THERMAL ANALYSIS OF DRY SPENT FUEL TRANSPORTATION AND STORAGE CASKS

by

XINHUI CHEN

B.E., Engineering Physics (1989)
Tsinghua University, Beijing
M.E., Engineering Physics (1991)
Tsinghua University, Beijing

SUBMITTED TO THE DEPARTMENT OF NUCLEAR ENGINEERING
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE IN NUCLEAR ENGINEERING
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
April 1996
© Massachusetts Institute of Technology, 1996

Signature of Author \qquad

Certified by \qquad Professor Neir E. Ioareas, Nuclear Engıneerıng Thesis Supervisor

Accepted by \qquad
Professol Jeffrey P. Freidberg Chairman, Department Committee on Graduate Students

THERMAL ANALYSIS OF DRY SPENT FUEL TRANSPORTATION AND STORAGE CASKS

by
XINHUI CHEN
Submitted to the Department of Nuclear Engineering
on April 18, 1996 in partial fulfillment of the requirements
for the Degree of Master of Science in Nuclear Engineering

Abstract

Three heat transfer mechanisms exist in the dry spent fuel transportation and storage cask: conduction, radiation, and convection. The methodologies for predicting the first two mechanisms in both the COBRA-SFS/RADGEN codes and the MIT Method are studied and compared. Conduction length factors are determined as those values which result in COBRASFS calculations generating the same peak clad temperatures for the same heat conduction problem as the MIT effective conductivity method. The functional dependence of these factors on pitch to diameter and wall to diameter ratios, fill gas and bundle size are derived theoretically. Then, radiative heat transfer is modeled along with conductive heat transfer. Studies of rod segments of 15° and 90° show that their effect on the peak clad temperature is within $3.2^{\circ} \mathrm{C}$. In addition, a bundle-lumping method is developed which makes it feasible for small computers to simulate large fuel bundles. In this method, a radiation factor, $\mathrm{F}_{\varepsilon \mathrm{r}}$, is introduced to compensate for excess radiative heat transfer when a large fuel bundle is homogenized into a smaller bundle. Furthermore, sensitivity studies of fuel rod emissivity, wall emissivity, and wall temperature, are undertaken to quantify the effect of these significant parameters on the peak clad temperature. Finally, an analytical heat transfer model is developed for the spent fuel cask and the solution procedure to find the maximum clad temperature is also provided.

Thesis Supervisor: Dr. Neil E. Todreas
Title: Professor of Nuclear Engineering and Mechanical Engineering
Thesis Reader: Dr. Michael J. Driscoll
Title: Professor Emeritus of Nuclear Engineering

ACKNOWLEDGMENT

I would like to express my sincere appreciation to the Korea Atomic Energy Research Institute (KAERI) for sponsoring this project.

I would like to thank Professor Neil E. Todreas, my thesis supervisor, for his supervision and assistance during the period of completing the thesis and beyond. Additionally, my appreciation and admiration go to Professor Michael J. Driscoll, my thesis reader. Thanks also go to Professor Mujid S. Kazimi, Head of the Department, for his review of Appendix 8.

My appreciation also goes to Judith M. Cuta of Pacific Northwest Laboratory for her prompt response to many code-related questions. Randall D. Manteufel and Phyllis M. Lovett are acknowledged for providing their coded MIT Method. I am also grateful to Tsu-Mu Kao for his appreciable Conduction-only calculations and evaluation of results from the pre-released Cycle 2 of COBRA-SFS.

The deepest of all, I would like to thank my wife, Shuying, for her continuous understanding and encouragement, especially for her sacrifice before and after our son Kevin (who makes my life so colorful and meaningful) was born. Many thanks go to my mom and dad for their living with us to take care of Kevin and my brother for his care-taking at home while my parents are here in the U. S. A..

TABLE OF CONTENTS

Abstract 2
Acknowledgment 3
Table of Contents 4
List of Tables 7
List of Figures 8
Chapter 1 Introduction 9
Chapter 2 Scope of the Study 11
2.1 Improved Input Parameters for COBRA-SFS 11
2.2 Lumped Effective Conductivity 11
2.3 Lumped Effective Conductivity Thermal Analysis of the KSC-7 Cask 11
2.4 Comments on KAERI's COBRA-SFS Thermal Analysis of the KSC-7 Cask 12
Chapter 3 Computational Tools 13
3.1 COBRA-SFS 13
3.2 RADGEN 13
3.3 The MIT Method 15
Chapter 4 Summary of the Approach 19
4.1 Conduction Modeling 19
4.1.1 COBRA-SFS Conduction Model 19
4.1.2 The MIT Conduction Model 20
4.1.3 Isothermal Rod (Clad) 20
4.1.4 Temperature Gradient in Pellet, Gap and Clad 23
4.2 Radiation Modeling 28
4.2.1 COBRA-SFS Radiation Model 28
4.2.2 The MIT Radiation Model 28
4.3 Convection Modeling 29
4.3.1 COBRA-SFS Convection Model 29
4.3.2 The MIT Convection Model 29
Chapter 5 Configurations of Interest and Boundary Conditions 31
Chapter 6 Predicted Temperatures for 17x17 Array by COBRA-SFS Preceding This Study 37
Chapter 7 Results of the Study 39
7.1 Improved Input Parameters for COBRA-SFS 39
7.1.1 Conduction 39
7.1.2 Radiation 51
7.1.3 Conduction and Radiation 59
7.1.4 Sensitivity Study on Emissivities 59
7.1.5 Summary 61
7.1.6 Recommendations 64
7.2 Lumped Effective Conductivity 64
7.2.1 Principle of Homogenization 66
7.2.2 Implementation of Homogenization 66
7.2.3 Lumped Fuel Bundle Analysis 69
7.2.4 Means to Compensate for the Excess Radiative Heat Transfer 72
7.2.5 Verification of the Homogenization Procedure for Varying Wall Temperatures 72
7.2.6 Summary 75
7.2.7 Recommendations 75
7.3 Lumped Effective Conductivity Thermal Analysis of the KSC-7 Cask. 79
7.3.1 Conductive Heat Transfer 79
7.3.2 Radiative Heat Transfer 83
7.3.3 Application to the KSC-7 Cask 87
7.3.4 Procedures to Find T6 92
7.3.5 Summary 93
7.4 Cornments on KAERI's COBRA-SFS Thermal Analysis of the KSC-7 Cask 93
7.4.1 Examination of KSC-7 Input Files from KAERI 93
7.4.2 Emissivity 93
7.4.3 Power Density 96
7.4.4 Examination of KSC-7 Results from KAERI (Quarter Model) 96
7.4.5 Examination of KSC-7 Results from KAERI (Full Model) 96
Chapter 8 Recommendations for Future Work 97
8.1 Conduction 97
8.2 Radiation 97
8.3 Convection 97
References 101
Appendices 103
Appendix 1 - Lumped 8x8 Fuel Bundle Analysis—Input File for COBRA-SFS (Cycle 1) 105
Appendix 2 - Lumped 8x8 Bundle Analysis-Input File for RADGEN (Cycle 1) 111
Appendix 3-17x17 Bundle Analysis-Input File for COBRA-SFS (Cycle 1) 113
Appendix 4-17x17 Bundle Analysis—Input File for RADGEN (Cycle 1) 127
Appendix 5-Quarter Section Model of KAERI (Received via E-mail on 10/07/94) 129
Appendix 6 - Selected Equations from Progress Report \#1 (X. Chen and N.E. Todreas, 8/8/94) 137
Appendix 7 - Other Work Performed 139
A7.1 Transplantation of COBRA-SFS from CYBER Version to SUN Version 139
A7.2 Simulations of KAERI's KSC-4 Cask 139
Appendix 8-Simple Hand Calculation with regard to Conduction-only and Conduction and Radiation Heat Transfer Mechanisms 145
Appendix 9-17x17 Bundle Analysis-Input File for COBRA-SFS (Cycle 2) 149
Appendix 10-17x17 Bundle Analysis-Input File for RADGEN (Cycle 2) 163

LIST OF TABLES

4-1 Fcond as a Function of p / d for Square Array 22
4-2 Biot Numbers for Zircaloy Cladding-Fluid pairs vs. Nusselt Number 24
6-1 Maximum Clad Temperature for Standard 17x17 Square Array under Base Case COBRA-SFS Modeling-Conduction and Radiation, 17x17 Bundle, 4684 W 38
7-1 Thermal Conductivities and Their Ratios at Relevant Temperatures 47
7-2 Comparison between COBRA-SFS and the MIT Method-Conduction-Only 17x17 Bundle 50
7-3 Exchange Factors from RADGEN Based on TAPE 10 File 56
7-4 Maximum Effect on Peak Clad Temperatures (${ }^{\circ} \mathrm{C}$) of 90° vs. 15° Rod Segments $-\dot{Q}=4684 \mathrm{~W}, \mathrm{~N}_{2}, 17 \mathrm{x} 17$, Conduction and Radiation 58
7-5 Comparison in the Peak Clad Temperature between COBRA-SFS and the MIT Method--Conduction and Radiation, 17×17 Bundle, GK Corresponding to Cases in Table 7-2 60
7-6 Sensitivity Study on Rod Emissivity-Conduction and Radiation, 17 x 17 Bundle, $\dot{\mathrm{Q}}=4684 \mathrm{~W}, \mathrm{~N}_{2}, \mathrm{GK}=17.1, \varepsilon_{\mathrm{W}}=0.3$ 62
7-7 Sensitivity Study on Wall Emissivity—Conduction and Radiation, 17x17 Bundle, $\dot{Q}=4684 \mathrm{~W}, \mathrm{~N}_{2}, \mathrm{GK}=17.1, \varepsilon_{\mathrm{r}}=0.8$ 63
7-8 Reduction in Peak Clad Temperature under Conduction and Radiation from the Recommended Change in GK Factor ($17 \mathrm{x} 17,4684 \mathrm{~W}, \varepsilon_{\mathrm{r}}=0.8, \varepsilon_{\mathrm{W}}=0.3$) 65
7-9 Major Geometric Parameters and Peak Clad Temperature for the Lumped and the Original Arrays- $\dot{Q}=4684 \mathrm{~W}, \mathrm{~N}_{2}$, the MIT Method, $\varepsilon_{\mathrm{W}}=0.3, \varepsilon_{\mathrm{r}}=0.8$ 70
7-10 GK Factors for Lumped 8x8 Bundle (from COBRA-SFS) 74
7-11 Peak Clad Temperatures vs. Rod Emissivity-8x8 Bundle, Conduction and Radiation, $\mathrm{N}_{2}, \mathrm{GK}=10.8, \varepsilon_{\mathrm{W}}=0.3$ 77
7-12 Data Discrepancy Between MIT and KAERI $8 x 8$ Fuel Bundles (for COBRA-SFS) 95
8-1 Nusselt Numbers for Fully Developed Velocity and Temperature Profiles in Tubes of Various Cross Sections (from [13]). 99
A7-1 Benchmark Problem: Validation of Code Transplantation- SUN SPARC vs. CYBER 170 140
A7-2 Temperature Profile in KSC-4 Using COBRA-SFS- Conduction, Convection and Radiation, Vertical Orientation 141
A7-3 Temperature Profile in KSC-4 Using COBRA-SFS- Conduction, Convection and Radiation, Vertical and Horizontal Orientations 143

LIST OF FIGURES

3-1 Schematic Block Diagram of COBRA-SFS/RADGEN Code 14
3-2 Schematic Block Diagram of the MIT Method 17
4-1 MIT Model - Locations of $\mathrm{T}_{\mathrm{m}}, \mathrm{T}_{\mathrm{e}}$ and T_{W} 21
4-2 Schematic Diagram of a Typical Fuel Rod Section 26
5-1 17x17 Array Configuration 32
5-2 $8 x 8$ Lumped Fuel Array 33
5-3 Cross-Section of Fuel Basket for KSC-7 Cask (adapted from KAERI) 34
5-4 Quarter Sector of KSC-7 Cask to be Analyzed 35
7-1 The MIT Conduction Model 40
7-2 COBRA-SFS Conduction Model 43
7-3 The MIT Method Derived from Infinite Array (after [2]) 52
7-4 RADGEN Radiation Exchange Factor Model (90°-Segment) 53
7-5 Exchange Factors, $F_{i j}$, in the 17×17 Array 54
7-6 Tmax, clad versus Number of Rods Lumped per Row 71
7-7 Radiation Factor and Its Corresponding Array Size 73
7-8 $\quad T_{m a x, c l a d ~ v e r s u s ~} T_{W}(17 \times 17,8 \times 8,4 \times 4$ and $3 \times 3)$ at 4684 W 76
7-9 Conductive Heat Transfer Model 80
7-10 Radiative Heat Transfer Model:
(a) Energy Balance on a Grey Body Surface;
(b) Radiative Heat Transfer Between Surface and Its Enclosed Surface 84
7-11 Analytical Model for KSC-7 Cask 88
7-12 Analytical Steps to Find Peak Clad Temperature, T_{6} 94

CHAPTER 1

INTRODUCTION

One of the most important objectives for a spent fuel transportation and storage cask design is to remove decay heat from the fuel array and maintain the peak clad temperature below certain design limits, i.e., $\sim 380^{\circ} \mathrm{C}^{*}$. Regulations pertinent to spent fuel transportation and storage require that the spent fuel cladding be protected from degradation (10CFR71.43d for transportation casks and 10CFR72.122h for storage casks). This peak temperature is generally not accessible to measurement, hence these design limits are established far below the material's melting point.

Two methods are reviewed and compared in order to study thermal analysis in a spent fuel transportation and storage cask. One is the COBRA-SFS/RADGEN [1] codes developed at Pacific Northwest Laboratory. The other is the MIT Method [2,3] developed at MIT by Randall D. Manteufel and Neil E. Todreas.

COBRA-SFS (Spent Fuel Storage) is a computer code designed and specialized to predict thermal-hydraulic parameters, e.g., fluid and rod temperatures as well as the fluid velocities, by modeling conductive, radiative, and convective heat transfer for spent fuel transportation and storage systems.

Its Users' Manual [1] generally explains each group of input data, but does not elaborate upon how to select proper values for these parameters. This research project is to provide accurate input parameters for cask configurations of interest to the Korea Atomic Energy Research Institute (KAERI) based on the MIT physical cask modeling work of Manteufel and Todreas [2,3].

The MIT Method is based on the lumped $\mathrm{k}_{\mathrm{eff}} / \mathrm{h}_{\text {edge }}$ model and is applicable only to a single square or hexagonal bundle.

The purpose of this study is to calibrate COBRA-SFS against the MIT Method using thermal analysis of standard PWR bundles. Then users (designers and/or reviewers) will have confidence in the code with respect to their thermal analyses of spent fuel transportation and storage cask where the MIT Method is not applicable.

Note that:
(1) unless otherwise specified, COBRA-SFS results in the study are based on Cycle 1 version of the code.
(2) gas properties used in this study and provided in the Appendices are for pure gas, i.e., zero humidity.

[^0]
CHAPTER 2

SCOPE OF THE STUDY

This study is designed to provide improved input parameters in the heat transfer calculation in COBRA-SFS code, to obtain best estimate peak clad temperature in dry spent fuel storage cask. Four major tasks are accomplished within this study and are listed as follows.

2.1 Improved Input Parameters for COBRA-SFS

- Develop improved major input parameters for the description of radiation and conduction in the COBRA-SFS code for analysis of the Korean Standard Cask (KSC-7). These parameters will cover the following conditions and be based on the MIT effective thermal conductivity modeling work.
- Typical PWR fuel bundles,
- Backfill gases: Nitrogen and helium,
- Horizontal orientation,
- Different boundary conditions, i.e., bundle wall temperatures.
- Review radiation factor including emissivities for cask geometry.
- Review convection factor for cask geometry

2.2 Lumped Effective Conductivity

This task is to simulate typical PWR fuel bundles, i.e., 17×17 array, using a lumped fuel model, i.e., $8 x 8$ array. It is motivated by the intention to reduce computer hardware requirements, i.e., memory and storage space, and to shorten computation time while achieving adequate accuracy. Hence computational expenses will be reduced dramatically.

- Develop a lumped effective conductivity for the fuel bundles within a KSC-7 cask for the following conditions:
- Typical PWR fuel bundles,
- Backfill gases: Nitrogen and helium,
- Horizontal orientation.

2.3 Lumped Effective Conductivity Thermal Analysis of the KSC-7 Cask

- To provide analytic solution equations for the KSC-7 quarter geometry. This solution approximates the geometry and inputs the appropriate bundle powers. The equation set can be coded for solution.

2.4 Comments on KAERI's COBRA-SFS Thermal Analysis of the KSC-7 Cask

- Guidance and review of a COBRA-SFS thermal analysis using inputs developed in 2.1 above.
- Inputs for thermal analysis of the quarter symmetry full cask compared to Korea Atomic Energy Research Institute / Nuclear Environment Management Center (KAERI/ NEMAC) inputs.
- KSC-7 quarter cask input to COBRA-SFS and RADGEN will be reviewed with attention to input for cavity region between fuel basket and inner shell.
- We will examine the KAERI's KSC-7 quarter cask analysis results and offer comments on their character as well as attempt to provide suggestions to resolve problems that are apparent.

CHAPTER 3

COMPUTATIONAL TOOLS

3.1 COBRA-SFS

COBRA-SFS is a generally used thermal-hydraulic analysis code developed at Pacific Northwest Laboratory to predict the fuel temperatures, fluid temperatures and fluid velocities under a wide variety of flow conditions in spent fuel shipping and storage casks. It is a singlephase flow computer code in which the mass, momentum, and energy conservation equations [4] are solved using the semi-implicit method. Its specific features for spent fuel storage cask analysis include:

- A solution method that models 3-D conductive heat transfer through a solid structure network such as a spent fuel cask basket.
- A detailed radiation heat transfer model that simulates radiation on a rod-to-rod basis, e.g., connection with RADGEN, a radiation exchange factor generator for rod bundles.
- Boundary conditions to model radiation and natural convection heat transfer between the cask surface and the ambient air.
- A total flow boundary condition that automatically adjusts the pressure-flow relation.

The conservation equations for mass, momentum and energy are presented in [4]. Note that for the Cycle 1 code of COBRA-SFS, there is no gravity term in the lateral momentum equation. This is why THETA $=90.0$ (CHAN.2) (horizontal orientation) [1] represents a case without convective heat transfer in the fill gas region. (THETA is the angle between spent fuel axial direction and the vertical direction, hence THETA $=90.0$ specifies a horizontal cask orientation.)

3.2 RADGEN

The Code RADGEN is an ancillary radiation exchange factor generator for COBRA-SFS that uses these exchange factors to describe the net energy transferred from one surface to any other surfaces in an enclosure (See Figure 3-1). RADGEN has the capability to handle rod patterns of square and triangular (or hexagonal) pitch as well as open channel geometries. Specifications for RADGEN can be found in [5]. Be warned that:
(1) RADGEN is only valid for pitch-to-diameter ratio $1.0 \leq \mathrm{p} / \mathrm{d} \leq \sqrt{2}$, which is applicable to typical PWR fuel bundles,

Figure 3-1 Schematic Block Diagram of COBRA-SFS / RADGEN Code
(2) In the current version of RADGEN, Groups RADGEN. 3 and RADGEN. 4 are input in a combined fashion in one line instead of two separate lines as wrongly described in its User's Manual [5].

3.3 The MIT Method

The MIT Method is based on the lumped $\mathrm{k}_{\mathrm{eff}} / \mathrm{h}_{\text {edge }}$ model by Randall D. Manteufel and Neil E. Todreas [2,3]. As described in Reference [3], the lumped keff/hedge model is expressed using a set of two coupled algebraic equations. The first equation applies to the interior region:

$$
\begin{equation*}
\frac{\mathrm{Q} \cdot \mathrm{~F}_{\text {peak }}}{\mathrm{L}_{\mathrm{a}} \cdot \mathrm{~S}}=\mathrm{F}_{\text {cond }} \cdot \mathrm{k}_{\mathrm{gas}}\left(\mathrm{~T}_{\mathrm{m}}-\mathrm{T}_{\mathrm{e}}\right)+\mathrm{C}_{\text {rad }} \sigma \pi \mathrm{d} \cdot\left(\mathrm{~T}_{\mathrm{m}}^{4}-\mathrm{T}_{\mathrm{e}}^{4}\right) \tag{3-1}
\end{equation*}
$$

while the second equation is used in the edge region within the enclosing wall:

$$
\begin{equation*}
\frac{Q \cdot F_{\text {peak }}}{L_{a} \cdot L_{c}}=\frac{F_{\text {cond }, w} \cdot k_{\text {gas }}}{(1-f / 2) \cdot w} \cdot\left(T_{e}-T_{w}\right)+\frac{C_{\text {rad, }, 2,2} \sigma \pi d}{(1-f / 2) \cdot p} \cdot\left(T_{e}^{4}-T_{w}^{4}\right) \tag{3-2}
\end{equation*}
$$

where

Q	$=$ total assembly decay power
$\mathrm{F}_{\text {peak }}$	$=$ axial power peaking factor
L_{a}	$=$ assembly active axial length
L_{c}	$=$ assembly cross-sectional circumferential length
S	$=$ assembly cross-sectional conduction shape factor (13.5738 for square,
	12.8365 for hexagonal and 4.0π for circular shape assemblies)
$\mathrm{k}_{\mathrm{gas}}$	$=$ fill gas conductivity
$\mathrm{F}_{\text {cond }}$	$=$ conduction factor (interior)
$\mathrm{F}_{\text {cond, }}$	$=$ wall conduction factor
T_{m}	$=$ maximum fuel rod temperature
T_{e}	$=$ extrapolated wall temperature (imaginary)
T_{w}	$=$ average enclosing wall temperature (true)
$\mathrm{C}_{\mathrm{rad}}$	$=$ radiative heat transfer coefficient for the interior region
$\mathrm{C}_{\text {rad, }, \mathrm{w}, 1}$	$=$ first wall radiative heat transfer coefficient for the edge region
$\mathrm{C}_{\text {rad }}, \mathrm{w}, 2$	$=$ second wall radiative heat transfer coefficient for the edge region
d	$=$ clad outside diameter of the fuel rod
p	$=$ rod-to-rod pitch
w	$=$ edge rod center-to-wall distance
f	$=$ edge-to-interior heat transfer ratio.

A code package of three individual programs has been prepared [6] to solve these two equations using Macintosh software Mathematica $[7,8]$. These three programs are:
(1) Program "gas.m" which provides the thermal properties, i.e., thermal conductivity, specific heat capacity, of four media, air/nitrogen $\left(\mathrm{N}_{2}\right)$, argon (Ar), helium (He) and vacuum.
(2) Program "keff.m" which provides the source for the lumped $\mathrm{k}_{\mathrm{eff}} / \mathrm{h}$ edge model. The first two programs are generic and contain undefined variables of the lumped $\mathrm{k}_{\text {eff }} / \mathrm{h}_{\text {edge }}$ model.
(3) Program "MIT14X14.m" which contains problem-specific input data and, after running, provides the maximum differential temperature between the boundary wall and the rod clad or the maximum rod clad temperature depending on user's preference. It is not restricted to 14×14 arrays as the program title may imply.

These three programs are executed individually but in series (See Figure 3-2.). First "gas.m" is executed which may take about 0.8 second, then "keff.m" is executed which may need about 0.6 second, and finally "MIT14X14.m" is executed whose execution needs approximately 8.9 seconds. The output of "MIT14X14.m" is tabulated with the fill medium in the first column, power (in watt) in the second column and predicted differential temperature $\Delta \mathrm{T}$ $=\mathrm{T}_{\mathrm{m}}-\mathrm{T}_{\mathrm{w}}$ (in ${ }^{\circ} \mathrm{C}$) in the third column. More specialized output, i.e., $\Delta \mathrm{T}_{\mathrm{w}}=\mathrm{T}_{\mathrm{e}}-\mathrm{T}_{\mathrm{w}}\left({ }^{\circ} \mathrm{C}\right)$, $\mathrm{k}_{\mathrm{c}} / \mathrm{k}_{\mathrm{eff}}$, $\mathrm{h}_{\mathrm{cw}} / \mathrm{h}_{\text {edge }}$, can be found in the output of "keff.m" by eliminating "(*" and "*)" in the "Print"related statements.

Figure 3-2 Schematic Block Diagram of the MIT Method

CHAPTER 4

SUMMARY OF THE APPROACH

The MIT Method $[2,3]$ is to be used as the technical basis to adjust the COBRA-SFS input parameters affecting conduction, radiation and convection (if possible) heat transfer to provide state-of-the-art thermal-hydraulic analyses for the Korean KSC-4 and KSC-7 casks. The modeling of each heat transfer process is discussed next.

4.1 Conduction Modeling

4.1.1 COBRA-SFS Conduction Model

The COBRA-SFS fluid conduction model simulates one-dimensional fluid conduction and accommodates lateral constriction in this 1-D geometry by an input factor, GK. In the derivation of the equations, the potential and kinetic energies are assumed to be negligible.

Basically, the COBRA-SFS fluid conduction model is based on Fick's First Law (Refer to Equation 7-11), that is, the heat flux is proportional to the temperature gradient. This gradient is expressed as the quotient of the temperature difference ΔT and the effective conduction length, ℓ_{c}, which is the rod-to-rod or wall-to-rod pitch, ℓ_{i}, divided by the conduction length factor, GK.

Specifically, the conduction-only calculation in COBRA-SFS is achieved using a combination of the following parameters:

THETA	$=90.0$	
(CHAN.2)		
NFCON	$=1$	(HEAT.1)
AHL1(I)	$=0.0$	(HEAT.2)
AHL2.(I)	$=0.0$	(HEAT.2)
AHL3(I)	$=0.0$	(HEAT.2)
AHL4.(I)	$=1.0$	(HEAT.2)
GK	$=$ suitable value	(HEAT.5)
ISCHEME	$=1$	(CALC.1)
C1(I)	>0.0	(BDRY.2)
C2(I)	$=0.0$	(BRDY.2)
C3(I)	$=0.0$	
Omitting Group RADG		

4.1.2 The MIT Conduction Model

The MIT conduction model uses the effective conductivity of a composite region representing fuel rods immersed in the medium (fluid or vacuum). The effective conductivity is defined differently for the interior and edge bundle regions:

$$
\begin{array}{ll}
\mathrm{k}_{\text {eff }}=\mathrm{F}_{\text {cond }} \mathrm{k}_{\mathrm{gas}} & \text { (for the interior) } \\
\mathrm{h}_{\text {cond }}=\mathrm{F}_{\text {cond,w }} \mathrm{k}_{\text {gas }} /[(1-\mathrm{f} / 2) \mathrm{w}] & \text { (for the edge) } \tag{4-2}
\end{array}
$$

where $\mathrm{F}_{\text {cond }}$ is the conduction factor which compensates for heat transfer through the rods and constriction in the fluid conduction path due to the presence of the fuel rods. The factor $\mathrm{F}_{\text {cond }}$ is a function of:
(1) Array configuration pattern, square (SQ) or hexagonal (HX).
(2) Volume fraction, f.
(3) Core-to-gas conductivity ratio, $\mathrm{k}_{\text {core }} / \mathrm{k}_{\text {gas }}$.
(4) Tube-to-gas conductivity ratio, $\mathrm{k}_{\text {tube }} / \mathrm{k}_{\mathrm{gas}}$.
(5) Inner-to-outer radius ratio, $\mathrm{r}_{\mathrm{i}} / \mathrm{r}_{\mathrm{o}}$.

The two regions are connected to each other by an extrapolated wall temperature T_{e} (see Figure 4-1). For solid fuel rods, $\mathrm{r}_{\mathrm{i}}=0, \mathrm{k}_{\text {core }}=\mathrm{k}_{\text {tube }}=\mathrm{k}_{\text {rod }}$, so that $\mathrm{F}_{\text {cond }}$ can be reduced to a function of the following variables:

$$
\begin{equation*}
\mathrm{F}_{\text {cond }}=\text { function }\left(\{\mathrm{SQ}\} \text { or }\{\mathrm{HX}\}, \mathrm{f}, \mathrm{k}_{\mathrm{rod}} / \mathrm{k}_{\mathrm{gas}}\right) \tag{4-3}
\end{equation*}
$$

Complete numerical values of $\mathrm{F}_{\text {cond }}$ under different conditions are listed in Tables 3.2-1 to 3.2-4 of Reference [2]. For our standard bundle, the appropriate values of $\mathrm{F}_{\text {cond }}$ are summarized in Table 4-1.

4.1.3 Isothermal Rod (Clad)

Compared with the gas conductivities $\left(\mathrm{k}_{\mathrm{He}}=0.2 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, \mathrm{k}_{\mathrm{N} 2}=0.04 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}\right.$, hence k_{He} $\left./ \mathrm{k}_{\mathrm{N} 2}=5.0\right)$, fuel rod materials have much higher conductivities $\left(\mathrm{k}_{\mathrm{Zr}}=15 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, \mathrm{k}_{\mathrm{UO} 2}=\right.$ $5 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$). Hence heat conduction is a more significant process in the rods than in the fill gas. Consequently, the azimuthal temperature variation in each rod is almost negligible at nominal decay heat power level. Hence fuel rods can be treated as isothermal rods. This assertion can further be confirmed by the Biot Criterion.

Biot Criterion is a criterion to determine whether isothermal temperature distribution assumption in the solid is valid in the solid-fluid heat transfer situation, i.e., to determine whether the Lumped Parameter Method (LPM) is applicable to the solid. If the solid is isothermal, then its temperature is uniformly distributed and we can treat the solid as if it were a single point. The Biot number is defined by Equation 4-4.

Figure 4-1. MIT Model - Locations of $\mathrm{T}_{\mathrm{m}}, \mathrm{T}_{\mathrm{e}}$ and T_{w}.

Table 4-1. $\mathrm{F}_{\text {cond }}$ as a Function of p/d for Square Array [2]

p / d	Isothermal	He		N_{2}	
		w/c\&f*	$\mathrm{w} / \mathrm{c} * *$	$\mathrm{w} / \mathrm{c} \& \mathrm{f}$	w / c
1.32	2.680	2.504	2.168	2.642	2.555
$\mathbf{1 . 3 2 6} \boldsymbol{}^{* * *}$	$\mathbf{2 . 6 5 1}$	2.479	2.151	2.614	2.530
1.33	2.632	2.463	2.140	2.596	2.513

* w/c\&f ----- zero fuel-clad contact resistance
** w/c ----- infinite fuel-clad contact resistance
*** Results of $\mathrm{p} / \mathrm{d}=1.326$ are interpolated from those of $\mathrm{p} / \mathrm{d}=1.32$ and 1.33 .

$$
\begin{equation*}
\mathrm{Bi}=\frac{\mathrm{hD}}{\mathrm{k}_{\mathrm{s}}} \tag{4-4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{h}=\text { heat transfer coefficient between solid and fluid, } \mathrm{W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C} \\
& \mathrm{D}=\text { geometry dimension, i.e., diameter of the solid, } \mathrm{m} \\
& \mathrm{k}_{\mathrm{S}}=\text { thermal conductivity of the solid, i.e., zircaloy cladding, } \mathrm{W} / \mathrm{m}^{\circ} \mathrm{C}
\end{aligned}
$$

If $\mathrm{Bi} \ll 1$ (i.e., k_{s} is very large and h is small), then heat conduction in the solid is very fast and effective, and isothermal assumption in the solid is valid.

Biot number differs from Nusselt number (defined in Equation 4-5) in that in Nusselt number, $\mathrm{kff}_{\mathrm{f}}$ is the thermal conductivity of the fluid, i.e., that of He or N_{2} while in Biot number, k_{S} is the thermal conductivity of the solid.

$$
\begin{equation*}
\mathrm{Nu}=\frac{\mathrm{hD}}{\mathrm{k}_{\mathrm{f}}} \tag{4-5}
\end{equation*}
$$

Dividing Equation 4-4 by Equation 4-5 and rearranging, we get

$$
\begin{equation*}
\mathrm{Bi}=\frac{\mathrm{k}_{\mathrm{f}}}{\mathrm{k}_{\mathrm{s}}} \mathrm{Nu} \tag{4-6}
\end{equation*}
$$

A set of Biot numbers is calculated for Nusselt numbers ranging from 1.0 to 10.0 using Equation 4-6. The result is listed in Table 4-2. From the Table, the following conclusions can be drawn:
(1) For a wide range of Nusselt number, i.e., from 1.0 to 10.0 , Biot number is much smaller than unity. Hence the isothermal cladding assumption is valid;
(2) If other conditions are the same, Biot numbers are five times smaller for N_{2} than for He . Hence, the isothermal cladding assumption is more valid for N_{2} than for He . This fact explains why the GK model developed in Chapter 7 are more accurate for N_{2} than for He. (See Table 7-2.)

4.1.4 Temperature Gradient in Pellet. Gap and Clad

Under nominal power operation conditions (i.e., average linear power density $\bar{q}=16$ kW / m) in the reactor core, the temperature gradient in the pellet and gap is very large compared with that in the cladding. Typical values at hot spot are $1200^{\circ} \mathrm{C}$ from the fuel centerline to fuel outside surface (pellet), $350^{\circ} \mathrm{C}$ from fuel outside surface to clad inside surface (gap), and $60^{\circ} \mathrm{C}$ from clad inside surface to its outside surface (clad).

Table 4-2. Biot Numbers for Zircaloy Cladding-Fluid Pairs vs. Nusselt Number

Nu^{*}	Bi	
	He	N_{2}
1.0	0.0133	0.00267
3.66	0.0488	0.00976
10.0	0.133	0.0267

* Nusselt numbers ranging from 1.0 to 10.0 cover a wide spectrum of convective heat transfer. (Refer to Table 8-1.)

In dry storage spent fuel cask, the spent fuel bundles have been discharged out of reactor core for several years, their decay heat generation rate is 3 to 4 orders of magnitude smaller (i.e., $\bar{q}=5 \mathrm{~W} / \mathrm{m}$ for bundles discharged out of the core for 1.5 years in this study). Hence the temperature gradient is 3 to 4 orders of magnitude smaller than that under power operation. This characteristic will be demonstrated below by examining KAERI's typical spent fuel bundles stored in KSC-7 cask.

There are seven spent fuel bundles in KAERI's KSC-7 cask (see Figure 5-3) with a total decay power of 32.3 kW . On average, each bundle has a power of 4614 W .

1) Calculate linear power density

Average linear power density

$$
\begin{equation*}
\overline{\mathrm{q}}^{\prime}=\frac{\text { Bundle Power }}{(\# \text { of Rods/Bundle) x (Active Core Height) }} \tag{4-7}
\end{equation*}
$$

$=\frac{4614 \mathrm{~W}}{(17 \times 17) \times(365.76 \mathrm{~cm})}$

$$
=4.365 \times 10^{-2} \mathrm{~W} / \mathrm{cm}
$$

Maximum Linear Power Density

$$
\begin{gathered}
q^{\prime} \max =\vec{q} \times F_{\text {peak }}=4.365 \times 10^{-2} \times 1.206=5.264 \times 10^{-2} \mathrm{~W} / \mathrm{cm} . \\
\text { where } \\
\text { Fpeak }=(\text { axial }) \text { power peaking factor }
\end{gathered}
$$

2) Obtain geometric and physical data from input file

We obtain geometric and physical data, i.e., material properties, from KAERI's input file and these fundamental data are incorporated into our input deck for COBRA-SFS.

Geometric data (See Figure 4-2.):
Radius of fuel pellet, $\mathrm{rf} \quad=0.4095 \mathrm{~cm}$
Radius of clad inside surface, $\mathrm{r}_{\mathrm{ci}} \quad=0.4178 \mathrm{~cm}$
Radius of clad outside surface, $\mathrm{r}_{\mathrm{CO}} \quad=0.4750 \mathrm{~cm}$
Average gap radius, $\mathrm{rg}_{\mathrm{g}}=\left(\mathrm{rf}_{\mathrm{f}}+\mathrm{r}_{\mathrm{ci}}\right) / 2=0.4136 \mathrm{~cm}$

Figure 4-2 Schematic Diagram of a Typical Fuel Rod Section

Physical data:
$\begin{array}{ll}\text { Conductivity of pellet, } \mathrm{kf}_{\mathrm{f}} & =3.0 \mathrm{Btu} /\left(\mathrm{h} \mathrm{ft}{ }^{\circ} \mathrm{F}\right)=5.275 \mathrm{~W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right) \\ \text { Conductivity of clad, } \mathrm{k}_{\mathrm{C}} & =10.0 \mathrm{Btu} /\left(\mathrm{hft}{ }^{\circ} \mathrm{F}\right)=17.58 \mathrm{~W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right) \\ \text { Gap conductance, } \mathrm{hg} & =1000.0 \mathrm{Btu} /\left(\mathrm{h} \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}\right)=5861.1 \mathrm{~W} /\left(\mathrm{m}^{2}{ }^{\circ} \mathrm{C}\right)\end{array}$
3) Calculate temperature gradient (Refer to [9])

Temperature gradient in fuel pellet can be expressed as

$$
\begin{equation*}
\mathrm{T}_{\max }-\mathrm{T}_{\mathrm{fo}}=\frac{\mathrm{q}_{\max }^{\prime}}{4 \pi \mathrm{k}_{\mathrm{f}}} \tag{4-8}
\end{equation*}
$$

Plugging above data into Equation 4-8 yields

$$
\mathrm{T}_{\max }-\mathrm{T}_{\mathrm{fo}}=\frac{5.264 \times 10^{-2} \mathrm{~W} / \mathrm{cm}}{4 \times 3.14 \times 5.275 \mathrm{~W} /\left(\mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)}=0.080^{\circ} \mathrm{C}
$$

Temperature gradient in gap can be expressed as

$$
\begin{equation*}
\mathrm{T}_{\mathrm{fo}}-\mathrm{T}_{\mathrm{ci}}=\frac{\mathrm{q}_{\max }^{\prime}}{2 \pi \mathrm{r}_{\mathrm{f}} \mathrm{~h}_{\mathrm{g}}} \tag{4-9}
\end{equation*}
$$

Plugging above data into Equation 4-9 yields

$$
\mathrm{T}_{\mathrm{fo}}-\mathrm{T}_{\mathrm{ci}}=\frac{5.264 \times 10^{-2} \mathrm{~W} / \mathrm{cm}}{2 \times 3.14 \times 0.4136 \mathrm{~cm} \times 5861.1 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)}=0.035^{\circ} \mathrm{C}
$$

Temperature gradient in cladding can be expressed as

$$
\begin{equation*}
\mathrm{T}_{\mathrm{ci}}-\mathrm{T}_{\mathrm{co}}=\frac{\mathrm{q}_{\max }^{\prime}}{2 \pi \mathrm{k}_{\mathrm{c}}} \cdot\left(\frac{\mathrm{r}_{\mathrm{co}}}{\mathrm{r}_{\mathrm{ci}}}\right) \tag{4-10}
\end{equation*}
$$

Plugging above data into Equation 4-10 yields

$$
\mathrm{T}_{\mathrm{ci}}-\mathrm{T}_{\mathrm{co}}=\frac{5.264 \times 10^{-2} \mathrm{~W} / \mathrm{cm}}{2 \times 3.14 \times 17.58 \mathrm{~W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right)} \cdot \ln \left(\frac{\mathrm{r}_{\mathrm{co}}}{\mathrm{r}_{\mathrm{ci}}}\right)=0.006^{\circ} \mathrm{C}
$$

Total temperature drop from centerline of pellet to cladding outside surface is

$$
\mathrm{T}_{\max }-\mathrm{T}_{\mathrm{co}}=0.080^{\circ} \mathrm{C}+0.035^{\circ} \mathrm{C}+0.006^{\circ} \mathrm{C} \approx 0.12^{\circ} \mathrm{C}
$$

From the above calculation, it is believed that temperature gradient across the fuel pin is virtually negligible in spent fuels. This is why the design limit, in thermal calculation of the spent fuel cask, is placed on the cladding temperature rather than the fuel centerline temperature as under power operation conditions.

4.2 Radiation Modeling

4.2.1 COBRA-SFS Radiation Model

The COBRA-SFS radiative heat transfer model is based on the Stefan-Boltzmann black body model multiplied by the gray body radiation exchange factor, $F_{i j}$. Means to compensate for the error from the non-uniform radiosity effect introduced by the finite rod segment length used by COBRA-SFS is not provided for by definition of user-specified input parameters. The radiation heat transfer from one surface to another is calculated using Equation 4-11.

$$
\begin{equation*}
\mathrm{q}^{\prime \prime} \mathrm{rad}=\sigma F_{i j}\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{j}}{ }_{\mathrm{j}}\right) \tag{4-11}
\end{equation*}
$$

where
$\mathrm{q} \mathrm{q}^{\mathrm{rad}}=$ the radiative heat flux
$\sigma=$ the Stefan-Boltzmann constant
$F_{i j}=$ the gray body radiation exchange factor (between surfaces i and j) based on geometry and surface emissivity.

With Group RADG included in the input file, COBRA-SFS has two different ways to model radiative heat transfer:
(1) By reading gray body exchange factors and emissivities via I/O Unit 10 from a file generated by the auxiliary code called RADGEN; or
(2) By supplying blackbody view factors and emissivities in Groups RADG. 2 and RADG. 3.

Although both options can be used for the same problem, Option (2) is preferential in simple cases with a few surfaces while Option (1) is effective in more complex cases where many surfaces are present. When Option (1) is used, the walls of the assembly must be modeled with eight solid structure nodes, two on each side, and they must be numbered after all fuel rods have been counted.

4.2.2 The MIT Radiation Model

The MIT Method of radiation modeling uses one radiative coefficient ($\mathrm{C}_{\text {rad }}$) for radiative heat transfer in the interior region and two wall radiative coefficients ($\mathrm{C}_{\mathrm{rad}, \mathrm{w}, 1}$ and $\mathrm{C}_{\mathrm{rad}, \mathrm{w}, 2}$) for radiative heat transfer in the edge region. The two regions are related to each other by an imaginary wall temperature T_{e} to connect the real wall temperature T_{w} and the peak rod temperature T_{m}. Numerically, the values for $C_{r a d}, C_{r a d}, w, 1$ and $C_{r a d, w, 2}$ under different conditions can be found in Appendix H of Reference [2]. The non-uniform radiosity effect has been accommodated by developing the radiative coefficients from Monte Carlo simulations using 15° circumferential rod segments.

4.3 Convection Modeling

4.3.1 COBRA-SFS Convection Model

Convective heat transfer model in COBRA-SFS is based on the Nusselt Number Nu ($=\mathrm{h} \mathrm{D} / \mathrm{k}$) from which the heat transfer coefficient $\mathrm{h}(=\mathrm{Nu} \mathrm{k} / \mathrm{D})$ between the solid surface and the medium is obtained. In the fluid energy equation, the surface-averaged convective heat flux, $\mathrm{q}^{\prime \prime}$ conv, is modeled using the expression:

$$
\begin{equation*}
\mathrm{q}^{\prime \prime} \text { conv }=\mathrm{h}\left(\mathrm{~T}_{\mathrm{s}}-\mathrm{T}_{\mathrm{gas}}\right) \tag{4-12}
\end{equation*}
$$

where
$\mathrm{q}^{\text {"conv }}=$ the convective heat flux
$\mathrm{T}_{\mathrm{s}} \quad=$ the rod or slab surface temperature
$\mathrm{T}_{\text {gas }}=$ the medium temperature.
COBRA-SFS models convective heat transfer in Groups HEAT.1, HEAT. 2 (for the interior) and BDRY. 2 (for the edge boundary) by the following parameter values:

AHL1(I)	$=0.0$	(HEAT.2)
AHL2(I)	$=0.0$	(HEAT.2)
AHL3(I)	$=0.0$	(HEAT.2)
AHLA(I)	>1.0, i.e., 3.66	(HEAT.2)
C1(I)	>0.0	(BDRY.2)
C2(I)	>0.0	(BRDY.2)
C3(I)	>0.0	(BDRY.2)

4.3.2 The MIT Convection Model

The MIT Method defines the Critical Rayleigh Number Racrit to model the convective heat transfer. For Rayleigh Numbers below Racrit, the fill gas is regarded as stagnant and, hence, the convective heat transfer mechanism can be ignored. For Rayleigh Numbers above $\mathrm{Ra}_{\text {crit }}$, the flow of the fill gas will enhance heat exchange. This mechanism is modeled by increasing the conduction factor $\mathrm{F}_{\text {cond }}$ by a factor of $\left(\mathrm{Ra} / \mathrm{Ra}_{\text {crit }}\right)^{1 / 4}$ (See Equation 4-13). The major obstacle is to determine the value of the parameter Racrit which defines the transition from the conduction to the convection regime.

$$
\mathrm{k}_{\text {cond }}= \begin{cases}\mathrm{F}_{\text {cond }} \mathrm{k}_{\mathrm{gas}} & \left(\mathrm{Ra} \leq \mathrm{Ra}_{\mathrm{crit}}\right) \tag{4-13}\\ \mathrm{F}_{\text {cond }} \mathrm{k}_{\mathrm{gas}}\left(\mathrm{Ra} / \mathrm{Ra}_{\mathrm{crit}}\right)^{1 / 4} & \left(\mathrm{Ra}>\mathrm{Ra}_{\mathrm{crit}}\right)\end{cases}
$$

CHAPTER 5

CONFIGURATIONS OF INTEREST
 AND BOUNDARY CONDITIONS

Several configurations have been set up to study the heat transfer mechanisms in the KSC-7 spent fuel cask:
(1) A 17×17 square fuel array with surrounding walls on four sides (Figure 5-1).
(2) An $8 x 8$ square lumped fuel array (Figure 5-2).
(3) A quarter of the Korean KSC-7 cask (Figure 5-4) extracted from Figure 5-3 based on Reference [10]. The cask body is comprised of fuel baskets, inner shell, intermediate shell and outer shell made of stainless steel. Fuel baskets are located inside the inner shell cavity. The space between the inner and intermediate shells is cast with pure lead to shield gamma rays. The neutron shield is cast from a silicone mixture and located between the intermediate and outer shells. There are 80 copper plates attached in silicone mixture to enhance heat transfer effectiveness in the neutron shielding layer. Eighty external cooling fins (not shown in Figure 5-3) are attached to the outer shell to increase heat transfer into the environment.

The first configuration, the 17×17 array, is designed to evaluate COBRA-SFS's heat transfer models, including conduction, radiation, and convection against the respective MIT models. Its geometrical parameters are:

fuel rod height	L_{a}	$=144^{\prime \prime}$ (total height $=160^{\prime \prime}$)
rod diameter	d	$=0.3740^{\prime \prime}$
array pitch	p	$=0.4961^{\prime \prime}$
edge rod center-to-wall distance	w	$=0.5591^{\prime \prime}$
wall thickness	δ	$=0.3937^{\prime \prime}$

The second configuration is an $8 x 8$ lumped fuel array. The geometry of this array is established as follows:

fuel rod height	L_{a}	$=144^{\prime \prime}$ (total height $=160^{\prime \prime}$)
rod diameter	d	$=0.7948^{\prime \prime}$
array pitch	p	$=1.0539^{\prime \prime}$
edge rod center-to-wall distance	w	$=0.8389^{\prime \prime}$
wall thickness	δ	$=0.3937^{\prime \prime}$

These 8 x 8 array values are obtained using our homogenization method which will be discussed later in Chapter 7.

Figure 5-1 17x17 Array Configuration.

Figure 5-2 8x8 Lumped Fuel Array.

Figure 5-3 Cross-Section of Fuel Basket for KSC-7 Cask (adapted from KAERI).

Figure 5-4 Quarter Sector of KSC-7 Cask to be Analyzed

The final configuration is a quarter sector of the KSC-7 cask. The full cross-section is shown in Figure 5-3 and the quarter sector in Figure 5-4.

The KSC-7 cask contains seven 17×17 fuel assemblies with two in the first row, three in the second row and two in the third row (see Figure 5-3). Each of the assemblies is identical to the one shown in Figure 5-1, whose outer side length is 250 mm ($9.84^{\prime \prime}$). The inner diameter of the inner shell is $930 \mathrm{~mm}\left(36.90^{\prime \prime}\right)$, and the inner shell wall thickness is $15 \mathrm{~mm}\left(0.60^{\prime \prime}\right)$.

CHAPTER 6

PREDICTED TEMPERATURES FOR 17X17 ARRAY BY COBRA-SFS PRECEDING THIS STUDY

The goal of this project is to enhance COBRA-SFS predictions by providing evaluated input parameters. Hence, it is instructive to record the COBRA-SFS base case for later comparison with results using recommended enhanced input. We define two base casesNitrogen and Helium fill gases-with Conduction (GK=1) and Radiation (RADGEN Modeling, i.e., 90° rod segments, $\varepsilon_{\mathrm{r}}=0.8, \varepsilon_{\mathrm{W}}=0.3$) models employed.

In each case the spent fuel bundle's operating power is 4684 W (rounded upper bound value from a 32.3 kW cask load from seven bundles) and the geometry is that of the 17×17 square array as defined in Chapter 5. The base cases are summarized in Table 6-1.

Table 6-1. Maximum Clad Temperature for Standard Square Array under Base Case COBRASFS Modeling-Conduction and Radiation, 17×17 Bundle, 4684 W

Conditions	Nitrogen	
$\mathrm{GK}=1$ Helium 90° segments $\varepsilon_{\mathrm{r}}=0.8, \varepsilon_{\mathrm{W}}=0.3$ $428.0^{\circ} \mathrm{C}$ $368.4^{\circ} \mathrm{C}$ l		

CHAPTER 7

RESULTS OF THE STUDY

7.1 Improved Input Parameters for COBRA-SFS

7.1.1 Conduction

COBRA-SFS and the MIT Method deal with conduction differently. COBRA-SFS uses a conduction length factor $\mathrm{GK}\left(=1 / \mathrm{Z}_{\mathrm{k}}\right)$ to generate an effective conduction length $\ell_{c}=\ell^{*} \mathrm{Z}_{\mathrm{k}}=$ ℓ / GK while the MIT Method employs the conduction factor, Fcond, which differs for the interior region and the edge region to compensate for the enhancement of the conductive heat transfer due to the fuel rod and bundle wall surfaces.

For the same heat conduction problem, however, the two methods should produce the same (or comparable) results. This concept links GK in COBRA-SFS and Fcond in the MIT Method. Thus it is possible to find an appropriate GK value for COBRA-SFS input using the MIT Method.

Heat conduction in the plane of the real bundle is two-dimensional (2D), whereas it is possible analytically to relate GK and $\mathrm{F}_{\text {cond }}$ by considering a one-dimensional (1D) strip model for conduction heat transfer. Hence, the true relationship between GK and $\mathrm{F}_{\text {cond }}$ needs to be built from comparative 2D COBRA-SFS and MIT Method calculation results. Nevertheless, it is instructive to perform 1D strip model comparisons to confirm the approximate range of GK values which match the MIT Method.

In deriving GK expressions, the difference between the maximum clad temperature and the bundle wall temperature, i.e., $\mathrm{T}_{\mathrm{m}}-\mathrm{T}_{\mathrm{w}}$, is expressed as a function of geometry, physical parameters, power deposition, and Conduction Factor ($\mathrm{F}_{\text {cond }}$) using the MIT Method. Then, the same temperature difference is expressed in terms of geometry, physical parameters, power deposition, and conduction length factor (GK) using COBRA-SFS strategy. By equating the two temperature differences, relationships for the GK factors are obtained. Note that, for cases of odd number of rods per row and even number of rods per row, the GK formula are slightly different.

The following is the implementation of the 1D strip model assessment. From the MIT Method [2] (See Figure 7-1):

$$
\begin{equation*}
\overline{\mathrm{q}}^{\prime \prime \prime}=\frac{\left(\frac{\mathrm{n}}{2}\right)\left(\frac{\pi \mathrm{d}_{\mathrm{f}}^{2}}{4}\right) \mathrm{q}_{\mathrm{rod}}^{\prime^{\prime \prime}}}{\mathrm{L} \cdot \mathrm{p}}=\frac{\left(\frac{\mathrm{n}}{2}\right) \mathrm{q}_{\mathrm{rod}}^{\prime}}{\mathrm{L} \cdot \mathrm{p}} \tag{7-1}
\end{equation*}
$$

Figure 7-1. The MIT Conduction Model.
where
$\overline{\mathrm{q}}^{\prime \prime \prime}=$ average volumetric energy generation rate in the whole rectangle, $\mathrm{W} / \mathrm{m}^{3}$
$\mathrm{n} \quad=$ number of rods per row in the square array
$\mathrm{d}_{\mathrm{f}} \quad=$ fuel pellet diameter
$\mathrm{p} \quad=$ pitch of the square array, m
$\mathrm{L} \quad=$ half of the square array inner side length, m
$\mathrm{q}^{\prime \prime}{ }_{\text {rod }}=$ rod volumetric energy generation rate, $\mathrm{W} / \mathrm{m}^{3}$
$\mathrm{q}_{\text {rod }}^{\prime}=\operatorname{rod}$ linear power rate $\left(=\frac{1}{4} \pi \mathrm{~d}_{\mathrm{f}}^{2} \mathrm{q}^{\prime}{ }_{\text {rod }}\right.$), W/m

The steady state heat conduction equation [9] is:

$$
\begin{equation*}
\nabla \cdot \mathrm{k}_{\mathrm{eff}} \nabla \mathrm{~T}+\overline{\mathrm{q}}^{\prime \prime \prime}=0 \tag{7-2}
\end{equation*}
$$

where

$$
\mathrm{keff}=\text { effective conductivity. }
$$

Assuming keff is constant, Equation 7-2 can be written as

$$
\begin{equation*}
\mathrm{k}_{\mathrm{eff}} \nabla^{2} \mathrm{~T}=-\bar{q}^{\prime \prime \prime} \tag{7-3}
\end{equation*}
$$

For the one-dimensional heat transfer problem (Figure 7-1), Equation 7-3 can be reduced to

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{~T}}{\mathrm{dx}^{2}}=-\frac{\overline{\mathrm{q}}^{\prime \prime \prime}}{\mathrm{k}_{\mathrm{eff}}} \tag{7-4}
\end{equation*}
$$

Integrate Equation 7-4 once

$$
\begin{equation*}
\frac{\mathrm{dT}}{\mathrm{dx}}=-\frac{\bar{q}^{\prime \prime \prime}}{\mathrm{k}_{\mathrm{eff}}} \mathrm{x}+\mathrm{C}_{1} \tag{7-5}
\end{equation*}
$$

where

$$
C_{1}=\text { first integration constant }
$$

Applying Boundary Condition $1:\left.\frac{d T}{d x}\right|_{x=0}=0$ to solve for C_{1}, we get $C_{1}=0$.
With another integration, Equation 7-5 becomes

$$
\begin{equation*}
T(x)=-\frac{\bar{q}^{\prime \prime \prime}}{2 k_{\text {eff }}} x^{2}+C_{2} \tag{7-6}
\end{equation*}
$$

where

$$
C_{2}=\text { second integration constant }
$$

Applying Boundary Condition 2: $\mathrm{T}(\mathrm{L})=\mathrm{T}_{\mathrm{w}}$ to solve for C_{2}, we get

$$
\mathrm{C}_{2}=\mathrm{T}_{\mathrm{w}}+\frac{\overline{\mathrm{q}}^{\prime \prime \prime}}{2 \mathrm{k}_{\mathrm{eff}}} \mathrm{~L}^{2}
$$

Hence the temperature distribution is

$$
\begin{equation*}
T(x)=T_{w}+\frac{\bar{q}^{\prime \prime \prime}}{2 k_{\text {eff }}}\left(L^{2}-x^{2}\right) \tag{7-7}
\end{equation*}
$$

The maximum temperature, T_{m}, occurs at $\mathrm{x}=0$ and is

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}=\mathrm{T}_{\mathrm{w}}+\frac{\overline{\mathrm{q}}^{\prime \prime \prime}}{2 \mathrm{k}_{\mathrm{eff}}} \mathrm{~L}^{2} \tag{7-8}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}-\mathrm{T}_{\mathrm{w}}=\frac{\overline{\mathrm{q}}^{\prime \prime \prime}}{2 \mathrm{k}_{\mathrm{eff}}} \mathrm{~L}^{2} \tag{7-9}
\end{equation*}
$$

Substituting for $\overline{\mathrm{q}}^{\prime \prime \prime}$ from Equation 7-1 yields

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}-\mathrm{T}_{\mathrm{w}}=\frac{\left(\frac{\mathrm{n}}{2}\right) \cdot \mathrm{q}_{\mathrm{rod}}}{2 \mathrm{k}_{\mathrm{eff}}} \cdot \frac{\mathrm{~L}}{\mathrm{p}} \tag{7-10}
\end{equation*}
$$

For COBRA-SFS, the conduction model is illustrated in Figure 7-2. Hence,

$$
\begin{equation*}
\mathrm{q}_{\mathrm{i}}^{\prime}=\mathrm{k}_{\mathrm{gas}, \text { COBRA }} \frac{\mathrm{S}\left(\mathrm{~T}_{\mathrm{Hi}}-\mathrm{T}_{\mathrm{Li}}\right)}{\ell_{\mathrm{i}} / \mathrm{GK}} \tag{7-11}
\end{equation*}
$$

Solve for T_{Hi} from Equation 7-11

$$
\begin{equation*}
\mathrm{T}_{\mathrm{Hi}}=\mathrm{T}_{\mathrm{Li}}+\frac{\mathrm{q}_{\mathrm{i}}^{\prime} \cdot \ell_{\mathrm{i}}}{\mathrm{k}_{\mathrm{gas}, \text { COBRA }} \cdot \mathrm{S} \cdot \mathrm{GK}} \tag{7-12}
\end{equation*}
$$

where

i	$=$ cell sequential number from center to edge
T_{Hi}	$=$ higher temperature in cell i, K
T_{Li}	$=$ lower temperature in cell i, K
$\mathrm{q}_{\mathrm{i}}^{\prime}$	$=$ linear power rate in cell $\mathrm{i}, \mathrm{W} / \mathrm{m}$
$\mathrm{k}_{\mathrm{gas}, \text { CobRA }}$	$=$ thermal conductivity used in COBRA-SFS input deck $\mathrm{W} / \mathrm{m}^{\circ} \mathrm{C}$
S	$=$ gap between rods $(=\mathrm{p}-\mathrm{d}), \mathrm{m}$
d	$=$ outside clad diameter of fuel rod, m
p	$=$ pitch, m
ℓ_{i}	$=$ conduction length in cell i, m
GK	$=$ cell conduction length factor, assumed constant for all cells

Figure 7-2. COBRA-SFS Conduction Model.

Performing a summation over all i 's yields

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}=\mathrm{T}_{\mathrm{w}}+\frac{\sum_{\mathrm{i}} \mathrm{q}_{\mathrm{i}}^{\prime} \cdot \ell_{\mathrm{i}}}{\mathrm{k}_{\text {gas, }, \text { COBRA }} \cdot \mathrm{S} \cdot \mathrm{GK}} \tag{7-13}
\end{equation*}
$$

Since the fuel bundle is symmetric, i.e., heat flux at the center of the bundle is zero, it is reasonable to assume that T_{m}, the gas temperature in the center subchannel in Figures 7-1 and 72 , is equal to clad temperature of rods which form this subchannel. The latter is the peak cladding temperature.

For Figure 7-2a, where there is odd number of rods per row, i.e., $\mathrm{n}=$ odd, Equation 713 becomes

$$
\begin{align*}
\mathrm{T}_{\mathrm{m}}-\mathrm{T}_{\mathrm{w}} & =\frac{1}{\mathrm{k}_{\text {gas }, \text { COBRA }} \cdot \mathrm{S} \cdot \mathrm{GK}} \cdot \sum_{\mathrm{i}=1}^{\frac{\mathrm{n}+1}{2}+1} \mathrm{q}_{\mathrm{i}}^{\prime} \cdot \ell_{\mathrm{i}} \tag{7-14}\\
& =\frac{1}{\mathrm{k}_{\text {gas. COBRA }} \cdot \mathrm{S} \cdot \mathrm{GK}}(\underbrace{q_{1}^{\prime} \ell_{1}+\sum_{\mathrm{i}=2}^{2} q_{i}^{\prime} \ell_{i}+q_{\frac{n+1}{\prime}+1}^{\prime} \ell_{\frac{n+1}{2}+1}^{2}}_{\equiv Q}) \tag{7-15}
\end{align*}
$$

where

$$
\begin{array}{ll}
\ell_{1} & =\mathrm{p} / 2, \mathrm{~m} \\
\ell_{\mathrm{i}} & =\mathrm{p}\left(\mathrm{i}=2,3, \ldots, \frac{\mathrm{n}+1}{2}\right), \mathrm{m} \\
\ell_{\frac{\mathrm{n}+1}{2}+1} & =\mathrm{w}-(\mathrm{p} / 2),(\mathrm{w}=\text { distance from the edge rod center to wall }), \mathrm{m} \\
\mathrm{q}_{1}^{\prime} & =1 / 2 \mathrm{q}_{\text {rod }}^{\prime}, \mathrm{W} / \mathrm{m} \\
\mathrm{q}_{\mathrm{i}}^{\prime} & =[1 / 2+(\mathrm{i}-1)] \mathrm{q}_{\text {rod }}^{\prime}=(\mathrm{i}-1 / 2) \mathrm{q}_{\text {rod }}^{\prime}\left(\mathrm{i}=2,3, \ldots, \frac{\mathrm{n}+1}{2}\right), \mathrm{W} / \mathrm{m}
\end{array}
$$

(From the center to the edge of the bundle, linear power density and heat flux across cell boundary will increase monotonically.)

$$
\mathrm{q}_{\frac{\mathrm{n}+1}{\prime}+1}^{\prime}=(\mathrm{n} / 2) \mathrm{q}_{\text {rod }}^{\prime}, \mathrm{W} / \mathrm{m}
$$

Using the above relations, we get

$$
\begin{align*}
Q & =\frac{q^{\prime}}{2} \cdot \frac{p}{2}+p q_{\text {rod }}^{\prime} \sum_{i=2}^{\frac{n+1}{2}}\left(i-\frac{1}{2}\right)+\left(w-\frac{p}{2}\right) \frac{\mathrm{n}}{2} q_{\text {rod }}^{\prime} \\
& =\mathrm{pq}_{\operatorname{rod}}^{\prime}\left[\frac{1}{4}+\frac{\mathrm{n}+3}{4} \cdot \frac{\mathrm{n}-1}{2}+\left(\frac{\mathrm{w}}{\mathrm{p}}-\frac{1}{2}\right) \frac{\mathrm{n}}{2}\right] \\
& =\mathrm{pq}_{\text {rod }}^{\prime}\left(\frac{\mathrm{n}^{2}-1}{8}+\frac{\mathrm{n}}{2} \frac{\mathrm{w}}{\mathrm{p}}\right) \tag{7-16}
\end{align*}
$$

Substituting Equation 7-16 into Equation 7-15 yields

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}-\mathrm{T}_{\mathrm{w}}=\frac{\mathrm{pq}_{\mathrm{rod}}^{\prime}}{\mathrm{k}_{\mathrm{gas} . \operatorname{COBRA}} \cdot \mathrm{S} \cdot \mathrm{GK}}\left(\frac{\mathrm{n}^{2}-1}{8}+\frac{\mathrm{n}}{2} \cdot \frac{\mathrm{w}}{\mathrm{p}}\right) \tag{7-17}
\end{equation*}
$$

Equating Equation 7-10 and Equation 7-17 yields

$$
\begin{equation*}
\frac{\left(\frac{\mathrm{n}}{2}\right) \mathrm{q}_{\text {rod }}^{\prime}}{2 \mathrm{k}_{\mathrm{eff}}} \cdot \frac{\mathrm{~L}}{\mathrm{p}}=\frac{\mathrm{pq}_{\text {rod }}^{\prime}}{\mathrm{k}_{\text {gas.COBRA }} \cdot \mathrm{S} \cdot \mathrm{GK}}\left(\frac{\mathrm{n}^{2}-1}{8}+\frac{\mathrm{n}}{2} \cdot \frac{\mathrm{w}}{\mathrm{p}}\right) \tag{7-18}
\end{equation*}
$$

From definition of $\mathrm{k}_{\mathrm{eff}}$ in Equation 4-1

$$
\begin{equation*}
\mathrm{k}_{\mathrm{eff}}=\mathrm{F}_{\mathrm{cond}} \cdot \mathrm{k}_{\mathrm{gas}, \mathrm{MIT}} \tag{7-19}
\end{equation*}
$$

where

$$
\mathrm{k}_{\mathrm{gas}, \mathrm{MIT}}=\text { gas thermal conductivity used in the MIT Method }
$$

Referring to the geometry in Figure 7-1, the following equation is obvious for both odd and even number of rods per row.

$$
\begin{equation*}
\mathrm{L}=\frac{\mathrm{n}-1}{2} \mathrm{p}+\mathrm{w} \tag{7-20a}
\end{equation*}
$$

Divided by p on both sides, Equation (7-20a) can be rewritten as

$$
\begin{equation*}
\frac{\mathrm{L}}{\mathrm{p}}=\frac{\mathrm{n}-1}{2}+\frac{\mathrm{w}}{\mathrm{p}} \tag{7-20b}
\end{equation*}
$$

Substituting Equation 7-19 and Equation 7-20b into Equation 7-18 and rearranging yields

$$
\mathrm{GK}=2 \frac{\mathrm{p}}{\mathrm{~s}} \cdot \mathrm{~F}_{\text {cond }} \cdot \frac{\mathrm{k}_{\mathrm{gas} . \mathrm{MIT}}}{\mathrm{k}_{\mathrm{gas} \cdot \text { COBRA }}} \cdot \frac{\frac{\mathrm{n}^{2}-1}{8}+\frac{\mathrm{n}}{2} \cdot \frac{\mathrm{w}}{\mathrm{p}}}{\left(\frac{\mathrm{n}-1}{2}+\frac{\mathrm{w}}{\mathrm{p}}\right) \cdot \frac{\mathrm{n}}{2}}
$$

or for odd number of rod per row,

$$
\begin{equation*}
\mathrm{GK}=2 \mathrm{~F}_{\text {cond }} \frac{\mathrm{k}_{\text {gas }, \mathrm{MIT}}}{\mathrm{k}_{\text {gas }, \text { COBRA }}} \cdot \frac{\mathrm{p}}{\mathrm{~S}} \cdot \frac{\frac{\mathrm{n}-\frac{1}{\mathrm{n}}}{4}+\frac{\mathrm{w}}{\mathrm{p}}}{\frac{\mathrm{n}-1}{2}+\frac{\mathrm{w}}{\mathrm{p}}} \tag{7-21}
\end{equation*}
$$

Note:
(1) Theoretically, gas thermal conductivity in the MIT Method $\mathrm{k}_{\text {gas,MIT }}$, should be identical to that in COBRA-SFS, $\mathrm{k}_{\mathrm{gas}, \mathrm{COBRA}}$ since both methods are used to solve the same heat conduction problem;
(2) In practice, there is a slight difference between the two conductivities. In the MIT Method, the thermal conductivity of gas is fitted as a polynomial function of absolute temperature [6] described as follows:
$k_{\text {gas,MIT }}=a_{0}+a_{1} \cdot T+a_{2} \cdot T^{2}+a_{3} \cdot T^{3}+a_{4} \cdot T^{4}$
where

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{i}}=\text { coefficients }(\mathrm{i}=0,1,2,3,4) \\
& \mathrm{T}=\text { gas temperature }, \mathrm{K}
\end{aligned}
$$

while in COBRA-SFS, thermal conductivity of backfill gas, together with other physical quantities is input as a tabular function of Fahrenheit temperature in Card PROP (see Appendix 1). By interpolation, thermal conductivity at each specific temperature is obtained in COBRASFS. This minor difference between the two methods is compensated for by introducing the thermal conductivity ratio in Equation 7-21.

These thermal conductivity ratios at relevant temperatures of column 4 in Table 7-2 are shown in Table 7-1.

In particular, utilizing the thermal conductivity ratios listed in Table 7-1, together with KSC-7 fuel bundle parameters, i.e., $\mathrm{n}=17, \mathrm{w} / \mathrm{p}=1.1262, \mathrm{p} / \mathrm{d}=1.326, \mathrm{~F}_{\text {cond }}=2.651$, theoretical GK values from Equation 7-21 are obtained and listed in Table 7-2.

For Figure $7-2 \mathrm{~b}$, where there is an even number of rods per row ($\mathrm{n}=\mathrm{even}$), Equation 713 is written as

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}-\mathrm{T}_{\mathrm{w}}=\frac{1}{\mathrm{k}_{\text {gas.COBRA }} \cdot \mathrm{S} \cdot \mathrm{GK}} \cdot \sum_{\mathrm{i}=1}^{\frac{\mathrm{n}}{2}+1} \mathrm{q}_{\mathrm{i}}^{\prime} \cdot \ell_{\mathrm{i}} \tag{7-23a}
\end{equation*}
$$

Table 7-1 Thermal Conductivities and Their Ratios at Relevant Temperatures

Gas Type	Power (W)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{k}_{\text {gas,MIT }}$ $\left(\mathrm{Btu} / \mathrm{hrft}{ }^{\circ} \mathrm{F}\right)$	$\mathrm{k}_{\text {gas,COBRA }}$ $\left(\mathrm{Btu} / \mathrm{hrft}{ }^{\circ} \mathrm{F}\right)$	$\mathrm{k}_{\text {gas,MIT/kgas,COBRA }}$ $(\mathrm{from}[11])$
N_{2}	4684	1089.0	0.04574	0.04792	0.9545
	1750	568.4	0.0323	0.03225	1.002
He	4684	359.3	0.1475	0.1326	1.112
	1750	207.3	0.1187	0.1118	1.062

or

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}-\mathrm{T}_{\mathrm{w}}=\frac{1}{\mathrm{k}_{\text {gas }, \text { COBRA }} \cdot \mathrm{S} \cdot \mathrm{GK}} \underbrace{\left(\sum_{i=1}^{\frac{\mathrm{n}}{2}} \mathrm{q}_{\mathrm{i}}^{\prime} \ell_{\mathrm{i}}+\mathrm{q}_{\frac{\mathrm{n}}{2}+1}^{\prime} \frac{\ell_{2}+1}{2}\right.}_{\equiv \mathrm{R}}) \tag{7-23b}
\end{equation*}
$$

where

$$
\begin{aligned}
\ell_{i} & =p\left(i=1,2,3, \ldots, \frac{n}{2}\right), m \\
\ell_{\frac{n}{2}+1} & =w-p / 2, m \\
q_{i}^{\prime} & =i \cdot q_{\text {rod }}^{\prime}\left(i=1,2,3, \ldots, \frac{n}{2}\right), W / m
\end{aligned}
$$

(From the center to the edge of the bundle, linear power density and heat flux across cell boundary will increase monotonically.)

$$
\mathrm{q}_{\frac{\mathrm{n}}{2}+1}^{\prime}=\left(\frac{\mathrm{n}}{2}\right) \mathrm{q}_{\mathrm{rod}}^{\prime}, \mathrm{W} / \mathrm{m}
$$

Using these relations yields

$$
\begin{align*}
R & =\mathrm{pq}_{\text {rod }}^{\prime} \sum_{\mathrm{i}=1}^{\frac{\mathrm{n}}{2}} \mathrm{i}+\left(\mathrm{w}-\frac{\mathrm{p}}{2}\right) \frac{\mathrm{n}}{2} \mathrm{q}_{\text {rod }}^{\prime} \\
& =\underset{\mathrm{pq}}{\text { rod }} \text {. }\left[\frac{1+\frac{\mathrm{n}}{2}}{2} \cdot \frac{\mathrm{n}}{2}+\left(\frac{\mathrm{w}}{\mathrm{p}}-\frac{1}{2}\right) \frac{\mathrm{n}}{2}\right] \\
& =\underset{\mathrm{rod}}{\prime}]\left(\frac{\mathrm{n}^{2}}{8}+\frac{\mathrm{n}}{2} \frac{\mathrm{w}}{\mathrm{p}}\right) \tag{7-24}
\end{align*}
$$

Substituting Equation 7-24 into Equation 7-23b yields

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}-\mathrm{T}_{\mathrm{w}}=\frac{\mathrm{pq}_{\text {rod }}^{\prime}}{\mathrm{k}_{\mathrm{gas}, C O B R A} \cdot \mathrm{~S} \cdot \mathrm{GK}}\left(\frac{\mathrm{n}^{2}}{8}+\frac{\mathrm{n}}{2} \cdot \frac{\mathrm{w}}{\mathrm{p}}\right) \tag{7-25}
\end{equation*}
$$

Equating Equation 7-10 and Equation 7-25 yields

$$
\begin{equation*}
\frac{\left(\frac{\mathrm{n}}{2}\right) \mathrm{q}_{\text {rod }}^{\prime}}{2 \mathrm{k}_{\text {eff }}} \cdot \frac{\mathrm{L}}{\mathrm{p}}=\frac{\mathrm{pq}_{\text {rod }}^{\prime}}{\mathrm{k}_{\mathrm{gu} \cdot \mathrm{COBRA}} \cdot \mathrm{~S} \cdot \mathrm{GK}}\left(\frac{\mathrm{n}^{2}}{8}+\frac{\mathrm{n}}{2} \cdot \frac{\mathrm{w}}{\mathrm{p}}\right) \tag{7-26}
\end{equation*}
$$

Substituting Equations 7-19 and 7-20b into 7-26 and rearranging, we get the GK expression for even n

$$
\mathrm{GK}=2 \frac{\mathrm{p}}{\mathrm{~s}} \cdot \mathrm{~F}_{\text {cond }} \cdot \frac{\mathrm{k}_{\text {gas.MIT }}}{\mathrm{k}_{\text {gas.COBRA }}} \cdot \frac{\frac{\mathrm{n}^{2}}{8}+\frac{\mathrm{n}}{2} \cdot \frac{\mathrm{w}}{\mathrm{p}}}{\left(\frac{\mathrm{n}-1}{2}+\frac{\mathrm{w}}{\mathrm{p}}\right) \cdot \frac{\mathrm{n}}{2}}
$$

or equivalently,

$$
\begin{equation*}
\mathrm{GK}=2 \mathrm{~F}_{\mathrm{cond}} \frac{\mathrm{k}_{\text {gas, MIT }}}{\mathrm{k}_{\text {gas,COBRA }}} \cdot \frac{\mathrm{p}}{\mathrm{~S}} \cdot \frac{\frac{\mathrm{n}}{4}+\frac{\mathrm{w}}{\mathrm{p}}}{\frac{\mathrm{n}-1}{2}+\frac{\mathrm{w}}{\mathrm{p}}} \tag{7-27}
\end{equation*}
$$

These analytic relations, Equations 7-21 and 7-27, for GK not only yield numerical predictions, but as importantly give the functional dependence of GK. We see that in both cases

$$
\mathrm{GK}=\mathrm{f}\left(\mathrm{~F}_{\mathrm{con}}, \mathrm{p} / \mathrm{S}, \mathrm{w} / \mathrm{p}, \mathrm{n}, \mathrm{k}_{\mathrm{gas}, \mathrm{MIT}} / \mathrm{k}_{\mathrm{gas}, \mathrm{COBRA}}\right)
$$

Since $\mathrm{F}_{\text {cond }}$ per Table 4-1 is a function of array type, p / d and a weak function of fill gas, we have

$$
\mathrm{GK}=\mathrm{f} \text { (array type, size through } \mathrm{n} \text {, geometry, and weakly fill gas). }
$$

Ideally, GK should not be a function of assembly power level and only a weak function of fill gas.

Next, the true values of GK are assessed by comparative COBRA-SFS (Cycle 2) and MIT Model calculations for this 17×17 square array of interest.

Equivalent Boundary Condition In COBRA-SFS, the environmental (air) temperature is assumed to be the boundary temperature (see Section 2.10.1 [1]), while the temperature distribution in the solid boundary, i.e., fuel basket (Figure 5-1) is calculated using boundary surface heat transfer coefficients (see Section 2.10.1 [1]), and the thermal conductivity of the solid material in property group PROP. 3 (see Section 2.2 [1]). The MIT Method, however, defines the temperature at the outmost boundary surface as the boundary temperature (Figure 41). These two boundary temperatures are equalized by assuming extremely large values for C_{1} (heat transfer coefficient on the outer surface) in group BDRY. 2 and CONSOL (thermal conductivity of the wall) in group PROP.3. The recommended value is 1.0×10^{8}.

Table 7-2 summarizes the results of the two methods and compares the theoretical and actual GK values calculated by COBRA-SFS for conduction-only in each case. In the table, Cycle 1 and Cycle 2 represent Cycle 1 and pre-released Cycle 2 of COBRA-SFS code, respectively.

Table 7-2. Comparison between COBRA-SFS and the MIT Method -Conduction Only, 17x17 Bundle

Fill Gases	Powers (W)	Methods	$\begin{aligned} & \mathrm{T}_{\text {clad,max }} \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{F}_{\text {cond }} \underline{o r}$ Actual GK (Cycle 1/Cycle 2)	$\begin{aligned} & \text { Theoretical } \\ & \text { GK } \\ & \text { (Eq. } 7-21 \text {) } \end{aligned}$	Relative Error
N_{2}	4684	MIT	1088.6	2.65	-	
		COBRA-SFS	1088.4	17.1 / 12.3	12.1	1.6\%
	1750	MIT	568.3	2.65	-	
		COBRA-SFS	568.2	14.3 / 14.2	12.7	11\%
He	4684	MIT	359.4	2.65	-	
		COBRA-SFS	359.4	17.8 / 17.8	14.1	21\%
	1750	MIT	207.1	2.65	-	
		COBRA-SFS	207.1	17.9 / 17.8	13.5	24\%

Note that $\dot{\mathrm{Q}}=4684 \mathrm{~W}$ is the nominal power for a KSC-7 spent fuel bundle while $\dot{\mathrm{Q}}=1750 \mathrm{~W}$ is an alternate power assumed to study the effect of power on the GK factor. From Table 7-2, actual GK's match theoretical GK's reasonably well, i.e. maximum error is 24% and minimum error is 1.6%. Further, these errors will be shown inconsequential when conduction and radiation are both operative. (Compare Tables 6-1, 7-2 and 7-5.)

7.1.2 Radiation

The MIT Method uses three radiation coefficients-namely, Crad, Crad,w,1, $\mathrm{C}_{\text {rad,w, }}$ - to model radiation heat transfer. Monte Carlo simulations were performed to provide these radiative coefficients for 15° circumferential rod segments and the results are listed in Appendix H of Reference [2].

The MIT Method was derived by assuming infinite numbers of rows or columns of rod. (See Figure 7-3.). Hence, special attention should be paid in the edge regions where the boundary condition plays a more important role than in the internal region. But, practically, as shown later, the edge effect disappears several rows away from the edges. The data in the interior region from COBRA-SFS/RADGEN are compared with the MIT Method.

The RADGEN source code was carefully studied, and the strategy to calculate rod gray body exchange factors was identified. First, the quarter-rod (90° segment) gray body exchange factors are calculated (See Figure 7-4.). Then they are combined to obtain the full-rod (360°) gray body exchange factors using Equation 7-28

$$
\begin{equation*}
F_{i j}=\frac{1}{4} \sum_{\mathrm{n}=1}^{4} \sum_{\mathrm{m}=1}^{4} F_{n m} \tag{7-28}
\end{equation*}
$$

where

$$
\begin{array}{ll}
F_{i j} & =\text { full-rod gray body exchange factor from rod } i \text { to } \operatorname{rod} j \\
F_{n m} & =\text { quarter-rod gray body exchange factor from quarters } n \text { to } m \\
\mathrm{n}, \mathrm{~m} & =\text { sequential number of each quarter in rods } i \text { and } j, \text { respectively. }
\end{array}
$$

Figure 7-5 illustrates the exchange factors of the center rod of row $8(\operatorname{rod} 128)$ to rods in other rows.

Though the quarter-rod exchange factor, $F_{n m}$, is not part of the standard output file in RADGEN, we extracted it as part of the output at MIT. The full-rod exchange factors, $F_{i j}$, which are necessary to simulate radiative heat transfer in COBRA-SFS, are in file TAPE10 after RADGEN execution is completed.

Table 7-3 gives the exchange factors of rods in the 8 -th row to rows $9,10,11$, and 12 based on TAPE10 file of KSC-7 fuel assembly (17 x 17 array) with rod emissivity $\varepsilon_{\mathrm{r}}=0.8$ and wall emissivity $\varepsilon_{\mathrm{W}}=0.3$. Note that in F_{k-L}, k stands for the sequential number of rods, while L

Figure 7-3 The MIT Method Derived from Infinite Array (after [2])

Figure 7-4 RADGEN Radiation Exchange Factor Model (90°-Segment)

Figure 7-5 Exchange Factors, $F_{i j}$, in the 17×17 Array
stands for the sequential number of rows of rods, i.e., F_{128-9} is the exchange factor of rod 128 to row 9, and it is expressed as

$$
\begin{equation*}
F_{128-9}=\sum_{j=137}^{153} F_{i j} \tag{7-29}
\end{equation*}
$$

where

$$
\begin{aligned}
& i=128, \text { rod number } \\
& j=137 \text { to } 153, \text { rod numbers. }
\end{aligned}
$$

Practically, if rod j is several rows away from rod $i, F_{i j}$ in the right hand side of Equation $7-29$ is negligible and its effect on F_{k-L} can be ignored.

From Table 7-3, it is obvious that the edge effect disappears four columns from the wall and that the interior can be taken as infinite rows of rods since, for the same value of L, F_{k-L} is not a function of position, i.e., F_{k-L} does not change for the same L when $k=124,125, \ldots$, 132. From Appendix 6:

$$
\begin{equation*}
G_{i-j}=F_{i j} / \varepsilon_{i} \tag{A6-5}
\end{equation*}
$$

where

$$
\begin{aligned}
& i=\text { rod number } \\
& j=\text { rod number }
\end{aligned}
$$

If all rod emissivities are equal (i.e., $\varepsilon_{\mathrm{i}}=\varepsilon_{\mathrm{r}}$), summing over all i, j from Equation A6-5 yields

$$
\begin{equation*}
G_{I-J}=F_{I J} / \varepsilon_{\mathrm{r}} \tag{7-30}
\end{equation*}
$$

where

$$
\begin{align*}
& G_{I-J}=\sum_{\mathrm{i}} \sum_{\mathrm{j}} G_{i-\mathrm{j}} \tag{7-31}\\
& F_{I J}=\sum_{\mathrm{i}} \sum_{\mathrm{j}} F_{i j} \tag{7-32}\\
& I=\text { sequential number of row } \\
& J=\text { sequential number of row }
\end{align*}
$$

The Radiative Coefficient, Crad, is (Page 168 [2])

$$
\begin{equation*}
\mathrm{C}_{\mathrm{racl}}=\varepsilon_{\mathrm{r}}\left(G_{I-(I+1)}+2^{2} G_{I-(I+2)}+\ldots \mathrm{n}^{2} G_{I-(I+\mathrm{n})}\right) \frac{\Delta \mathrm{x}}{\Delta \mathrm{y}} \tag{7-33}
\end{equation*}
$$

Table 7-3. Exchange Factors from RADGEN Based on TAPE10 file

$k(L=8)$	$F_{k-L}(L=9)$	$F_{k-L}(L=10)$	$F_{k-L}(L=11)$	$F_{k-L}(L=12)$
120	0.2062	0.03707	0.01254	3.667×10^{-3}
121	0.2411	0.02982	4.4319×10^{-3}	1.513×10^{-4}
122	0.2491	0.02775	4.2114×10^{-3}	8.632×10^{-5}
123	0.2503	0.02743	4.1789×10^{-3}	7.913×10^{-5}
124	0.2503	0.02743	4.1789×10^{-3}	7.893×10^{-5}
125	0.2503	0.02743	4.1789×10^{-3}	7.893×10^{-5}
126	0.2503	0.02743	4.1789×10^{-3}	7.893×10^{-5}
127	0.2503	0.02743	4.1789×10^{-3}	7.893×10^{-5}
128	0.2503	0.02743	4.1789×10^{-3}	7.893×10^{-5}
129	0.2503	0.02743	4.1789×10^{-3}	7.893×10^{-5}
130	0.2503	0.02743	4.1789×10^{-3}	7.893×10^{-5}
131	0.2503	0.02743	4.1789×10^{-3}	7.893×10^{-5}
132	0.2503	0.02743	4.1789×10^{-3}	7.893×10^{-5}
133	0.2503	0.02743	4.1789×10^{-3}	7.913×10^{-5}
134	0.2491	0.02775	4.2114×10^{-3}	8.632×10^{-5}
135	0.2411	0.02982	4.4319×10^{-3}	1.513×10^{-4}
136	0.2062	0.03707	0.01254	3.667×10^{-3}
	Rods 120 to 136 lie in the 8 -th row from left to right of Figure $7-5$			

For Square Array, $\Delta x=\Delta y$ (Figure 7-3). Hence,

$$
\begin{equation*}
\mathrm{C}_{\mathrm{rad}}=\varepsilon_{\mathrm{r}}\left(\sum_{K=1}^{\mathrm{n}} K^{2} \cdot G_{I-(I+K)}\right) \tag{7-34}
\end{equation*}
$$

Since the effect of rods more than 4 rows (or columns) away can be neglected, Equation 7-34 can be rewritten as

$$
\begin{equation*}
\mathrm{C}_{\mathrm{rad}} \approx \varepsilon_{\mathrm{r}}\left(\sum_{K=1}^{4} K^{2} \cdot G_{I-(I+K)}\right) \tag{7-35}
\end{equation*}
$$

Using Equation 7-30, Equation 7-35 can be reduced to

$$
\begin{equation*}
\mathrm{C}_{\mathrm{rad}}=\sum_{K=1}^{4} K^{2} \cdot F_{l, l+K} \tag{7-36}
\end{equation*}
$$

Using RADGEN data from Table 7-3, we get radiative coefficient for 90°-segment, $\mathrm{C}_{\mathrm{rad}}\left(90^{\circ}\right)$.

$$
\begin{align*}
\mathrm{C}_{\mathrm{rad}}\left(90^{\circ}\right) & =0.2503+2^{2}(0.02743)+3^{2}\left(4.1789 \times 10^{-3}\right)+4^{2}\left(7.893 \times 10^{-5}\right) \\
& =0.3989 \tag{7-37}
\end{align*}
$$

On the other hand, the radiation coefficient $C_{r a d}$ of 15° segment with $\varepsilon_{r}=0.8$ and $\mathrm{p} / \mathrm{d}=1.326$ can be obtained from Appendix H [2].

$$
\begin{equation*}
\mathrm{C}_{\mathrm{rad}}\left(15^{\circ}\right) \approx 0.3920 \pm \text { error from reading Figure } \mathrm{H}-1 . \tag{7-38}
\end{equation*}
$$

The error is 0.5% which was determined by Mr. Yoon of KAERI and Prof. Todreas upon independent examination of Figure $\mathrm{H}-1$ [2].

The relative error between COBRA-SFS/RADGEN $\left(90^{\circ}\right.$ or $\left.360^{\circ}\right)$ and the MIT Method $\left(15^{\circ}\right)$ is

$$
\left|\frac{\mathrm{C}_{\mathrm{rad}}\left(15^{\circ}\right)-\mathrm{C}_{\mathrm{rad}}\left(90^{\circ}\right)}{\mathrm{C}_{\mathrm{rad}}\left(15^{\circ}\right)}\right| \times 100 \%=\left|\frac{0.3920-0.3989}{0.3920}\right| \times 100 \%=1.8 \%
$$

The total error between the two methods lies within the range $1.8 \% \pm 0.5 \%$. Hence, the maximum error is 2.3%.

The importance of the 2.3% error is next evaluated by using the MIT Method since the corresponding errors of rod and wall emissivities are not clear. It is assumed in the evaluation that both wall radiative coefficients, $\mathrm{C}_{\mathrm{rad}, \mathrm{w}, 1}$ and $\mathrm{C}_{\text {rad,w,2 }}$ have the same error as $\mathrm{C}_{\text {rad }}$. Results of the eight error combinations of $\mathrm{C}_{\mathrm{rad}}, \mathrm{C}_{\mathrm{rad}, \mathrm{w}, 1}$, and $\mathrm{C}_{\mathrm{rad}, \mathrm{w}, 2}$ are shown in Table 7-4.

Table 7-4. Maximum Effect on Peak Clad Temperatures (${ }^{\circ} \mathrm{C}$) of 90° vs. 15° Rod Segments $-\dot{Q}=4684 \mathrm{~W}, \mathrm{~N}_{2}, 17 \times 17$, Conduction and Radiation, the MIT Method

$\mathrm{C}_{\text {rad,w,1 }}(=0.148$, base $)$	$+2.3 \%$	$+2.3 \%$	-2.3%	-2.3%	
$\mathrm{C}_{\mathrm{rad}, \mathrm{w}, 2}(=0.117$, base $)$	$+2.3 \%$	-2.3%	$+2.3 \%$	-2.3%	
$\mathrm{C}_{\mathrm{rad}}$ $\left(=\begin{array}{c}0.3754, \\ \text { base })\end{array}\right.$$+2.3 \%$ (0.3840)	409.97	411.60	410.33	411.97	
	-2.3% (0.3668)	414.22	415.80	414.58	416.18

For the 15° segments in 17 x 17 fuel bundle whose $\mathrm{p} / \mathrm{d}=1.326, \varepsilon_{\mathrm{r}}=0.8, \varepsilon_{\mathrm{W}}=0.3$, the radiative coefficients, $\mathrm{C}_{\mathrm{rad}}, \mathrm{C}_{\mathrm{rad}, \mathrm{w}, 1}$ and $\mathrm{C}_{\mathrm{rad}, \mathrm{w}, 2}$ are $0.3754,0.148,0.117$, respectively, as obtained from Appendix H [2].

As shown in Table 7-5, this combination of $\mathrm{C}_{\mathrm{rad}}, \mathrm{C}_{\mathrm{rad}, \mathrm{w}, 1}$ and $\mathrm{C}_{\mathrm{rad}, \mathrm{w}, 2}$ will produce a peak clad temperature of $413.03^{\circ} \mathrm{C}$ using the MIT Method, while other conditions are identical to those cases in Table 7-4. Hence, even under the worst combination, the deviation in peak clad temperature of 90° rod segment from that of the 15° segment is within $3.2^{\circ} \mathrm{C}$, i.e., upon rounding, $413^{\circ} \mathrm{C}$ compared to $410^{\circ} \mathrm{C}$ and $416.2^{\circ} \mathrm{C}$.

7.1.3 Conduction and Radiation

In the preceding sections we examined the conduction and radiation mechanisms separately. We deduced the value of GK necessary for conduction and determined that the COBRA-SFS radiation result was accurate compared to the MIT Method within $3.2^{\circ} \mathrm{C}$.

It is desirable now to assess the COBRA-SFS results under conduction plus radiation heat transfer by comparison with the MIT Method. The value of GK from Table 7-2 are used to eliminate differences due to conduction. Four cases considered are fill gases of nitrogen and helium as well as bundle powers of 4684 W and 1750 W .

Results are presented in Table 7-5. We find that:
(1) COBRA-SFS predicts lower peak clad temperatures (increasingly so at higher power) which indicates that COBRA-SFS is less conservative.
(2) Under the same conditions, the difference between the two methods is larger for N_{2} than for He . This is due to the fact that helium has a higher thermal conductivity than nitrogen so that radiation is not as important for helium as it is for nitrogen. $\left(k_{H e} \approx 5 \mathrm{k}_{\mathrm{N} 2}\right)$ Hence, this comparison, which illustrates differences in the radiation models (since GK's are established to equalize conduction contributions), will show the most difference in the nitrogen cases.
(3) Except for the high power nitrogen case, the temperatures differ by 2 to $6^{\circ} \mathrm{C}$, which is consistent with the error in clad temperature due to differences in radiation modeling as demonstrated in Table 7-4.
(4) In the combined Conduction and Radiation calculation, Cycle 2 code of COBRA-SFS has, in general, smaller temperature differences than Cycle 1 code. The improvement is especially eminent for high power nitrogen case (Compare columns 5 and 7.).
(5) Comparing Tables 7-2 and 7-5, it is concluded that, in dry spent fuel storage cask, heat conduction is dominated by radiation in nitrogen cases. (Refer also to Figure 7-6 and Appendix 8.)

7.1.4 Sensitivity Study on Emissivities

As to be mentioned in Section 7.4, measured data for rod and wall emissivities ought to be used in the analysis. Since, however, a conclusive data set does not exist, the commonly

Table 7-5. Comparison in the Peak Clad Temperature between COBRA-SFS and the MIT Method-Conduction and Radiation, 17x17 Bundle, GK Corresponding to Cases in Table 7-2

Fill Gases	Power (W)	MIT Method ($\left.{ }^{\circ} \mathrm{C}\right)$	Cycle 1 $\left({ }^{\circ} \mathrm{C}\right)$					Differences $\left({ }^{\circ} \mathrm{C}\right)$	Cycle 2 $\left({ }^{\circ} \mathrm{C}\right)$	Difference $\left({ }^{\circ} \mathrm{C}\right)$
			$398.9^{\#}$	-14.1	$404.7^{\#}$	-8.3				
			264.2	-5.4	264.3	-5.3				
He	4684		281.5	-5.7	281.4	-5.8				
	1750	181.0	178.2	-2.8	178.3	-2.7				

* Differences $\left({ }^{\circ} \mathrm{C}\right)=\mathrm{T}_{\text {COBRA-SFS }}\left({ }^{\circ} \mathrm{C}\right)-\mathrm{T}_{\text {MIT }}\left({ }^{\circ} \mathrm{C}\right)$
\# Input decks for Cycle 1 codes are provided in Appendices 3 and 4. Input decks for Cycle 2 codes are provided in Appendices 9 and 10.
recommended emissivities, i.e., 0.8 for rod, $0.2 \sim 0.3$ for wall, can be used and the sensitivity of peak clad temperature to variations in these emissivities assessed.

1). Rod Emissivity

The results of the sensitivity study on rod emissivity $\left(\varepsilon_{\mathrm{r}}\right)$ are shown in Table 7-6. From Table 7-6, we find:
(1) The uncertainty in peak clad temperature is about $10^{\circ} \mathrm{C} / 0.1$ change in ε_{r}.
(2) The larger the rod emissivity, the smaller the peak clad temperature, since larger rod emissivity indicates more radiative heat transfer.

2). Wall Emissivity

The results of the sensitivity study on wall emissivity $\left(\varepsilon_{\mathrm{W}}\right)$ are listed in Table 7-7. This Table indicates that:
(1) The uncertainty in peak clad temperature is about $10^{\circ} \mathrm{C} / 0.05$ change in ε_{W}, which is about twice as much as that for rod emissivity. Hence, the accuracy of the wall emissivity is more important to determine.
(2) The larger the wall emissivity, the smaller the peak clad temperature since larger wall emissivity indicates more radiative heat transfer.

7.1.5 Summary

Theoretical expressions (Equations 7-21 and 7-27) for the length conduction factor, GK, have been developed. From Equation 7-21, the theoretical value for GK can be obtained and is given in Table 7-2 for the 17×17 fuel bundle. From COBRA-SFS conduction calculations which produce the same peak clad temperatures as the MIT Method (Table 7-2), GK values of 14 to 18 resulted using Cycle 1 code and 12 to 18 from the pre-released Cycle 2 code. The difference stems from the fact that the theoretical expressions consider only 1D heat transfer, whereas the COBRA-SFS calculations are for the 3D bundle with a non-uniform axial heat flux distribution as prescribed by KAERI (see Appendix 5 for sample input). In fact, we believe that 2D heat transfer in the COBRA-SFS calculation is responsible for the difference since the peak clad temperature occurs within the mesh containing the peak axial heat flux position for 19 axial nodes. The 3D effect is very small, i.e., axial heat conduction is negligible. Hence, GK values in Table 7-2 from the COBRA-SFS calculations should be used in successive calculations.

Next, the effect of non-uniform emissivity for the rod surface is studied using 15° and 90° segments. COBRA-SFS (90°-segment) may predict a peak clad temperature that deviates from the MIT Method (15°-segment) by about $3^{\circ} \mathrm{C}$ (Table $7-4$). Table $7-4$ also shows this deviation is probably such that the COBRA-SFS result is less than the MIT result, taking into account the fact that $\mathrm{C}_{\mathrm{rad}}\left(90^{\circ}\right)$ is slightly larger than $\mathrm{C}_{\mathrm{rad}}\left(15^{\circ}\right)$. (See Equations 7-37 and 7-38.)

Table 7-6. Sensitivity Study on Rod Emissivity-Conduction and Radiation, 17 x 17 Bundle, $\dot{\mathrm{Q}}=4684 \mathrm{~W}, \mathrm{~N}_{2}, \mathrm{GK}=17.1, \varepsilon_{\mathrm{W}}=0.3$

ε_{r}	
0.70	Peak Clad Temperatures $\left({ }^{\circ} \mathrm{C}\right)$
$\mathbf{0 . 8 0}$	409.4
0.85	$\mathbf{3 9 8 . 9}$
0.90	394.0
	389.3

Table 7-7. Sensitivity Study on Wall Emissivity-Conduction and Radiation, 1.7 x 17 Bundle, $\mathrm{Q}=4684 \mathrm{~W}, \mathrm{~N}_{2}, \mathrm{GK}=17.1, \varepsilon_{\mathrm{r}}=0.8$

ε_{W}	
0.25	Peak Clad Temperatures $\left({ }^{\circ} \mathrm{C}\right)$
$\mathbf{0 . 3 0}$	$\mathbf{3 9 8 . 5}$
0.35	390.6

The combined conduction and radiation calculation does show that COBRA-SFS predicts lower peak clad temperatures than the MIT Method. This discrepancy is about 2 to $6^{\circ} \mathrm{C}$, except for the higher power nitrogen case which is $14^{\circ} \mathrm{C}$ (Table 7-5). This tendency is consistent with the prediction in Table 7-4.

Sensitivity studies of the emissivities show that the peak clad temperature decreases about $10^{\circ} \mathrm{C}$ by increasing the rod emissivity by 0.1 , or by increasing the wall emissivity by 0.05 . Hence, the selection of emissivities is important to achieve a more accurate peak clad temperature (See Section 7.4.2.) and reduce the uncertainty on clad temperatures.

7.1.6 Recommendations

Currently KAERI uses a GK factor of 1.0 , a 90° segment, and rod and wall emissivities of 0.8 and 0.3 , respectively. The resulting peak clad temperatures are identified as the base case and are given in Table 6-1.

We recommend that KAERI uses GK factors of Table 7-2. We have no recommended change in the COBRA-SFS radiation model (RADGEN). With combined conduction and radiation, the change of GK factor will yield peak clad temperatures of Table 7-5. Table 7-8 summaries the change in peak clad temperature resulting from this recommendation. The benefit of this recommendation is a reduction in peak clad temperature of $30^{\circ} \mathrm{C}(\sim 7 \%)$ for nitrogen and $87^{\circ} \mathrm{C}(\sim 24 \%)$ for helium. The change for helium is larger because of its larger susceptibility to change in the conduction model stemming from its high thermal conductivity. Finally, it would be desirable to measure the wall and clad emissivities of typical materials.

7.2 Lumped Effective Conductivity

The spent fuel cask analyzed (KSC-7) contains seven fuel bundles, each of which is a 17×17 array as described in Figure 5-1. Hence, the analysis would require a very long computation time and can only be undertaken on computers with a vast amount of memory as well as disc space to store output files unless the bundles are homogenized into smaller ones.

Homogenization is a process which lumps larger fuel bundles, i.e., 17 x 17 bundles in typical PWR fuel design nowadays, into smaller bundles, i.e., 8×8 bundles, without changing their physical characteristics. By homogenization, we can increase computation speed substantially as well as reduce requirements on computer memory and space.

The process for performing this homogenization is presented next.

Table 7-8. Reduction in Peak Clad Temperature under Conduction and Radiation from the Recommended Change in GK Factor ($17 \mathrm{x} 17,4684 \mathrm{~W}, \varepsilon_{\mathrm{r}}=0.8, \varepsilon_{\mathrm{W}}=0.3$)

	Nitrogen	Helium
	$428.0^{\circ} \mathrm{C}$	$368.4^{\circ} \mathrm{C}$
Recommended GK, Table 7-5	$398.9^{\circ} \mathrm{C}$	$281.5^{\circ} \mathrm{C}$
Reduction in $\mathrm{T}_{\text {max,clad }}$	$-29.1^{\circ} \mathrm{C}$	$-86.9^{\circ} \mathrm{C}$
Percentage Reduction in $\mathrm{T}_{\text {max,clad }}$	-6.8%	-23.6%

7.2.1 Principle of Homogenization

The following parameters are to be maintained the same in the lumped bundle as in the 17×17 array.

1) Volumetric energy generation rate, $q^{\prime \prime \prime}$,
2) Total clad and fuel cross-sectional areas,
3) Axial fuel length,
4) The pitch-to-diameter ratio, and
5) Inner and outer side lengths of bundle wall ($\mathrm{L}_{\mathrm{ci}} / 4, \mathrm{~L}_{\mathrm{co}} / 4$) (see Figures 5-1 and 5-2).

Assumptions 1, 2 and 3 combined will keep the total decay power constant. Following assumption 5, the lumped fuel bundles can be fitted into spent fuel cask as if they were the original unlumped bundles since the lumped bundles have the same outer dimension as their original counterparts. As a consequence of homogenization, an emissivity modification factor must be introduced to compensate for excessive radiation heat transfer in the lumped bundle resulting from fewer rods and hence greater view factor for the peak-clad-temperature rod. This modification is quantified in Section 7.2.4.

7.2.2 Implementation of Homogenization

Based on the five assumptions, the geometric parameters, i.e., clad outside and inside diameters, fuel pellet diameter, and pitch, can be calculated for the lumped array. In the following derivation, the capital letters represent the original array, i.e. 17×17, while the small letters stand for the lumped array.

1) Find the clad outside diameter, d_{CO}, for the lumped bundle using Assumption 2 .

$$
\begin{equation*}
\mathrm{N} \times \mathrm{N} \times \frac{\pi}{4} \mathrm{D}_{\mathrm{co}}^{2}=\mathrm{n} \times \mathrm{n} \times \frac{\pi}{4} \mathrm{~d}_{\mathrm{co}}^{2} \tag{7-39}
\end{equation*}
$$

To solve for d_{co}, we have

$$
\begin{equation*}
\mathrm{d}_{\mathrm{co}}=\frac{\mathrm{N}}{\mathrm{n}} \mathrm{D}_{\mathrm{co}} \tag{7-40}
\end{equation*}
$$

where
$\mathrm{N}=$ number of rods each row in the original array, i.e. 17
$\mathrm{n}=$ number of rods each row in lumped array, i.e., 8
$\mathrm{D}_{\mathrm{co}}=$ clad outside diameter for the original array
$\mathrm{d}_{\mathrm{CO}}=$ clad outside diameter for lumped array
For KSC- 7 fuel bundles, $\mathrm{N}=17, \mathrm{D}_{\mathrm{co}}=0.3740^{\prime \prime}$, assuming $\mathrm{n}=8$, we obtain

$$
\mathrm{d}_{\mathrm{co}}=17 / 8 \times 0.3740^{\prime \prime}=0.7948^{\prime \prime}
$$

2) Find the lumped pitch, p, using Assumption 4.

$$
\begin{equation*}
\frac{\mathrm{P}}{\mathrm{D}_{\mathrm{co}}}=\frac{\mathrm{p}}{\mathrm{~d}_{\mathrm{co}}} \text { or } \mathrm{p}=\frac{\mathrm{d}_{\mathrm{co}}}{\mathrm{D}_{\mathrm{co}}} \mathrm{P} \tag{7-41}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{P}=\text { pitch for the original array } \\
& \mathrm{p}=\text { pitch for the lumped array }
\end{aligned}
$$

For KSC--7 fuel bundles, $\mathrm{P}_{\mathrm{C}} \mathrm{D}_{\mathrm{CO}}=1.326$

$$
\mathrm{p}=\left(\frac{\mathrm{P}}{\mathrm{D}_{\mathrm{co}}}\right) \mathrm{d}_{\mathrm{co}}=1.326 \times 0.7984^{\prime \prime}=1.054^{\prime \prime}
$$

3) Find the lumped clad inside diameter, d_{ci}, using Assumption 2.

$$
\begin{equation*}
\mathrm{N} \times \mathrm{N} \times \frac{\pi}{4}\left(\mathrm{D}_{\mathrm{co}}^{2}-\mathrm{D}_{\mathrm{ci}}^{2}\right)=\mathrm{n} \times \mathrm{n} \times \frac{\pi}{4}\left(\mathrm{~d}_{\mathrm{co}}^{2}-\mathrm{d}_{\mathrm{ci}}^{2}\right) \tag{7-42}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{ci}}=\text { clad inside diameters for the original array } \\
& \mathrm{d}_{\mathrm{Ci}}=\text { clad inside diameters for the lumped array }
\end{aligned}
$$

So,

$$
\begin{align*}
\mathrm{d}_{\mathrm{ci}} & =\sqrt{\mathrm{d}_{\mathrm{co}}^{2}-\frac{\mathrm{N}^{2}}{\mathrm{n}^{2}}\left(\mathrm{D}_{\mathrm{co}}^{2}-\mathrm{D}_{\mathrm{ci}}^{2}\right)} \\
& =\sqrt{\mathrm{d}_{\mathrm{co}}^{2}-\left(\frac{\mathrm{N}}{\mathrm{n}} \mathrm{D}_{\mathrm{co}}\right)^{2}+\frac{\mathrm{N}^{2}}{\mathrm{n}^{2}} \mathrm{D}_{\mathrm{ci}}^{2}} \tag{7-43}
\end{align*}
$$

Substituting Equation 7-40 into Equation 7-43 yields

$$
\mathrm{d}_{\mathrm{ci}}=\sqrt{\mathrm{d}_{\mathrm{co}}^{2}-\mathrm{d}_{\mathrm{co}}^{2}+\frac{\mathrm{N}^{2}}{\mathrm{n}^{2}} \mathrm{D}_{\mathrm{ci}}^{2}}
$$

Hence, we get

$$
\begin{equation*}
\mathrm{d}_{\mathrm{ci}}=\frac{\mathrm{N}}{\mathrm{n}} \mathrm{D}_{\mathrm{ci}} \tag{7-44}
\end{equation*}
$$

For $\mathrm{KSC}-7$ spent fuel, $\mathrm{N}=17, \mathrm{D}_{\mathrm{Ci}}=0.3290^{\prime \prime}$, assuming $\mathrm{n}=8$, we have $\mathrm{d}_{\mathrm{ci}}=$ $0.6991^{\prime \prime}$.
4) Find the lumped clad thickness, δ_{C}.

$$
\delta_{\mathrm{c}}=\frac{1}{2}\left(\mathrm{~d}_{\mathrm{co}}-\mathrm{dci}\right)
$$

Substituting Equations 7-40, 7-44 into Equation 7-45 yields,

$$
\begin{aligned}
\delta_{\mathrm{c}} & =\frac{1}{2} \cdot\left(\frac{\mathrm{~N}}{\mathrm{n}} \cdot \mathrm{D}_{\mathrm{co}}-\frac{\mathrm{N}}{\mathrm{n}} \cdot \mathrm{D}_{\mathrm{ci}}\right) \\
& =\frac{\mathrm{N}}{\mathrm{n}} \cdot\left(\frac{\mathrm{D}_{\mathrm{co}}-\mathrm{D}_{\mathrm{ci}}}{2}\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
\delta_{\mathrm{c}}=\frac{\mathrm{N}}{\mathrm{n}} \Delta \mathrm{c} \tag{7-46}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Delta c=\text { clad thickness for the original array } \\
& \delta_{c}=\text { clad thickness for the lumped array }
\end{aligned}
$$

Since $d_{c o}=0.7948^{\prime \prime}$ and $d_{c i}=0.6991^{\prime \prime}$ have been determined, we use Equation 7-45 to evaluate $\delta_{C}=0.04785^{\prime \prime}$.
5) Find the lumped fuel pellet diameter, d_{f}, using Assumption 2.

$$
\begin{align*}
\mathrm{N} \times \mathrm{N} \times \frac{\pi}{4} D_{f}^{2} & =\mathrm{n} \times \mathrm{n} \times \frac{\pi}{4} d_{f}^{2} \tag{7-47}\\
d_{f} & =\frac{N}{n} D_{f} \tag{7-48}
\end{align*}
$$

or
where

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{f}}=\text { fuel pellet diameter diameters for the original array } \\
& \mathrm{d}_{\mathrm{f}}=\text { fuel pellet diameter diameters for the lumped array }
\end{aligned}
$$

For KSC-7 spent fuel, $\mathrm{N}=17, \mathrm{D}_{\mathrm{f}}=0.3224^{\prime \prime}$, assuming $\mathrm{n}=8$, we get $\mathrm{d}_{\mathrm{f}}=0.6851^{\prime \prime}$.
6) Find the lumped gap thickness, δ_{g}.

$$
\begin{equation*}
\delta_{\mathrm{g}}=\frac{\mathrm{d}_{\mathrm{ci}}-\mathrm{d}_{\mathrm{f}}}{2} \tag{7-49}
\end{equation*}
$$

Substituting Equations 7-44 and 7-48 into Equation 7-49 yields

$$
\begin{align*}
& \delta_{g}= \frac{1}{2}\left(\frac{N}{n} D_{c i}-\frac{N}{n} D_{f}\right) \\
&= \frac{N}{n}\left(\frac{D_{c i}-D_{f}}{2}\right) \\
& \delta_{g}=\frac{N}{n} \Delta g \tag{7-50}
\end{align*}
$$

Hence
where

$$
\begin{aligned}
& \Delta_{\mathrm{g}}=\text { gap thickness for the original array } \\
& \delta_{\mathrm{g}}=\text { gap thickness for the lumped array }
\end{aligned}
$$

Since $\mathrm{d}_{\mathrm{ci}}=0.6991^{\prime \prime}$ and $\mathrm{d}_{\mathrm{f}}=0.6851^{\prime \prime}$ have been determined, we use Equation 7-49 to get $\delta_{\mathrm{g}}=0.0070^{\prime \prime}$.
7) Find the edge-rod-center-to-wall distance, w, (see Figure 7-1) using Assumption 5.

$$
\begin{equation*}
\frac{\ell_{\mathrm{ci}}}{4}=\frac{\mathrm{L}_{\mathrm{ci}}}{4} \tag{7-51}
\end{equation*}
$$

where

$$
\begin{aligned}
\ell_{\mathrm{ci}} & =\text { inner circumferential length for the original array } \\
\mathrm{L}_{\mathrm{ci}} & =\text { inner circumferential length for the lumped array }
\end{aligned}
$$

From Figures 5-1, 5-2 and 7-1, the following relationship holds

$$
\begin{equation*}
(n-1) p+2 w=\frac{L_{\mathrm{Ci}}}{4} \tag{7-52}
\end{equation*}
$$

or

$$
\begin{equation*}
w=\frac{\frac{L_{\mathrm{ci}}}{4}-(n-1) p}{2} \tag{7-53}
\end{equation*}
$$

where
$\mathrm{w}=$ distance from inside wall to the center of the nearest rod in the lumped array

Since $\mathrm{L}_{\mathrm{ci}} / 4=9.055^{\prime \prime}, \mathrm{p}=1.054^{\prime \prime}$, assuming $\mathrm{n}=8$, we get $\mathrm{w}=0.8385^{\prime \prime}$.

7.2.3 Lumped Fuel Bundle Analysis

A spectrum of lumped $n \times n$ arrays are obtained using the above method. The MIT Method is then employed to compute the peak clad temperature in cases of conduction-only (Conly), and conduction and radiation ($\mathrm{C}+\mathrm{R}$). The results are shown in Table 7-9 and Figure 7-6.

From these results, it is observed that:
(1) For conduction-only, the peak clad temperature does not change with lumped array sizes. This is what we expected since homogenization should yield the same peak clad temperature as the original bundle. Hence, the homogenization process is adequate for the conduction-only case.
(2) For conduction and radiation, however, the peak clad temperature is a function of the lumped array size, n . The smaller the lumped bundle size, n , the lower the peak clad temperature and, hence, the higher the radiative heat transfer.
(3) In dry spent fuel cask thermal calculation, i.e., filled with nitrogen, radiation heat transfer is the dominant factor. For 17×17 bundle, radiation reduces the peak clad temperature from $1088.6^{\circ} \mathrm{C}$ (Conduction-only) to $413.0^{\circ} \mathrm{C}$ (Conduction and Radiation). This result is consistent with that of a simple hand calculation as illustrated in Appendix 8.

This phenomenon is also observed in COBRA-SFS. Qualitatively, it can be explained by studying Figures 5-1 and 5-2. For the lumped bundle, i.e., 8×8, fuel rods are less densely spaced so that radiation from one rod is less shielded by its surrounding neighbors. This decreased shielding by surrounding fuel rods increases radiative heat transfer from the center hot rod to its neighboring rods and subsequently to the bundle wall. Hence, the peak clad temperature is lower than it should be if the lumped bundle is to represent the full size array. Hence, measures must be taken to compensate for the abnormal temperature decrement in the lumped fuel bundle.

Table 7-9. Major Geometric Parameters and Peak Clad Temperature for the Lumped and the Original Arrays- $\dot{Q}=4684 \mathrm{~W}, \mathrm{~N}_{2}$, the MIT Method, $\varepsilon_{\mathrm{W}}=0.3, \varepsilon_{\mathrm{r}}=0.8$

$\mathrm{n} \times \mathrm{n}$	d_{co} (in.)	p (in.)	w (in.)	$\mathrm{T}_{\text {max, clad }}\left({ }^{\circ} \mathrm{C}\right.$)	
		2.1193		1.1173	1089.2
3×3	1.2716	1.6861	1.1553	1089.3	309.2
5×5	0.9083	1.2044	0.9143	1089.1	3425.5
7×7	0.7948	1.0539	0.8385	1089.0	350.6
8×8	0.6358	0.8431	0.7336	1089.1	366.3
10×10	0.5298	0.7025	0.6638	1089.4	380.9
12×12	0.4541	0.6021	0.6139	1089.5	394.5
14×14	0.3974	0.5270	0.5750	1088.8	407.1
16×16	0.3740	0.4961	0.5587	1088.6	413.0
17×17					

Figure 7-6. $\mathrm{T}_{\mathrm{max}, \text { clad }}$ versus Number of Rods Lumped per Row.

7.2.4 Means to Compensate for the Excess Radiative Heat Transfer

The reduced shielding in the lumped model tends to decrease the peak clad temperature. This decrement is not conservative. Hence, ways must be found to compensate for the excess radiation heat exchange, i.e., by reducing effective emissivity in Equation 7-90. One approach to achieve this goal is to introduce a radiation modification factor to adjust the rod emissivity, ε_{r}, the other is to introduce a radiation modification factor to adjust the wall emissivity, ε_{W}. The former approach is chosen in this study since the rod emissivity affects only the wall while the wall emissivity affects both its enclosed rods and its outer surrounding (i.e., inner shell) in a cask calculation (see Figures 5-3 and 5-4). In COBRA-SFS, we take the peak clad temperature of the 17×17 array as the standard value under conduction and radiation. Then we calculate the peak clad temperature for the lumped array under the same physical condition, except with a modified rod emissivity. If this temperature is different from the standard value, we adjust the rod emissivity and iterate until the two temperatures are equal. Finally, the rod emissivity modification factor, $\mathrm{F}_{\varepsilon r}$, is obtained for this lumped array using the following definition:

$$
\begin{equation*}
\mathrm{F}_{\varepsilon r}=\frac{\varepsilon_{\mathrm{r}}^{\mathrm{L}}}{\varepsilon_{\mathrm{r}}^{\mathrm{T}}} \tag{7-54}
\end{equation*}
$$

where
$\mathrm{F}_{\mathrm{Er}}=$ rod emissivity modification factor
$\varepsilon_{\mathrm{r}}^{\mathrm{L}}=$ modified rod emissivity in the lumped array
$\varepsilon_{\mathrm{T}}^{\mathrm{T}}=$ true value of rod emissivity in the original array, i.e., 17×17
The rod emissivity modification factor, $\mathrm{F}_{\mathrm{\varepsilon r}}$, is a function of several factors, i.e., $\varepsilon_{\mathrm{r}}, \varepsilon_{\mathrm{W}}$, but most significantly it is a function of lumped array size. A study focused on determining the modification factor was performed and the result is illustrated in Figure 7-7 using COBRA-SFS / RADGEN. We do not know exactly why there is a small dip when the $4 x 4$ lumped array is chosen. Note that this study was based on conduction represented by GK $=10.8$ since it was performed before the GK study in Table 7-2 was finished (for a change in GK factor, the methodology is provide in Section 7.2.7). Even though for the combined conduction and radiation case, small changes in GK do not perturb the results significantly, we still must develop the true GK values for the homogenized bundles. Using COBRA-SFS (Cycle 2) and with input deck and method provided here, Kao[11] improved the GK factors for the lumped 8 x 8 bundle which are shown in Table 7-10.

In summary, the homogenization procedure thus not only modifies geometry, but introduces a rod emissivity modification factor.

7.2.5 Verification of the Homogenization Procedure for Varying Wall Temperatures

The exact value of the bundle wall temperature in the KSC-7 cask are not known and will vary from bundle to bundle (Figure 5-3). In this study we demonstrate that the homogenization

Figure 7-7 Radiation Factor and Its Corresponding Array Size.

Table 7-10 GK Factors for Lumped 8×8 bundle (COBRA-SFS)

Fill Gases	Powers (W)	Actual GK (Cycle1 / Cycle2)	Theoretical GK (Eq. 7-27)
N_{2}	4684	$>100 / 23.1$	13.4
	1750	$31.6 / 30.8$	14.0
He	4684	$59.0 / 57.0$	15.6
	1750	$65.0 / 63.0$	14.9

procedure is applicable independent of the wall temperature. To do so we will examine results at wall temperatures of $40^{\circ} \mathrm{C}, 96^{\circ} \mathrm{C}, 150^{\circ} \mathrm{C}, 200^{\circ} \mathrm{C}$, and $250^{\circ} \mathrm{C}$ using COBRA-SFS.

Figure 7-8 shows the peak clad temperature as a function of the bundle wall temperature. For bundle wall temperatures ranging from $40^{\circ} \mathrm{C}$ to $250^{\circ} \mathrm{C}$, the peak clad temperature deviates by no more than $4^{\circ} \mathrm{C}$ for arrays lumped to as small as 3×3. Hence, the homogenization procedure (geometry adjustment and the radiation modification factor) is adequate in representing the 17×17 arrays of the KSC-7 cask by lumped smaller arrays.

7.2.6 Summary

The principle of homogenization is outlined in Section 7.2.1, followed by the derivation of the specific homogenization expressions.

Lumped fuel bundle analysis shows an excessive radiative heat transfer due to the diminished shielding by the rods in the lumped fuel array. This effect is compensated for by introducing the emissivity modification factor $\left(\mathrm{F}_{\varepsilon r}\right)$. The factor is numerically shown in Figure 7-7. The value of the factor decreases as the number of rods in the homogenized array decreases. For the lumped 8 x 8 square array, $\mathrm{F}_{\varepsilon r}$ is recommended to be 0.40 .

Finally, the homogenization procedure is validated by varying wall temperatures for several different bundle sizes (Figure 7-8).

7.2.7 Recommendations

Currently KAERI uses a GK factor of 1.0 , a 90° clad circumference segment, and rod and wall emissivities of 0.8 and 0.5 (see Appendix 4), respectively, in the lumped 8×8 bundle analysis. We recommend the following parameters for the homogenized bundle:

1) The same total decay power as in the original 17×17 bundle.
2) Geometries as described from Equations 7-39 to 7-53.
3) Wall emissivity of $\varepsilon_{W}=0.3$.
4) Rod emissivity modification factor, $\mathrm{F}_{\varepsilon r} \approx 0.4$ for the lumped 8 x 8 bundle. This yields an input rod emissivity of $\varepsilon_{\mathrm{r}}=0.8(0.4)=0.32$.
5) Conduction length factor, GK = 10.8 for Cycle 1 code or values in Table 7-10 for Cycle 2 code for the lumped 8 x 8 bundle.
Table 7-11 illustrates that the introduction of rod emissivity modification factor will result in a $55^{\circ} \mathrm{C}$ correction in peak clad temperature in the lumped bundle.

The effect of the recommended correction in rod emissivity which keeps peak clad temperature as $413.0^{\circ} \mathrm{C}$ is shown in Table $7-11$. Note $\mathrm{GK}=10.8$ is assumed in this calculation. If, for consistency with the GK factor recommended for the standard bundle, KAERI wants to use GK values in Table 7-10 for the 8×8 bundle, then the rod emissivity factor, $\mathrm{F}_{\varepsilon \mathrm{r}}$, may need slight modification. The computation steps should be accomplished as follows:

Figure 7-8. $\mathrm{T}_{\max , \mathrm{clad} \text { versus }} \mathrm{T}_{\mathrm{W}}(17 \mathrm{x} 17,8 \mathrm{x} 8,4 \mathrm{x} 4$ and 3 x 3$)$ at 4684 W .

Table 7-11. Peak Clad Temperatures vs. Rod Emissivity-8x8 Bundle, Conduction and Radiation, $\mathrm{N}_{2}, \mathrm{GK}=10.8, \varepsilon_{\mathrm{W}}=0.3$

ε_{r}	$\mathrm{F}_{\varepsilon r}$	$\mathrm{~T}_{\text {clad,max }}\left({ }^{\circ} \mathrm{C}\right)$
0.8	1.0	358.2
0.32	0.40	413.0

Step 1: Change GK from 10.8 to respective values in Table 7-10 in COBRA-SFS input file.
Step 2: Change rod emissivity to a new value in the input file of RADGEN.
Step 3: Run RADGEN.
Step 4: Run COBRA-SFS.
Step 5: Compare the peak clad temperature obtained from COBRA-SFS with corresponding MIT result provided in Table 7-5.
Step 6: If the two temperatures do not match, repeat Steps 2 to 5. Otherwise, the modified rod emissivity is the one used in Step 2.

7.3 Lumped Effective Conductivity Thermal Analysis of the KSC-7 Cask

An analytical heat transfer model has been developed for the KSC-7 cask. This work is comprised of four parts:

1) A set of generic equations for conductive heat transfer is developed,
2) A set of generic equations for radiative heat transfer is developed,
3) A set of analytic solution equations is developed specifically for the KSC-7 geometry, and
4) Solution procedures to find the maximum temperature is provided for coding of the method.

The four parts are elaborated in the following sections.

7.3.1 Conductive Heat Transfer

From Nuclear Systems I (Page 297,[9]), a generic equation for the heat conduction is obtained

$$
\begin{equation*}
\rho \mathrm{C}_{\mathrm{p}}(\overrightarrow{\mathrm{r}}, \mathrm{t}) \frac{\partial \mathrm{T}(\overrightarrow{\mathrm{r}}, \mathrm{t})}{\partial \mathrm{t}}=\nabla \cdot \mathrm{k}(\overrightarrow{\mathrm{r}}, \mathrm{~T}) \nabla \mathrm{T}(\overrightarrow{\mathrm{r}}, \mathrm{t})+\mathrm{q}^{\prime \prime \prime}(\overrightarrow{\mathrm{r}}, \mathrm{t}) \tag{7-55}
\end{equation*}
$$

where
$\rho=$ density of heat conduction medium, $\mathrm{kg} / \mathrm{m}^{3}$
$\mathrm{C}_{\mathrm{p}}=$ specific heat capacity at constant pressure, $\mathrm{J} /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)$
$\mathrm{k} \quad=$ thermal conductivity of the medium, $\mathrm{W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right)$
$\mathrm{q}^{\prime \prime}=$ volumetric power density, $\mathrm{W} / \mathrm{m}^{3}$
$\mathrm{t}=$ transient time, sec
$\mathrm{T}=$ temperature, ${ }^{\circ} \mathrm{C}$
$\mathrm{r} \quad=$ geometric location, m
In steady state, physical parameters are no longer functions of time, Equation 7-55 can be rewritten as

$$
\begin{equation*}
\nabla \cdot \mathrm{k}(\overrightarrow{\mathrm{r}}, \mathrm{~T}) \nabla \mathrm{T}(\overrightarrow{\mathrm{r}})+\mathrm{q}^{\prime \prime \prime}(\overrightarrow{\mathrm{r}})=0 \tag{7-56}
\end{equation*}
$$

Let us consider two cases of cylindrical geometry where $\mathrm{q}^{\prime \prime \prime} \neq 0$ and $\mathrm{q}^{\prime \prime \prime}=0$, as illustrated in Figure 7-9.

1) Pellet

For homogeneous symmetric solid cylinder $\left(r_{i}=0\right)$ with volumetric energy generation rate, $q^{\prime \prime \prime} \neq 0$, i.e., reactor fuel pellet thermal conductivity, k, and volumetric power density, $q^{\prime \prime \prime}$, are no longer functions of location, \vec{r}, Equation 7-56 can be simplified to:

$$
\begin{equation*}
\nabla \cdot \mathrm{k}(\mathrm{~T}) \nabla \mathrm{T}(\overrightarrow{\mathrm{r}})+\mathrm{q}^{\prime \prime \prime}=0 \tag{7-57}
\end{equation*}
$$

or

Figure 7-9. Conductive Heat Transfer Model.

$$
\begin{equation*}
\frac{1}{\mathrm{r}}\left[\frac{\mathrm{~d}}{\mathrm{dr}}\left(\mathrm{kr} \frac{\mathrm{dT}}{\mathrm{dr}}\right)\right]+\mathrm{q}^{\prime \prime}=0 \tag{7-58}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dr}}\left(\mathrm{kr} \frac{\mathrm{dT}}{\mathrm{dr}}\right)+\mathrm{q}^{\prime \prime \prime} \mathrm{r}=0 \tag{7-59}
\end{equation*}
$$

Integrating once, we get

$$
\begin{equation*}
\mathrm{k} \frac{\mathrm{dT}}{\mathrm{dr}}+\frac{1}{2} \mathrm{q}^{\prime \prime \prime} \mathrm{r}=\frac{\mathrm{C}_{1}}{\mathrm{r}} \tag{7-60}
\end{equation*}
$$

where

$$
\mathrm{C}_{1}=\text { integration constant }
$$

Applying boundary condition at the pellet centerline, $\left.\frac{\mathrm{dT}}{\mathrm{dr}}\right|_{\mathrm{r}=\mathrm{r}_{\mathrm{r}}=0}$, we deduce $\mathrm{C}_{1}=0$ and Equation 7-60 becomes

$$
\begin{equation*}
\mathrm{k} \frac{\mathrm{dT}}{\mathrm{dr}}=-\frac{1}{2} \mathrm{q}^{\prime \prime \prime} \mathrm{r} \tag{7-61}
\end{equation*}
$$

With another integration, Equation 7-61 becomes

$$
\begin{equation*}
\int_{T_{\mathrm{i}}}^{\mathrm{T}_{\mathrm{o}}} \mathrm{kdT}=-\frac{1}{2} \int_{\mathrm{r}_{\mathrm{i}}}^{\mathrm{r}_{\mathrm{o}}} \mathrm{q}^{\prime \prime \prime \prime} \mathrm{rdr}=-\frac{1}{2} \int_{0}^{\mathrm{r}_{\mathrm{o}}} \mathrm{q}^{\prime \prime \prime} \mathrm{rdr}=-\frac{q^{\prime \prime \prime}}{4} \mathrm{r}_{0}{ }^{2} \tag{7-62}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{T}_{\mathrm{i}} & =\text { temperature at the pellet centerline, } \mathrm{K} \\
\mathrm{To} & =\text { temperature at pellet outer surface, } \mathrm{K} \\
\mathrm{r}_{\mathrm{O}} & =\text { pellet radius, } \mathrm{m}
\end{aligned}
$$

If the thermal conductivity, k, is independent of temperature, Equation 7-62 can be rewritten as

$$
\mathrm{k}\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}\right)=\frac{\mathrm{r}_{\mathrm{o}}^{2}}{4} \mathrm{q}^{\prime \prime \prime}
$$

or

$$
\begin{equation*}
\mathrm{T}_{\mathrm{i}}=\mathrm{T}_{\mathrm{o}}+\frac{\mathrm{r}_{\mathrm{o}}^{2}}{4 \mathrm{k}} \mathrm{q}^{\prime \prime \prime} \tag{7-63}
\end{equation*}
$$

For solid fuel pellet, $q^{\prime}=\pi r_{o}^{2} q^{\prime \prime \prime}$, Equation 7-63 is equivalent to

$$
\begin{equation*}
T_{i}=T_{o}+\frac{q^{\prime}}{4 \pi k} \tag{7-64}
\end{equation*}
$$

2) Cladding

For homogeneous, symmetric cylindrical shell with volumetric energy generation rate $q^{\prime \prime \prime}=0$, i.e., fuel clad with $q^{\prime \prime \prime}=0$, Equation 7-58 becomes:

$$
\begin{equation*}
\frac{1}{\mathrm{r}} \frac{\mathrm{~d}}{\mathrm{dr}}\left(\mathrm{kr} \frac{\mathrm{dT}}{\mathrm{dr}}\right)=0 \tag{7-65}
\end{equation*}
$$

Integrate Equation 7-65 once, we have

$$
\begin{equation*}
\mathrm{k} \frac{\mathrm{dT}}{\mathrm{dr}}=\frac{\mathrm{C}_{2}}{\mathrm{r}} \tag{7-66}
\end{equation*}
$$

where

$$
\mathrm{C}_{2}=\text { integration constant }
$$

Applying boundary condition at cladding outer surface

$$
\begin{equation*}
q^{\prime \prime}=-\left.k \frac{d T}{d r}\right|_{r=r_{0}} \tag{7-67}
\end{equation*}
$$

to solve for constant C_{2}

$$
\begin{equation*}
C_{2}=-q^{\prime \prime} r_{0}=-\frac{q^{\prime}}{2 \pi} \tag{7-68}
\end{equation*}
$$

Substituting Equations 7-68 into 7-66 yields

$$
\begin{equation*}
\mathrm{k} \frac{\mathrm{dT}}{\mathrm{dr}}=-\frac{\mathrm{q}^{\prime}}{2 \pi} \cdot \frac{1}{\mathrm{r}} \tag{7-69}
\end{equation*}
$$

Integrate Equation 7-69 again, we have

$$
\int_{\mathrm{T}_{\mathrm{i}}}^{\mathrm{T}_{0}} \mathrm{kdT}=-\frac{\mathrm{q}^{\prime}}{2 \pi} \int_{\mathrm{r}_{\mathrm{i}}}^{\mathrm{T}_{0}} \frac{d r}{\mathrm{r}}
$$

where

$$
\begin{aligned}
\mathrm{T}_{\mathrm{i}} & =\text { temperature at the pellet centerline, } \mathrm{K} \\
\mathrm{~T}_{\mathrm{O}} & =\text { temperature at pellet outer surface, } \mathrm{K} \\
\mathrm{r}_{\mathrm{i}} & =\text { inside clad radius, } \mathrm{m} \\
\mathrm{r}_{\mathrm{O}} & =\text { outside clad radius, } \mathrm{m}
\end{aligned}
$$

If the thermal conductivity, k, is independent of temperature, Equation 7-70 can be rewritten as

$$
\mathrm{k}\left(\mathrm{~T}_{\mathrm{o}}-\mathrm{T}_{\mathrm{i}}\right)=-\frac{\mathrm{q}^{\prime}}{2 \pi} \ln \frac{\mathrm{r}_{\mathrm{o}}}{\mathrm{r}_{\mathrm{i}}}
$$

or

$$
\begin{equation*}
\mathrm{T}_{\mathrm{i}}=\mathrm{T}_{\mathrm{o}}+\frac{\mathrm{q}^{\prime}}{2 \pi \mathrm{k}} \ln \frac{\mathrm{r}_{\mathrm{o}}}{\mathrm{r}_{\mathrm{i}}} \tag{7-71}
\end{equation*}
$$

The thin shell approximation can be used to simplify Equation 7-71 if $r_{0} / r_{1} \approx 1.0$ or $\left(r_{0}-\right.$ $\left.\mathrm{r}_{\mathrm{i}}\right) / \mathrm{r}_{\mathrm{i}} \ll 1$

$$
\begin{equation*}
\ln \left(\frac{r_{o}}{r_{i}}\right)=\ln \left(1+\frac{r_{o}-r_{i}}{r_{i}}\right)=\frac{r_{o}-r_{i}}{r_{i}}+o\left(\frac{r_{o}-r_{i}}{r_{i}}\right) \approx \frac{\delta}{r_{i}} \tag{7-72}
\end{equation*}
$$

where

$$
\begin{aligned}
\delta & =\text { the shell thickness, } \mathrm{r}_{\mathrm{O}}-\mathrm{r}_{\mathrm{i}} \\
o\left(\frac{r_{o}-r_{i}}{r_{i}}\right) & =\text { higher than first order of }\left(\frac{r_{o}-r_{i}}{r_{i}}\right)
\end{aligned}
$$

With Equation 7-72, Equation 7-71 is approximated as

$$
\begin{equation*}
\mathrm{T}_{\mathrm{i}}=\mathrm{T}_{\mathrm{o}}+\frac{\mathrm{q}^{\prime}}{2 \pi \mathrm{k} \frac{\mathrm{r}_{\mathrm{i}}}{\delta}} \tag{7-73}
\end{equation*}
$$

As an approximate method, Equation 7-73 will simplify mathematical manipulation. However, the exact solution, Equation 7-71, will be used in our derivation for $\mathrm{KSC}-7$ cask.

7.3.2 Radiative Heat Transfer

1) Energy Balance on a Grey Body Surface

Figure 7-10a illustrates the energies emitted, reflected and absorbed on a grey body surface (solid line). Dashed lines $1-1$ and $2-2$ represent two imaginary planes very close to the grey body surface.

The energy, i.e., power, balance per unit area on the plane $1-1$ can be expressed as

$$
\begin{equation*}
\mathrm{q}^{\prime \prime}=\mathrm{E}-\alpha \mathrm{G} \tag{7-74}
\end{equation*}
$$

where
$\mathrm{q}^{\prime \prime}=$ net energy flux from plane $1-1$ per unit surface area, $\mathrm{W} / \mathrm{m}^{2}$
$\mathrm{E}=$ radiation energy flux directly from the grey body to the surroundings per unit surface area, $\mathrm{W} / \mathrm{m}^{2}$
$\mathrm{G}=$ incoming energy flux from the surroundings to the grey body per unit surface area, $\mathrm{W} / \mathrm{m}^{2}$
$\alpha=$ grey body absorption coefficient.

Figure 7-10. Radiative Heat Transfer Model: (a) Energy Balance on a Grey Body Surface; (b) Radiative Heat Transfer Between Surface and Its Enclosed Surface.

The energy balance per unit area on the plane $2-2$ can be written as

$$
\begin{equation*}
\mathrm{q}^{\prime \prime}=\mathrm{J}-\mathrm{G} \tag{7-75}
\end{equation*}
$$

where
$J=$ effective radiation of the grey body per unit area, $\mathrm{W} / \mathrm{m}^{2}$.

Eliminating G in Equations 7-74 and 7-75 yields

$$
\begin{equation*}
J=\frac{E}{\alpha}-\left(\frac{1}{\alpha}-1\right) q^{\prime \prime} \tag{7-76}
\end{equation*}
$$

Now at thermal equilibrium, $\alpha=\varepsilon$, so

$$
\begin{equation*}
\mathrm{E}_{\mathrm{b}}=\mathrm{E} / \varepsilon=\mathrm{E} / \alpha \tag{7-77}
\end{equation*}
$$

Substituting Equations 7-77 into 7-76 yields

$$
\begin{equation*}
J=E_{b}-\left(\frac{1}{\varepsilon}-1\right) q^{\prime \prime} \tag{7-78}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{E}_{\mathrm{b}}= & \text { black body radiation per unit area }, \mathrm{W} / \mathrm{m}^{2} \\
& \text { and from Stefan-Boltzmann Radiation } \mathrm{Law}, \mathrm{~Eb}_{\mathrm{b}}=\sigma \mathrm{T}^{4} \\
\varepsilon= & \text { grey body emissivity } \\
\mathrm{T}= & \text { absolute temperature, } \mathrm{K} .
\end{aligned}
$$

2) Radiative Heat Transfer between a Surface and Its Enclosed Surface

Figure $7-10 \mathrm{~b}$ describes the radiative heat transfer between one surface $\left(\mathrm{A}_{2}\right)$ and the enclosed surface (A_{1}). The heat transferred radiatively, $\mathrm{Q}_{1,2}$, from grey body surface A_{1} to surface A_{2} is

$$
\begin{equation*}
\mathrm{Q}_{1,2}=\mathrm{J}_{1} \mathrm{~A}_{1} \mathrm{~F}_{1,2}-\mathrm{J}_{2} \mathrm{~A}_{2} \mathrm{~F}_{2.1} \tag{7-80}
\end{equation*}
$$

where
$\mathrm{Q}_{1,2} \quad=$ radiative heat transfer from grey surface A_{1} to $\mathrm{A}_{2}, \mathrm{~W} / \mathrm{m}^{2}$
$\mathrm{A}_{1}, \mathrm{~A}_{2}=$ grey body surface areas, m^{2}
$\mathrm{F}_{1,2} \quad=$ view factors from surface 1 to surface 2
$\mathrm{F}_{2,1} \quad=$ view factors from surface 2 to surface 1
Since convex surface A_{1} is completely enclosed by surface A_{2}, the effective radiation of surface A_{1}, J_{1}, can fully reach surface A_{2}. Hence, $F_{1,2}=1.0$. Thus, Equation 7-80 is reduced to

$$
\begin{equation*}
\mathrm{Q}_{1,2}=\mathrm{J}_{1} \mathrm{~A}_{1}-\mathrm{J}_{2} \mathrm{~A}_{2} \mathrm{~F}_{2,1} \tag{7-81}
\end{equation*}
$$

Apply Equation 7-77 to surfaces A_{1} and A_{2} by multiplying their surface areas, respectively, we get
or

$$
\begin{gather*}
\mathrm{J}_{1} \mathrm{~A}_{1}=\mathrm{A}_{1} \mathrm{E}_{\mathrm{b} 1}-\left(\frac{1}{\varepsilon_{1}}-1\right) \mathrm{q}_{1,2}^{\prime} \mathrm{A}_{1} \\
\mathrm{~J}_{1} \mathrm{~A}_{1}=\mathrm{A}_{1} \mathrm{E}_{\mathrm{b} 1}-\left(\frac{1}{\varepsilon_{1}}-1\right) \mathrm{Q}_{1,2} \tag{7-82}
\end{gather*}
$$

and similarly

$$
\begin{equation*}
\mathrm{J}_{2} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{E}_{\mathrm{b} 2}-\left(\frac{1}{\varepsilon_{2}}-1\right) \mathrm{Q}_{2,1} \tag{7-83}
\end{equation*}
$$

Substituting Equations 7-82 and 7-83 into Equation 7-81, and using $\mathrm{Q}_{1,2}=-\mathrm{Q}_{2,1}$ in steady state, to obtain the radiative heat transfer from surface A_{1} to surface $A_{2}, Q_{1,2}$

$$
\begin{equation*}
\mathrm{Q}_{1,2}=\frac{\mathrm{E}_{\mathrm{b} 1} \mathrm{~A}_{1}-\mathrm{F}_{2,1} \mathrm{E}_{\mathrm{b} 2} \mathrm{~A}_{2}}{\frac{1}{\varepsilon_{1}}+\mathrm{F}_{2,1}\left(\frac{1}{\varepsilon_{2}}-1\right)} \tag{7-84}
\end{equation*}
$$

Since

$$
\begin{equation*}
\mathrm{A}_{1} \mathrm{~F}_{1,2}=\mathrm{A}_{2} \mathrm{~F}_{2,1} \tag{7-85a}
\end{equation*}
$$

Solve for $\mathrm{F}_{2,1}$, we get

$$
\begin{equation*}
\mathrm{F}_{2,1}=\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}} \mathrm{~F}_{1,2} \tag{7-85b}
\end{equation*}
$$

When $F_{1,2}=1.0$, Equation $7-85 \mathrm{~b}$ will be reduced to

$$
\begin{equation*}
\mathrm{F}_{2,1}=\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}} \tag{7-86}
\end{equation*}
$$

Substituting Equation 7-86 into Equation 7-84 yields

$$
\begin{equation*}
\mathrm{Q}_{1,2}=\frac{\mathrm{A}_{1}\left(\mathrm{E}_{\mathrm{b} 1}-\mathrm{E}_{\mathrm{b} 2}\right)}{\frac{1}{\varepsilon_{1}}+\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}\left(\frac{1}{\varepsilon_{2}}-1\right)} \tag{7-87}
\end{equation*}
$$

Using Equation 7-79, Equation 7-87 can be reduced as

$$
\begin{equation*}
\mathrm{Q}_{1,2}=\frac{\mathrm{A}_{1} \sigma\left(\mathrm{~T}_{1}^{4}-\mathrm{T}_{2}^{4}\right)}{\frac{1}{\varepsilon_{1}}+\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}\left(\frac{1}{\varepsilon_{2}}-1\right)} \tag{7-88}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{Q}_{1,2}=\mathrm{A}_{1} \varepsilon_{1,2} \sigma\left(\mathrm{~T}_{1}^{4}-\mathrm{T}_{2}^{4}\right) \tag{7-89}
\end{equation*}
$$

where

$$
\begin{align*}
\varepsilon_{1,2} & =\text { effective emissivity between Surface } A_{1} \text { and Surface } A_{2} \text {, and } \\
\varepsilon_{1,2} & \equiv\left[\frac{1}{\varepsilon_{1}}+\frac{A_{1}}{A_{2}}\left(\frac{1}{\varepsilon_{2}}-1\right)\right]^{-1} \tag{7-90}
\end{align*}
$$

7.3.3 Application to the KSC-7 Cask

In this section the foregoing models for conduction and radiation heat transfer will be used to develop an analytic solution for the maximum clad temperature in steady state in the KSC-7 cask. Figure 7-11 illustrates the simplified, symmetric representation of the quarter cask geometry which is analyzed to yield the desired peak clad temperature, T_{6}.

The KSC-7 cask is modeled using cylindrical shells (Figure 7-11) to represent their counterparts in Figure 5-3. Please note that the model provided here accounts for heat transfer from the fuel region to the leaded gamma-ray shield. However, equations can be added similarly if more outer shells are to be modeled.

1) $\quad T_{0} \rightarrow T_{1}$: Heat is transferred convectively on the outer surface of the lead shield if it is the outmost surface. Heat convection equation on the outer surface is

$$
\begin{equation*}
\mathrm{q}^{\prime \prime}=\mathrm{h}\left(\mathrm{~T}_{1}-\mathrm{T}_{\mathrm{o}}\right) \tag{7-91}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{T}_{1}-\mathrm{T}_{\mathrm{o}}=\frac{\mathrm{q}^{\prime \prime}}{\mathrm{h}} \tag{7-92}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\mathrm{T}_{1}-\mathrm{T}_{\mathrm{o}}=\frac{\mathrm{q}^{\prime}}{2 \pi \mathrm{R}_{1} \mathrm{~h}} \tag{7-93}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{T}_{0}=\text { outer fluid temperature, } \mathrm{K} \\
& \mathrm{~T}_{1}=\text { temperature at lead shield outer surface, } \mathrm{K} \\
& \mathrm{~h} \\
& =\text { heat transfer coefficient between outer fluid and surface, } \mathrm{W} /\left(\mathrm{m}^{2}{ }^{\circ} \mathrm{C}\right) \\
& \mathrm{R}_{1} \\
& \mathrm{q}^{\prime \prime}
\end{aligned}=\text { outer radius of lead shield, } \mathrm{m}, \text { surface heat flux, } \mathrm{W} / \mathrm{m}^{2} .
$$

Figure 7-11. Analytical Model for KSC-7 Cask
2) $T_{1} \rightarrow T_{2}$: Heat is transferred conductively through the lead shield From Equation 7-71

$$
\begin{equation*}
\mathrm{T}_{2}-\mathrm{T}_{1}=\frac{\mathrm{q}^{\prime}}{2 \pi \mathrm{k}_{1}} \ln \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}} \tag{7-94}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{T}_{2}=\text { temperature at outer surface of lead shield, } \mathrm{K} \\
& \mathrm{k}_{1}=\text { thermal conductivity of lead shield, } \mathrm{W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right) \\
& \mathrm{R}_{2}=\text { inner radius of lead shield, } \mathrm{m}
\end{aligned}
$$

3) $\quad \mathrm{T}_{2} \rightarrow \mathrm{~T}_{3}$: Conduction and Radiation (ignore convection):

Assume heat convection can be ignored in the fill gas, then heat conduction and radiation exist in the fill gas. Total linear heat flux is the sum of that of conduction and that of radiation, or

$$
\begin{equation*}
\mathrm{q}^{\prime}=\mathrm{q}^{\prime} 3,2 \text { cond }+\mathrm{q}^{\prime} 3,2 \mathrm{rad} \tag{7-95}
\end{equation*}
$$

where

$$
\begin{align*}
\mathrm{q}_{3,2 \mathrm{rad}}^{\prime} & =\text { radiative linear heat flux } \\
\mathrm{q}_{3,2}^{\prime} \text { cond } & =\frac{2 \pi \mathrm{k}_{2}}{\ln \frac{\mathrm{R}_{2}}{\mathrm{R}_{3}}}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right) \tag{7-96}\\
& =\text { conductive linear heat flux }
\end{align*}
$$

From Equations 7-87 and 7-90

$$
\begin{equation*}
\mathrm{Q}_{3,2 \mathrm{rad}}=\mathrm{A}_{3} \varepsilon_{3,2}\left(\mathrm{E}_{\mathrm{b} 3}-\mathrm{E}_{\mathrm{b} 2}\right) \tag{7-97}
\end{equation*}
$$

where

T_{3}	$=$ temperature at outer surface of fuel basket, K
A_{3}	$=$ outer surface area of fuel basket $\left(=2 \pi \mathrm{D}_{3}\right), \mathrm{m}^{2}$
D_{3}	$=$ effective diameter of fuel basket, m
R_{3}	$=$ effective radius of fuel basket, m
L_{a}	$=$ axial length of fuel basket, m
$\mathrm{Q}_{3,2 \mathrm{rad}}$	$=\mathrm{q}^{\prime} 3,2 \mathrm{rad} \cdot \mathrm{L}_{\mathrm{a}}$

Using Equation 7-79 and equating Equations 7-97 and 7-98 yields

$$
\begin{equation*}
q^{\prime} 3,2 \mathrm{rad}=2 \pi R_{3} \varepsilon_{3,2} \sigma\left(T_{3}^{4}-T_{2}^{4}\right) \tag{7-99}
\end{equation*}
$$

where

$$
\varepsilon_{3,2}=\frac{1}{\frac{1}{\varepsilon_{3}}+\frac{\mathrm{A}_{3}}{\mathrm{~A}_{2}}\left(\frac{1}{\varepsilon_{2}}-1\right)}
$$

$$
\begin{equation*}
=\frac{1}{\frac{1}{\varepsilon_{3}}+\frac{\mathrm{R}_{3}}{\mathrm{R}_{2}}\left(\frac{1}{\varepsilon_{2}}-1\right)} \tag{7-100}
\end{equation*}
$$

Substituting Equations 7-96 and 7-99 into Equation 7-95 yields

$$
\begin{equation*}
\mathrm{q}^{\prime}=\frac{2 \pi \mathrm{k}_{2}}{\ln \frac{\mathrm{R}_{2}}{\mathrm{R}_{3}}}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)+2 \pi \mathrm{R}_{3} \varepsilon_{3,2} \sigma\left(\mathrm{~T}_{3}^{4}-\mathrm{T}_{2}^{4}\right) \tag{7-101}
\end{equation*}
$$

Since mathematically

$$
\begin{equation*}
\mathrm{T}_{3}^{4}-\mathrm{T}_{2}^{4}=\left(\mathrm{T}_{3}^{2}+\mathrm{T}_{2}^{2}\right)\left(\mathrm{T}_{3}+\mathrm{T}_{2}\right)\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right) \tag{7-102}
\end{equation*}
$$

Equation 7-101 can be re-formulated as

$$
\begin{equation*}
\mathrm{q}^{\prime}=\left[\frac{2 \pi \mathrm{k}_{2}}{\ln \frac{\mathrm{R}_{2}}{\mathrm{R}_{3}}}+2 \pi \mathrm{R}_{3} \varepsilon_{3,2} \sigma\left(\mathrm{~T}_{3}^{2}+\mathrm{T}_{2}^{2}\right)\left(\mathrm{T}_{3}+\mathrm{T}_{2}\right)\right] \cdot\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right) \tag{7-103}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{T}_{3}-\mathrm{T}_{2}=\frac{\mathrm{q}^{\prime}}{2 \pi\left[\frac{\mathrm{k}_{2}}{\ln \left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{3}}\right)}+\mathrm{R}_{3} \cdot \varepsilon_{3,2} \cdot \sigma\left(\mathrm{~T}_{3}^{2}+\mathrm{T}_{2}^{2}\right)\left(\mathrm{T}_{3}+\mathrm{T}_{2}\right)\right]} \tag{7-104}
\end{equation*}
$$

Note if the temperature gradient in fill gas is not significant, that is, $\frac{\left|T_{2}-T_{3}\right|}{T_{2}} \ll 1$ and

$$
\begin{align*}
& \frac{\left|\mathrm{T}_{2}-\mathrm{T}_{3}\right|}{\mathrm{T}_{3}} \ll 1 \text {, then } \\
& \qquad\left(\mathrm{T}_{3}^{2}+\mathrm{T}_{2}^{2}\right) \cdot\left(\mathrm{T}_{3}+\mathrm{T}_{2}\right) \approx 4 \mathrm{~T}_{2}^{3} \tag{7-105}
\end{align*}
$$

Equation 7-103 can be simplified as

$$
\begin{equation*}
\mathrm{q}^{\prime}=2 \pi \cdot\left[\frac{\mathrm{k}_{2}}{\ln \frac{\mathrm{R}_{2}}{\mathrm{R}_{3}}}+4 \mathrm{R}_{3} \varepsilon_{3,2} \sigma \mathrm{~T}_{2}^{3}\right] \cdot\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right) \tag{7-106}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{q}^{\prime}=2 \pi \mathrm{k}_{\mathrm{eff}, 2}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right) \tag{7-107}
\end{equation*}
$$

where

$$
\begin{align*}
\mathrm{k}_{\text {eff }, 2} & =\frac{\mathrm{k}_{2}}{\ln \left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{3}}\right)}+4 \mathrm{R}_{3} \varepsilon_{3,2} \sigma \mathrm{~T}_{2}^{3} \tag{7-108}\\
& =\text { effective thermal conductivity, } \mathrm{W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right)
\end{align*}
$$

and Equation 7-107 becomes equivalently

$$
\begin{equation*}
\mathrm{T}_{3}-\mathrm{T}_{2}=\frac{\mathrm{q}^{\prime}}{2 \pi \mathrm{k}_{\mathrm{eff}, 2}} \tag{7-109}
\end{equation*}
$$

4) $\quad T_{3} \rightarrow T_{4}$: Heat is transferred conductively in fuel basket

From generic Equation 7-71

$$
\begin{equation*}
\mathrm{T}_{4}-\mathrm{T}_{3}=\frac{\mathrm{q}^{\prime}}{2 \pi \mathrm{k}_{3}} \ln \frac{\mathrm{R}_{3}}{\mathrm{R}_{4}} \tag{7-110}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\mathrm{R}_{4} & =\text { effective inner radius of fuel basket, } \mathrm{m} \\
\mathrm{k}_{3} & =\text { thermal conductivity of fuel basket, } \mathrm{W} /\left(\mathrm{m}{ }^{\circ} \mathrm{C}\right) \\
\mathrm{T}_{4} & =\text { temperature at inner surface of fuel basket, } \mathrm{K}
\end{array}
$$

5) $\quad \mathrm{T}_{4} \rightarrow \mathrm{~T}_{5}$ Conduction and Radiation (ignore convection):

If heat convection can be ignored through fill gas, then total heat transfer is the sum of conductive and radiative heat transfer.

Similarly, following the steps to derive Equation 7-104,, we get

$$
\begin{equation*}
\mathrm{T}_{5}-\mathrm{T}_{4}=\frac{\mathrm{q}^{\prime}}{\frac{2 \pi \mathrm{k}_{4}}{\ln \frac{\mathrm{R}_{4}}{\mathrm{R}_{5}}}+2 \pi \mathrm{R}_{5} \varepsilon_{5,4} \sigma\left(\mathrm{~T}_{5}^{2}+\mathrm{T}_{4}^{2}\right)\left(\mathrm{T}_{5}+\mathrm{T}_{4}\right)} \tag{7-111}
\end{equation*}
$$

where
$\mathrm{R}_{5} \quad=$ effective fuel radius, m
$\mathrm{k}_{4}=$ thermal conductivity of fill gas in fuel basket, $\mathrm{W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right)$
$\mathrm{T}_{5}=$ fuel outside surface temperature, K

If the temperature gradient is not significant across gas between pellet and clad, $\left|T_{4}-T_{5}\right| \ll T_{4}$ or T_{5}, then

Hence Equation 7-111 can be simplified as

$$
\begin{equation*}
\mathrm{T}_{5}-\mathrm{T}_{4}=\frac{\mathrm{q}^{\prime}}{2 \pi \mathrm{k}_{\mathrm{eff}, 4}} \tag{7-113}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{k}_{\mathrm{eff}, 4}=\frac{\mathrm{k}_{4}}{\ln \left(\frac{\mathrm{R}_{4}}{\mathrm{R}_{5}}\right)}+4 \mathrm{R}_{5} \varepsilon_{5,4} \sigma \mathrm{~T}_{4}^{3} \tag{7-114}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{5,4}=\frac{1}{\frac{1}{\varepsilon_{5}}+\frac{\mathrm{R}_{5}}{\mathrm{R}_{4}}\left(\frac{1}{\varepsilon_{4}}-1\right)} \tag{7-115}
\end{equation*}
$$

6) $\quad \mathrm{T}_{5} \rightarrow \mathrm{~T}_{6}$: Heat is transferred conductively through fuel region From generic Equation 7-71

$$
\begin{equation*}
\mathrm{T}_{6}-\mathrm{T}_{5}=\frac{\mathrm{q}^{\prime}}{4 \pi \mathrm{k}_{5}} \tag{7-116}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{k}_{5} & =\text { thermal conductivity of cladding, } \mathrm{W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right) \\
\mathrm{T}_{6} & =\text { peak cladding temperature, } \mathrm{K}
\end{aligned}
$$

7.3.4 Procedure to Find T_{6}

T_{0}, q^{\prime}, properties of materials, i.e., thermal conductivity, k, surface emissivities, geometry, are the knowns, while T_{6} is the unknown. Follow the procedure described below to find the unknown.

1) T_{1} can be determined using Equation 7-93;
2) T_{2} can be determined using Equation 7-94;
3) T_{3} can be determined using Equation 7-104. This step requires iteration since T_{3}, the unknown, appears in the right hand side of the equation.
4) T_{4} can be determined using Equation 7-110;
5) $\quad \mathrm{T}_{5}$ can be determined using Equation 7-111. Similar to Step 3, this step also requires iteration since T_{5}, the unknown, appears in the right hand side of the equation.
6) $\quad \mathrm{T}_{6}$ can be determined using Equation 7-116.

The above steps are illustrated in Figure 7-12. Note that:
(1) Since Equations 7-104 and 7-111 are used in Steps 3 and 5 in proposed KSC-7 analytical calculation, no approximation for $T_{i}^{4}-T_{j}^{4}=\left(T_{i}^{2}+T_{j}^{2}\right)\left(T_{i}+T_{j}\right)\left(T_{i}-T_{j}\right)$ is not made, i.e., Equations 7-105 and 7-112 are not used;
(2) If axial power peaking factor, $\mathrm{F}_{\text {peak }} \neq 1.0, \mathrm{q}^{\prime}$ should be replaced by ($\mathrm{q}^{\prime} \cdot \mathrm{F}_{\text {peak }}$).

7.3.5 Summary

The maximum clad temperature, T_{6}, for KSC-7 has been determined by a best estimate analytic procedure described in Parts A through D above. This analytic result can be used to test the COBRA-SFS calculated result for reasonableness and thereby confirm the input data. If an analytic bounding calculation is desired, this analytic procedure can be adjusted step by step to insure a bounding result.

7.4 Comments on KAERI's COBRA-SFS Thermal Analysis of the KSC-7 Cask

7.4.1 Examination of KSC-7 Input Files from KAERI

Upon receiving the KSC-7 input files from KAERI through electronic-mail, we checked the 8×8 lumped fuel bundle and found that some of the inputs are not consistent with our calculation using 17×17 bundle data provided by KAERI and our homogenization method. A partial summary of the input discrepancies are presented in Table 7-12. A complete input file of our work from which KAERI can identify all discrepancies is appended to this report.

7.4.2 Emissivity

Emissivities are properties of the material of the rods and the wall. They are important in determining radiation heat transfer which dominates heat transfer in the dry spent fuel cask. Hence, they should be chosen carefully so as to predict peak clad temperature correctly.

The measured values for the emissivities are recommended because these are the relevant values under the specific cask conditions. If they have to be estimated, then the uncertainty in the estimation, i.e., sensitivity study, must be taken into account in determining the uncertainty in the peak clad temperature. We have not surveyed the literature for measured values. Commonly used emissivity values in COBRA-SFS calculations are 0.8 for the rod emissivity, 0.25 for the stainless steel, and 0.2 for the aluminum wall emissivities in the spent fuel cask calculations [1 , 12].

After reviewing KAERI's thermal analysis of KSC-7 cask, we found that rod emissivity, ε_{r}, is taken as 0.8 , while wall emissivity, ε_{W}, is 0.5 . The value of ε_{W} appears too large even if the stainless steel wall is borated, and this, according to our sensitivity study in Chapter 7, led to underprediction of the peak clad temperature.

$\mathrm{T}_{6} \underset{\text { Eq. } 116}{\stackrel{6)}{\rightleftarrows}} \mathrm{T}_{5} \underset{\text { Eq. } 111}{\stackrel{5)}{\rightleftarrows}} \mathrm{T}_{4}$
(Numbers above the arrow are step numbers.)

Figure 7-12 Analytical Steps to Find Peak Clad Temperature, T6

Table 7-12. Data Discrepancy between MIT and KAERI 8x8 Fuel Bundles (for COBRA-SFS)

Rod outside diameter (in.)		MIT	KAERI
		0.7948	0.8051
Pellet diameter (in.)		0.6851	0.6996
Cladding thickness (in.)		0.0476	0.0423
Flow area (in ${ }^{2}$)	Channels 1 and 9	0.5797	0.5016
	Channels 2 to 8	0.6361	0.5916
	Channels 11 to 17	0.6148	0.6294
Wetted perimeter (in)	Channels 1 and 9	2.302	2.218
	Channels 2 to 8	2.303	2.332
	Channels 11 to 17	2.497	2.529
Heated perimeter (in)	Channels 1 and 9	0.6242	0.6323
	Channels 2 to 8	1.248	1.265
	Channels 11 to 17	2.497	2.529

The emissivity for the boundary wall is taken to be 1.0 (BDRY.2), which means the boundary wall is, instead of a gray body, a black body. Hence, this assumption is not conservative. A sensitivity study on the boundary wall emissivity is recommended.

Furthermore, other parameters in BDRY. 2 can be referenced in Section 3.4.1.1 [1]. Note that the characteristic length, L , is the height of the surface for vertical orientation and the diameter of the cylinder for horizontal orientation.

We suggest that the measured value be used in KAERI's analysis and the radiation factor described in Section 7.2 be utilized.

7.4.3 Power Density

Since the total decay power for the seven 17×17 fuel assemblies contained in the KSC-7 cask is 32.3 kW , each assembly has one-seventh the total power ($\approx 4614 \mathrm{~W}$). This power determines the nominal power density of the fuel pellet (OPER.2). The value of the power density, 0.0069367 (PDN in OPER.2), as provided by KAERI, seems to be a little small. KAERI needs to find an appropriate value by checking the total power printed in the output file of COBRA-SFS against the true value of about 4614 W .

7.4.4 Examination of KSC-7 Results from KAERI (Quarter Model)

The peak clad temperature, $480^{\circ} \mathrm{C}$ for helium and $516^{\circ} \mathrm{C}$ for air cavity, should not be in the location that is indicated by KAERI. We think it should occur at the central region of the cask. We recommend KAERI check input files, especially the portion concerning the implementation of the adequate adiabatic boundary conditions.

7.4.5 Examination of KSC-7 Results from KAERI (Full Model)

The peak clad temperature, $518^{\circ} \mathrm{C}$ for helium and $545^{\circ} \mathrm{C}$ for air cavity, appears at the reasonable location. However, the boundary temperature, $135^{\circ} \mathrm{C}$, as illustrated in the figures is not only different from the quarter cask model but cannot be derived from the boundary condition Group BDRY. 3 of the input file, which indicates a boundary axial temperature profile of $140^{\circ} \mathrm{C}$ $\left(284^{\circ} \mathrm{F}\right)$ for the top and bottom, and $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ for the middle of the cask. We think the boundary temperature profile should be the same in the quarter model as in the full model.

CHAPTER 8

RECOMMENDATIONS FOR FUTURE WORK

8.1 Conduction

The theoretically derived GK values are in satisfactory agreement with the practical ones from COBRA-SFS for the 17×17 bundle. However, it is not the case for the lumped 8×8 bundle. Theoretical GK's are listed in Table 7-10. In practice they are several times larger (see Table 7-10). We have not found the exact reasons yet, but one speculation is that it is due to the fact that, in lumped fuel model, the gaps between fuel rods are larger which decreases the enhancement effect of cladding in heat transfer, reduces heat conduction and therefore, increases GK's (Compare gaps between Figures 5-1 and 5-2.). Fortunately, this is not a significant factor when radiation is taken into account since, in practice, radiation is dominant in dry storage spent fuel cask, especially with low thermal conductivity fill gas such as N_{2}. For conservatism, a value of 10.8 for GK is acceptable for the lumped 8 x 8 bundle.

8.2 Radiation

As mentioned in Section 7.4, the radiative heat transfer mechanism is dominant in the heat transfer of dry spent fuel storage cask. Hence, the adequate representation of the radiative heat transfer, i.e., by rod and wall emissivities, is quite necessary and future work should be focused on the determination of these emissivities and their uncertainties. This work will enable the effect of the uncertainty in the peak clad temperature to be reduced.

8.3 Convection

The code developer's recommendation for the convective heat transfer Nusselt number $(\mathrm{Nu}=3.66)$ is based on the assumption of fully developed fluid velocity and temperature profiles (forced flow) in laminar flow inside a circular tube with constant wall temperature profile [12, 13].

The adoption of this value for the KSC-7 cask analysis is questionable with regard to the following points:
(1) The fuel in the cask is in a bundle array geometry, not a circular tube.
(2) The bundle wall temperature is not constant axially.
(3) The fluid (N_{2} or He) within the cask is in natural convection, not forced convection.
(4) The flow pattern may not be laminar flow. It should be determined first whether it is laminar flow or turbulent flow.

Nusselt numbers for other geometries are given in [13] and are cited here in Table 8-1. The Nusselt number for a fuel bundle is not immediately available.

Future work in the convective heat transfer mechanism should develop an appropriate Nusselt number specific to the situation of the KSC-7 for longitudinal flow. Also, the presence of transverse flow needs to be accommodated by more fundamental adjustment in the momentum equation set of COBRA-SFS.

Table 8-1 Nusselt Numbers for Fully Developed Velocity and Temperature Profiles in Tubes of Various Cross Sections (from [13])

Cross-Section Shape	b / a	$\mathrm{Nu}_{(\mathrm{H})}{ }^{*}$	$\mathrm{Nu}_{(\mathrm{T})}$
\square		4.364	3.66
$\mathrm{a} \square$	1.0	3.61	2.98
b			
	1.43	3.73	3.08
	2.0	4.12	3.39
	3.0	4.79	3.96
	4.0	5.33	4.44
	8.0	6.49	5.60
\square	∞	8.235	7.54
\square		5.385	4.86
\square		3.00	2.35

* The constant-heat-rate solutions are based on constant axial heat rate, but with constant temperature around the tube periphery.

REFERENCES

[1] D.R. Rector, et al., "COBRA-SFS: A Thermal-Hydraulic Analysis Computer Code", PNL-6049 Vol. II: User's Manual, November 1986.
[2] R.D. Manteufel, "Heat Transfer in an Enclosed Rod Array", Ph.D. thesis, Dept. of Mech. Engr., Massachusetts Institute of Technology, May 1991.
[3] R.D. Manteufel and N.E. Todreas, "Effective Thermal Conductivity and Edge Conductance Model for a Spent Fuel Assembly", Nuclear Technology, V.105, March 1994.
[4] D.R. Rector, et al., "COBRA-SFS: A Thermal-Hydraulic Analysis Computer Code", PNL-6049 Vol. I: Mathematical Models and Solution Method, November 1986.
[5] D.R. Rector, et al., "RADGEN: A Radiation Exchange Factor Generator for Rod Bundles", PNL-6342, October 1987.
[6] P.M. Lovett, "An Experiment to Simulate the Heat Transfer Properties of A Dry, Horizontal Spent Nuclear Fuel Assembly", Vols. I and II, Dept. of Nucl. Engr., Massachusetts Institute of Technology, MITNE-294, September 1991.
[7] S. Wolfram, "Mathematia: A System for Doing Mathematics by Computer", Wolfram Research Inc., second edition, 1991.
[8] "Mathematia: A System for Doing Mathematics by Computer - User's Guide for the Macintosh", Wolfram Research Inc., 1991.
[9] N. Todreas and M. Kazimi, "Nuclear Systems I: Thermal Hydraulic Fundamentals", Hemisphere Publishing Corp., 1990.
[10] N.E. Todreas, personal communication with KAERI, June 1993 ~ January 1995.
[11] T.M. Kao, "22.902 Special Problem Term Paper" and its "Amendments", Dept. of Nucl. Engr., Massachusetts Institute of Technology, August, 1995.
[12] Personal communications with Judith M. Cuta, PNL, March 1994 ~ January 1995.
[13] W.M. Kays and M.E. Crawford, "Convective Heat and Mass Transfer", 2nd edition, McGraw-Hill, 1980.
[14] R.L. Cox, "Radiation Heat Transfer in Arrays of Parallel Cylinders", ORNL-5239, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1977.
[15] E.H. Kwack, "COBRA-SFS Sample Problem: Thermal Analysis of KSC-4 Cask", communication with N. Todreas, June 10, 1993.
[16] X. Chen and N.E. Todreas, "Thermal Analysis of Dry Spent Fuel Transportation and Storage Casks - Draft for Final Review", MIT-ANP-TR-029, January 10, 1995.
[17] N.E. Todreas, "Proposal: Thermal Analysis of Dry Spent Fuel Transportation and Storage Casks", Dept. of Nucl. Engr., Massachusetts Institute of Technology, 1993.

APPENDICES

APPENDIX 1

LUMPED 8X8 FUEL BUNDLE ANALYSIS =INPUT FILE FOR COBRA-SFS(Cycle 1)

+2000
PROP
$\begin{array}{rr}\text { 1STEEL } \\ 1 & \\ 19\end{array}$ CHAN

	160.0		90.0
1	1	81	0
1	1	0	1

90.0
0
1
2.63612.3031.248
3.63612.3031.248 4.63612 .3031 .248 5.63612.3031.248 6.63612.3031.248 7.63612 .3031 .248 8.63612.3031.248
9.57972.302.6242 10.63612 .3031 .248
11.61482.4972.497
12.61482 .4972 .497
13.61482.4972.497
14.61482.4972.497
15.61482.4972.497
16.61482.4972.497
17.61482.4972.497
18.63612 .3031 .248
19.63612 .3031 .248
20.61482.4972.497
21.61482.4972.497
22.61482.4972.497
23.61482.4972.497 24.61482.4972.497 25.61482.4972.497 26.61482.4972.497 27.63612.3031.248

KSC-7 CASK (8X8 FUEL, NITROG, 10/94)
10.4415.9465
11.2592.9465
12.2592 .9465
13.2592.9465
14.2592 .9465
15.2592.9465
16.2592 .9465
17.2592 .9465
19.44151 .054
20.25921 .054
21.25921 .054
22.25921 .054
23.25921 .054
24.25921 .054
25.25921 .054
26.25921 .054
28.44151 .054
29.25921 .054
30.25921 .054
31.25921 .054
32.25921 .054
33.25921 .054
34.25921 .054
35.25921 .054

28.63612 .3031 .248	29.2592 .9465	37.44151 .054
29.61482 .4972 .497	30.25921 .054	38.25921 .054
30.61482 .4972 .497	31.25921 .054	39.25921 .054
31.61482 .4972 .497	32.25921 .054	40.25921 .054
32.61482 .4972 .497	33.25921 .054	41.25921 .054
33.61482 .4972 .497	34.25921 .054	42.25921 .054
34.61482 .4972 .497	35.25921 .054	43.25921 .054
35.61482 .4972 .497	36.2592 .9465	44.25921 .054
36.63612 .3031 .248	45.44151 .054	
37.63612 .3031 .248	38.2592 .9465	46.44151 .054
38.61482 .4972 .497	39.25921 .054	47.25921 .054
39.61482 .4972 .497	40.25921 .054	48.25921 .054
40.61482 .4972 .497	41.25921 .054	49.25921 .054
41.61482 .4972 .497	42.25921 .054	50.25921 .054
42.61482 .4972 .497	43.25921 .054	51.25921 .054
43.61482 .4972 .497	44.25921 .054	52.25921 .054
44.61482 .4972 .497	45.2592 .9465	53.25921 .054
45.63612 .3031 .248	54.44151 .054	
46.63612 .3031 .248	47.2592 .9465	55.44151 .054
47.61482 .4972 .497	48.25921 .054	56.25921 .054
48.61482 .4972 .497	49.25921 .054	57.25921 .054
49.61482 .4972 .497	50.2591 .054	58.25921 .054
50.61482 .4972 .497	51.25921 .054	59.25921 .054
51.61482 .4972 .497	52.25921 .054	60.25921 .054
52.61482 .4972 .497	53.25921 .054	61.25921 .054
53.61482 .4972 .497	54.2592 .9465	62.25921 .054
54.63612 .3031 .248	63.44151 .054	
55.63612 .3031 .248	56.2592 .9465	64.44151 .054
56.61482 .4972 .497	57.25921 .054	65.25921 .054
57.61482 .4972 .497	58.25921 .054	66.25921 .054
58.61482 .4972 .497	59.25921 .054	67.25921 .054
59.61482 .4972 .497	60.25921 .054	68.25921 .054
60.61482 .4972 .497	61.25921 .054	69.25921 .054
61.61482 .4972 .497	62.25921 .054	70.25921 .054
62.61482 .4972 .497	63.2592 .9465	71.25921 .054
63.63612 .3031 .248	72.44151 .054	73.4415 .9465
64.63612 .3031 .248	65.2592 .9465	74.42592 .9465
65.61482 .4972 .497	66.25921 .054	74.259
66.61482 .4972 .497	67.25921 .054	75.2592 .9465
67.61482 .4972 .497	68.25921 .054	76.2592 .9465
68.61482 .4972 .497	69.25921 .054	77.2592 .9465
69.61482 .4972 .497	70.25921 .054	78.2592 .9465
70.61482 .4972 .497	71.25921 .054	79.2592 .9465
71.61482 .4972 .497	72.2592 .9465	80.2592 .9465
72.63612 .3031 .248	81.4415 .9465	
73.57972 .302 .6242	74.4415 .9465	
74.63612 .3031 .248	75.44151 .054	
75.63612 .3031 .248	76.44151 .054	
76.63612 .3031 .248	77.44151 .054	
77.63612 .3031 .248	78.44151 .054	
78.63612 .3031 .248	79.44151 .054	
79.63612 .3031 .248	80.44151 .054	
80.63612 .3031 .248	81.4415 .9465	
81.57972 .302 .6242		

RODS 1	1	0	0	0					
11	64								
1.7948	1.	1	. 25	2	. 25	10	. 25	11	. 25
2.7948	1.	2	. 25	3	. 25	11	. 25	12	. 25
3.7948	1.	3	. 25	4	. 25	12	. 25	13	25
4.7948	1.	4	. 25	5	. 25	13	. 25	14	. 25
5.7948	1.	5	. 25	6	. 25	14	. 25	15	. 25
6.7948	1.	6	. 25	7	. 25	15	. 25	16	. 25
7.7948	1.	7	. 25	8	. 25	16	. 25	17	. 25
8.7948	1.	8	. 25	9	. 25	17	. 25	18	. 25
9.7948	1.	10	. 25	11	. 25	19	. 25	20	. 25
10.7948	1.	11	. 25	12	. 25	20	. 25	21	. 25
11.7948	1.	12	. 25	13	. 25	21	. 25	22	. 25
12.7948	1.	13	. 25	14	. 25	22	. 25	23	. 25
13.7948	1.	14	. 25	15	. 25	23	. 25	24	. 25
14.7948	1.	15	. 25	16	. 25	24	. 25	25	. 25
15.7948	1.	16	. 25	17	. 25	25	. 25	26	. 25
16.7948	1.	17	. 25	18	. 25	26	. 25	27	. 25
17.7948	1.	19	. 25	20	. 25	28	. 25	29	. 25
18.7948	1.	20	. 25	21	. 25	29	. 25	30	. 25
19.7948	1.	21	. 25	22	. 25	30	. 25	31	. 25
20.7948	1.	22	. 25	23	. 25	31	. 25	32	. 25
21.7948	1.	23	. 25	24	. 25	32	. 25	33	. 25
22.7948	1.	24	. 25	25	. 25	33	. 25	34	. 25
23.7948	1.	25	. 25	26	. 25	34	. 25	35	. 25
24.7948	1.	26	. 25	27	. 25	35	. 25	36	. 25
25.7948	1.	28	. 25	29	. 25	37	. 25	38	. 25
26.7948	1.	29	. 25	30	. 25	38	. 25	39	. 25
27.7948	1.	30	. 25	31	. 25	39	. 25	40	. 25
28.7948	1.	31	. 25	32	. 25	40	. 25	41	. 25
29.7948	1.	32	. 25	33	. 25	41	. 25	42	. 25
30.7948	1.	33	. 25	34	. 25	42	. 25	43	. 25
31.7948	1.	34	. 25	35	. 25	43	. 25	44	. 25
32.7948	1.	35	. 25	36	. 25	44	. 25	45	. 25
33.7948	1.	37	. 25	38	. 25	46	. 25	47	. 25
34.7948	1.	38	. 25	39	. 25	47	. 25	48	. 25
35.7948	1.	39	. 25	40	. 25	48	. 25	49	. 25
36.7948	1.	40	. 25	41	. 25	49	. 25	50	. 25
37.7948	1.	41	. 25	42	. 25	50	. 25	51	. 25
38.7948	1.	42	. 25	43	. 25	51	. 25	52	. 25
39.7948	1.	43	. 25	44	. 25	52	. 25	53	. 25
40.7948	1.	44	. 25	45	. 25	53	. 25	54	. 25
41.7948	1.	46	. 25	47	. 25	55	. 25	56	. 25
42.7948	1.	47	. 25	48	. 25	56	. 25	57	. 25
43.7948	1.	48	. 25	49	. 25	57	. 25	58	. 25
44.7948	1.	49	. 25	50	. 25	58	. 25	59	. 25
45.7948	1.	50	. 25	51	. 25	59	. 25	60	. 25
46.7948	1.	51	. 25	52	. 25	60	. 25	61	. 25
47.7948	1.	52	. 25	53	. 25	61	. 25	62	. 25
48.7948	1.	53	. 25	54	. 25	62	. 25	63	. 25
49.7948	1.	55	. 25	56	. 25	64	. 25	65	. 25
50.7948	1.	56	. 25	57	. 25	65	. 25	66	. 25
51.7948	1.	57	. 25	58	. 25	66	. 25	67	. 25
52.7948	1.	58	. 25	59	. 25	67	. 25	68	. 25
53.7948	1.	59	. 25	60	. 25	68	. 25	69	. 25

RADG	1	1					
1	1	8	1	2	3	4	5
HEAT	1	0	1				1.00
		1.00					
10.8							
DRAG	1				$100 .-1.0$.05	
100.	-1.0		1	8	0		
BDRY	1	1					
1	$1.00 E+8$						
1	2	0.0	204.8	1.0	204.8		
1	14.921	1					
1	1.0	1	1.0	1			
2	14.921	1					

1	1.011	1.0	1					
3	14.921	1						
1	1.011	1.0	1					
4	14.921	1						
1	1.011	1.0	1					
5	14.921	1						
1	1.011	1.01	1					
6	14.921	1						
1	1.011	1.01	1					
7	14.921	1						
1	1.01	1.01	1					
8	14.921	1						
1	1.011	1.01	1					
CALC 1								
0.0 .15								
20								
OPER	10	3	3					1
0.0		400			. 0073437	400.		
10								
0.	0.0.0499	0.0	. 05	. 706	. 151.029	. 251.206	. 751.206	
. 851	9.9499	. 706	. 95	0.0	1.0	0.0		
OUTP 1101								
ENDD								

APPENDIX 2

LUMPED 8X8 BUNDLE ANALYSIS-INPUT FILE FOR RADGEN (Cycle 1)

```
    0
Korean Spent Fuel Cask (8X8, lumped)
    01.326 8 8
.7948.4411.4411.4411.4411
    .32 0.3
    0
    0
```


APPENDIX 3

17 X 17 BUNDLE ANALYSIS-INPUT FILE FOR COBRA-SFS (Cycle 1)

CHAN 19		
160.0 90.0		
1130		
1100	1	
1.28511.412.2938	2.3720 .5276	19.3720 .5276
2.22241 .084 .5875	3.3720 .4961	20.1220 .5276
3.22241 .084 .5875	4.3720 .4961	21.1220 .5276
4.22241 .084 .5875	5.3720 .4961	22.1220 .5276
5.22241 .084 .5875	6.3720 .4961	23.1220 .5276
6.22241 .084 .5875	7.3720 .4961	24.1220 .5276
7.22241 .084 .5875	8.3720 .4961	25.1220 .5276
8.22241 .084 .5875	9.3720 .4961	26.1220 .5276
9.22241 .084 .5875	10.3720 .4961	27.1220 .5276
10.22241 .084 .5875	11.3720 .4961	28.1220 .5276
11.22241 .084 .5875	12.3720 .4961	29.1220 .5276
12.22241 .084 .5875	13.3720 .4961	30.1220 .5276
13.22241 .084 .5875	14.3720 .4961	31.1220 .5276
14.22241 .084 .5875	15.3720 .4961	32.1220 .5276
15.22241 .084 .5875	16.3720 .4961	33.1220 .5276
16.22241 .084 .5875	17.3720 .4961	34.1220 .5276
17.22241 .084 .5875	18.3720 .5276	35.1220 .5276
18.28511 .412 .2938	36.3720 .5276	
19.22241 .084 .5875	20.1220 .5276	37.3720 .4961
20.13621 .1751 .175	21.1220 .4961	38.1220 .4961
21.13621 .1751 .175	22.1220 .4961	39.1220 .4961
22.13621 .1751 .175	23.1220 .4961	40.1220 .4961
23.13621 .1751 .175	24.1220 .4961	41.1220 .4961
24.13621 .1751 .175	25.1220 .4961	42.1220 .4961
25.13621 .1751 .175	26.1220 .4961	43.1220 .4961
26.13621 .1751 .175	27.1220 .4961	44.1220 .4961
27.13621 .1751 .175	28.1220 .4961	45.1220 .4961
28.13621 .1751 .175	29.1220 .4961	46.1220 .4961
29.13621 .1751 .175	30.1220 .4961	47.1220 .4961
30.13621 .1751 .175	31.1220 .4961	48.1220 .4961
31.13621 .1751 .175	32.1220 .4961	49.1220 .4961
32.13621 .1751 .175	33.1220 .4961	50.1220 .4961
33.13621 .1751 .175	34.1220 .4961	51.1220 .4961

34.13621 .1751 .175	35.1220 .4961	52.1220 .4961
35.13621 .1751 .175	36.1220 .5276	53.1220 .4961
36.22241 .084 .5875	54.3720 .4961	
37.22241 .084 .5875	38.1220 .5276	55.3720 .4961
38.13621 .1751 .175	39.1220 .4961	56.1220 .4961
39.13621 .1751 .175	40.1220 .4961	57.1220 .4961
40.13621 .1751 .175	41.1220 .4961	58.1220 .4961
41.13621 .1751 .175	42.1220 .4961	59.1220 .4961
42.13621 .1751 .175	43.1220 .4961	60.1220 .4961
43.13621 .1751 .175	44.1220 .4961	61.1220 .4961
44.13621 .1751 .175	45.1220 .4961	62.1220 .4961
45.13621 .1751 .175	46.1220 .4961	63.1220 .4961
46.13621 .1751 .175	47.1220 .4961	64.1220 .4961
47.13621 .1751 .175	48.1220 .4961	65.1220 .4961
48.13621 .1751 .175	49.1220 .4961	66.1220 .4961
49.13621 .1751 .175	50.1220 .4961	67.1220 .4961
50.13621 .1751 .175	51.1220 .4961	68.1220 .4961
51.13621 .1751 .175	52.1220 .4961	69.1220 .4961
52.13621 .1751 .175	53.1220 .4961	70.1220 .4961
53.13621 .1751 .175	54.1220 .5276	71.1220 .4961
54.22241 .084 .5875	72.3720 .4961	
55.22241 .084 .5875	56.1220 .5276	73.3720 .4961
56.13621 .1751 .175	57.1220 .4961	74.1220 .4961
57.13621 .1751 .175	58.1220 .4961	75.1220 .4961
58.13621 .1751 .175	59.1220 .4961	76.1220 .4961
59.13621 .1751 .175	60.1220 .4961	77.1220 .4961
60.13621 .1751 .175	61.1220 .4961	78.1220 .4961
61.13621 .1751 .175	62.1220 .4961	79.1220 .4961
62.13621 .1751 .175	63.1220 .4961	80.1220 .4961
63.13621 .1751 .175	64.1220 .4961	81.1220 .4961
64.13621 .1751 .175	65.1220 .4961	82.1220 .4961
65.13621 .1751 .175	66.1220 .4961	83.1220 .4961
66.13621 .1751 .175	67.1220 .4961	84.1220 .4961
67.13621 .1751 .175	68.1220 .4961	85.1220 .4961
68.13621 .1751 .175	69.1220 .4961	86.1220 .4961
69.13621 .1751 .175	70.1220 .4961	87.1220 .4961
70.13621 .1751 .175	71.1220 .4961	88.1220 .4961
71.13621 .1751 .175	72.1220 .5276	89.1220 .4961
72.22241 .084 .5875	90.3720 .4961	
73.22241 .084 .5875	74.1220 .5276	91.3720 .4961
74.13621 .1751 .175	75.1220 .4961	92.1220 .4961
75.13621 .1751 .175	76.1220 .4961	93.1220 .4961
76.13621 .1751 .175	77.1220 .4961	94.1220 .4961
77.13621 .1751 .175	78.1220 .4961	95.1220 .4961
78.13621 .1751 .175	79.1220 .4961	96.1220 .4961
79.13621 .1751 .175	80.1220 .4961	97.1220 .4961
80.13621 .1751 .175	81.1220 .4961	98.1220 .4961
81.13621 .1751 .175	82.1220 .4961	99.1220 .4961
82.13621 .1751 .175	83.1220 .4961	100.1220 .4961
83.13621 .1751 .175	84.1220 .4961	101.1220 .4961
85.13621 .1751 .175	85.1220 .4961	102.1220 .4961
85.13621 .1751 .175	86.1220 .4961	103.1220 .4961

86.13621 .1751 .175 87.13621 .1751 .175 88.13621 .1751 .175 89.13621 .1751 .175 90.22241 .084 .5875 91.22241 .084 .5875 92.13621 .1751 .175 93.13621 .1751 .175 94.13621 .1751 .175 95.13621 .1751 .175 96.13621 .1751 .175 97.13621 .1751 .175 98.13621 .1751 .175 99.13621 .1751 .175 100.13621 .1751 .175 101.13621 .1751 .175 102.13621 .1751 .175 103.13621 .1751 .175 104.13621 .1751 .175 105.13621 .1751 .175 106.13621 .1751 .175 107.13621 .1751 .175 108.22241 .084 .5875 109.22241 .084 .5875 110.13621 .1751 .175 111.13621 .1751 .175 112.13621 .1751 .175 113.13621 .1751 .175 114.13621 .1751 .175 115.13621 .1751 .175 116.13621 .1751 .175 117.13621 .1751 .175 118.13621 .1751 .175 119.13621 .1751 .175 120.13621 .1751 .175 121.13621 .1751 .175 122.13621 .1751 .175 123.13621 .1751 .175 124.13621 .1751 .175 125.13621 .1751 .175 126.22241 .084 .5875 127.22241 .084 .5875 128.13621 .1751 .175 129.13621 .1751 .175 130.13621 .1751 .175 131.13621 .1751 .175 132.13621 .1751 .175 133.13621 .1751 .175 134.13621 .1751 .175 135.13621 .1751 .175 136.13621 .1751 .175 137.13621 .1751 .175
87.1220 .4961
88.1220 .4961
89.1220 .4961
90.1220 .5276 108.3720 .4961
92.1220 .5276
93.1220 .4961
94.1220 .4961
95.1220 .4961
96.1220 .4961
97.1220 .4961
98.1220 .4961
99.1220 .4961
100.1220.4961
101.1220 .4961
102.1220 .4961
103.1220 .4961
104.1220 .4961 105.1220 .4961 106.1220 .4961
107.1220 .4961
108.1220 .5276
126.3720 .4961
110.1220 .5276
111.1220 .4961
112.1220 .4961
113.1220 .4961
114.1220 .4961
115.1220 .4961
116.1220 .4961
117.1220 .4961
118.1220 .4961
119.1220 .4961
120.1220 .4961
121.1220 .4961
122.1220 .4961
123.1220 .4961
124.1220 .4961
125.1220 .4961
126.1220 .5276
144.3720 .4961
128.1220 .5276
129.1220 .4961
130.1220 .4961
131.1220 .4961
132.1220 .4961
133.1220 .4961
134.1220 .4961
135.1220 .4961
136.1220 .4961
137.1220 .4961
138.1220 .4961
104.1220 .4961
105.1220 .4961
106.1220 .4961
107.1220.4961
109.3720 .4961
110.1220 .4961
111.1220 .4961
112.1220 .4961
113.1220 .4961
114.1220 .4961
115.1220 .4961
116.1220 .4961
117.1220 .4961
118.1220 .4961
119.1220 .4961
120.1220 .4961
121.. 1220.4961
122.1220 .4961
123.1220 .4961
124.1220 .4961
125.1220 .4961
127.3720 .4961
128.1220 .4961
129.1220 .4961
130.1220 .4961
131.1220 .4961
132.1220 .4961
133.1220 .4961
134.1220 .4961
135.1220 .4961
136.1220 .4961
137.1220 .4961
138.1220 .4961
139.1220 .4961
140.1220 .4961
141.1220 .4961
142.1220 .4961
143.1220 .4961
145.3720 .4961
146.1220 .4961
147.1220 .4961
148.1220 .4961
149.1220 .4961
150.1220 .4961
151.1220.4961
152.1220 .4961
153.1220 .4961
154.1220 .4961
155.1220 .4961

$$
\left.\begin{array}{ll}
138.13621 .1751 .175 & 139.1220 .4961 \\
139.13621 .1751 .175 & 140.1220 .4961 \\
140.13621 .1751 .175 & 141.1220 .4961 \\
141.13621 .1751 .175 & 142.1220 .4961 \\
142.13621 .1751 .175 & 143.1220 .4961 \\
143.13621 .1751 .175 & 144.1220 .5276 \\
144.22241 .084 .5875 & 162.3720 .4961 \\
145.22241 .084 .5875 & 146.1220 .5276 \\
146.13621 .1751 .175 & 147.1220 .4961 \\
147.13621 .1751 .175 & 148.1220 .4961 \\
148.13621 .1751 .175 & 149.1220 .4961 \\
149.13621 .1751 .175 & 150.1220 .4961 \\
150.13621 .1751 .175 & 151.1220 .4961 \\
151.13621 .1751 .175 & 152.1220 .4961 \\
152.13621 .1751 .175 & 153.1220 .4961 \\
153.13621 .1751 .175 & 154.1220 .4961 \\
154.13621 .1751 .175 & 155.1220 .4961 \\
155.13621 .1751 .175 & 156.1220 .4961 \\
156.13621 .1751 .175 & 157.1220 .4961 \\
157.13621 .1751 .175 & 158.1220 .4961 \\
158.13621 .1751 .175 & 159.1220 .4961 \\
159.13621 .1751 .175 & 160.1220 .4961 \\
160.13621 .1751 .175 & 161.1220 .4961 \\
161.13621 .1751 .175 & 162.1220 .5276 \\
162.22241 .084 .5875 & 180.3720 .4961 \\
163.22241 .084 .5875 & 164.1220 .5276 \\
164.13621 .1751 .175 & 165.1220 .4961 \\
165.13621 .1751 .175 & 166.1220 .4961 \\
166.13621 .1751 .175 & 167.1220 .4961 \\
167.13621 .1751 .175 & 168.1220 .4961 \\
168.13621 .1751 .175 & 169.1220 .4961 \\
169.13621 .1751 .175 & 170.1220 .4961 \\
170.13621 .1751 .175 & 171.1220 .4961 \\
171.13621 .1751 .175 & 172.1220 .4961 \\
172.13621 .1751 .175 & 173.1220 .4961 \\
173.13621 .1751 .175 & 174.1220 .4961 \\
174.13621 .1751 .175 & 175.1220 .4961 \\
175.13621 .1751 .175 & 176.1220 .4961 \\
176.13621 .1751 .175 & 177.1220 .4961 \\
177.13621 .1751 .175 & 178.1220 .4961 \\
188.13621 .1751 .175
\end{array}\right)
$$

```
139.1220.4961
140.1220.4961
141.1220.4961
142.1220.4961
143.1220.4961
144.1220.5276
162.3720.4961
146.1220.5276
147.1220.4961
148.1220.4961
149.1220.4961
150.1220.4961
151.1220.4961
152.1220.4961
153.1220.4961
154.1220.4961
155.1220.4961
156.1220.4961
157.1220.4961
158.1220.4961
159.1220.4961
160.1220.4961
161.1220.4961
162.1220.5276
180.3720.4961
164.1220.5276
165.1220.4961
166.1220.4961
167.1220.4961
168.1220.4961
169.1220.4961
170.1220.4961
171.1220.4961
172.1220.4961
173.1220.4961
174.1220.4961
175.1220.4961
176.1220.4961
177.1220.4961
178.1220.4961
179.1220.4961
180.1220.5276
198.3720.4961
182.1220.5276
183.1220.4961
184.1220.4961
185.1220.4961
186.1220.4961
187.1220.4961
188.1220.4961
189.1220.4961
190.1220.4961
```

156.1220 .4961
157.1220 .4961
158.1220 .4961
159.1220 .4961
160.1220 .4961
161.1220 .4961
163.3720 .4961
164.1220 .4961
165.1220 .4961
166.1220 .4961
167.1220 .4961
168.1220 .4961
169.1220 .4961
170.1220 .4961
171.1220 .4961
172.1220 .4961
173.1220 .4961
174.1220 .4961
175.1220 .4961
176.1220 .4961
177.1220 .4961
178.1220 .4961
179.1220 .4961
181.3720 .4961
182.1220 .4961
183.1220 .4961
184.1220 .4961
185.1220 .4961
186.1220 .4961
187.1220 .4961
188.1220 .4961
189.1220 .4961
190.1220 .4961
191.1220 .4961
192.1220 .4961
193.1220 .4961
194.1220 .4961
195.1220 .4961
196.1220 .4961
197.1220 .4961
199.3720 .4961 200.1220.4961 201.1220.4961
202.1220.4961 203.1220.4961 204.1220 .4961 205.1220.4961 206.1220.4961 207.1220.4961

		208.1220.4961
21.1751 .175	192.1220 .4961	209.1220.4961
192.13621 .1751 .175	193.1220 .4961	210.1220 .4961
193.13621 .1751 .175	194.1220 .4961	211.1220 .4961
194.13621 .1751 .175	195.1220 .4961	212.1220 .4961
195.13621 .1751 .175	196.1220 .4961	213.1220 .4961
196.13621 .1751 .175	197.1220 .4961	214.1220 .4961
197.13621 .1751 .175	198.1220 .5276	215.1220 .4961
198.22241 .084 .5875	216.3720 .4961	
199.22241 .084 .5875	200.1220.5276	
200.13621 .1751 .175	201.1220.4961	218.1220 .4961
201.13621 .1751 .175	202.1220.4961	219.1220 .4961
202.13621 .1751 .175	203.1220.4961	220.1220 .4961
203.13621 .1751 .175	204.1220.4961	221.1220 .4961
204.13621 .1751 .175	205.1220.4961	222.1220 .4961
205.13621 .1751 .175	206.1220.4961	223.1220 .4961
206.13621 .1751 .175	207.1220.4961	224.1220 .4961
207.13621 .1751 .175	208.1220.4961	225.1220 .4961
208.13621 .1751 .175	209.1220.4961	226.1220 .4961
209.13621 .1751 .175	210.1220 .4961	227.1220 .4961
210.13621 .1751 .175	211.1220 .4961	228.1220 .4961
211.13621 .1751 .175	212.1220 .4961	229.1220 .4961
212.13621 .1751 .175	213.1220 .4961	230.1220 .4961
213.13621 .1751 .175	214.1220.4961	231.1220 .4961
214.13621 .1751 .175	215.1220 .4961	232.1220.4961
215.13621 .1751 .175	216.1220 .5276	233.1220 .4961
216.22241 .084 .5875	234.3720 .4961	
217.22241 .084 .5875	218.1220 .5276	235.3720 .4961
218.13621 .1751 .175	219.1220 .4961	236.1220 .4961
219.13621 .1751 .175	220.1220 .4961	237.1220 .4961
220.13621 .1751 .175	221.1220.4961	238.1220 .4961
221.13621 .1751 .175	222.1220 .4961	239.1220 .4961
222.13621 .1751 .175	223.1220 .4961	240.1220 .4961
223.13621 .1751 .175	224.1220 .4961	241.1220 .4961
224.13621 .1751 .175	225.1220 .4961	242.1220 .4961
225.13621 .1751 .175	226.1220 .4961	243.1220 .4961
226.13621 .1751 .175	227.1220 .4961	244.1220 .4961
227.13621 .1751 .175	228.1220 .4961	245.1220 .4961
228.13621 .1751 .175	229.1220 .4961	246.1220 .4961
229.13621 .1751 .175	230.1220 .4961	247.1220 .4961
230.13621 .1751 .175	231.1220 .4961	248.1220 .4961
231.13621 .1751 .175	232.1220 .4961	249.1220 .4961
232.13621 .1751 .175	233.1220 .4961	250.1220 .4961
233.13621 .1751 .175	234.1220 .5276	251.1220 .4961
234.22241 .084 .5875	252.3720 .4961	
235.22241 .084 .5875	236.1220 .5276	253.3720 .4961
236.13621 .1751 .175	237.1220 .4961	254.1220 .4961
237.13621 .1751 .175	238.1220 .4961	255.1220 .4961
238.13621 .1751 .175	239.1220 .4961	256.1220 .4961
239.13621 .1751 .175	240.1220 .4961	257.1220 .4961
240.13621 .1751 .175	241.1220 .4961	258.1220 .4961
241.13621 .1751 .175	242.1220 .4961	259.1220 .4961

$\begin{array}{ll}242.13621 .1751 .175 & 243.1220 .4961 \\ 243.13621 .1751 .175 & 244.1220 .4961 \\ 244.13621 .1751 .175 & 245.1220 .4961 \\ 245.13621 .1751 .175 & 246.1220 .4961 \\ 246.13621 .1751 .175 & 247.1220 .4961 \\ 247.13621 .1751 .175 & 248.1220 .4961 \\ 248.13621 .1751 .175 & 249.1220 .4961 \\ 249.13621 .1751 .175 & 250.1220 .4961 \\ 250.13621 .1751 .175 & 251.1220 .4961 \\ 251.13621 .1751 .175 & 252.1220 .5276 \\ 252.22241 .084 .5875 & 270.3720 .4961 \\ 253.22241 .084 .5875 & 254.1220 .5276 \\ 254.13621 .1751 .175 & 255.1220 .4961 \\ 255.13621 .1751 .175 & 256.1220 .4961 \\ 256.13621 .1751 .175 & 257.1220 .4961 \\ 257.13621 .1751 .175 & 258.1220 .4961 \\ 258.13621 .1751 .175 & 259.1220 .4961 \\ 259.13621 .1751 .175 & 260.1220 .4961 \\ 260.13621 .1751 .175 & 261.1220 .4961 \\ 261.13621 .1751 .175 & 262.1220 .4961 \\ 262.13621 .1751 .175 & 263.1220 .4961 \\ 263.13621 .1751 .175 & 264.1220 .4961 \\ 264.13621 .1751 .175 & 265.1220 .4961 \\ 265.13621 .1751 .175 & 266.1220 .4961 \\ 266.13621 .1751 .175 & 267.1220 .4961 \\ 267.13621 .1751 .175 & 268.1220 .4961 \\ 268.13621 .1751 .175 & 269.1220 .4961 \\ 269.13621 .1751 .175 & 270.1220 .5276 \\ 270.22241 .084 .5875 & 288.3720 .4961 \\ 271.22241 .084 .5875 & 272.1220 .5276 \\ 272.13621 .1751 .175 & 273.1220 .4961 \\ 273.13621 .1751 .175 & 274.1220 .4961 \\ 274.13621 .1751 .175 & 275.1220 .4961 \\ 275.13621 .1751 .175 & 276.1220 .4961 \\ 276.13621 .1751 .175 & 277.1220 .4961 \\ 277.13621 .1751 .175 & 278.1220 .4961 \\ 278.13621 .1751 .175 & 279.1220 .4961 \\ 292.13621\end{array}$

```
243.1220.4961
244.1220 .4961
245.1220 .4961
247.1220.4961
248.1220 .4961
249.1220 .4961
1220.4961
252.1220 .5276
270.3720 .4961
254.1220 .5276
55.1220.4961
4961
258.1220 .4961
259.1220.4961
260.1220 .4961
961
263.1220.4961
264.1220.4961
265.1220.4961
4961
268.1220 .4961
269.1220 .4961
270.1220 .5276
0.4961
273.1220 .4961
274.1220 .4961
275.1220.4961
. 1220.4961
279.1220 .4961
280.1220 .4961
81.1220.4961
283.1220 .4961
284.1220 .4961
285.1220 .4961
286.1220 .4961
287.1220 .4961
288.1220 .5276
306.3720 .4961
290.1220 .5276
292.1220.4961
294.1220.4961
```

260.1220 .4961
261.1220 .4961 262.1220 .4961 263.1220 .4961 264.1220 .4961 265.1220 .4961 266.1220 .4961 267.1220 .4961 268.1220.4961 269.1220 .4961
271.3720 .4961 272.1220 .4961 273.1220 .4961 274.1220 .4961 275.1220 .4961 276.1220 .4961 277.1220 .4961 278.1220 .4961 279.1220 .4961 280.1220 .4961 281.1220.4961 282.1220.4961 283.1220 .4961 284.1220 .4961 285.1220 .4961 286.1220 .4961 287.1220.4961
289.3720 .4961 290.1220 .4961 291.1220 .4961 292.1220 .4961 293.1220 .4961 294.1220 .4961 295.1220 .4961 296.1220 .4961 297.1220 .4961 298.1220 .4961 299.1220.4961 300.1220 .4961 301.1220 .4961 302.1220 .4961 303.1220 .4961 304.1220 .4961 305.1220 .4961
307.3720 .5276 308.1220 .5276 309.1220 .5276 310.1220 .5276 311.1220 .5276
294.13621 .1751 .175
295.13621 .1751 .175
296.13621 .1751 .175
297.13621 .1751 .175
298.13621 .1751 .175
299.13621 .1751 .175
300.13621 .1751 .175
301.13621 .1751 .175
302.13621 .1751 .175
303.13621 .1751 .175
304.13621 .1751 .175
305.13621 .1751 .175
306.22241 .084 .5875
307.28511 .412 .2938
308.22241 .084 .5875
309.22241 .084 .5875
310.22241 .084 .5875
311.22241 .084 .5875
312.22241 .084 .5875
313.22241 .084 .5875
314.22241 .084 .5875
315.22241 .084 .5875
316.22241 .084 .5875
317.22241 .084 .5875
318.22241 .084 .5875
319.22241 .084 .5875
320.22241 .084 .5875
321.22241 .084 .5875
322.22241 .084 .5875
323.22241 .084 .5875
324.28511 .412 .2938
295.1220 .4961
296.1220 .4961
297.1220 .4961
298.1220 .4961
299.1220 .4961
300.1220 .4961
301.1220 .4961
302.1220 .4961
303.1220 .4961
304.1220 .4961
305.1220 .4961
306.1220 .5276
324.3720 .5276
308.3720 .5276
309.3720 .4961
310.3720 .4961
311.3720 .4961
312.3720 .4961
313.3720 .4961
314.3720 .4961 315.3720 .4961 316.3720 .4961 317.3720 .4961 318.3720 .4961 319.3720 .4961 320.3720 .4961 321.3720 .4961 322.3720 .4961 323.3720 .4961 324.3720 .5276
312.1220 .5276
313.1220 .5276 314.1220 .5276 315.1220 .5276 316.1220 .5276 317.1220 .5276 318.1220 .5276 319.1220 .5276 320.1220 .5276 321.1220 .5276 322.1220 .5276 323.1220 .5276

RODS	1	1	0	0	0					
1	1	289								
1.3740	1.	1	.25	2	.25	19	.25	20	.25	
2.3740	1.	2	.25	3	.25	20	.25	21	.25	
3.3740	1.	3	.25	4	.25	21	.25	22	.25	
4.3740	1.	4	.25	5	.25	22	.25	23	.25	
5.3740	1.	5	.25	6	.25	23	.25	24	.25	
6.3740	1.	6	.25	7	.25	24	.25	25	.25	
7.3740	1.	7	.25	8	.25	25	.25	26	.25	
8.3740	1.	8	.25	9	.25	26	.25	27	.25	
9.3740	1.	9	.25	10	.25	27	.25	28	.25	
10.3740	1.	10	.25	11	.25	28	.25	29	.25	
11.3740	1.	11	.25	12	.25	29	.25	30	.25	
12.3740	1.	12	.25	13	.25	30	.25	31	.25	
13.3740	1.	13	.25	14	.25	31	.25	32	.25	
14.3740	1.	14	.25	15	.25	32	.25	33	.25	
15.3740	1.	15	.25	16	.25	33	.25	34	.25	
16.3740	1.	16	.25	17	.25	34	.25	35	.25	
17.3740	1.	17	.25	18	.25	35	.25	36	.25	
18.3740	1.	19	.25	20	.25	37	.25	38	.25	

19.3740	1.	20	.25	21	.25	38	.25	39	.25
20.3740	1.	21	.25	22	.25	39	.25	40	.25
21.3740	1.	22	.25	23	.25	40	.25	41	.25
22.3740	1.	23	.25	24	.25	41	.25	42	.25
23.3740	1.	24	.25	25	.25	42	.25	43	.25
24.3740	1.	25	.25	26	.25	43	.25	44	.25
25.3740	1.	26	.25	27	.25	44	.25	45	.25
26.3740	1.	27	.25	28	.25	45	.25	46	.25
27.3740	1.	28	.25	29	.25	46	.25	47	.25
28.3740	1.	29	.25	30	.25	47	.25	48	.25
29.3740	1.	30	.25	31	.25	48	.25	49	.25
30.3740	1.	31	.25	32	.25	49	.25	50	.25
31.3740	1.	32	.25	33	.25	50	.25	51	.25
32.3740	1.	33	.25	34	.25	51	.25	52	.25
33.3740	1.	34	.25	35	.25	52	.25	53	.25
34.3740	1.	35	.25	36	.25	53	.25	54	.25
35.3740	1.	37	.25	38	.25	55	.25	56	.25
36.3740	1.	38	.25	39	.25	56	.25	57	.25
37.3740	1.	39	.25	40	.25	57	.25	58	.25
38.3740	1.	40	.25	41	.25	58	.25	59	.25
39.3740	1.	41	.25	42	.25	59	.25	60	.25
40.3740	1.	42	.25	43	.25	60	.25	61	.25
41.3740	1.	43	.25	44	.25	61	.25	62	.25
42.3740	1.	44	.25	45	.25	62	.25	63	.25
43.3740	1.	45	.25	46	.25	63	.25	64	.25
44.3740	1.	46	.25	47	.25	64	.25	65	.25
45.3740	1.	47	.25	48	.25	65	.25	66	.25
46.3740	1.	48	.25	49	.25	66	.25	67	.25
47.3740	1.	49	.25	50	.25	67	.25	68	.25
48.3740	1.	50	.25	51	.25	68	.25	69	.25
49.3740	1.	51	.25	52	.25	69	.25	70	.25
50.3740	1.	52	.25	53	.25	70	.25	71	.25
51.3740	1.	53	.25	54	.25	71	.25	72	.25
52.3740	1.	55	.25	56	.25	73	.25	74	.25
53.3740	1.	56	.25	57	.25	74	.25	75	.25
54.3740	1.	57	.25	58	.25	75	.25	76	.25
55.3740	1.	58	.25	59	.25	76	.25	77	.25
56.3740	1.	59	.25	60	.25	77	.25	78	.25
57.3740	1.	60	.25	61	.25	78	.25	79	.25
58.3740	1.	61	.25	62	.25	79	.25	80	.25
59.3740	1.	62	.25	63	.25	80	.25	81	.25
60.3740	1.	63	.25	64	.25	81	.25	82	.25
61.3740	1.	64	.25	65	.25	82	.25	83	.25
62.3740	1.	65	.25	66	.25	83	.25	84	.25
63.3740	1.	66	.25	67	.25	84	.25	85	.25
64.3740	1.	67	.25	68	.25	85	.25	86	.25
65.3740	1.	68	.25	69	.25	86	.25	87	.25
66.3740	1.	69	.25	70	.25	87	.25	88	.25
67.3740	1.	70	.25	71	.25	88	.25	89	.25
68.3740	1.	71	.25	72	.25	89	.25	90	.25
70.3740	1.	73	.25	74	.25	91	.25	92	.25
2.	74	.25	75	.25	92	.25	93	.25	

71.3740	1	75	. 25	76	25	93	. 25	94	25
72.3740	1.	76	. 25	77	. 25	94	25	95	25
73.3740	1.	77	. 25	78	. 25	95	. 25	96	25
74.3740	1	78	. 25	79	. 25	96	. 25	97	. 25
75.3740	1	79	. 25	80	. 25	97	. 25	98	. 25
76.3740	1	80	. 25	81	. 25	98	25	99	25
77.3740	1	81	. 25	82	. 25	99	. 25	100	25
78.3740	1	82	. 25	83	. 25	100	. 25	101	25
79.3740	1	83	. 25	84	. 25	101	. 25	102	. 25
80.3740	1	84	. 25	85	. 25	102	. 25	103	25
81.3740	1	85	. 25	86	. 25	103	. 25	104	25
82.3740	1	86	. 25	87	. 25	104	. 25	105	25
83.3740	1	87	. 25	88	. 25	105	. 25	106	25
84.3740	1	88	. 25	89	. 25	106	. 25	107	. 25
85.3740	1	89	. 25	90	. 25	107	. 25	108	. 25
86.3740	1	91	. 25	92	. 25	109	. 25	110	25
87.3740	1	92	. 25	93	. 25	110	. 25	111	25
88.3740	1	93	. 25	94	. 25	111	. 25	112	25
89.3740	1	94	. 25	95	. 25	112	. 25	113	25
90.3740	1	95	. 25	96	. 25	113	. 25	114	. 25
91.3740	1	96	. 25	97	. 25	114	. 25	115	. 25
92.3740	1	97	. 25	98	. 25	115	. 25	116	25
93.3740	1	98	. 25	99	. 25	116	. 25	117	. 25
94.3740	1	99	. 25	100	. 25	117	. 25	118	. 25
95.3740	1	100	. 25	101	. 25	118	. 25	119	. 25
96.3740	1	101	. 25	102	. 25	119	. 25	120	. 25
97.3740	1	102	. 25	103	. 25	120	. 25	121	. 25
98.3740	1	103	. 25	104	. 25	121	. 25	122	. 25
99.3740	1.	104	. 25	105	. 25	122	. 25	123	. 25
100.3740	1.	105	. 25	106	. 25	123	. 25	124	. 25
101.3740	1	106	. 25	107	. 25	124	. 25	125	. 25
102.3740	1.	107	. 25	108	. 25	125	. 25	126	. 25
103.3740	1	109	. 25	110	. 25	127	. 25	128	. 25
104.3740	1	110	. 25	111	. 25	128	. 25	129	. 25
105.3740	1	111	. 25	112	. 25	129	. 25	130	. 25
106.3740	1	112	. 25	113	. 25	130	. 25	131	. 25
107.3740	1	113	. 25	114	. 25	131	. 25	132	. 25
108.3740	1	114	. 25	115	25	132	. 25	133	25
109.3740	1.	115	. 25	116	. 25	133	. 25	134	. 25
110.3740	1	116	. 25	117	. 25	134	. 25	135	. 25
111.3740	1	117	. 25	118	. 25	135	. 25	136	. 25
112.3740	1.	118	. 25	119	. 25	136	. 25	137	. 25
113.3740	1	119	. 25	120	. 25	137	. 25	138	. 25
114.3740	1.	120	. 25	121	. 25	138	. 25	139	. 25
115.3740	1.	121	. 25	122	. 25	139	. 25	140	. 25
116.3740	1.	122	. 25	123	. 25	140	. 25	141	. 25
117.3740	1.	123	. 25	124	. 25	141	. 25	142	. 25
118.3740	1	124	. 25	125	. 25	142	. 25	143	. 25
119.3740	1.	125	. 25	126	. 25	143	. 25	144	. 25
120.3740	1.	127	. 25	128	. 25	145	. 25	146	. 25
121.3740	1	128	. 25	129	. 25	146	. 25	147	. 25
122.3740	1.	129	. 25	130	. 25	147	. 25	148	. 25

123.3740	1.	130	. 25	131	. 25	148	. 25	149	. 25
124.3740	1.	131	. 25	132	. 25	149	25	150	25
125.3740	1.	132	: 25	133	. 25	150	. 25	151	25
126.3740	1.	133	. 25	134	. 25	151	25	152	25
127.3740	1.	134	. 25	135	. 25	152	25	153	25
128.3740	1.	135	. 25	136	. 25	153	25	154	25
129.3740	1	136	. 25	137	. 25	154	. 25	155	25
130.3740	1.	137	. 25	138	. 25	155	. 25	156	25
131.3740	1	138	. 25	139	. 25	156	. 25	157	25
132.3740	1.	139	. 25	140	. 25	157	. 25	158	25
133.3740	1.	140	. 25	141	. 25	158	. 25	159	25
134.3740	1.	141	. 25	142	. 25	159	. 25	160	. 25
135.3740	1.	142	. 25	143	. 25	160	. 25	161	. 25
136.3740	1.	143	. 25	144	. 25	161	. 25	162	. 25
137.3740	1	145	. 25	146	. 25	163	. 25	164	. 25
138.3740	1	146	. 25	147	. 25	164	. 25	165	. 25
139.3740	1	147	. 25	148	. 25	165	. 25	166	. 25
140.3740	1.	148	. 25	149	. 25	166	. 25	167	. 25
141.3740	1.	149	. 25	150	. 25	167	. 25	168	. 25
142.3740	1	150	. 25	151	. 25	168	. 25	169	. 25
143.3740	1.	151	. 25	152	. 25	169	. 25	170	. 25
144.3740	1.	152	. 25	153	. 25	170	. 25	171	. 25
145.3740	1	153	. 25	154	. 25	171	. 25	172	. 25
146.3740	1	154	. 25	155	. 25	172	. 25	173	. 25
147.3740	1.	155	. 25	156	. 25	173	. 25	174	. 25
148.3740	1.	156	. 25	157	. 25	174	. 25	175	. 25
149.3740	1.	157	. 25	158	. 25	175	. 25	176	. 25
150.3740	1.	158	. 25	159	. 25	176	. 25	177	. 25
151.3740	1.	159	. 25	160	. 25	177	. 25	178	. 25
152.3740	1.	160	. 25	161	. 25	178	. 25	179	. 25
153.3740	1.	161	. 25	162	. 25	179	. 25	180	. 25
154.3740	1.	163	. 25	164	. 25	181	. 25	182	. 25
155.3740	1.	164	. 25	165	. 25	182	. 25	183	. 25
156.3740	1.	165	. 25	166	. 25	183	. 25	184	. 25
157.3740	1.	166	. 25	167	. 25	184	. 25	185	. 25
158.3740	1.	167	. 25	168	. 25	185	. 25	186	. 25
159.3740	1.	168	. 25	169	. 25	186	. 25	187	. 25
160.3740	1.	169	. 25	170	. 25	187	. 25	188	. 25
161.3740	1.	170	. 25	171	. 25	188	. 25	189	. 25
162.3740	1.	171	. 25	172	. 25	189	. 25	190	. 25
163.3740	1.	172	. 25	173	. 25	190	. 25	191	. 25
164.3740	1.	173	. 25	174	. 25	191	. 25	192	. 25
165.3740	1.	174	. 25	175	. 25	192	. 25	193	. 25
166.3740	1.	175	. 25	176	. 25	193	. 25	194	. 25
167.3740	1.	176	. 25	177	. 25	194	. 25	195	. 25
168.3740	1.	177	. 25	178	. 25	195	. 25	196	. 25
169.3740	1.	178	. 25	179	. 25	196	. 25	197	. 25
170.3740	1.	179	. 25	180	. 25	197	. 25	198	. 25
171.3740	1.	181	. 25	182	. 25	199	. 25	200	. 25
172.3740	1.	182	. 25	183	. 25	200	. 25	201	. 25
173.3740	1.	183	. 25	184	. 25	201	. 25	202	. 25
174.3740	1.	184	. 25	185	. 25	202	. 25	203	. 25

175.3740	1	185	. 25	186	. 25	203	. 25	204	25
176.3740	1	186	. 25	187	. 25	204	. 25	205	25
177.3740	1	187	. 25	188	. 25	205	25	206	25
178.3740	1	188	. 25	189	25	206	25	207	25
179.3740	i	189	. 25	190	. 25	207	. 25	208	25
180.3740	1	190	. 25	191	. 25	208	. 25	209	25
181.3740	1	191	. 25	192	. 25	209	. 25	210	25
182.3740	1	192	. 25	193	. 25	210	. 25	211	25
183.3740	1	193	. 25	194	. 25	211	. 25	212	25
184.3740	1	194	. 25	195	. 25	212	. 25	213	. 25
185.3740	1	195	. 25	196	. 25	213	. 25	214	25
186.3740	1	196	. 25	197	. 25	214	. 25	215	25
187.3740	1	197	. 25	198	. 25	215	. 25	216	25
188.3740	1	199	. 25	200	. 25	217	. 25	218	25
189.3740	1	200	. 25	201	. 25	218	. 25	219	. 25
190.3740	1	201	. 25	202	. 25	219	. 25	220	25
191.3740	1	202	. 25	203	. 25	220	. 25	221	25
192.3740	1	203	. 25	204	. 25	221	. 25	222	. 25
193.3740	1	204	. 25	205	. 25	222	. 25	223	25
194.3740	1	205	. 25	206	. 25	223	. 25	224	25
195.3740	1	206	. 25	207	. 25	224	. 25	225	25
196.3740	1	207	. 25	208	. 25	225	. 25	226	. 25
197.3740	1	208	25	209	. 25	226	. 25	227	25
198.3740	1	209	. 25	210	. 25	227	. 25	228	. 25
199.3740	1	210	. 25	211	. 25	228	. 25	229	. 25
200.3740	1	211	. 25	212	. 25	229	. 25	230	. 25
201.3740	1	212	25	213	. 25	230	. 25	231	25
202.3740	1	213	. 25	214	. 25	231	. 25	232	25
203.3740	1	214	25	215	. 25	232	. 25	233	. 25
204.3740	1	215	. 25	216	. 25	233	. 25	234	. 25
205.3740	1	217	. 25	218	. 25	235	. 25	236	. 25
206.3740	1	218	. 25	219	. 25	236	. 25	237	25
207.3740	1	219	. 25	220	. 25	237	. 25	238	25
208.3740	1	220	. 25	221	. 25	238	. 25	239	25
209.3740	1	221	. 25	222	. 25	239	. 25	240	. 25
210.3740	1	222	. 25	223	. 25	240	25	241	25
211.3740	1.	223	. 25	224	. 25	241	. 25	242	25
212.3740	1	224	. 25	225	. 25	242	. 25	243	25
213.3740	1	225	. 25	226	. 25	243	. 25	244	25
214.3740	1	226	. 25	227	. 25	244	. 25	245	25
215.3740	1.	227	. 25	228	. 25	245	. 25	246	. 25
216.3740	1.	228	. 25	229	. 25	246	. 25	247	. 25
217.3740	1	229	. 25	230	. 25	247	. 25	248	25
218.3740	1.	230	. 25	231	. 25	248	. 25	249	. 25
219.3740	1	231	. 25	232	. 25	249	. 25	250	. 25
220.3740	1	232	. 25	233	. 25	250	. 25	251	. 25
221.3740	1	233	. 25	234	. 25	251	. 25	252	. 25
222.3740	1.	235	. 25	236	. 25	253	. 25	254	. 25
223.3740	1.	236	. 25	237	. 25	254	25	255	. 25
224.3740	1.	237	. 25	238	. 25	255	. 25	256	. 25
225.3740	1.	238	. 25	239	. 25	256	. 25	257	. 25
226.3740	1.	239	25	240	25	257	25	258	25

227.3740	1.	240	. 25	241	. 25	258	. 25	259	25
228.3740	1.	241	25	242	25	259	25	260	25
229.3740	1.	242	. 25	243	. 25	260	. 25	261	25
230.3740	1.	243	. 25	244	. 25	261	25	262	25
231.3740	1.	244	. 25	245	. 25	262	. 25	263	25
232.3740	1.	245	. 25	246	. 25	263	. 25	264	25
233.3740	1.	246	. 25	247	. 25	264	. 25	265	25
234.3740	1.	247	. 25	248	. 25	265	. 25	266	25
235.3740	1.	248	. 25	249	. 25	266	. 25	267	25
236.3740	1.	249	25	250	. 25	267	. 25	268	25
237.3740	1.	250	. 25	251	. 25	268	. 25	269	25
238.3740	1.	251	. 25	252	. 25	269	. 25	270	25
239.3740	1.	253	. 25	254	. 25	271	. 25	272	25
240.3740	1.	254	. 25	255	. 25	272	25	273	25
241.3740	1.	255	. 25	256	. 25	273	25	274	25
242.3740	1	256	. 25	257	. 25	274	. 25	275	25
243.3740	1	257	. 25	258	. 25	275	. 25	276	25
244.3740	1	258	. 25	259	25	276	. 25	277	25
245.3740	1	259	. 25	260	. 25	277	. 25	278	25
246.3740	1	260	. 25	261	. 25	278	. 25	279	. 25
247.3740	1	261	. 25	262	. 25	279	. 25	280	25
248.3740	1	262	. 25	263	. 25	280	. 25	281	. 25
249.3740	1.	263	. 25	264	. 25	281	. 25	282	25
250.3740	1	264	. 25	265	. 25	282	. 25	283	. 25
251.3740	1	265	. 25	266	. 25	283	. 25	284	. 25
252.3740	1	266	. 25	267	. 25	284	. 25	285	25
253.3740	1	267	. 25	268	. 25	285	. 25	286	. 25
254.3740	1	268	. 25	269	. 25	286	. 25	287	25
255.3740	1	269	. 25	270	. 25	287	. 25	288	. 25
256.3740	1	271	. 25	272	. 25	289	. 25	290	. 25
257.3740	1	272	. 25	273	. 25	290	. 25	291	25
258.3740	1	273	. 25	274	. 25	291	. 25	292	25
259.3740	1	274	. 25	275	. 25	292	. 25	293	25
260.3740	1	275	. 25	276	. 25	293	. 25	294	25
261.3740	1	276	. 25	277	. 25	294	. 25	295	25
262.3740	1	277	. 25	278	. 25	295	. 25	296	. 25
263.3740	1	278	. 25	279	. 25	296	. 25	297	25
264.3740	1	279	. 25	280	. 25	297	. 25	298	25
265.3740	1	280	. 25	281	. 25	298	. 25	299	25
266.3740	1	281	. 25	282	. 25	299	. 25	300	25
267.3740	1	282	. 25	283	. 25	300	. 25	301	25
268.3740	1	283	. 25	284	. 25	301	. 25	302	25
269.3740	1	284	. 25	285	. 25	302	. 25	303	25
270.3740	1	285	. 25	286	25	303	. 25	304	. 25
271.3740	1	286	. 25	287	25	304	. 25	305	25
272.3740	1	287	. 25	288	. 25	305	. 25	306	. 25
273.3740	1	289	. 25	290	. 25	307	. 25	308	25
274.3740	1	290	25	291	. 25	308	. 25	309	25
275.3740	1	291	. 25	292	. 25	309	. 25	310	. 25
276.3740	1	292	25	293	. 25	310	. 25	311	25
277.3740	1	293	. 25	294	. 25	311	. 25	312	. 25
278.3740	1	294	. 25	295	. 25	312	. 25	313	25

RADG	1	1								
1	1	8	1	2	3	4	5	6	7	8
HEAT	1	0	1							

```
                    1.00
                            1.00
    17.1
DRAG 1
    100.-1.0 100.-1.0 .05
BDRY 1
    1 2 0.0 204.8 1.0 204.8
    1
        2 14.921 1
        1 1.0 1 1.0 1
```



```
        4 1.14.921 1, 1,
```



```
        1
        1.0 1 1.0 1
        14.921 1
        1.0 1 1.0 1
```



```
        1 1.0 1 1.0 1
CALC 1
    0. 0.25
```



```
        10
    .851.029.9499 .706 .95 0.0 1.0 0.0
OUTP 1101
ENDD
```


APPENDIX 4

17 X17 BUNDLE ANALYSIS-INPUT FILE FOR RADGEN (Cycle 1)

```
        0
Korean Spent Fuel Cask -- KSC-7 (17*17)
    01.326 1.7 17
    .374 . 372 . 372 . 372 . 372
    0.8 0.3
        0
        0
```


APPENDIX 5

QUARTER SECTION MODEL OF KAERI (Received via E-mail on 10/07/94)

5.59162 .3321 .265	6.39051 .067	14.2619 .9645
6.59162 .3321 .265	7.39051 .067	15.2619 .9645
7.59162 .3321 .265	8.39051 .067	16.2619 .9645
8.59162 .3321 .265	9.3905 .9645	17.2619 .9645
9.50162 .218 .6323	18.3905 .9645	
10.59162 .3321 .265	11.2619 .9645	19.39051 .067
11.62942 .5292 .529	12.26191 .067	20.26191 .067
12.62942 .5292 .529	13.26191 .067	21.26191 .067
13.62942 .5292 .529	14.26191 .067	22.26191 .067
14.62942 .5292 .529	15.26191 .067	23.26191 .067
15.62942 .5292 .529	16.26191 .067	24.26191 .067
16.62942 .5292 .529	17.26191 .067	25.26191 .067
17.62942 .5292 .529	18.2619 .9645	26.26191 .067
18.59162 .3321 .265	27.39051 .067	
19.59162 .3321 .265	20.2619 .9645	28.39051 .067
20.62942 .5292 .529	21.26191 .067	29.26191 .067
21.62942 .5292 .529	22.26191 .067	30.26191 .067
22.62942 .5292 .529	23.26191 .067	31.26191 .067
23.62942 .5292 .529	24.26191 .067	32.26191 .067
24.62942 .5292 .529	25.26191 .067	33.26191 .067
25.62942 .5292 .529	26.26191 .067	34.26191 .067
26.62942 .5292 .529	27.2619 .9645	35.26191 .067
27.59162 .3321 .265	36.39051 .067	
28.59162 .3321 .265	29.2619 .9645	37.39051 .067
29.62942 .5292 .529	30.26191 .067	38.26191 .067
30.62942 .5292 .529	31.26191 .067	39.26191 .067
31.62942 .5292 .529	32.26191 .067	40.26191 .067
32.62942 .5292 .529	33.26191 .067	41.26191 .067
33.62942 .5292 .529	34.26191 .067	42.26191 .067
34.62942 .5292 .529	35.26191 .067	43.26191 .067
35.62942 .5292 .529	36.2619 .9645	44.26191 .067
36.59162 .3321 .265	45.39051 .067	
37.29581 .166 .6323	38.1310 .9645	
38.31471 .2651 .265	39.13101 .067	
39.31471 .2651 .265	40.13101 .067	
40.31471 .2651 .265	41.13101 .067	
41.31471 .2651 .265	42.13101 .067	
42.31471 .2651 .265	43.13101 .067	
43.31471 .2651 .265	44.13101 .067	
44.31471 .2651 .265	45.1310 .9645	
45.29581 .166 .6323	0	0
3	3	81
1	0	1
1.50162 .218 .6323	2.3905 .9645	10.3905 .9645
2.59162 .3321 .265	3.39051 .067	11.2619 .9645
3.59162 .3321 .265	4.39051 .067	12.2619 .9645
4.59162 .3321 .265	5.39051 .067	13.2619 .9645
5.59162 .3321 .265	6.39051 .067	14.2619 .9645
6.59162 .3321 .265	7.39051 .067	15.2619 .9645
7.59162 .3321 .265	8.39051 .067	16.2619 .9645
8.59162 .3321 .265	9.3905 .9645	17.2619 .9645
9.50162 .218 .6323	18.3905 .9645	
10		

65	11.2619 .9645	19.39051 .067
11.62942 .5292 .529	12.26191 .067	20.26191 .067
12.62942 .5292 .529	13.26191 .067	21.26191 .067
13.62942 .5292 .529	14.26191 .067	22.26191 .067
14.62942 .5292 .529	15.26191 .067	23.26191 .067
15.62942.5292.529	16.26191 .067	24.26191 .067
16.62942 .5292 .529	17.26191 .067	25.26191 .067
17.62942 .5292 .529	18.2619 .9645	26.26191 .067
18.59162 .3321 .265	27.39051 .067	
19.59162 .3321 .265	20.2619 .9645	28.39051 .067
20.62942 .5292 .529	21.26191 .067	29.26191 .067
21.62942 .5292 .529	22.26191 .067	30.26191 .067
22.62942 .5292 .529	23.26191 .067	31.26191 .067
23.62942 .5292 .529	24.26191 .067	32.26191 .067
24.62942 .5292 .529	25.26191 .067	33.26191 .067
25.62942 .5292 .529	26.26191 .067	34.26191 .067
26.62942 .5292 .529	27.2619 .9645	35.26191 .067
27.59162 .3321 .265	36.39051 .067	
28.59162 .3321 .265	29.2619 .9645	37.39051 .067
29.62942 .5292 .529	30.26191 .067	38.26191 .067
30.62942 .5292 .529	31.26191 .067	39.26191 .067
31.62942 .5292 .529	32.26191 .067	40.26191 .067
32.62942 .5292 .529	33.26191 .067	41.26191 .067
33.62942 .5292 .529	34.26191 .067	42.26191 .067
34.62942 .5292 .529	35.26191 .067	43.26191 .067
35.62942 .5292 .529	36.2619 .9645	44.26191 .067
36.59162 .3321 .265	45.39051 .067	
37.59162 .3321 .265	38.2619 .9645	46.39051 .067
38.62942 .5292 .529	39.26191 .067	47.26191 .067
39.62942 .5292 .529	40.26191 .067	48.26191:067
40.62942 .5292 .529	41.26191 .067	49.26191 .067
41.62942 .5292 .529	42.26191 .067	50.26191 .067
42.62942 .5292 .529	43.26191 .067	51.26191 .067
43.62942 .5292 .529	44.26191 .067	52.26191 .067
44.62942 .5292 .529	45.2619 .9645	53.26191 .067
45.59162 .3321 .265	54.39051 .067	
46.59162 .3321 .265	47.2619 .9645	55.39051 .067
47.62942 .5292 .529	48.26191 .067	56.26191 .067
48.62942 .5292 .529	49.26191 .067	57.26191 .067
49.62942 .5292 .529	50.26191 .067	58.26191 .067
50.62942 .5292 .529	51.26191 .067	59.26191 .067
51.62942 .5292 .529	52.26191 .067	60.26191 .067
52.62942 .5292 .529	53.26191 .067	61.26191 .067
53.62942 .5292 .529	54.2619 .9645	62.26191 .067
54.59162 .3321 .265	63.39051 .067	
55.59162 .3321 .265	56.2619 .9645	64.39051 .067
56.62942 .5292 .529	57.26191 .067	65.26191 .067
57.62942 .5292 .529	58.26191 .067	66.26191 .067
58.62942 .5292 .529	59.26191 .067	67.26191 .067
59.62942 .5292 .529	60.26191 .067	68.26191 .067
60.62942 .5292 .529	61.26191 .067	69.26191 .067
61.62942 .5292 .529	62.26191 .067	70.26191 .067

4.8051	1.	4	. 25	5	. 25	13	. 25	14	25
5.8051	1.	5	. 25	6	. 25	14	. 25	15	25
6.8051	1.	6	. 25	7	. 25	15	. 25	16	. 25
7.8051	1.	7	. 25	8	. 25	16	. 25	17	. 25
8.8051	1	8	. 25	9	. 25	17	. 25	18	. 25
9.8051	1	10	. 25	11	. 25	19	. 25	20	. 25
10.8051	1.	11	. 25	12	. 25	20	. 25	21	. 25
11.8051	1.	12	. 25	13	. 25	21	. 25	22	. 25
12.8051	1.	13	. 25	14	. 25	22	. 25	23	. 25
13.8051	1.	14	. 25	15	. 25	23	. 25	24	25
14.8051	1.	15	. 25	16	. 25	24	. 25	25	25
15.8051	1.	16	. 25	17	. 25	25	. 25	26	. 25
16.8051	1.	17	. 25	18	. 25	26	. 25	27	. 25
17.8051	1.	19	. 25	20	. 25	28	. 25	29	. 25
18.8051	1.	20	. 25	21	. 25	29	. 25	30	. 25
19.8051	1.	21	. 25	22	. 25	30	. 25	31	. 25
20.8051	1.	22	. 25	23	. 25	31	. 25	32	. 25
21.8051	1.	23	. 25	24	. 25	32	. 25	33	. 25
22.8051	1	24	. 25	25	. 25	33	. 25	34	. 25
23.8051	1.	25	. 25	26	. 25	34	. 25	35	. 25
24.8051	1.	26	. 25	27	. 25	35	. 25	36	. 25
25.8051	1.	28	. 25	29	. 25	37	. 25	38	. 25
26.8051	1	29	. 25	30	. 25	38	. 25	39	. 25
27.8051	1	30	. 25	31	. 25	39	. 25	40	. 25
28.8051	1	31	. 25	32	. 25	40	. 25	41	. 25
29.8052	1.	32	. 25	33	. 25	41	. 25	42	. 25
30.8051	1.	33	. 25	34	. 25	42	. 25	43	. 25
31.8051	1	34	. 25	35	. 25	43	. 25	44	. 25
32.8051	1	35	. 25	36	. 25	44	. 25	45	. 25
33	64								
1.8051	1.	1	. 25	2	. 25	10	. 25	11	. 25
2.8051	1	2	. 25	3	. 25	11	. 25	12	. 25
3.8051	1	3	. 25	4	. 25	12	. 25	13	. 25
4.8051	1	4	. 25	5	. 25	13	. 25	14	. 25
5.8051	1	5	. 25	6	. 25	14	. 25	15	. 25
6.8051	1	6	. 25	7	. 25	15	. 25	16	. 25
7.8051	1	7	. 25	8	. 25	16	. 25	17	. 25
8.8051	1.	8	. 25	9	. 25	17	. 25	18	. 25
9.8051	1	10	. 25	11	. 25	19	. 25	20	. 25
10.8051	1.	11	. 25	12	. 25	20	. 25	21	. 25
11.8051	1	12	. 25	13	. 25	21	. 25	22	. 25
12.8051	1	13	. 25	14	. 25	22	. 25	23	. 25
13.8051	1.	14	. 25	15	. 25	23	. 25	24	. 25
14.8051	1.	15	. 25	16	. 25	24	. 25	25	. 25
15.8051	1.	16	. 25	17	. 25	25	. 25	26	. 25
16.8051	1.	17	. 25	18	. 25	26	. 25	27	. 25
17.8051	1.	19	. 25	20	. 25	28	. 25	29	. 25
18.8051	1.	20	. 25	21	. 25	29	. 25	30	. 25
19.8051	1.	21	. 25	22	. 25	30	. 25	31	. 25
20.8051	1.	22	. 25	23	. 25	31	. 25	32	. 25
21.8051	1.	23	. 25	24	. 25	32	. 25	33	. 25
22.8051	1.	24	. 25	25	. 25	33	. 25	34	. 25

23.8051	1.	25	. 25	26	. 25	34	. 25	35	. 25
24.8051	1	26	. 25	27	. 25	35	. 25	36	. 25
25.8051	1	28	. 25	29	. 25	37	. 25	38	. 25
26.8051	1.	29	. 25	30	. 25	38	. 25	39	. 25
27.8051	1	30	. 25	31	. 25	39	. 25	40	. 25
28.8051	1.	31	. 25	32	. 25	40	. 25	41	. 25
29.8051	1	32	. 25	33	. 25	41	. 25	42	. 25
30.8051	1.	33	. 25	34	. 25	42	. 25	43	. 25
31.8051	1.	34	. 25	35	. 25	43	. 25	44	. 25
32.8051	1.	35	. 25	36	. 25	44	. 25	45	. 25
33.8051	1.	37	. 25	38	. 25	46	. 25	47	. 25
34.8051	1.	38	. 25	39	. 25	47	. 25	48	. 25
35.8051	1.	39	. 25	40	. 25	48	. 25	49	. 25
36.8051	1.	40	. 25	41	. 25	49	. 25	50	. 25
37.8051	1.	41	. 25	42	. 25	50	. 25	51	. 25
38.8051	1.	42	. 25	43	. 25	51	. 25	52	. 25
39.8051	1.	43	. 25	44	. 25	52	. 25	53	. 25
40.8051	1.	44	. 25	45	. 25	53	. 25	54	. 25
41.8051	1.	46	. 25	47	. 25	55	. 25	56	. 25
42.8051	1.	47	. 25	48	. 25	56	. 25	57	. 25
43.8051	1.	48	. 25	49	. 25	57	. 25	58	. 25
44.8051	1.	49	. 25	50	. 25	58	. 25	59	. 25
45.8051	1.	50	. 25	51	. 25	59	. 25	60	. 25
46.8051	1.	51	. 25	52	. 25	60	. 25	61	. 25
47.8051	1.	52	. 25	53	. 25	61	. 25	62	. 25
48.8051	1.	53	. 25	54	. 25	62	. 25	63	. 25
49.8051	1.	55	. 25	56	. 25	64	. 25	65	. 25
50.8051	1.	56	. 25	57	. 25	65	. 25	66	25
51.8051	1.	57	. 25	58	. 25	66	. 25	67	. 25
52.8051	1.	58	. 25	59	. 25	67	. 25	68	. 25
53.8051	1.	59	. 25	60	. 25	68	. 25	69	. 25
54.8051	1.	60	. 25	61	. 25	69	. 25	70	. 25
55.8051	1.	61	. 25	62	. 25	70	. 25	71	. 25
56.8051	1.	62	. 25	63	. 25	71	. 25	72	. 25
57.8051	1.	64	. 25	65	. 25	73	. 25	74	. 25
58.8051	1.	65	. 25	66	. 25	74	. 25	75	. 25
59.8051	1.	66	. 25	67	. 25	75	. 25	76	. 25
60.8051	1.	67	. 25	68	. 25	76	. 25	77	. 25
61.8051	1.	68	. 25	69	. 25	77	. 25	78	. 25
62.8051	1.	69	. 25	70	. 25	78	. 25	79	. 25
63.8051	1.	70	. 25	71	. 25	79	. 25	80	. 25
64.8051	1.	71	. 25	72	. 25	80	. 25	81	. 25
40	0								
50	0								
60	0								
3.0 .059	655.	996	10.	0.1	409.	4231	000.	051	
SLAB 6	13	17							
1									
2									
3				99					
4				99					
5				84					

APPENDIX 6

SELECTED EQUATIONS FROM PROGRESS REPORT \# 1 (Xinhui Chen and Neil.E. Todreas, 8/8/94)

COBRA-SFS uses exchange factors $F_{i j}$ from the output file TAPE10 of RADGEN to perform the radiation calculation while the MIT method uses the absorption factors $\mathrm{G}_{\mathrm{i}-\mathrm{j}}$ from which $\mathrm{C}_{\mathrm{rad}}, \mathrm{C}_{\mathrm{rad}, \mathrm{w}, 1}$ and $\mathrm{C}_{\mathrm{rad}, \mathrm{w}, 2}$ are derived to analyze the net radiation heat transfer. Theoretically, the two methods are identical with $\mathrm{G}_{\mathrm{i}-\mathrm{j}}=F_{i j} / \varepsilon_{\mathrm{i}}$. This conclusion is shown below with several steps of matrix manipulations. Equation A6-1 is taken from Reference [5]. Please note there are a total of n^{2} equations in the form of n sets of n simultaneous linear algebraic equations (where n is the total number of surfaces in an enclosure).

$$
\left[\begin{array}{cccc}
\mathrm{F}_{11} \frac{1-\varepsilon_{1}}{\varepsilon_{1}}-\frac{1}{\varepsilon_{1}} & \mathrm{~F}_{12} \frac{1-\varepsilon_{2}}{\varepsilon_{2}} & \ldots & \mathrm{~F}_{1 \mathrm{n}} \frac{1-\varepsilon_{\mathrm{n}}}{\varepsilon_{\mathrm{n}}} \\
\mathrm{~F}_{21} \frac{1-\varepsilon_{1}}{\varepsilon_{1}} & \mathrm{~F}_{22} \frac{1-\varepsilon_{2}}{\varepsilon_{2}}-\frac{1}{\varepsilon_{2}} & \ldots & \mathrm{~F}_{2 \mathrm{n}} \frac{1-\varepsilon_{\mathrm{n}}}{\varepsilon_{\mathrm{n}}} \\
\mathrm{~F}_{\mathrm{n} 1} \frac{\dddot{1}-\varepsilon_{1}}{\varepsilon_{1}} & \mathrm{~F}_{\mathrm{n} 2} \frac{1-\varepsilon_{2}}{\varepsilon_{2}} & \ldots & \ldots \\
(\mathrm{~F}=1,2, \ldots \mathrm{n})
\end{array}\right]\left[\begin{array}{c}
F_{1 \mathrm{j}} \\
F_{2 \mathrm{j}} \\
\ldots \\
\varepsilon_{\mathrm{n}}
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{F}_{1 \mathrm{j}} \varepsilon_{\mathrm{j}} \\
-\mathrm{F}_{2 \mathrm{j}} \varepsilon_{\mathrm{j}} \\
\cdots \\
F_{n j}
\end{array}\right]
$$

or

$$
\left[\begin{array}{cccc}
\mathrm{F}_{11}\left(1-\varepsilon_{1}\right)-1 & \mathrm{~F}_{12}\left(1-\varepsilon_{2}\right) & \ldots & \mathrm{F}_{1 \mathrm{n}}\left(1-\varepsilon_{n}\right) \tag{A6-2}\\
\mathrm{F}_{21}\left(1-\varepsilon_{1}\right) & \mathrm{F}_{22}\left(1-\varepsilon_{2}\right)-1 & \ldots & \mathrm{~F}_{2 \mathrm{n}}\left(1-\varepsilon_{\mathrm{n}}\right) \\
\ldots & \ldots & \ldots & \ldots \\
\mathrm{F}_{\mathrm{n} 1}\left(1-\varepsilon_{1}\right) & \mathrm{F}_{\mathrm{n} 2}\left(1-\varepsilon_{2}\right) & \ldots & \mathrm{F}_{\mathrm{nn}}\left(1-\varepsilon_{\mathrm{n}}\right)-1
\end{array}\right] \cdot\left[\begin{array}{c}
F_{1 \mathrm{j}} / \varepsilon_{1} \\
F_{2 \mathrm{j}} / \varepsilon_{2} \\
\ldots \\
F_{n j} / \varepsilon_{\mathrm{n}}
\end{array}\right]=-\left[\begin{array}{c}
\mathrm{F}_{1 \mathrm{j}} \varepsilon_{\mathrm{j}} \\
\mathrm{~F}_{2 \mathrm{j}} \varepsilon_{\mathrm{j}} \\
\ldots \\
\mathrm{~F}_{\mathrm{nj}} \varepsilon_{\mathrm{j}}
\end{array}\right]
$$

or

$$
\left[\begin{array}{cccc}
1-\rho_{1} F_{11} & -\rho_{2} F_{12} & \ldots & -\rho_{n} F_{1 n} \\
-\rho_{1} F_{21} & 1-\rho_{2} F_{22} & \ldots & -\rho_{n} F_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
-\rho_{1} F_{n 1} & -\rho_{2} F_{n 2} & \ldots & 1-\rho_{n} F_{n n}
\end{array}\right] \cdot\left[\begin{array}{c}
G_{1-\mathrm{j}} \\
\mathrm{G}_{2-\mathrm{j}} \\
\ldots \\
G_{\mathrm{nj}}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{F}_{1 \mathrm{j}} \varepsilon_{\mathrm{j}} \\
\mathrm{~F}_{2 j} \varepsilon_{\mathrm{j}} \\
\ldots \\
\mathrm{~F}_{\mathrm{nj}} \varepsilon_{\mathrm{j}}
\end{array}\right]
$$

where

$$
\rho_{i}=1-\varepsilon_{i}, \quad(i=1,2, \ldots, n)
$$

From Appendix K of Reference [2], we get the following absorption factor equations:

$$
\left[\begin{array}{cccc}
1-\rho_{1} F_{1-1} & -\rho_{2} F_{1-2} & \ldots & -\rho_{N} F_{1-N} \tag{A6-4}\\
-\rho_{1} F_{2-1} & 1-\rho_{2} F_{2-2} & \ldots & -\rho_{N} F_{2-N} \\
\ldots & \ldots & \ldots & \ldots \\
-\rho_{1} F_{N-1} & -\rho_{2} F_{N-2} & \ldots & 1-\rho_{N} F_{N-N}
\end{array}\right] \cdot\left[\begin{array}{c}
G_{1-j} \\
G_{2-j} \\
\ldots \\
G_{N-j}
\end{array}\right]=\left[\begin{array}{c}
F_{1-j} \varepsilon_{j} \\
F_{2-j} \varepsilon_{j} \\
\ldots \\
F_{N-j} \varepsilon_{j}
\end{array}\right]
$$

By comparing Equations A6-3 and A6-4, we have

$$
\begin{aligned}
\mathrm{G}_{1-\mathrm{j}} & =F_{1 j} / \varepsilon_{1}, \\
\mathrm{G}_{2-\mathrm{j}} & =F_{2 j} / \varepsilon_{2},
\end{aligned}
$$

or

$$
\begin{equation*}
\mathrm{G}_{\mathrm{i}-\mathrm{j}}=F_{i j} / \varepsilon_{\mathrm{i}} \tag{A6-5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{i}=1,2, \ldots, \mathrm{n} \\
& \mathrm{j}=1,2, \ldots, \mathrm{n} \\
& \mathrm{n}=\text { the total number of surfaces in an enclosure }
\end{aligned}
$$

It should be noted that a negative sign is missing in Equation 2.2 in Reference [5]. Then we referred to Cox's original thesis (Page 93, Equation 28) [14] to confirm that the negative sign should be present.

APPENDIX 7

OTHER WORK PERFORMED

Besides our work per the contract (i.e., the original contract, the no-cost extension and review meeting), we did some work beyond the contract scope which may be beneficial to KAERI. Hence, it is presented here for reference by KAERI.

A7.1 Transplantation of COBRA-SFS from CYBER Version to SUN Version

The current COBRA-SFS we obtained was the Cycle 1 code on the CDC CYBER 170 platform. Some non-executable statements in the source code are machine-dependent or machine-unique, so they were incompatible with the MIT computers. Many efforts were made to transplant the code to MIT's VAX, IBM and SUN Sparc stations simultaneously. After it had been installed on our SUN Sparc station, a benchmark problem was simulated to test the code at MIT (detailed description can be found in Section 7.1 [1]). A comparison between the SUN Sparc calculation and the CYBER 170 calculation is shown in Table A7-1. The selection of results for Rod 4 Assembly 1 is arbitrary. The results are identical to the PNL standard outputs within computer errors. Hence, it is concluded that the code transplanting is successful and the results are correct.

A7.2 Simulations of KAERI's KSC-4 Cask

Using COBRA-SFS, we simulated KAERI's KSC-4 cask for both nitrogen and helium as back fill gases under vertical and horizontal orientations. Table A7-2 summarizes the major temperature profiles between MIT and KAERI calculations [15] for vertical orientation. The input files are the same for both calculations except (a) the MIT calculation uses RADGEN and COBRA-SFS, while KAERI may use RADX-1 and COBRA-SFS, and (b) the fourth parameter in Group RODS. 1 of the current MIT version of COBRA-SFS is NQAX[1], the flag for temperature dependent fuel properties.

$$
\begin{array}{rlrl}
\text { NQAX } & =0 ; & & \text { constant fuel properties for all fuel types } \\
& =1 ; & & \text { temperature-dependent fuel properties for fuel type } 1 \text { only }, \\
& & \text { input in Groups RODS. } 5 \text { and RODS. } 6 .
\end{array}
$$

Table A7-1. Benchmark Problem: Validation of Code TransplantationSUN SPARC vs. CYBER 170

Axial Zone (in.) (Rod 3, Assembly 1)	Clad Temperatures (${ }^{\circ} \mathrm{C}$)	
	SUN SPARC (MIT)	CYBER 170 (Standard)
$0.0-2.5$	205.1	205.1
$2.5-5.0$	210.6	210.6
$5.0-7.5$	215.4	215.4
$7.5-10.0$	219.7	219.7
$10.0-12.5$	223.3	223.3
$12.5-15.0$	226.6	226.6
$15.0-17.5$	229.4	229.4
$17.5-20.0$	231.8	231.8
$20.0-22.5$	234.0	234.0
$22.5-25.0$	235.9	235.9
$25.0-27.5$	237.5	237.5
$27.5-30.0$	238.9	238.9
Peak Clad Temperature $\left({ }^{\circ} \mathrm{C}\right.$)	238.9	238.9

Table A7-2. Temperature Profile in KSC-4 Using COBRA-SFSConduction, Convection and Radiation, Vertical Orientation

Locations	Temperatures $\left({ }^{\circ} \mathrm{C}\right)$							
	N_{2}					He		
	MIT	KAERI	Difference	MIT	KAERI	Difference		
Peak Clad	288.8	277	11.8	226.2	226	0.2		
Fuel Basket	229.2	227	2.2	200.1	201	0.1		
Lead Shield	117.9	120	-2.1	117.2	120	-2.8		
Inner Shell	115.8	118	-2.2	115.1	118	-2.9		
Resin Shield	97.9	99	-1.1	97.4	100	-2.6		
Cask Surface	82.0	83	-1.0	81.7	83	-1.3		
Ambient Temp.	38	38	0.0	38	38	0.0		

In our case, NQAX should be zero. The data from KAERI indicates that their fourth parameter is 1, but they input neither Groups RODS. 5 nor RODS.6. This leads us to guess that their parameter is defined differently in the Korean version of COBRA-SFS. The results show:
(1) As far as the peak clad temperature is concerned, the MIT calculation results are higher.
(2) Agreement between the two calculations is better in the helium case than in the nitrogen case, i.e., maximum temperature deviation of $3^{\circ} \mathrm{C}$ versus $12^{\circ} \mathrm{C}$.
(3) Under the same conditions, the peak clad temperature for helium is lower than that for nitrogen indicating the dominant effects of radiation and conduction.
Table A7-3 summarizes the major temperature profiles for vertical and horizontal orientations using COBRA-SFS at MIT. From this table, we find
(1) Vertical orientation results deviate from horizontal orientation results much less for helium than for nitrogen, which indicates axial natural convection is less significant for helium than for nitrogen. This is reasonable since heat conduction is more significant in helium due to its higher thermal conductivity. Note that current version of COBRA-SFS (Cycle1) cannot model natural convection transversely (page 2.9 [1]).
(2) For the KSC-4 case, axial natural convection is not a vital factor in the combined conductive, convective and radiative heat transfer.
(3) Under the same condition, the peak clad temperature for helium is lower than that for nitrogen.

Table A7-3. Temperature Profile in KSC-4 Using COBRA-SFS-Conduction, Convection and Radiation, Vertical and Horizontal Orientations

Locations	Temperatures $\left({ }^{\circ} \mathrm{C}\right)$						
	N_{2}				He		
	Vertical	Horizontal	Difference	Vertical	Horizontal	Difference	
Peak Clad	288.8	289.9	-1.1	226.17	226.22	-0.05	
Fuel Basket	229.2	230.6	-1.4	200.07	200.15	-0.08	
Lead Shield	117.9	117.7	0.2	117.18	117.19	-0.01	
Inner Shell	115.8	115.6	0.2	115.13	115.14	-0.01	
Resin Shield	97.9	97.8	0.1	97.43	97.44	-0.01	
Cask Surface	82.0	81.9	0.1	81.69	81.70	-0.01	
Ambient Temp.	38	38	0.0	38	38	0.0	

APPENDIX 8

Simple Hand Calculation with regard to Conduction-only and Conduction and Radiation Heat Transfer Mechanisms

It is shown in Table 7-9 and Figure 7-6 that radiation heat transfer dominates over conduction in the thermal calculation of dry spent fuel bundle, i.e., for 17×17 bundle at 4684 W with nitrogen as fill gas, the maximum clad temperature is $1088.4^{\circ} \mathrm{C}$ in Conduction-only case while it is about $400^{\circ} \mathrm{C}$ in the combined Conduction and Radiation case. Since power level and other conditions are the same in both cases, radiation alone will reduce the peak clad temperature by $675.6^{\circ} \mathrm{C}$. This phenomenon is consistent with the following simple hand calculation.

For consistency, the same nomenclature is used as in Figure 7-1. Heat flux is designated as $\mathrm{q}^{\prime \prime}(\mathrm{x})$ which is a function of location, x , since from the center of the bundle to the wall, there are more and more rods whose decay heat needs to be transferred to the environment. Hence, $q^{\prime \prime}(x)$ monotonically increases with x. For simplicity, the average heat flux from $x=0$ to $x=L$ is designated as $\mathrm{q}^{\prime \prime}$ and is used in the calculation. Subscriptions 1 and 2 represent Conduction-only and Conduction and Radiation cases, respectively.

For Conduction-only, heat transfer equation is

$$
\begin{equation*}
\overline{\mathrm{q}}_{1}^{\prime \prime}=\mathrm{k}_{1} \cdot \frac{\mathrm{~T}_{\mathrm{ml}}-\mathrm{T}_{\mathrm{w}}}{\mathrm{~L}} \tag{A8-1}
\end{equation*}
$$

For Conduction and Radiation, heat transfer equation can written as

$$
\begin{equation*}
\overline{\mathrm{q}}_{2}^{\prime \prime}=\mathrm{k}_{2} \cdot \frac{\mathrm{~T}_{\mathrm{m} 2}-\mathrm{T}_{\mathrm{w}}}{\mathrm{~L}}+\varepsilon \cdot \sigma \cdot\left(\mathrm{T}_{\mathrm{m} 2}^{4}-\mathrm{T}_{\mathrm{w}}^{4}\right) \tag{A8-2}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{k}_{1} & =\text { conductivity of } \mathrm{N}_{2} \text { at }\left(\mathrm{T}_{\mathrm{m} 1}+\mathrm{T}_{\mathrm{w}}\right) / 2 \\
\mathrm{k}_{2} & =\text { conductivity of } \mathrm{N}_{2} \text { at }\left(\mathrm{T}_{\mathrm{m} 2}+\mathrm{T}_{\mathrm{w}}\right) / 2 \\
\varepsilon & =\text { effective emissivity }
\end{aligned}
$$

Equating Equations A8-1 and A8-2 yields

$$
\begin{equation*}
\mathrm{k}_{1} \cdot \frac{\mathrm{~T}_{\mathrm{m} 1}-\mathrm{T}_{\mathrm{w}}}{\mathrm{~L}}=\mathrm{k}_{2} \cdot \frac{\mathrm{~T}_{\mathrm{m} 2}-\mathrm{T}_{\mathrm{w}}}{\mathrm{~L}}+\varepsilon \cdot \sigma \cdot\left(\mathrm{T}_{\mathrm{m} 2}^{4}-\mathrm{T}_{\mathrm{w}}^{4}\right) \tag{A8-3}
\end{equation*}
$$

For simplicity, assume that right hand side of the equation is known for Conduction and Radiation calculation from COBRA-SFS and we want to solve for $\mathrm{T}_{\mathrm{m} 1}$ (Otherwise, we have to solve a fourth-order equation for $\mathrm{T}_{\mathrm{m} 2}$ if given $\mathrm{T}_{\mathrm{m} 1}$.) and compare this maximum temperature with COBRA-SFS results.

From COBRA-SFS, we have $\varepsilon_{\text {rod }}=0.80$ (Table 7-6), $\varepsilon_{\mathrm{w}}=0.30$ (Table 7-7), $\mathrm{L}=0.12$ m (Figure $5-1$), $\mathrm{T}_{\mathrm{w}}=96^{\circ} \mathrm{C}$ (Figure 7-8) and $\mathrm{T}_{\mathrm{m} 2} \approx 400^{\circ} \mathrm{C}$ (Table 7-5). Hence

$$
\begin{aligned}
& \frac{T_{m 2}+T_{w}}{2}=248^{\circ} \mathrm{C}=478.4^{\circ} \mathrm{F} \\
& \left.\mathrm{k}_{2}\right|_{\frac{\mathrm{T}_{\mathrm{m} 2}+\mathrm{T}_{\mathrm{w}}}{2}}=0.0227 \mathrm{Btu} / \mathrm{hr} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}=0.0399 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}
\end{aligned}
$$

where
k_{2} is taken from COBRA-SFS input deck at specified temperature
To evaluate $T_{m 1}$ from Equation A8-3, we need to know k_{1}, which itself is a function of $\mathrm{T}_{\mathrm{m} 1}$, so we need to guess a value for $\mathrm{T}_{\mathrm{m} 1}$. Assuming $\mathrm{T}_{\mathrm{ml}}=1089^{\circ} \mathrm{C}$, we can evaluate k_{2} from the COBRA-SFS input deck.

$$
\begin{aligned}
& \frac{T_{m 1}+T_{w}}{2}=592.5^{\circ} \mathrm{C}=1098.5^{\circ} \mathrm{F} \\
& \left.\mathrm{k}_{1}\right|_{\frac{\mathrm{T}_{\mathrm{m} 1}+\mathrm{T}_{w}}{2}}=0.0334 \mathrm{Btu} / \mathrm{hr} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}=0.0588 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Substituting these values into Equation A8-3

$$
0.0588 \cdot \frac{\mathrm{~T}_{\mathrm{m} 1}-96}{0.12}=0.0399 \cdot \frac{400-96}{0.12}+\varepsilon \cdot 5.67 \times 10^{-8} \cdot\left[(400+273)^{4}-(96+273)^{4}\right]
$$

or

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m} 1}=302.3+21592.3 \varepsilon\left({ }^{\circ} \mathrm{C}\right) \tag{A8-4}
\end{equation*}
$$

Using a simple model, i.e., Equation 7-90 and assuming $A_{1}=A_{2}$, to evaluate effective emissivity, ε

$$
\begin{align*}
\varepsilon & =\frac{1}{\frac{1}{\varepsilon_{\text {rod }}}+\frac{1}{\varepsilon_{\text {wall }}}-1} \tag{A8-5}\\
& =\frac{1}{\frac{1}{0.8}+\frac{1}{0.3}-1} \\
& =0.279
\end{align*}
$$

Using $\varepsilon=0.279$, Equation A8-4 yields

$$
\begin{aligned}
\mathrm{T}_{\mathrm{ml}} & =302.3+21592.3 \times 0.279 \\
& =6326.6^{\circ} \mathrm{C}
\end{aligned}
$$

This temperature is too high which indicates that the simple radiation model such as the one described in Equation A8-5 is inadequate, i.e., the model neglects the effect of thermal shielding of the outer rods to the inner rods in a fuel bundle by assuming only two surfaces (that of the rods and that of the wall), hence increases the effective emissivity. If the effective emissivity is assumed to 0.04 , i.e., by incorporating the effect of Figure $7-7$, then

$$
\begin{aligned}
\mathrm{T}_{\mathrm{m} 1} & =302.3+21592.3 \times 0.04 \\
& =1166.0^{\circ} \mathrm{C}
\end{aligned}
$$

This value is about 7.1% different from COBRA-SFS's $1089.0^{\circ} \mathrm{C}$. Therefore simple hand method shows similar results to Table 7-9 and Figure 7-6, and radiation is dominant in dry spent fuel bundle calculation.

APPENDIX 9

17×17 BUNDLE ANALYSIS-INPUT FILE FOR COBRA-SFS (Cycle 2)

34.13621 .1751 .175 35.13621 .1751 .175 36.22241 .084 .5875 37.22241 .084 .5875 38.13621 .1751 .175 39.13621 .1751 .175 40.13621 .1751 .175 41.13621 .1751 .175 42.13621 .1751 .175 43.13621 .1751 .175 44.13621 .1751 .175 45.13621 .1751 .175 46.13621 .1751 .175 47.13621 .1751 .175 48.13621 .1751 .175 49.13621 .1751 .175 50.13621 .1751 .175 51.13621 .1751 .175 52.13621 .1751 .175 53.13621 .1751 .175 54.22241 .084 .5875 55.22241 .084 .5875 56.13621 .1751 .175 57.13621 .1751 .175 58.13621 .1751 .175 59.13621 .1751 .175 60.13621 .1751 .175 61.13621 .1751 .175 62.13621 .1751 .175 63.13621 .1751 .175 64.13621 .1751 .175 65.13621 .1751 .175 66.13621 .1751 .175 67.13621 .1751 .175 68.13621 .1751 .175 69.13621 .1751 .175 70.13621 .1751 .175 71.13621 .1751 .175 72.22241 .084 .5875 73.22241 .084 .5875 74.13621 .1751 .175 75.13621 .1751 .175 76.13621 .1751 .175 77.13621 .1751 .175 78.13621 .1751 .175 79.13621 .1751 .175 80.13621 .1751 .175 81.13621 .1751 .175 82.13621 .1751 .175 83.13621 .1751 .175 84.13621 .1751 .175 85.13621 .1751 .175
35.1220 .4961
36.1220 .5276
54.3720 .4961
38.1220 .5276
39.1220 .4961
40.1220 .4961
41.1220 .4961
42.1220 .4961
43.1220 .4961
44.1220 .4961
45.1220 .4961
46.1220 .4961
47.1220 .4961
48.1220 .4961
49.1220 .4961
50.1220 .4961
51.1220 .4961
52.1220 .4961
53.1220 .4961
54.1220 .5276
72.3720 .4961
56.1220 .5276
57.1220 .4961
58.1220 .4961
59.1220 .4961
60.1220 .4961
61.1220 .4961
62.1220 .4961
63.1220 .4961
64.1220 .4961
65.1220 .4961
66.1220 .4961
67.1220 .4961
68.1220 .4961
69.1220 .4961
70.1220 .4961
71.1220 .4961
72.1220 .5276
90.3720 .4961
74.1220 .5276
75.1220 .4961
76.1220 .4961
77.1220 .4961
78.1220 .4961
79.1220 .4961
80.1220 .4961 81.1220 .4961 82.1220 .4961 83.1220 .4961 84.1220 .4961 85.1220 .4961 86.1220 .4961
52.1220 .4961
53.1220 .4961
55.3720 .4961
56.1220 .4961
57.1220 .4961
58.1220 .4961
59.1220 .4961
60.1220.4961
61.1220 .4961
62.1220 .4961
63.1220 .4961
64.1220 .49 .61
65.1220 .4961
66.1220 .4961
67.1220 .4961
68.1220 .4961
69.1220 .4961
70.1220 .4961
71.1220 .4961
73.3720 .4961
74.1220 .4961
75.1220 .4961
76.1220 .4961
77.1220 .4961
78.1220 .4961
79.1220 .4961
80.1220 .4961
81.1220 .4961
82.1220 .4961
83.1220 .4961
84.1220 .4961
85.1220 .4961
86.1220 .4961
87.1220 .4961
88.1220 .4961
89.1220 .4961
91.3720 .4961
92.1220 .4961
93.1220 .4961
94.1220 .4961
95.1220 .4961
96.1220 .4961
97.1220 .4961
98.1220 .4961
99.1220 .4961
100.1220 .4961
101.1220 .4961
102.1220 .4961
103.1220 .4961
86.13621 .1751 .175
87.13621 .1751 .175
88.13621 .1751 .175
89.13621 .1751 .175
90.22241 .084 .5875
91.22241 .084 .5875
92.13621 .1751 .175
93.13621 .1751 .175
94.13621 .1751 .175
95.13621 .1751 .175
96.13621 .1751 .175
97.13621 .1751 .175
98.13621 .1751 .175
99.13621 .1751 .175
100.13621 .1751 .175
101.13621 .1751 .175
102.13621 .1751 .175 103.13621 .1751 .175 104.13621 .1751 .175 105.13621 .1751 .175 106.13621 .1751 .175 107.13621 .1751 .175 108.22241 .084 .5875 109.22241 .084 .5875 110.13621 .1751 .175 111.13621 .1751 .175 112.13621 .1751 .175 113.13621 .1751 .175 114.13621 .1751 .175 115.13621 .1751 .175 116.13621 .1751 .175 117.13621 .1751 .175 118.13621 .1751 .175 119.13621 .1751 .175 120.13621 .1751 .175 121.13621 .1751 .175 122.13621 .1751 .175 123.13621 .1751 .175 124.13621 .1751 .175 125.13621 .1751 .175 126.22241 .084 .5875 127.22241 .084 .5875 128.13621 .1751 .175 129.13621 .1751 .175 130.13621 .1751 .175 131.13621 .1751 .175 132.13621 .1751 .175 133.13621 .1751 .175 134.13621 .1751 .175 135.13621 .1751 .175 136.13621 .1751 .175 137.13621 .1751 .175
87.1220 .4961
88.1220 .4961
89.1220 .4961
90.1220 .5276
108.3720 .4961
92.1220 .5276
93.1220 .4961
94.1220 .4961
95.1220 .4961
96.1220 .4961
97.1220 .4961
98.1220 .4961
99.1220 .4961
100.1220 .4961
101.1220 .4961
102.1220 .4961
103.1220 .4961
104.1220 .4961
105.1220 .4961
106.1220 .4961
107.1220 .4961
108.1220 .5276
126.3720 .4961
110.1220 .5276
111.1220 .4961
112.1220 .4961
113.1220 .4961
114.1220 .4961
115.1220 .4961
116.1220 .4961
117.1220 .4961
118.1220 .4961
119.1220 .4961
120.1220 .4961
121.1220 .4961
122.1220 .4961
123.1220 .4961
124.1220 .4961
125.1220 .4961
126.1220 .5276
144.3720 .4961
128.1220 .5276
129.1220 .4961
130.1220 .4961
131.1220 .4961
132.1220 .4961
133.1220 .4961
134.1220 .4961
135.1220 .4961
136.1220 .4961
137.1220 .4961
138.1220 .4961
104.1220 .4961
105.1220 .4961
106.1220 .4961
107.1220 .4961
109.3720 .4961
110.1220 .4961
111.1220 .4961
112.1220 .4961
113.1220 .4961
114.1220 .4961
115.1220 .49 .61
116.1220 .4961 117.1220 .4961 118.1220 .4961 119.1220 .4961 120.1220 .4961 121.1220 .4961 122.1220 .4961 123.1220 .4961 124.1220 .4961 125.1220 .4961
127.3720 .4961
128.1220 .4961
129.1220 .4961
130.1220 .4961
131.1220 .4961
132.1220 .4961
133.1220 .4961
134.1220 .4961
135.1220 .4961
136.1220 .4961
137.1220 .4961
138.1220 .4961
139.1220 .4961
140.1220 .4961
141.1220 .4961
142.1220 .4961
143.1220 .4961
145.3720 .4961
146.1220 .4961
147.1220 .4961
148.1220 .4961
149.1220 .4961
150.1220 .4961
151.1220 .4961
152.1220 .4961
153.1220 .4961
154.1220 .4961
155.1220 .4961
138.13621 .1751 .175 139.13621 .1751 .175 140.13621 .1751 .175 141.13621 .1751 .175 142.13621 .1751 .175 143.13621 .1751 .175 144.22241 .084 .5875 145.22241 .084 .5875 146.13621 .1751 .175 147.13621 .1751 .175 148.13621 .1751 .175 149.13621 .1751 .175 150.13621 .1751 .175 151.13621 .1751 .175 152.13621 .1751 .175 153.13621 .1751 .175 154.13621 .1751 .175 155.13621 .1751 .175 156.13621 .1751 .175 157.13621 .1751 .175 158.13621 .1751 .175 159.13621 .1751 .175 160.13621 .1751 .175 161.13621 .1751 .175 162.22241 .084 .5875 163.22241 .084 .5875 164.13621 .1751 .175 165.13621 .1751 .175 166.13621 .1751 .175 167.13621 .1751 .175 168.13621 .1751 .175 169.13621 .1751 .175 170.13621 .1751 .175 171.13621 .1751 .175 172.13621 .1751 .175 173.13621 .1751 .175 174.13621 .1751 .175 175.13621 .1751 .175 176.13621 .1751 .175 177.13621 .1751 .175 178.13621 .1751 .175 179.13621 .1751 .175 180.22241 .084 .5875 181.22241 .084 .5875 182.13621 .1751 .175 183.13621 .1751 .175 184.13621 .1751 .175 185.13621 .1751 .175 186.13621 .1751 .175 187.13621 .1751 .175 188.13621 .1751 .175 189.13621 .1751 .175
139.1220 .4961 140.1220 .4961 141.1220 .4961 142.1220 .4961 143.1220 .4961 144.1220 .5276 162.3720 .4961 146.1220 .5276 147.1220 .4961 148.1220 .4961 149.1220 .4961 150.1220 .4961 151.1220 .4961 152.1220 .4961 153.1220 .4961 154.1220 .4961 155.1220 .4961 156.1220 .4961 157.1220 .4961 158.1220 .4961 159.1220 .4961 160.1220 .4961 161.1220 .4961 162.1220 .5276 180.3720 .4961 164.1220 .5276 165.1220 .4961 166.1220 .4961 167.1220 .4961 168.1220 .4961 169.1220 .4961 170.1220 .4961 171.1220 .4961 172.1220 .4961 173.1220 .4961 174.1220 .4961 175.1220 .4961 176.1220 .4961 177.1220 .4961 178.1220 .4961 179.1220 .4961 180.1220 .5276 198.3720 .4961 182.1220 .5276 183.1220 .4961 184.1220 .4961 185.1220 .4961 186.1220 .4961 187.1220 .4961 188.1220 .4961 189.1220 .4961 190.1220 .4961
156.1220 .4961 157.1220 .4961 158.1220 .4961
159.1220 .4961
160.1220 .4961
161.1220 .4961
163.3720 .4961
164.1220 .4961
165.1220 .4961
166.1220 .4961
167.1220 .4961
168.1220 .4961.
169.1220 .4961
170.1220 .4961
171.1220 .4961
172.1220 .4961
173.1220 .4961
174.1220 .4961
175.1220 .4961
176.1220 .4961
177.1220 .4961
178.1220 .4961
179.1220 .4961
181.3720 .4961
182.1220 .4961
183.1220 .4961
184.1220 .4961
185.1220 .4961
186.1220 .4961
187.1220 .4961
188.1220 .4961
189.1220 .4961
190.1220 .4961
191.1220 .4961
192.1220 .4961
193.1220 .4961
194.1220 .4961
195.1220 .4961
196.1220 .4961
197.1220 .4961
199.3720 .4961
200.1220.4961
201.1220.4961
202.1220.4961
203.1220 .4961
204.1220 .4961
205.1220.4961
206.1220 .4961
207.1220.4961
190.13621 .1751 .175 191.13621 .1751 .175 192.13621 .1751 .175 193.13621 .1751 .175 194.13621 .1751 .175 195.13621 .1751 .175 196.13621 .1751 .175 197.13621 .1751 .175 198.22241 .084 .5875 199.22241 .084 .5875 200.13621 .1751 .175 201.13621 .1751 .175 202.13621 .1751 .175 203.13621 .1751 .175 204.13621 .1751 .175 205.13621.1751.175 206.13621 .1751 .175 207.13621 .1751 .175 208.13621.1751.175 209.13621 .1751 .175 210.13621 .1751 .175 211.13621 .1751 .175 212.13621 .1751 .175 213.13621 .1751 .175 214.13621 .1751 .175 215.13621 .1751 .175 216.22241 .084 .5875 217.22241 .084 .5875 218.13621 .1751 .175 219.13621 .1751 .175 220.13621 .1751 .175 221.13621 .1751 .175 222.13621 .1751 .175 223.13621 .1751 .175 224.13621 .1751 .175 225.13621 .1751 .175 226.13621 .1751 .175 227.13621.1751.175 228.13621.1751.175 229.13621 .1751 .175 230.13621 .1751 .175 231.13621 .1751 .175 232.13621 .1751 .175 233.13621 .1751 .175 234.22241 .084 .5875 235.22241 .084 .5875 236.13621 .1751 .175 237.13621.1751.175 238.13621 .1751 .175 239.13621 .1751 .175 240.13621 .1751 .175 241.13621 .1751 .175
191.1220 .4961 192.1220 .4961 193.1220 .4961 194.1220 .4961 195.1220 .4961 196.1220 .4961 197.1220 .4961 198.1220 .5276 216. 3720.4961 200.1220 .5276 201.1220.4961 202.1220 .4961 203.1220 .4961 204.1220 .4961 205.1220.4961 206.1220.4961 207.1220 .4961 208.1220.4961 209.1220.4961 210.1220 .4961 211.1220 .4961 212.1220 .4961 213.1220 .4961 214.1220 .4961 215.1220 .4961 216.1220 .5276 234.3720 .4961 218.1220 .5276 219.1220 .4961 220.1220 .4961 221.1220 .4961 222.1220 .4961 223.1220 .4961 224.1220 .4961 225.1220 .4961 226.1220 .4961 227.1220 .4961 228.1220 .4961 229.1220 .4961 230.1220 .4961 231.1220 .4961 232.1220 .4961 233.1220 .4961 234.1220 .5276 252.3720 .4961 236.1220 .5276 237.1220 .4961 238.1220 .4961 239.1220 .4961 240.1220 .4961 241.1220 .4961 242.1220 .4961
208.1220.4961
209.1220.4961
210.1220 .4961
211.1220 .4961
212.1220.4961
213.1220.4961
214.1220 .4961
215.1220.4961
217.3720 .4961 218.1220 .4961 219.1220 .4961
220.1220 .4961 .
221.1220 .4961
222.1220.4961
223.1220 .4961
224.1220 .4961
225.1220 .4961
226.1220.4961
227.1220.4961
228.1220 .4961
229.1220 .4961
230.1220 .4961 231.1220 .4961 232.1220 .4961 233.1220 .4961
235.3720 .4961 236.1220 .4961 237.1220 .4961 238.1220 .4961 239.1220 .4961 240.1220 .4961 241.1220 .4961 242.1220 .4961 243.1220 .4961 244.1220 .4961 245.1220 .4961 246.1220 .4961 247.1220 .4961 248.1220 .4961 249.1220 .4961 250.1220 .4961 251.1220 .4961
253.3720 .4961 254.1220.4961 255.1220 .4961 256.1220 .4961 257.1220 .4961 258.1220 .4961 259.1220 .4961
242.13621 .1751 .175 243.13621 .1751 .175 244.13621 .1751 .175 245.13621 .1751 .175 246.13621 .1751 .175 247.13621 .1751 .175 248.13621 .1751 .175 249.13621 .1751 .175 250.13621 .1751 .175 251.13621 .1751 .175 252.22241 .084 .5875 253.22241 .084 .5875 254.13621 .1751 .175 255.13621 .1751 .175 256.13621 .1751 .175 257.13621.1751.175 258.13621 .1751 .175 259.13621 .1751 .175 260.13621 .1751 .175 261.13621 .1751 .175 262.13621 .1751 .175 263.13621 .1751 .175 264.13621 .1751 .175 265.13621 .1751 .175 266.13621 .1751 .175 267.13621 .1751 .175 268.13621 .1751 .175 269.13621 .1751 .175 270.22241 .084 .5875 271.22241 .084 .5875 272.13621 .1751 .175 273.13621 .1751 .175 274.13621 .1751 .175 275.13621 .1751 .175 276.13621 .1751 .175 277.13621 .1751 .175 278.13621 .1751 .175 279.13621 .1751 .175 280.13621 .1751 .175 281.13621 .1751 .175 282.13621 .1751 .175 283.13621 .1751 .175 284.13621 .1751 .175 285.13621 .1751 .175 286.13621 .1751 .175 287.13621 .1751 .175 288.22241 .084 .5875 289.22241 .084 .5875 290.13621 .1751 .175 291.13621 .1751 .175 292.13621 .1751 .175 293.13621 .1751 .175
243.1220 .4961
244.1220 .4961
245.1220 .4961
246.1220 .4961
247.1220 .4961
248.1220 .4961
249.1220 .4961
250.1220 .4961
251.1220 .4961
252.1220 .5276
270.3720 .4961
254.1220 .5276
255.1220 .4961
256.1220 .4961
257.1220 .4961
258.1220 .4961
259.1220 .4961
260.1220 .4961
261.1220.4961
262.1220 .4961
263.1220 .4961
264.1220 .4961
265.1220 .4961
266.1220 .4961
267.1220 .4961
268.1220 .4961
269.1220 .4961
270.1220 .5276
288.3720 .4961
272.1220 .5276
273.1220 .4961
274.1220 .4961
275.1220 .4961
276.1220 .4961
277.1220 .4961
278.1220 .4961
279.1220 .4961
280.1220 .4961
281.1220 .4961
282.1220 .4961
283.1220 .4961
284.1220 .4961
285.1220 .4961
286.1220 .4961
287.1220 .4961
288.1220 .5276
306.3720 .4961 290.1220 .5276 291.1220 .4961 292.1220 .4961 293.1220 .4961 294.1220 .4961
260.1220 .4961 261.1220 .4961 262.1220.4961 263.1220 .4961 264.1220 .4961 265.1220 .4961 266.1220 .4961 267.1220 .4961 268.1220 .4961 269.1220.496i
271.3720 .4961 272.1220 .4961 273.1220 .4961 274.1220 .4961 275.1220 .4961 276.1220 .4961 277.1220 .4961 278.1220 .4961 279.1220 .4961 280.1220 .4961 281.1220.4961 282.1220 .4961 283.1220 .4961 284.1220 .4961 285.1220 .4961 286.1220 .4961 287.1220 .4961
289.3720 .4961 290.1220 .4961 291.1220 .4961 292.1220 .4961 293.1220 .4961 294.1220 .4961 295.1220 .4961 296.1220 .4961 297.1220 .4961 298.1220 .4961 299.1220 .4961 300.1220 .4961 301.1220 .4961 302.1220 .4961 303.1220 .4961 304.1220 .4961 305.1220 .4961
307.3720 .5276
308.1220 .5276
309.1220 .5276
310.1220 .5276
311.1220 .5276

294.13621	. 1751.175	295.1220 .4961			312.1220 .5276			
295.13621	.1751.175	296.1220 .4961			313.1220 .5276			
296.13621	. 1751.175	297.1220 .4961			314.1220 .5276			
297.13621	. 1751.175	298.1220.4961			315.1220 .5276			
298.13621.	. 1751.175	299.1220 .4961			316.1220 .5276			
299.13621.	. 1751.175	300.1220 .4961						
300.13621.	. 1751.175	301.1220 .4961			$318.1220 .5276$			
301.13621.	. 1751.175	302.1220 .4961			318.1220 .5276			319.1220 .5276
302.13621	. 1751.175	303.1220 .4961			320.1220 .5276			
303.13621	.1751.175	304.1220 .4961			321.1220 .5276			
304.13621	. 1751.175	305.1220 .4961			322.1220 .5276			
305.13621	. 1751.175	306.1220 .5276			323.1220 .5276			
306.22241	. 084.5875	324.3720 .5276						
307.28511	. 412.2938	308.3720 .5276						
308.22241	. 084.5875	309.3720 .4961						
309.22241	. 084.5875	310.3720 .4961						
310.22241	. 084.5875	311.3720 .4961						
311.22241	. 084.5875	312.3720 .4961						
312.22241	. 084.5875	313.3720 .4961						
313.22241	. 084.5875	314.3720 .4961						
314.22241	. 084.5875	315.3720 .4961						
315.22241	. 084.5875	316.3720 .4961						
316.22241	. 084.5875	317.3720 .4961						
317.22241	. 084.5875	318.3720 .4961						
318.22241	. 084.5875	319.3720 .4961						
319.22241	. 084.5875	320.3720 .4961						
320.22241	. 084.5875	321.3720 .4961						
321.22241	. 084.5875	322.3720 .4961						
322.22241	. 084.5875	323.3720 .4961						
$\begin{aligned} & 323.22241 .084 .5875 \\ & 324.28511 .412 .2938 \end{aligned}$		324.3720 .5276						
ds 1	10	0	0					
11	289							
1.3740	1.1	. 25	2	. 25	19	. 25	20	. 25
2.3740	1.2	. 25	3	. 25	20	. 25	21	. 25
3.3740	1. 3	. 25	4	. 25	21	. 25	22	. 25
4.3740	1.4	. 25	5	. 25	22	. 25	23	. 25
5.3740	1. 5	. 25	6	. 25	23	. 25	24	. 25
6.3740	1.6	. 25	7	. 25	24	. 25	25	. 25
7.3740	1.7	. 25	8	. 25	25	. 25	26	. 25
8.3740	1.8	. 25	9	. 25	26	. 25	27	. 25
9.3740	1.9	. 25	10	. 25	27	. 25	28	. 25
10.3740	1. 10	. 25	11	. 25	28	. 25	29	. 25
11.3740	1. 11	. 25	12	. 25	29	. 25	30	. 25
12.3740	1. 12	. 25	13	. 25	30	. 25	31	. 25
13.3740	1. 13	. 25	14	. 25	31	. 25	32	. 25
14.3740	1. 14	. 25	15	. 25	32	. 25	33	. 25
15.3740	1. 15	. 25	16	. 25	33	. 25	34	. 25
16.3740	1. 16	. 25	17	. 25	34	. 25	35	. 25
17.3740	1. 17	. 25	18	. 25	35	. 25	36	. 25
18.3740	1.19	. 25	20	. 25	37	. 25	38	. 25

19.3740	1.	20	. 25	21	. 25	38	. 25	39	. 25
20.3740	1.	21	. 25	22	. 25	39	. 25	40	. 25
21.3740	1.	22	. 25	23	. 25	40	. 25	41	. 25
22.3740	1.	23	. 25	24	. 25	41	. 25	42	25
23.3740	1.	24	. 25	25	. 25	42	. 25	43	25
24.3740	1	25	. 25	26	. 25	43	. 25	44	25
25.3740	1.	26	. 25	27	. 25	44	. 25	45	. 25
26.3740	1.	27	. 25	28	. 25	45	. 25	46	. 25
27.3740	1	28	. 25	29	. 25	46	. 25	47.	25
28.3740	1	29	. 25	30	. 25	47	. 25	48	25
29.3740	1.	30	. 25	31	. 25	48	. 25	49	. 25
30.3740	1.	31	. 25	32	. 25	49	. 25	50	25
31.3740	1.	32	. 25	33	. 25	50	. 25	51	. 25
32.3740	1	33	. 25	34	. 25	51	. 25	52	. 25
33.3740	1	34	. 25	35	. 25	52	. 25	53	. 25
34.3740	1	35	. 25	36	. 25	53	. 25	54	. 25
35.3740	1	37	. 25	38	. 25	55	. 25	56	. 25
36.3740	1	38	. 25	39	. 25	56	. 25	57	. 25
37.3740	1	39	. 25	40	. 25	57	. 25	58	. 25
38.3740	1	40	. 25	41	. 25	58	. 25	59	. 25
39.3740	1	41	. 25	42	. 25	59	. 25	60	. 25
40.3740	1	42	. 25	43	. 25	60	. 25	61	. 25
41.3740	1	43	. 25	44	. 25	61	. 25	62	. 25
42.3740	1	44	. 25	45	. 25	62	. 25	63	. 25
43.3740	1.	45	. 25	46	. 25	63	. 25	64	. 25
44.3740	1.	46	. 25	47	. 25	64	. 25	65	. 25
45.3740	1.	47	. 25	48	. 25	65	. 25	66	. 25
46.3740	1.	48	. 25	49	. 25	66	. 25	67	. 25
47.3740	1.	49	. 25	50	. 25	67	. 25	68	. 25
48.3740	1.	50	. 25	51	. 25	68	. 25	69	. 25
49.3740	1	51	. 25	52	. 25	69	. 25	70	. 25
50.3740	1.	52	. 25	53	. 25	70	. 25	71	. 25
51.3740	1.	53	. 25	54	. 25	71	. 25	72	. 25
52.3740	1.	55	. 25	56	. 25	73	. 25	74	. 25
53.3740	1.	56	. 25	57	. 25	74	. 25	75	. 25
54.3740	1.	57	. 25	58	. 25	75	. 25	76	. 25
55.3740	1.	58	. 25	59	. 25	76	25	77	. 25
56.3740	1.	59	. 25	60	. 25	77	. 25	78	. 25
57.3740	1.	60	. 25	61	. 25	78	. 25	79	. 25
58.3740	1.	61	. 25	62	. 25	79	. 25	80	. 25
59.3740	1.	62	. 25	63	. 25	80	. 25	81	. 25
60.3740	1.	63	. 25	64	. 25	81	. 25	82	. 25
61.3740	1.	64	. 25	65	. 25	82	. 25	83	. 25
62.3740	1.	65	. 25	66	. 25	83	. 25	84	. 25
63.3740	1.	66	. 25	67	. 25	84	. 25	85	. 25
64.3740	1.	67	. 25	68	. 25	85	. 25	86	. 25
65.3740	1.	68	. 25	69	. 25	86	. 25	87	. 25
66.3740	1.	69	. 25	70	. 25	87	. 25	88	. 25
67.3740	1.	70	. 25	71	. 25	88	. 25	89	. 25
68.3740	1.	71	. 25	72	. 25	89	. 25	90	. 25
69.3740	1.	73	. 25	74	. 25	91	. 25	92	. 25
70.3740	1.	74	. 25	75	. 25	92	. 25	93	. 25

71.3740	1.	75	. 25	76	. 25	93	. 25	94	25
72.3740	1.	76	. 25	77	. 25	94	. 25	95	25
73.3740	1.	77	. 25	78	. 25	95	. 25	96	25
74.3740	1.	78	. 25	79	. 25	96	. 25	97	25
75.3740	1.	79	. 25	80	. 25	97	. 25	98	25
76.3740	1.	80	. 25	81	. 25	98	. 25	99	. 25
77.3740	1.	81	. 25	82	. 25	99	. 25	100	25
78.3740	1	82	. 25	83	. 25	100	. 25	101	. 25
79.3740	1	83	. 25	84	. 25	101	. 25	102	25
80.3740	1	84	. 25	85	. 25	102	. 25	103	. 25
81.3740	1	85	. 25	86	. 25	103	. 25	104	. 25
82.3740	1	86	. 25	87	. 25	104	. 25	105	. 25
83.3740	1	87	. 25	88	. 25	105	. 25	106.	25
84.3740	1	88	. 25	89	. 25	106	. 25	107	25
85.3740	1	89	. 25	90	. 25	107	. 25	108	25
86.3740	1	91	. 25	92	. 25	109	. 25	110	. 25
87.3740	1	92	. 25	93	. 25	110	. 25	111	. 25
88.3740	1	93	. 25	94	. 25	111	. 25	112	. 25
89.3740	1	94	. 25	95	. 25	112	. 25	113	25
90.3740	1	95	. 25	96	. 25	113	. 25	114	. 25
91.3740	1	96	. 25	97	. 25	114	. 25	115	. 25
92.3740	1	97	. 25	98	. 25	115	. 25	116	. 25
93.3740	1	98	. 25	99	. 25	116	. 25	117	. 25
94.3740	1	99	. 25	100	. 25	117	. 25	118	. 25
95.3740	1	100	. 25	101	. 25	118	. 25	119	. 25
96.3740	1	101	. 25	102	. 25	119	. 25	120	. 25
97.3740	1	102	. 25	103	. 25	120	. 25	121	. 25
98.3740	1	103	. 25	104	. 25	121	. 25	122	. 25
99.3740	1.	104	. 25	105	. 25	122	. 25	123	. 25
100.3740	1.	105	. 25	106	. 25	123	. 25	124	. 25
101.3740	1	106	. 25	107	. 25	124	. 25	125	. 25
102.3740	1	107	. 25	108	. 25	125	. 25	126	. 25
103.3740	1.	109	. 25	110	. 25	127	. 25	128	. 25
104.3740	1	110	. 25	111	. 25	128	. 25	129	. 25
105.3740	1	111	. 25	112	. 25	129	. 25	130	. 25
106.3740	1.	112	. 25	113	. 25	130	. 25	131	. 25
107.3740	1.	113	. 25	114	. 25	131	. 25	132	. 25
108.3740	1	114	. 25	115	. 25	132	. 25	133	. 25
109.3740	1.	115	. 25	116	. 25	133	. 25	134	. 25
110.3740	1.	116	. 25	117	. 25	134	. 25	135	. 25
111.3740	1.	117	. 25	118	. 25	135	. 25	136	. 25
112.3740	1.	118	. 25	119	. 25	136	. 25	137	. 25
113.3740	1.	119	. 25	120	. 25	137	. 25	138	. 25
114.3740	1	120	. 25	121	. 25	138	. 25	139	. 25
115.3740	1	121	. 25	122	. 25	139	. 25	140	. 25
116.3740	1.	122	. 25	123	. 25	140	. 25	141	. 25
117.3740	1.	123	. 25	124	. 25	141	. 25	142	. 25
118.3740	1.	124	. 25	125	. 25	142	. 25	143	. 25
119.3740	1.	125	. 25	126	. 25	143	. 25	144	. 25
120.3740	1.	127	. 25	128	. 25	145	. 25	146	. 25
121.3740	1	128	. 25	129	. 25	146	. 25	147	. 25
122.3740	1	129	. 25	130	. 25	147	. 25	148	. 25

123.3740	1.	130	. 25	131	. 25	148	. 25	149	. 25
124.3740	1.	131	. 25	132	. 25	149	. 25	150	. 25
125.3740	1.	132	. 25	133	. 25	150	. 25	151	25
126.3740	1.	133	. 25	134	. 25	151	. 25	152	25
127.3740	1.	134	. 25	135	. 25	152	. 25	153	. 25
128.3740	1.	135	. 25	136	. 25	153	. 25	154	. 25
129.3740	1.	136	. 25	137	. 25	154	. 25	155	25
130.3740	1.	137	. 25	138	. 25	155	. 25	156	. 25
131.3740	1.	138	. 25	139	. 25	156	. 25	157	. 25
132.3740	1.	139	. 25	140	. 25	157	. 25	158	25
133.3740	1.	140	. 25	141	. 25	158	. 25	159	25
134.3740	1.	141	. 25	142	. 25	159	. 25	160	. 25
135.3740	1.	142	. 25	143	. 25	160	. 25	161	. 25
136.3740	1	143	. 25	144	. 25	161	. 25	162	. 25
137.3740	1.	145	. 25	146	. 25	163	. 25	164	. 25
138.3740	1.	146	. 25	147	. 25	164	. 25	165	. 25
139.3740	1.	147	. 25	148	. 25	165	. 25	166	. 25
140.3740	1.	148	. 25	149	. 25	166	. 25	167	. 25
141.3740	1.	149	. 25	150	. 25	167	. 25	168	. 25
142.3740	1.	150	. 25	151	. 25	168	. 25	169	. 25
143.3740	1.	151	. 25	152	. 25	169	. 25	170	25
144.3740	1.	152	. 25	153	. 25	170	. 25	171	. 25
145.3740	1.	153	. 25	154	. 25	171	. 25	172	. 25
146.3740	1.	154	. 25	155	. 25	172	. 25	173	. 25
147.3740	1.	155	. 25	156	. 25	173	. 25	174	. 25
148.3740	1.	156	. 25	157	. 25	174	. 25	175	. 25
149.3740	1.	157	. 25	158	. 25	175	. 25	176	. 25
150.3740	1.	158	. 25	159	. 25	176	. 25	177	. 25
151.3740	1.	159	. 25	160	. 25	177	. 25	178	. 25
152.3740	1.	160	. 25	161	. 25	178	. 25	179	25
153.3740	1.	161	. 25	162	. 25	179	. 25	180	25
154.3740	1.	163	. 25	164	. 25	181	. 25	182	25
155.3740	1.	164	. 25	165	. 25	182	. 25	183	25
156.3740	1.	165	. 25	166	. 25	183	. 25	184	. 25
157.3740	1.	166	. 25	167	. 25	184	. 25	185	. 25
158.3740	1.	167	. 25	168	. 25	185	. 25	186	. 25
159.3740	1.	168	. 25	169	. 25	186	. 25	187	. 25
160.3740	1.	169	. 25	170	. 25	187	. 25	188	. 25
161.3740	1.	170	. 25	171	. 25	188	. 25	189	. 25
162.3740	1.	171	. 25	172	. 25	189	. 25	190	25
163.3740	1.	172	. 25	173	. 25	190	. 25	191	. 25
164.3740	1.	173	. 25	174	. 25	191	. 25	192	. 25
165.3740	1.	174	. 25	175	. 25	192	. 25	193	. 25
166.3740	1.	175	. 25	176	. 25	193	. 25	194	. 25
167.3740	1.	176	. 25	177	. 25	194	. 25	195	. 25
168.3740	1.	177	. 25	178	. 25	195	. 25	196	. 25
169.3740	1.	178	. 25	179	. 25	196	. 25	197	25
170.3740	1.	179	. 25	180	. 25	197	. 25	198	. 25
171.3740	1.	181	. 25	182	. 25	199	. 25	200	. 25
172.3740	1.	182	. 25	183	. 25	200	. 25	201	. 25
173.3740	1.	183	. 25	184	. 25	201	. 25	202	. 25
174.3740	1	184	. 25	185	. 25	202	. 25	203	. 25

175.3740	1	185	. 25	186	. 25	203	. 25	204	25
176.3740	1	186	. 25	187	. 25	204	. 25	205	25
177.3740	1	187	. 25	188	. 25	205	. 25	206	25
178.3740	1.	188	. 25	189	. 25	206	25	207	25
179.3740	1	189	. 25	190	. 25	207	. 25	208	. 25
180.3740	1	190	. 25	191	. 25	208	. 25	209	25
181.3740	1	191	. 25	192	. 25	209	. 25	210	25
182.3740	1.	192	. 25	193	. 25	210	. 25	211	25
183.3740	1.	193	. 25	194	. 25	211	. 25	212	. 25
184.3740	1	194	. 25	195	. 25	212	. 25	213	25
185.3740	1	195	. 25	196	. 25	213	. 25	214	25
186.3740	1.	196	. 25	197	. 25	214	. 25	215	25
187.3740	1	197	. 25	198	. 25	215	. 25	216	25
188.3740	1	199	. 25	200	. 25	217	. 25	218	25
189.3740	1.	200	. 25	201	. 25	218	. 25	219	25
190.3740	1	201	. 25	202	. 25	219	. 25	220	25
191.3740	1	202	. 25	203	. 25	220	. 25	221	25
192.3740	1.	203	. 25	204	. 25	221	. 25	222	25
193.3740	1	204	. 25	205	. 25	222	. 25	223	25
194.3740	1	205	. 25	206	. 25	223	. 25	224	. 25
195.3740	1	206	. 25	207	. 25	224	. 25	225	. 25
196.3740	1	207	. 25	208	. 25	225	. 25	226	. 25
197.3740	1	208	. 25	209	. 25	226	. 25	227	. 25
198.3740	1	209	. 25	210	. 25	227	. 25	228	. 25
199.3740	1.	210	. 25	211	. 25	228	. 25	229	. 25
200.3740	1.	211	. 25	212	. 25	229	. 25	230	. 25
201.3740	1	212	. 25	213	. 25	230	. 25	231	. 25
202.3740	1	213	. 25	214	. 25	231	. 25	232	. 25
203.3740	1	214	. 25	215	. 25	232	. 25	233	. 25
204.3740	1	215	. 25	216	. 25	233	. 25	234	. 25
205.3740	1	217	. 25	218	. 25	235	. 25	236	25
206.3740	1	218	. 25	219	. 25	236	. 25	237	25
207.3740	1.	219	. 25	220	. 25	237	. 25	238	25
208.3740	1.	220	. 25	221	. 25	238	. 25	239	. 25
209.3740	1	221	. 25	222	. 25	239	. 25	240	25
210.3740	1.	222	. 25	223	. 25	240	. 25	241	25
211.3740	1.	223	. 25	224	. 25	241	. 25	242	25
212.3740	1.	224	. 25	225	. 25	242	. 25	243	. 25
213.3740	1.	225	. 25	226	. 25	243	. 25	244	25
214.3740	1.	226	. 25	227	. 25	244	. 25	245	25
215.3740	1.	227	. 25	228	. 25	245	. 25	246	25
216.3740	1	228	. 25	229	. 25	246	. 25	247	. 25
217.3740	1	229	. 25	230	. 25	247	. 25	248	. 25
218.3740	1.	230	. 25	231	. 25	248	. 25	249	. 25
219.3740	1.	231	. 25	232	. 25	249	. 25	250	. 25
220.3740	1	232	. 25	233	. 25	250	. 25	251	. 25
221.3740	1.	233	. 25	234	. 25	251	. 25	252	. 25
222.3740	1.	235	. 25	236	. 25	253	. 25	254	. 25
223.3740	1.	236	. 25	237	. 25	254	. 25	255	25
224.3740	1.	237	. 25	238	. 25	255	. 25	256	. 25
225.3740	1.	238	. 25	239	. 25	256	. 25	257	. 25
226.3740	1.	239	. 25	240	. 25	257	. 25	258	25

227.3740	1.	240	. 25	241	. 25	258	. 25	259	. 25
228.3740	1.	241	. 25	242	. 25	259	. 25	260	. 25
229.3740	1	242	. 25	243	. 25	260	. 25	261	. 25
230.3740	1	243	. 25	244	. 25	261	. 25	262	. 25
231.3740	1	244	. 25	245	. 25	262	. 25	263	. 25
232.3740	1	245	. 25	246	. 25	263	. 25	264	. 25
233.3740	1	246	. 25	247	. 25	264	. 25	265	. 25
234.3740	1	247	. 25	248	. 25	265	. 25	266	. 25
235.3740	1	248	. 25	249	. 25	266	. 25	267	. 25
236.3740	1	249	. 25	250	. 25	267	. 25	268	25
237.3740	1	250	. 25	251	. 25	268	. 25	. 269	25
238.3740	1.	251	. 25	252	. 25	269	. 25	270	. 25
239.3740	1.	253	. 25	254	. 25	271	. 25	272	. 25
240.3740	1.	254	. 25	255	. 25	272	. 25	273	. 25
241.3740	1.	255	. 25	256	. 25	273	. 25	274	. 25
242.3740	1.	256	. 25	257	. 25	274	. 25	275	. 25
243.3740	1.	257	. 25	258	. 25	275	. 25	276	. 25
244.3740	1.	258	. 25	259	. 25	276	. 25	277	. 25
245.3740	1.	259	. 25	260	. 25	277	. 25	278	. 25
246.3740	1.	260	. 25	261	. 25	278	. 25	279	. 25
247.3740	1.	261	. 25	262	. 25	279	. 25	280	. 25
248.3740	1.	262	. 25	263	. 25	280	. 25	281	. 25
249.3740	1.	263	. 25	264	. 25	281	. 25	282	. 25
250.3740	1.	264	. 25	265	. 25	282	. 25	283	. 25
251.3740	1.	265	. 25	266	. 25	283	. 25	284	. 25
252.3740	1.	266	. 25	267	. 25	284	. 25	285	. 25
253.3740	1.	267	. 25	268	. 25	285	. 25	286	. 25
254.3740	1.	268	. 25	269	. 25	286	. 25	287	. 25
255.3740	1.	269	. 25	270	. 25	287	. 25	288	. 25
256.3740	1.	271	. 25	272	. 25	289	. 25	290	. 25
257.3740	1.	272	. 25	273	. 25	290	. 25	291	. 25
258.3740	1.	273	. 25	274	. 25	291	. 25	292	. 25
259.3740	1.	274	. 25	275	. 25	292	. 25	293	. 25
260.3740	1.	275	. 25	276	. 25	293	. 25	294	. 25
261.3740	1.	276	. 25	277	. 25	294	. 25	295	. 25
262.3740	1.	277	. 25	278	. 25	295	. 25	296	. 25
263.3740	1.	278	. 25	279	. 25	296	. 25	297	. 25
264.3740	1.	279	. 25	280	. 25	297	. 25	298	. 25
265.3740	1.	280	. 25	281	. 25	298	. 25	299	. 25
266.3740	1.	281	. 25	282	. 25	299	. 25	300	. 25
267.3740	1	282	. 25	283	. 25	300	. 25	301	. 25
268.3740	1	283	. 25	284	. 25	301	. 25	302	. 25
269.3740	1	284	. 25	285	. 25	302	. 25	303	. 25
270.3740	1	285	. 25	286	. 25	303	. 25	304	. 25
271.3740	1	286	. 25	287	. 25	304	. 25	305	. 25
272.3740	1	287	. 25	288	. 25	305	. 25	306	. 25
273.3740	1	289	. 25	290	. 25	307	. 25	308	. 25
274.3740	1	290	. 25	291	. 25	308	. 25	309	. 25
275.3740	1	291	. 25	292	. 25	309	. 25	310	. 25
276.3740	1	292	. 25	293	. 25	310	. 25	311	. 25
277.3740	1	293	. 25	294	. 25	311	. 25	312	. 25
278.3740	1	294	. 25	295	. 25	312	. 25	313	. 25


```
                                    1.00
                                    1.00
    12.3
drag 1
```



```
bdry }\mp@subsup{|}{1}{1.00E+8
            1.00E+8
            14.921 1
            1.0 1 1.0 1
            14.921 1
            1.0 1 1.0 1
            14.921 1
            1.0 1 1.0 1
            14.921 1
            1.0 1 1.0 1
            14.921 1
            1.0 1 1.0 1
            14.921
            1.0 1 1.0 1
            14.921 1
            1.0 1 1.0 1
            14.921 rrrr
calc
                                    0.25
                20
```



```
            10
        0.0.0.0499 0.0 . 05 . 706 . 151.029 . 251.206 .751.206
        .851.029.9499 .706 .95 0.0 1.0 0.0
outp 1101
endd
```


APPENDIX 10

17×17 BUNDLE ANALYSIS-INPUT FILE FOR RADGEN (Cycle 2)

```
        0
Korean Spent Fuel Cask -- KSC-7 (17*17)
    01.326 17 17
    . 374 . 372 . 372 . 372 . 372
    0.8 0.3
        -1
        0
```


[^0]: * This design limit is obtained from [2] and [3].

