
Equilibrium and Non-Equilibrium Phenomena in
Two- and Three-Dimensional Correlated Systems

by

Michael J. Young

Bachelor of Science, College of Engineering,
The University of California, Berkeley (June 1989)

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1996

@Massachusetts Institute of Technology, 1996. All rights reserved.

Author.............
Departme 'n)of Physics

ay 16, 1996

Certified by..........
Kot)t J. Birgeneau

Dean of Science and Cecil and Ida Green Professor of Physics
Thesis Supervisor

Accepted by......... ... ......... .... .... ... .... ..................

George F. Koster
Chairman, Departmental Committee on Graduate Students

OFSACS TET IHNOLOGYi
OF TECHNJIOLOGY

JUN 0 5 1996

LIBRARIES

~~ti~i~



Equilibrium and Non-Equilibrium Phenomena in

Two- and Three-Dimensional Correlated Systems

by

Michael J. Young

Submitted to the Department of Physics
on May 16, 1996, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Ultra-high vacuum (UHV) x-ray diffraction studies have been conducted on adsorbate-
free silicon surfaces miscut from (111) up to 8' toward (112) revealing dynamical
changes in the surface morphology which are reversible and can be controlled by the
direction of current flow through the crystal. These studies cover the temperature
range 1200 K to 1525 K with direct current flowing parallel and anti-parallel to the
(112) direction, i.e. normal to the average step flow direction. The surface mor-
phology changes which characterize this dynamical phenomenon occur on mesoscopic
length-scales and exhibit time-dependence which is ascertained directly from the x-ray
experiments. The time-evolution of the surface morphology is obtained on quenching
and on current reversal. The high-temperature step order-disorder transitions are
found to be independent of the step spacing within the resolution of the experiment.
These measurements suggest that recent theoretical models for the step behavior on
vicinal surfaces incorrectly account for the stability conditions in the vicinity of these
surface phase transitions.

High-resolution x-ray scattering investigations of the Nematic (N) -Smectic-A1 (Sm-
A1 ) transition are presented for two materials with large nematic ranges: the pure
compound octyloxyphenyl-nitrobenzoyloxy benzoate (DBsONO 2 ), and the binary
mixture pentylphenylcyanobenzolyoxy benzoate (DBsCN)+ cyanobenzoyloxypentyl-
stilbene (49.5 mole %C5 stilbene). The critical behavior of the longitudinal and
transverse correlation lengths I11 and ýj and smectic susceptibility or are determined
for DB 8ONO2 and DB 5CN+C 5 stilbene and analyzed with asymptotic (pure power-
law) and pre-asymptotic forms. A conventional analysis of the x-ray data yielded
critical exponents -y and vjj close to the 3D-XY values for both samples, albeit with a
correlation length anisotropy (v± < v•I) and a violation of anisotropic hyperscaling is
observed. First-order corrections-to-scaling terms, previously known to be important
for describing C,, are shown to be consistent in describing the correlation volume (g12
and the smectic susceptibility a obtained from the x-ray data. The development of
in-plane smectic modulations is also investigated for DB 5CN+CS stilbene.

A high-resolution x-ray scattering study has been made of the first- and second-



harmonic of the order parameter near the nematic(N) to smectic-A 2 (bilayer smec-
tic) transition in the liquid crystal material 4'-n-heptyloxycarbonyl-phenyl-4'-(4"-
cyanobenzoyloxy) benzoate (7APCBB). The critical behavior of the smectic suscep-
tibility, and correlation lengths for both the fundamental and second harmonic are
determined. A new theory for the scaling behavior of quartic correlations predicts
that the structure factor Sn(q) = (0n(q)#O(q)) associated with fluctuations in the
n'th harmonic density wave order parameter 0, of a uniaxial system depends on both
its bare q-dependence, and by the coupling Re(,jO/,n). The latter involves quartic cor-
relations in the secondary order parameter V)', characterized by a correlation length
6n = ýno[(T - Tc)/Tc]-V , with the same XY model exponent v for all n, and decaying
as q-(2-,7a) for large q. The correlation lengths associated with the higher harmonics
are related to the fundamental by universal ratios Xn which were calculated in the
theory. Consistency between the experimental data and these new theoretical devel-
opments is shown for the second harmonic (n=2), thus providing the only evidence
to date for 3D-XY-like criticality in the disordered phase of a multi-component order
parameter system.

Thesis Supervisor: Robert J. Birgeneau
Title: Dean of Science and Cecil and Ida Green Professor of Physics
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Chapter 1

Phase Transitions in Correlated

Systems

... The human heart does its work on earth, and that moves the great deep. What is
that incomprehensible meeting of material sublimation and moral sublimation in the
atom, indivisible if looked at from life, incorruptible if looked at from death? ... No
dimension, no extent, nor height, nor width, nor thickness, independent of every
possible measure, and yet, everything in this nothing! For algebra, the geometrical
point. For philosophy, a soul. As a geometrical point, the basis of science; as a soul,
the basis of faith. Such is the atom.

From the essay "The Souls", by Victor Hugo.

Many of the concepts encountered in the study of phase transitions in materials can be

formulated without an explicit reference to atomic structure, or even to the details of

the interactions between atoms, beyond knowing their range of interaction. Although

the atom is far from the geometrical point Hugo describes, it often suffices to know

only a minimal set of information about its electronic state to be able to arrive at an

understanding of many properties of real materials. The subject of this thesis concerns

phase transitions in condensed matter systems and the subsequent physical behavior

resulting from changing thermodynamic properties of materials. Studies of phases

and phase transitions encompass a vast assortment of research. It is therefore useful

to define some of basic concepts, particularly with respect to why phase transitions

are interesting to study, and what thermodynamic properties are essential in order to



elucidate the physical behavior in the vicinity of a phase transition.

One of the most common ways phase transitions enter into everyday experience

is through the temperature scale; the familiar ones being the Kelvin, Fahrenheit,

Celsius, or even (sic) Rankine scales. The standard for temperature seems so trivial

and commonplace today, one can easily forget its importance. The Celsius scale was

at one time defined by two fixed temperatures, the ice point and the steam point

for H20 at 1 atmosphere of pressure. More recently it has been based on the triple

point where water coexists with ice and water vapor. The Fahrenheit scale, which

the United States embraces to this day, emerged from an almost bizarre choice of

two unrelated temperature "standards" set by Gabriel Fahrenheit (1686-1736): these

were the average temperature of the human body, which he defined arbitrarily to

be 96 0 F, and the ice point of a water and salt mixture in equilibrium with a salt

solution, defining O0F. Using these two "fixed" temperatures, the ice point of pure

water at 1 atmosphere is at 320F and the boiling point is at 212 0 F. The funniest

part of this anecdote is that, given this temperature scale, the average temperature

of the human body is actually 98.6 0F, not 960 F (right?). One can certainly criticize

Fahrenheit's choice of standards; he evidently thought that these two temperatures

could be conveniently reproduced. Fahrenheit's logic was no more unusual then that

used in defining the foot or the pound.

It is very common to define scientific concepts by resorting to simple physical de-

scriptions based on macroscopic properties of a system. In fact, the physical concepts

which are the building blocks of classical thermodynamics essentially define a science

of work and heat, without any reference to the atomistic nature of matter. One could

easily develop the concept of the solid phase, without assuming anything about the

particulate nature of matter, simply by measuring the finite shear forces that can

be transmitted into the bulk of a solid across its surface. Likewise, one could use a

bunsen burner to melt their favorite solid, measure the vanishing shear restoring force

(or the finite viscosity) and arrive at a consistent definition of the fluid phase. With

these two simple observations of the solid and its melt, one would probably define

a fluid as something which does not restore shear forces, and a solid as something



which can restore a shear force (ignoring the possibility of the glass phase). This lat-

ter definition for a solid clearly circumvents a knowledge of crystalline order and, in

fact, one would need to invent slightly more sophisticated ways to uncover the nature

of crystalline solids to be able to think properly about their electronic or magnetic

properties. The distinction between crystalline solids, amorphous solids, fluids (and

glasses) would need to be made unambiguously. This task is obviously difficult to

achieve without microscopic probes.

A phase of matter which has become of substantial technological importance over

the last two decades is the so-called liquid crystalline phase which one encounters

in display technology (LCD's), and in many electronic devices. Liquid crystalline

phases are elaborate phases of matter occurring in some systems of organic molecules,

and have properties intermediate between those of normal liquid and crystal phase.

Generally, the shape of the molecules in liquid crystalline materials is fundamental in

determining the types of phases that can exist in these systems. It is interesting to

note that the existence of liquid crystalline materials has been known for more than

a century, and are important in biological systems. The lipid bilayer which surrounds

cells is an example of a material in a liquid crystal phase and the resulting properties

of this bilayer structure are essential to proper cell function. Liquid crystal phase

transitions are directly related to a number of diseases such as arteriosclerosis and

sickle cell anemia.

One might think that an explanation of the intricate physical properties occurring

in liquid crystal materials would require a detailed understanding of their molecular

structure. However, one can infer a great deal of information about some liquid

crystal phases by simple inspection: for example, the visibly turbid appearance of

the nematic phase found in many of liquid crystal materials is the result of an ori-

entational ordering of the molecules in a fluid phase [1]. One could gather more

information of this orientationally ordered phase by exploiting the vector nature of

electromagnetic radiation, and pass some light through linear polarizers: polarized

light, when illuminating a liquid crystal material, will be preferentially scattered de-

pending on the anisotropic dielectric properties of the material. This optical behavior



is common to liquid crystals and is the basis for LCD's. Response functions associ-

ated with the dielectric properties of these materials have macroscopic meaning, as

do those associated with its anisotropic elastic properties. These anisotropies have a

microscopic origin directly related to the anisotropic geometry of the molecules. The

nematic phase is a fluid phase in that it cannot restore a shear distortion, but a finite

torque can be transmitted across the surface of a nematic into the bulk due to its

molecular anisotropy: once again, macroscopic phenomena can open up vistas to the

microscopic world.

Equilibrium and Non-Equilibrium Systems

A number of phases of matter have now been introduced with a phase transition

being the result of some change in the thermodynamic properties of the system. A

tractable theoretical description of thermodynamic and mechanical properties such

as volume, temperature, viscosity, thermal expansion, or surface tension, generally

requires that the system be at its equilibrium state. A phase diagram describes a

space of equilibrium states of a material which are uniquely characterized by thermo-

dynamic variables (ie. P, T, or V). The condition of equilibrium typically implies

that these states do not depend on time, and thermodynamic "changes" in the sys-

tem do not depend on the "path" in the space of thermodynamic potentials. This

latter condition is equivalent to the statement that hysterisis is not relevant. The

time dependence aspect of this description can be quite complicated. It suffices to

define the difference between equilibrium and non-equilibrium processes in terms of

reversible and irreversible changes in a system. The equiliubrium development of a

system can occur reversibly when the system undergoes infinitessimal thermodynamic

changes between equilbrium states of the system. Non-equilibrium changes happen

irreversibly.

Early theoretical attempts applied classical thermodynamics to explain phase

transition behavior and were remarkably successful for some systems. For example,

the liquid-gas transition which is at the core of the steam engine can be understood

to some degree by the Gibbs formalism which is based on the existence of an equation



of state; that is, a function relating the pressure, temperature, volume, in the equilib-

rium phases of the system. Of course, the expansion of the vapor and subsequent flow

of the working fluid in an engine is far from equilibrium. Regardless, many problems

can be satisfactorily understood within the context of equilibrium physics, without

resorting to any of the details of the atomic structure or interactions between the

constituents of the system.

In the language of modern condensed matter physics, one can talk about an equi-

librium phase transition in a condensed system from a high temperature phase to a

low temperature phase in terms of the behavior of an order parameter on altering the

system thermodynamically. The concept of an order parameter is more than just sim-

ple extension of the ideas described above. Namely, one defines an order parameter

as a physical observable (eg. magnetization, staggered magnetization, mass density,

polarization) which is non-zero in the low temperature (ordered) phase, and zero in

the disordered phase. The physical behavior occurring in the vicinity a phase transi-

tion can be discussed almost solely in terms of this order parameter and its conjugate

field (eg. magnetic field, pressure) which depends on the nature of the problem.

The order parameter is typically selected phenomenologically and it therefore

helps to have some intuition about the physics of the system. Naturally, there are

systems where the choice of the order parameter is not obvious. In some instances it

is questioned whether a order parameter needs to exist in the traditional sense (for

example, in spin glasses, or in a Kosterlitz-Thouless surface phase transition) [3, 5].

It is often useful to choose a local order parameter defined as the average value of the

observable at a specific point in space. Compare this with a global order parameter

which is simply the value of a macroscopic observable averaged over the whole system.

As an example, one can look at the liquid-gas transition mentioned above. The order

parameter in this case is defined as the difference in the densities between the liquid

and the gas, Pliquid - Pgas• In the lower temperature phase the liquid and gas coexist,

therefore the difference in densities is non-zero. In the higher temperature gas phase,

the liquid density and gas density are indistinguishable and the order parameter is

zero. An order parameter need not be unique in any one system since any power of



the order parameter will function equally well.

The occurrence of a phase transition in a condensed system is usually governed

either by interatomic (or intermolecular) interactions, or statistics, or both. An ex-

ample of a case where a system can condense to a particular phase simply due to the

statistical nature of its constituents is manifested in Bose-Einstein condensation. This

was elegantly demonstrated in experiments by Anderson and co-workers in 1995 [2] in

a system of dilute atomic rubidium-87 vapor near a T, of 170 nanokelvin. Numerous

examples can be found of systems exhibiting phase transitions due to the presence of

interatomic interactions. For example, in most liquid crystal systems, the dominant

physical processes are entropic in nature; steric forces arise due to a reduced volume

accessible to the molecules.

One of the triumphs of modern critical phenomena theory was uncovering the role

of symmetries and geometry in determining the types of phases which materials can

possess without considering the details of the interactions between the constituents. In

fact, many condensed matter systems have phase transitions which can ultimately be

understood by knowing the symmetry of the order parameter, spatial dimensionality

of the system, and the range of the interactions. Ultimately, fluctuations in the order

parameter of a system give rise to singular behavior in thermodynamic quantities

(eg. susceptibilities, heat capacity) and this is at the heart of the theoretical and

experimental challenges to delineate the nature of equilibrium phase transitions. One

of the challenges for the experimentalist is to identify and understand model systems

with which to test critical phenomena theory.

Dynamical phenomena present a far more difficult challenge due to their inher-

ently complex nature. The evolution of growth patterns and hydrodynamic patterns

was shown analytically by the well-known KPZ model for dynamical scaling at grow-

ing interfaces [4]. Studies of the time development of semiconductor surface structure

present one realization of a system with potential to test dynamical growth theory.

The homoepitaxial growth at semiconductor interfaces would be an interesting prob-

lem to study. Clean surfaces which terminate to vacuum also possess a rich variety

of dynamical behavior and form the basis of the surface studies described in this



thesis. This nascent experimental progress on studies of non-equilibrium phenomena

in two-dimensional systems is expected to provide an ideal testing ground for some

of the more recent theoretical models.

Outline

This thesis consists of experimental studies of phase transformations occurring in two

classes of condensed matter systems. The ordering and disordering of steps on silicon

surfaces and the onset of smectic mass density waves in bulk nematic liquid crystals

are model phenomena exhibited by highly correlated condensed matter systems. The

thermodynamic behavior of steps on silicon surfaces is evinced in the non-equilibrium,

electromigration-driven faceting which occurs under sublimation and it is described

by two-dimensional step-step correlations. Moreover, thermotropic, polar, smectic

liquid crystals exhibit a wide variety of polymorphic phases characterized by differing

uniaxial molecular arrangements described in three-dimensions by mass density waves

with different periodicities. The main thrust of the x-ray diffraction studies concerns

the equilibrium and non-equilibrium behavior of steps on vicinal silicon surfaces with

large surface miscut orientations, and also the study of critical fluctuations near the

nematic to monolayer smectic-A and nematic to bilayer smectic-A phase transitions

in bulk nematic liquid crystals. The development of in-plane smectic modulations is

also investigated for one binary mixture of polar liquid crystalline compounds. These

systems, although disparate in their nature, provide excellent examples with which to

test current phase transition theories and identify new experimental and theoretical

challenges which might be undertaken.

Adsorbate-free silicon surfaces intentionally miscut close to the (111) high symme-

try facet, are the main focus of the ultra-high vacuum (UHV) x-ray surface diffraction

studies. Under the appropriate thermodynamic conditions, these vicinal surfaces will

possess monoatomic steps when miscut toward (112). A variety of interesting physics

are exhibited on these stepped surfaces, perhaps the most exotic example being the

electromigration current-induced morphological instability, which occurs when one

joule-heats an optically flat piece of silicon to high temperatures. Specifically, x-ray



diffraction was used to study surface faceting on 30 miscut Si (111) samples in the

temperature range 1175K to 1525K with direct current flowing anti-parallel to the

(112) direction (step-up direction), i.e. normal to the mean step flow. Above 1523K at

this current direction the surface structure consists of an ordered array of steps which

exhibits a peculiar non-equilibrium behavior. At positive current between approxi-

mately 1175K and 1525K step-step correlations increase, but are accompanied by a

transverse step wandering. Above 1525K, the surface develops an intricate faceted

structure which has not been well-understood. The preliminary studies of these high-

temperature transformations provided an indication of partially reversible phase be-

havior, and it was suggested that the governing mechanism involves the combined

effects of thermal diffusion, sublimation, step kinetics, and electromigration. In order

to fully test these hypotheses, x-ray studies were conducted of the time-dependence

of these surfaces as well as the resulting steady-state surface structures.

In Chapter 2, an overview of the vicinal Si(111) surface is presented along with a

description of some of the thermally-induced phase transformations which have been

observed in this system. The concept of a current-induced phase transformation is

introduced and explained in terms of the phenomenon of electromigration. Surface x-

ray diffraction studies under ultra-high vacuum (UHV) conditions were conducted to

elucidate the in-situ behavior of vicinal Si(111) under the action of electromigration.

These experiments are presented along with a discussion of ex-situ Atomic Force Mi-

croscopy (AFM) and optical microscopy studies of quenched Si(111) samples which

had been under the influence of electromigration at high temperatures. Studies of

the behavior of steps under direct-current heating are presented which address re-

cent models attempting to describe the morphological instability of crystal surfaces

induced by an applied electric field. An account of the high-temperature step kinetics

had been previously attempted with a one-dimensional continuum model which treats

the interaction of the steps with a smoothly varying adatom density. Many of the

recent models fail to account for sublimation which, according to our experimental

results, will lead to substantial deviations from the predictions of one-dimensional

analysis. These experiments confirm some of our original proposals which were based



on cursory diffraction and imaging data [20]. The results from these studies also

identify inconsistencies in some of the continuum models which have been proposed

recently to explain the temperature and current-direction dependence of these surface

phase transitions.

The x-ray diffraction studies presented in Chapter 3 address fundamental ques-

tions regarding the critical behavior near the nematic(N)-smectic-A1 (monolayer SmA)

in liquid crystals. Among these questions is the well-known complication that the

three dimensional (3D) XY critical behavior predicted by theory for the N-SmA 1

transition is affected by the proximity of the phase transition to a tricritical point.

Systems with large nematic temperature ranges are expected to exhibit nearly ideal

3D-XY-like behavior. A high-resolution x-ray scattering investigation is presented

for the N-SmA 1 transition in two materials (DB8ONO 2 and DB5CN+C 5 stilbene)

which have large nematic ranges. These x-ray data are presented in the context of

the asymptotic (pure power-law) theory and a pre-asymptotic theory. The results of

this analysis underline the importance of corrections-to-scaling in describing the crit-

ical divergences in the correlated volume and smectic susceptibility. These results are

shown to be consistent with those from heat capacity studies on these same materials.

In chapter 4, results are presented from high-resolution x-ray scattering studies

of the first- and second-harmonic of the order parameter near the nematic to bilayer

smectic-A 2 transition in the polar liquid crystal material 7APCBB. Previous heat-

capacity measurements on this same compound determined that this phase transition

belonged to the 3D-XY universality class, and this motivated the x-ray studies. From

the x-ray scattering data it was determined that the predictions of 3D-XY multicrit-

ical scaling theory are in good agreement with the critical exponents for the smectic

susceptibility, and correlation lengths for the fundamental, as well as the smectic sus-

ceptibility for the second harmonic. However, applying a conventional analysis for

the x-ray scattering at the second-harmonic yielded results in clear disagreement with

the theory. Specifically, the correlation lengths for the second harmonic were found

to differ both in magnitude and in there critical behavior from the correlation lengths

describing the first harmonic. This experimental finding induced a re-examination of



the theory which made a striking prediction: namely, the critical fluctuations associ-

ated with the second harmonic ' 2 (and all higher harmonics V,) involve couplings of

the form /n *. This theoretical prediction led to the result that correlation lengths

should diverge with the same 3D-XY model critical exponent, Vxy. The x-ray data

are found to be consistent with the theoretical predictions including the ratio of the

correlation lengths X = (2/ 1 = 0.02, calculated to second order in an E-expansion.

The new theoretical developments provide a consistent explanation of our experimen-

tal results for the structure factor describing the second harmonic, S2(q).

In Chapter 5, experimental results are presented from an x-ray diffraction study

of the binary liquid crystal mixture DB 5CN + C5 stilbene which has a sequence of

smectic phases on cooling below the N-Sm-A 1 transition distinguished primarily by

the arrangements of dipolar molecules within the smectic layers. The behavior of the

smectic-A fluid antiphase (Sm-A) ordering and the evolution of the system to Sm-A 2

order via a two-phase coexistence region are described in detail. These results are

contrary to those of previous studies which reported the existence of a new phase

separating the Sm-A 2 phase from the fluid antiphase Sm-A. This x-ray diffraction

study is presented as a compliment to the study of the N-Sm-A 1 critical behavior on

the same compound.
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Chapter 2

The Electromigration-driven

Behavior of Steps on Vicinal

Si(111)

2.1 Introduction

Where do atoms reside on a surface? This is a question that has become markedly

important as advancements in fabrication technology yield increasingly smaller elec-

tronic devices. Techniques such as molecular beam epitaxy (MBE) have made possi-

ble unprecedented control over fabrication processes, and allow one to create intricate

multi-layer semiconductor devices. Sub-micron control during such fabrication pro-

cesses clearly requires knowledge of the details of both the bulk structure and the

surface structure of materials. There are many issues of technological importance

which hinge upon a detailed understanding of dynamical changes as well, particularly

in the morphology of surfaces. The deposition of one electronic material on another,

as in thin film growth, is typically accompanied by step flow and other surface kinetic

phenomena which will ultimately determine the quality and stability of the growth

process [1, 2]. The manner by which a surface structure arrives at equilibrium can be

understood through step motion and step kinetics. In general, a microscopic descrip-



tion of static or dynamic surface processes requires a knowledge of the behavior of

the surface defects; an example of surface defects accessible to surface probes would

include atomic height steps. Dynamical phenomena such as catalysis also depend

strongly on the behavior of steps and other surface defects. Of course, one would

expect the microscopic behavior of steps to play a fundamental role in evaporation

processes as well. In this chapter, an investigation is presented of some interesting

novel behavior occurring on stepped silicon surfaces. It is shown that cooperative

behavior involving the agglomeration and arrangement of steps can lead to dramatic

time-dependent changes in the surface structure on mesoscopic (nanometer to mi-

cron) length-scales. Further, these surface transformations are observed to result

from competing interactions under non-equilibrium conditions, yet are surprisingly

reversible.

Silicon surfaces are known to exhibit a rich assortment of surface structural trans-

formations, such as reconstructions, which can be induced thermodynamically or by

introducing impurities. In recent years, the development of surface-sensitive tech-

niques such as x-ray diffraction has made it possible to probe the structure of these

surfaces at the microscopic level, as well as examine the dynamical changes in their

morphology. Morphology changes occurring on stepped semiconductor surfaces such

as vicinal Si(111) have received attention not only because to their obvious practical

importance, but also because of the variety of fundamental physics which is involved

in understanding these processes. In particular, the mechanical and electronic proper-

ties of silicon make it an ideal system in which to investigate adatom interactions and

their role in determining the equilibrium and non-equilibrium changes in the surface

morphology.



The System: Vicinal Si(111)

The ideally terminated flat Si(111) surface has a three-fold (3m) symmetry. The

two uppermost sub-lattices of this surface are depicted in Figure 2-1 where arrows

are drawn to indicate three symmetry equivalent directions [112], [121], and [211].

The surface of the model system, vicinal Si(111), is created by truncating a Si(111)

crystal and polishing it such that the surface normal (ii) makes a small angle with

(111) toward one of these three-fold symmetric directions. The term vicinal refers

to surfaces oriented close to (or in the vicinity of) a low-index facet. Truncating a

Si(111) crystal toward the direction [112] will result in the breaking of single bonds

joining atoms in the second layer to their nearest neighbors in the third layer. This

is shown schematically in Figure. 2-2. In this example, a vicinal surface is revealed

having steps which define the linear boundary marking a jump from atoms in the

second layer (on one side of the step) to atoms in the third layer on the other side of

the step. An isolated bilayer step of height d is depicted in Fig. 2-2. Vicinal surfaces

possessing multi-height steps are allowed, but typically cost a large energy to create

[27].

Equilibrium Step Behavior and Faceting

The vicinal Si(111) surface is known to undergo an equilibrium phase separation to

a "hill and valley" structure, such as that depicted in Fig. 2-3(b), with large faceted

regions separated by step bunches. Generally, a surface will be unstable to faceting

if the surface tension is decreased by the formation of faceted and stepped regions.

An understanding of this equilibrium phenomena on stepped surfaces can be made

within the context of the Gibbs Free-energy formalism as was elegantly demonstrated

in ref. [17]. This classical thermodynamic description of the surface phase behavior

treats both the temperature and the surface orientation as parameters in the surface

free energy. The latter quantity can be mapped directly onto the step density and is

thus analogous to the particle concentration which parameterizes the phase separation

occurring in the familiar liquid-gas phase coexistence. The two-phase region (facets
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Figure 2-1: Surface structure of the ideally terminated flat Si(111) surface showing
the two uppermost sub-lattices. The <111> surface normal is marked by the vector
pointing out of the page. Three vectors indicate the 3m rotation symmetry of this
surface.

+ steps) is also analogous to that observed in many other condensed systems (eg. in

binary solutions).

It is useful to discuss the equilibrium behavior of steps by first considering the

relationship between a given step distribution and the orientation of the surface. A

surface with a small misorientation from a low-index facet has a surface free energy

density of the form,

0(a, T) = 0(T) + (T) Itan(a)+ tan(a) . (2.1)
h I )1h3

This can be expressed in terms of the inter-step spacing I = tan(a)/h. The surface

free energy of the low-index terrace is Oo(T). The two terms in this expression which

depend on the orientation angle, a, originate from the free energy associated with the

creation of a single step, and the effective entropic interaction between steps, respec-

tively. The latter term arises because there is an energy cost for step crossings which

is proportional to kBT/Il 3, ie. the number density of step crossings. This expression

O

<211>
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Figure 2-2: Si(111) cross-sections revealing (a) a single <112> step on the Si(111)
surface showing that the stepped Si(111) surface has three sublattices, and (b) the
lxl Si(11l) surface showing the adatoms at T4 and H3 sites [S. Kodiyalam, et al.].

assumes that step kinks do not have overhangs, and that thermal meandering of steps

is governed by fluctuations which are inversely proportional to the line tension, and

directly proportional to -A-y, where Ay is the step length, as per the usual thermal

wandering of an array of lines in two-dimensions.

It is known that an equilibrium surface phase transition occurs for Si(111) on

cooling below about 1140 K at the 1x1-+7x7 reconstruction transition. This phase

transition, characterized by the rearrangement of the atoms in the upper bilayer,

is driven by the elimination of dangling bonds at the surface which lowers the sur-

face free-energy. It is worth noting that the symmetry change on going from a 1 x 1

structure to a 7x7 structure involves a discontinuous change in the symmetry of the

surface and is thus strongly first-order.

The driving mechanism for a faceting transition at , 1140 K on vicinal Si(111)

I
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Figure 2-3: A schematic of (a) a uniformly stepped surface, and (b) a step bunched

(or faceted) surface. Positive current flows in the step-down <112> direction, as
indicated by the arrow in (a). A uniformly stepped Si(111) surface will have steps
distributed according to the macroscopic miscut (defined by fi), and separated by
1 x 1 terraces. The angle & will be a function of the step density within the bunched
regions (step bands).
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Figure 2-4: Surface free-energy density as a function of surface misorientation for the
7x7 reconstruction on Si(111).

arises due to a lowering of the surface free-energy associated with the 7x7 reconstruc-

tion compared to that associated with the 1 x 1 (unreconstructed) surface. Due to

surface energetics, steps are forces away from the 7x7 reconstructed regions resulting

in a step disordering. Hence, this surface phase transition is sometimes referred to as

a step bunching transition, as the development of faceted regions on vicinal surfaces

must be accompanied by step rearrangements or agglomeration with an increasing

step density.

Figure 2-4 illustrates possible free energy curves as a function of miscut for one

misorientation direction; for convenience assume this direction is along <112>. One

can understand the orientational phase separation by the following thermodynamic

argument (analogous to the Gibb's argument for a normal two phase system) [17].

Imagine that each surface structure is described by a distinct continuous free energy,

parameterized by the surface orientation according to the free energy of Eq. 2.1.

Also, assume that one of these phases (call it the low-T phase) is stable at sufficiently

low temperature. At the phase transition temperature T,, there is a two-phase coex-

istence defined by the intersection of these two curves, as in Fig. 2-4(a). Since these

surfaces are of different symmetry and structure, the step energies and the energies

required to form step kinks on these surfaces will be different. Therefore, lowering

the temperature will lead to a lowering of one free energy curve relative to the other.



Figure 2-4(b) shows the result of lowering the temperature in the case that the low-

T phase has the 7x7 reconstruction. One sees that a phase separation must occur

below T, with regions of two distinct orientations: flat regions (a = 0) which are

reconstructed, and stepped regions with orientation ao which are unreconstructed.

This phase separation can also be described in terms of step energetics. Calcula-

tions have shown that the energy of a straight step on a surface with a 7 x 7 symmetry

is higher than that for an equivalent straight step on an unreconstructed surface [21].

Therefore, below temperatures where the 7x7 reconstruction is allowed, it is ener-

getically favorable for this Si(111) surface to separate into regions of high and low

step density; ie. the steps are pushed away from the reconstructed regions and tend

to bunch onto the unreconstructed 1 x 1 regions of the surface. Surface faceting is

characterized precisely by such changes in the step arrangements and this leads to

dramatic changes in the morphology with temperature. Faceted Si(111) consists of

large 7x7 reconstructed terraces separated by unreconstructed step bunches (or step

bands). The symmetry of the surface causes the steps to move predominately in the

direction of the miscut [112], although even a uniformly stepped surface will exhibit

thermal meandering of the steps. The surface morphology, dictated by the motion

of steps, changes continuously on cooling below the 1 x 1-+7 x 7 reconstruction transi-

tion temperature, and these changes correspond at the microscopic level to the step

regions becoming more densely packed.

Electromigration

The relatively low temperatures at which the above equilibrium.morphology changes

occur have made these systems readily accessible to a number of experimental surface

probes. Extensive studies of equilibrium faceting and step behavior have already been

conducted with electron and x-ray diffraction, and with direct imaging techniques such

as scanning tunneling microscopy (STM) and atomic force microscopy (AFM). Vicinal

Si(111) is one of many systems exhibiting a rich assortment of morphological changes

which depend not only on the temperature, but also on the manner by which the

sample is heated. Specifically, an elaborate array of surface structures are known to
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The Vicinal Si(111) Surface
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Figure 2-5: Schematic drawing of the uppermost layer of a vicinal Si(111) surface
revealing (112) steps
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appear simply by flowing a direct current through the sample in a particular direction

relative to the step flow. The first studies of these high temperature structural changes

on Si(111) and Si(001) [3, 7, 4] provided evidence that this apparently non-equilibrium

phenomenon was due to electromigration processes.

Electromigration is the motion of atoms through a solid due to an externally ap-

plied electric field. One of the first observations of this effect was made by Haeffner

in 1953 who used a constant current to separate isotopes of mercury ions in solution

[24]. Such atomic motion can also occur at the metal or semiconductor interfaces

and surfaces in electronic devices (which operate in the presence of electric fields)

and thus is of obvious technological importance. The experiments in this thesis fo-

cus exclusively on the electromigration-induced morphology changes occurring at the

surface of vicinally polished, clean single crystals of Si(111). Electromigration arises

since the samples are heated resistively with a D.C. current flowing through the bulk.

The resultant static electric field at the surface acts as the driving force for surface

ordering. Preliminary work on quenched samples revealed that these semiconductor

surfaces possess a particularly elegant manifestation of electromigration yielding a

complex variety of faceted surface morphologies which are essentially reversible, both

thermodynamically and on changing the direction of current flow through the crystal.

A Current direction versus Temperature phase diagram for Si(111) vicinally cut

toward <112> is shown in Fig. 2-6. These surface phases can be described as follows.

Below the 7 x 7-1 x 1 reconstruction transition, one observes a surface phase separation

independent of current direction. This two-phase region consists of large 7 x 7 terraces

separated by step bands. The flat terraces have a surface normal (ii) along (111)

while the bunched step regions have a local surface normal which is larger than the

macroscopic miscut. In equilibrium, the relative size of the flat regions compared with

the step regions is then determined by the macroscopic miscut. This is illustrated

in the schematic of fig. 2-3(b). In this diagram, positive current (+I) is defined as

current flowing toward <112>, ie. in the direction of step flow. The positive current

direction is sometimes referred to as the step-down direction. The crystallographic

direction transverse to the miscut is the <110> direction. Experimentally it was



found that the phase separation at positive current is accompanied by a transverse

instability due to a meandering of the steps within the step bands [23]. The small

dependence of the reconstruction transition temperature on sample miscut is not

represented in this phase diagram.

Above the reconstruction transition temperature at T, 1140 K and at negative

current (-I in the diagram) there is a transition to a single-phase uniformly stepped

region which persists up to T- 1370 K. This single-phase surface has steps separated

by disordered 1 x 1 terraces, typically a few hundred angstroms across. Therefore, the

integer order peak at (1,0) will not be present when scattering x-rays from the single-

phase stepped surface structure. At positive current between these same temperatures

the steady-state surface structure consists of unreconstructed 1 x 1 facets, also with a

transverse step meandering. The phase behavior on reversing the current direction in

this temperature regime is driven by electromigration. Note, these low temperature

phases exhibit very slow dynamics and are not part of the major thrust of this thesis.

Above TN 1370 K and at negative current the steps tend to bunch into disordered

stepped bands, allowing the slow formation of large 1 x 1 facets. At this same temper-

ature and positive current these step bunches slowly reorganize as the facets decrease

in extent, the eventual surface structure consists predominately of distributed steps

with a large transverse step meadering. The transverse step modes will ultimately

lead to a dramatic transverse modulation of the order of several microns depending

on the size of the miscut. Heating through this faceted regime at negative current one

will encounter a transition at TN 1525 K. In this case the steps redistribute them-

selves uniformly and with no significant transverse wandering. At positive current

above Tr 1525 K the surface develops facets with disordered step bands, although

the excessive sublimation rates at these temperatures will prohibit well-ordered facets

after long times. This electromigration- or current-driven faceting shares many of the

same characteristics with the reconstruction-driven faceting, however, it is obviously

governed by fundamentally different physics which can lead to dramatic dynamical

changes.

In the simplest microscopic picture, the phenomenon of electromigration of atoms



on the surface of a metal or a semiconductor involves a competition between the direct

force on the adatoms due to the electric field, and the force due to the scattering of

electrons with the adatoms. The wind force due to electron scattering is always in

the direction opposite to the electric field while the direction of the direct force on

an adatom will depend on its effective valence; the effective valence can take either

sign depending on which interaction is dominant. An effective valence of positive

sign occurs when the direct force is dominant, a negative valence Of course, the

competition between the wind force and the direct force will have a varying degree of

importance depending on the local electronic and thermal environment. For example,

a surface pre-melting can lead to an enhanced electron density at the surface which

will increase the effect of the wind force on the adatoms.

Ultra-high vacuum (UHV) surface x-ray diffraction experiments were conducted

to study the effect a direct current has on the arrangement of steps at a Si(1l11)

crystal surface miscut toward <112> by up to 80. These studies revealed spectacular

dynamical changes in the surface morphology which are reversible and can be con-

trolled by the direction of current flow through the crystal. The current direction-

and time-dependent morphology changes in question were found to result from an

intricate set of competing interactions, electromigration being a central component,

and actually occur at sublimating temperatures. Moreover, the time-scales involved

in many of these surface transformations are readily accessible in the x-ray diffrac-

tion experiments. The surface morphology changes which characterize this dynamical

phenomenon occur on mesoscopic length-scales and exhibit time-dependence which

is ascertained directly from the surface diffraction experiments. Ex-situ atomic force

microscopy experiments were also conducted on quenched samples following each

experiment to compliment the x-ray studies. Direct imaging proved useful in deter-

mining large-scale structure which in some cases occurred at distance scales exceeding

the resolution of the x-ray experiments.



Surface Morphologies as a Function of
Temperature and Current Direction
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Figure 2-6: Current-direction vs. Temperature phase diagram for vicinal Si(111)
miscut toward [112] indicating some of the regimes where electromigration-driven
surface morphologies exist, and the region where reconstruction-driven step bunching
is observed. The dashed line indicates the T7 •7-1 xl reconstruction temperature which
is weakly dependent on the magnitude of the miscut. Bars indicate regions studies
with x-ray diffraction.
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Comment

The phase transition concepts discussed above apply only to those systems which

are either at equilibrium or in some meta-stable state. The electromigration-driven

surface structural changes occur under non-equilibrium conditions, and thus the clas-

sical thermodynamic formalism [17] is most likely inappropriate for describing these

types of phase transformations. Moreover, the order-disorder phenomena covered in

this chapter involve the sublimation of atoms from the surface and the diffusion of

adatoms under the action of an applied electric field, greatly complicating theoretical

analysis.

A variety of models have been proposed to approximate the behavior of steps

and the subsequent morphological transformations that are governed by the step dy-

namics [30, 31]. In the final section of this chapter, some theoretical approaches to

understanding the static (or steady-state) behavior of steps on the vicinal Si(111) are

addressed. A phenomenological model is examined which treats the interaction of

adatoms with a smoothly varying continuous step density, electromigration being in-

troduced as a static driving force via the applied electric field. This continuum model

provides a qualitative description of the step behavior by way of a non-linear diffusion

equation. A comparison of the results of this continuum theory to the experimental

results on quenched Si(111) samples is presented. In addition, a discussion is made

of a microscopic theory [8] which makes a local density functional approximation in

order to calculate the effect an applied electric field has on adatoms for the Si(111)

surface. In particular, this model provides an explanation of the bias in adatom

diffusion due to the applied field, and reveals a crossover at two temperatures on

heating above the 7x7-1xl reconstruction temperature each one marking a change

in the surface kinetics. These temperatures are identified with the faceting transition

temperatures observed in experiment.

~p~l~L_



2.2 Current-Driven Step Behavior on Si(111)

The remainder of this chapter will address current-driven (ie. electromigration-driven)

phenomena on vicinal Si(111). X-ray diffraction and direct imaging studies of Si(111)

samples miscut up to 80 are presented below. These include ex-situ microscopy studies

on quenched samples conducted after each x-ray experiment in addition to ex-situ

studies conducted independent from the x-ray experiments. A discussion of recent

theoretical models will be given in Sec. 2.3 and compared with the results from the

surface x-ray diffraction and microscopy experiments on Si(111) vicinally cut toward

the [112] direction.

2.2.1 Surface X-ray Diffraction Studies

Results are presented from synchrotron x-ray diffraction studies of n-type (phosphorus

doped) silicon wafers miscut from the (111) high-symmetry direction toward [112]

by 80. These samples had miscut errors of ±0.250 in the direction of [112] and

had azimuthal errors of less than 0.5'. The x-ray experiment employed a five-circle

diffractometer, shown in fig. 2-7, coupled via rotating teflon seals to an ion-pumped

UHV chamber with typical base pressures of 1.5 - 4.0 x 10- 10 torr [15]. The samples

were resistively heated by passing a direct current through the bulk of the crystal.

This was achieved with electrical contacts made from layers of thin silicon wafers

sandwiched between flexible molybdenum foil clips which were electrically isolated

from the molybdenum and stainless steel sample mount. A 2 kW DC power supply

could provide up to 14 Amps direct current to the sample (at N10 V). The sample

temperature was then controlled by adjusting the current. The resistivity of the

silicon wafers are on the order of 1M at 1000 K. The temperature of the sample

was monitored with an optical pyrometer which was focused to a spot diameter of

approximately 3mm at the sample center. All of the optical pyrometer temperature

measurements were corrected for the emissivity of silicon. The relative temperature

measurement and control stability has an estimated precision of 1 K and an accuracy

in the absolute temperature determination of 40 K calibrated against the temperature



dependence of the bulk lattice constants.

The x-ray experiments were performed on the X20A and X20C bending mag-

net beamlines at the National Synchrotron Light Source (NSLS) and Brookhaven

National Laboratory. At both beamlines the synchrotron "white" beam was focused

with a grazing incidence mirror and then monochromated with double bounce Si(111)

monochromator crystals. The resultant monochromatic x-rays had a wavelength of

1.54A. The size of the beam incident on the sample was set by horizontal and vertical

slits, the former of which define the broad out-of-plane resolution. The in-plane res-

olution profile is determined by the convolution of the incoming and outgoing beam

divergences and the Darwin widths of the monochromator crystals, with an additional

contribution due to the focusing of the grazing-incidence mirror. A vertical scatter-

ing geometry was used to exploit the naturally high-resolution of the synchrotron

radiation.

A cubic coordinate system was chosen such that the bulk forbidden surface peak

at <~2> was centered at (1,0,L). In surface diffraction, the scattering varies only

slowly with the out-of-plane coordinate L. Thus, one typically refers to surface peaks

in units (H,K) where a small L is chosen depending on the grazing incidence scattering

geometry. Figure 2-8 illustrates a typical grazing-incidence scattering configuration

but with the sample rotated into the horizontal plane for clarity. The incoming and

outgoing wavevectors ki and kf are shown with their corresponding incident and exit

angles, a and /, respectively. In this scattering geometry, the momentum transfer

has a small component qz perpendicular to the plane and an in-plane longitudinal

component q1l; the relative magnitudes of these vectors are exaggerated in the figure.

The vector I indicates the direction of current flow through the sample, which is

chosen to be along <112> in this experiment.

At the (1,0) surface peak in this experiment, the incident x-rays made an angle of

0.270 with the sample surface. The reciprocal lattice for a uniformly stepped vicinal

Si(111) surface is shown in fig. 2-9 showing the crystal truncation rods (CTR's) pass-

ing through bulk peaks. This figure is based on the calculations of Appendix A. The

arrow in the figure indicates the in-plane location of the (1,0) surface peak. Scatter-
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Figure 2-7: Diagram of spectrometer configuration for a 6-circle diffractometer [15].
The surface diffraction experiments for this thesis were conducted using a four-circle
mode by fixing p and y. The remaining rotational degrees of freedom (6, 0, €, andy)
are indicated by the arrows. [ Figure courtesy of Dr. D. Abernathy].



Q=kf- k i

Figure 2-8: Grazing Incidence Diffraction Geometry. The momentum transfer to the
sample, Q=kf-ki, has components parallel (q11) and perpendicular (qz) to the sample
surface. a and 3 are the incident and exit angles measured with respect to the plane
of the sample. A heating current I flows through the sample in the direction <112>
(this is indicated by an arrow in the sample plane).

ing from the flat unreconstructed Si(l11) surface, or equivalently flat (111) terrace

regions, will by centered precisely at (1,0,L). Coexistence of stepped regions with flat

(111) terraces will lead to scattering at both the integer order (1,0) position and at

incommensurate positions, (1-h,O), depending on the step density. The symmetry of

the 7x7 reconstructed surface is readily observed from CTR's passing through (2,0),

for integer m. The ( ,0) peak can be seen in Fig. 2-10 and vanishes at about 874'C

(1147 K) which marks the 1x1-*7x7 reconstruction transition temperature.

The instrumental resolution function was constructed from Q11 (longitudinal), 0

(transverse) and 6 scans through the bulk <224> peak. Since the cross-section

of the ellipse was almost perfectly Gaussian in both longitudinal and transverse di-

rections, the resolution scans were simultaneously fit to a two-dimensional Gaussian

ellipse with a fixed major axis angle of 43.620 with respect to the longitudinal di-

rection <112>. The final resolution shape was then calculated for the (1,0) peak

using the relations stated in the Appendix. The resolution approximation yielded re-

sults consistent with an independent estimation of the resolution widths which were

extracted from fitting the sharpest (1,0) peak measured in the 7x7-1x1 phase to

a two-dimensional Gaussian shape. Facet widths in the two-phase region typically



Reciprocal Lattice for a Vicinal Surface

Q1, [112]

Figure 2-9: Reciprocal lattice for a vicinal surface revealing tilted truncation rods
(CTR's). Scattering originating from the CTR passing through the bulk peak (1,1,I)
was studied in this experiment (Note: The angle 0 between (111) and (111) is actually
19.470. The scale is exaggerated here for clarity. The arrow indicates the location
of the integer order in-plane (L=O) surface peak expressed in the cubic coordinates
(1, 0). Only CTR's originating from bulk peaks close to the origin are shown.



exceeded 0.51 longitudinally and 2/, transversely. The elongated shape of the res-

olution ellipse introduced systematically high scattering in the tails of the sharpest

scattering peaks measured in the course of the experiment. This effect leads to the

slight deviations occurring in the fits to the nearly resolution limited data. This had

a negligible effect on the scattering at the step peak position due to its substantially

broader width.

The final calculated resolution used in studying the (1,0) surface peak for the

80 miscut samples was well-approximated by a Gaussian ellipse with a major axis

tilted by 14.890 away from the <112> direction. The major axis had a width of

0.007 A-1 Gaussian half-width half-maximum (HWHM), while the minor axis had

a width of roughly 2.2 x 10- 4 A-1 HWHM. For the scattering geometry chosen, the

resolution was 8.9x10- 4 A-1 HWHM along <112> (QII) and 2.4x10- 4 A-' HWHM

in the transverse (Q±) direction. These correspond to the longitudinal and transverse

resolutions, respectively. A broad out-of-plane resolution was chosen by opening the

horizontal slits in front of the detector, thus integrating over the crystal truncation

rod (CTR). This is optimal for in-plane surface diffraction since the weak signal is

slowly varying along the CTR.

Sample Preparation

The miscut Si(111) samples used in the ultra-high vacuum (UHV) x-ray diffraction

experiments were 0.016" wafers, polished on both sides and cut with either a diamond

scribe or a diamond wheel saw to dimensions roughly 0.3" x 1.25". The cutting pro-

cess cannot be performed in a clean-room, therefore extensive cleaning is necessary

to remove impurities prior to mounting the sample in the UHV chamber. Through

trial and error it was found that standard RCA-cleaning followed by several cycles

of washes, first with trichloroethylene, then acetone and methanol, were satisfactory

in achieving adequate cleanliness for the UHV experiments. This cleaning process is

performed in atmosphere resulting in a native oxide on the sample surface. However,

this oxide is a benign impurity which, in fact, serves to protect the surface from reac-

tive contaminates which might come into contact with the sample before transferring



it to the UHV chamber. Moreover, it is known that with sufficient care, heating

Si wafers under UHV conditions to high-temperatures can be extremely effective for

removing impurities (including carbon) from the surface [43]. This flash-cleaning (or

rapid thermal annealing) procedure involves rapidly heating the sample to 1530 K

and annealing for approximately 1 minute, and then cooling the sample to between

1150 K and 1175 K where it is annealed for 30-60 minutes. The flash-cleaning tem-

perature at 1530 K was chosen for convenience since it is slightly higher than the

highest reported faceting transition at negative current. During the course of the

experiment the sample went through several flash-cleaning cycles. The Si(111) sam-

ple was determined to be satisfactorily cleaned when it yielded a well-ordered 7x7

reconstructed phase and subsequently showed well-behaved changes in step density

below the 7x 7-1 x 1 transition. (see figure 2-10). It has been previously demonstrated

that impurity pinning of steps has a clear signature in the broadening of the x-ray

scattering profile at the step peak and in the anomalous temperature dependence of

the longitudinal step peak position [23]. This will be discussed below in more detail.

Preliminary Studies

Immediately after the cleaning process, the samples were transferred in atmosphere

to the vacuum chamber which was then pumped down to 1x10- 7 torr by a turbo-

molecular pump and an ion-pump. The vacuum system was then baked for 12--18

hours. After reaching UHV conditions the sample underwent a preliminary flash-

cleaning cycle. This cleaning technique was employed at the start of each experiment.

[Note: The terms flashing, flash-cleaning, and flash-heating will be used interchange-

ably in this section. Flashing at negative current above 1525 K is also routinely

employed to induce unfaceting, ie. step debunching, which will be described in detail

later]. During the initial flash-cleaning, the pressure in the UHV chamber typically

rose to about 2 x 10-8 torr, due to out-gassing from the molybdenum and stainless

steel sample mount, and finally recovered to a steady-state pressure of 0.4 - 2 x 10- 9

torr depending on the annealing temperature. Subsequent flashing usually resulted

in pressures stabilizing at -, 2 x 10- 9 torr at the final annealing temperature. This



cleaning procedure was repeated several times throughout the course of the experi-

ment.

Prior to studying the high-temperature step behavior, the cleanliness of the surface

had to be established. Based on previous studies and reports from other experiments

on these systems [13, 19, 20], it is believe that the surface cleanliness can be in-

ferred from the shape of the step peak in the single-phase region and the existence

of a well-defined 7x7-1x1 reconstructed surface (with reversible changes in the step

density on cycling in temperature through the two-phase region). Further evidence

for the absence of significant impurity concentrations was found by examining the

well-ordered step phase which persists up to temperatures well-above the 7x7-1x1

reconstruction transition (as shown in Fig. 2-11). As outlined in the results section,

it is concluded that step pinning due to surface impurities was insignificant during

all of the measurements in both the low- and high-temperature regions of the phase

diagram. It is important to note that the high-temperature data were taken only

after a successful preliminary study of the 7x7-lxl 1 reconstruction region was con-

ducted. This precluded a rapid completion of the studies of the high-temperature

phases. However, no adverse effects on the reversible surface morphology changes

resulted from this, despite the long time-periods (ie. several days) involved in each

experiment.

Maintaining these thin silicon samples at high-temperatures (on the order of 1500

K) for excessive time periods can actually lead to a macroscopic change in the thick-

ness of the wafer, sometimes producing temperature gradients across the full length

of the sample as large as 50 K. Hence, the high-temperature measurements were per-

formed by carefully taking this time limitation into account. There is substantial

heat loss at the sample contacts, resulting in an approximately linear gradient across

the illuminated area of the sample which was estimated to be about 2 K for a sam-

ple temperature of 1200 K, and 1 K up to a sample temperature of 1480 K. The

complications due to these small gradients were included systematically in the data

analysis.



Low-Temperature Surface Behavior

The x-ray scattering study of the 7 x7-1 x 1 reconstruction began with a sample miscut

by 80 toward <112> which was flash-cleaned at negative current to 1524 K for 50

seconds. The initial surface state was determined after quenching to the single-phase

region at 1147 K and annealing for 30 minutes. This yielded a stepped surface with

a longitudinal step-step correlation length (I11) of 1100A and a transverse step-step

correlation length ((±) of 4900A determined from the half-widths at half-maximum of

the fits of the scattering to a two-dimensional Gaussian convoluted with the Gaussian

resolution function. The sample was then cooled to 1083 K (approximately 60 K

below the reconstruction transition temperature T7x7- 1xl) where a cooling study of

the two-phase region ensued. Figure 2-10 shows the scattering distribution on cooling

through this two-phase region down to 961 K (r 186 K below T7 x7-1x1) indicating a

smoothly varying change in the position of the step peak as the step density increases,

accompanied by a broadening in the peak width. At 961 K 11 is 135A1; roughly a

factor of 3 smaller than in the single-phase region. The local orientation (a) which

the stepped regions make with respect to the (111) terraces can be inferred from the

longitudinal separation of the step peak and (1,0) peak. This can be understood from

the reciprocal lattice diagram of Figure 2-9.

The x-ray data in Fig. 2-10 were taken while heating this sample through the 7x7

reconstruction phase up to just above the 7x 7-1 x 1 transition temperature which was

estimated to occur at approximately 1147 K. Just below this transition temperature,

at 1140 K, the (1,0) facet peak had a nearly resolution limited longitudinal width of

5.7 x 10-4A- 1 (Gaussian HWHM) and a resolution limited transverse width; these

correspond to facet sizes extending roughly 5500A1 longitudinally and exceeding 2p

transversely. At this temperature the step peak was quite broad, having a a longitudi-

nal correlation length 11 of 15021, and a transverse correlation length 6± of 92021. Note

the seven-fold decrease in the transverse step-step correlation length and the five-fold

decrease in the longitudinal length compared with the lengths measured (after the

initial flash) in the uniformly stepped phase which is only 7 K higher in temperature.



Heating across the 7x7-lxl transition.
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The loss of 7x7 order on crossing the 7 x 7-1 xl reconstruction transition is marked

by the disappearance of both (1,0) and non-integer order (6/7,0) peaks indicated in

Fig. 2-10. The resulting uniformly stepped surface morphology as measured at 1156

K is characterized by a step peak having a longitudinal correlation length (ý11) of

approximately 280A1, which is small compared to the width of the step peak in this

phase prior to cycling through the reconstruction region. This broadening of the step

peak is consistent with earlier observations [26, 18] which revealed that slow kinetics,

which can broaden the step peak, occur at temperatures lying within the meta-stable

region separating the spinodal T, from T7x7-xl1 . This difference between T, and

T7 x7-lxl is approximately 2 K for a Si(111) sample miscut by 80 toward <112>

as determined from STM imaging experiments [26]. The details of the meta-stable

region of the phase diagram will not be discussed in this work as extensive studies by

our group and others [28, 23] have already been presented.

In order to test the hypothesis that the step peak broadening is not induced

by impurity pinning, the 7x7-1xl transition study was repeated on this sample

using the same systematic procedure described above. This sample was flash-cleaned

again for 1 minute at 1525 K before quenching to 1147 K (just above the 7x 7-1 x1

transition temperature) where it was then annealed for about 30 minutes. The step-

step correlation lengths at 1147 K (after annealing) were 1040A longitudinally and

4300A1 transversely. Thus, the peak widths and peak amplitudes were comparable

to those measured at the beginning of this study. The total integrated intensity of

the step peak was actually 18% larger than that in the previous measurements at

1147 K, indicating that step ordering occurred over a larger area of the sample. A

study of both the (1,0) and step peaks was conducted on cooling through the two-

phase region immediately following the anneal. The step-step correlation lengths

were observed to broaden longitudinally from (11 = 350A at 1095 K, to (11 = 450A

at 1063 K. Throughout this cooling run the transverse widths ((±) remained at an

essentially constant value of 2450A. The (1,0) facet peak widths yielded terrace

sizes of approximately 3200A1 longitudinally and 1200021 transversely at 1095 K, and

4300A1 longitudinally and 17000A1 transversely at 1063 K. Further measurements of



the step peak widths were made at 1150 K (ie. above T7x7- 1 1x) which revealed step-

step correlations in agreement with the values measured in the previous run. These

widths did not exhibit any detectable dependence on the direction of the current

flow through the sample with respect to the <112> direction. The reproducibility in

the step behavior observed from these data provides strong evidence that impurities

played a negligible role in these surface morphology changes.

High-Temperature Studies

Following the low temperature study of the 7x7-1xl reconstruction region, this

sample was heated through the single-phase (stepped) region at negative current up

to N 1380 K where the surface morphology becomes unstable with respect to step

bunching. Data showing the vanishing of the single-phase region for an 80 miscut

Si(111) sample are presented in Figs. 2-11 and 2-12 indicating a transition at "' 1376

K which is fairly sharp in temperature.

The Single-phase Stepped Surface

Consider an array of steps with coordinates x and y normal and parallel to the

steps, respectively, with their corresponding short-range correlation lengths ýx and

ýy. Within a uniformly stepped surface phase in thermal equilibrium, step-step in-

teractions result in an algebraically decaying correlation function. The correlation

function is given by

CQ-G(p 11){ 2) - 2 (2.2)

where

kBT[(Q - G) . fi]2 sin2a
(Q-G) = (2.3)27rR,-K,



and K, and Ky are the elastic constants along x and y step directions and a is the

miscut angle. Surface x-ray diffraction from a uniformly stepped surface at thermal

equilibrium can be described by the following two-dimensional structure factor [12]:

S(q) = 0 ( 2-q) , (2.4)(q 22+ 2

where

kBT[(Q - G) fi]2 2sina(2.5)

272 k2T 2 + Co

In writing Eq. 2.5, a free energy density of the form in Eq. 2.1 was assumed.

Thus, the elastic constants are K, -N /i, and K, = 12-d2- = 12kBT/rI, and 1 is

the inter-step spacing. The product (1 x sina)2 = h is simply the height change of

a single step in the [111] direction. The constant Co allows for the possibility of

temperature-independent contributions to the entropic interactions such as elastic

strain and dipole-induced step-step interactions [14] and is proportional to 12rF/i 2.

Shulz showed that in the absence of this latter term, this array of steps in two-

dimensions behaves like a system of fermions in 1+1-dimensions [44]. According to

the theory, when Co = 0 the temperature dependence of 77 drops out completely.

A theoretical value of 77 = 2/9 is expected for the step peak closest to (1,0). The

dependence on [(Q - G). ii]2 in the definition of 77 shows that this exponent will be

larger for surface step peaks associated with truncation rods originating further from

the L=0 plane.

Provided kinetic effects do not significantly alter the diffusion of adatoms [18], this

expression should be valid above the 7x7-1x1 reconstruction transition and, as will

be clear from the following results, just below TN 1380 K where the electromigration

force drives a step bunching transition. Of course, for temperatures within the step

bunched region of the phase diagram of Fig. 2-6 the structure factor should experience

a marked deviation from the form in Eq. 2.4



The x-ray scattering data obtained in the single-phase stepped region at nega-

tive current showed substantial deviations from the form of Eq. 2.4. Therefore, an

empirical form for the structure factor was used:

lo(T)S(q) - (2.6)[1 + 2(qz - qxo)2 + y2q]q(T) (2.6)

where qq is weakly temperature dependent. Under the step flow conditions expected

at these temperatures, step-step interactions result in a divergent correlation function

C(r) which can be deduced directly from the Fourier transform of the structure factor

Eq. 2.6. One can therefore write,

C(r) Io(T) dql + (2.7)(1 q + 6q2),+27

=Io(T)Jd2q[ exp(-iqrcos9)
d[1 + (6Sqx)2 + (6yqy2

This integral can be evaluated by considering two limiting cases: q > 1/, and

q < 1/1, where 6 represents a characteristic correlation length. In the first limiting

case the integral of Eq. 2.8 can be evaluated by power counting, giving C(r) ~

Irl2(1- ,), for 77 - 1. In the second limiting case, one expects the usual exponentially

decaying correlations, C(r) ~ exp(-Jrl/6). Therefore, the form of the correlation

function for all length-scales should be,

Ce-(x _My2/ y22 •)' 1/2

C(r) ~ (2.8)(x2/2 + y2/.2) 2(n1I) (

In applying the power counting argument, it is assumed that the result obtained using

x = 6y - ( can be extended to the anisotropic case. Furthermore, this form for the

correlation function is expected to apply only when the ratio ýy/lx is a constant,

which is a good approximation across most of the range of temperature as is shown

by the data in the bottom panel of Fig. 2-14. Of course, the correlation function of

Eq. 2.8 deviates from the usual pure algebraic decay of step-step correlations. This

is probably associated with changes in the kinetic behavior of these steps under the



action of the applied static electric field, consistent with previously reported results

on smaller miscut samples [18]. In fact, it is known that electromigration is relevant

even for these lower temperature phases and will actually lead to step bunching below

1370 K (the unreconstructed region) for positive current [23]. However, the effect this

might have on the form of the structure factor has not been calculated as yet.

The structure factor given by Eq. 2.6 was found to accurately describe all of the

data for the step peak in the single-phase region below 1380 K. Best-fits of the scans at

the step peak were obtained using Eq. 2.6 convoluted with the Gaussian instrumental

resolution. A gradual variation of 7 between 1.5 and 1.8 was observed across the full

range of temperatures in the single-phase region. Fits obtained by allowing 77 to vary

were of reasonable quality, however, fairly large statistical deviations in the value 71

were observed resulting in poorer agreement in the tails of the peaks.

The results from these fits with q(T) fixed at its mean value of 1.75 are shown in

Figs. 2-13 and 2-14. The vanishing of the step peak and the concomitant appearance

of the integer order facet peak at (1,0) is the signature of the step bunching surface

phase transition. This same transition has been observed independently by both

diffraction and imaging techniques [3, 5, 7], but on Si(111) samples of different surface

misorientations. Interestingly, the transition temperature at T- 1376 K estimated

in the present experiment agrees with results reported for other samples, indicating

that the average step spacing, or equivalently the magnitude of the miscut angle,

apparently does not affect the phase transition temperature. It had been argued

by Stoyanov that this transition is determined by the condition that the magnitude

of the temperature-dependent diffusion length becomes less than the average terrace

width (about 100-300 A). The fact that the miscut angle does not seem to affect this

transition temperature suggests that Stoyanov's argument is not correct. This will

be discussed further in Sec. 2.3 where it is argued that the mechanism proposed by

Stoyanov is most likely insufficient to determine the transition at 1376 K.

One caveat should be noted: namely, a precise determination of this transition

temperature was complicated by very slow dynamics which could not be readily sep-

arated from the temperature dependence of the surface structure. However, from



the faceting observed in the quenching studies which follow, it is clear that the sur-

face phase transition must occur below 1376 K. The data shown from the heating

sequence of Figs. 2-11 and 2-12 indicate an upper bound on the transition at 1376

K. The dynamical behavior observed at these temperatures motivated an extended

series of studies in order to extract information on the time-evolution of the surface

morphology, in addition to determining length-scales for the steady-state structures.

It will be shown in the following sections that high-temperature faceting ( and there-

fore step bunching) possesses characteristics which are markedly different from those

observed in the low-temperature, reconstruction-driven faceting regime. The physics

underlying these differences is presented in the discussion sections.

Dynamics at High-Temperature

The studies of dynamical changes in the surface morphology at high-temperatures are

separated into two categories: time-dependence after quenching, and time-dependence

after current reversal. In both cases the goal was to ascertain the manner by which

the surface morphology evolves toward steady-state after changing one of the external

thermodynamic parameters (in this case the temperature, or the direction of the

applied electric field). A determination is made of the characteristic lengths describing

the step-step correlations and the surface-averaged facet size, in addition to the time

constants involved in transforming the surface morphology (at fixed temperature) by

reversing the current direction and on quenching from high temperature. The effects

of hysterisis and reversibility are also addressed.

Protocol for the Time-dependent Surface Studies

Initial measurements in the high-temperature regime (between 1375 K and 1525 K)

were conducted at the (1,0) facet peak to determine the time and temperature de-

pendence of both the scattering intensity (at fixed momentum transfer) and the peak

position. The first set of x-ray data were taken by simply counting the scattered

intensity at the (1,0) peak position to measure the rate of decay of the peak signal.
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Figure 2-11: Longitudinal scans at the step peak on heating through single-phase
stepped region at negative current. At approximately 1370 K there is an onset of
step bunching marked by a broadening of the step peak and the appearance of weak
scatter at the integer order (1,0) peak position. Background measurements from
0 scans around the (1,0) position are shown for three temperatures indicating no
substantial scattering below 1370 K.
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Figure 2-12: Transverse scans at the step peak position on heating through the single-
phase stepped region at negative current. A tranverse broadening is observed at a
temperature which roughly coincides with the onset of the integer order (1,0) peak.
Dashed line at 1406 K shows scattering at the (1,0) peak from a 0 scan for comparison
with the step peak.
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This information is necessary in order to obtain q-dependent data with satisfactory

statistics. Assessing information of time-dependence in a conventional scattering ex-

periment can be a formidable task due to the limitations imposed by the finite time

require to move the spectrometer motors. However, by a careful estimation it is pos-

sible to choose the counting time per point (ql,qj_) which will yield scattering profiles

which are undistorted by the time-dependence. It is also essential to account for the

systematic error due to the evolution of the peak lineshapes which is generally largest

in the tails of the peak. Nontheless, the critical information of interest regards the

characteristic lengths of the facets and the step-step correlation lengths which can be

easily measured from the HWHM of the peaks. The latter quantities can be difficult

to interpret in this system as is clear from examining the large wavelength surface

undulations seen in the real-space images of these samples. This dilemma will be

covered in the section 2.3. To date, the structure factor for these phases has not been

calculated. This will be discussed in detail later.

Figure 2-15 shows the initially stepped surface state at 1419 K (+10.4 Amps).

The x-ray scattering lineshape was characterized by a Lorentzian to a power rq con-

voluted with the Gaussian resolution. The resolution shape is shown by the dashed

line in Fig. 2-15 for comparison. The surface was thrown out of steady-state upon

current flipping at which point it relaxed slowly to a new steady-state faceted config-

uration, shown in the bottom panel of Fig. 2-15. The facet peak became resolution

limited transversely and longitudinally after 100 minutes. A high-current relay with

a switching time of less than 0.1 seconds was used to control the current direction.

No substantial temperature change was observed after changing the current direction.

The initial time (to) was taken to be the time of the first temperature measurement

after switching the current. Approximately 6-8 seconds elapsed between current re-

versal and setting to due to the long data transfer time from the optical pyrometer

(via a standard serial connector port) which was used to make the temperature mea-

surement. However this error in to was small compared to the total elapsed time

(15-200 minutes) involved in each time-dependence run. Subsequent time measure-

ments (measured with respect to to) were taken to be the elapsed time at the peak



maximum in each x-ray q-scan. The slow spectrometer motors added a systematic

time delay between consecutive scans which could not be reduced. The average time

of a single scan (including the time required to move the spectrometer motors) was

4.5 minutes at -8.6 Amps, and could be controlled by adjusting the monitor counting

time. This insured that both the incident beam intensity and scan rate were con-

stant, thus eliminating possible unsystematic distortions in the shape of the scattering

peaks due to the time dependence of the peak widths and peak intensity. Our highest

temperature measurements (above 1473 K) were limited predominately by the more

rapid changes in the scattering profile, and thus were not included in the lineshape

analysis.

In order to determine the time-dependence of the characteristic widths and peak

intensities from the scattering distribution at the (1,0) and step peak positions, it was

necessary to make some simple approximations. The rapid time dependence observed

for most of the range of temperature prevented a full two-dimensional deconvolution

of the scattering profile (as had been performed for the lower temperature scattering

data discussed above). This limitation can be understood by examining the raw data

which show that the peak intensities between consecutive transverse and longitudinal

scans evolve non-linearly for most of the temperatures studied. The precise time-

dependence of the scattering profiles as an explicit function of time and temperature

is not known, thus preventing a simple interpolation of either the peak intensities or

the peak widths between two consecutive longitudinal and transverse scans. This is

apparent from (1,0) peak and step peak data in Figs. 2-18 and 2-20 which show results

of the time-dependence of the longitudinal and transverse widths, peak positions,

peak intensities, and calculated integrated intensities at 1376 K (described in detail

in the next section). However, temperatures were carefully selected such that the

time-dependence of the scattering profile would not have a significant effect on the

q-dependence of the peak, although it had a slight effect in the shape of the tails. It

is important to note that these scattering data show a substantial variation in the

time-evolution of the surface morphology over ~ 100 K, which covers nearly the full

range of temperatures for the step bunching region at negative current shown in the



phase diagram of Fig. 2-6. Further, the exact shape of the tails is not required in

order to get a good measure of the facet sizes and step correlation lengths.

The scattering at both the (1,0) and step peak positions was analyzed with non-

linear least-squares fits to several functional forms: a simple Lorentzian, a Lorentzian

squared, and a Lorentzian to the power 1.5. By choosing the fits which resulted in

the smallest chi-squared (X2) values, it was straightforward to identify the lineshape

which most consistently described the scattering. In the case of the scattering at

(1,0), an additional constraint, chosen empirically, was applied by assuming the same

lineshape described the scattering across the full range of temperatures, and for both

positive and negative current directions. The functional form which best satisfied

these requirements was determined to be a Lorentzian to the power 1.5 convoluted

with the Gaussian resolution:

S(q) = (1 + - (2.9)
(1 + f.o(q - qxo)2 3/2 '

where qxo is the peak position along either the longitudinal (q11) or transverse (qi)

directions, and 6_o is a characteristic length associated with the terrace width. The

exponent 3/2 in Eq. 2.9 is not surprising since the usual form of the structure fac-

tor corresponding to exponentially decaying correlations in two-dimensions is S(q) =

10/[1 + (xo(qz - qo)2 + •~4] 3 /2. The distribution of facet sizes along the longitudi-

nal and transverse directions can be determined from the HWHM of the scattering

peaks. Additional attempts to modify the lineshape by allowing the exponent of the

Lorentzian to vary yielded results comparable to those with the exponent fixed at 1.5

for the (1,0) peak.

To reiterate an important point regarding the consistency of the fits, the scat-

tering profiles along consecutive qjl and q± scans were fit independently due to the

gradual time development of the lineshapes. However, the profiles during the time of

a single scan (either along q11 or qj) were essentially undistorted, as can be seen from

the symmetry of the scattering. At positive current one notes a sloping background

contribution to the scattering for small q11 near (1,0) after a substantial time elapses



(see for example Fig. 2-24). This is due to the nearby broad step peak which under-

goes a relatively large increase in intensity as the surface evolves from a faceted to a

stepped morphology. The constant background term is measured far away from the

(1,0) peak in 9, obtained from a fit when the (1,0) peak is weakest, then held fixed

throughout the fits. The linear slope in the background along q1l is first allowed to

float in the fits by at most 10% to account for the increasing step peak intensity and

is finally fixed to the value determined when the (1,0) peak is smallest (ie. where the

step peak has essentially saturated). The same procedure was applied for determining

the background shape at the step peak, although in this case the sloping term in the

background originated from the tails of the (1,0) peak (see Fig. 2-20).

Preliminary experiments revealed that one of the complicating features of this sys-

tem is its continual evolution over time-scales of many hours (or even days). Hence,

the approach to a "true" steady-state surface morphology can require very long times

which are not readily accessible in an experiment. In fact, it was determined that

a saturated surface morphology, eg. with well-established large facets, generally re-

quires a long time to reverse, often making it necessary to flash the sample to high-

temperatures several times in order to unfacet the surface. In order to extract useful

information separating the time-dependence from other effects, such as temperature

dependence or hysteresis, this problem had to be circumvented by simply limiting the

time spent at one current direction within these high-temperature regions of the phase

diagram. This was particularly important in the positive current regions, since these

phases are accompanied by transverse meandering of the steps which can develop

very large amplitude modulations with very slow dynamics. This will be discussed

later in the context of chaotic step behavior and compared with what is predicted by

the theoretical models.

Results of the Time-dependence after Quenching

Immediately following the heating run at negative current, the 80 miscut sample

was flashed to 1525 K for 1 minute and quenched to 1413 K (-9.7 Amps) where a

study was made of the time-dependence at (1,0). The results from fitting the lon-
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gitudinal and transverse lineshapes are shown in Fig. 2-16. The first two points in

this figure are peak amplitudes measured from the longitudinal scans (open circles)

and transverse scans (closed circles) which indicate scattering just slightly above the

background level of 1x10- 3 counts per monitor count, and thus were not included

in the lineshape analysis. Substantial development in the lineshape occurs only after

approximately 20 minutes at this temperature, and is followed by a 2 orders of mag-

nitude increase in the peak intensity over an additional 100 minutes at which point

the integrated intensity saturates. Over the full 125 minutes at this temperature, the

transverse facet width develops from 8000Ai to about 125001, the longitudinal facet

width develops from 275A to 410A1, thus the ratio of the lengths (•±/I11) is roughly

constant. The longitudinal peak position (q110) is essentially constant throughout.

The lattice expansion at these high temperatures accounts for the small shift from

the integer (1,0) position.

A second quenching study was conducted at 1376 K (-8.6 Amps) after flashing

the sample three times to 1525 K in order to unfacet the saturated surface structure.

The results from the fits are shown in Fig. 2-17. The surface undergoes a much

more rapid increase in peak intensity which changes non-linearly throughout most of

the time studied at this temperature. Interestingly, the longitudinal and transverse

facet widths do not develop significantly even after nearly 150 minutes while the

integrated intensity saturates much earlier than at higher temperature. Regardless,

the peak intensity increases substantially throughout the course of the measurements.

Although the final peak widths are comparable to those measured in the quench at

1413 K, the intensity saturates at a larger value indicating that the former data

(at 1413 K) might not have reached their final saturated value by the end of the

125 minutes elapsed in the measurements. This seems counterintuitive since one

would expect that steady-state would be approached more rapidly with increasing

temperature.

A cross-over at negative current from the stepped region to the step bunching

region happens between about 1340 K and 1376 K, as is clearly seen from the data in

Figs. 2-13 and 2-17, thus providing a lower bound on this transition to within 36 K
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for the 8' miscut sample. Further, the data in Figs. 2-16 and 2-17 show that faceting

(or step bunching) occurs with dynamics which depend strongly on temperature. One

will see in the next section that dynamical changes in the surface morphology will

also depend on the direction of the current flow through the sample.

Results of the Time-dependence After Current Reversal

As shown in the phase diagram of Fig. 2-6, reversing the direction of current flow

through the sample will induce a transformation in the surface morphology. This

type of phase transition was studied at 1376 K, 1420 K, and 1473 K for the 80 miscut

sample, with particular attention paid to the length-scales involved (eg. the facet size,

and the step-step correlation lengths) as well as the time-scales and the reversibility

of the morphology.

The time-dependence after current reversal of the (1,0) and step peaks was de-

termined by first measuring the peak intensities as a function of time in order to

estimate the rapidity of the intensity changes at this temperature. This was typically

performed for both current directions and at both the (1,0) position and the step peak

position, although the latter peak position is not constant in time. Once an estimate

was made of the requisite x-ray counting times, it was straightforward to study the

detailed time-dependence of the peak widths by performing consecutive scans over

the transverse and longitudinal reciprocal coordinates (q1 1, and qi).

The (1,0) and Step peak Behavior at T=1376 K, I=-8.6 Amps

The first current switching study was conducted at 1376 K where the initially stepped

surface (at +8.6 Amps) underwent step bunching by switching to -8.6 Amps. The

longitudinal (open circles) and transverse (closed circles) scans for the (1,0) peak are

shown in Fig. 2-18 with the corresponding fits (solid lines) to Lorentzians to the

power 1.5, similar to those used in the quenching studies. The top panels in Fig. 2-18

show scans of the (1,0) peak taken approximately 50 minutes after current reversal

when the peak had developed sufficiently strong scattering. The bottom two panels
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show the last set of (1,0) scans at this current. Results from these fits are summarized

in Fig. 2-19. The peak intensities at (1,0) were only slightly above the background

level for the first two points shown, therefore there are no corresponding points for

the integrated intensities and peak positions. This baseline value for the intensity

shows clearly that the dynamics are very slow at this temperature, even after nearly

one hour at which point faceting starts to develop relatively quickly.
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The x-ray scattering data in Fig. 2-20 show time-dependent step bunching at

1376 K and negative current (-8.6 Amps). The scattering lineshape which best

described the step peak data was a Lorentzian to the power 1.75 convoluted with

the resolution. The best-fit lineshape was determined by comparing fits to a pure

Lorentzian, a Lorentzian-squared and a Lorentzian to a power 7. In the latter form

for the scattering shape, the exponent ?I was allowed to vary in the fitting routine for

initial fits. By taking the average 9 from these fits then fixing q and comparing the

chi-squares to the simpler Lorentzian forms, 71 = 1.75 gave the highest-quality fit and

worked consistently well over the full range of the data, independent of temperature.

This is consistent with the previous step peak data within the single-phase region
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Step Scattering at T = 1376 K (-8.6 Amps)
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described above. The slope in the longitudinal scans after long times is due to the

tails of the (1,0) peak (not visible within the range of the plot), and this slope is

included as a linear contribution to the fit. The results of the fits for the step peak

are shown in Fig. 2-21. One observes that the transverse step-step correlation length

(ý±) undergoes a time evolution starting from 24001 at early times and decreases to

1750A1 after 150 minutes where the integrated intensity has dropped by a factor of

6. The peak amplitude appears to drop almost linearly across most of the range of

elapsed time. Step disordering occurs over this same time period, as shown by the

longitudinal length which decreases from 400A to about 200A. After the final scan

in Fig. 2-21 the step peak is too weak and diffuse to measure.

The (1,0) and Step peak Behavior at T=1376 K, I=+8.6 Amps

Figures 2-22 and 2-24 show the x-ray data of the (1,0) and step peaks with their

respective fits after reversing the current from -8.6 Amps back to +8.6A. The solid

lines in the plots are fits to the same lineshape described above. Comparing the results

from the (1,0) scattering data in Fig. 2-25 with that in Fig. 2-19 one sees that the

instability toward unfaceting occurs with a far more rapid time dependence than the

instability toward faceting. The most distinctive feature in this case is the broadening

of the (1,0) peak, indicating that the facets decrease in size by about a factor of 2

both longitudinally and transversely before the (1,0) peak finally disappears.

At this same current direction the step-step correlation lengths increase gradually

with time up to nearly 500A longitudinally and 25001 transversely at which point the

integrated intensity saturates. These correlation lengths closely match those originally

determined at this current direction prior to reversing the current. From the position

of the step peak one obtains the time dependence of the step density. Note that the

step density approaches its final value within about 100 minutes: the peak separation

at this point is 0.996 - 0.9575 = 0.0385 : 0.005, after which it remains nearly constant

for the remaining 50 minutes. The step density is slightly larger than its original value

before current reversal where the peak separation was 0.0367 ± 0.005. These values

suggest that the step arrangements are essentially reversible.
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The relatively slow time evolution at 1376 K permitted consecutive scans of both

the (1,0) peak and the step peak at -8.6 Amps and +8.6 Amps. The more rapid

time-dependence at higher temperatures required independent measurements of the

(1,0) and step peaks for each current direction.

Step Ordering at T=1420 K (I=+10 Amps)

These current reversal studies were repeated after first flashing the sample to 1525

K (at negative current) and then quenching to 1420 K (-10.0 Amps). The peak

intensity and integrated intensity saturated to values comparable to those in Fig. 2-

16 (for -9.7 Amps, 1413 K) within 70 minutes of quenching. Even though there is a
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Step Peak Scattering at T = 1376 K (+8.6 Amps)
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7 K difference in the temperatures, one would expect relatively similar characteristics

for these two quenches, which is not the case. Apparently the path toward steady-

state is quite sensitive to the initial state of the sample, although the final peak

characteristics such as the widths and intensities are essentially the same.

With this initially faceted surface state, the current was reversed to +10 Amps

and x-ray data were taken of the step peak development as a function of time in

the same manner as already described above. The top panels of Fig. 2-26 show an

initially weak and broad step peak with a longitudinal correlation length of 250A and

a transverse correlation length of 1400A. The results of the fits for the step peak
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data are shown in Fig. 2-26 over a 50 minute interval. During the first 20 minutes

the integrated intensity is almost constant as a function of time while there is a

gradual increase in the peak intensity. This is followed by a roughly linear increase in

the integrated intensity (see Fig. 2-26). The peak separation changes linearly after

an initial rapid increase to 0.0495 and approaches a final separation of 0.041. The

relatively short correlation lengths are 300A longitudinally and 2000A1 transversely

(about 20 times smaller than the facet size in the longitudinal direction, and 10 times

smaller transversely).

Step Disordering at T=1420 K (I=-10 Amps)

In Fig. 2-27, the results are shown for the step bunching study at -10 Amps. The

step peak intensity and step-step correlation lengths behave almost reversibly from

those measured at +10 Amps. The integrated intensity, on the other hand, decreases

linearly across most of the range of time until the step peak is too weak and broad

to measure. One sees a qualitatively similar step bunching behavior to that observed

below the 7x7-1x 1 reconstruction, however in the high-temperature case the step

peak becomes far more diffuse than the step peak below the reconstruction transition.

Recall that high step densities characterized by peak separations of almost 0.09 can

be easily observed in this sample down to 160 K below the reconstruction transition.

It is possible that at high temperatures, the disordering effect of step bunching leads

to a loss of the local orientation of the stepped regions; that is, the angle with which

the stepped regions make with respect to the (1,0) terraces is not a constant across

the sample. Further evidence of this effect is seen in AFM images presented in the

next section.

Unfaceting at T=1420 K (I=+10 Amps)

Before reversing the current back to +10 Amps at 1420 K, scans at the sharp (1,0)

peak showed facets with a longitudinal extent of approximately 4500A and a trans-

verse width of 12100A (a factor of 2.7 ratio in the lengths). The current was then

reversed and unfaceting was studied as a function of time. The results from these



measurements are presented in Fig. 2-28. One observes an immediate and rapid

decrease in the (1,0) peak intensity and integrated intensity over 45 minutes with the

peak position remaining essentially unchanged. The facet size as measured from the

peak widths evolves in a manner not unlike that observed during the time-dependence

study at +8.6 Amps (1376 K). In particular, the transverse widths decrease substan-

tially which is seen by a rather large broadening in the widths of the transverse scans.

Throughout the 45 minutes of this study the longitudinal width remains precisely con-

stant, with the final ratio of the transverse and longitudinal lengths reaching nearly

unity before the facet peak vanishes.

Faceting at T=1420 K (I=-10 Amps)

Reversing the current back to -10 Amps (1420 K) yielded dramatically different

behavior from that at +10 Amps particularly in the peak widths. Namely, the initial

transverse and longitudinal scans through (1,0) revealed that the facets reached their

maximum extent almost immediately, evolving only slightly during the 125 minutes

spent at this temperature. Note that the integrated intensity does not saturate until

nearly 100 minutes elapsed. We will see below that the facets can actually continue

to evolve and increase in size after a long enough time has elapsed, although at this

temperature the minimum required time exceeded that admissible during this run.

However, this time-dependent study at -10 Amps was followed by several consecutive

measurements of the longitudinal profile at different transverse (qI) positions which

revealed that the (1,0) peak essentially matched the shape of the resolution ellipse,

which would indicate that the surface morphology was very close to being saturated.

Since the step bunching at 1420 K was basically saturated, four flashes at 1527 K

(-13.8 Amps) were required in order to observe a significant temperature-dependent

changes in the surface morphology. In order to insure that the faceting behavior was

reproducible after flashing, the sample was cycled slowly up to the flashing temper-

ature twice before finally quenching to a final temperature of 1473 K where a third

current reversal study was conducted. It should be pointed out that the scans at the

(1,0) peak after quenching to 1473 K showed behavior similar to that observed after
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Step Peak Scattering at -10 Amps (T = 1420 K)
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(1,0) Scattering at +10 Amps (T = 1420 K)
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(1,0) Scattering at -10 Amps (T = 1420 K)

2.5

2.0

1.5

0.12

0.10

0.08

0.06

0 25 50 75 100 125
TmI (minutes)

I l I I I I

0*3

0 Tmrnsvm x3

000

1 I I I I I

0 25 50 75 100 125
Trm (minutes)

0.998

g 0.9960. 9g

0.992

0.990

0 25 50 75 100 125
Time (minutes)

000
000000000

00

000

I I I I p I

0 25 50 75 100 125
rTme (minutes)

Figure 2-29: Results of the fits for the (1,0) peak at 1420 K (-10 Amps). The
longitudinal facet size is multiplied by a factor of 3 for comparison with the transverse
size. The transverse integrated intensity is likewise multiplied by a factor of 3.

0.5

O

0.02

0

o LongtumilnaI x3
*Trnver~se

3.5
'A

I1
I

a w 0 W- I 9 m I I m0 I m x

0 2G 507 0 2 a

I I -1

--------

En
ow
I -

O _Longi~udinal

I

I

F.

2.55
10

a
"-

-9



the quench to 1420 K described above.

Step Ordering at T=1473 K (I=+11.8 Amps)

The results for the step peak data at +11.8 Amps (1473 K) are shown in Fig. 2-

32. The longitudinal lengths (open symbols) have been multiplied by a factor of

5.6. The initial longitudinal step-step correlation length is only 2002, slightly larger

than the 175A1 measured at +10 Amps (1420 K). The transverse step-step correlation

length of 1500A is again comparable to the initial lengths measured at 1420 K, but

is slightly smaller than the 1900A observed in the initial measurements at 1376 K,

lying just below one standard deviation in the calculated error bar. The longitudinal

and transverse lengths at 1473 K have an anomalous behavior, similar to those at

1376 K, in that their ratio (±1/L&I) is initially very large (about 7.2) before ultimately

converging to 5.6. The results of the step-step correlation length ratios for these

two temperatures differ from the almost constant value of 5.6 measured at 1420 K.

Of course, this anomalous evolution in the ratio of the lengths is also seen in the

behavior of the integrated intensities. At both 1376 K and 1473 K with positive

current the final ratio between the step-step correlation lengths ('/ 1I1) converged

to roughly 5.6, while at 1420 K and positive current this ratio was roughly 7.0. As

the surface develops more highly correlated stepped regions, the step peak position

moves toward smaller q1i from an initial peak separation of 0.0475 to its final value

of 0.0345. These correspond to step densities which are slightly smaller than those

measured at 1376 K and at 1420 K. This lack of agreement in the step densities at

these three temperatures would be unsettling if this surface were uniformly stepped,

since the surface must sustain a fixed macroscopic miscut. However, this is not the

case at these temperatures as will be addressed in conjunction with the AFM images

in the following section.

Step Disordering at T=1473 K (I=-11.8 Amps)

The disordering due to step bunching at -11.8 Amps is shown in Fig. 2-33 over a

period of about one hour. The initial length ratio of 5.6 gradually increases to about



8.0 as the step peak slowly decays with time. The peak position data in Fig. 2-33 show

that the step density is nearly constant for the first 30 minutes after which it rapidly

increases in density to its final high-density value where the separation is 0.047, which

agrees with the final values of 0.0496 and 0.051 determined at -8.6 Amps and -10

Amps, respectively. The constant peak position followed by an abrupt change at

this temperature is similar to that observed at -10 Amps (1420 K), although the

time-scale before the peak position begins to change is shorter by nearly 50%.

Rapid Unfaceting at T=1473 K (I=+11.8 Amps)

The results for the (1,0) peak at +11.8 Amps in Fig. 2-36 show a very rapid drop

in both the peak intensity and integrated intensity over only 15 minutes. The facet

dimensions again have a ratio (ý±1/(1) of about 3.0 which is essentially constant with

time. The longitudinal facet size changes by about a factor of 2 as the peak vanishes,

with the width decreasing from its initial value of 30001 to approximately 1500A at

the final time. A decrease in the time scale toward unfaceting of more than a factor

of 3 is observed comparing the results at this temperature with those at 1420 K (+10

Amps). The peak intensity and integrated at 1473 K both scale with an exponential

decay similar to those at 1420 K, although the characteristic change in the ratio of

the lengths is not seen at these high temperatures due to the much shorter time

constants.

Facet Growth at T=1473 K (I=-11.8 Amps)

Faceting on reversing the current to -11.8 Amps is shown in Fig. 2-37 over a long

period of about 100 minutes. Immediately after the current reversal the peak intensity

grows fairly rapidly while the longitudinal and transverse facet sizes are essentially

unchanged. One can observe the onset of an approximately linear increase in the

facet size with a concomitant saturation of the integrated intensity. During the first

40 minutes the ratio of the lengths (61/61) is approximately 3, while the linear increase

shows that the ratio approaches 2.25 after long times. The change in the ratio of the

lengths is an artifact due to the failure in the approximation to the resolution which

:~*LII-·I·I--·P--~--~~-··II



becomes less precise when the peak widths are very sharp. This artifact also gives

rise to the larger error bars for these data points. Thus, the overall characteristics in

the peak widths are similar to those observed at -10 Amps and -8.6 Amps. Hence,

it appears that there is a cross-over in behavior occurring approximately 40 minutes

after switching current direction. Specifically, the (1,0) scattering widths continue to

approach their resolution limit over a time-scale of about 100 minutes, even though

the signal integrated intensity was saturated after the first 40 minutes. This behavior

was not observed at the lower temperature points discussed above, even up nearly

200 minutes after current reversal, due to the slower dynamics at those temperatures.

Recall that during the run at -10A faceting appeared to be almost saturated despite

the fact that the length-scales had not reached their resolution limit.

The resolution limited (1,0) peaks correspond to facets of nearly macroscopic size

extending on the order of 1 to 2 microns transversely and 0.7 microns longitudinally.

This is in agreement with the AFM images and optical microscope images of this same

80 sample which was studied after quenching to room temperature from the faceted

phase. These values are also consistent with previous surface diffraction results on

smaller miscut samples [18, 20].

At positive current this stepped surface consists of steps which meander trans-

versely. This cooperative behavior gives rise to micron size undulations perpendic-

ular to [112]. During the course of these x-ray experiments, light from He-Ne laser

(A = 6328A) reflected from the sample surface revealed qualitative information about

large length-scale surface undulations. Although there appeared to be some degree

of reversibility of these undulations, no detailed studies were possible to determine

the real-time dynamical behavior of large length-scale surface changes. These surface

phenemona are described in the next section using Atomic Force Microscopy (AFM)

imaging. However, it should be emphasized that the partially reversible changes ob-

served in the x-ray experiments only strictly apply to structures with length-scales

less than a couple of microns, and not to the larger surface undulations.
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2.2.2 Optical and Atomic Force Microscopy Studies

This section describes the Optical and Atomic Force Microscopy studies of the surface

structure for quenched vicinal Si(l11). Following the x-ray experiments presented

above, these Si(111) samples were quenched from high temperature to room tem-

perature simply by switching off the current. The maximum sample cooling rate,

determined mainly by radiative heat loss, is approximately 100 K/sec above 850 K.

Figure 2-38 shows a 100x10012 AFM image conducted in atmosphere showing a

quenched surface which had been faceted by the action of electromigration at - 1490

K with current in the step-up (negative) direction. The facet widths are roughly
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1.5tu along the [112] direction (vertical) and > 10/t in extent in the [110] direction

(horizontal). The step bunched regions wander dramatically, consistent with the

step disordering observed in the x-ray diffraction data taken at this temperature

and current direction. One should note that the longitudinal facet size exceeds the

resolution of the x-ray experiment, and thus is substantially larger than expected.

A three-dimensional view of a similar faceted surface is shown in the AFM image

of Fig. 2-38 for a 40 miscut sample. This sample was prepared at negative current in

exactly the same manner as described previously, although it was heated immediately

to - 1520 K and then held at fixed temperature for several hours before quenching

to room temperature. Facets of longitudinal extents varying from about 7/1 to about

12/1 are seen and these are separated by step bands which wander transversely. An

approximate linear analysis of the facet structure can be made by examining Fig.

2-39 which shows a cross-section of the sample. One can see that the step bands

on this sample have two inclinations toward and away from the [112] direction. A

single step band region is on average 5/ across measuring the distance from the

upper side of one flat terrace to the bottom a step band. These "negatively" inclined

step bands require steps which flow in the same direction as the current. Clearly, a

"hill-like" distortion in the surface would be necessary before such a formation could

occur since step barriers or generally not sufficient to induce a bias to destabilize the

steps under electromigration. The microscopic mechanism for this anomalous step

formation shown in Fig. 2-38 remains to be understood, it is most likely the result

of electromigration combined with the relatively high sublimation rates at these high

temperatures.

Fig. 2-41 shows an AFM image of the 8' miscut sample described above after

quenching from a "faceted" surface state. This image was taken after extensive x-

ray studies were conducted and thus had experienced a large amount of sublimation.

This sample was quenched to 1060 K (within the two-phase reconstructed region)

from a relatively low temperature of about 1270 K, before finally quenching to room

temperature. This sample does not show the usual large flat <111> facet regions such

as those shown in Fig. 2-38 probably due to the excessive amount of sublimation over



the long times involved in the experiment. One surprising feature apparent in this

image is the long wavelength surface undulation in the [112] direction. A linear section

analysis of these aperiodic undulations show an average peak-to-peak lateral distance

of approximately 14/ and a vertical peak-to-valley distance of about 0.251/.

Details of the "peak" and "valley" structures on this surface can be seen in Figs.

2-42 and 2-43 which are AFM images over a 5x5 t 2 area revealing terraces. It is

not possible to discern 1 x 1 terraces from 7x7 terraces from these images since the

native oxide on silicon limits the atomic resolution required to make this distinction.

However, it is very likely that 1 x 1 terraces are predominant on this quenched surface

despite the time spent in the two-phase reconstruction region before cooling to room

temperature. The reason for this is simply because a nucleation barrier can prevent

the development of 7x7 order which typically begins forming near step edges. On

this surface the apparent terrace disorder would imply a large barrier against such

nucleation. In Fig. 2-43, the "valley" of the surface shows nearly regularly spaced ter-

races with an average longitudinal extent of about 650A, although the linear section

analysis shows that no strong periodicity occurs. A large number of terraces dis-

tributed along the surface allow the valley and peak regions to vary almost smoothly

in orientation. The absence of step bands could be the result of the slower quenching

rate for this sample.

The two-dimensional projection of AFM data in Fig. 2-44 shows surface undu-

lations caused by step wandering at positive current on a 40 miscut sample. This

image shows the backside of the same quenched sample shown in Fig. 2-40. The

light colored regions represent the "peaks" in the undulations while the darker col-

ored regions represent the "valleys". The branch-like features in this image are the

dominant characteristics of the transverse instability discussed with reference to the

phase diagram of Fig. 2-6. These undulations are more apparent in Fig. 2-45 which

shows a three-dimensional representation of similar data on the backside of the 80

discussed above. In this figure, positive current had induced a step ordering with a

transverse instability resulting in dramatic transverse undulations in the surface with

10/~ peak-to-peak distance along [110].
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Step Peak Scattering at +11.8 Amps (T = 1473 K)
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Step Peak Scattering at -11.8 Amps (T = 1473 K)
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Time-dependent Foaceting
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Lorentzian to the power 1.5.
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(1,0) Scattering at +11.8 Amps (T = 1473 K)
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Figure 2-36: Results of the fits for the (1,0) peak at 1473 K (+11.8 Amps). The
longitudinal facet size is multiplied by a factor of 3 for comparison with the transverse
size. The transverse integrated intensity is likewise multiplied by a factor of 3.
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(1,0) Scattering at -11.8 Amps (T = 1473 K)
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Figure 2-37: Results of the fits for the (1,0) peak at 1473 K (-11.8 Amps). The lon-
gitudinal facet size is multiplied by a factor of 2.25 for comparison with the transverse
size. The transverse integrated intensity is likewise multiplied by a factor of 3.5. The
difference in these two factors reflects the breakdown in the fitting approximation for
these nearly resolution limited scans, as is indicated by the larger error bars.
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Figure 2-38: AFM image of a sample quenched from 1450K showing large facets withdisordered stepped regions resulting from excessive sublimation under the influenceof electromigration.
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Figure 2-39: An linear slice from the AFM image
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Figure 2-40: AFM imaging demonstrating electromigration-driven faceting at nega-
tive current. This sample was quenched to room temperature from a temperature of

•-1490 K. Facets are roughly 1.5t along the [112] direction (vertical axis), and >10/p
in extent in the [110] direction (horizontal axis). Wandering step bands indicate
substantial step disorder.
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Figure 2-41: AFM image of quenched surface showing facet undulations after treating
the sample at negative current.
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Figure 2-42: AFM image of a quenched surface showing a 5x51p region near the peak
of a single facet undulation.
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Figure 2-44: AFM image of a 40 miscut sample quenched from high temperature at
positive current showing the large transverse undulations resulting from a transverse
meandering of steps at positive current.
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Figure 2-45: AFM image of an 8' miscut sample which was quenched from positive
current in the stepped regime showing dramatic transverse undulations in the step
pattern. The surface modulation is roughly perpendicular to (112). Note, the z scale
is 2/ per division.

2.3 Models for Electromigration-driven Step Be-

havior

In this section, continuum and microscopic models describing the behavior of steps on

surfaces under the action of an applied (electric) field are addressed and compared to

the experimental results from the last section. The shortcomings of these theoretical

models and the recent theoretical and experimental advancements that have been

made in understanding the phenomena of electromigration-driven step behavior are

discussed.
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Figure 2-46: Detail from one of the branching points of the AFM image of Fig. 2-45
of an 8' miscut sample which was quenched from positive current in the stepped
regime. Disordered 1x 1 terraces are shown in the central portion of the image while
smoothly varying terraces are observed on either edge. This image shows that the
terrace disordering is greatest in the uppermost region of the branches. The z scale
is 500 A per division. Note, the scan direction of this image is orthogonal to that of
Fig. 2-45 to maximize the resolution.
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Figure 2-47: AFM image showing some of the details from the 1x I terrace regions of
the AFM image of Fig. 2-46. This image is from a 5000x5000A2 area roughly located
in the upper right-hand corner of Fig. 2-46 along the smoothly varying terraces. The
z scale is 100 A per division. Although single steps are not distinguishable, small
groups of steps can be resolved showing some regularity of the step arrangements
consistent with the in-situ x-ray data.
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Figure 2-48: Optical microscope photograph of a quenched Si(111) sample showing
large facets. This is the opposite of the same sample shown in Fig. 2-49.
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Figure 2-49: Optical microscope photograph of a quenched Si(111) sample showing
large wavelength transverse undulations. This is the backside of the sample shown in
Fig. 2-48.
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2.3.1 A Continuum Model for Step Dynamics

A nonlinear continuum model recently developed by Misbah and Pierre-Louis (M-

PL model) predicts that step bunching dynamics obey an equation with solutions

which lead to a mixture of surface states yielding both solitons and spatio-temporal

chaotic behavior [32]. The derivation, which is outlined below, starts with seemingly

conventional approach using the Burton-Cabrera-Frank model [1] with the addition

of electromigration and evaporation terms. As the resulting numerical solutions of

this model reveal surface morphologies with overall features strikingly similar to those

observed in experiment, it would be useful to present some of the details of this model.

However, one should use caution in applying the results of this one-dimensional model

to a two-dimensional surface as such a model is strictly valid only for relatively straight

steps. Further caveats are provided in the discussion section.

In this model for step flow, many of the physical quantities relevant in experimen-

tally realizable systems (such as adatom diffusion, electromigration, evaporation, and

sticking at step edges) are explicitly included in order to obtain a realistic descrip-

tion of the step dynamics. For moderate temperatures, advacancies at the surface

can be ignored. [A model including advacancies and adatoms under the influence of

an electromigration force at sublimating temperatures is presented in ref.[33]. It is

purported that advacancies can induce step instabilities even without an electromi-

grative term. However, there is no direct evidence that any advancies are present on

the Si(111) surface at these temperatures.] In setting up the basic relationships for

the model one can write a one-dimensional diffusion equation for the time-dependent

adatom areal concentration field c(r, t) by imposing mass conservation:

Oc c DF Oc- = DV2c - (2.10)at 7 kBT Oz

The coordinate z is the displacement from the equilibrium position (along the

miscut direction in the experimental system), 7 is the desorption time for an adatom to

leave the surface, and D is the usual adatom diffusion constant. The electromigration
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force enters through the factor F which is defined such that positive F corresponds

to an electric field exerting a force on the adatom in the direction of the field. As

will be explained below this condition can be completely reversed in the case that

enhanced electron densities in the vicinity of the adatoms change the effective charge

of the adatom. The effect of adding advacancies to the system will be explained

below. Also, the transverse wandering of steps is completely neglected as it adds an

unnecessary level of complexity to the analysis. Despite these approximations, many

of the salient features of step bunching can be ascertained from this simple model.

The result of neglecting the meandering of steps in a full two-dimensional system will

be discussed later.

In order to apply the above formalism to a stepped surface, one must establish the

boundary conditions at each step edge. This requires some thermodynamic relation-

ships relating the step kinetics to the parameters in the model equation (D, F and the

thermal excitation energy kBT). In the absence of an electromigration term, kinetics

dictate that each step will advance by an amount which depends on the concentration

gradient in the direction of motion. To see this, consider the simple steady-state case

where adatoms impinge on the steps with a constant frequency. The velocity of each

point on a step in the direction of the step normal would satisfy

vnAc, = Dn. Vc. (2.11)

The quantity Ac, is simply the difference in the areal density of atoms on crossing

a step and v, is the kinetic coefficient. If kinetics are fast, the step concentration

c is larger than the equilibrium concentration for a straight step (ceq) by a factor

1 + nQ-y/kBT. This can be calculated [1, 34] by first assuming that the chemical

potentials of the step (a continuous capture center of adatoms) and the adatom gas

are at equilibrium at both sides of a step, namely

AS(pS) = p (p9 , c) . (2.12)

Expanding ~ around its equilibrium value gives
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(p, - pg) (ps,/p)p=pg,c=ceq = (C - Ceq)((0/g/C)p=pg,,=Ceq . (2.13)

This expression can be simplified by assuming that the pressure in the solid phase,

ps, does reversible adiabatic work to change the surface area bounded by a step, Q,

and hence, from equilibrium thermodynamics, iap,/Op = G. Similarly, the gas of

adatoms behaves approximately like an ideal gas, hence we make the approximation,

O9lg/ac = kBT/Ceq. According to Eq. 2.13, close to equilibrium the step concentration

will satisfy

c - Ceq PsBT g). (2.14)

Assuming mechanical equilibrium is established by the line tension of the steps, the

quantity (p, -pg) is equal to yr., where 7 is the step tension and . is the step curvature.

Hence,

Ceq42

C - Ceq Ce = • , (2.15)kBT
or,

c - ceq(1 + 7 T- ) = 0. (2.16)kBT

In the dynamical case, with electromigration force F driving the step motion, one

gets a relationship analogous to Eq. 2.11, quoted here without proof.

D[ c c]F , v-[c- eq(1 + Fy• - )]. (2.17)
&n kBT kBT

In this expression, the gas of adatoms is allowed to possess kinetic coefficients which

take explicit account of the asymmetry in the flux on the upper (-) and lower (+)

sides of the step (see the diagram in Fig. 3.1(a)). With this new kinetic coefficient,
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v±, and the electromigration driving force from Eq. 2.10, the essential mathematical

machinery is available to calculate the step dynamics under the influence of an ex-

ternal electric field. The elastic contribution to the right hand side of this equation

has been calculated in terms of the step spacing, 1. To leading order in 1, considering

only nearest neighbor interactions, the elastic contribution is

Ky= _ (= .+ 1 (2.18)aA a8 rE ((Am - Am-, + 1)2 (Am+, - Am + 1)2

where a and E are the Poisson ratio and Young's modulus, respectively, and f is a

force doublet (ie. units of forcexlength) which has its origin in the force-quadrupole

interaction of an adatom with the surface mono-layer. To leading order the elastic

energy, E, arises as a result of the displacement of a single step from equilibrium

due to the force exerted on it by the nearest neighboring steps. The origin of the

step-step repulsion is explained rather elegantly by E. D. Williams [22] and can be

calculated from first principles using standard elasticity theory [35]. The classical

1/12 step-step repulsion is apparent in Eq. 2.18. (Note that Eq. 2.18, as it applies

for homo-epitaxial step flow, was incorrectly stated in reference [32]. However, this

has no effect on the results of their calculations.)

It is useful to note that the relationships in Eqs. 2.10 and 2.17 represent an

improvement on an earlier model (due to Stoyanov [4]) in that the present treatment

explicitly takes into account diffusion, evaporation, elastic interactions and the step

tension. In Stoyanov's model, the evaporation is introduced indirectly as the origin of

a "source" for the adatoms. However, the concentration field c for an adatom moving

across a terrace will have the same form for both the Stoyanov model and the present

model in the case of quasi steady-state step dynamics. This concentration field has

solutions of the form

c = Acosh(z/lao) + Bsinh(z/ao), (2.19)

where ao = x; 2 + 1/4C2, x8 = V= i (the mean diffusion distance), and C = kBT/F

(dimensions of length). This solution is identical for both the Stoyanov model and the
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M-PL model, with the exception of the coefficients A and B, which can be calculated

(through laborious algebra) from the kinetic equation 2.17. The positions of steps

are indexed in terms of the one-dimensional (time-dependent) displacements from

their equilibrium positions, z = Am(t). In the M-PL model one can calculate the

relationship for the step position for the mth step, zm, as a function which relates the

mth step to its neighboring steps (m + 1 and m - 1), yielding

(DQceq) -lm = D-(Azm+i) oem+l) z•1/20[1 +3 A 2

A
-[aocosh(aoAzm+i) + (1/2ý + d_/X2)sinh(aodzm+i)][1 + A3 q

+D-1(Azm){c oeAzm/2 [1 + A A0 ]
30ceq

A
-[a+ocosh(aoAzm) + (-1/26 + d+/X2)sinh(aoAzm)][1 A A 1]j (2.20)

where

7D(z) = [1 + d+d_/x2 + (d+ - d_)/26]sinh(aoz) + ao(d_ + d+)cosh(aoz) .

As illustrated in Fig. 2-50, the step spacing between two neighboring steps is defined

to be Azm+l = zm+l - zm, and A, = Az 3 - Az+V~ 1 (i =0,1,2). One recognizes

immediately the similarity with the Stoyanov model [4] with an additional elastic

contribution and with d+ = d_ = d. The parameter d± = D/v± is known as the

Schwoebel length, which is the asymmetry for the sticking rate of adatoms to steps

impinging from a lower terrace (+) compared to that from an upper terrace (-).

This term has its origin in the modification of the surface potential near a step edge

due to the increase and decrease in coordination of the surface and the detached

adatom, respectively. In the case of non-equilibrium growth, the Schwoebel barrier

[37] can cause the surface morphology to coarsen, but this factor can be neglected in

the following calculation since the electromigration force should be the only source

of asymmetry in the case of a uniformly stepped surface [40]. Thus, the sticking

rate d is taken to be small but isotropic at each step. This assumption, along with
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Figure 2-50: Mono-layer step model indicating the step coordinates (zm) and step
velocities (zm) used in Eqs. 3.9 and 3.11.

the above approximations, should permit for a reasonably corrigible model which

can be adjusted to match experimental results. [It is useful to check that Eq. 2.20

gives a consistent description of the step dynamics when the electromigration term

vanishes[29], ie. F/2kBT = 1/2k -+ 0.]

Solving Eq. 2.20 is highly non-trivial since this involves handling an infinite

set of equations. Fortunately, step bunching is one manifestation of step behavior

which permits a continuum approximation, greatly simplifying the analysis of this

dynamical equation. Specifically, the continuum (coarse grained) limit is a reasonable

approximation in the case that the step-step spacing is much smaller than the diffusion

length x,, which is always the case during step bunching, even at extremely high

temperatures.

One expands Eq. 2.20 in a series in powers of the inter-step parameter Azm, which

is taken to be a continuous variable, thus the difference equation (2.20) becomes a

differential equation which is certainly more appealing then an infinite set of coupled

equations. To simplify the algebra it is useful to define mh = x and W(x) = zm+l-Zm.

Truncating the series by keeping only terms linear in Azm and up to fourth order in

the derivatives d(Azm)/dx W. gives the resulting equation:

(1/Dceq)[Wt - (2ceq/r)Wx] = -[1/(2(d) - A/(Qceqxz 0)]Wxx]
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1 A (l [1/(26d) - A/(c,,eqx2l,)] A

6x( 2c eq dl3 WQ 12 1 2ldceq)WxX (2.21)

Misbah, et al. have shown that this differential equation can be re-written in terms

of the step density, m = 1/W meq+ ml, by the following re-scaling of variables:

T D(iceq )212 •X = 41 l(20ceq) 1/2
(2Adc2) ' (A6) [(26) 3/2A1/ 2d 2]

and, /- = -1/2 [d(6Ceq) 1/2  lo1A 1/ 2

ad1 0 (3XA/2) (0Oce 1/2

The resulting equation which governs the step density is then

PT = -Pxx - Pxxxx - IPxxx - PPx . (2.22)

Solutions to this nonlinear partial differential equation can be found be numeri-

cally. However, the advantage of rescaling should now be apparent to those who are

conversant with problems in chaotic systems. By inspection of Eq. 2.22 there exist

two limiting cases of interest to the problem at hand: one limit is marked by the

absence of a dispersive Pxxx term, and the other is marked by the absence of the

second order and fourth order terms. These limiting cases will depend in part on the

value of 0, which depends on the magnitude and direction (or sign) of the electromi-

gration force, F, in Eq. 2.10. For the case were / is small, solutions of Eq. 2.22 are

dominated by step behavior exhibiting spatio-temporal chaos. This evolution of step

motion is shown in Fig. 2-51.

The results from numerical solutions of Eq. 2.22 for two values of the prefactor

of the dispersive pxxx term are shown in Figs. 2-51 and 2-52. Fig. 2-45 shows an

AFM image of an 8' miscut Si(111) sample which had been prepared for several hours

at high temperatures and thus had undergone substantial sublimation. These large-

length scale electromigration-induced transverse undulations reveal many of the same

features of the surface step pattern predicted from the M-PL model for /3 = 0.5. The
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Figure 2-51: Spatiotemporal diagram taken from ref. [32] with / = 0.5 showing a
chaotic (or disordered) step pattern. The X-axis is an arbitrary time coordinate and
the Y-axis is a spatial coordinate. At t=0 the step array is assumed to be uniform.

chaotic step behavior in the model leads to distortions which are aperiodic in time (X-

axis in the figure). Irregularly distributed branches appear in the surface profile due

to this aperiodicity. As time progresses, these idealized steps appear to coalesce at

localized points along the step direction, and then spread out leaving a pattern which

has many branching points resulting in a self-similar surface morphology. For a two-

dimensional surface one could expect a similar branch-like pattern to appear, provided

the step curvature does not become so large that the elastic-limit approximation

breaks down.

Figure 2-46 is a 1.0 x 1.0 p2 image showing detail one of the branching points

of the AFM image of Fig. 2-45. The z scale is 500 A per division. Disordered

1 x 1 terraces are shown in the central portion of the image while smoothly varying

terraces are observed on either edge. The center of the image corresponds to one of

the branching points. The terrace disordering is greatest in the uppermost region

of the branches. This observation is in agreement with an absence of integer order

scattering at (1,0) from this surface found in the x-ray experiment. Note, the scan
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Figure 2-52: Spatiotemporal diagram taken from ref. [32] with /f = 3.0. Step bunches
appear to form ordered arrays with a periodic undulation. The X-axis is an arbitrary
time coordinate and the Y-axis is a spatial coordinate.

direction of this image is orthogonal to that of Fig. 2-45 in order to optimize the

resolution of the AFM instrument. The disorder of these terraces is evidently the

result of long wavelength transverse step wandering.

The AFM image of Fig. 2-47 shows some of the details from the 1 x 1 unrecon-

structed terrace regions of the image of Fig. 2-46. This image is from an area 1.0 x1.0

p2 located near in the upper right-hand corner of Fig. 2-46 in a region of smoothly

varying terraces. The z scale is 100 A per division. Although single steps are not

distinguishable, small groups of steps can be resolved showing some regularity of the

step arrangements with an average distance of more than 1000A transversely, con-

sistent with the in-situ x-ray data. It is of course not surprising that step groups do

not appear to follow the pattern predicted from the M-PL model, although the 1 x 1

terraces themselves do tend to lead to effectively the same surface structure. This

collective motion results in a terrace arrangement which follows qualitatively similar

transverse motion over large length-scales reflected in the M-PL model. These steps

tend to form regular kinks upon each terrace crossing and are distributed almost

uniformly at least for short length-scales. This presumably gives rise to the relatively

large transverse step-step correlation lengths measured in the x-ray scattering exper-
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irnent. The curved terrace regions of Fig. 2-47 form an array of large curvature and

the spacing between the terraces is almost regular over short length-scales along the

direction of the miscut.

Comments on the Continuum Models

Recently, a number of theorectical approaches [4] have been attempted to examine

step dynamics on vicinal Si(111) surfaces using continuum approximations similar

to that used in the previous section. In some of these models, it is argued that a

phase transition occurs at a temperature where the diffusion length is equal to the

terrace width. As explained in the above section, the continuum approximation can

be satisfactorily applied to a one-dimensional array of steps in the limit that the

diffusion length is much larger than the inter-step spacing, or equivalently, the size of

the 1 x 1 terraces which separate the steps. In fact, this condition should be valid for

all temperatures up to the melting temperature for silicon. As an order of magnitude

estimate of the diffusion length, one can use results from recent calculations for the

evaporation energy, W = 4.6eV, and the activation energy for diffusion, Ed = 1.1eV

[40]. Combining the diffusion coefficient, D = a2veEd/kBT, with the mean life of an

adsorbed atom before evaporating, 7 = v-le - W /kBT, one can obtain an estimate of

the diffusion length, A = v75+ = ae(W- Ed)/kBT. Evaluating this in the temperature

regime of interest, one finds A = 2.0 x 106a at T = 1400 K, and 1.8 x 105a, at

T = 1675 K (the melting temperature for silicon!). Thus, the diffusion length in

this approximation clearly exceeds the size of any of 1 x 1 terraces observable in

experiments, even at very small miscuts down to 0.10 [3]. One should ask if there

exist conditions which might lead to a dramatic reduction in the diffusion length

above some temperatures. The phenomenon of surface melting probably will not lead

to such a decrease in the diffusion length since this would tend to reduce the hopping

energy Ed, thus increasing the difference W - Ed and therefore the diffusion length,

A. The Schwoebel barrier discussed above is a possible candidate for introducing a

mechanism to substantially reduce the diffusion length.

Establishing boundary conditions which consider large temperature changes in the
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diffusion length as relevant is most likely not sufficient to determine the conditions

which lead to a electromigration-induced phase transition. However, even in the

M-PL model, the competition between the diffusion length and the effective length

associated with the electromigration force, F = 1/kT6, determines the destabilizing

condition. Therefore, it is plausible that a modification of the stability condition could

result from the variation in the diffusion length, but the resolution of our experiment

suggests that such a modification would be insignificant.

Following the x-ray diffraction study of the previous section, the 80 miscut Si(111)

sample had been quenched from the two-phase region at 1050 K after many hours in

the high temperature regime. Recall that this sample is polished on both sides. There-

fore, using the conventional definition of current direction with respect to <112> (ie.

positive current follows the step-down direction), opposite sides of the sample will

carry currents of opposite sign. Experimentally, this means that one can assess de-

tails of the surface for both positive and negative current from a single sample. For

example, this quenched sample can have a "frozen" facet structure on one side, and

a complimentary stepped structure on the opposite side, thus "frozen" from precisely

the same temperature. Optical microscope photographs revealing these dramatic dif-

ferences are shown in Figs. 2-48 and 2-49 for both sides of an 80 miscut Si(111)

sample. It is apparent, therefore, that the direction of the electromigration force can

be the only difference between these two quenched surface states since each side of

the sample has the same miscut, and of course the same temperature. In fact, the

miscut directions for each face will be as closely matched as is mechanically possible

since the surfaces clearly remain parallel during the polishing process.

The overall features can be described as follows. Mesoscopic undulations of an

irregular periodicity of the order of 10/ are observed, and the direction of the modu-

lations differ by 900 between the two current directions. This shows that affect of the

transverse step meandering on the surface morphology can be non-trivial, and should

be addressed in the models. However, it is interesting that the apparently self-similar

bifurcations, or branchings, observed in these images also appear in the M-PL model.

Misbah and Pierre-Louis ascribe a step disordering due to spatio-temporal chaotic
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behavior for the case with O = 0.5. For the case with / = 3.0, the steps form a

regular array which is periodic in time resulting from a soliton mode expected from

the Korteg de Vries type solutions of Eq. 2.22 [32].

2.3.2 A Microscopic Model of Electromigration

A microscopic model was developed [8] which predicts the site-to-site motion of a

adatoms under the action of both an electric field and a wind force due to the scat-

tering of electrons at the surface. In this local density functional approach, it was

assumed that the site hopping of an adatom amounts to the exchange of an electron

in the direction opposite to the motion of the adatom [42]. Therefore, ignoring the

wind force, an effective current of negative charge also travels opposite to the adatom,

resulting in an effective positive charge, Zd, for the adatom. The calculated value of

this effective charge is +0.05.

The contribution due to the wind force can be estimated using experimental values

for the surface electron density, n,. Although experimental results for n, in Si(l11)

are not available, one can obtain a reasonable estimate for its temperature dependence

from experimental results for Ge(111) which is expected to have roughly the same

behavior. Figure 2-54 shows the estimated temperature dependence of n, based on

low-energy electron diffraction (LEED) experiments for Ge(111) [41]. The surface

electron density is essentially zero in the (ordered) reconstructed phase. The increase

in n, through the stepped phase can be understood due to the weakly metallic-like

nature of this disordered 1 x 1 surface. There is a jump in ns at a temperature T1 due

to unmitigated metallicity indicative of surface pre-melting. The wind force due to

an applied electric field E can be expressed as

F = ZEnla ,

where Z, is the effective charge n is the surface electron density, o is the scattering

cross-section electrons with an adatom at the Fermi energy, and 1 is the electron mean

free-path between collisions [25].
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The theoretical calculation started with an initially ordered arrangement of adatoms

separated by a few lattice constants (about 8A) which is subjected to an electromi-

gration force. Taking a solitary adatom for the moment, one will find that the local

effect of exchanging charge during the electric field-induced hopping is the key action

which leads to the bias. The effect on a solitary adatom due to neighboring adatoms

enters mainly as a small change in the relaxation of the surface in the vicinity of

the rest atoms. Of course, evaluating this phenomenon in the presence of steps will

add a great deal of complexity. The direct force can now be calculated within the

local density functional theory in the following manner. The adatom hopping gives

rise to a change in the electrostatic energy because the modification of the charge

configuration. Taking the difference in the charge density between two configurations

as p(r) - p(r), the energy difference A which arises from the presence of the electric

field acting on these charge distributions is simply,

A = A - E. f drr[p(r) - p(r)], (2.23)

where it is assumed that local changes in the charge distributions are not affected

by the electric field. An effective charge associated with the direct force then follows

from -eZdE - a = A - A, with a being the hopping vector connecting nearest T4

and H3 sites. This is the mechanism for the field-induced biased. Kandel et al. have

numerically calculated a value of Zd = 0.05 + 0.006. Summing the contributions from

the wind force and the direct force, one gets two special temperature points, labeled

T 1 and T, in the diagram. Below T 1, adatom motion is determined by the direct force

due to the electric field. At temperature T 1 there is a crossover where the wind force

dominates the adatom motion. However, the occurrence of surface melting causes

the value of Zd to jump. The estimate of Zd for temperature above T, is 0.5, that

is, closer to the valence charge of Si. Thus, the direct force dominates in this regime

causing a second transition to appear.

The microscopic theory reveals that the competition between the wind force and
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Figure 2-53: Energy landscape for Si(111) with a static biasing field (from ref. [81).
Hopping occurs between T4 and H3 sites, via saddle points (SP). The presence of
steps are ignored in this model.

the direct force acting on the adatoms can naturally lead to multiple cross-over tem-

peratures. The above arguments require an enhanced electron density due to surface

melting and a jump in the value of Zd, neither of which has been directly studied

in experiments. It should be noted that surface melting should extend only to the

first bilayer, in which case single atomic height steps could remain prevalent. This

expectation has been confirmed in surface melting studies of Ge(111) [47]. It is rea-

sonable to assume that a behavior similar to that of other elemental semiconductor

materials might be observed for Si(111). The location of the transition temperatures

will of course depending strongly on the details of the temperature dependence of the

surface electron density.
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Figure 2-54: Estimate for the density of electrons at the surface of Si(111) proposed
in ref. [8] to determine the crossover temperatures for step ordering. These val-
ues are estimates based on data for Ge(111) and Si(001). The dashed line below
T 7x7-1x1 indicates a surface electron density of zero. The vertical dotted line marks
a temperature where a jump in n, might occur.

2.4 Summary

Studies of the step behavior on vicinal Si(111) have been conducted on surfaces miscut

up to 80 toward <112>. An investigation of the effect of current reversal on the dy-

namics of step bunching and unbunching was completed at 1376K, 1420K, and 1470K

for an 8' sample. The phase diagram in Fig. 2-6 shows the relevant temperature re-

gions. The dashed line around 1140K represents the location of the reconstruction

driven faceting transition which has an orientational dependence. Between 1370K

and about 1470K the slow time evolution permitted independent measurements of

the q-dependence of the scattering at the integer order facet peak (1,0) and at the

step peak without significant distortion in the scattering profiles over periods ranging

up to 200 minutes. The surface morphologies at these temperatures were essentially

reversible, except after very long times at fixed current direction where either faceting

or transverse step wandering could become saturated. Thus, a determination of the

time dependence of the step correlation lengths, facet size and integrated intensities
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wag mad@ for th e- temperatures over a substantial time range. The lower bound

step-facet transition at ,.1370K was also studied on heating from the single phase

stepped region at negative current, and found to agree with the transition temper-

ature measured on samples with smaller miscuts. In addition, a series of studies

showing the time-dependence of the (1,0) peak were made on the 80 sample after

quenching from above 1520K (an unfaceted surface) to 1406K and 1376K at negative

current showing a continual development of the morphology over periods of up to 150

minutes. In some instances facets as large as 0.7x2.5p 2 were observed.

The scattering in the vicinity of the order-disorder transition at approximately

1520K (see diagram) was also examined for current both parallel (positive) and anti-

parallel (negative) to <112>. This transition temperature was found to be indepen-

dent of miscut for both current directions to within the experimental error. True

"step-ordering" above 1520K at negative current was not observed in this set of ex-

periments, as suggested by substantial diffuse scattering (and broadening) observed

at both current directions for both the (1,0) peak and the step peak. Ex-situ optical

microscopy on quenched samples revealed that large facets developed at positive cur-

rent in the ordered stepped region above 1370 K and indicated a transverse instability

consistent with that previously seen in other experiments on smaller miscut samples.

The surface undulations which can appear at high-temperatures are of length-scales

large enough to study with visible light. It would therefore be fruitful to augment the

x-ray surface studies with in-situ specular reflection of diffraction studies from these

surfaces.

Future experiments should reveal detailed information of the time-dependence,

particularly if the q-dependence can be ascertained using a linear (position sensitive)

detector. This would permit simultaneous measurement of scattering across a range

of q, greatly increasing the spatial and temporal resolution of the scattering exper-

iment. It would also be interesting to address some of the basic assumptions taken

in the microscopic model; namely, the enhancement of the surface electron density

accompanying the purported incomplete melting of the Si(111) surface. To date, sur-

face melting has not been confirmed experimentally on Si(111). The phenomenon
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of surface melting of other semiconductor surfaces such as Ge(l11) and Si(001) has

been observed in electron diffraction experiments [9, 41, 45, 46]. Further theoretical

work would also be helpful, particularly in illuminating the details of the step kinetics

within the single-phase region above the 7x7-1 x 1 transition under electromigration.
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Chapter 3

3D-XY behavior in liquid crystals

with very wide nematic ranges

3.1 Introduction

The smectic-A (Sm-A) phase is defined by the establishment of a one-dimensional

mass density wave in a three-dimensional (3D) fluid with the density wave along the

direction of orientational order [1]. Many thermotropic liquid crystalline materials

exhibit a phase transition between the nematic (N) phase and the Sm-A phase, and

these systems have been the subject of numerous experimental and theoretical studies.

The smectic-A phase of liquid crystal systems can be described by a density wave

along the nematic director (perpendicular to the smectic layers) of the form p=po +

ý/eioeiqoz. Figure 3-1 depicts the molecular arrangements for the nematic and the

monolayer smectic-A1 phases for a generic polar liquid crystal material. The order

parameter associated with this sinusoidal density is Re(ljleiqo~o), where the phase

in the exponential is a function of the displacement, u(r), of the layers along the z

direction. Therefore, the critical behavior associated with fluctuations of this two-

component (n = 2) order parameter is expected to be 3D-XY-like [1]-[4]. However, the

experimental results to date have not established a clear case of 3D-XY universality

[7, 21]. The nature of the N-Sm-A phase transition in liquid crystalline materials has

been one of the most puzzling fundamental problems in the field of critical phenomena,
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and is the subject of the experiments presented in this chapter.

Over the last two decades, the N-Sm-A transition has been studied in many liquid

crystalline materials. However, none of the results of the experiments have shown a

set of critical exponents in full agreement with the 3D-XY predictions. Moreover, the

correlation-length critical exponents v1I and vi (where vll and vi are the exponents

describing the divergence of the correlation lengths parallel and perpendicular to the

nematic director) have always been found to be anisotropic. The presence of two

distinct values of the critical exponents describing the correlation length singularity

is, of course, a serious violation of the scaling laws [5].

The broad range of critical exponents found experimentally has been attributed

in part to the proximity of the systems to a tricritical point, depicted in the generic

phase diagram of Fig. 3-2. The underlying physics was revealed experimentally by

Ocko et al. [14] in a study of a series of binary liquid crystal mixtures. The crossover

from first-order to second-order behavior can be understood in the context mean field

theory where fluctuations are ignored. Following Ocko's discussion [15], one considers

the nematic order parameter, S, to be at equilibrium close to TNA. The free energy

associated with the smectic order can be expressed in the usual Landau-Ginsberg

form as:

S= a 2 + 1,2 + !a4 14  (3.1)

Including only the lowest order coupling term between the nematic and smectic order

parameters, one can write for the free energy in the nematic phase as

1
1NA = S - C1,[2jS = 6S2  (3.2)

( 2x)

where SS S - So(T), and

6S = XCIp|I 2 (3.3)

130



Nematic Smectic-A

0

Po

Figure 3-1: Diagram showing two of the many possible molecular arrangements for a
nematic liquid crystal system. The diagram on the left shows the nematic (ordered
fluid) phase. The diagram on the right depicts the salient features of the smectic-
A phase, which is the most common stratified phase found in thermotropic liquid
crystals. For the monolayer smectic-A1, the mass density is described precisely by a
pure sinusoid with an average layer separation d on the order of the molecular length.
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Temperature

TNA

Effective Molecular Length

Figure 3-2: The phase diagram of a generic liquid crystal system showing the location

of a tricritical point (TCP) separating a line of first-order transitions (dashed line)

from a line of second-order transitions (solid line) at a temperature TNA (the nematic.

smectic-A transition temperature). A system consisting of a mixture of liquid crystals

materials can possess an effective molecular length (the ordinate in the figure) which

is typically intermediate between the molecular lengths of its constituents.
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where the free energy has been minimized with respect to 6S. Therefore,

aNAa2  a 44 2 4FNA= a+-!2101+a 4_1 - xC2'' +1 I¢
2 4 (2X)

= ao + a12 + (a4 - 2C 2 ) 1, 14. (3.4)
2 4

The tricritical point is determined from the zero value of the fourth-order term in

Eq. 3.4 where a line of second-order critical points meets a line of first-order critical

points. Therefore, an increasing nematic range, which corresponds to a decreasing X,

amounts to bringing the system further from the tricritical point. It is thus expected

that systems with very large nematic ranges will possess critical behavior which is

essentially unaffected by the tricritical point, and therefore should exhibit 3D XY-like

critical behavior.

This argument can also be understood heuristically as follows. One would expect

a continuous (second order) phase transition at TNA in systems where the nematic

order parameter is nearly saturated. This is simply due to the small energy required to

create a layered smectic "droplet" within a nearly perfect nematic fluid. Conversely,

a system with a narrow nematic range will not possess well-saturated nematic order.

In this case, a large jump in the nematic order parameter would have to be achieved

before local smectic order could develop; hence the transition should be first order

[6]. Liquid crystal systems with narrow nematic ranges have been studied in many

systems showing a first-order to tricritical to second-order crossover [12, 14, 16, 17, 22].

However, even in the tricritical region one finds Ull - vi ý 0.1 [14].

It is well-known that the analytical description of the critical singularities in heat

capacity C,, order parameter susceptibility a, and correlation length 6 applies strictly

to the asymptotic pure power law regime, i.e. for T--+T. Unfortunately it is often

very difficult to carry out accurate measurements only in the asymptotic regime.

However, Bagnuls and Bervillier have made an exact nonperturbative analysis of the

04 field theory model for d =3, n=1,2,3 and have evaluated numerically the universal

aspects of the preasymptotic (first confluent corrections) regime [33, 36]. They have

shown that their predictions for the 3D-XY (d=3, n=2) model describe well the heat
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capacity of liquid helium near its normal-superfluid transition [40]. Moreover, re-

cent ac-calorimetric studies of the critical heat capacity behavior have been reported

for several polar liquid crystal compounds supporting this theory. These so-called

"frustrated smectics" exhibit the nematic-monolayer smectic-A1 (N-Sm-A 1) transi-

tion and are all characterized by wide nematic ranges (> 45 K) [22, 23, 24, 25, 26].

In fact, the heat capacity C, measurements for all of these systems were found to

possess ideal 3D-XY behavior with a critical exponent a = -0.007 ± 0.009. Fur-

thermore, first- and second-order corrections-to-scaling terms calculated within the

preasymptotic theory were found to be important to accurately describe the C, data

[23, 24].

In this thesis, data for two compounds are discussed: the pure liquid crystal octyl-

oxyphenylnitrobenzoyloxy benzoate (DB8ONO 2), and the binary liquid crystal mix-

ture pentylphenylcyanobenzoyloxy benzoate (DB 5CN) and cyanobenzoyloxypentyl-

stilbene (C5 stilbene). A detailed line-shape analysis is presented for the x-ray scat-

tering data and an investigation is made of the effects alternate forms of the structure

factor S(q) might have on the resulting values of the correlation lengths 611 and (i

and the smectic susceptibility a. The dependences of ý11, 1±, and a on the reduced

temperature 7 = (T - Tc)/Tc are first analyzed using pure power-laws and effective

critical exponents, as has been conventionally done for other N-Sm-A systems [14, 21].

This is followed by an analysis using the results of the preasymptotic theory which

describe the correlation volume 1J2, and the Sm-A 1 susceptibility a in the nematic

phase near the N-Sm-A 1 transition in both DB8ONO 2 and DB5CN + C5 stilbene. Fi-

nally, using a minimal set of adjustable parameters and applying the results from heat

capacity studies on these samples, it will be demonstrated that the thermodynamic

quantities measured in the x-ray experiment are in very good agreement with 3D-XY

predictions and that all of the known universal ratios are well obeyed. Thus, even

though (11 and (1 diverge differently, the above quantities are nevertheless accurately

described by an orthodox 3D-XY model.

This chapter is organized as follows: The experimental results from the x-ray

scattering studies of DB 8ONO 2 and DBsCN + C5 stilbene are presented in sections
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3.2 and 3.3, respectively. In section 3.4, these same data are discussed in the context

of a preasymptotic 3D-XY theory using the results from previously conducted heat

capacity studies. Concluding remarks summarizing the results are presented in section

3.5. The details of the preasymptotic 3D-XY analysis of the heat capacity data on

these samples can be found in Ref. [13].
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3.2 X-ray Scattering Study of DB 8ONO 2

An x-ray scattering study was conducted for the N-Sm-A 1 phase transition in the

pure liquid crystal compound DB8ONO 2 which has the following molecular formula:

CH -o 000 OOC OOC-c NO2 DB8ONO 2

This molecule has a highly polar nitro group (NO 2) at the head, three benzene rings,

and an alkyl group at the tail. The large diamagnetic moment of benzene conspires

with the cigar-shaped geometry of the molecule to give a highly anisotropic volume

diamagnetic susceptibility, Xa, XII - Xi : 0. Thus, the mosaic (or angular spread)

of the layer order can be reduced dramatically by orienting the sample in a magnetic

field aligned parallel to the nematic director.

Our inspiration for studying this compound originated from a C, study of bi-

nary mixtures of DBsONO 2 + DB 10ON0 2 [22]. In this system, a critical-to-tricritical

crossover was observed. A mixture with 31.5 mole percent (X= 31.5) DBoON0 2,

showed ideal 3D-XY heat capacity behavior, while a mixture with X=51.33 exhibited

tricritical behavior (a = 0.50 ± 0.04). As the pure compound DB8ONO 2 is substan-

tially further away from this tricritical point than the X=31.5 mixture, it was deemed

a very suitable candidate for observing ideal 3D-XY behavior. DBsONO 2 exhibits

the phase sequence [27]

I---+ N---+ Sm-A 1-- + Sm-(---+ crystalline,
500K 404.25K 382.1K 364.7K

and thus has a nematic range of 96 K. Neither the Sm-C nor the crystalline phases

were studied in the experiments described below.

The experiment was carried out using the high-resolution x-ray scattering config-

uration shown in Fig. 3-3. A Rigaku Ru-300 rotating-anode x-ray source operating at

12 kW, with a Cu K& radiation was used. The spectrometer employed Si(111) single

crystals as the monochromator and analyzer, in a nearly nondispersive configuration

at the small scattering angles involved in the experiment. The resulting longitudinal

resolution was 1.3x10-4A-1 half width at half maximum (HWHM). The transverse
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in-plane resolution (in the plane of scattering) was < 1 x 10- 5A, while the transverse

out-of-plane (normal to the scattering plane), determined by the slits, was approx-

imately Gaussian shaped with 0.041-1 (HWHM). A 160 mg sample of DB8ONO 2

was placed in a beryllium cell 12x12x1.5 mm3. The sample cell was mounted in

a two-stage, nested, temperature controlled beryllium oven with a temperature sta-

bility of better than ::2 mK over several hours. This determined the experimental

temperature resolution. Typical x-ray scans required between 1 and 15 minutes to

complete except for reduced temperatures greater than 5 x 10- which took up to 2

hours. For the highest temperature data (above 5x10 - 3) T was determined to bet-

ter than 1x10 - 4. The vertical temperature gradient across the 12-mm height of the

sample was only 1 mK, and a total sample area of 1 x 3.5mm 2 was illuminated by the

incident x-rays. The liquid crystal material was aligned in the nematic (ordered fluid)

phase by a 6.5-kG electromagnet which was fixed to the 0-circle of the spectrometer.

Measurements of the developing smectic order were carried out by performing longi-

tudinal (parallel to the nematic director) and transverse scans at a series of constant

temperatures in the nematic phase.

The DBsONO 2 sample was synthesized and purified at the Technical Institute of

Berlin and is from the same batch as the material used in the heat capacity studies

of DB8ONO 2+DB 10ON0 2 mixtures in reference [22]. The N-Sm-A 1 phase transi-

tion temperature T, was determined by the appearance of mosaic structure in the

transverse scan as shown in Fig. 3-4(a). The mosaicity of the DB8ONO 2 sample as

measured from the 9 width of our sharpest scan was 0.240 HWHM. At the start of the

x-ray experiment the transition temperature T, was 404.254 K, but T, was found to

drift slowly during the course of the experiment. A time-dependent transition tem-

perature Tc could be used in the final analysis since the thermodynamic quantities of

interest depend on the reduced temperature (-r=_ (T - T,)/Te), rather than the abso-

lute temperature T. The reduced temperature is easily calculated from the values of

T, determined throughout the experiment. Drift rates of dT0/dt - -45 mK/day were

observed over the first week of the experiment, after which this rate gradually slowed

and for the remainder of the experiment had an approximately linear decrease of -20
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Figure 3-3: Diagram of the spectrometer configuration for high-resolution small-angle
x-ray diffraction used in the bulk liquid crystal experiments. The angle between the
detector arm and the direct beam (dashed line) defines 20. The aligning magnet is
fixed with respect to the sample stage, and these make an angle 0 with respect to the
direct beam. Horizontal slits are used to reduce the background. The vertical slits
which define the height of the beam are not shown here.

mK/day. Data obtained over an extensive period of time are internally consistent as

a function of (T - Te)/Tc. This observation is in concordance with the results from

previous studies [28] which showed that the slow changes in sample purity at high

temperatures due to annealed impurities do not affect the critical behavior.

In the nematic phase near the N-Sm-A 1 phase transition, the diffuse x-ray peak

associated with the Sm-A 1 fluctuations was centered at 2qo = (0, 0, 0.2097A-1), which

corresponds to a layer spacing d = (27r/2qo) = 29.96A. No temperature dependence

was found for the value of 2qo in the nematic phase or in the Sm-A 1 phase just

below the transition. Displayed in Fig. 3-4 are representative longitudinal scans (0,

0, q11) and transverse scans (q±, 0, 0.2097) at four reduced temperatures showing the

development of smectic order on approaching T,. The top panel 3-4(a) shows scans

in the Sin-A 1 phase just below T, where the inset indicates structure in the peak

indicative of mosaicity as the Sm-A 1 just becomes established.

One interesting feature of the DB8ONO 2 data is the presence of a second diffuse

x-ray peak centered at (0, 0, 0.6881qo), as can be seen in Fig. 3-5. This peak,
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Figure 3-4: Representative scattering data showing longitudinal and transverse scans
in DBsONO 2 at four reduced temperatures. The solid lines in (b)-(d) are fits with
Eq. 3.5 convoluted with the resolution function. The lines is panel (a) are guides to
the eye; the inset shows an example of how the mosaic is determined in the Sm-A 1
phase.

139

2400

1800

1200

600

1800

1200

600

1200

600

600

(D
4-,

L.
ci)
CL

Cl

0
C.)



Smectic-A 1
olft

0) oU
.- r

._ 60

40

Co
S20

0

+ Partial Bilayer Order

0.4 0.6

0-

Co

0

80

60

40

20

-0.5

0.8 1

q /2qo
80

60

40

20

0
0.5

q1/2q 0

.0 1.2

-0.5 0.5

q1/2q o

Figure 3-5: Longitudinal (a) and transverse (b) and (c) scans in DBsONO 2 showing
Sm-Ad and Sm-A 1 ordering at T = 1.2 x 10-2. The Sm-A1 peak is centered at
2qo=(0, 0, 0.2097) A- 1 . The second diffuse peak at q'o=(0, 0, 0.1443)A7- 1 is due to
Sm-Ad order. Scan (b) is through the 40 peak, and scan (c) is through the 2qo peak.
The solid lines represent a fit of the 2qo to the lineshape of Eq. 3.5 including a
Lorentzian contribution to the background due to '0o.
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associated with short-range partial bilayer (Sm-Ad) order, corresponds to a layer

spacing d = (27r/qo) = 43.54A. Such Sm-Ad-like fluctuations are expected [29] in the

nematic phase of a frustrated smectic system even if it does not exhibit a stable long-

range ordered Sm-Ad phase at any temperature. The q'o peak position, intensity, and

width show no temperature dependence. All aspects of this weak, diffuse peak are

absolutely stable not only in the nematic phase but also in the Sm-A 1 phase as low as

5 K below the N-Sm-A 1 phase transition. A similar diffuse peak has been detected in

an x-ray study of the binary mixture DBsONO2+DB10ON0 2 at a q' value different

from the q' value of the quasi-Bragg spot associated with the long-range Sm-Ad phase

observed in this mixture [30]. Although the Sm-Ad-like q'o peak in DB8ONO 2 becomes

comparable in intensity to the Sm-A 1 peak only for T<10 - 2 , its presence was taken

into account in the lineshape analysis of all the data. Both longitudinal and transverse

scans through the q'o peak could be well described by a Lorentzian, as shown in Figs.

3-5(a) and 3-5(b). This peak with a temperature-independent longitudinal HWHM

of 1.59x10-2A- 1 and a transverse HWHM of 5.58x10-2A-1 was treated as part of

the background.

Critical x-ray scattering due to Sm-A 1 fluctuations in the nematic phase is de-

scribed by the following structure factor expression:

S(q)= 1 + ((qll - 2q0) 2 + + c4 q' (3.5)

convoluted with the resolution function. No corrections for mosaicity were needed.

A convenient way to incorporate the transverse correlation length in the analysis is

through the ratio of the correlation lengths, (11/C." Thus, pairs of x-ray scans are fit

with only three adjustable parameters: a, C11, and (CI/C." Note that this structure

factor contains an empirically chosen quartic term c4 qi which is conventional in

analysis of N-Sm-A data [21, 31]. The need for a quartic term, which most probably

has its origin in splay-mode director fluctuations, is dictated by the non-Lorentzian

wings of transverse scans at large 7 [31]. Figure 3-5(c) displays the results of fitting

a transverse scan at r=1.2x10-2 with Eq. 3.5 allowing c : 0 and with a Lorentzian
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(i.e., c = 0). It is clear from the scans that a fourth-order correction term is required

to fit these data adequately. The coefficient c is a freely adjustable parameter in

the fits and its temperature dependence is shown in Fig. 3-6(a). One sees that c is

very small near Tc, and never becomes larger than 1 at large reduced temperature,

which is in agreement with the results of fits to x-ray data for other N-Sm-A systems

[14, 21]. This temperature dependence of the parameter c reflects a crossover in the

transverse shape of the scattering, which changes away from the simple Lorentzian

shape near T, to a Lorentzian squared far above T, where c is largest.

It has recently been argued [32] that a more correct form for Eq. 3.5 should have

the quartic term fqi± instead of cj±q±, where & is a splay correlation length; it is

further argued that S, should be constrained to a power law critical behavior ,sr-"

characterized by a critical exponent v,. The empirical v, and &so values reported for

octyloxyphenylcyanobenzoyloxy benzoate (80PCBOB) are v, ~- 0.41 and 6sO = 2.33A

[32]. Figure 3-7 displays our quantity C1/4 ± as a function of 7 for DBsONO2. These

points can be fitted nicely by a pure power law with an exponent equal to 0.35+0.05.

Thus, Fig. 3-7 demonstrates that the treatments of the transverse line-shape with Eq.

(1) or with a form that includes a 64qi splay term are equivalent as, of course, they

must be since they are algebraically identical except for the power-law constraint

imposed in Ref. [32]. It has also been argued [32] that the critical behavior of 6,

affects the criticality of the correlation length 6i. As shown below, the statistics of

our data analysis do not show such a trend. The uncertainty in the determination of

ý1 from fitting the data with different S(q) has no significant effect on the values of

the effective critical exponents, at least within the experimental standard deviations.

Results for DB 8ONO 2 using Pure Power-law Analysis

The values of 611, 6-, and the smectic susceptibility a obtained from fits to the x-ray

profiles with Eq. 3.5 are shown in Fig. 3-8. These quantities have been fit over the

range 2x 10-5<T<1.2x 10-2 with pure power-law expressions having the forms

II= 6110o-", 6 -Io6r± - /, a = 0 , .
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AV = VIl - V, = 0.10.

143

10- 210- 3

-I- I i- i I- -- - -I I II

-©X



200

S100

50

20

10

10-5 10-4 10-3 10-2

Figure 3-7: Dependence of , - cl/4ý1 on reduced temperature. The line represents
the empirical form sOr - -" with ,sO = 5.141 and v, = 0.35 4 0.05.

The 3D-XY values for the critical exponents are vl I= I = 0.669 - 0.001 and y =

1.316 ± 0.002 [33]. As can be seen from table 3.1, the final values vui = 0.69 ± 0.03

and -y = 1.28 ± 0.05 seem to agree with the 3D-XY values within the experimental

uncertainties but the value v± = 0.59±0.03 clearly does not. The observed anisotropy

in the correlation length exponents is reflected in the temperature dependence of the

ratio ~(11/I, which is shown in Fig. 3-6(b).

To demonstrate the effects of the quartic term on the values of the critical expo-

nents, the data were also fit by setting c equal to zero in Eq. 3.5 for all temperatures,

and by using the empirical Lorentzian term with a power-law correction given by

[14, 31]

S(q) = 2 (3.6)( (q11 - 2qo)2 + (1 + 1q- •LL/ 2 ' (3.6)

where -2 < qj_ < 0 is an empirical 7 dependent exponent that is freely adjustable

in the fits. This form of S(q), like Eq. 3.5, changes from Lorentzian near T, (where
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(vl=0.59±0.03)

Figure 3-8: Smectic-A1 susceptibility a and the longitudinal and transverse correla-
tion lengths (11 and C± near the N-Sm-A 1 transition in DB8 ONO 2, as obtained from
fitting the x-ray profiles to Eq. 3.5. The lines are least-squares fits with pure power
laws, and the fitting parameters are given in the first line of Table 3.1. The a values
have been shifted up by a factor of 4 to improve clarity.
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S(q) 0jo (A) vjj jo (A) V 0i a 7
Eq. 3.5, c = 0 8.74 0.69 1.75 0.59 1.33 1.28

±0.44 ±0.03 ±0.09 -0.03 10.05 4-0.05
Eq. 3.5, c = 0 9.01 0.71 2.55 0.59 1.77 1.27

±0.50 ±0.03 ±0.14 ±0.03 ±0.10 ±0.05
Eq. 3.6 8.39 0.69 1.00 0.60 1.39 1.27

±0.46 ±0.04 ±0.05 ±0.04 ±0.08 ±0.06

Table 3.1: Summary of results for DB8ONO 2. Least-squares values of the amplitudes
and effective critical exponents for C11, C±, and a using the pure power-law forms of
Eqs. 3.5 and 3.6.

r71_0) to Lorentzian squared far from T, (where 77± = -2). The profiles were almost

as well fit with Eq. 3.6 as Eq. 3.5 with c 0 0, but the Lorentzian form provided

poorer fits. Figure 3-9 shows the values for (± obtained using these three structure

factor forms. Comparable effects are also obtained for C11 and a, and Tabel 3.1 lists

the amplitudes and effective exponents obtained from power-law fits. It is evident

from Fig. 3-9 and Table 3.1 that the fourth-order term in Eq. 3.5 has no significant

effect on the values of the experimental critical exponents although the amplitudes

vary depending on the assumed form for S(q). Equivalent results have been obtained

previously [14].
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Figure 3-9: Influence of the form of the structure factor S(q) on the transverse cor-
relation length ý± in DB8ONO 2. The points denoted by open circles (0) and the
triangles (V) were obtained by fitting the x-ray profile of Eq. 3.5 with c 7 0 and
c = 0, respectively. The solid points (9) came from fits to the profile in Eq. 3.6 with
rl taken to be a freely adjustable parameter at each temperature. A subset of the
DB8ONO 2 data shown in Fig. 3-8 were used here. The least-squares parameters for
the power-law fits shown by the straight lines are given in Table 3.1.
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3.3 X-ray Scattering Study of DBSCN+C 5 stil-

bene

An x-ray scattering study was also conducted for the N-Sm-A 1 phase transition in

the binary liquid crystal mixture pentylphenylcyanobenzoyloxy benzoate (DBsCN)

and cyanobenzoyloxypentylstilbene (C5 stilbene). The constituents of this mixture

have the following molecular formulas:

Cs511 ,OOC 'OOC "CN DB5 CN

C .H11 - C H=CH -a -OOC- -CN C, 5 stilbene

with molecular masses of 413.48g and 395.50g, respectively. Note, these molecules

both have the highly polar cyano group at the head, three benzene rings, and an alkyl

group at the tail. These compounds were synthesized and purified at the Centre de

Recherche Paul Pascal [4], and they are from the same batch that was used for an

earlier CP investigation [12]. The x-ray sample is a mixture containing 49.5 mole

percent C5 stilbene, which was previously used for a high-resolution x-ray study of

the N-SIn-A 1 transition [13]. The phase sequence for this sample is

N-- Sm-A 1---+ Sm-A---+ Sm-A 2,

424.3 K -398 K 383.6-386 K

where 382-384.4 K represents a broad Sm-A+Sm-A 2 coexistence range. The tran-

sition temperatures cited above are somewhat lower than those reported previously

[4, 12] due to a slow drift in transition temperatures with time over the very long pe-

riod of x-ray observations. With a large nematic range of 120 K, DB'CN + C5 stilbene

is expected to yield critical behavior qualitatively similar to that of DB8 ONO 2.

The experiment was conducted using the same spectrometer, scattering configura-

tion, and resolution as was described in the last section. The sample was aligned in the
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nematic (N) phase in a 6.5 kG magnetic field by cycling the temperature slowly across

the N-Sm-A 1 transition until a sample mosaicity of 0.120 HWHM was obtained. As

explained in the previous section regarding the DB8ONO2 experiment, the DB5CN

+ C5 stilbene sample had a small linear drift in T, which was observed over the long

period of measurements, and this was taken into account in the data reduction. The

initial T, for DB5CN+C 5 stilbene was 424.302 K, in very good agreement with those

obtained from CP data. The diffuse Sm-A 1 scattering peak is centered at (0, 0, 2qo),

where 2qo=27r/d and d is the Sm-A 1 layer spacing: 2qo=0.2097A-1 for DB8ONO 2

and 2qo=0.2115A-1 for DBsCN+C 5 stilbene, independent of temperature near the

N-Sm-A 1 transition.

Longitudinal and transverse x-ray scans through (0, 0, 2qo) were carried out over

the reduced temperature range 5x10- 6<r<1.2x10- 2, where T -(T-Tc)/Tc. As ex-

plained in the previous section, each pair of scans describing the lineshape was fit

simultaneously with the standard structure factor, S(q), for Sm-A 1 fluctuations in

the nematic phase: S(q)= a/[1 + (q11 - 2qo)2 + 62Jq + c6 q]. The parameter c is

a freely adjustable empirical coefficient for the q' term. Variants on the transverse

lineshape, including Lorentzians to an arbitrary power, yield identical results for the

temperature dependence of 1j [13, 35].

The critical behaviors of Ill, and ±1 and a are first described in terms of effec-

tive critical exponents by fitting these quantities with simple power laws. Figure

3-10 shows the values for the longitudinal and transverse correlation lengths and the

smectic susceptibility determined from the diffuse x-ray scattering along with their

corresponding fits to pure power laws. The resulting exponents are v11=0.73±0.03,

v1 =0.57±0.03, and y=1.30±0.05 for DBsCN+C 5 stilbene. These results compare

very well with those for DB8ONO 2 which had v1l=0.69±0.03, vi=0.59±0.03, and

7=1.28±0.05. Hence, both systems are close to the 3D-XY values: vll = v± = Vxy =

0.669 ± 0.001 and Yxy = 1.316 ± 0.002 [33, 36]. It is clear that although y=yxy

and v1l is close to vxy, VI is less than vxY and, as in other liquid crystal systems,

there is an anisotropy, v11-v± - 0.16 ± 0.03 (slightly larger than the value 0.10 ± 0.03

measured for DB8ONO 2). Similar results have been reported previously for the N-
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S(q) (110 (A) vII 1o0 (A) vo ao 7
Eq. 3.5, c $ 0 7.91 0.73 1.84 0.57 1.22 1.30

±0.34 ±0.03 ±0.08 ±0.03 ±0.05 ±0.05
Eq. 3.5, c = 0 10.42 0.74 2.37 0.59 2.13 1.32

±0.70 ±0.05 ±0.16 ±0.04 ±0.11 ±0.07
Eq. 3.6 8.56 0.75 1.17 0.59 1.67 1.30

±0.46 ±0.04 ±0.06 ±0.03 ±0.09 ±0.06

Table 3.2: Summary of results for DBsCN+C 5 stilbene. Least-squares values of the
amplitudes and effective critical exponents for C(, ±, and a using the pure power-law
forms of Eqs. 3.5 and 3.6.

Sm-A1 transition in the alkyloxybenzoyloxy cyanostilbenes T 7 and T8 [21] as well as

in octyloxyphenylbenzoyloxy benzoate (80PCBOB) [32]. Reference [32] misstates the

data analyses carried out in previous experiments such as [21].

Figure 3-11 shows the value of the quartic term c from fits to S(q) along with the

ratio of the correlation lengths, (11/FI. One notes from this figure that c has the same

qualitative behavior for DB5 CN+C 5 stilbene as that obtained for DBsONO 2 shown

in Fig. 3-6. As in the analysis of the DB8 ONO 2 data discussed in the last section,

three forms for S(q) were tested: a simple Lorentzian, ie. Eq. 3.5 with c = 0; the non-

Lorentzian given by Eq. 3.5; an empirical Lorentzian with a power-law correction,

given by Eq. 3.6. Table 3.2 shows the results from fits using these three modified

forms for the structure factor. These results demonstrate clearly that the effective

critical exponents obtained are about the same for all three choices of the structure

factor, S(q).

As discussed above for the DB8 ONO 2 data, replacing the quartic term with the so-

called splay correlation length term, (fq', (proposed by Bouwman and de Jeu) yields

essentially identical results for (±. Fitting the DB5 CN + C5 stilbene data using Eq.

3.5 one finds that -- cL/4~
1 is well described by o0r-, " with ýsO = 2.056A and

v, = 0.46.
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Figure 3-10: The reduced temperature dependence of the Smectic-A1 susceptibility a
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transition in DB5 CN+Cs stilbene, as obtained from fitting the x-ray profiles with Eq.
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fitting parameters are given in the first line of Table 3.2. The a values have been
shifted up by a factor of 4 to improve clarity.

151



(0

0.30
0.25

0.20
0.15
0.10
0.05

0

100

50

-H 20

10

5

2

10

DB5CN + C5
stilbene

SI * I * 5

(a) 00-

0

0

( a cbc oo 80 00
--------- ~

I - I
* I *

(b)

-5

- I

10- 4 10- 3 10- 2

Figure 3-11: Pure power-law results for DB5CN+C 5.
in Eq. 3.5 obtained from least-squares fits to the x-ray
correlation lengths obtained from fits to S(q) and the c
is a fit to a power-law form with a slope Av = ull - v

(a) Fourth-order coefficient c
profile, and (b) ratio (11/1± of
values shown. The line in (b)
= 0.16.

152



3.3.1 Remarks on the Correlation Length Anisotropy

The x-ray scattering measurements on DBsONO 2 and DBsCN+C 5 stilbene reveal

that although the effective critical exponents viI and 7 conform well with 3D-XY

universality, v1 does not. Thus, these systems behave similarly to many other previ-

ously studied systems; namely, the correlation length exponents are anisotropic with

vI - v1 equal to 0.10+0.03 for DB8ONO 2, and 0.16+0.03 for DB5CN+CS stilbene.

The lineshape analysis provides no evidence that this anisotropy is the result of the

way the transverse line shapes were analyzed, in obvious disagreement with the sug-

gestion of Ref. [32]. It should be stressed that the detailed form of reasonable choices

for the structure factor S(q) has no significant influence on the values of the effective

critical exponents that are obtained from the pure power-law analysis.

3.3.2 Violation of 3D-XY Universality

Renormalization-group theory predicts that within a given universality class certain

scaling relationships connecting critical exponents must exist. One such test of uni-

versality can be made through the hyperscaling relation, dv = 2 - a, which is derived

from simple free-energy considerations. This free-energy argument can be generalized

for the anisotropic case where vi =A v1. Thus, two-scale-universality gives

viI + 2 vi + a = 2 (3.7)

as the anisotropic hyperscaling relation [3]. The x-ray and C, results quoted above

for DBsONO 2 yield viI + 2vi + a = 1.86 ± 0.07 when Eq. 3.5 is used as the structure

factor and 1.88±0.09 when Eq. 3.6 is used for the structure factor. From the results

for DBsCN+C 5 stilbene one finds that vil + 2v_ + a = 1.86 ± 0.07 using Eq. 3.5, and

vII + 2v1 + a = 1.92 ± 0.07 using Eq. 3.6. Figure 3-12 shows the x-ray results using

Eq. 3.5 along with their respective error bars. The dashed line in Fig. 3-12 indicates

values of vil and vi which exactly satisfy the hyperscaling relation of Eq. 3.7 with

a = axy = -0.007, and the theoretical 3D-XY values are indicated by the filled circle.

One should note that although vil is quite close to the expected 3D-XY model value, vi
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X-ray Results for DB5+C5 stilbene and DB8ONO2
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Figure 3-12: Hyperscaling violation for DB8ONO 2 and DB5 CN+C 5 stilbene. The
filled circle shows the location of the predicted 3D-XY values for the correlation
length exponents (vxy = 0.669). The dashed line indicates values of (vll, Vi) which
satisfy hyperscaling with a = axy = -0.007. The error bars shown correspond to
95% confidence limits discussed in the text.

deviates markedly from the theoretical predictions for both samples. The uncertainty

limits for the x-ray results are 95% confidence limits based on a propagation-of-error

treatment using the uncertainties listed in Table 3.2 and A(a)=±0.003. Thus it

would appear that hyperscaling is violated in these two systems.

These apparent violations in polar N-Sm-A1 systems arise from the use of effective

exponents vl1 and Vj obtained from the use of pure power laws to describe the critical

behavior of 11l and (_. A preasymptotic analysis of the x-ray data using corrections-

to-scaling terms, presented in the next section, shows that indeed hyperscaling is

obeyed.
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3.4 Preasymptotic Analysis of X-ray Data

In the previous two sections, high-resolution x-ray studies near the N-Sm-A 1 transi-

tion in DB 8ONO 2 and DBsCN + C5 stilbene were presented along with pure power-

law analyses yielding effective critical exponents for the smectic order parameter

susceptibility, 7, and for both longitudinal and transverse correlation lengths, v11 and

v , respectively. However, as was observed from range-shrinking analyses in heat ca-

pacity studies on theses sample, conventional power-law analysis suffers from internal

inconsistencies [13, 23, 24, 35]. Specifically, the nonasymptotic theory of Bagnuls and

Bervillier [33, 40] shows that the critical heat capacity requires corrections to scaling.

The heat capacity result from the theory gives ACQ = At[t-[1+DtA1+D + Dt]+Bc,

where for the 3D-XY model exponent one calculates a = -0.0066, A, = 0.524,

D+ = -0.461890, the term Defft contains both second corrections-to-scaling and

analytic correction terms, and B, is a non-singular critical term. The heat capacity

data for both DBsONO 2 and DBsCN + C5 stilbene were analyzed with the preasymp-

totic theory, and clearly demonstrate that first correction coefficients are large and

must be retained for fitting C, when t > 10- 4 [13, 23, 24, 35]. Moreover, the full

nonasymptotic theoretical predictions for an ideal 3D-XY transition show that the

corrections-to-scaling terms for C,, as well as the correlation length, and the suscep-

tibility are interrelated, and all depend on a single non-universal temperature scaling

parameter 80 that can be evaluated from the C, analysis alone.

In experiments, x-ray data typically extend well beyond the range of reduced

temperature where asymptotic pure power-law theory is valid. Thus, a self-consistent

description of the x-ray data is expected to require the preasymptotic theory. How-

ever, it is important to emphasize that prior to these results, x-ray studies of the

critical behavior at the N-Sm-A 1 transition in liquid-crystal systems have failed to

explicitly include corrections-to-scaling terms. In this section, results from an analy-

sis of the x-ray data using the preasymptotic 3D-XY theory are presented for both

DBsONO 2 and DB5CN + C5 stilbene.
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Results of the Preasymptotic Theory

According to the pre-asymptotic theory, the thermodynamic quantities such as the

correlated volume, ý*(t*), the smectic susceptibility, a*(t*), and the heat capacity,

C* (t*), can be expressed in the dimensionless form,

f*(t*) = Xl(t*)-e[1 + X 2(t*)A1]x3 x [1 + X4 (t*)A1]x5 + X 6 , (3.8)

where e is the exponent which describes the critical divergence of the appropriate

thermodynamic quantity (for example the correlation length) and X 6 is non-zero

only for the heat capacity C,. The corrections-to-scaling exponent A1 is a universal

quantity calculated from the theory and is equal to 0.524 ± 0.004 for the 3D-XY

model. The quantities Xi are well determined numerically in the preasymptotic crit-

ical domain for the region t* = 00, < 10-2. Thus, this expression should be valid in

the x-ray scattering experiments since the lower limit of the preasymptotic domain

corresponds roughly to T . 3 x 10- 3, which is well inside the range of data obtained

for both DBsONO 2 and DBsCN + C5 stilbene.

The scaling relations of interest for both the x-ray experiments of the last two

sections and the previously conducted heat capacity experiments can be written using

the theoretically determined values for the 3D-XY model. These are

ý = ~or - " x [1 + 0.375(0oT)0 .524] x [1 + 29.76(0oT) 0 .524]0.232  (3.9)

g1 2 (=•I,og 2,o) -3v[1 + 1.1262(00r)0 .5 24] X [1 + 29.76(00o) 0.524 0.696  (3.10)

a = oo- 7'  x [1 + 0.512(0oT)0 .5 24] x [1 + 24.55(0o7)0. 524]0 .46  (3.11)

ACp = Ar-a x [1 - 0.461(oT)a + Det] + Bc, (3.12)

for the correlation length, correlated volume, smectic susceptibility, and heat capacity,

respectively. In the above expressions, the quantity 0
0o is a theoretical scaling field, 7

is the experimentally measurable reduced temperature, and 0o is a system-dependent

quantity which is fixed at the value determined from the C, analysis using Eq. 4.12.

This is an important fact connecting the Cp studies with the results from the x-ray
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experiments presented in sections 4.2 and 4.3.

Experimentally, measurements of heat capacity involve an integration over cor-

related volumes, thus it will prove convenient to work with the product 1152 when

analyzing the correlation lengths for the x-ray data. In order to analyze the x-ray

data, it is useful to express the correlated volume and smectic susceptibility in terms

of a system dependent amplitude multiplied by a pure scaling function. Multiplying

equations 4.10 and 4.11 by 00 to an appropriate power, one has

i = ( 110 ,,0)00" x FSl(oT) (3.13)

and

a= o0 x F2 (Gor) . (3.14)

Thus, the bare correlation volume and bare susceptibility, which are system depen-

dent, can be separated from the functions F1 (00r) and F2 (00T) which depend on the

quantity 00 and the reduced temperature.

It is now proposed that one may apply the existing theoretical results for the

isotropic 3D-XY model to the x-ray data, and thus analyze the smectic suscepti-

bility a, and the correlation volume 61,62 using the results from the analysis of the

heat capacity data to determine the value of 00 for DB8 ONO 2 and DB5 CN+C 5 stil-

bene. The correlation volume is related directly to the free energy by two-scale factor

universality [19] and thus may exhibit ideal 3D-XY behavior even though 61, and

Si separately deviate slightly from the 3D-XY predictions. Regardless, no theory

explicitly accounts for the anisotropy in the correlation lengths [3, 7, 10].

Stauffer et al. [19] developed a method for demonstrating universality from ex-

perimentally measured critical properties. This led directly to the idea of two-scale

factor universality, which can be expressed in the following form:

SFsigngll =- Y Universal constant.
kBT kBT
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Fsing is the singular free energy density with units of (volume)-', Y is a universal

constant whose value is independent of the system studied within a given universality

class [19], and the correlated volume is expressed in terms of the quantities measured

in the x-ray experiment. As described in detail in reference [13], the free energy was

evaluated by integrating the preasymptotic 3D-XY heat capacity expression of Eq.

4.12.

Application of the Preasymptotic Theory to the X-ray data

Data of 1g- as a function of 7 for both DBsONO 2 and DBsCN+C 5 stilbene along

with the quantity kBTY/Fi,, (solid line) are shown in Fig. 3-13, where Y is the

only adjustable parameter and is independent of temperature. The value of Y was

found to be -0.267 for DB8 ONO 2 and -0.285 for DBsCN+C 5 stilbene. Note that

the solid lines, obtained by integrating the heat capacity, fit the results from the x-ray

data very well across the full range of reduced temperature, and thus provide strong

evidence that the expectations of the preasymptotic theory are correct.

In addition to the above test of the preasymptotic theory, an explicit analysis was

also conducted using the results of expressions 4.10 and 4.11 for the correlated volume

and smectic susceptibility, respectively. The scaled correlated volume, Fi(Oo)-

iIg/(~l2Ill±)000 and scaled smectic susceptibility, F2(007) =- a/aoO, are shown in

Figs. 3-14 and 3-15 for both DBsONO 2 and DB5CN+C 5 stilbene. The exact 3D-XY

exponents v = 0.669 and y = 1.316 are used in these expressions. The values of 0o

determined from the C, fits are 0.48 for DBsONO2, and 0.41 for DB5 CN+C 5 stilbene.

The solid curves correspond to the preasymptotic expressions while the dashed lines

show the pure power-law expectations. In order to obtain the fits in Figs. 3-14 and

3-15, a single adjustable parameter was required; the bare correlated volume, (\1ý_1)o,

for F 1(o0o), and the bare smectic susceptibility, a0, for F2(OoT).

In Figs. 3-14 and 3-15 one can see that the x-ray data clearly deviate from the

pure power law beyond 10- 3 in reduced temperature. Although this curvature in the

data is slight, it shows the same trend for both DBsONO 2 and DB5 CN+C 5 stilbene at

large 7. It is unlikely that this is a result of simple systematic errors in the scattering
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Figure 3-13: Temperature dependence of the Sm-A1 correlated volume (1g2 for
DB8 ONO 2 and DBsCN+C 5 stilbene. The solid fitting line kBTY/Fig,, has one ad-
justable parameter, the temperature-independent constant Y. The error bars are
equal to the size of the points for both data sets. Data for DBsONO 2 are shifted
down by a factor of 5 in order to improve the clarity of the display.
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Figure 3-14: Correlated volume for DB8 ONO 2 and DB5 CN+C 5 stilbene and showing
that a single universal curve describes the critical behavior. Note, the error bars are
equal to the size of the points for both data sets.

data. The results from both the conventional analysis and the preasymptotic analysis

are shown in tables 3.3 and 3.4. Note that 62 values as determined from best-fits of

the data are comparable for both analyses.
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Figure 3-15: Smectic susceptibility scaling function for DB8 ONO 2 and DBsCN+C 5
stilbene showing that a single universal curve describes the critical behavior. Note,
the error bars are equal to the size of the points for both data sets.
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Liquid Crystal Asymptotic (Pure Power-Law)
Compound (4i6~1)o 3 Veff X _ o ' eff XV
DB8ONO 2  26.92 ± 1.30 1.87 ± 0.09 1.71 1.33 ± 0.05 1.28 ± 0.05 1.75

DB5CN 23.20 ± 1.11 1.88 ± 0.09 1.50 1.22 ± 0.05 1.30 -0.05 1.10
+

C5 stilbene

Table 3.3: Summary of results from fits to the pure power-law 3D-XY theory.

Liquid Crystal Preasymptotic (3D-XY theory)
Compound ((i( )o 3v X o 7y X
DB8ONO 2  7.07 ± 0.37 2.007 1.98 0.849 ± 0.036 1.316 1.56

DB 5CN 6.74 ± 0.35 2.007 1.76 0.825 ± 0.035 1.316 1.64
+

C5 stilbene

Table 3.4: Results from fits to the Preasymptotic 3D-XY expressions of Eqs. 4.9 -
4.12. Note, the values for 3v and y are fixed to the 3D-XY values.

3.5 Discussion

There are a number of issues which should be clarified about the analysis of the x-ray

data. It had been common practice to use the conventional pure power-law analysis

of x-ray data even for liquid crystal systems where heat capacity clearly showed the

need for corrections-to-scaling terms. The reason for this is that x-ray data of 611,

6j, and a generally showed statistically insignificant curvature over the full range of

reduced temperature, and thus any corrections to pure power laws were considered

inconclusive. Moreover, the anisotropy in the correlation lengths could not be explic-

itly accounted for in these analyses since the correction terms result from an isotropic

theory. Further limitations in typical x-ray experiments are due to the relatively few

data points obtained (about 20-40 points over nearly three decades of reduced tem-

perature) in comparison with the several hundred data points in C, studies, and thus

range shrinking tests could not be adequately conducted. Universality has typically

been salvaged by the success of anisotropic hyperscaling tests using the effective expo-

nents (v1I, vI, and aeff). However, the results presented above show obvious problems

with this assumption; namely, these two large nematic range systems fail to obey hy-

162



perscaling although ideal 3D-XY behavior was observed in Ithe heat capacity studies.

Nevertheless, the rather large values for o0 determined from the C, studies suggest

that an analysis of the x-ray data must also include these corrections to scaling.

Note: The extent of the preasymptotic domain, estimated from the Cp analysis,

can 1)e approximately set at 0o0r - 2 x 10- 3 . The effect of higher order correction terms

are not are not considered in the analysis above as they are relevant only outside of the

preasymptotic limit. The possibility of a crossover from isotropic (viy = vi = Vxy,) to

anisotropic critical behavior has been predicted by Patton and Andereck [10]. These

calculations treat the coupling between the smectic order parameter and nematic

director fluctuations. However, neither a quantitative description of the crossover nor

a treatment of corrections-to-scaling has been made within their model, and thus our

results are unable to test these predictions.

3.6 Conclusions

The correlation volume (11 2, the smectic order-parameter susceptibility a, and the

heat capacity Cp of DB8 ONO 2 and DB5CN+C 5 stilbene are in excellent agreement

with exact theoretical preasymptotic 3D-XY predictions. The importance of correc-

tion terms for 611g and a is clearly demonstrated and this is consistent with the

use of correction terms in the analysis of C, data. Several universal features of the

3D-XY model are obeyed [13] except for the anisotropy in the correlation lengths (11

and ±1, while hyperscaling is recovered. Excellent agreement of the x-ray correlated

volume measurements with the two-scale factor universality predictions involving the

free energy density determined solely from C, data is also demonstrated. Moreover,

this internally consistent analysis shows that few adjustable parameters are required

to describe both 6116' and a. These results combined with the successful description

of the heat capacity ACp show that the exact preasymptotic theory for the isotropic

3D-XY model correctly describes the critical behavior at the N-Sm-A 1 transition in

these systems. It is anticipated that a theory which explicitly includes the length

anisotropy should be able to explain the results for our correlated volume data.
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Chapter 4

Density Wave Systems with Higher

Harmonics

4.1 Introduction

The monolayer order of the Sm-A 1 phase in liquid crystals is perhaps one of the sim-

plest encountered in density wave systems as it is the result of a symmetry breaking

defined by the establishment of uniaxial order with only two components, a magnitude

and phase [1]. Despite its apparent simplicity, many theoretical and experimental ad-

vances were required in order to elucidate the nature of the phase transition between

the nematic and Sm-A 1 phases in these systems; some of these advances were pre-

sented in Chapter 3. There are many solid-state and soft condensed-matter systems

which exhibit similar physical phenomena characterized by density wave order. The

normal-incommensurate phase transition in charge density wave (CDW) systems is

one example found in solid-state materials such as NbSe 3 [2]. The itinerant anti-

ferromagnetic metal, chromium, is the "classic" spin density wave system familiar to

solid-state physicists and serves as a model example which has been throughly studied

[3]. The phenomenon of two-dimensional (2D) freezing from the bond-orientationally

ordered hexatic fluid to a 2D solid is a particularly interesting example of density

wave ordering.

In the previous chapter, detailed studies were presented showing the critical be-
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havior associated with fluctuations of smectic-A1 (Sm-A 1) order in the nematic phase

near the N-Sm-A 1 transition in two polar thermotropic liquid crystalline materials.

One should recall from these studies that the phase transitions and critical fluctu-

ations in such systems are characterized by a two-component order parameter Ceio

which is associated with a sinusoidal density wave P=Po +÷eikeiqoz in three dimensions

(3D). Hence the critical behavior associated with fluctuations of the order parameter

is expected to be 3D-XY-like. In fact, this expectation was confirmed by the high res-

olution x-ray scattering experiments on DB8ONO 2 and DB5CN + C5 stilbene. These

results combined with the results from ac-calorimetry experiments showed clearly that

many features of the N-Sm-A 1 phase transition in liquid crystals are well described

by the 3D-XY model, although the correlation lengths exhibit weakly anisotropic

critical behavior [13].

In the layered Sm-A1 phase, the mass density is described by a single sinusoid and

thus p has only one Fourier component. However, it is possible to find systems which

exhibit density wave order requiring several Fourier components; thus, the density

takes the form, p = Po + ,ne inqoz, where n>2. One of the more interesting examples

of such systems is found in hexatic liquid crystals which can have long-range bond

orientational order between the molecules with short-range positional order. Such

bond orientational order is described by a multi-component order parameter with a

six-fold symmetry. The hexatic order observed in experiments [8] exhibited critical

behavior which was beautifully described by a multi-critical theory [5, 6, 8] detailing

the scaling relation between successive harmonics of the order parameter, on, and the

fundamental order parameter, b1. However, for several years, observations of critical

fluctuations at the higher harmonics in these and other condensed-matter systems

had eluded experimental study since such critical scattering is extremely weak.

Until very recently no experiments had been reported on the critical fluctuations

associated with the higher harmonics of sine-wave order parameter systems. This lack

of experimental results had left many open questions, specifically in relation to the

critical divergence of the correlation lengths for the higher harmonics. Theoretical

treatment [7, 8] typically assumed that all correlation lengths in the system were
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equal; this was a plausible assumption although no data existed to confirm this. To

date only one system has shown critical scattering in the disordered phase of a multi-

component sine-wave order parameter system; this liquid crystal system is the subject

of the experiments presented in this chapter.

A high resolution x-ray scattering study was completed detailing the order pa-

rameter and critical fluctuations associated with both the first and second harmon-

ics at the N-Sm-A2 transition in the polar thermotropic liquid crystal material 4'-

n-heptyloxycarbonylphenyl-4'-(4"-cyanobenzoyloxy) benzoate (7APCBB). The liquid

crystal compound 7APCBB has the molecular formula

CH 1ooC ooCc ooCCN 7APCBB

and the phase transition temperature sequence is [43, 44]

I---+ N--- Sm-A2---* Sm-C 2.
482K 415.8K 413.3K

This material was synthesized and first characterized at the Technical University of

Berlin [43]; the sample investigated was from the same synthetic batch as that used

previously for C, measurements [44]. The Sm-A 2 phase has a bilayer structure with

the layer thickness d=2L, where L is the molecular length [7], while Sm-C 2 is the

corresponding tilted bilayer phase. The Sm-A 2 -+Sm-C 2 phase transition was not

studied in this experiment.

One interesting feature of this system is that it exhibits a uniaxial bilayer order

and therefore the harmonic components characterizing this are centered at distinct

positions in reciprocal space separated by integer multiples of the fundamental, qoz.

The nematic temperature range is quite wide for this system (66.2 K), implying

that the nematic order parameter should be well saturated close to the N-Sm-A2

transition; hence, this transition is expected to be second order and 3D-XY-like.

This has been confirmed by a high resolution calorimetric study [44]. Analysis of

C,(N-Sm-A2) data yielded the critical exponent a = -0.029 when a was a freely
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adjustable parameter, and a statistically equivalent fit was obtained with a fixed at

the 3D-XY value (a = -0.007).

The results of the present x-ray experiment revealed that the first-harmonic or-

der parameter and critical fluctuations are very close to those expected for a 3D-XY

systems with a very small correlation length anisotropy. Moreover, it was found that

the second-harmonic susceptibility, X2, both above and below T, exhibited the be-

havior predicted by Aharony and coworkers [5, 6, 8] who developed a multicritical

scaling theory for the 3D-XY model. Theoretically, the exponents describing corre-

lation functions of the order parameters on were derived from the d-dimensional XY

model which described the leading order parameter ? 1. Although these experiments

confirmed the theoretical predictions for the second harmonic susceptibility, X2, fits

of the second harmonic structure factor S2(q) to a single Lorentzian shape yielded

correlation lengths 11I2 and ~i2 which seemed to scale very differently than their first

harmonic counterparts. In fact, close to the transition, the second harmonic lengths

were at least an order of magnitude smaller than the first harmonic lengths at the

salme temperature.

A different scaling of the correlation lengths n's for the different harmonics would

imply that the N-Sm-A 2 transition involves more than one critical length scale and

that it cannot be simply described by the XY model. Furthermore, the fitted expo-

nents v112 and v12 severely violated the hyperscaling relation vll2 + 2Vu 2 = 2 - a, with

no explanation. These experimental findings motivated renewed theoretical work [21].

In the following section, several results from recent developments in the theory are

presented. Specifically, it is predicted that all the harmonics are still dominated by

the critical behavior of the XY model, and therefore that , = X1, where X, is

a universal number. However, since X, may be quite small, the structure factor of

the nth harmonic, S,(q), may be strongly influenced by its bare (non-critical) value.

Furthermore, since at the transition Sn - q-(2-fn), with large values of qin, deviations

from the Lorentzian shape are also important. These new theoretical results succeed

in describing the results from the x-ray study of 7APCBB and results from more re-

cent work which consisted of additional measurements on the same system [10]. Data
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from these two studies are presented in Sec. 3.3.

4.2 Results of the Theory for the Higher Harmonics

One defines the "local" n'th harmonic order parameters as the slowly varying complex

functions 4'(r) determining the density:

oo

p(r) = Po + Re ~Cn(r) exp(iqonz). (4.1)
n=1

Thus, the density contains a background (average) contribution from Po and mod-

ulated contributions from the on's. The first term, 01, is the fundamental order

parameter, while the higher harmonics (n > 2) are often referred to as secondary or-

der parameters. In the most general case, one should treat all the 4~'s as competing

order parameters. In the absence of couplings, each 'n would undergo a separate

XY-like phase transition, at a temperature T,, described by a free energy

14n = J d rf{1 rno[IiI'n(r) 12 + V1  12

+_nb.1Vi.L/ (r)2] + Unkjn(r)14}. (4.2)

Coupling terms are introduced through the interaction Hamiltonian

ln,int = n f ddr(o(r)0n(r) + ·'"(r)0n(r)). (4.3)

where ~n is the coupling strength. This interaction favors a lock-in of wavevectors

with qn = nq1 . The correlation functions of the secondary order parameters, ,,'s

with n > 1, can in principle be derived from Eqs. (4.2) and (4.3).

Assuming Tn to be far enough below T1, one has a transition at T, = T 1, with the

leading two component order parameter 01. Near this transition, one can neglect the

self-interaction of the 'On's and set un = 0 in Eq. (4.2). Thus the V,'s for n > 1 can

be treated in the harmonic approximation and one can solve the partition function

for V' exactly in terms of the correlation functions of 01. For example, the average

172



density modulation with the wave vector nqoi is determined by

Tn = (O)n = #nXnb (<), (4.4)

where Xnb = 1/rnO is the bare susceptibility for the n'th harmonic. Since Xnb is

not singular at T1, the singularity comes only from (,On) c Ijtl , where t = (T -

Tc)/Tc, On = 2 - a - ~, and ,n is the crossover exponent associated with n'th order

anisotropy near the rotationally invariant XY model fixed point [5]. Specifically,

02 is the crossover exponent when a symmetry breaking field results in a uniaxial

anisotropy term; this term is proportional to Re(V) = X2 - y2. Experiments on bond

orientational harmonics confirmed these predictions for On from integer n = 1 up to

and including n = 7 [8].

Defining o,(q) as the Fourier transform of on(r), the above theory can now be

extended to the structure factor [17, 18],

Sn(q) = (V.(q)0/(q)) = Snb(q) + 1 2Snb(q)2 n(q)0n(q)), (4.5)

or, equivalently

Sn(q) = (Vbn(q)?Pn *(q)) = Sb(q) +IA2Snb(q) 2Sý, (4.6)

where one defines the bare n'th harmonic structure factor,

Sub (q) = kBTXnb
1 + 2 +Q 2 (4.7)

and the correlation function,

Sn = (0n(q)V)*n(q)).

Here, S, has to be calculated with the XY model Hamiltonian 7F1. The definition

of 4' in Eq. 4.1 implies that the experimentally measured q's differ from those in

Eqs. 4.5 and 4.7 by nqozi. Based on the experimental evidence, one can ignore the
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possibility that the peak in Sn is shifted away from nqo^, thus this parameter can be

constrained in the calculations.

Asymptotically close to T1, and for very small q, Snb(q) is practically temperature

independent, and the divergent part of Sn is proportional to Sn. However, the exper-

imental data usually extend over a range of momenta q in which the q-dependence

of Snb cannot be ignored, as is shown in the discussion of these data below. This

fact may be associated with the physical nature of the polar material, where the

smectic-A 2 phase may be close to the transition into the smectic-A 1 phase.

The correlation function Sn(q) is dominated by the critical behavior of the XY

model represented by 7i 1. The asymptotic form of Sn(q) is expected to scale as

Xnfn(q1l), where f, is a universal scaling function [15], and Xn is the susceptibility

for the n'th harmonic. Using a scaling model for the behavior of harmonics of the

free energy [5, 9], ie.

F(t, hn) " ItI2- t E-gn(h/ Itl0) ,
n

one can write for the latter term,

Xn = 82F/a 2h N It12- a-2 ,n Itl-1n

where O, is the usual crossover exponent. For q 1 «< 1, fn(q,1) may be expanded

in powers of q(l, and thus be approximated by a Lorentzian, that is f,(x) = 1/[1 +

Xnx2 + 0(x 4 )], with x - qC1 and X, is a universal amplitude ratio [15]. Rewriting

S = Xn/[l + •q2 + ...], this yields ( = X-nC = Xno2 It-2", that is, all the harmonic

correlation lengths scale with the same XY model correlation length exponent v, but

with different amplitudes. The ratios of these amplitudes, X,, are universal. The

E-expansion calculations [21] confirm these expectations, and explicitly show that Xn

can be small compared to unity, causing the q-dependence of S, to become dominant

only very close to T,. For x > 1, fn(x) X-(2-'1n), with 2 - n, = ,n/v. For n > 1, rl,

is quite large, and significant deviations from the Lorentzian shape are expect at large

q~l. Following Fisher and Burford [16], one can approximate the crossover between
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these two limits and express the universal scaling form as

(1 + A,x 2) "hn/ 2

1 + (X, + A,rn/2)x2  (4.8)

The explicit calculation of S2 using an e-expansion in d = 4 - E dimensions yielded

the following results. First, one finds that (2 scales with the same exponent as (1,

and second, the quantity X2 = (ýn/ý)2 is universal and has the value 6/20 - E2 /100 +

O(e3 ) a 0.04 in three-dimensions (ie. E = 1). The resulting form of the correlation

function for n = 2 can then be written as

kBTx2[1+ A2( 12 2 12 q2 )]2/2

S2(q) -= k 21 - 2lllI 1q1(4.9)
1 + (X2 + A272/2)( 1q + ,1 q2)

with X2 ~ ItI- 12. In summary, eqs. 4.5, 4.7, and 4.9 form the theoretical predictions,

to be compared with experimental data below. At this stage A2 must be determined

from experiment.

4.3 Experiment: The N-Sm-A 2 transition in 7APCBB

X-ray scattering data in the nematic phase were taken using the IBM-MIT beamline

X20B at the National Synchrotron Light Source at Brookhaven National Laboratory.

The diffraction experiment utilized a triple-axis spectrometer with a bent Si(1l11)

monochromator and flat Si(111) analyzer together with horizontal and vertical col-

limating slits. The longitudinal resolution was 3.54x 10- 4 A- ' (HWHM), the trans-

verse in-plane resolution was less than 10-5 ' - 1, while the out-of-plane resolution was

0.02A-1 (HWHM). The relatively strong scattering observed in the Sm-A 2 phase per-

mitted measurements using the Cu Ka radiation from a conventional rotating-anode

x-ray source. The details of the spectrometer are essentially identical to those de-

scribed in Chapter 3. The sample was sealed in a beryllium cell having a temperature

stability of better than 0.002 K, and an applied magnetic field of 0.65 T aligned the

nematic director in the scattering plane, resulting in a mosaicity in the Sm-A 2 phase

of 0.30 (HWHM). This mosaicity is comparable to that measured in both DBsONO 2
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and DBsCN+C 5 stilbene discussed in the last chapter. The rapid linear drift of ,

-0.006 K per hour in the transition temperature Tc was taken into account in the

data reduction. As expected theoretically and as demonstrated in previous experi-

ments [28], T, drifts due to quenched impurities have no effect on the observed critical

behavior.

Critical fluctuations of Sm-A 2 order within the nematic phase lead to diffuse scat-

tering centered at (0, 0, qgo) and (0, 0, 2qo) with qo=0.1080 A-'. The experimental

procedure included a complete set of scans carried out at both qo and 2qo for each

temperature. The value of T, was determined by observing the onset of smectic

mosaicity for the qo peak. Several such sweeps across the phase transition were

done during the experiment. Figures 4-1 and 4-2 show typical longitudinal (q11) and

transverse (qj) scans through the qo and 2qo peaks at various reduced temperatures

t = (T-Te)/T . It is immediately evident from Figs. 4-1 and 4-2 that the scans at 2qo

are much broader than those at q0, which implies that the relevant correlation lengths

of the 2qo fluctuations are much shorter than those of the qo fluctuations. Thus, it

is clear that the previous theoretical assumptions that the correlation lengths for the

successive harmonics are identical cannot be correct.

The critical scattering associated with the first harmonic was analyzed using es-

sentially the same approach described in Chapter 3. X-ray scans above T, were fit to

the usual x-ray structure factor [31]

S(q) kBT(4.10)
S1 + l,(q1ll - 0qo)2  1 + 1

convoluted with the instrumental resolution function. Xi is the susceptibility and ýIll

and 1 1 are the correlation lengths along the longitudinal and transverse directions

associated with the order parameter 01e'0 . The quartic term, needed to describe the

non-Lorentzian transverse line shape for the qo fluctuations, has a freely adjustable

coefficient cl. One finds that cl exhibits the same kind of temperature dependence

seen typically for N-Sm-A1 and other N-Sm-A [35] systems.

Susceptibility and correlation lengths for the qo peak in the nematic phase are
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shown in Figs. 4-1 together with power law fits using Xl(t) = Xioltoj, 611;(t)

ljll1ti-"i, and 1 ±l(t) = °ltj- vL. For all of the data, the 1 standard deviation errors

in X and C are smaller than the size of the plotted symbols. However, T-T, has a

typical uncertainty of 0.012 K due to the combined effects of the uncertainties in Tc

in a given run and the T, drift rate. For the qo peak, the least squares values of

the critical exponents and amplitudes are y7 = 1.34 ± 0.14, vll1 = 0.70 + 0.07 and

flM, = 7.01, v 1l = 0.64 ± 0.07, and 1ý, = 0.831. These exponent values agree within

the errors with the 3D-XY values calculated from theory: yxy=1.316±0.002 and

Vxy'=0. 6 6 9±0.001 [41, 42], and the length anisotropy itself is quite small, (vil- v")1 =

0.06 + 0.03. The latter is obtained from fits to ýI{1/ý1± directly. In order to stress how

close these qo results are to 3D-XY behavior, the lines shown in Fig. 4-5 represent

fits with exponent values fixed at XY values ^ = 7xy, vIll = Vi 1 = VXY.

In figure 4-4, results from fits of the second harmonic scattering data are shown

using the conventional modified Lorentzian form

S(q)= kT(4.11)1 + C'2(qj - 2qo)2 + ( 2q2 + c2CQ(

analogous to Eq. 4.10 with c2 = 0. That is, these data are fit fairly well with

a pure Lorentzian for most of the range of temperatures. The power-law fits to

X2, Cj12, and ±12 values obtained from these fits yield surprising results: namely,

72 = 0.41 ± 0.09, v112 = 0.31 ± 0.04 and 60 = 27.11,v±2 = 0.23 ± 0.04, C02 = 5.22

and (vll - v")2 = 0.08 ± 0.04 These clearly differ from the corresponding exponents

for the first harmonic. The error bars represent 1 standard deviation statistical errors

together with the effects of the uncertainty in T,. The ratio of scattering wave vectors

2qo/qo is 2.000-0.003 both above and below To with no systematic temperature

dependence. The ratio of diffuse intensities X2/X1 varies from 4 x 10- 2 at t=3 x 10-3

(where the qo fundamental scattering is quite weak) to A4x10 -4 at t=3x10 - 5.

The scattering at the second harmonic can now be analyzed using the approximate

form for the structure factor given by Eqs. 4.5 and 4.9 keeping in mind the universal
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Figure 4-1: (a) Longitudinal x-ray scans through the qgo peaks in 7APCBB at various
reduced temperatures, t = (T - Tc)/T 0 . (b) Corresponding transverse x-ray scans.
For clarity, each scan is shifted by 600 counts/s in intensity. The solid lines are the
results of least squares fits to Eq. 4.10, as explained in the text, convoluted with the
instrumental resolution.
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2aq Critical Fluctuations in 7APCBB
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Figure 4-2: (a) Longitudinal x-ray scans through the 2qo peaks in 7APCBB at various
reduced temperatures, t = (T - Tc)/Tc. (b) Corresponding transverse x-ray scans.
For clarity, each scan is shifted by 10 counts/s in intensity. The solid lines are the
results of least squares fits to Eq. 4.5, as explained in the text, convoluted with the
instrumental resolution. The dashed lines corresponds to the contributions from the
second term of Eq. 4.5. The data at t = 1.0 x 10-2 (and at 8 lower temperatures)
were taken with a lower resolution and then normalized to match the intensity of the
earlier measurements in the overlap region.
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Figure 4-3: The susceptibility X, for the first harmonic at qgo in the nematic phase
of 7APCBB. The solid line shows a single power law with the 3D-XY exponent yi =

7xy = 1.316. Also shown are data for the longitudinal and transverse correlation
lengths for the first harmonic, llp and j11, respectively, with the XY model exponent
v = 0.669.

relationship ýn = 1-. One will notice that the data around t - 10- 2 are fitted

excellently by a simple Lorentzian around 2qo0, with correlation lengths which show

little temperature dependence. In order to interpret this, one can assume that far

away from the transition Eq. 4.5 is dominated by the bare structure factor, Sub(q).

From the data at t = 10- 2 shown in fig. 4-2 one sees that the contribution due to the

second term in Eq. 4.5 (dashed line) is small. Fits to S2 for scans at t = 10-2 with

Eq. 4.7 then yield the values lIl2b = 80A and 6-2b = 111. Furthermore, the amplitude

Xnb can be fixed at the value found by these fits. Having set the bare second harmonic

structure factor, S2b(q), at these values for all temperatures, X2 is also fixed at its

E-expansion value of 0.04, and 111 and _I± at their values determined from Sj (q) at

each temperature (shown in Fig. 4-5). The value of q2 is also fixed to 2 - 72//v r 1.5

using the predictions from the multicritical theory of reference [5]. Using Eq. 4.9 in
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Figure 4-4: Results from fits of the second harmonic scattering to the pure Lorentzian
form of Eq. 4.10 for c = 0. Data are shown for the smectic susceptibility X2 for the
second harmonic at 2qo in the nematic phase of 7APCBB. The solid line shows a
single power law with the 3D-XY exponent '2 = Yx = 0.41 ± 0.09. Also shown are
data for the longitudinal and transverse correlation lengths for the second harmonic,

I112 and 612, respectively, with exponents vi12 = 0.31 ± 0.04 and v_ 2 = 0.23 + 0.04, for
the longitudinal and transverse lengths, respectively.
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Figure 4-5: The susceptibility X2 for the second harmonic at 2qo in the nematic phase
of 7APCBB. These data include 8 additional data points (farthest from T,) taken on
the same sample at a later date and normalized to match the intensity of the earlier
data [10]. The solid line shows a single power law with the exponent 132 = 0.44.
Data are shown for the longitudinal and transverse correlation lengths for the first
harmonic, p111 and Ji1, respectively, with the XY model exponent v = 0.669.

Eq. 4.5, the structure factor S2 was then fitted in the range 10- 5 < t < 10- 4, ie.

close to Tc, and found to yield good fits for A 2 M 0.01.

At these temperatures, S2 is dominated by the second term in Eq. 4.5 (see top of

Fig. 4-2). Setting A 2 = 0.01 for all T, one is left at each temperature with the single

adjustable parameter /2X2. Finally, from fits of S2 (q) at each temperature, the value

of A2X2 was found. As can be seen from Fig. 4-2, the fits to both the transverse and

longitudinal scans over the complete temperature range from t - 10 - 2 to t _ 10- 5

are very good, comparable in quality to the pure Lorentzian fits. This gives strong

support to the above theory. The critical second harmonic susceptibility so-obtained

is also shown in Fig. 4-5. Fits to a single power law give 72 = 0.44 ± 0.1, again in

agreement with the theoretical prediction y2 = 0.32 ± 0.04 [5].

In addition to studying the diffuse scattering above T,, measurements were made
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Figure 4-6: (a) The Bragg intensity versus temperature at qgo, integrated over the
central mosaicity. The solid line is a single power law IT - TcI2 1 with 2#1 = 0.69;
(b) Bragg intensity versus temperature at 2qo, integrated over the central mosaicity.
The Lorentz factor, sin20, has been removed so that the relative intensity of (b) to
(a) corresponds to ,,1 2/01 12 times the ratio of the molecular form factors squared.
The solid line is a single power law IT - TI 2I2 with 2#2 = 1.7.

of the integrated intensity I(qn)=f dqS(q - nq) of the quasi-Bragg peaks in the Sm-

A2 phase. The diffuse scattering in the tails was cut off in order to make a reasonable

determination of the pure quasi-Bragg component in the peaks. The temperature

dependences of the Bragg intensities I(qo) and I(2qo) are shown in Fig. 4-6. The

ratio of I(2qo)/I(qo)(~ b12/10112) in the Sm-A 2 phase is ^ 0.07 at T = Tc- 2 K.

This corresponds to a relative value of the order parameters of 102/ 11 ~ 0.26, with

an uncertainty arising from the molecular form factor which is not well known for

7APCBB [19]. Note that the intensities for both qo and 2qo begin to saturate at

about 1 K below T,, presumably due to the pretransitional effects of the Sm-A 2-Sm-

C2 phase transition which occurs at T,-T= 2.5 K in this sample. Fits of the data

in the Sm-A 2 phase to single power laws for IT - TcI < 0.8 K yield P1 = 0.39 ± 0.04

and 02 = 0.76 ± 0.04 in reasonable agreement with theoretical 3D-XY values 31 =

0.346 ± 0.001 and 32 = 0.85 ± 0.07. To emphasize this agreement, qo and 2qo data

are each shown with single power laws of the form IT - T,120 using the 3D XY values

for 1i and 32.
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Comments

Proving uniqueness as well as further optimization of the parameters would require a

detailed theoretical expression replacing the approximate Eq. 4.5, as well as more pre-

cise experimental data. It would be most valuable to search for similar effects in other

systems with XY-like DW ordering, and in systems exhibiting critical fluctuations in

other secondary order parameters. Recently, results from an normal-incommensurate

transition in the solid-state material Rb 2ZnCl 4 were found revealing critical scattering

at the first three harmonics (secondary satellite peaks) of the incommensurate mod-

ulation in the ordered phase which was well described by the 3D-XY model critical

exponents [22]. However, no critical scattering was observed in that study above T, at

any of the harmonics of the fundamental. Such complete absence of higher harmonic

critical scattering is very puzzling since substantial scattering had been observed at

the higher harmonics in the ordered phase. It was argued that the small suscep-

tibility of the higher harmonics might be a general feature of solid-state materials

as there is no particular reason for a softening of modes with wave vectors at the

secondary satellite positions. Futher, it was emphasized that Rb2ZnCl 4 might have

many complicating features due to its solid-state nature causing it to behave differ-

ently from 7APCBB. For example, as was pointed out by Zinkin et al., scattering

at structural phase transitions involves phonon processes associated with both the

higher harmonics of the order parameter, and with secondary order parameters. The

latter one-phonon scattering contribution arises from the higher Fourier components

of the structural distortion. The Rb2ZnCl 4 system had the additional complication

of requiring two length-scales to describe the critical scattering. No such behavior

was observed in 7APCBB.

The anomalously large scattering which occurs in 7APCBB is apparently due to

the relatively large coupling between the n'th harmonic with the primary order pa-

rameter and large bare susceptibility. As seen from Eqs. 4.4 and 4.5, the chances

to observe higher harmonics are increased when the couplings among the harmonics,

represented by the coupling coefficients ,n, are strong, and when the bare suscepti-
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bilities, Xnb are large; that is the T,'s are not too far from each other. Despite the

contrasts between the behavior observed in the liquid crystal experiment and that

reported for Rb 2ZnCl 4, it appears that the results for both systems concord in their

observations of the critical behavior below T,. It remains to be seen whether other

density wave systems will yield results consistent with those observed in 7APCBB

above T,.

4.4 Conclusions

Using synchrotron x-ray techniques it has been possible to measure the critical behav-

ior above T, associated with both the first- and second-harmonic critical fluctuations.

We have also measured the relative intensities of the first- and second-harmonic den-

sity wave order parameter scattering below T,. The first-harmonic critical behavior

is found to be 3D-XY-like, albeit with a small length anisotropy as is normally ob-

served at N-Sm-A transitions. The second-harmonic susceptibility above T, and the

integrated Bragg intensity below T, both are accurately predicted by the XY-model

multicritical scaling theory [5, 6, 8]. However, a simple interpretation for the second

harmonic lengths disagreed strongly with predictions of current density wave sys-

tems, and thus stimulated a re-examination of the theory. The resulting theoretical

advances yield predictions for the behavior of the structure factor associated with

fluctuations in the n'th harmonic density wave order parameter 0'(q). Namely, the

n'th structure factor S,(q) is affected by a coupling between $,(q) and the lead-

ing order parameter 1 (q), and by its bare q-dependence. Moreover, the correlation

lengths characterizing fluctuations in the order parameters ',n (q) are found to scale

with a universal ratio, X, = (0no/10o)2 , and are described by a single exponent v. The

theoretical calculations give X2 = e/20 - c2/100 + O(E3 ) in an e-expansion in 4 - E

dimensions. This new theory is completely consistent with the experimental data

on the second harmonic critical fluctuations in 7APCBB. Clearly, these theoretical

advances should have consequences for the description of all 3D density wave phase

transitions and possibly 2D systems as well.
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Chapter 5

Smectic-A Fluid Antiphase

Domain Ordering

A high-resolution x-ray diffraction study has been carried out on a binary liquid crystal

mixture of pentylphenylcyanobenzoyloxy benzoate (DB5 CN) + cyanobenzoyl oxypentyl-

stilbene (C5 stilbene) that is 49.5 mole % Cs stilbene. This mixture exhibits on cooling

the phase sequence monolayer smectic-A (Sm-A 1) - smectic-A fluid antiphase (Sm A)

- bilayer smectic-A (Sm-A 2). We observe the presence of a coexistence region between

the SmA phase and the Sm-A 2 phase, contrary to previous work which reported a new

smectic-A crenelated phase. The high resolution of this diffraction experiment allows

us to quantify directly the behavior of the smectic-A fluid antiphase domain ordering

and the evolution of the system to Sm-A 2 order via a two-phase coexistence region.

These results are compatible with previous high-resolution heat capacity measurements

on the same sample.

5.1 Antiphase Domain Order in Polar Compounds

Thermotropic liquid crystal systems possess rich intermolecular and entropic inter-

actions which allow for a multitude of ordered structures, and a wide variety of

order-disorder transitions [1]. In fact, smectic liquid crystalline order alone is re-

alized in more than ten classes, the best known being the smectic-A phases which
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were discussed at length in Chapters 3 and 4. The simplest structure of this class is

the monomeric smectic-Am (Sm-Am), which can occur in nonpolar rodlike mesogenic

molecules. Smectic-A polymorphism is typically observed in molecules with long

(three-ring) aromatic cores and a polar head group which provides the molecule with

a longitudinal dipole moment. Studies of mixtures of these dipolar mesogens have re-

vealed a variety of interesting phases within the SmA class: In particular, the partial

bilayer Sm-Ad, the monolayer Sm-A1, the bilayer Sm-A2, and a more exotic biaxial

phase intermediate between the latter two-the "smectic-A fluid antiphase" (SmA)

[2, 3, 4, 6]. The hallmark of the SmA phase is the establishment of a long-period

polarization wave within the layers [8, 9, 10, 11].

It is known that for a range of concentrations, binary mixtures of the polar

cyano mesogens pentylphenylcyanobenzoyloxy benzoate (DB5 CN) and cyanobenzoyl

oxypentylstilbene (C5 stilbene) exhibit a smectic fluid antiphase SmA between the

Sm-A 1 and Sm-A 2 phases [4].

A partial phase diagram of this system is shown in Fig. 5-1. Depicted in Fig. 5-

2(a) are real space sketches of several SmA structures, including Sm., which possesses

a centered rectangular two-dimensional lattice with m=a/2 [8]. Reciprocal space

pictures of the x-ray scattering associated with these structures are shown in Fig. 5-

2(b). SmA order is analogous to the antiphase domain order which occurs in binary

alloys. It consists of two-dimensionally ordered slabs; hence this phase is characterized

by the usual density modulation normal to the layers and an in-plane wavevector

modulated at qI=qO, where q± is the transverse component in (qH,qK,qL) space.

It has been reported that a new smectic-A fluid antiphase intermediate between

the SmA phase and the Sm-A 2 phase occurs for these systems, and this has been

designated as crenelated smectic-A or Sm-Aren [8]. The Sm-Acren phase differs from

the SmA phase in its in-plane order. In essence, the periodic antiphase domains are

proposed to be slabs of different thicknesses with m<a/2 while the longitudinal order

remains unchanged. We will show [7] that the region of the phase diagram for DB 5CN

and C5 stilbene between the SmA and Sm-A2 phases corresponds a broad two-phase

coexistence region, as opposed to a new type of smectic-A fluid antiphase.
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Figure 5-1: Partial phase diagram for mixtures of DBsCN + C5 stilbene, taken from
Ref. [4]. The narrow region labeled "coexist" was formerly assigned to the Sm-Acren
phase but is now ascribed to a broad coexistence of SmA and Sm-A 2 phases. The
arrow indicates the mole fraction of C5 stilbene for the composition studied in this
work.
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Figure 5-2: (a) Schematic structures for monolayer Sm-A 1, bilayer Sm-A 2, and the
fluid antiphase Sm-A, ( a centered rectangular structure with m = a/2); also shown is
a structure for the purported Sm-Acren phase where m < a/2. (b) The corresponding
reciprocal space x-ray scattering patterns. The dashed elliptical areas represent diffuse
scattering due to short-range fluctuations. The filled elliptical areas represent sharp
quasi-Bragg peaks.
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This chapter is organized as follows: First, a description of the experimental ap-

paratus and the sample is given in section 5.2. Results for the Sm-A 1 phase with its

concomitant SmA fluctuations, the SmA phase, the Sm-A 2 phase, and the (SmA+Sm-

A2) two-phase coexistence region will be presented in section 5.3. A discussion com-

paring these results with previous heat capacity, optical and electron microscopy, and

x-ray diffraction experiments will be given in section 5.4.

5.2 Experimental Details

The compounds used were synthesized and purified at the Centre de Recherche Paul

Pascal [4], and they are from the same batch that was used for an earlier C, investi-

gation [12]. This x-ray sample is a mixture containing 49.5 mole % C5 stilbene, which

was previously used for a high-resolution x-ray study of the N-Sm-A 1 transition [13].

The phase sequence for this sample is

Sm-A 2  - SmA - Sm-A 1  - N

383.6-386K -,398K 424.3K

where 382-384.4K represents a broad SmA+Sm-A 2 coexistence range. The transition

temperatures cited above are somewhat lower than those reported previously [4, 12]

due to a slow drift in transition temperatures with time over the very long period of

x-ray observations.

The experiment was conducted using Cu K, radiation from a Rigaku RU-300

rotating-anode machine operating at 7 kW, and a triple-axis spectrometer with

Si(111) monochromator and analyzer crystals set in a dispersive configuration. The

instrumental resolution for the in-plane longitudinal direction was well approximated

by a Lorentzian with a half width at half maximum (HWHM) of 1.4x10-4• - 1. The

transverse in-plane resolution was considered perfect ( < 10-5A'-1), while the trans-

verse out-of-plane resolution was well approximated by a Gaussian with a HWHM

of 0.03A- 1 and was set by incoming and outgoing slits with matching angular ac-

ceptance. Evacuated flight paths with narrow slits positioned before and after the

sample reduced the background count rate to 0.25 counts per second. The beam had

193

~;nr~`~"·~·D~---~-'·~



a spot size of 1.5x3 mm 2 at the sample position.

A sample of mass 180 mg was sealed with indium in a beryllium cell 12x 12x 1.5

mm3 . This cell was placed in a two-stage oven constructed from two beryllium cylin-

ders which were individually temperature controlled throughout the experiment to

lO0mK. The sample was aligned in the nematic (N) phase in a 5.5 kG magnetic field

by cycling slowly across the N-Sm-A 1 transition until the sharpest transverse scan

was obtained. With this technique it was possible to obtain a sample mosaicity of

0.50 HWHM in the Sm-A 1 phase in the vicinity of the N-Sm-A 1 transition.

5.3 Results

We learned from chapter 3 that the Sm-A 1 phase is characterized by a sinusoidal one-

dimensional mass density wave in a three-dimensional fluid. Short-range, fluidlike

order between molecules is observed in the direction transverse to this density wave.

As is well known, in an x-ray scattering experiment the Sm-A 1 ordering gives rise

to a single quasi-Bragg peak at (0,0,2qo) due to Landau-Peierls scattering which has

the reciprocal space form (qll - q0)- 2+,?. For DB5CN and C5 stilbene in the N phase

near the N-Sm-A 1 transition 2qo=0.24811-1, which equals 2ir/L with an effective

molecular length L is 25.332 [13]. This value is consistent with Levelut et al. who

report that L is close to the value 26.81 for this system with X=0.46, the small

difference being mainly due to slightly different mole fractions X. Well below the

N-Sm-A 1 transition, Sm-A 1 monolayer type order is well established, hence changes

in the mosaic are gradual and there is no measurable change in the longitudinal 2qo

linewidth with temperature. However, despite this essentially "frozen" smectic-A1

order, there are fluctuations of in-plane domain order [8, 9] which become larger with

decreasing temperature. From a.c. calorimetry measurements on this mixture [12] we

know that the Sm-Ai-SmA. transition is accompanied by significant pretransitional

energy fluctuations over a large range in temperature, indicative of the presence of

short-range SmA-like order in the Sm-A 1 phase.

In the x-ray experiment these SmA fluctuations are demonstrated by the appear-
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ance of weak diffuse spots off-axis which were first detectable about 7K above the

Sm-A 1-SmA transition temperature. Figure 5-3 shows five transverse scans along

(q±, 0, qo) at temperatures within the Sm-A 1 phase and two scans in the SmA phase.

Figure 5-4 shows the corresponding longitudinal scans in which qi is varied, with qH

held fixed at q,. The diffuse scattering data in the Sm-A 1 phase were fitted with the

empirical form first suggested by Chen and Lubensky [14] for the N-SmC transition:

a(q) = o(5.1)
1 + 6(ql - qO)2 + C±q + Dq, (5.1)

where q1l is the L component and q± is the H component of the scattering vector

in (qH, qK, qL) space and the quadratic coefficient C1 is negative. The results of

these fits are shown in Figs. 5-3 and 5-4. Following Martinez-Miranda, Kortan, and

Birgeneau [15], we have defined a length scale using the half width at half maxima of

the peaks, which corresponds to the size of the smectic-A fluid antiphase domains:

61l ( =1) 1 /2 (5.2)
[1 + !C j(q O)2)1 o 2

6±j(qIS ) =(5.3)

-C± + [C2 + 4D± (1DjL 5L1/ 2  - -0

where q =(-C/2D)1/ 2 is the peak wave vector in the transverse direction. Below the

Sm-A 1-Sm~i transition, these off-axis diffuse peaks become resolution limited in radial

scans, thus confirming long-range order in the SmA phase. Pure transverse scans in

the scattering plane reveal a mosaic with a roughly Gaussian angular distribution.

The size of the modulation repeat distance a=21r/q 0 increases on cooling, which

is clearly shown in Fig. 5-3 by the change in qT, the off-axis peak position of the

(q, 0, qgo) scans. The monotonic trend of the in-plane modulation distance a with

temperature is indicated by the variation of qT shown in Fig. 5-5(a). The value of

qT decreases to 0.020A- 1 on cooling (corresponding to a = 315 A) at the point where
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Figure 5-3: Scans along qH with qL = go in the Sm-A 1 and -Aphases. The five scans
with T > 396K are in the Sm-A1 phase, and the diffuse peaks are fitted with Eq.(1).
The arrows indicate the intensity scale associated with each scan. The two scans at
T < 396K are in the Sm-A phase. The solid lines are fits to the scattering profile
described in the text.
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are fitted with Eq.(1). The arrows indicate the intensity scale associated with each
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the scattering profile described in the text.
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two-phase SmA+Sm-A 2 coexistence begins. The smooth curve through the qT-T

data in the SmA phase represents an empirical fit with the quadratic form

(q, - 0.02) = 0.01(T - 384.4)1/2

Note that this formula when extrapolated to higher temperatures is still in good

agreement with the qo values determined from diffuse off-axis peaks in the Sm-A 1

phase.

The position of the (0,0,2qo) peak, shown in Fig. 5-5(b), changes linearly with T

in the SmA phase and in the Sm-A 1 phase above r 400 K. An extrapolation of these

Sm-A 1 values to 426 K yields 2qo=0.2479A- 1; this is in good agreement with the

value 2qo=0.2481-1 determined from the diffuse Sm-A 1 scattering in the nematic

phase [13]. One can see from Fig. 5-5(b) that near the Sm-A 1-SmA transition, there

is a noticeable deviation for the monotonic increase in 2qo with temperature, probably

due to greater "dimerization" in the fluid antiphase than in the Sm-A 1. The scatter

in the data points in this region is due to uncertainties in both AT = T - Te(A1 - A)

due to T, drifts and 2qo resolution (±1 x10- 4 A-1). The values of qo for the off-

axis (qo, 0, qgo) peaks have also been determined as a function of temperature. For

the diffuse peaks in the Sm-A 1 phase, we find that (qo)>(1/2)(2qo0), where (2qo)

is determined from the position of the (0,0,2qo) Bragg peak; the ratio (qo)/(2qo)

ranged from 0.5041 at 402.40 K to 0.5010 at 397.76 K. In the SmA phase and in

the SmA+Sm-A 2 coexistence region, it was found that (qo)/(2qo)=0.5 within the

resolution (±0.0007) for all temperatures. These observations are in agreement with

those reported by Levelut [8].

The peak intensities IT of the off-axis diffuse scattering in the Sm-A 1 phase are

shown in Fig. 5-6(a). Finally, the correlation lengths C± and C11 determined from the

diffuse (q, 0, qgo) peaks using Eqs.(1)-(3) are shown in Fig. 5-5(b). The uncertainties

in these C values are moderately large, but note that 11( and C± only differ by a factor

of approximately 2.2.

Before considering the SmA + Sm-A 2 coexistence region, let us first describe the
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Figure 5-5: Scattering wave vectors for DB5 CN and C5 stilbene: (a) Transverse
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low temperature Sm-A2 phase. The Sm-A 2 bilayer phase occurs when antiferroelectri-

cally aligned molecular dimers form a double layer structure as shown in Fig. 5-2. The

reciprocal space picture is described by fundamental scattering centered at (0,0,qo),

and second harmonic scattering centered at (0,0,2qo) [16, 17]. Fluidlike order within

the Sm-A 2 layers is present as in the Sm-A 1 phase, and there is no off-axis (q', 0, qo)

scattering in the Sm-A 2 phase.

In the temperature range 382-384.4 K between the SmA phase region and the

Sm-A 2 phase region, a detailed study was made of the scattering profiles for off-axis

(+qO, 0, qgo) peaks and on-axis (0,0,qo) and (0,0,2qo) peaks. This is the temperature

region where a new modulated structure, the Sm-Acren phase with a regular array

of two different thickness antiphase slabs with m<a/2, has been proposed to exist

[8]. Contrary to that description, our results demonstrate that the transformation

between the SmA and Sm-A 2 phases occurs via a broad two-phase coexistence region.

Figure 5-7 shows 0 rocking curves through the (0,0,qo) peak as a function of T. Figure

5-8 shows the temperature variation of the intensity for the (q , 0, qgo) off-axis and

(0,0,qo) on-axis peaks over the coexistence range where the Sm~i transforms into Sm-

A2 . As the system is cooled through the two-phase coexistence region, the q) and

qo positions of the off-axis (q, 0, qgo) peak do not change but the intensity of this

peak decreases smoothly. At the same time, the intensity of the on-axis (0,0,qo) peak

grows, as shown in both Figs. 5-7 and 5-8. This behavior is exactly what one would

expect if domains of Sm-A 2 phase appear with decreasing temperature at the expense

of the domains of Smi.

Heuristically one could describe the evolution from modulated antiphase SmA

order to Sm-A 2 bilayer order as a simple permeation of the molecules between layers,

This process can be energetically favorable since it would tend to keep the global

curvature of the layers constant as the temperature is decreased. In this case it would

result that some in-plane domains increase in extent at the expense of neighboring

domains. The transition to bilayer order then marks the onset of a single domain

orientation for the molecular dimers. One might anticipate a transition first to a

intermediate structure which has two different sizes of in-plane antiphase domains
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(with m<a/2). This is the purported Sm-Acren phase.

The presence of two separate types of order, Sm-A2 and SmA, is evident by com-

paring the mosaics of the on-axis and off-axis peaks. A contour plot of the scattering

intensities observed in the coexistence region is shown in Fig. 5-9. If the scattering

were produced by a single ordered phase , there would be only one mosaic distribu-

tion as measured from 0 rocking curves. However, the dramatic difference between

the angular widths of the on-axis (0,0,qo) and off-axis (-qT, 0, qgo) peaks rules out

the possibility of a single phase. We should point out that scattering at (0,0,2qo)

can result from both Sm-A 2 and SmA ordered domains, so both contributions must

be considered in the analysis of that mosaic. Figure 5-10 shows mosaic data at two

temperatures within the coexistence region. At T=383.35K we observe the mosaics

of the off-axis (±q ° , 0, qo) peaks to be consistent with the on-axis (0,0,2qo) mosaic

but strikingly different from the on-axis (0,0,qo) mosaic. This is to be expected since

Fig. 5-8 shows that the integrated intensity of the (0,0,qo) peak at this temperature

is weak relative to its saturation value below 382 K. Hence, the Sm-A2 contribution

at (0,0,2qo) will be qualitatively insignificant. In contrast to this, Sm-A 2 domains

are quite large compared to SmA domains at T=382.65K as seen from the integrated

intensities shown in Fig. 5-8. Thus, their contribution to the scattering at (0,0,2qo)

should be quite substantial, resulting in a qo-like mosaic for the (0,0,2qo) peak, as

observed. However, the mosaic of the (0,0,qo) peak remains distinctly different from

the mosaics at (+qO, 0, qgo) and (-qT, 0,qo). One can observe noticeable differences

not only between the absolute angular widths of the mosaics but also between the

features in each peak. Since these features do not reflect the symmetry of reciprocal

space, they can be attributed to the mosaicity, probably originating from domains

which lack perfect azimuthal symmetry about the scattering vector q=(0,0,q). This

is expected, given that the spectrometer is configured to integrate over a wide out-

of-plane momentum transfer. This comparison of the two off-axis peaks with the

two on-axis peaks shows clearly the presence of two distinct mosaics. More precisely,

we observe the disappearance of SmA ordered domains with the simultaneous devel-

opment of Sm-A 2 ordered domains on cooling through a - 2.4-K-wide coexistence
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region.

The final experiment designed to distinguish SmA+Sm-A 2 coexistence from a Sm-

Acren phase involved scans through the off-axis harmonics (±nq° , 0, qgo) of the SmA

fundamental (:q ° , 0, qo). The data shown in Fig.5-11 were obtained at 383.75K,

which is in the coexistence region. In addition to observing the large on-axis (0,0,qo)

peak and the off-axis (q°=0.022A-1, 0, qgo) peak, we made a careful search at the (2qT,

0, qo) and (3q° , 0, qo) positions. One can easily determine the relative proportion

of the antiphase domains from the magnitude of off-axis harmonics. Long counting

times were used in order to achieve a good signal-to-noise ratio in these regions of

weak scattering. The third harmonic is observed at (+0.066, 0, q0o), but there is no

indication of the second harmonic at (2qT, 0, qo). It should be noted that the latter

is not allowed by symmetry even in multiple scattering for either the Smi or Sm-

A2 phases separately but could occur in a two-phase coexistence region via double

scattering between domains of each phase. Such (+2q° , 0, qo) peaks were indeed

reported in Ref.[7] and were interpreted as evidence of a Sm-Acre ordered structure.

The excess scattering at the low-q side of the third harmonic peak is due in part to

the long tails of the fundamental peak, and to mosaic broadening. The relatively

weak integrated intensity of this third harmonic peak compared to the fundamental

allows us to ascribe a nearly pure sinusoidal shape to the polarization modulation

transverse to the smectic mass density wave. Thus, the fluid antiphase domains are

separated by broad domain walls even when SmAi ordering is as fully developed as

possible and Sm. coexists with the Sm-A 2 phase.

It should be noted that for the run during which the data of Figs. 5-8-5-11 were

obtained, the lateral position qT0 of the off-axis (:q ° , 0, qo) peaks was q°=0.022A-1

instead of 0.02 A-1 as observed in the run shown in Fig. 5-5. Such slight variations

in the maximum a value observed in the coexistence region from run to run are of no

conceptual importance.

203

• ·*· · C . ... . ...



1000

800

z 600
CI-

U,
I-.

o 400

200

01

-10 -5 0 5 10
(e)
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INTEGRATED INTENSITIES IN THE COEXISTENCE REGION
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Figure 5-8: Detail of x-ray intensity data in the SmA + Sm-A 2 coexistence region.
The integrated intensities of the (0,0,qo) bilayer peak (open squares) and the (q°,0,qo)
fluid antiphase peak (filled squares) are shown.

5.4 Discussion

This section will present a discussion of five issues - the fluctuations of Sm.ý-like short

range order in the SmA 1 phase, the nature of the SmA1-SmA transition, the evolution

of long-range lateral modulations in the SmA phase, the two-phase coexistence region

associated with the SmA-SmA 2 transition, and the scattering behavior at qo and 2qo

in the SmA 2 phase.

5.4.1 Fluctuations in the SmA 1 phase

The presence of in-plane SmA-like fluctuations in a SmA 1 phase has been detected

previously in x-ray [8, 10], viscosity [3], and calorimetry [12] studies. The detailed

behavior of the pre-transitional energy fluctuations for both DBsCN and C5 stilbene

and DB6 CN and C5 stilbene mixtures is shown in Fig. 5-12. It is clear from this

figure that AC + data above T,(A 1-A) do not follow a simple power-law behavior,
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Sm-A 2 coexistence region. Features at (+q° , 0, qgo) arise from SmA scattering; that
at (0,0,qo) from Sm-A 2 scattering, and that at (0,0,2qo) from both Sm. and Sm-A 2
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Figure 5-10: Comparison of mosaicity widths at T=383.35K (left panel) and 382.65K
(right panel) during a slow cooling run. q+ and q- are the off-axis peaks centered at
(0.022A'-,0,qo) and (-0.022A-1,0,qo), respectively. qo is the on-axis (0,0,qo) bilayer
peak. 2qo is the on-axis (0,0,2qo) peak with contributions from both SmA and Sm-
A2 scattering. The factor by which I(experimental) was multiplied to obtain the
normalized intensity is given for each scan.
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SEARCH FOR HARMONICS WITHIN THE COEXISTENCE REGION
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Figure 5-11: Third harmonic (3qT,0,qo) at qH=0.066A - 1 compared to the fundamen-
tal (qT,0,qo) at qH = 0.022A - 1 showing that the SmA phase in a SmA + Sm-A 2
coexistence mixture exhibits a nearly sinusoidal polarization wave transverse to the
smectic mass density wave. Note that the second harmonic at (0.044,0,qo) is not
allowed by symmetry for a SmA + Sm-A 2 two-phase mixture and is not observed
within the instrumental resolution. The error bars for points with qH > 0.035 are
comparable to the size of the symbols since long counting times were employed. The
dashed curve for qH > 0.0481 - 1 represents the large qH scattering expected in part
due to long tails for the fundamental peak and in part due to mosaic broadening.
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but the qualitative trend in the experimental ACp values is similar to that predicted

from a "weak crystallization" theory of the SmA 1-SmA transition [18]. Although the

present x-ray data shown in Fig. 5-6 for (q±,0,qo) scans in the SmA 1 phase are too

sparse to test power-law analyses of 11 and _±, one can make a consistency check

between the behavior of AC,+ and the correlation lengths.

-5 -2.5 2. 5
AT (K) = T- T

5 7.5 10

Figure 5-12: C, data showing excess heat capacity in the vicinity of the Sm-A1-Sm-Aý
phase transition. Data from ref. [12] for DBsCN and C5 stilbene with X = 0.492
(open circles) and for DB5CN and C5 stilbene with X = 0.505 (plus signs) are shown.
Tc indicates the very weakly first-order phase transition.

The concept of two-scale universality states that Fc,,o1/kBT, where Pc is the

critical free energy per unit volume and vot is the correlation volume, should be a

dimensionless constant for a given universality class [19]. In the present case, the

correlation length in the y direction is unknown but can be assumed to vary with T

in the same way as C1 does. Thus one expects for Smi~ fluctuations,

PFe:I21/T = C (5.4)
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where C is a constant independent of T. Integrating the AC + data in Fig. 5-12 to

obtain Pc as a function of AT and choosing the x-ray transition temperature to be

397 K (see Fig. 5-6), we obtain C = -1.7 at 397.76 K, -2.8 at 399.70 K, -2.4 at

400.31 K, -2.9 at 401.43 K, and -2.6 at 402.40 K. The fact that C is roughly constant

while (111 and Pc are each varying by a factor of -, 20 is an indication of consistency

between the AC + data and the diffuse x-ray scattering results.

Another test of internal consistency for the SmA fluctuation behavior is to consider

the ratio IIý_/IIT. If simple power-law behaviors ( ~ (AT)V and I r (AT)^ were

to hold, this ratio would vary as (AT)'?", almost independent of AT, since scaling

gives y = (2 - 77)v and r7 < 1. For the five data points shown in Fig. 5-6, we obtain

an approximately constant value for this ratio, which demonstrates that IT indeeds

scales like 11J"

It should also be noted that in the SmA1 phase (qo)> 0.5(2qo), where (qo) is the

L component of the off-axis (qTO, 0, qo) diffuse peak and (2qo) is that of the on-axis

(0,0, 2qo) condensed peak. The ratio (qo)/(2qo) locks in at 0.5 at the SmA 1 transition

temperature.

5.4.2 The SmA1-SmA transition

According to a mean-field treatment of the frustrated smectics model, the SmA 1-

SmA, transition would be second order, but fluctuation effects of the Brazovskii type

make this transition first order [18, 19, 20]. This is confirmed by the heat capacity

measurements, which indicate a weakly first-order transition with a coexistence region

of -,, 85 mK [12]. No x-ray data were obtained close to the SmA1-SmA transition

temperature, but Fig. 5-5 suggests that very little change occurs in a= 27r/qT on going

from the SmA 1 to SmA phase, which is consistent with any first-order discontinuity

being small.
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5.4.3 Evolution of lateral modulations in the SmA phase

The highest temperature x-ray data in the SmA phase were obtained at 393.75 K.

The nearly resolution-limited off-axis peaks shown in Fig. 5-4 indicate that lateral

modulation extends a considerable distance at that temperature. Although there is

no theory dealing with fluctuation behavior at the SmAl-SmA transition, Fig. 5-

12 shows that energy fluctuations are large and distinctly different above and below

Te=Te(A 1- A). The AC,- data below Tc can be well described by

AC,- = Aln(IATI/Tc) + B

with A = -0.0224JK-1g- 1 and B = -0.096JK-lg- 1, suggesting XY-like fluctua-

tions.

In the middle of the SmA phase, say, 388-394 K, the lateral dimension of the SmA

domains remains essentially unchanged. The mosaic spread of the off-axis peaks

broadens significantly on cooling, but the intergrated intensity IT remains nearly

constant, in agreement with an almost constant C, across this temperature range

[12]. Throughout the entire SmA phase, qO evolves in a smooth systematic way,

until the lateral period a = 27r/q ° reaches a maximum value of 315A, in reasonable

agreement with the value 335A given by Levelut [8] for DB6CN and C5 stilbene.

Electron micrographs of a freeze-fractured DBsCN + C5 stilbene mixture with a

mole fraction (X) of 0.63 show a very clear lateral periodicity of 400 - 500A2 [4]. This

is consistent with our value since a appears to increase as X increases and the range

of the Sm. phase shifts to lower temperatures [4, 8]. The quadratic form

(qO - 0.02) = 0.01(T - 384.4)1/2

found to represent the temperature dependence of qO is an empirical rather than a

theoretically predicted result.

As the SmAi phase is cooled toward the transition region where conversion into

SmA 2 occurs, the integrated intensity IT increases substantially. This qualitative
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trend in IT is parallel to that in the heat capacity shown in Fig. 5-12. These Cp data

represent a truncated version of the inverted Landau SmC-SmC 2 heat capacity peak

observed in DBsONO 2 and DB 1 0ON0 2 mixtures of alkyloxyphenyl-nitrobenzoyloxy

benzoates [21]. In the latter case, the first-order coexistence region is only 0.17 K

wide, whereas the C, data in Fig. 5-12 indicate a broad two-phase coexistence region

of , 2.2 K.

Note that the ratio (qo)/(2qo) for the L component of the off-axis (qT, 0, qo)

and on-axis (0, 0, 2qo) peaks equals 0.5 in the SmA phase. There is a systematic

linear increase in 2qo on cooling throughout the SmA phase followed by a very rapid

decrease in 2qo on the transition into the SmA 2 phase, as shown in Fig. 5-5.

5.4.4 The SmA+SmA 2 coexistence region

For a mixture of DB5 CN and C5 stilbene with X r 0.5, it was previously reported

that another modulated smectic-A phase, denoted SmAcren, which has the structure

shown in Fig. 5-2, exists between the SmA and SmA 2 phases [8]. In contrast to this,

we find that the 382-384.4 K range corresponds to a broad two-phase coexistence

region. Levclut's key argument [8] for the existence of a SmAcren phase instead of

SmA + SmA 2 coexistence was the presence of the (2q , 0, qgo) harmonic of the off-

axis (qO, 0, qgo) fundamental since even harmonics are not allowed by symmetry for

the SmA and SmA 2 phases separately. However, as shown by Fig. 5-11, we see no

(2qo, 0, qgo) peak although a weak (3q ° , 0 , qgo) peak was detected. Furthermore, the

mosaic structure in Fig. 5-10, as discussed in Sec. 5.3, strongly supports the presence

of two coexisting phases. It seems that the situation here is very similar to the recent

demonstration that a proposed incommensurate smectic-A phase SmAine, existing

between the SmAd and SmA 2 phases, is in fact a broad coexistence of SmAd+SmA 2

phases that interconvert very slowly [22]. As noted previously, the observation of

weak (±2q° , 0, qo) peaks could possibly be explained by double scattering between

two domains in a SmA+SmA 2 coexistence mixture. We should point out, however,

that, according to Levelut [23], her photographically detected diffraction patterns

are inconsistent with this explanation and the observed scattering in her experiment
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necessitates the existence of an intrinsic SmAcre phase. We can only state definitively

that the SmAcren phase was not observed in our experiment.

The existence of a first-order SmA-SmA 2 transition is consistent with the predic-

tion of Prost's frustrated smectic model [11, 24], which does not yield a SmAcren

phase for any set of model parameters. Sluggish two-phase coexistence is also com-

patible with the heat capacity results shown in Fig. 5-12. Indeed, Ref. (11) describes

the CP behavior between the two arrows as being "like a special type of two-phase

coexistence," and the small phase shift anomaly AO reported in Ref. (11) for the Tac

signal could well be due to the motion of domain walls betwen SmA and SmA 2 regions

rather than antiphase SmAr,,,en domain walls. Finally, the microscopic observation of

transient textures in this region [4] can be as well explained by two-phase coexistence

as by a SmAcren phase [25].

5.4.5 The smectic-A 2 phase

In the SmA 2 phase there are only two on-axis peaks at qgo and 2qo, both slightly mosaic

broadened in the same way. At 376.3 K, which is , 6.9 K below the midpoint of the

SmA+SmA 2 coexistence range and - 48 K below the N-SmA 1 transition, the ratio of

intensities I(2qo)/I(qo) is 0.3. This value can be compared with I(2qo)/I(qo) ratios of

0.07 at AT = T-TNA2 = -2 K in 7APCBB and - 0.2 at AT -20 K in DB6 CN [16,

17]. Since the DBsCN and C5 stilbene mixture forms a SmA 2 phase from already well-

ordered SmA antiphase domains, one would expect temperature independent values

I(qo) and I(2qo), as observed, and a I(2qo)/I(qo) ratio which reflects a saturation

value comparable to that deep in the SmA 2 phase for materials undergoing a N-SmA 2

transition.
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Appendix A

X-ray Scattering from a Vicinal

Surface

X-ray scattering from the surface of an elemental crystal will be calculated following

the formalism of Held and Brock [1]. Thus, starting with the first Born approximation

for charge scattering: da/d~ = rI2A(Q)I2 , where the scattering amplitude A(Q) is

simply the Fourier transform of the charge density of the scatterers p(r), and ro is

the classical electron radius. Therefore,

A(Q) = j d3rp(r)exp(-iQ -r) (A.1)

and

p(r) = EEpi(r - R - 7T) , (A.2)
{R} i

where the integral is carried out over the volume of the crystal. Here the sum is

performed over the basis set of the bulk lattice, {R}, and over the i atoms in the

unit cell. One can exploit the symmetry of the lattice and re-express the scattering

amplitude A(Q) as a product F(Q)Z{R} e(- iiQr), where
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F(Q) = e(- i'Q) J d3rpi(r)e-iQ-r (A.3)
i

The scattering of x-rays from a crystal with an exposed surface can be calculated

from the above relations in the simple case of a semi-infinite crystal. The surface is

introduced mathematically by restricting the sum over {R} via a Heavyside function

which is a function of the surface height at a given lateral position on the surface.

Hence,

A(Q) = F(Q) E e-iQ'r8[R - n - (h(R11) + ro)] (A.4)
{(R

The local surface height is represented by h(R 11) and the local surface normal is

h. Vicinal (or miscut) surfaces are defined in terms of this local surface normal. The

sum over real space lattice vectors can be replaced by a sum over reciprocal lattice

vectors, giving

A(Q) = F(Q) d dre-i(Q-G).[r - h(r) - ro] (A.5)
{G}

The integral over the direction normal to the surface ( r±) can be carried out

immediately, leaving us with

F(Q) e-i(Q-G)'ro
A(Q) C= E ed 2rlIe-i(Q-G )(rI+h(rll)) (A.6)Vcee {G} -i[(Q - G) -n]

In this equation h(r11) = h(rll)n, and ro - ro . The scattering cross-section S(Q)

is proportional to A(Q)A*(Q). Taking the complex conjugate of A(Q) above and

217

31·~·1UICr~·~rull~-~-r~CI·IP-



carrying out the multiplication results in

( F(Q)12 e-i(Q-G).roe+i(Q-G')-roS(Q)= E x
Vcll G,G, [(Q-G) [(Q-G')]

d2rid [e -i(Q-G)-(r+h(r)) +i(Q-G)(r+h(r) (A.7)

Adding and subtracting terms to symmetrize the factor in the exponent and can-

celling the terms Q ' ro, the integral can be re-written as

e-i(G -G).ro

G,G,• [(Q - G) n][(Q - G') · ]

f 2d2 2 -i(G'-G).(r'+h(rl)) [e-i(Q-G)-(rl-r/)-i(Q-G)'(h(rll)+h(r))] (A8)

The first bracketed term in the integral is a double delta function, 3(2) ((G' - G) x

n), where G' - G is a vector connecting two reciprocal lattice points. One is free to

choose the origin ro such that the statistical averaged height, <h(rll)>, is exactly

zero. Averaging over height fluctuations and defining pll - rll - r1l, the structure

factor becomes

F2  e-i(G'-G)-ro6(2)((G' - G) x ft)
S(Q) = (21 )2 [x

Vc2"ell ,, [(Q - G) [(Q - G') -A]

d2 plle-i(Q-G)'-p < e - i(Q - G ) '(h(p l) - h(O)) > (A.9)

The set of vectors {G} define the location of the bulk peaks in an x-ray scattering

experiment. Thus, the delta function will be non-zero at the bulk peak positions, ie.

when G' = G, or when the vector connecting two bulk peaks happens to lie on a line

parallel to the surface normal ni, that is, when (G' - G) x ni) = 0'. This condition is

satisfied by many vectors, all of which terminate on a special line in reciprocal space

known as the crystal truncation rod or CTR. This is best illustrated by examining
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Fig. 2-9 many truncation rods, each one passing through at least one bulk peak.

In the case of a surface oriented slightly away from a high symmetry direction (a

vicinal surface), each truncation rod will pass through exactly one bulk peak since

the surface normal (h) cannot be expressed in terms of an integral sum of reciprocal

lattice vectors. That is, the condition G' = G is only satisfied at single Bragg peaks,

even though (G' - G) x Ai is zero when (G' - G) lies parallel to the surface normal.

The term in the integral, < e-i(Q-G)-(h(pil )- h(O)) >, defines the height-height corre-

lation function, CQ-G(Pll). Thus, x-ray scattering can probe directly the fluctuations

in surface height if the experimental geometry is chosen such that the scattering due

to this contribution is maximized with respect to scattering from the bulk.
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