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Abstract
This thesis investigates the application of a low power solid state NMR technique,

using proton to phosphorus-31 cross polarization via adiabatic demagnetization in
the rotating frame (ADRF-CP), to study samples of synthetic calcium phosphate
and bone mineral.

The first section describes the use of ADRF-CP, with a surface coil, to detect
monohydrogen phosphate ions in the presence of a large background of non-protonated
phosphate ions in porcine bone and a mixture of synthetic calcium phosphates. Tran-
sient oscillations were observed in the transfer of polarization between the proton
dipolar and phosphorus Zeeman nuclear spin reservoirs after the initiation of thermal
contact. Suppression of the non-protonated phosphate was achieved by detecting the
signal when the oscillation was passing through zero, and adjusting the phosphorus rf
field to achieve optimal cross polarization with the proton local fields of the monohy-
drogen phosphate ions. An adiabatic remagnetization of the phosphorus eliminated
the oscillations, while increasing the strength of the observed total phosphorus signal.

The second section describes the investigation of three variants of the ADRF
process as well as a Jeener-Broekaert pulse sequence to create proton dipolar order
in the calcium phosphates. The relative efficiencies of the different techniques were
sample dependent, with the ADRF techniques performing well in hydroxyapatite and
poorly in brushite. The reason for this poor performance in brushite is not well
understood.

The third section describes experiments demonstrating an ADRF-CP variant of
the differential cross polarization technique. The inversion of the phosphorus Zeeman
temperature is performed by changing the phase of the phosphorus rf by 180 degrees
during the cross polarization. Transient oscillations were observed on inverting the
phosphorus temperature.

The final section of the thesis describes the design and construction of a two-port
double resonance probe with interchangeable coils for a 4.7 T magnet. The plug-
in design for the coils facilitates the use of coils of different circuits and geometries
with the same set of variable tuning and matching capacitors. Two double resonance
coils were constructed, a surface coil using a novel circuit design, and a previously
described cylindrical resonator.

Thesis Supervisor: Jerome L. Ackerman
Associate Professor of Radiology
Harvard Medical School
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Chapter 1

Introduction

Bone mineral research has grown in recent years, spurred by public health concerns

over osteoporosis [1, 2, 3]. While the mineral is often considered to be the inert,

inorganic component of bone whose sole function is to provide mechanical support, it

has long been known that there is continual remodeling of bone throughout life, with

resorption of older bone mineral and synthesis of new mineral. This process allows

the bone to grow, to play its role as a reservoir of calcium and phosphorus, and to

maintain its structural integrity by repair of defects and trauma. Many aspects of this

remodeling process are poorly understood, and additional knowledge of bone mineral

dynamics will be central to our understanding of fracture healing, the determinants

of bone strength, and the treatment of metabolic bone diseases such as osteoporosis

[4, 5, 6, 7].
Various physical and chemical techniques have been brought to bear in the study

of bone mineral chemistry. These include x-ray diffraction [8, 9, 10, 11], neutron

diffraction, back-scattered electron beam imaging [12, 13, 14], wet chemical analyses

[15], FT-IR spectroscopy [16, 17, 18, 19, 20] and solid state NMR spectroscopy. The

NMR studies are discussed later in this chapter. While each of these techniques has

contributed to our current understanding of the chemistry of bone mineral, none of

them has been able to provide a detailed, comprehensive description of the process

of mineral deposition and resorption. In particular, most of these techniques are

destructive, requiring extensive sample preparation that could significantly change



the local micro-environment of the mineral, as well as its surface chemistry.

An understanding of the chemical dynamics of bone mineral may provide insights

into bone growth and metabolic bone disease processes, as well as enable the de-

sign of superior antiresorptive pharmaceuticals and bone mineral markers for nuclear

medicine scans. Among the established methods, only nuclear medicine techniques,

by virtue of the chemical selectivity of a radionuclide-bearing ligand that binds to

the surface of bone mineral, have potential for yielding chemical information on the

mineral in vivo. However, this information is strictly limited to the surface of bone

crystallites, and in practice is used merely to detect regions of high or low remodelling

activity [21].

The goal of this work is to exploit the superior ability of NMR spectroscopy to

discriminate subtle chemical differences (as between PO' - and HPO - ions) in the in

vivo study of bone mineral. Conventional solid state NMR techniques are generally

incompatible with in vivo application due to the high levels of rf power deposition

and the use of magic angle sample spinning. NMR diagnostic techniques, both spec-

troscopy and imaging, have thus generally been limited to liquid state studies of

soft tissues. It has so far not been possible to use the chemical sensitivity of the

NMR methodology to obtain chemical information in vivo from solid tissues such as

bone. We require a method which maintains chemical contrast under conditions of

low spectral resolution, and minimizes the application of rf power. Cross polarization

by means of adiabatic demagnetization in the rotating frame (ADRF-CP) satisfies

these requirements. The development of in vivo solid-state NMR techniques would

allow the study of bone mineral chemistry in live subjects, and thus overcome the

problems due to sample preparation, and the questionable validity of extrapolating

the results of studies conducted ex vivo to the in vivo case. The clinical utility of

such techniques could possibly extend to monitoring the healing of fractures, the re-

sorption and remodelling of bone cements or implants and the treatment of metabolic

bone diseases such as osteoporosis and osteomalacia.



1.1 Introduction to bone tissue

Bone is a composite tissue whose properties closely depend on its structure and com-

position. The tissue consists of a network of connective tissue fibers interspersed with

bone cells lying in an extracellular ground substance that is impregnated with cal-

cium salts to produce rigidity. The orientation of the collagen fibers, which account

for about 95% of the organic matter in the tissue, in the extracellular matrix usually

determines the spatial arrangement of the mineral crystals deposited in the matrix,

and hence the load bearing axes of the the bone. The fibers are randomly arranged

in woven bone while showing preferential orientations in lamellar bone. The matrix

also contains non-collageneous proteins such as osteonectin and osteocalcin.

1.1.1 Bone cells

The cellular constituents of bone are osteoblasts, osteocytes, lining cells and osteo-

clasts [22].

Osteoblasts are responsible for the synthesis and secretion of the organic con-

stituents of the bone matrix and, to some extent, their calcification. The osteoblasts

are cuboidal or low columnar cells that form a continuous layer on the growing osseous

surface, and are usually found with part of their peripheral membrane in contact with

the calcification front.

Osteocytes are the least known of the bone cells due to their localization within

enclosed lacunae in the calcified matrix. They are formed from osteoblasts that

are gradually buried in a calcified matrix, and are thought to undergo three phases.

During the formative phase the newly formed ostecyte still shows osteoblastic activity.

In the resorptive phase the osteocyte is capable of resorbing the bone matrix which

forms the border of its lacuna, while in the degenerative phase the cell fragments and

eventually disappears.

The lining cells are a layer of very flat endothelial-like cells that cover the inactive

surfaces of bone. They are very thin and their function is practically unknown, though

they might play a role in separating the interstitial from the bone fluids.



Osteoclasts are giant, multinucleated cells attached to the bone surface whose

fuction is to resorb bone. The actual mechanism of mineral resorption is not very

well understood, though current findings support an extracellular dissolution of the

bone mineral followed by digestion of the organic components.

Normal bone metabolism involves continuous bone remodelling which occurs at

the level of the bone remodelling unit, also called the "basic multicellular unit" or

BMU [23]. Bone volume must be maintained constant during the remodelling by

tight coupling between osteoblastic and osteoclastic activity. A BMU goes through

different phases of a dynamic process which begins with the activation of osteoclasts

on the bone surface (activation phase), continues with the resorption of bone ma-

trix and formation of Howships's lacuna (resorption phase), the disappearance of the

osteoclasts which are substituted by mononuclear cells (reversion phase), and the

disappearance of these cells and reappearance of osteoblasts with reparation of the

resorption lacuna (formation lacuna). The local mechanisms which regulate the cou-

pling between osteoblastic and osteoclastic activity are not well understood and await

further study.

1.1.2 Bone mineral chemistry

The study of the physico-chemical properties of the mineral component of skeletal

tissue has advanced significantly since Neuman and Neuman's pioneering treatise

on the subject [15]. The dominant apatitic phase has been well characterized, and

the dynamics of calcium phosphate precipitation in aqueous solution and in vitro

systems reasonably well understood. However, in vivo deposition processes are less

well understood and their study poses a significant challenge. The following discussion

draws heavily on some recent review articles on the state of bone mineral chemistry

research [24, 25].

The first step in the formation of the mineral is the nucleation of the crystal,

the creation of a small cluster of ions capable of growth and survival as a crystal.

A necessary thermodynamic condition for nuclei formation is that the Gibbs free

energy of the reactant ions in solution exceed the free energy of the precipitated



phase. Otherwise any crystals that formed would quickly dissolve again. In addition,

the energy expended in creating the cluster surface should exceed the energy released

by ion bonding within the crystal. This energy barrier can be quite high for sparingly

soluble salts such as apatites, and must be lowered substantially for nucleation to

take place on a reasonable time scale.

The presence of foreign solids can lower the threshold for nucleation to occur if

they

1. have a strong affinity for the ions being precipitated, and

2. have a surface topology closely matching that of the precipitated surface.

The dimensions of an apatitic nucleus is probably on the order of 1-2 nm [26], which

is much smaller than the size of a bone crystal. Crystal growth then accounts for

most of the subsequent increase in the mass of the crystal.

There has been much debate on the exact chemical nature of the first calcium

phosphates precipitated. Termine and Posner [27, 28] proposed that amorphous cal-

cium phosphate is the first mineral deposited in the calcification process, and that it

acts as a metabolically active, metastable precursor of crystalline bone apatite. These

amorphous calcium phosphates are considerably more soluble in water than the ap-

atites and hence face a smaller energy barrier. An octacalcium phosphate (OCP)

precursor has been proposed by Brown et al. [9, 10]. The highly hydrated phases can

occur in preference to apatite because, although less stable thermodynamically, they

apparantly have much lower surface energies which reduce the net energy required

for their de novo formation. Glimcher and co-workers [4, 29] initially detected the

presence of brushite in the lower density fractions of embryonic chicken bone, using

X-ray and electron diffraction, and 31P NMR spectroscopy. However, they later as-

cribed the presence of the brushite to the sample preparation process [30]. Pellegrino

and Blitz studied the sequence of chemical transformations in developing bone and

showed an inverse relationship between monohydrogen phosphate and carbonate ions,

where the decreasing monohydrogen phosphate content coincided with the formation

of carbonate-apatite of the mature mineral [31, 32]. Carbonate can enter the apap-



tite lattice in substitution for hydroxyl groups (type A) and for phosphate groups

(type B).

Rey et al. have recently shown that the surface of the mineral contains a number

of labile non-apatitic domains. These domains are very reactive, and are initmately

linked to the metabolic activity of the mineral. These environments were shown to

be unstable, gradually disappearing as the mineral matured [17, 33].

Currently, bone mineral is considered to be composed primarily of a poorly crys-

talline, non-stoichiometric apatite similar to hydroxyapatite (Calo(OH) 2(PO 4)6 ), con-

taining HPO2- and C02- as well as cations like Mg 2+ . There is still controversy as to

whether hydroxyl groups are present in bone mineral, as they have not been detected

in the mineral by any technique. It is known that HP02- ion concentrations are the

highest in newly deposited bone and that this concentration decreases as the mineral

matures [17, 18, 19, 34, 35]. Other changes associated with the aging of the crystals

are an increase in crystallinity and in carbonate content.

1.1.3 Mineral formation in vivo

All the extracellular fluids in equilibrium with serum are supersaturated with respect

to apatite, and possibly OCP as well. It is therefore remarkable that the body has

the ability to restrict mineralization to skeletal and other selected tissues. A systemic

nucleation inhibitor is usually postulated as the means by which soft tissues prevent

nucleation. However, in skeletal tissues, the inhibitor inactivation has to be very

selective, both spatially and temporally, to account for the orderly manner in which

bone is laid down.

Matrix vesicle calcification

These cell-derived, membrane-bound vesicular structures appear to be the extracellu-

lar loci for initial mineral deposition in some skeletal tissues [36, 37], such as calcified

growth plate cartilage. Matrix vesicles give hard tissue cells the means to directly

control the mineralization process and integrate it with other cellular functions. The



vesicles may also be able to protect the nascent crystals from the inhibitors in the

systemic circulation. It is unclear whether the first mineral is formed by homogeneous

or heterogeneous nucleation, and what the exact chemical nature of the initial phase

is. The bulk of crystal growth occurs outside the vesicles, as the interior crystals

gain access to the extravesicular space by physically breaching the bilayer and then

continuing to grow or seeding new crystals.

Collagen calcification

In some tissues such as intramembranous bone and mantle dentin, both collagenous as

well as vesicular mineral deposits occur. No connection has been established between

mineral formed in matrix vesicles and that associated with collagen calcification. It

appears that the de novo collagen calcification is precipitated by heterogeneous nu-

cleation by an anionic non-collagenous protein. Once collagenous mineralization is

initiated, the mineral spreads throughout the fibers in an orderly progressive man-

ner by the multiplicative proliferation of many small plate-like crystals, all of which

are approximately the same size. The underlying mineralization process is still not

well understood. The crystals deposited on the collagen usually have their crystallo-

graphic c-axis aligned parallel to the fiber axis. Apatite crystals appear to be more

randomly oriented in the direction perpendicular to the fiber axis. Once started, the

mineralization of individual fibers in bone tissue occurs relatively rapidly compared

to the overall advancement of the mineralization front.

1.1.4 The characterization of bone mineral density

Many techniques are available for measuring the mass and apparent density of bone

mineral,, and for characterizing the microarchitecture of trabecular (spongy) bone,

both in vivo and ex vivo. Bone mineral content (BMC, the mass of the mineral in

grams) is most accurately measured gravimetrically, ex vivo, by ashing the specimen

to drive off water and all organic substances. In vivo BMC may be measured by single

and dual energy y-ray photon absorptiometry (SPA and DPA) [38, 39], single and



dual energy quantitative computed tomography (QCT) [40], densitometry of plane

film x-ray radiographs, dual-energy x-ray absorptiometry (DXA-now considered the

"gold standard" for clinical applications) [41], neutron activation [42, 43, 44] and

ultrasound [45, 46]. Quantitative solid state 31P MRI shows promise as a novel tool

for BMC quantitation [47]. Techniques such as DXA yield a type of "projective"

density in g cm - 2 . Although not a true density in g cm - 3, this DXA-derived density

has been shown to correlate with the risk of fracture [48, 49].

1.2 Solid state NMR study of bone mineral

Solid state 31P NMR spectroscopy has been used extensively to study synthetic cal-

cium phosphates and biological minerals [34, 35, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59],

as the NMR visible 31P nucleus has a natural abundance of 100%. Other solid state

experiments have been performed on 1H, 19F, and 13C nuclei [20, 60, 61, 62, 63, 64,

65, 66, 67]. Some of the important studies relating to bone mineral chemistry are

outlined below.

Herzfeld et al. used 31P spectroscopy to study samples of synthetic brushite, hy-

droxyapatite, and low (< 1.8 g cm -3 ) and high (> 1.8 g cm - 3 ) density bone samples.

In the non-spinning proton-decoupled phosphorus spectra they observed the presence

of a broad tail in the low-density bone fraction that was not present in the high

density fraction. Upon spinning the samples and comparing the intensities of the

rotational sideband patterns, they observed that the spectra from the high density

fraction were very similar to synthetic hydroxyapatite, while the spectra of the low

density fraction contained a significant amount of brushite. The presence of HPO'-

was identified by the increase in the number of spinning sidebands due to its chemical

shift ariisotropy.

In a comparison of synthetic calcium phosphates and bone mineral [34, 35], Grif-

fin and coworkers used standard 3 1 P Bloch decay, 'H- 3 1P cross polarization, and

dipolar suppression techniques to evaluate a group of synthetic calcium phosphates

and mineral deposits in chicken bone. The synthetics included crystalline hydrox-



yapatite, two type B carbonatohydroxyapatites containing 3.2 % and 14.5 % substi-

tuted CO'- groups, type A carbonatohydroxyapatite, a hydroxyapatite containing

about 12% HPO -, a poorly crystalline hydroxyapatite, amorphous calcium phos-

phate, brushite, monetite and octacalcium phosphate. They demonstrated that the

isotropic and anisotropic chemical shifts, together with data from proton-suppression

techniques, could be used to differentiate the synthetic calcium phosphate compounds

from one another. None of the NMR spectra of the mineral samples, obtained from

17-day-old embryonic chicks, 5-week, 30-week and 1 year old postnatal chickens, had

chemical shift values and rotational sideband patterns that matched those of the syn-

thetics. Using mathematical modelling techniques to fit the spectra of bone to a linear

combination of spectra of the synthetics, they suggested that the best model for bone

mineral was hydroxyapatite containing P 5-10% C02- and x 5-10% HPO'- groups,

with the HPO2- being present in a brushite-like configuration. They also observed

that the fraction of HPO - was highest in the youngest bone and decreased with

increasing age of the specimen.

More recently, Wu et al. [50, 68] were able to suppress the PO 3- peak and directly

observe the acid phosphate peak, using a differential cross polarization (DCP) [69,

70, 71] technique with magic angle spinning (MAS). The technique, which makes use

of the different proton-phosphorus cross polarization rates for phosphorus atoms in

non-protonated phosphate and monohydrogen phosphate moieties, allowed them to

directly measure the isotropic and anisotropic chemical shifts of the monohydrogen

phosphate group in bone. The isotropic chemical shift of the HPO - group in bone

was the same as that of the HPO2- in octacalcium phosphate, while its anisotropic

chemical shift corresponded to that of brushite. Thus it was observed that the HPO -

group in bone is unique and cannot be modelled exactly by any of the synthetics.

Solid state techniques have also been used to evaluate the bioabsorption of syn-

thetic apatite compounds used to promote bone healing and remodelling [59, 72], and

to study the biocompatibility of calcium phosphate bioceramics used in implants [73].

Conventional radiographic studies are insensitive to the chemical differences between

the natural bone mineral and the synthetic and are unreliable in determining the



degree of resorption or remodelling.

1.2.1 Development of in vivo solid state techniques

The NMR study of bone is complicated by the usual problems of solid state NMR,

including long spin-lattice relaxation times (T 1), short spin-spin relaxation times

(T 2), and chemical shift anisotropies. While conventional high-field solid state NMR

techniques can overcome most of these problems, many of these techniques, such

as magic angle spinning and high power rf decoupling, cannot be used for in vivo

applications. In order to detect the small signals arising from the bone, it is necessary

to use a surface coil that can be placed adjacent to the area of interest in order

to increase the filling factor of the coil and improve the detection sensitivity of the

experiment. However, the use of a surface coil results in significant B1 inhomogeneities

and often necessitates extensive modification of the NMR techniques used. This

is especially true when attempting quantitative measurements, spatial localization

techniques, or any methods sensitive to the size of the rf flip angles.

Brown et al. have proposed using the relative peak areas of the 31P Bloch decay

spectrum of bone and a reference standard in order to quantitatively determine the

mineral content of the bone. Stressing the non-invasive nature, and the absence of ion-

izing radiation, they suggested the use of low-resolution, solid state 31P spectroscopy

in the evaluation and treatment of osteoporosis [56, 74, 75, 76]. Li et al. have demon-

strated one dimensional spatial localization in bovine bone with a surface coil, while

Dolecki et al. have reported in vivo 31P T1 measurements that appear to correlate

linearly with mineral density [77]. Ackerman and coworkers performed solid state

imaging of calcium phosphates and bone mineral ex vivo and obtained chemically

sensitive solid state MR images of bone mineral [78, 79]. Wu et al. have proposed us-

ing solid state NMR imaging to obtain spatial distributions of bone mineral content,

which directly provides a measure of bone mineral density, an index that is widely used

in the diagnosis of osteoporosis [47]. They use a large three-dimensional frequency

encoding gradient, with a single gradient evolution period during each aquisition and

reconstruct the image using backprojection reconstruction techniques.



Chapter 2

NMR Methodology

There is nothing that nuclear spins will not do for you, as long as you
treat them as human beings.

Erwin L. Hahn

2.1 Introduction to cross polarization

Cross polarization is a technique in which the polarization of one spin species is

transferred to a second spin species by a resonant process in the rotating frame.

The landmark paper of Hartmann and Hahn [80] established the conditions under

which two dissimilar spins are able to transfer polarization between them. They

detected the transfer of polarization by measuring the reduction in the magnetization

of 35C1 (abundant species) after contact in the rotating frame with 39K (rare species)

in a sample of KC10 3. The fastest polarization transfer occurs when the Zeeman

energy splittings of the two spin species in the rotating frame are equal, called the

Hartmann-Hahn condition, and is mediated by the dipolar coupling between the two

spin systems. The matching of energy levels is equivalent to setting the rotating frame

Larmor frequencies of the two spins equal to each other.

Pines, Gibby and Waugh suggested direct detection of the rare spin polarization,

using repeated transfers of polarization from the abundant spin system followed by

decoupling of the abundant spins during detection to obtain high-resolution spectra



[81, 82]. Most solid state cross polarization experiments nowadays use this direct

detection scheme.

Cross polarization techniques are used in samples that have two or more spin

species, when one or more of the following goals must be met.

1. Enhance the detection sensitivity of a spin species that is either rare (chemi-

cally and/or isotopically dilute), has a low gyromagnetic ratio, or both, in the

presence of an abundant spin species with a larger gyromagnetic ratio.

2. Shorten the recycle time when observing a spin that has a long T 1, if the second

spin has a shorter T1.

3. Perform spectral editing by either selectively enhancing or suppressing those

spins of one species that are strongly coupled to the second spin species.

The cross polarization techniques proposed by Hartmann et al. and Pines et al.

require the simultaneous irradiation of the sample at the resonance frequencies of the

two nuclei. Ideally the magnitude of both these fields should be much larger than the

local dipole-dipole fields in the sample. This represents a significant problem when

applied to lossy samples such as biological tissues. The rf power absorption scales with

the square of the rf field amplitude and can produce tissue heating. An alternative

cross polarization technique, called adiabatic demagnetization in the rotating frame

(ADRF) cross polarization deposits significantly less power when compared to spin-

lock CP techniques, and is hence easier to adapt to in vivo application. It involves

the initial creation of dipolar order in one spin system followed by the transfer of this

polarization to the Zeeman system of a second spin system. The ADRF-CP technique

has been known for over thirty years though it has been used infrequently.



2.2 Creating dipolar order

2.2.1 Adiabatic demagnetization in the rotating frame

The technique of ADRF was proposed by Slichter and Holton [83], and demonstrated

the validity of Redfield's hypothesis of spin temperatures in the rotating frame [84]

down to rf fields much smaller than the local fields of the sample. In their experiments

on NaCl, they initially set the static field off-resonance with B1 turned off for a

long time to achieve thermal equilibrium between the spins and the lattice. The

B1 field was then turned on, and the static field brought to resonance. The change

of Bo was sufficiently slow for thermodynamic reversibility to be possible, but fast

enough to prevent spin-lattice relaxation from being significant. In order to be ensure

reversibility, the nucleus must precess many cycles in the time it takes the effective

field to change significantly. Their results showed that the demagnetization achieved

on resonance was reversible for all values of B1. With the B1 field much larger than

the local field BL , the spins are spin-locked along the B1 field, while when B1 is much

less than the local field BL, the individual spins are aligned along their local fields.

Since these local fields are randomly distributed in space the bulk magnetization tends

towards zero. However, the alignment of the spins has not changed, and the spins

have the same degree of order as at the start of the experiment.

Anderson and Hartmann further extended the Redfield theory down to the case

where B1 is zero [85], in their detailed study of the rotating frame demagnetized state

which appeared in the same issue of Physical Review as Hartmann and Hahn's classic

paper. In addition to Slichter and Holton's method of a fast passage to the center

of the line using a low intensity rf field, they also performed ADRF by initially spin-

locking the magnetization with a strong rf field and then reducing the amplitude of

this rf field adiabatically to zero. The spin-locking can be performed either with a

fast passage onto resonance with a strong rf field, or a "hard" 90 degree pulse followed

by a 90 degree phase shift of the rf to align the magnetization along the tranverse

field.

The initially spin-locked spins are described by a Boltzmann distribution with a



temperature much lower than the lattice temperature. As the rf field is adiabatically

reduced to zero, this Boltzmann distribution is preserved even as the spacing between

the energy levels changes. It is important to note that this is possible only because

the Zeeman energy levels are equally spaced, and the spacing is proportional to the

strength of the rf field. At the end of the demagnetization, the spins are still described

by a Boltzmann distribution, though with a lower temperature than at the start. At

the end of the demagnetization the spins are aligned along their local dipolar fields,

and are thus ordered with respect to their local fields. This high degree of ordering

in the spin system is equivalent to a low spin temperature. In this dipolar state the

Zeeman energy is zero, but the dipole-dipole energy is significantly different from

zero. If the process is truly adiabatic the order present in the Zeeman alignment with

respect to the external dc field is now resident in spin alignment in the dipole-dipole

fields. The order will persist for times of the order of T 1 if the dc field is large. In

systems containing many different spin species, preparation of the lowest possible

dipole-dipole temperature requires successive ADRF of each of the spin species [86].

Recently Hatanaka and Hashi have observed a significant degree of irreversibil-

ity in the ADRF process in experiments on 27A1 in A120 3 [87], which was absent

in 19F in CaF 2 and 7Li and 19F in LiF. They have suggested that the source of the

irreversibility is thermal mixing between the Zeeman and dipolar systems during the

demagnetization process. However, if the unequally spaced energy levels (due to the

quadrupolar interaction) are not shifted proportionally during the demagnetization,

the system cannot be described by a Boltzmann temperature during the demagneti-

zation process.

2.2.2 Pulse methods

Jeener et al. proposed a fast method to prepare a dipolar ordered system using a

sequence of two rf pulses, 90 degrees out of phase with one another and separated

by a time of the order of T2 [86, 88]. They observed that the system is not in a

state of internal quasiequilibrium after the application of the second pulse, but that

it approaches this state in a time of the order of T2 for most regularly organized



spin systems. This evolution towards equilibrium results in an irreversible creation

of entropy, reducing the efficiency of the transfer of order between the Zeeman and

dipolar systems. For a single spin ingredient the greatest transfer of order occurs when

the first pulse is a ir/2 pulse, and the second pulse is a 7r/4 pulse phase shifted from

the first by 90 degrees, applied at a time r when the slope of the Zeeman component

of the fid of the first pulse is at a maximum. Assuming purely dipolar coupling and

a Gaussian lineshape, the maximum efficiency in this case is 52%. They used a r/4

pulse to transfer the dipolar order back to Zeeman order and detect it.

In the case of multiple spin species, the first pulse should still be r/2 and the

phase difference between the pulses 90 degrees, but the angle of the second pulse and

the interval between the pulses will now depend on the relative magnitudes of the

homonuclear and heteronuclear spin coupling terms.

2.3 ADRF cross polarization

In their study of the demagnetized state, Anderson and Hartmann [85] suggest that

in a sample containing multiple spin species, the different spin systems will readily

couple in the ADRF state. If one system is prepared in an ordered ADRF state,

part of this order can be transferred to other systems by energy-conserving multiple

spin flips. Thus they suggest that following the ADRF of one spin species, it is

possible to adiabatically remagnetize at the frequency of a second spin species and

lower the entropy of the second spin system. Hartmann and Hahn also discussed cross

polarization following ADRF in their double resonance paper [80].

In their experiment, Anderson and Hartmann explored whether two spin systems

in the ADRF state would undergo energy-conserving spin-flips and reach a common

temperature. The experiment was carried out on a sample of lithium metal, enriched

to 25% 6Li. In the absence of z-axis modulation, rf irradiation at the 6Li frequency

had no effect on the 7Li system in the ADRF state. The presence of the 6Li spins

was only detected in the 'Li resonance when the 'Li ADRF state was monitored

after rf irradiation at the 6Li frequency in combination with z-axis modulation. They



suggest that the combination of rotary saturation in the 6Li system combined with

6Li- 7 Li dipolar coupling led to the warming of the 7Li spin system. The maximum
6Li B1 field used was 0.2 G and the size of the z-axis modulation field was 0.1 to

1.0 G. The experiment thus suggests a coupling between the 6Li Zeeman system and

the 7Li dipolar system.

Lurie and Slichter used ADRF-CP to study lithium metal, containing 92.6% 7Li

and 7.4% 6Li at 1.5K [89]. They performed an ADRF of the 7Li spins, and observed

the decrease in magnetization of this system produced by heating the 6Li spins. The

heating of the 6Li system was performed by applying an rf at the 6 Li resonance

frequency for a fixed time period during which the spin temperatures of the two

systems equilibrate. After the rf was turned off and the S spin magnetization allowed

to decay, the rf was turned on again and the process repeated a number of times.

As the heat capacity of the 7Li spins is much greater than that of the 6Li, the 6Li

rf needs to be cycled many times before a significant change is observed in the 'Li

magnetization. The warming of the 7Li spins brought about by contact with the

6Li spins represents a heat flow between two systems at different temperatures, and

results in an irreversible loss of order, or an increase in entropy.

When the applied 7Li rf field was larger than the local fields, essentially producing

a spin-locked state with respect to the applied rf rather than a true ADRF state,

they observed cross polarization over a range of values about the Hartmann-Hahn

matching condition. As the contact time between the spins was increased, the range

of values of the 6Li B1 field over which mixing could occur also increased. In the

ADRF experiment, they observed that the rate of mixing between the 6Li and 7Li

was inversely proportional to the 6 Li B1 field, though the range of 6Li B1 amplitudes

over which mixing took place increased. Their data indicates that the B1 field used

by Anderson and Hartmann in their experiment was too small to detect appreciable

mixing in the absence of the rotary saturation.

McArthur et al. performed an extensive study of the ADRF-CP of the 100%

naturally abundant 19F and 0.013% abundant 43Ca spins in a single crystal of CaF 2

[90], in which they investigated the dipolar fluctuation spectrum of the 19F spins and



the thermodynamics and kinetics of the cross relaxation process.

Their preparation of the ADRF state consisted of a ir/2 pulse followed by a 90

degree phase shift of the rf field to spin-lock the magnetization. The rf field was

then adiabatically reduced to zero. They monitored the dipolar state of the 19F by

applying a ir/4 pulse, as used in the Jeener-Broekaert sequence. The Zeeman and

dipolar signals excited by the pulse are out of phase by 90 degrees and can thus be

separated.

In their first series of experiments they were able to measure the relative heat

capacities of the two spin systems and the cross-relaxation time as a function of

the 43Ca B1 field, using a multiple-contact scheme similar to that used by Lurie

and Slichter. Their results indicated that the cross-relaxation displays exponential

behaviour, with (TIs) - 1 Oc exp{-wica Tr}, where wlCa is the rotating frame Larmor

frequency of the 43Ca and 7, is the correlation time of the random I-S spin flips. Spin-

diffusion effects were largely absent. When rotary saturation was used to heat the

43Ca spins, they did observe spin-diffusion limitation of the cross-relaxation rates. In

this situation spin diffusion is not fast enough to maintain a Boltzmann distribution

among the spins during the cross polarization process.

During the pulsed double resonance experiments they noted that the initial be-

haviour of the 43Ca rotating frame magnetization consisted of a small step function

accompanied by short lived oscillations of similar magnitude at a frequency Wlca,

representing the change in the energy of the 19F- 43 Ca coupling term of the dipolar

spin Hamiltonian in response to the applied 43Ca rf field. They were first observed

by Jeener et al. who noted that in the case of a strong irradiation exactly on reso-

nance, the oscillations occured at twice the Larmor frequency in the effective field [91].

These oscillations are the rotating frame analogues of those detected by Strombotne

and Hahn [92].

Using an indirect detection scheme, they also measured the T1D of the 43Ca nuclei

and obtained a value of 202 + 19 s compared to a value of 4.1 s for 19F. This appears

to indicate that the two dipolar reservoirs are not in thermal contact with each other

in the ADRF state (or that the thermal mixing time is much slower than the T1D of



the 43 Ca nuclei). The low abundance of the 43Ca spins raises questions about whether

these nuclei can actually be considered a single reservoir rather than a collection of

isolated spins. In contrast, the single value of spin lattice relaxation time observed

for different species in multiple spin systems in the laboratory frame adiabatic de-

magnetization experiment, for example in 6Li and 'Li, indicated the strong thermal

mixing between the two dipolar reservoirs in that situation [93]. In the rotating frame

relaxation experiments of Bloembergen and Sorokin on CsBr, the spin-lock fields were

not extended to the low-field case where a single relaxation time is expected, though

they did find evidence that the relaxation of the 133 Cs spins was influenced by the

dipolar coupling to the "7 Br and 81Br spins [94].

2.4 Mathematical formalism

The discussion in this section draws heavily from the treatments of Wolf [95] and

Mehring [96]. A rigorous description of the thermodynamics of spin systems has been

given by Philippot [97].

2.4.1 Basic Hamiltonians

The strongly coupled spins of a solid can usually be considered to be weakly coupled

to the non-spin degrees of freedom or the lattice. Thus the Hamiltonian of the sample

in an external magnetic field can be written as

71= s + SL + IL (2.1)

where -s represents the Hamiltonian of the completely isolated spin system, '-L the

Hamiltonian of the lattice and 1LSL the coupling between the spin system and the

lattice. In general the isolated spin Hamiltonian can be written as

s = z + jRL + liex + +RL + N FRL (2.2)



The terms in Equation (2.2) above are defined below. In defining the isolated spin

Hamiltionian we only consider the rigid-lattice (RL) contributions, as the components

due to lattice-induced motions leads to spin-lattice coupling.

-z - the Zeeman interaction of the nuclear spins with the ex-

ternal magnetic field (both static and time varying)

W7 "L  the direct dipolar interaction of the magnetic moments

of the nuclear spins

ex - the exchange-coupling Hamiltonian, a purely quantum-

mechanical interaction produced by the overlap of the

wave functions of half-integer spins (Fermi-Dirac statis-

tics)

,H.L the nuclear electric quadrupolar interaction arising from

non-spherical nuclear charge distributions of spins with

spin quantum number > 1

7"RL = the interaction between the nuclear and electronic mag-

netic moments. In substances showing electron para-

magnetism, these interactions include orbital hyperfine

coupling, electron-nuclear direct dipolar coupling, and

the Fermi contact interaction which is the origin of the

Knight shift in metals. In diamagnetic substances the

first order interaction vanishes, though the remaining

second-order interactions produce chemical shifts, and

the pseudo-exchange and pseudo-dipolar couplings due

to the indirect interaction of magnetic moments via con-

duction electrons or ion cores.

We are primarily concerned with the Zeeman and direct dipolar interactions in

spin-1/2 systems in this thesis. We also consider interactions that take place on a

time scale short compared to the spin-lattice relaxation time. Thus we can simplify

Equations (2.1) and (2.2) to give 71 = -Hs where W-s = "lz + -•L. The dipolar



Hamiltonian can be further divided into secular and non-secular components (defined

with respect to Hlz)

,_RL =_ jO)RL + (n)RL (2.3)

The Zeeman and dipolar Hamiltonians are discussed in more detail in Appendix A.

2.4.2 Single spin species

The laboratory frame

Consider a sample containing NI nuclei of a single spin species I, placed in a static

external magnetic field Bo0k. The density of nuclear spins is low enough that there

is little overlap of the spin wave functions. Thus we can apply Maxwell-Boltzmann

statistics to the nuclear spin system. Even when the spins are not in thermal equilib-

rium with the lattice, they can still be coupled together in a quasiequilibrium state,

described by a Boltzmann distribution with a temperature different from that of the

lattice. The density matrix of the system can then be written as

1
S= - exp(-7ls/kOs) (2.4)

Z = Tr{exp(-7"ls/kOs)} (2.5)

where Os is the spin temperature. In the high temperature approximation we can

replace the exponential by the first two terms of its power series expansion as the

splitting of the Zeeman energy levels is small compared to the average thermal energy

kO, yielding

S (1- (2.6)Z kOs
During spin-lattice relaxation, this temperature Os relaxes towards the lattice tem-

perature OL. In the absence of an rf field, the average spin energy is

C(BI + BI)E =< 7-Is >= Tr{a1Ts} = - C(B 2 (2.7)
Os



where C is Curie's constant and BL the local field in the laboratory frame is defined

by

B 2  Tr {(7"L)
2}

B2D "(2.8)

In this high temperature approximation, the total spin entropy is given by

S = Sz + SD (2.9)

where Sz and SD are the entropies associated with the Zeeman and dipolar systems

respectively. In the high temperature approximation we have [86]

1 C2j 1 CBI
Sz 1B SD = B (2.10)

2 02 2 02

The heat capacities of the Zeeman and dipolar systems are given by

Cz = C -B2 CD = C. B. (2.11)

BL contains both secular and non-secular terms, derived from the respective terms of

the Hamiltonian,

B2 = (BO)2 + (Bn))2. (2.12)

In order for a temperature to be established among the spins, it is necessary

that diffusion processes exist to transport the spin energy through the sample. This

diffusion can take place by pure spin diffusion due to energy conserving spin flips,

or motion-induced diffusion requiring mass transport. These diffusion processes must

operate on a time scale that is short compared to any of the interactions being studied

in order for the spin temperature concept to be valid.

The individual parts of the spin reservoirs and their interactions are illustrated in

Figure 2-1. As -Hz and _(O)RL commute, they do not interact directly, but can interact

via H(n)RL. This results in thermal mixing between H-z and _(.)RL. It is usually

possible to assign different temperatures to these sub-reservoirs during the thermal

mixing process. In contrast, - nj)RL and 7-z do not commute so any fluctuations in



Figure 2-1: The important spin-reservoirs and interactions for a single spin species in
the laboratory frame. Due to the isomorphism between the tilted rotating frame and
the laboratory frame the same picture is valid in the tilted rotating frame, with each
of the Hamiltonians replaced by its rotating frame equivalent.

one are immediately communicated to the other. Similarly (Dn )RL and 7-(O)n L do

not commute and interact instantaneously. When 7-z is large compared to H(O)RL

(in large Zeeman fields), 7 (Dn )RL is more tightly coupled to 7Hz. As H-z becomes

comparable to H(O)RL, all the sub-reservoirs are well-coupled. Note that while 7-(Dn)RL

is described as a sub-reservoir due to its non-zero average energy, it is always strongly

coupled to one of the secular reservoirs.

In a. weak Zeeman field, the thermal mixing time Tm 4 T"L and thus the three

reservoirs are tightly coupled and have the same spin temperature. When the Zeeman

fields applied become comparable to the local fields of the sample, the concept of well

defined energy levels for individual spins breaks down, and the entire system needs to

be treated together with its (21 + 1)N levels described by a common temperature Os.



In a large Zeeman field the thermal mixing time increases considerably from its

value at low field, and Tm > T2L. If Tm is long compared to the correlation time of

the fluctuations inducing spin-lattice relaxation, 7"(4 )RL cannot maintain a common

temperature with j(z + -( n )RL. There are now (21+1) different Zeeman levels, and

while 7-Ho)RL does not participate in a common temperature with 7"z, it plays an

important role in producing spin diffusion and establishing a temperature.

The tilted rotating frame

If an rf field of amplitude B1 and frequency w is now applied, we can transform the

description of the spin system into a coordinate system that is precessing with fre-

quency w about the direction of the constant Zeeman field. The rotation is described

by the unitary operator

R (wt) = exp{iwtlz}. (2.13)

The effective Zeeman field in this frame

Beff (Bo - -) , + Bli r (2.14)

is oriented at an angle 0 = arctan B( with respect to the static field.Bo - (wl/)
By applying another unitary rotation we can tilt the z-axis along the effective field,

with the corresponding rotational operator given by R,,(O) = exp{iOIr}. The re-

sulting coordinate system is called the tilted-rotating (TR) frame. Neglecting the

explicitly time-dependent terms, which are non-secular if Beff > BL, the resulting

spin-Hamiltonian is

7-pI = H + -pRL.  (2.15)

The Hamiltonians in the tilted rotating frame can be shown to be formally equivalent

to those of the laboratory frame. The time independent dipolar Hamiltonian in

Equation (2.15) is obtained from the transformation of 7-(o)RL exclusively, as the

terms corresponding to JH(,)RL become explicitly time dependent in the rotating frame

and are dropped. The TR frame dipolar Hamiltonian can be expressed in terms of



its secular and non-secular contributions (now defined with respect to "•),

HP RL_ /H (O)RL + ~p(n)RL (2.16)

Redfield's hypothesis allows us to define a density matrix in this representation

1
a = Z exp(-L I/k09) (2.17)

Z P = Tr{exp(-"P/kOP) }  (2.18)

where OP is now the spin temperature in the tilted rotating frame. Using the high

temperature approximation we find the spin energy in this frame

C(B f + B' )
E; =< H-~ >= Tr{oa /I} = - B ,c (2.19)

where BL, is the local field in the tilted rotating frame, and is defined by

B2  Tr{(RP RL)2}
Lp (M 2  (2.20)

The secular and non-secular components of this field are B(o) and B( ) While the

total local field is constant, the relative magnitude of the secular and non-secular

terms depends on the size of the off-resonance angle O.

In a weak Zeeman field where Beff < BLp, TMP P TIL the three reservoirs are

tightly coupled and the entire system is again described by a single rotating frame

spin temperature O .

When Beff > BLo, the thermal mixing time between Hp (O)RL and HPI increases

considerably from its value at low field, and TP > TRL and the two systems do not

share a common temperature.



2.4.3 Multiple spin species

In a spin system with multiple spin species, the process of cross relaxation between the

species that equilibrates their temperatures usually requires a finite amount of time.

During this process different spin temperatures may be assigned to the individual

sub-reservoirs of the entire spin system. The spin density matrix then takes the form

a = I exp{- E H(a)/kOsa} = H 1 I exp {--H('/kOsa}) (2.21)

Two spin system in the laboratory frame

Consider a sample containing NI and Ns spins of two dissimilar spin-1/2 systems I

and S with gyromagnetic ratios 7y and ys respectively, in an external magnetic field

Bok. The spin-Hamiltonian of this system is given by

S = Z1 ZS+ I +RL _ +RL s+ RLs (2.22)
I•S -- •'•I +l T ' S "T- r-DII + I-'DSS T I"-DIS

Each of the dipolar terms has secular and non-secular contributions. The non-secular

contributions of DRS contain components which commute with lzzj or with 7zs

but not both. We can thus express this non-secular Hamiltonian as

,I(n)RL _ .I(n)RL IS(n)RL + RIS(n)RL (2.23)DIS - ' DIS + ' DIS - ' DIS

The different sub-reservoirs and interations are shown in figure 2-2.

The dipolar local field of the system is defined as

2 =Tr{(UDL)2 }
B = Tr(i (2.24)

L h2 {'f{lTr(I, ) + 7)Tr(S.)}(2
(2.25)

= BLI + BLs + B2IS (2.26)

where each of these contributions can further be sub-divided into secular and non-

secular components.



Figure 2-2: The different secular and non-secular reservoirs and interaction terms
in the two spin situation. The introduction of the second spin species increases the
complexity of the spin system greatly. As a result, simplifying assumptions are usually
used in studying these systems.
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Internal equilibrium between the different sub-reservoirs of the spins is achieved

by the following five processes:

1. thermal mixing between (O)RL and 'Hlz via , RL and IS(n)RL I(n)RL

2. thermal mixing between (O)RL and lzs via ,•mss and , ;mRL + S(n)RL.

3. thermal mixing between '()RL and 'DzS via ?( and IS(n)RL + 'I(n)RL,

4. thermal mixing between j(O)RL and ltzs via (n)RL and IS(n)RL + SnR ;

and

5. cross relaxation between Hzi and 7-izs via HIS(n)RL

The characteristic times of all these processes depends strongly on the strength of the

Zeeman field. At high field these times become very long and thermal mixing and

cross relaxation are strongly inhibited. Cross relaxation is the most important of these

processes for establishing internal equilibrium. It is most effective when the energy-

level spacings of the I and S spins are almost equal. This is almost never satisfied

in high Zeeman fields due to the difference between 7y and ys. In this case separate

spin temperatures Os and 0r have to be assigned to the I- and S-spin reservoirs. In

addition, the long thermal mixing times can result in different Zeeman and secular

dipolar temperatures within each spin system. In low Zeeman fields however, thermal

mixing and cross relaxation may take place fast enough so that the entire system is

characterized by a single spin temperature. In this case the properties of the spin

system will be the same when monitored by either the I or S spins.

The tilted rotating frame

If two rf fields B1I and Bls are applied to the spin system at frequencies w1 and

ws near the I- and S-spin resonance frequencies respectively, we can transform both

systems into their tilted rotating frames, defined by the rotation operators

R(wi, ws, IO, Os) = exp{i(OII, + OsS;)} exp{it(wiI, + wsSý)}. (2.27)



where O1 and Os are the off resonance angles for the I- and S-spins respectively. The

spin Hamiltonian is

- = RL I I I+-L RS-PL IP + +L (2.28)

where all explicitly time-dependent terms have been excluded. The total time-

independent dipolar Hamiltonian in the TR frame is derived only from the secular

contributions in the laboratory frame. As in the laboratory frame, we can separate

each of the dipolar Hamiltonians into secular and non-secular terms and identify

four thermal mixing processes in addition to cross relaxation as mechanisms of tem-

perature equilibration. The Hartmann-Hahn matching condition corresponds to the

fastest cross relaxation rate, and occurs when the energy levels of I and S spins in

the TR frame are equal. The magnitudes of the I- and S-spin Zeeman fields are now

independent of each other.

The total dipolar local field in the TR frame is

Tr I ,P RL 2
B Tr{( L) D (2.29)
BLp T2 Of{Tr(I, ) + 7Tr(S, p)}

= (BLII)2 + (BPSS)2 + (BEIS)2  (2.30)

If the intensity of both applied rf fields is large, the thermal mixing and cross

relaxation processes will be slow and the I- and S-spin Zeeman and secular dipolar

reservoirs will be decoupled and can all have different temperatures. However if the

relative amplitudes of the two large rf fields are adjusted so that their Zeeman energy

splitting in the TR frame are equal, cross relaxation will be fast while the thermal

mixing processes are slow. If one of the B1 fields is reduced to a value comparable

to the local field, the Zeeman and dipolar reservoirs of that spin system may be

able to attain a common spin temperature as well. If both B1 fields are small, the

thermal mixing and cross relaxation processes may bring the entire spin system into

quasi-equilibrium at a common spin-temperature. The actual rate of thermal mixing



and cross relaxation at the low field strength will determine whether a common spin

temperature is achieved before significant spin-lattice relaxation takes place.

In the following description, it is assumed that the applied rf fields are large

compared to the secular local fields. If this is not true, the pure Zeeman order

described will actually represent a combination of Zeeman and dipolar order. Also,

the I-S coupling is considered small compared to the I-I coupling.

2.5 The ADRF experiment

The ADRF-CP experiment consists of the following steps, and is shown in figure 2-3.

1. Apply a 7r/2 pulse to the I spins (protons) and spin-lock them. This establishes

an I-spin Zeeman temperature given by

B1,I
0i = OL B(2.31)Bo

where OL is the lattice temperature, Bo is the external magnetic field, and B11 is

the spin-lock field.

2. Adiabatically demagnetize the spin-lock field to produce a state of high dipolar

order in the I spins. The I-spin dipolar temperature becomes

O= BoII (2.32)

At this point the temperature of the proton dipolar reservoir is significantly less

than that of the S-spin (phosphorus) Zeeman reservoir.

3. Turn on an S-spin rf field, and observe the polarization of the S spins. When

the S-spin rf field is turned on, the proton dipolar reservoir and the phosphorus

Zeeman reservoir are brought into Hartmann-Hahn contact with each other, so

that their temperatures begin to equilibrate. This results in a cooling of the

phosphorus reservoir and the consequent development of a polarization of the
31p spins.
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Figure 2-3: Pulse sequence for the ADRF cross polarization experiment

If the Zeeman energy of the S-spin RF is Hartmann-Hahn matched to the I-spin

dipolar energy, the two reservoirs can exchange energy, and there will be a transfer of

polarization from the dipolar reservoir of the I spins to the Zeeman reservoir of the S

spins:

Dr = Tr{(7 s)2}, (2.33)

wLII = weS (2.34)

where wE 1 = y'IB t1 . In the absence of spin lattice relaxation, the rate of change

of the I- and S-spin TR temperatures is described by the following set of coupled

differential equations [96].

dt OP TIS Op Op

d 1 _t2
S -= c2 (1 1- (2.35)

dt Of TIs 0o OI



where

eS NsS(S + 1)a = -- E= . (2.36)
WLI NII(I + 1)

a is the Hartmann-Hahn mismatch parameter, equal to unity when the fields are

matched, and ca2 is the ratio of the heat capacities of the two spins. The asymptotic

magnetization achieved in the absence of spin-lattice relaxation is

Msoo YI, a

s- (2.37)
Mos 7s 1 + c, 2 *

The maximum asymptotic magnetization occurs when a = 6-1/2. For rare S-spins

with c < 1, the Hartmann-Hahn match corresponds to a magnetization that is far

from the maximum achievable. In the case of the calcium phosphates, E - 1 (c = 3

for hydroxyapatite), so that the maximum asymptotic magnetization occurs in the

neighbourhood of a perfect Hartmann-Hahn match.

For the case of rare S spins, TIs can be expressed as [96]

Ts1 = sin2 8s Ms JZ(wes) (2.38)

where Mj2s is the second-moment of the I-S coupling Hamiltonian, and J, is a spectral

density function that describes the fluctuations of P (,n)RL, which is dominated by

I spin flips in this case. Since J,(w) is a monotonically decreasing function of w, it

appears that the fastest cross polarization would occur at Bls = 0. However, this

corresponds to a value of a = 0 which means that the asymptotic magnetization is also

zero. Thus the maximum signal represents a trade-off between the magnitude of the

asymptotic magnetization, the cross polarization time and the spin-lattice relaxation

rate.

At short times after the application of the S-spin rf, there is a transient oscillatory

exchange of magnetization between the I-spin dipolar reservoir and the S-spin Zee-

man reservoir. These oscillations are produced by the modulation of the I-S dipolar

coupling by the applied S-spin rf, and occur at the effective Larmor frequency ws of

the S-spins in the rotating frame. The decay of the oscillations is characterized by



the correlation time of the random fluctuations of Hl (n)RL. A detailed theoretical

analysis using a Mori memory function formalism has been made by Demco et al.

[98]. The transient oscillations detected during spin-lock cross polarization are due to

well-resolved dipolar couplings, and occur at the natural frequency of the I-S coupling

[99, 100, 1011.

Since the cross polarization occurs between the proton dipolar reservoir and the

phosphorus Zeeman reservoir, only one rf field is on at a time. In addition, the S-

spin rf field required to Hartmann-Hahn match the I-spin dipolar field is fairly small.

Thus, the power deposition in the sample is significantly reduced as compared to

traditional spin-lock cross polarization. This is an enormous advantage for in vivo

application.

2.5.1 ADRF differential cross polarization

The differential cross polarization or inversion recovery cross polarization technique

developed by Melchior [69] has been used to resolve overlapping spectra in heteroge-

nous, multicomponent polymer systems. The technique discriminates between over-

lapping spectra on the basis of their cross polarization times and allows selective

resonances to be nulled [71, 102]. A similar spectral technique based on differences

in T1, between overlapping species has been proposed by Zumbulyadis [103].

Differential cross polarization is performed by inverting the temperature of one of

the spin systems within a very short time, during the cross polarization process. The

subsequent evolution of the spins towards a common spin temperature may cause the

observed spins to go through zero. This zero-crossing time will be different for species

with different cross polarization times TIs.

In co~ventional spin-lock cross polarization this inversion is produced by shifting

the phase of either the I or S spin RF by 180 degrees. If this is done rapidly, the

"sudden approximation" of quantum mechanics applies, and the populations of the

spin states do not change, but the spins that were parallel to the B1 field in the

TR frame will now be anti-parallel to the field, resulting in an instantaneous change

in the spin temperature of that system from 0 to -0. The existence of a negative



spin temperature is only possible due to the existence of an upper bound to the spin

energy levels.

The symmetry between the I and S spin systems is broken in the case of ADRF

cross polarization, as the I spins are aligned along their local dipolar fields and not

along an external RF field. An rf pulse of angle ca applied to the dipolar system of a

sample containing a single spin species will result in a change in its energy given by

[86]
ED = ED 1 - sin 2 a , (2.39)

where ED and ED, are the energies of the dipolar system before and after the pulse.

The most negative energy is thus produced by a r/2 pulse and results in a dipolar

energy of -ED/2. If 0 is the temperature of the system before the pulse, the temper-

ature after the pulse corresponds to a temperature -20. This represents a significant

loss of polarization.

During the ADRF-CP experiment described in the previous section, the S-spin

Zeeman and I-spin dipolar temperatures approach a common spin temperature 0 Pm

If the phase of the S-spin rf is shifted by 180 degrees, the S-spins will now be anti-

parallel to the Zeeman field, and the S-spin temperature changed instantaneously

from 0P to -0p. The pulse sequence for the ADRF differential cross polarization

experiment is shown in figure 2-4. If the phase shift is performed after equilibration

of the spins, the spin temperatures immediately after the shift are Oom and -OomP

The value of Oom depends on the initial temperatures of the two spins before thermal

contact, and their relative heat capacities. Spin lattice relaxation during this process

will increase the value of Ocom.

The rate at which the two spin systems again approach a common spin temper-

ature is described by Equations (2.35). At short times after the phase of the rf is

shifted, there is once again an oscillatory exchange of magnetization between the

Zeeman and dipolar reservoirs as described in the previous section.
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Chapter 3

ADRF Cross Polarization

3.1 Application to bone mineral

Bone mineral contains large quantities of 31P and 1H nuclei, both of which are readily

observable, so there may be little or no gain in sensitivity in the acquisition of a

single 31P FID by cross polarization from protons. However, we have measured the

T1 of 31P in bone to be about 35-40 s at 4.7 T, while that of protons is less than

one second. Hence cross polarization can significantly reduce the data acquisition

time when collecting 31P spectra. Of greater significance to the problem of detecting

HPO'- is that it may be possible to use 1H_ 31p cross polarization to selectively detect

the HP02- and suppress the PO3- in bone mineral. The spectra of these ions overlap,

and it is essentially impossible to observe and quantify the small amount (-11-0%)

of HPO2- in the presence of an overwhelming amount of PO'- in bone, without some

form of spectral editing.

In the ADRF-CP experiment, the strength of the proton dipolar field is a property

of the material being studied. It depends on the relative abundance of the protons as

well as their spatial arrangement within the sample. Several classes of protons may

exist with varying homonuclear dipolar coupling strengths to other protons. Thus the
31P rf field required for efficient cross polarization is dependent on the material being

studied, and may also depend on the particular S-spin resonance. If the HPO- and

PO4- ions have different local proton dipolar fields, they will cross polarize at different



31 p rf intensities. Thus, we might be able to selectively cross polarize the HP02- ions

and detect them without detecting the PO'- ions. In reality, cross polarization occurs

over a range of values of the Hartmann-Hahn mismatch parameter a with varying

degrees of efficiency, as discussed in the previous chapter. Thus it is not possible

to entirely eliminate the PO'- signal in this way. In addition, it is still uncertain

whether the HP02- in bone mineral exists as individual ions scattered through the

lattice or clustered within domains. The difference between the local fields of the

PO3- and the HPO2- ions will be greater if the HP02- ions are clustered.

The HPO - groups have a shorter H-P distance compared to the H-P distance

between PO'- groups and neighbouring waters of crystallization or hydroxyl groups,

and experience a significantly stronger internuclear dipolar interaction. Consequently,

the monohydrogen phosphate ions cross polarize faster than the non-protonated phos-

phates, when the Hartmann-Hahn condition is satisfied. Thus, by manipulating the

mixing time, we have a second variable that can be optimized for the detection of

HPO2-. The use of short contact time cross polarization to distinguish between the

HP02- and PO3- has been suggested previously [68].

3.2 Methods

3.2.1 Samples

We performed experiments on powdered samples of synthetic calcium phosphates as

well as a specimen of porcine bone. The synthetic phosphates included hydroxyap-

atite (HA, Calo(OH) 2(P0 4)6), and brushite (BRU, CaHP0 4 . 2H20) (Aldrich Chem-

ical Company Inc., Milwaukee, WI). While these two compounds have been used as

representative models of the protonated and non-protonated phosphates in bone min-

eral, it is important to note that the actual phosphate moeities in bone mineral may

be quite different from those in these synthetic compounds. Experiments were also

performed on a mixture of the two containing 10% BRU and 90% HA in order to test

the ability of the pulse sequence to detect small quantities of HP02- in a large PO3-



background. The specimen of diaphyseal tibial porcine bone, obtained abattoir, was

cleaned of external soft tissue, and the specimen was allowed to dry in air, retaining

its complement of protein and lipid.

3.2.2 Experimental setup

The experiments were conducted with a two-port double resonance, transmit/receive

1H-3 1 P 4.8 cm diameter single loop surface coil in an Omega CSI (formerly General

Electric, now Bruker Instruments, Fremont, CA) NMR system equipped with an

Oxford Instruments (Oxford, UK) 4.7 T 30 cm horizontal bore magnet. The probe has

been described in detail elsewhere [68], and is a modification of the design proposed

by Cross et al. [104]. The cylindrical samples were placed in the center of the coil

to reduce the effect of the rf inhomogeneities in this first series of experiments. The

proton and phosphorus transmitter frequencies were set on resonance for a sample

of phosphoric acid. A linear ramp was used for the adiabatic demagnetization, and

a 300 ps interval introduced before the phosphorus CP mixing pulse to allow any

transients to die away. The experiment was repeated for different values of the mixing

time, ranging from 5 ps to 5 ms, as well as a range of 31P rf amplitudes. The recycle

time TR, determined by the proton T1 , was set at 2 s. No rf decoupling of the

protons was performed during signal acquisition, as this will not be possible in vivo.

An eight-step phase cycle, with spin temperature alternation, was used to remove the

nutation signal due to the 31P rf, allowing observation of the true CP signal. The

pulse sequence is shown in Figure 2-3, and the principal experimental parameters

given in Table 3.1.

3.3 Results

Each FID was baseline corrected and apodized with a 750 Hz exponential before

Fourier transformation. The amplitude and linewidth of each spectrum were then

examined as a function of the mixing time using the peak analysis routines of NMR1

(formerly New Methods Research, now Tripos, St. Louis, MO). A 1.5 kHz wide



Table 3.1: Experimental conditions for ADRF-CP spectra

Number of acquisitions
synthetic calcium phosphates 64
bone specimen 128

1H 90 degree pulse 45-70 Ips
Ramp time 50-80 ps
Recycle time

synthetic calcium phosphates 2 s
bone 1.8 s

Single spectrum acquisition time
synthetic calcium phosphates 2.25 min
bone specimen 4 min

isochromat centered on the peak was integrated to calculate the signal strength. The

spectra obtained for each sample varied with the length of the mixing time as well as

with the intensity of the 31P rf applied.

3.3.1 Brushite

The ADRF-CP sequence was first tested with brushite, since the presence of HPO'-

groups ensures that the 1H- 31P dipolar coupling is strong, and cross polarization will

be efficient. Brushite peak heights are plotted as a function of mixing time and Bls in

Figure 3-1.

At the lowest B1 field of 70 pT, no oscillations were observed, and the growth

of the brushite signal resembled a growing saturation curve. As the magnitude of

B1 was increased, transient oscillations were observed soon after the rf was turned

on. The frequency of the oscillations increased as the rf amplitude was increased. At

longer times, the oscillations decay and the saturation curve representing the true

CP signal can be observed. The maximum 31P CP signal occured for a single value

of the rf amplitude, and decreased when the rf amplitude was either increased or

decreased from this value. This results from the trade-off between the magnitude of

the asymptotic magnetization and the I-S cross polarization time Tis, represented by

the optimal value of the Hartmann-Hahn mismatch parameter a = c1/2 as discussed
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previously. For brushite, the optimal matching condition occured at a B1 field of

-280 PT or -4800 Hz. The signals did not change significantly between 1 and 5 ms.

3.3.2 Hydroxyapatite

The 31P peak height of hydroxyapatite as a function of mixing time and rf amplitude

is plotted in Figure 3-2. Once again it is possible to observe the transient oscillations

after the rf is turned on, and the variation of the oscillation frequency with rf ampli-

tude. In the case of hydroxyapatite, the most efficient cross polarization occured at

a B1 field of -60 pT or ,1100 Hz, significantly smaller than that for brushite. The

rate of cross polarization in hydroxyapatite was observed to be slower than that in

brushite, with a much smaller final cross polarization signal. An important feature

of the hydroxyapatite signal oscillation was the inversion of the phosphorus spectrum

at short contact time. This was not observed in the brushite, as the growing cross

polarization signal prevented an inversion.

3.3.3 Mixture of 10% brushite and 90% hydroxyapatite

The results from the mixture of HA and BRU were very similar to those of pure HA,

except at those rf power levels where the BRU cross polarized strongly. The differences

were particularly obvious when the oscillation passed through a null point, as can be

seen in Figure 3-3. At these points the transient signal has been suppressed and the

observed signal is derived purely from the cross polarization signal. Since the rf field

is optimally matched to the local brushite field, the efficiency of cross polarization is

high for brushite and low for hydroxyapatite. In addition, the stronger H-P coupling

in brushite leads to a smaller TIs and hence the brushite CP signal builds up faster.

Thus the signal observed at these null points is largely a brushite signal, as can be

seen in Figure 3-4.

At later times, the signal is a superposition of the hydroxyapatite and brushite

lineshapes. While the brushite signal may be larger at these times, the hydroxyapatite

signal has also increased and it is difficult to separate the two. Thus spectral selection
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is achieved at the expense of low signal strength.

3.3.4 Porcine bone

The experiments on the specimen of porcine bone revealed that the oscillations per-

sisted for much longer in the bone specimen as compared to the samples of synthetic

calcium phosphates. The 31P spectrum during the transient oscillations was observed

to be very similar to that of hydroxyapatite. However, at certain rf power levels

it was possible to isolate the presence of a broader phosphate peak, indicative of a

protonated phosphate, when the oscillation was passing through a null point.

Figure 3-5 illustrates the oscillation of the narrower unprotonated phosphate peak

in the presence of a growing cross polarization signal from the protonated phosphate,

as the contact time is increased. The normal phosphorus spectrum of bone mineral

and the spectrum of the protonated phosphate observed in the mineral are shown in

Figure 3-6. This represents the first direct NMR observation of protonated phosphates

in bone mineral under conditions compatible with in vivo application.

3.4 Discussion

3.4.1 Creation of dipolar order

The conditions for creating dipolar order in the proton spin system are different

for brushite and hydroxyapatite and may also be so for the protonated and non-

protonated phosphate ions in the mineral. As the magnitude of the local field de-

creases, it becomes increasingly difficult to satisfy the adiabatic condition, while en-

suring that the demagnetization occurs on a time scale short compared to T1ip and

T1D. Thus a relatively fast demagnetization will preserve the populations of those

protons in strong local fields, while disturbing the populations of protons in weaker

local fields, leading to a loss of order. No attempt was made to optimize the duration

or shape of the demagnetization ramp for the detection of the monohydrogen phos-

phate. As the 7r/2 pulse used was not a true hard pulse, the efficiency of creation of
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Figure 3-4: (a) ADRF-CP spectrum of brushite; (b) ADRF-CP spectrum of synthetic
hydroxyapatite; (c) ADRF-CP spectrum of a mixture of 90% hydroxyapatite and 10%
brushite with B1 equal to 270 yT detected at a cross polarization time of 280 ps, as
the oscillation passes through zero; and (d) ADRF-CP spectrum of the mixture with
B1 equal to 270 yT detected at a cross polarization time of 35 ps, when the entire
phosphorus reservoir contributes to the signal.
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Figure 3-6: (a) ADRF-CP spectrum of a specimen of porcine bone with B1 equal to
110 yT, detected at a cross polarization time of 200 Its, near a zero crossing of the
oscillation; and (b) at a cross polarization time of 90 us, when the signal is detected
near a peak of the oscillation.



dipolar order in different proton species may vary.

3.4.2 Transient oscillations

The transient oscillations are observed to occur at a frequency Wes, the Larmor fre-

quency of the S-spins in the rotating frame. The oscillations are expected to decay in

a time r characterizing the decay of the autocorrelation function of the I-spin dipo-

lar fluctuations as seen by the S-spins [98]. The magnitude of the 31P spectrum at

the peak of the first oscillation was observed to be either the largest signal in the

experiment, or very close to the maximum signal obtained after cross polarization.

This is probably due to the fact that at short times after rf is turned on, the entire

31P reservoir contributes coherently to the signal. It is therefore possible to obtain a

relatively large CP signal in a time much shorter than TIs by halting the I-S contact

at the peak of the first transient oscillation. This has previously been suggested by

Miller et al. for the transient oscillations observed in spin-lock CP due to resolved

dipolar couplings [99]. Lineshape distortions were also observed during the oscilla-

tions. This distortion occurs because different isochromats (appearing at different

frequencies in the spectrum) experience different local and effective rf fields, which

strongly influences their dynamical behaviour.

Adiabatic Remagnetization

We briefly investigated the application of an adiabatic remagnetization (ARRF) of

the phosphorus spins instead of the step application of the rf, to eliminate the tran-

sient oscillations. Figure 3-7 illustrates the results obtained for hydroxyapatite and

brushite. A slow linear ramp remagnetization was used to turn on the 31 p rf after an

ADRF of the protons.

It was possible to entirely eliminate the oscillations using the ARRF. The duration

of the ramp required is around 2 ms in both cases, while magnitude of the observed

signal was larger than that during the sudden application of the rf.



(a)

V)t-G-
Cn

a)C.

a)

a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
remagnetization ramp time, ms

(b)

C

0,
C

ca

Z
CO0,

a)

remagentization ramp time, ms
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3.4.3 Cross polarization behaviour

The cross polarization behaviour depended strongly on the magnitude of the 31P rf

and thus the Hartmann-Hahn matching condition. The rate of cross polarization of

the HP02- in brushite was seen to be significantly faster than in the PO3- in hy-

droxyapatite when the optimal matching condition was satisfied. The strength of the

H-P coupling determines the rate of the cross polarization, whereas the asymptotic

value of Ms is determined by the initial temperature of the I-spin reservoir, the rel-

ative heat capacities of the I and S reservoirs, and the Hartmann-Hahn mismatch

parameter, as shown in Equation (2.37). The presence of T1D processes in the proton

reservoir and T,, in the phosphorus reservoir can prevent the 31p signal from reaching

its asymptotic value, and eventually lead to the decay of the signal at longer times.

3.4.4 Detection of monohydrogen phosphate

The detection of HP 2- groups in the presence of a large background of PO0- has

been a primary motivation of this study. This goal is advanced by the following three

features of the ADRF-CP process that have been discussed above.

1. The signal exhibits transient oscillations of a reasonably well-defined frequency

that pass through a null point, before inverting the spectrum.

2. The Hartmann-Hahn condition is dependent on the chemical structure and en-

vironment of the spins, i.e. the local proton dipolar fields, and not just the

identity of the spin species.

3. The cross polarization rates of the two species, PO'- and HPO -, that need to

be discriminated are different.

The first step is to adjust the magnitude of the rf field to achieve an optimal

Hartmann-Hahn match for the HPO 2- ions. If the local field of the PO3 - ions is

different, these ions do not satisfy the conditions for cross polarization, and their

cross polarization efficiency is reduced. The magnitude of the rf field also determines



the frequency of the oscillations, and hence the times at with the oscillation passes

through zero.

We can then make use of the fact that the HPO4- ions cross polarize much faster

than the PO3- ions and, by controlling the mixing time, to largely suppress the PO3-

ions and observe the HPO4- ions. For example, we can observe the 31P signal at one

of the earlier null points of the oscillation. The signal observed will be due only to the

cross polarized PO' - and HPO'- ions. However, since we are observing the signal

after a relatively short time, the signal is almost entirely due to the HPO4- ions.

Observing the signal at short contact times does involve a sacrifice of signal to noise

ratio, since we detect the signal before it grows to its maximum value. ADRF-CP

represents the only feasible method of obtaining spectroscopic information on bone

mineral in vivo at present.



Chapter 4

Creating Dipolar Order

4.1 Introduction

The strength of the signal obtained at the end of the cross polarization experiment

depends directly on the degree of order in the dipolar reservoir. As noted during the

discussion in the previous chapter, no attempt was made to optimize the demagneti-

zation to create the greatest degree of dipolar order. The duration of the proton 90

degree pulse used was not short enough to be a true hard pulse for the samples being

considered. This limit on the amplitude of the proton rf field also implied that the

spin lock field was not much larger than the local fields, though the results of Slichter

and Holton appear to indicate that this is not a significant problem. While our ex-

periments were limited by the available power output of our amplifiers, increasing

the magnitude of the applied spin-lock field will also increase the rf heating in lossy

samples. Another concern is that the field inhomogeneities of the surface coil result

in a variable flip angle across the field of view of the coil, and hence the efficiency

of transfer of order between the Zeeman and dipolar reservoirs becomes spatially

dependent.

We would ideally like to find a technique that is insensitive to the B1 inhomo-

geneities of a surface coil, and does not require the application of large rf fields. We

examined the efficiency of creation of dipolar order using three variants of the ADRF

technique and the Jeener-Broekaert pulse sequence.



4.2 Methods

The techniques used in this chapter have all been suggested previously as discussed

in Chapter 2. They include:

1. a hard 90 degree pulse followed by spin-locking with a strong RF field whose

magnitude is adiabatically reduced to zero;

2. an adiabatic frequency sweep onto resonance with a strong RF field followed by

spin-locking with a strong RF field that is again adiabatically turned off;

3. an adiabatic frequency sweep onto resonance with a weak RF field;

4. a two pulse Jeener-Broekaert sequence.

The samples used were powdered samples of synthetic hydroxyapatite and brushite.

4.2.1 Experimental setup

These experiments were also performed in the 4.7 T magnet described in the previous

chapter. The probe used was a home-built, two-port, double resonance, cylindrical

resonator tuned to 1H and 31P. The key experimental parameters are outlined in

Table 4.1.

The proton 90 degree pulse was measured to be about 60 ps in the hydroxyapatite

experiment and 50-55 ps in the brushite experiment. The adiabatic demagnetization

in the first two methods was accomplished with a linear ramp from the maximum rf

amplitude to zero. The length of the demagnetization ramp was varied from 10 /s to

5 ms. The adiabatic frequency sweeps were performed with a phase roll that resulted

in an exponentially decaying frequency offset. The duration of the frequency sweep

was varied from 500 js to 10 ms, and two frequency offsets of 10 kHz and 100 kHz

were used. The interpulse duration in the Jeener-Broekaert sequence was varied from

2 ps to 75 ps for hydroxyapatite and from 2 fts to 40 ps for brushite.

An eight-step phase cycle with spin temperature alternation was used in all cases

except in the frequency sweep onto resonance with a small rf field. In that case a



Table 4.1: Experimental conditions for creation of dipolar order

Number of acquisitions
hydroxyapatite 128
brushite 32

31 p remagnetization ramp time
hydroxyapatite 3 ms
brushite 2 ms

constant 31P rf duration 200 ts
recycle time 2 s
sweep width

hydroxyapatite 40 kHz
brushite 60 kHz

dipolar time 500 ms

subtraction technique was used to eliminate the phosphorus nutation signal as spin

temperature alternation was not possible.

Detection of dipolar order was performed with an adiabatic remagnetization of

the phosphorus spins and is illustrated in Figure 4-1. A 3 ms linear ramp was used,

followed by a 200 ps duration constant RF, before the phosphorus was detected. As

the dipolar state is not in equilibrium immediately after a Jeener-Broekaert prepa-

ration, a 500 ps interval was introduced before detection. The same interval was

introduced in all experiments so as to be able to compare signal amplitudes quanti-

tatively. The use of a two-spin system simplified the detection of dipolar order, but

is likely to complicate the thermodynamics as the spin systems may exchange energy

in the demagnetized state.

4.3 Results

The data obtained were baseline corrected, apodized with a 750 Hz exponential, and

Fourier transformed. After first order phasing, the area in a 3 kHz wide isochromat

centered on the peak was used to calculate the the signal amplitude.
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Figure 4-1: Detection of proton dipolar order using an ARRF of the phosphorus spins



4.3.1 Spin lock pulse and ramp demagnetization

This technique was used in all the experiments discussed in the previous chapter.

Hydroxyapatite

The effect of varying the duration of the demagnetization ramp is shown in Figures 4-

2. The oscillation observed at short times is produced by an effective Jeener Broekaert

pulse sequence. The peak occurs at a time approximately equal to that of a 90

degree pulse, which corresponds roughly to a 45 degree pulse, since we are using a

linear ramp. At longer times a true adiabatic demagnetization is achieved, with the

maximum signal obtained with a ramp time between 1 and 2 ms. For ramp times

longer than 2 ms we can observe the effect of Tlp/T1D (or amplifier droop) which

cause the signal to decay. The amplitude of the initial oscillation is about 66 % of the

maximum signal obtained. The peak of the oscillation appears to be less sensitive to

errors in the pulse angle.

Brushite

The effect of varying the initial flip angle and the duration of the demagnetization

ramp is shown in Figures 4-3. The oscillation at short times is observed here as

well. The peak of the oscillation corresponded to the greatest degree of dipolar order

produced in brushite by any of the methods examined. While the exact reason for

this is not known, we postulate a possible explanation in the discussion. As expected,

it is observed that small angular offsets in the initial 90 degree pulse do not change

the signal significantly.

4.3.2 Adiabatic frequency sweep and ramp demagentization

The use of a large rf field does not solve the power deposition problem, but the adia-

batic frequency sweep onto resonance used to spin-lock the magnetism is insensitive

to the amplitude of the applied rf field, and overcomes the problems introduced by

the spatial inhomogeneity of the surface coil.
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Figure 4-2: (a) The variation in signal strength due to changes in the length of the
demagnetization ramp during the pulsed ADRF experiment in a sample of hydrox-
yapatite. The effect of a small angular deviation from a true 90 degree pulse is also
shown. (b) Note the presence of the oscillation at early times. The peak of the
oscillation (arrow) corresponds to the application of a Jeener-Broekaert sequence.
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Figure 4-3: (a) The variation in signal strength due to changes in the length of the
demagnetization ramp during the pulsed ADRF experiment in a sample of brushite.
The figure also illustrates the effect of small angular deviations from a true 90 degree
pulse. (b) The size of the initial oscillation is very large in brushite and represents
the most efficient method of creating dipolar order in this system.
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Figure 4-4: The effect of varying the duration of the demagnetization ramp after an
adiabatic sweep onto resonance from a frequency offset of 10 kHz, with a strong rf
field in a sample of hydroxyapatite. The initial oscillation is absent in this technique.

Hydroxyapatite

The optimal duration of the frequency sweep was found to be 1 ms from a frequency

offset of 10 kHz, for this sample. The effect of varying the demagnetization ramp

time, with this sweep time, is shown in Figure 4-4. Apart from the absence of the

oscillation characteristic of the pulse method discussed above, the shape of the curve

is essentially the same as that of Figure 4-2.

Brushite

The effects of varying both the duration of the frequency sweep onto resonance and

the demagnetization ramp time are shown in Figure 4-5. The decrease in signal with

increasing sweep times is largely due to the droop in the output of the amplifier at

longer times. The shape of the curves is very similar to those of Figure 4-3 barring

the initial oscillation.
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Figure 4-5: The effect of varying the duration of the demagnetization ramp after an
adiabatic sweep onto resonance from a frequency offset of 100 kHz. The four curves
were obtained by changing the duration of the frequency sweep. The loss of signal at
long sweep times is primarily due to the droop in the output of the amplifier.



4.3.3 Adiabatic frequency sweep with a small rf field

If the amplitude of the rf field used is less than the local field, the spins will be aligned

along their local fields at the end of the sweep onto resonance, and turning off the

rf will not change the effective field significantly. This method should ideally help to

overcome both the rf power deposition problem as well as the field inhomogeneities.

It was not possible to perform spin temperature alternation with this technique,

so a baseline signal representing the 31p nutation signal was obtained in each case

with the proton RF turned off. This baseline was then subtracted before further data

processing.

Hydroxyapatite

The length of the frequency sweep and the amplitude of the proton rf were varied as

shown in Figure 4-6. The maximum signal was obtained using a proton rf field of

; 20MT, and appeared to plateau at a sweep time of 5 ms. The increase in signal

observed at long sweep times for the nominally higher powers is produced by the sag

in the amplifier output at longer times, essentially producing a low power situation.

It was observed that a frequency offset of 10 kHz resulted in a greater transfer of

Zeeman to dipolar order than an offset of 100 kHz. This technique was optimal for

the creation of dipolar order in hydroxyapatite.

Brushite

The effect of varying the duration of the frequency sweep and the rf amplitude are

shown in Figure 4-7. The maximum signal was obtained with a proton rf field of

; 14p1 T, and reached a plateau around 7.5 ms. The data shown corresponds to a

frequency offset of 100 kHz only as no difference was found between the 10 kHz and

100 kHz offsets. It is possible that both offsets were too short for the study of brushite.

The power droop in the amplifier at higher powers is also observed, and is a major

drawback to finding the magnitude of the most efficient sweep field.
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Figure 4-6: The effects of varying the duration of the frequency sweep and the am-
plitude of the rf are illustrated. The initial frequency offsets were a) 10 kHz and b)
100 kHz. The sweeps from an offset of 10 kHz were more efficient than those from
100 kHz.
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Figure 4-7: The effects of varying the duration of the frequency sweep and the am-
plitude of the rf are illustrated. The frequency offset used here is 100 kHz, though no
difference was detected between the experiments performed with frequency offsets of
10 kHz and 100 kHz in brushite. The power droop in the amplifier can be observed
at higher rf fields.



4.3.4 Jeener-Broekaert sequence

This technique represents the fastest method of producing dipolar order and is im-

portant in samples with short dipolar spin-lattice relaxation times TiD. The lack of

adiabaticity is compensated for by the absence of spin-lattice relaxation effects. While

the length of the first pulse was varied, the length of the second pulse was always

adjusted to be half the duration of the first. The signals obtained with this method

were fairly close to the largest observed, even though the theoretical efficiency is only

about 52 % of that of the ADRF techniques. The maximum signal should be attained

when the second pulse is applied at the steepest portion of the fid.

Hydroxyapatite

The angle of the pulses and the inter-pulse duration were varied as shown in Figure 4-

8. It is interesting to note that the maximum signal occured at different inter-pulse

intervals for each length of the initial pulse used, indicating lineshape variations with

pulse width. The largest signal was obtained when a 90-45 degree pulse combination

was used with a very short inter-pulse duration of the order of 10 us. The signal

decays rapidly as the inter-pulse spacing is increased. The 40 ls pulse appears to be

close to a hard pulse for hydroxyapatite.

Brushite

The effect of varying the pulse angle and the inter-pulse spacing is shown in Figure 4-

9. Once again the maximum signal was obtained when a 90-45 pulse combination was

used, in this case with a shorter inter-pulse duration of about 5 ps. None of the pulse

durations used was hard in the brushite experiment, as can be seen from the steep

slope of the curves in all cases. The signal again decays rapidly as the inter-pulse

spacing is increased.
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Figure 4-9: The variation in signal with pulse angle and inter-pulse spacing during
the Jeener-Broekaert experiment in brushite.

4.4 Discussion

The relative signal strengths obtained in hydroxyapatite with each of the techniques

are shown in Table 4.2. The adiabatic sweep onto resonance with a small RF field

was significantly better than any of the other techniques. This advantage is likely

to be magnified further when we perform the experiments on a surface coil as the

adiabatic sweep onto resonance is insensitive to RF inhomogeneities, while the pulse

Table 4.2: Relative degree of dipolar order creation in hydroxyapatite

Method
r/2 pulse - SL - demagnetize

sweep onto resonance with large B1-
demagnetize
sweep onto resonance with small B1
Jeener-Broekaert sequence

relative signal strength
60
50

100
71



Table 4.3: Relative degree of dipolar order creation in brushite

Method relative signal strength
7r/2 pulse - SL - demagnetize 100
(effective Jeener-Broekaert)
sweep onto resonance with large B1- 76
demagnetize
sweep onto resonance with small B1  56
Jeener-Broekaert sequence 91

methods are not. The ability to perform these experiments at low RF power levels

improves our chances of applying them in vivo.

The results obtained with brushite are shown in Table 4.3. The 90 degree pulse fol-

lowed by a demagnetization of the spin-lock field was the most efficient method here,

though the maximum signal was obtained during the Jeener-Broekaert-like pulse. The

frequency sweep methods did not fare as well in brushite, though their relative per-

formance will probably improve in a surface coil. It is possible that an even shorter

frequency sweep time might improve the efficiency for of the ramp demagnetization

method. The two pulse Jeener-Broekaert sequence was still a fairly efficient technique

of transferring order. The poor performance of the ADRF techniques is puzzling. It

is possible that thermal mixing between the Zeeman and dipolar reservoirs is respon-

sible, resulting in an increase in entropy.

The durations of our 90 degree pulses were too long for them to be considered hard

pulses. The effect of this was mainly observed in the Jeener-Broekaert experiment.

The observation that the maximum signal occured at different inter-pulse durations

for different pulse lengths indicates that the shape of the fid was different in each

case.

If the length of the frequency sweep or the demagnetization time starts to approach

the dipolar spin-lattice relaxation time, the efficiency of the corresponding technique

will be reduced. We have measured the T1D of brushite to be 38 ms while that

of hydroxyapatite was 13 ms. Thus this restriction is much more important in the

case of hydroxyapatite than brushite. The frequency sweep followed by the ramp



demagnetization was the most susceptible to TiD effects due to the length of time

taken to produce the dipolar ordered state.

A number of clarifications are required in interpreting the comparative results

shown above.

1. The ramp demagnetization is probably not the best shape for the adiabatic

demagnetization. Physical considerations suggest that an exponential shape

will be more efficient.

2. The nature of the frequency sweeps to resonance were also not investigated in

detail. The shape, duration and offset of the sweep can probably be optimized

further to improve the performance of these techniques.

3. The 45 degree pulse used for the second pulse in the Jeener-Broekaert sequence

is no longer the most efficient in two spin systems, especially if the heteronuclear

dipolar coupling is comparable to the homonuclear coupling.

4. The droop of the amplifier output for long pulses at the higher power levels

prevented a proper evaluation of the sequences in these parameter ranges.

Further studies are required to investigate the dependencies in greater detail.



Chapter 5

ADRF differential cross

polarization

5.1 Introduction

The problem of spectral selection in low resolution solid state spectroscopy still poses

many interesting challenges. As the results in Chapter 3 indicate, it is possible to use

differences in cross polarization time in combination with the zero crossings of the

transient oscillation to achieve spectral selectivity. However, the low signal intensities

that result are a significant obstacle if data acquisition time must be limited. In an

effort to improve spectral selection and signal intensity, an ADRF-CP variant of the

differential cross polarization (DCP) technique has been developed.

5.2 Methods

The experiments were conducted in the 4.7 T magnet described earlier. In the first

experiment, a step rf pulse was applied to the 31P spins following an ADRF of the

protons, and the spins allowed to cross polarize. After a variable forward cross polar-

ization time, the phase of the rf was shifted by 180 degrees to invert the temperature

and reverse cross polarization initiated, as illustrated in Figure 2-4. Experiments were

performed on powdered samples of synthetic brushite and hydroxyapatite, as well as



Table 5.1: Experimental conditions for surface coil ADRF-DCP spectra

number of acquisitions
synthetic calcium phosphates 64
bone specimen 128

1H 90 degree pulse 64 tus
demagnetization ramp time 80 ps
recycle time

synthetic calcium phosphates 2 s
bone 1.7 s

a specimen of porcine bone, using a two-port double-resonance surface coil [68]. Each

spectrum obtained represents a unique combination of forward and reverse cross po-

larization times. The principal experimental parameters are outlined in Table 5.1.

During the study of the bone specimen, the magnitude of the B, field was also varied.

In the second experiment, an adiabatic remagnetization (ARRF) of the 31P spins

was performed to a constant rf field. After a short period of constant rf, the phase of

the rf was shifted by 180 degrees and the reverse cross polarization of the spins studied.

The pulse sequence is illustrated in Figure 5-1. This experiment was performed

on samples of hydroxyapatite and brushite. The hydroxyapatite experiment was

performed with the surface coil under the conditions outlined in Table 5.1. A 2 ms

31P linear ramp was used to remagnetize the spins, after which the rf was held constant

for 500 pus before the temperature inversion. The brushite experiment was performed

with a cylindrical double-tuned resonator as the surface coil had been modified for

other experiments. The length of the remagnetization ramp was 2.5 ms and the

duration of the constant rf period before temperature inversion was 100 ps. The

main experimental details of the brushite experiment are given in Table 5.2

The ordered dipolar state was created by applying a 90 degree pulse, spin locking

the magnetization and linearly ramping the magnitude of the rf field to zero. Spin

temperature alternation was used to remove the nutation signal.



Table 5.2: Experimental conditions for resonator ADRF-DCP spectra

number of acquisitions
1H 90 degree pulse
demagnetization ramp time
recycle time

900 pulse

spin lock and demagnetize B,,

change rf phase
by 180 degrees

adiabatic I

forward
mixing

reverse
mixing

Figure 5-1: Pulse sequence for ADRF differential cross polarization following ARRF
of the phosphorus
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5.3 Results

Each FID was baseline corrected and apodized with a 750 Hz exponential before being

Fourier transformed. An isochromat of spins 3 kHz wide and centered around the

peak was integrated to calculate the signal intensity.

5.3.1 Brushite

In the first series of experiments with the step rf, a number of combinations of forward

and reverse cross polarization times were used to study the dynamics of the spins

under this pulse sequence. The results for brushite are shown in Figure 5-2. The

usual forward cross polarization signal is shown extending out to a contact time of

5 ms. The figure also shows the effect of inverting the 31p temperature at 20 Ps,

60 ps, 150 ius, 750 ps and 2 ms after the rf is first turned on. It is observed that the

inversion of the signal is stronger if the phase is shifted early in the cross polarization

process, before the 31P and 1H can equilibrate completely. Transient oscillations were

observed immediately following the temperature inversion in every experiment. When

the temperature was inverted at 2 ms, the asymptotic value of the curve obtained

was very close to zero, indicating that the ratio of the heat capacities of the 1H and

31P spins is close to unity.

5.3.2 Hydroxyapatite

The response of the hydroxyapatite spin system to the step rf experiment is il-

lustrated in Figure 5-3. It shows the effect of inverting the temperature at 40 Ps,

125 ps, 400 ps, 1 ms and 2 ms after the rf is first turned on. Once again the inversion

of the signal is stronger if the phase is shifted early in the cross polarization process

before equilibration proceeds very far. The signal was only observed to pass through

zero if the phase was shifted during the early part of the transient oscillation. The

slope of the oscillation immediately after the inversion of the phase is the negative

of the slope just before the inversion. From the magnitude of the asymptotic signal

after inversion, it appears that the heat capacity of the 31P spins in hydroxyapatite
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Figure 5-2: (a) The effect of inverting the 31P phosphorus temperature at various
times during the cross polarization process in a sample of brushite. The magnitude
of the rf field is - 200 LT. (b) The early part of the curve is expanded to show the
effect of inverting the phase during the transient oscillation, before the system can be
described by a temperature.
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Figure 5-3: (a) The effect of inverting the 31P phosphorus temperature at various
times during the cross polarization process in a sample of hydroxyapatite. The mag-
nitude of the rf field is ; 180 1 T. (b) The early part of the curve is expanded to show
the effect of inverting the phase during the transient oscillation, before the system
can be described by a temperature.



is significantly larger than that of the 1H.

5.3.3 Porcine bone

The response of the bone specimen to the step rf field is shown in Figure 5-4 for three

different field intensities of 130 MT, 200 yT and 320 yT. The strongest cross polariza-

tion takes place at the lowest field. The response of the 31p spins to the temperature

inversion is also the greatest in the 130 yT field, indicating strong thermal contact

between the two systems. We can observe the change in the heat capacity of the 31p

spins as the strength of the applied rf field is changed. At 320 PT there was a very

small response to the phase change after the initial oscillation.

Figure 5-5 shows the series of spectra obtained when the phase is inverted 60 Ps

after the rf is turned on. There is a strong oscillation before the asymptotic signal

can be observed. Note the change in shape of the spectra at 1 ms, 2.5 ms and 5 ms.

The linewidths obtained from a Gaussian curve fit to the spectra at these times are

4450 Hz, 3400 Hz and 3000 Hz respectively. The broad spectrum at a 1 ms reverse

cross polarization time is indicative of the presence of HPO'- groups in the bone.

Figure 5-6 allows direct comparison of the spectra just before the phase shift (lw =

2300 Hz) and after 1 ms of reverse cross polarization (lw = 4450 Hz).

5.3.4 Phosphorus rf field strength

In this second series of experiments a linear ramp remagnetization was performed on

the phosphorus spins to different maximum rf field strengths. After a brief interval

during which the rf was kept constant, the rf phase was shifted by 180 degrees while

the magnitude was kept fixed.

The results obtained with brushite are shown in Figure 5-7 for two values of

B1, 100 pT and 300 pT. Only 16 acquisitions were averaged per spectrum due to

time constraints. It can be seen that while the magnetizations at the end of the

remagnetization ramp are very similar (60% for 100 pT and 67% for 300 pT), the

two cases diverge after the temperature inversion. In the case of the 300 pT field, it
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Figure 5-4: The effect of inverting the 31P phosphorus temperature at various times
during the cross polarization process in the bone specimen. The three rf field strengths
are a) 130 yT, b) 200 ,T, and c) 320 pT.
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Figure 5-5: The spectra of porcine bone obtained at different reverse cross polarization
times-indicated on the figure-after a forward cross polarization time of 60 Ps. The
rf field strength is 130 jT.
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Figure 5-6: The spectrum of porcine bone obtained at (a) a forward cross polar-
ization time of 60 ps, and (b) after an additional 1 ms reverse cross polarization.
The linewidth of the best Gaussian fit is 2300 Hz for spectrum (a) and 4450 Hz for
spectrum (b). The rf field strength is 130 yT.
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Figure 5-7: The effect of inverting the phase after an adiabatic remagnetization of
the "1P spins of brushite to maximum fields of 100 yT and 300 yT.

is easy to see that the 31P and 1H reservoirs are either no longer in contact with each

other, or that the heat capacity of the 31P spins has increased to the point where it

is relatively unaffected by the proton system. There is a transient oscillation of the

magnetization, but the asymptotic value of the signal does not change. In contrast,

with a 100 pT field the 31P spins respond very strongly, with the magnetization

tending towards zero as the spin temperatures of the 1H and 31P systems equilibrate.

The absolute magnitude of the transients is similar in both cases.

The results of the ramp remagnetization experiment on hydroxyapatite are shown

in Figure 5-8, and closely parallel those of brushite. For a B1= 70 PzT there is a

strong response to the change in the rf phase, while for the 500 pT field, there is no

significant change in the signal after the transient oscillation. The artifactual straight

line between 1 and 2 ms is due to the absence of data points in this interval.
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Figure 5-8: The effect of inverting the phase after an adiabatic remagnetization of
the 31P spins of hydroxyapatite to maximum fields of 70 ftT and 500 yT.

5.4 Discussion

5.4.1 Transient oscillations

The sudden disequilibrium between the 1H and 31p spins produced transient oscil-

lations in all our experiments. These oscillations occur after a discontinuous change

in the Hamiltonian of one of the two spin systems. The presence of these transient

oscillations makes it difficult to predict the zero-crossing of the signal based on the

cross polarization time TIs alone, as is usually done in conventional DCP experiments.

The selection of an appropriate combination of forward and reverse cross polarization

times to achieve spectral selection is therefore no longer straightforward task.

5.4.2 Spin calorimetry

As long as the experiments are conducted in a time short compared to the spin-

lattice relaxation times T1D and TI, of the sample it is possible to make quantitative



calculations of the relative heat capacities of the two spin systems. In addition, as

the heat capacity of the 31P spins depends on the size of the rf, it should also be

possible to find the strength of the effective proton local field of the sample and to

measure the effective number of protons in contact with each phosphorus nucleus in

bone mineral, thus providing some information on the local ordering in the system.

5.4.3 Thermal contact

The adiabatic remagnetization experiments show that it is possible to break thermal

contact between the Zeeman and dipolar reservoirs by increasing the strength of the

rf sufficiently. This is expected as the thermal mixing and cross relaxation rates

become very slow as the rf field in increased to a value much larger than the local

fields. By varying the size of the applied rf field the interaction of these reservoirs

can be examined over different regimes.



Chapter 6

Probe design

6.1 Introduction

The cross polarization experiments described in this thesis require irradiation of the

samples at two frequencies, hence necessitating the use of a double resonance probe.

The double resonance probe described here will be used for a number of experiments in

the 4.7 T magnet, including in vivo studies on small animals. The probe was designed

so that modular coils of different geometries may be interchanged by simply plugging

the unit into a base which contains the variable tuning and matching capacitors for

each port. This allows us to use the same set of high power variable capacitors,

which are fairly expensive, with a variety of coils. In addition, this arrangement

will allow us to perform most of the preparations outside the magnet where space

constraints are not a problem, and to just slide the entire apparatus in when ready.

The implementation of this modular design should not compromise the mechanical

strength of the probe.

While the current experiments do not require simultaneous irradiation at the two

frequencies, other experiments that we plan to perform do, requiring that the two

ports are well isolated from each other. The most critical performance criterion is the

efficiency of the low frequency channel that is used to detect the NMR signal. Poor

performance in the high-frequency channel can be overcome by increasing the power

output of the amplifiers, while the isolation can be improved with the use of external



filters.

6.2 Probe construction

The probe consists of a large 19.1 cm diameter, 162.6 cm long, acrylic cylinder that

just fits into the bore of the magnet. A 91.4 cm long cutaway section on the side

of the cylinder permits easy access to the inside for moving the animal in or out,

or changing the coil unit. The base of the circuit containing the tunable capacitors

is located 50.8 cm from one end of the cylinder. The capacitors are mounted on a

semicircular printed circuit board that is mounted within the bore of the cylinder.

The high frequency port is in a series-tune, parallel-match configuration, while the low

frequency port is configured in a parallel-tune, series-match arrangement. Presently

two flexible RG-9 coaxial cables with type-N connectors connect these capacitors

to the external rf circuitry. This will eventually be replaced by rigid coaxial cable

running from the capacitors to an end-panel at the edge of the cylinder, on which

connectors will be mounted. Long acrylic tubes attached to the tuning and matching

capacitors also extend out to the edge of the probe. They will later be attached

to dials mounted on the end-panel. These dials will allow the tuning and matching

capacitances for each coil to be recorded, and thus allow quick retuning when the

coils are changed. A sketch of the apparatus is shown in Figure 6-1.

The coil mount uses the plastic inserts of Amphenol series MS 3106A-24-10 con-

nectors, with only three of the seven pins used, one for each channel and a common

ground path. We found that this connector provided sufficient rigidity and strength

that no additional support was needed for the coil. The variable capacitors for the

high and low frequency ports were shielded from each other with grounded copper

foil in oider to reduce the crosstalk between the two ports. This is not an ideal ar-

rangement as it is susceptible to eddy currents if pulsed gradient fields are applied.

We will be exploring alternative shielding arrangements in the future.
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Figure 6-1: A sketch of the constructed probe

6.3 Coils

Two coils have been built for use with this probe, a surface coil and a cylindrical

resonator.

6.3.1 The surface coil

The surface coil was built using a novel double resonant circuit that is described in

detail here. It uses a generalized approach to two-port double resonant circuit design.

Circuit Design

The circuit configuration is based on a six-sided bridge with one branch shorted out in

order to provide a common ground to both ports. We decided to try this configuration

when we noticed that several two-port double resonance circuits are based on a four-

sided bridge [104, 105, 106, 107, 108, 109, 110]. The generalized branch diagram of

the circuit is shown in Figure 6-2. We can use Kirchoff's current and voltage laws to



Figure 6-2: Schematic branch diagram of the double resonance circuit

write down the impedance matrix of this circuit.

= 2.f (6.1)

Vl Zi Z1 1 Z1 2 Z 1 3 Z1 4

2= V2  Zz 21  22  23  24  (6.2)
V z =(6.2)

v3 i3  Z3 1 Z3 2 Z 3 3 234

V4 J4 Z4 1 Z4 2 Z 4 3 Z4 4

The exact expressions for the impedance parameters zij in terms of the branch

impedances are straightforward and are not presented here. We selected ZL as the coil

inductance, as it is the balanced element of the bridge. All the other elements were

chosen to be capacitors, except Z1 which was allowed to take on arbitrary values.

The resulting impedance matrix Z was inverted to obtain the admittance matrix

Y = Z - 1. The high frequency (HF) resonance condition is established by setting



the imaginary component of the current at the high frequency port to zero when the

circuit is excited at that port, or

Im{y11 } = 0 w = wHF. (6.3)

In order for the low frequency port to be isolated from the high frequency port during

high frequency excitation, we set

Y41 = 0  W = WHF. (6.4)

Similarly, for the low frequency resonance and isolation conditions we have

Im{y 44} = 0 w = wLF. (6.5)

Y41 = 0 W = WLF. (6.6)

The matrix inversion was performed with the symbolic mathematics package

Maple, from the University of Waterloo. The conditions shown above lead to the

following constraints on the branch impedances.

1. The impedance Z1 is inductive at the low frequency and capacitative at the high

frequency.

2. The high frequency isolation condition is

2 C2C3
OHFLs(C3 + C5)(C2 + C4) = C2 + C3 + C4 + C5 + (6.7)

3. The low frequency isolation condition is

WLFLs(C3 + C5 )(C 2 + C4) = C2 + C3 + C4 + C5 - W C2C3. (6.8)



4. The high frequency resonance condition is

(Cl + cOHF)(C2 + C + 4 + C5 ) + 2(C3 + C4 + c5 ) =

WHF(C1 + HF)(3 + C5)(C2 + C4) + WHFLsC2C4(C3 + C5). (6.9)

5. The low frequency resonance condition is

C2 + C + C4 + C5) + WFLILS(C2 +4) [CTHF(3 + 5) +C35] =

WFL1 [(C3 + LF)2 + C4 + C5) + cLFc] +

oWFLS(C2 + C4)(C3 + C5). (6.10)

Circuit simulations

The circuit design was then simulated using the software package P-SPICE, a com-

mercially available version of Berkeley SPICE for the IBM-PC. The software package

has a graphical interface that automatically generates a net list from the circuit that

is drawn by the user, making it much easier to use SPICE. The circuit schematics

used in the simulation are shown in Figure 6-3.

The calculated values for the circuit elements were put into the simulation and the

circuit was tested from 20 MHz to 250 MHz at both ports. The simulation package

allows for easy testing of the circuit as various parameter values are changed. It was

not possible to simulate an ideal circuit since SPICE requires that every node in the

circuit have a dc path to ground so that a dc bias point can be found. This was done

by placing 10 GO2 resistances in parallel with those capacitors that did not have a

parallel dc path. This did not affect the calculations significantly here. We tested the

circuit under conditions of sample loading, as well as with stray capacitances. Sample

results of such a simulation are shown in Figure 6-4.

The simulations could, however, only provide proof of the general validity of the

circuit design and did not help very much with finding correct values for the actual

circuit construction. The introduction of stray capacitances and the strong depen-
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Figure 6-3: The P-SPICE representation of the double resonance circuit, during the
simulation of a) the excitation of the high frequency port; and b) the excitation of
the low frequency port. Rpar, representing the sample losses in this case is a variable
parameter that can be varied easily.



dence on the actual physical construction of the coil make it very difficult to obtain

more than a ballpark estimate of the actual component values needed.

Physical realization

The surface coil being built for the in vivo studies needs to have a diameter of at

least 7.5 cm in order to achieve the penetration required to reach the limb bones

or vertebrae of a small animal. An 8.9 cm diameter surface coil was etched on a

printed circuit board, to provide coil rigidity as well as keep its inductance to a

minimum. Finding the optimal capacitance values required a few iterations and

required a compromise between optimizing the coil performance at the two frequencies

and ensuring sufficient isolation between the two ports during rf irradiation.

The isolation between the two ports of the coil once it was mounted in the probe

was 14 dB at 81 MHz and 21 dB at 200 MHz. The ninety degree pulses obtained

were 425 Its at 81 MHz and 250 ps at 200 MHz, with about 450 W power (1H and

31P) available at the probe. The previous 4.8 cm diameter surface coil has 90 degree

pulses of 30 Ius and 60 ,ps at 81 MHz and 200 MHz respectively. As the diameter of

the new surface coil is 1.85 times larger than that of the old coil, a scaling of the pulse

lengths of the old coil to the larger size gives us expected 90 degree pulses of 103 ips

and 206 ,ps at 81 MHz and 200 MHz. These long pulses indicate that the circuit

performance needs to be optimized further. However, the large effective volume of

this coil will probably necessitate the use of even higher powered amplifiers if short

pulses on the order of 25 its are required.

6.3.2 A double tuned resonator

In order to test the modularity of the probe design, a second plug-in coil, a double-

tuned resonator, was designed. Double-tuned resonators have been discused in detail

by Hecke et al. [111]. The design of this double-tuned 2.5 cm diameter, 7.6 cm long

cylindrical resonator was suggested to us by Dr. Cory. The coil was built to be

relatively proton-free in order to eliminate the background signal while performing
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Figure 6-4: Simulating the response to a sinusoidal input voltage of frequencies in
the range from 20 MHz to 250 MHz. The current through the sample coil is shown
as a) the high frequency port is excited; and b) the low frequency port is excited for
a sample resistance of 0.1 Q
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solid state experiments on protons. The two ports were tuned to the 1H and 3 1 p

frequencies respectively after the the coil was inserted into the base with the variable

capacitors. The isolation between the two ports was 14.5 dB at 81 MHz and 30 dB

at 200 MHz. The 90 degree pulses obtained at maximum power was 50 ps at both

frequencies. All the experiments of chapter 4 were performed with this coil.

The ability to interchange coils of different designs and geometries with the same

probe base demonstrates the success of this design.
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Chapter 7

Summary and Conclusions

This thesis has explored the applicability of the solid state NMR technique of ADRF

cross polarization to the study of calcium phosphates and bone mineral under condi-

tions that are largely compatible with in vivo application. The development of true

in vivo techniques to study bone mineral chemistry would contribute greatly to our

understanding of mineral dynamics and could have significant clinical implications

in the evaluation of treatments for metabolic bone diseases as well as the status of

calcium phosphate cements and implants.

ADRF Cross Polarization

ADRF cross polarization between the protons and phosphorus occurs when thermal

contact is initiated between the proton spin system, which is initially prepared in a

state of dipolar order, and the phosphorus spin system, causing their temperatures

to equilibrate. The reduction in the temperature of the phosphorus reservoir is then

detected as an observable NMR signal. The polarization transfer is mediated by the

heteronuclear dipolar coupling between the spins, being faster for strongly coupled

spin systems and slower for weakly coupled systems. As the dipolar coupling is

strongly dependent on the internuclear distance between the two spins, the rate of

cross polarization is well correlated with the average internuclear distance between

the two species in the sample, when the energy levels of the two spins are matched.

The application of the phosphorus rf initiating the polarization transfer results
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in transient oscillations between the two systems at short times. These oscillations,

which are produced by the rf modulation of the proton-phosphorus dipolar coupling

Hamiltonian, occur approximately at the rotating frame effective Larmor frequency

of the phosphorus spins. The asymptotic phosphorus signal observed depends on the

relative magnitudes of the proton local field and the phosphorus rf field, the heat

capacities of the two spin systems, and their spin-lattice relaxation times.

Applications to the calcium phosphates and bone mineral

1H-3 1P ADRF cross polarization with a surface coil was used to study powdered sam-

ples of synthetic hydroxyapatite and brushite, and a specimen of porcine. The cross

polarization was observed to be faster in brushite than in hydroxyapatite. This is

expected as as brushite contains monohydrogen phosphate groups while hydroxyap-

atite contains non-protonated phosphate groups. Optimal cross polarization occurred

at a phosphorus B1 field of ; 280 yuT for brushite and ? 60 yT for hydroxyapatite.

It was possible to suppress the hydroxyapatite and observe the brushite signal in a

sample containing 90% hydroxyapatite and 10% brushite, by applying the optimal rf

field for brushite (e 270 pT) and detecting the signal during a zero crossing of the

transient oscillation. At early times the brushite cross polarization has grown signif-

icantly compared to the hydroxyapatite, due to its shorter cross polarization time.

We then applied this procedure to the specimen of porcine bone and were able to

suppress the dominant non-protonated phosphate in the mineral and directly observe

the protonated phosphate using an rf field of ; 110 ptT.

The observation of the signal at short cross polarization times helps us achieve

spectral selectivity at the expense of signal strength. This loss of signal strength

complicates the application of the technique in vivo. The spectral suppression of

the non-protonated phosphate is also incomplete as only the transient component is

nulled, while the growing cross polarization signal is still present, though it is small

at short contact times.
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Creation of dipolar order

The final temperature of the phosphorus system, and hence the magnitude of the fid,

is dependent on the initial temperature of the proton dipolar system. In addition, the

B1 inhomogeneities of a surface coil result in spatially variant flip angles when pulse

techniques are used and hence produce spatial variations in the proton dipolar state.

We examined three ADRF techniques and the Jeener-Broekaert sequence to produce

this dipolar ordered state in order to improve signal strength and to reduce the effect

of the B1 inhomogeneities.

The first ADRF method, used in the above cross polarization studies, used a 90

degree pulse followed by spin-locking and a linear ramp demagnetization of the am-

plitude of the rf. The second used an adiabatic frequency sweep onto resonance with

a strong rf field to create a spin-locked state, and a linear ramped demagnetization

of the amplitude of the field. The final ADRF technique used an adiabatic sweep

onto resonance with an rf field whose magnitude is small compared to the local field

of the protons. An exponential phase roll was used to create the frequency sweeps

onto resonance. The four methods were studied in samples of hydroxyapatite and

brushite, and their relative efficiencies compared.

The adiabatic sweep onto resonance with a weak rf field was the most efficient

technique in the study of hydroxyapatite, while the 90 degree pulse followed by spin

locking and ramp demagnetization in a time similar to the duration of the 90 de-

gree pulse, in effect a Jeener-Broekaert sequence, was the most efficient method for

brushite. The poor performance of the ADRF techniques in brushite is puzzling and

might be due to thermal mixing between the dipolar and Zeeman reservoirs during

the demagnetization, leading to an increase in the entropy of the system. Brushite

contains two distinct classes of protons with different local fields and thermal mixing

between these reservoirs could be the source of the irreversibility. The use of an adi-

abatic frequency sweep followed by a ramp demagnetization is the most sensitive to

T1D effects as it takes the longest time to complete. When applying long pulses at

higher rf powers the output of our amplifiers drooped, leading to inconclusive results.
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ADRF differential cross polarization

A differential cross polarization experiment was performed with the ADRF technique

by shifting the phase of the 31P rf by 180 degrees during the cross polarization process

to invert the temperature of the spins. Differential cross polarization uses differences

in the cross polarization times (Tis) of spectrally overlapping species to selectively

null one species and isolate the other. After the temperature inversion, the phase

of the phosphorus may invert as it equilibrates again with the proton spin system.

The time at which the zero crossing occurs, before the inversion of the phase of the

observed signal, depends on Tis. Thus by observing the signal at the zero crossing of a

particular species, it should be possible to selectively eliminate it from the spectrum.

Experiments were performed on samples of hydroxyapatite, brushite and a speci-

men of porcine bone. It was possible to invert the phase of the observed phosphorus

signal if the temperature inversion was performed before the two spins had equili-

brated. However, the temperature inversion produced transient oscillations between

the proton and phosphorus reservoirs, complicating the spectral selection. When the

inversion was performed after temperature equilibration had taken place, the magni-

tude of the final signal was reduced significantly and did not invert, indicating that

the heat capacities of the protons and phosphorus systems are comparable to each

other. On inverting the temperature with an rf field much stronger than the local

fields, there was no noticeable change in the phosphorus signal after the transient

oscillations, indicating a break in the thermal contact between the two spin species.

It is possible to perform spin calorimetry experiments by changing the time at

which the phosphorus temperature is inverted, and thus obtain the relative heat

capacities of the two spin systems. Changing the amplitude of the phosphorus rf also

changes the rate at which the two systems are able to equilibrate. Thus we should

be able to study the behaviour of these spins across a wide range of conditions and

probe their dipolar states.
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Probe design

A two-port double resonance probe has been built for experiments in a 4.7 T 30 cm

diameter horizontal bore magnet. The probe contains high-power variable capacitors

for tuning and matching the two ports, with the high-frequency port configured in

a series-tune, parallel-match arrangement, and the low-frequency port in a parallel-

tune, series-match arrangement. Different coils may be plugged into this base using

an Amphenol connector, allowing the same variable capacitors to be used with coils

of different design, configurations, and even for the study of different nucleii. The

probe can be used for small animal experiments and allows all the preparations to be

made outside the magnet.

Two coils were built for this probe, a large 8.9 cm diameter surface coil using a

novel circuit design and a cylindrical resonator. It was possible to tune and match

both coils and aquire NMR spectra using the modular arrangement. The surface coil

had 14 dB isolation between the two ports at 81 MHz and 21 dB at 200 MHz, while

the resonator has 14.5 dB isolation at 81 MHz and 30 dB at 200 MHz. The 90 degree

pulses for the surface coil were 425 ps at 81 MHz and 250 ps at 200 MHz, and 50 Ps

at both frequencies for the resonator. While the performance of the surface coil can

probably be improved, it will be necessary to drive the coil with a more powerful

amplifier in order to reduce the 90 degree pulses significantly.

Future work

This thesis has studied the application of the ADRF cross polarization technique to

calcium phosphate samples and bone mineral. Improvements in signal strength and

spectral selectivity were suggested in the studies of the creation of dipolar order and

the development of an ADRF differential cross polarization technique. Further work

is required in demonstrating the in vivo applicability of the technique.

The samples used so far in the ADRF-CP experiment have been small samples

placed in a relatively uniform portion of the B1 field of the surface coil. The effect of

the B1 inhomogeneities will be compounded when large samples are used, especially
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if they extend out of the field of view of the coil. It is unlikely that we will observe

a well resolved oscillation frequency in this case. The broad distribution of oscilla-

tion frequencies will appear as an oscillation at the central frequency but will damp

rapidly. Thus it will not be possible to use a zero crossing of the oscillation to sup-

press the PO3- signal, and other techniques will be neccesary to improve the spectral

selectivity. The low signal strength is also a problem. We can use an adiabatic re-

magnetization of the phosphorus spins to improve the signal strength, but in doing so

we allow all phosphate species to cross polarize efficiently and lose spectral selection.

This total phosphorus signal could be used to measure bone mineral content as has

been previously suggested. The extension to an imaging experiment could also allow

measurement of bone mineral densities.

It is necessary to measure the actual rf power deposition in a lossy sample with the

ADRF cross polarization technique and determine under what conditions-duration

of pulses, recycle time, et cetera-the power levels used are safe for in vivo purposes.

Quantitative comparisons of rf power deposition and signal strength need to be made

between the ADRF-CP technique and conventional spin-lock CP techniques. It should

then be possible to use the technique to study bone mineral in a small animal, such

as a rabbit, and determine the signal strengths and spectral selectivity achievable.

The studies on the creation of dipolar order could be improved by using a coil with

shorter 90 degree pulses and an amplifier capable of producing large spin-lock fields

lasting a few milliseconds in duration. A comparison of the relative performances

of the different techniques in a surface coil and a resonator or a solenoidal coil is

necessary in order to measure the impact of using frequency sweeps.

No attempt was made in these experiments to optimize the shape of the demagne-

tization ramp or the type of frequency sweeps used. It may be possible to increase the

signal strength further by optimizing these parameters as well. The Jeener-Broekaert

sequence used was designed for a single spin species and needs to be modified if it is to

be optimal for a system containing two spin species, though it becomes sample depen-

dent in the process. As the relative efficiencies of each of these techniques varies with

the particular sample used, the appropriate selection of a particular technique should
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allow us to improve our spectral selectivity as well especially if these are tailored to

the species present in bone mineral.

The oscillations in the differential cross polarization experiment present an ob-

stacle to spectral selection. It will be interesting to observe the performance of the

technique with larger samples where the B1 inhomogeneities become important. How-

ever, the cross polarization time TIs is also field dependent and so the zero crossing

will not be unique. Other methods to damp out the oscillations need to be investi-

gated.

A double-resonance probe with modular, interchangeable coils has been built, in

which these animal experiments may be performed. The design constraints used may

not have been optimal for coil performance. We could alternately have maximized

the coil current at the two frequencies subject to a number of constraints, includ-

ing isolating the two ports, setting the imaginary currents equal to zero and 50 Q

impedence matching. This is a maximization problem that can be solved relatively

straightforwardly.

Adapting the probe for imaging experiments requires us to change the shielding

to prevent eddy currents. We are investigating shielding grids created by two sets of

parallel wires that are laid one on top of the other at right angles to each other, with

a thin layer of insulation between them so that are electrically isolated from each

other.

This thesis has demonstrated that it is possible to obtain biochemically important

information under conditions compatible with in vivo application. Significant addi-

tional work needs to be done to allow its practical application in a clinical setting.

A number of techniques have been proposed and investigated in order to acheive this

goal. The results of this thesis suggest that that it will be very difficult to achieve

true spectral selectivity in the in vivo situation. However, we should be able to use

these techniques to produce contrast between the protonated and non-protonated

phosphates. The ADRF cross polarization technique studied here can also be used

to do non-destructive testing on macroscopic objects, where conventional solid-state

techniques cannot be used.
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Appendix A

Spin Hamiltonians

A.1 The Zeeman Hamiltonian

The magnetic moment operator of a system containing N spins of a single speciesis

defined as
NI

h = it, C Ij. (A.1)
j=1

The Zeeman Hamiltonian associated with an external magnetic field can then be

written as

7lz = -F. B. (A.2)

In the usual NMR situation the magnetic field consists of a large static field and a

smaller time-varying field, B = Bo^ + 2B1 cos(wt)5, and the Zeeman Hamiltonian is

given by

Hz = --hTI [BoI_ + 2B1 cos(wt)I] . (A.3)

We can transform this (x, y, z) coordinate representation into one rotating at fre-

quency w about the direction of the static Zeeman field (x,, y~, z, = z). This operation

is represented by the unitary transformation

R,(wt) = expf{iwtI}. (A.4)
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The resulting Hamiltonian in the rotating frame is

Z = 7I Bo -
7'

The effective field

Be-f Bo
Beff= (Bo - - Z + B1 ,r

17
(A.6)

is oriented at an angle O with respect to Z,, where

B1tan 0 =
Bo - wl/y

(A.7)

is the off-resonance angle. We then rotate the (xr, y, z,) system about y, so that the

z, axis is aligned along the effective field. The unitary transformation corresponding

to this rotation is

Ryr(e) = exp{ieIly,} (A.8)

The corresponding Zeeman Hamiltonian in the tilted rotating frame is

R7 = -htiBelff I. (A.9)

This is identical in form to Equation (A.3), and represents a spin system in a

static field of magnitude B1 and no time-dependent fields.

A.2 The dipolar Hamiltonian

The direct dipolar Hamiltonian can be written as

uD = EE
j> k

+2

q=-2jk
q=-2

(A.10)

111

I; + B 14 . (A.5)



where the A ) are spin-operators and F(' ) are geometrical functions dependent on

the spatial coordinates of the spins. The spin operators are defined as follows

A = ~yjIkh2 (3jzIk - I ) (A.11)

A(3 :) k3 + I2f Ikz) (A.12)

Ak = 7jYkh I2 I (A.13)

where A(q) = A(). The functions F(q) are expressed in terms of the spherical coordi-

nates of the internuclear vector between the j and k spins (rjk, 0jk, Ojk), with respect

to the direction of Bo. They are

F(0) = r-3 (1 - 3COS2Ojk) (A.14)

Fjk = jk sinjk coS Ojk exp(±iijk) (A.15)

2)  k sin2 jk exp(+ 2i j k).  (A.16)

where F1) = Fk(). If all spins are identical, the q = 0 term represents the secular

dipolar Hamiltonian and the remaining terms the non-secular Hamiltonian. Trans-

forming to the rotating frame as described in Equation (A.4) above, we get

+2
+ 2= Aik F) )exp(iqwt), (A.17)

j> k q=-2

where the Ar (q ) are formally identical to A) with the components of I replaced by

their corresponding rotating frame components Ir. Thus only the secular component

of the laboratory frame Hamiltonian (q = 0) is time-independent in the rotating

frame, while the non secular components oscillate at frequencies w and 2w. Trans-

forming into the tilted rotating frame and neglecting the time-varying terms, the

dipolar Hamiltonian is given by

+2

"P = E E AP()F~ (p) ,  (A.18)
j> k p=-2
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where the operators A (p) are identical to their laboratory frame definitions, with the

replacement of the components of I by the components of I, in the tilted rotating

frame. The geometrical functions FjPk(P ) are defined as follows

Fo= (cos2 2) -) F) (A.19)

F ) •cos e sin OF )  (A.20)
jk 2 .jk

(2) _ sin 2F() (A.21)2 jk

where e the off-resonance angle is defined in Equation (A.7). Thus Equation (A.18)

is seen to be formally identical to the laboratory frame dipolar Hamiltonian in Equa-

tion (A.10). The p = 0 term in Equation (A.18) represents the secular contribution

if all spins are identical.
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