eEs/kT, where T is the temper-
ature of a system, E, is the energy of state s of the system, and k is Boltzmann's
constant.

phase transition: see section 4.2

poset: A partially ordered set.

Potts model: A generalization of the Ising model, introduced by Potts. Each site (vertex)
in a weighted undirected graph may assume one of q different spin values. The energy
of a Potts state is the sum over all edges connecting sites with different spins, the weight
of the edge.

random cluster model: A statistical mechanical model introduced by Fortuin and Kaste-
leyn. Given a weighted undirected graph, a random cluster state is a subgraph (same
vertex set, subset of the edges). The probability of a particular random cluster state is
proportional to p# edges(1 - p)# non-edgesq# connected components. The random cluster model
is closely related to the Ising (and Potts) models, and percolation.

recontile: an operation that brings two perfect matchings in closer agreement with one
another, by reconciling their differences. See section 8.4.

region: in reference to perfect matchings, a finite subset of Z x Z

sampling: generating random variables from some probability space. See also "approximate
sampling" and "exaact sampling".

spanning tree: A connected acyclic subgraph of a graph. When the graph is directed, we
assume that the spanning tree is in-directed, i.e. there is a root vertex, such that every
edge of the spanning tree is directed towards the root.

stationary distribution: in reference to Markov chains, a probability distribution 7r such
that if a state is chosen according to 7r and the chain is run one step, the resulting state
is also distributed according to 7r. If the Markov chain is irreducible, then there is only
one stationary distribution 7r.

steady state distribution: see "stationary distribution"

voter model: see section 2.3
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