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Abstract

Arrays of superconducting Josephson junctions can be modelled as systems of cou-
pled nonlinear oscillators. We present analytical and numerical studies of the spatio-
temporal behavior of two-dimensional, open-ended, frustrated, dc-driven arrays of
Josephson junctions at zero temperature, no self-fields. We explore the crossover be-
tween arrays in one and two dimensions and clarify the role of the horizontal junctions,
which are perpendicular to the direction of current injection. A ladder array with
perpendicular current injection and two-dimensional square arrays are considered.

For the ladder, we obtain analytical approximate solutions which include correc-
tions from the edges and/or vortices present in the array. The perturbations decay
exponentially in space with a calculated characteristic length. The depinning of the
array, and its field dependence, is explained by the edge-dominated instability of the
superconducting solutions. This critical current does not change under the inclusion
of vortices since they are expelled before depinning at calculated currents. The in-
stability of the whirling solution is analytically explained by a cascade of parametric
resonances of the driving frequency with the eigenfrequencies of the lattice which,
in this case, produces no steps. At zero field, a new step is observed at this insta-
bility. This state is reduced to a system of two coupled nonlinear oscillators and
characterized analytically as a subwhirling mode where horizontal junctions oscillate
non-negligibly. In conclusion, the horizontal junctions modify the dynamics by in-
troducing an intrinsic inductance through the fluxoid quantization; by modifying the
eigenfrequencies; and by effectively enabling fully two-dimensional modes.

Simulations of underdamped and overdamped square two-dimensional arrays for
varying frustration are presented. The numerical analysis of period, type of motion
of the pendula, phase velocity and spatial distribution characterizes the dynamics.
In underdamped arrays, an analytical approximation for the spatially inhomogeneous
partially row-switched states predicts the critical currents for some row-switching
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events. The flux-flow region in the overdamped case exhibits a similar phenomenon
of row-activation, alternation of periodic and aperiodic solutions and a final transition
to a rigid whirling phase.
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Chapter 1

Introduction

1.1 General background and motivation

This thesis deals with Josephson-junction arrays, superconducting electronic devices

which can be modelled as spatially-extended networks of coupled nonlinear oscillators.

The theory of linear oscillations, grounded in the concepts of linear algebra, provides

the basis for most of the solutions of problems of this kind in physics and engineering

[77]. However, even the simplest oscillators, like the pendulum, or almost all natural

oscillatory phenomena are intrinsically nonlinear. Recently, the progress in the theory

of dynamical systems has opened the possibility of studying those systems where the

small-angle linear approximation is not appropriate. Thus, the application of these

techniques presents promise for the understanding and reinterpretation of several

phenomena in engineering, mathematics, physics and even the biomedical and social

sciences [78, 102, 46, 79].

The physical system of our study is an array of interconnected Josephson junc-

tions in a given geometry. A Josephson junction is a microscopic device constituted

by a thin (- A) layer of insulating or normal material between two superconducting

islands. This network of weakly connected superconducting domains can be described

as an array of coupled nonlinear oscillators (a classical mechanical system) as a re-

markable result of modelling the physical system from the principles of quantum

mechanics and classical electromagnetism [63, 49]. This mechanical analogue has



proved useful in understanding the properties of the array since the tools of nonlin-

ear oscillations and dynamical systems are readily applicable [78]. In this thesis, we

approach the problem from the viewpoint, and with the methods, of nonlinear dy-

namics in contrast with the more usual static considerations derived from statistical

and classical mechanics.

Since its discovery by Josephson [38], the interest in Josephson junctions and

their applications has remained steady. The constitutive laws of these devices arise

from the fundamental description of superconductors with a macroscopic quantum

mechanical wavefunction. When the density of Cooper pairs is constant (as in most

applications), the state of the superconducting island is fully described by the phase

of the wavefunction. Due to the narrowness of the barrier between the supercon-

ducting domains, there is a finite probability of quantum tunneling not only of the

single electrons but of the Cooper pairs also. The quantum mechanical calculation of

the transmittance establishes that the superconducting current across the device is

proportional to the sine of the gauge-invariant phase difference between the islands ¢.

Moreover, when a device dependent critical current is reached, the Cooper pairs break

and single-electron resistive tunneling appears. Then, a voltage difference, which is

found to be proportional to the time derivative of ¢, develops between the islands.

In short, the superconducting current is described by

2 dbI = 1 sin 0, V= (1.1)
21 dt

where Do is the quantum of flux [49].

In the most usual approximation, a capacitive channel is added to the supercon-

ducting and resistive ones to account for the geometric capacitance. This constitutes

the resistively and capacitively shunted (RCSJ) model for the junction

1+ 1q+ sin q = I (1.2)

where the time and current have been normalized properly, and f is the McCumber

parameter [57]. This is the equation of a nonlinear pendulum with damping F = 1/Vp



and forcing I and, hence, the connection of the electronic device to a mechanical

system is shown.

The fundamental equations (1.1) suggest the application of junctions as detectors

of electromagnetic radiation and, conversely, as dc to ac convertors. Some of their

features are technologically attractive: their frequency can reach up to the THz range;

they can be made very uniform; and they are energetically efficient. However, their

applicability is severely diminished by the low voltage (mV) and power output levels

(nW) that a single junction can produce [49].

The most researched solution to overcome these limitations is the fabrication of

arrays of junctions, which, in the ideal case, would emit coherently, thus multiplying

the output levels. This has been the motivation for an exhaustive search for the

optimized parameters which could maximize the output and the coherence. However,

the nature of the coupling -intrinsic to the electromagnetic and quantum mechanical

constraints of the system and, thus, difficult to be tuned directly- makes this task

challenging. These considerations constitute the driving force of our research and are

discussed at length in the following.

However, these are not the only justifications for the study of these systems.

Arrays of Josephson junctions are also viewed as controlled, regular systems where

phenomena arising in more complicated, dirty systems can be studied. That is the

case of high-Tc superconductors, which, due to their microcrystalline structure, form

naturally highly disordered arrays of weak junctions separating the superconducting

domains. More intrinsically, their anisotropic crystalline structure can be viewed itself

as a stack of superconducting planes separated by insulating regions [43, 42, 87], i.e.

a stack of continuous Josephson junctions.

These arrays can also be used as clean models of flux-flow systems, such as flow of

vortices across a continuous type-II superconductor with random pinning sites [16, 74];

or other microscopic systems with intrinsic randomness like charge density waves [30]

or arrays of metallic dots [59]; as well as Frenkel-Kontorova models [26, 10, 56] or

lattices of coupled chaotic maps [69] .

In addition, these systems provide an excellent area for the interplay between



experiments, numerical simulations and theory. In particular, numerical simulations

constitute a powerful tool in this context since they grant an accurate representation

of the experimental observations (see Chapter 3). Moreover, the system being deter-

ministic in nature allows for analytical approaches which make use of the concepts

of classical mechanics, electrodynamics and, more recently, nonlinear dynamics. The

equations of the system are also of interest from a purely mathematical viewpoint.

On one hand, the high dimensional system of coupled differential equations can be

reduced, in some cases, to standard discrete equations, e.g. sine-Gordon [99]; on the

other hand, the continuum version of the equations can be translated in terms of a

fluid mechanical description [95]. In summary, these systems constitute an interesting

example where the behavior of spatially-extended nonlinear dynamical systems can

be studied.

If the arrays are to be used as emitters, the most important characterization is

the voltage response when a dc current is injected in the array. A graph which shows

how the averaged voltage difference across the array < V > depends on the injected

current I, is called an I-V characteristic. The ac properties can be explored by

studying the time-dependent voltage. I-V characteristics are common tools to study

the behavior of electronic devices. We summarize in this light the features of the

single junction, described by (1.2). As stated above, below a critical current -equal

to 1 in the normalized form of the equation (1.2)- the superconducting channel carries

all the current with zero potential. Above I = 1, however, the current has to flow

through the other non-superconducting channels (resistive and capacitive) and, thus,

a potential develops. In fact, the junction switches to a branch characterized by a

quasi-ohmic behavior, where the voltage increases almost linearly with the current.

When the current is decreased, a hysteretic cycle can occur depending on the value of

the McCumber parameter in the system. This simple history-dependent switch was

envisioned some time ago as the basis for superconducting computers, which never

reached a marketable stage.

The strict equivalence of the RCSJ equation (1.2) to a nonlinear damped pendulum

serves to illustrate the observed behavior. In this analogy, I is the driving torque, and



1/ ,\, the damping. If the torque is smaller than its critical value, the pendulum has

a stationary solution given by €* = arcsin I. However, when the torque reaches the

critical value I = 1, or =* = Jr/2, the static solution ceases to exist and the pendulum

"depins". Then, it can be shown that the junction goes to a unique periodic solution

in which the pendulum "whirls" over the top ever more harmonically as I is increased.

When the torque is reduced, the system traces its way back reducing its frequency

until it reaches the value I = 1 again. Then there are two possibilities: if the damping

is bigger than a critical value F*, the pendulum goes back to the static solution (it

gets "repinned"). If the damping is small, the pendulum has large inertia and it

continues to whirl below the depinning torque I = 1 until it reaches its repinning

value. This is a typical example of a hysteretic loop in which two states coexist and

the system can find itself in any of the two depending on its history.

The tools of nonlinear dynamics [78] allow a quantitative description of this pic-

ture by analizing the two-dimensional phase space of the system. Note that the

dimensionality of the phase space is given by the number of first order differential

equations which describe the system and is not related to the spatial dimensionality

of the system. In short, within this framework: we can characterize the depinning

transition as a saddle-node bifurcation; the running periodic solution can be proved

to be unique in the cylindrical phase space of the system with analytical arguments;

F* can be obtained numerically; and the repinning for the underdamped case can be

identified as a homoclinic bifurcation and a limiting behavior can be obtained [31].

If other loads are connected to the single junction, thermal noise is introduced, or ac

currents are considered, the dimensionality of the system is effectively increased and

more complicated phenomena can be observed [100].

Similar arguments and techniques can be applied to arrays of junctions. How-

ever, the high dimensionality of the system renders the analytical approaches almost

useless. Only when the constraints of the system allow a reduction, can we pursue

a full analytical treatment. The methodology can still be used but the solution is

necessarily numerical. Finally, another important concept in nonlinear dynamics is

that of linear stability of a solution, which is defined as the linear response when a



small perturbation is added on a solution of the system. In very basic terms (only

strictly valid for the one-dimensional case), if the perturbation grows, the system is

linearly unstable; if it decreases, it is stable; otherwise, it is neutrally stable. More

complicated behaviors exist when the dimensionality of the phase space is higher,

including the possibility of limit cycles (periodic), saddle points and cycles (stable in

some directions, unstable in others) or chaotic attractors (bounded, fractal, aperiodic

structures in phase space).

In Figure 1-1 we summarize some of the geometries for arrays of junctions which

have been investigated in the literature. The complexity which emerges from just

one junction is an indication of the very convoluted behavior that arrays can present.

This is specially so, since the junctions are coupled in the array via intrinsic physi-

cal constraints: conservation of current at each node (Kirchoff's law) and the fluxoid

quantization condition (resulting from the restrictions on the winding numbers on the

quantum mechanical phase which describes the superconducting islands). An imme-

diate realization of this effect is the SQUID configuration, formed by two junctions,

as shown in the figure, and widely used as a very sensitive magnetic detector [63, 49].

The fact that the coupling is intrinsic -hence, not directly accessible to direct external

tuning-makes the search for optimized configurations which favor coherent oscillation

considerably more difficult.

The initial effort was directed towards one-dimensional arrays with mixed experi-

mental results [36]. The series array presents interesting dynamical properties as it can

be classified as an almost integrable system [97]. It is also related to one of the classic

examples in the theory of coupled oscillators, the Kuramoto model [45, 98]. More re-

cently, one-dimensional parallel arrays have been the object of attention as realizations

of a discrete sine-Gordon system, a mathematically challenging problem [96, 94, 99].

In addition, arrays formed as a stack of inductively coupled one-dimensional parallel

arrays are being investigated [20, 87] in order to assess their technological properties

as an intermediate between the pure 1-D case and two-dimensional systems.

There have been strong indications that two-dimensional arrays, both in the square

and the triangular geometries [106], present some of the desired technological char-
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Figure 1-1: Arrays of Josephson junctions and some of their geometries. For a review
of one-dimensional series arrays see [97]. Recent work on one-dimensional parallel
arrays is presented in [99], and on-going research on stacked 1D parallel (also called
two-dimensional shorted arrays), in [20, 87]. The work presented in this thesis deals
with the ladder array (Chapter 2) and two-dimensional square arrays (Chapter 3). A
summary of the extensive literature on ladder and two-dimensional arrays is presented
in the introductions to both chapters.
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acteristics [9], i.e. a tendency to phase-lock due to intrinsic coupling intra- and inter-

rows [101]; and stability against disorder [62]. These make them the most promising

candidates for practical applications. However, the precise mechanism for phase-

locking and the dependence on the design parameters is still not well understood.

As seen in Figure 1-1, two-dimensional arrays are characterized by the presence of

horizontal junctions in the links perpendicular to current injection. It is important

to clarify the role of the horizontal junctions in the observed differences with one-

dimensional arrays (where they are not present). Numerical simulations show that,

to zeroth order, the currents through the horizontal links (and, hence, the phases

of the horizontal junctions) are almost always, and in all dynamical regimes, close

to zero. In other words, the relevant dynamical behavior is restricted to the junc-

tions in the vertical links of the array. Thus, to this order of the approximation, the

two-dimensional array would behave as a juxtaposition of one-dimensional arrays.

The aim of this thesis is to understand where some of the differences between

one-dimensional and two-dimensional systems arise. It will become apparent that the

presence of horizontal junctions introduces degrees of freedom in the system which

enable the appearance of full two-dimensional behavior. This is explicitly shown

by considering the simplest case where horizontal junctions are present, the ladder

array [41, 13, 34, 71]. Although this geometry is quite peculiar, due to the strong

constraints introduced by the edges, there are remarkable coincidences with the dy-

namical behavior of two-dimensional arrays. The obvious advantage of this system

is the reduced dimensionality which allows for analytical treatment of the problem.

The physical pictures deduced from this system will be used to characterize the 2-D

behavior.

For instance, one our conclusions is that, although valid in certain limits, the

approximation in which horizontal junctions are basically neglected constitutes an

oversimplification. The first effect of the presence of the horizontal junctions is the

appearance of an implicit small self-inductance on each cell, even if the inductances

of the currents, i.e. self-fields, are neglected. In other words, consecutive vertical

junctions are coupled via the horizontal ones. This is in contrast with the one-



dimensional parallel case, where the junctions are coupled through the inclusion of

self-inductances in the problem. This effect follows from the physical consideration

that librating junctions act effectively as inductors with a Josephson inductance Lj

[63]. However, the effect is more subtle: the existence of horizontal junctions mod-

ifies the governing equations and, thus, the linearized equations which establish the

eigenmodes of the ladder. Hence, these are different to the modes of the correspond-

ing one-dimensional arrays. This explains the differences whenever resonances with

the characteristic frequencies of the array are responsible for instabilities or steps.

We will also show that the characteristic decay length of all perturbations into the

array, like the ones caused by edges or by vortices, is also modified by the presence

of the horizontal links. Even more revealing of the important role these junctions

play is their active, non-negligible participation in two-dimensional modes extended

to strongly coupled horizontal and vertical junctions. The understanding gained from

the analysis of the ladder is then extended to two-dimensional square arrays. We con-

clude that the methods and some of the solutions are indeed relevant references for

qualitative and quantitative predictions in 2-D arrays.



1.2 Overview of the thesis

To conclude this introduction, we give now a schematic overview of the calculations

and results presented in this thesis. Chapter 2 includes studies on the ladder array.

After the equations and the numerical methods are developed, the three dynamical

regimes are described. Two of them are the array equivalent of the single junction's,

i.e. uniformly spatially extended superconducting and whirling solutions. The third

regime, which we do not address in detail, is the non-superconducting flux-flow region

which can be described in terms of propagating solitonic or kink-like solutions fairly

localized in space-time.

Section 2.3 concentrates on obtaining approximations to the superconducting so-

lutions which appear in the dynamical simulations. In the case of the ladder, only

two types of solutions appear: a superconducting solution with no vortices for most

values of f, and a configuration which resembles the fully-frustrated solution near

f = 1/2. After finding the solutions of both types which satisfy the governing equa-

tions, we introduce the effect of the edges by obtaining exponential corrections from

the linearized equations of the array. These approximate solutions account well for

the f dependence of the depinning (critical) current of the ladder. We conclude that,

in essence, the depinning of the ladder is edge-dominated almost over the complete

range of f. This is a result of the strict geometric constraints in the ladder. It is

easily understood that other perturbations of the no-vortex solution will decay ex-

ponentially also. Thus, we extend this method to obtain an approximation for the

one-vortex solution and to study the dependence of its depinning on the field. The

obtained approximation for the vortex in the ladder is favorably compared to the con-

tinuum sine-Gordon solution commonly used to describe the one-dimensional vortex,

thereby highlighting the differences between both arrays.

In Section 2.4 we deal with the whirling, or ohmic, branch of the ladder array.

After obtaining an approximate solution, and including the effect of the edges, the

repinning transition is analyzed. There are two main conclusions. First, the repinning

is not caused by the homoclinic bifurcation of the individual junctions of the array. It



is due to parametric instabilities, similar to the ones observed in the 1-D parallel array

[96], which result from the resonance of the whirling frequency with the characteristic

frequencies of the array. The general features of the transition (e.g. no steps are

observable) are well explained within this framework. Second, these resonances, by

exciting specific modes of the two-dimensional lattice, can produce peculiar dynamical

commensurate states which are fully two-dimensional in nature, i.e. it cannot be easily

reduced to an "effective" one-dimensional mode.

A novel state of these characteristics is observed at the instability of the whirling

branch for f = 0. This solution can be fully described in a subspace of drastically

reduced dimensionality (two) as a mode where vertical junctions whirl subharmoni-

cally and horizontal junctions present a standing wave structure with non-negligible

oscillations.

Two-dimensional square arrays are investigated in Chapter 3 in connection with

the ladder. For instance, the edge-dominated depinning bifurcation typical of the

ladder is only important for small values of f in the case of two-dimensional arrays.

That is the region where the no-vortex configuration is the only dynamically stable

solution and can explain the observed decay of Ic(f) at low field [12]. In contrast,

the whirling solution is very similar to the ladder's and the repinning picture remains

unchanged. To complete the study of the dynamical regimes, we consider 2-D arrays

in two limits: under- and overdamped. Underdamped arrays are optimal to explore

the structure of row-switching states, where whirling solutions are only found in cer-

tain rows of the array [92, 47]. We show that these states can be described in terms

of solutions obtained for the ladder and, in doing this, some of the critical currents at

which row-switching events occur can be predicted. On the other hand, overdamped

arrays do not undergo row-switching due to the null inertia of the pendula. Thus, this

is the limit where the flux-flow region unfolds fully. Besides alternation of periodic

and aperiodic states, we find other remarkable features in this region. A sequence

of row-activation is found at small values of f. This is similar to phenomena re-

portedly observed in discrete and continuous systems with randomness [16, 74], but

appears here in a contolled fashion in the absence of any randomness. Once the flux
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moves across the complete array, another transition takes place where the flux-lattice

becomes rigid and does not undergo any further internal relative displacements.



Chapter 2

Ladder array of Josephson

junctions

2.1 Background

We study first a ladder array of capacitive Josephson junctions at zero temperature,

in the classical limit (i.e. we neglect Coulomb charging effects). More specifically,

we consider the case of perpendicular current injection I in the presence of an ap-

plied magnetic field, or frustration, f. This is the simplest example of a device with

junctions in both its horizontal and vertical branches. In fact, the strong geometric

constraints (imposed by the existence of just one row in the y-direction), together

with the intrinsic quantum and electromagnetic constraints of the problem, make the

system analytically tractable. In spite of that, the general behavior of the system cap-

tures the complexity of the observations for fully two-dimensional arrays. Thus, the

detailed results of this chapter, analytical in many cases, will serve as building blocks

for the understanding of the general behavior in 2-D. The dynamical regimes in the

ladder correspond closely to those in two-dimensional arrays and provide a simple

physical interpretation. Moreover, techniques and observed solutions for the ladder

are the foundation of some quantitative understanding of the I-V characteristics of

the two-dimensional case.

The idea of studying basic units to extrapolate their behavior to the global array



has been exploited in different contexts [75, 60, 61] both to simplify the numerical

simulations and to obtain simpler and clearer physical pictures. Indeed, this is the

driving force behind recent theoretical and experimental studies of one-dimensional

parallel arrays [96, 94, 99] and inductively coupled arrays [20], and has been specif-

ically applied for a ladder and double ladder of overdamped junctions by Filatrella

and Wiesenfeld [24] to study the role of the magnetic field in the coupling between

rows. Also, Yu et al. studied the ac-dc response of ladders and single plaquettes

[103].

However, it has been the analysis of superconducting solutions and of ground states

which has centered most of the research on ladders. Static solutions of ladder arrays

of Josephson junctions were first studied in depth by Kardar [40] who established the

connection of this system and the Frenkel-Kontorova model with the discrete sine-

Gordon equation under certain approximations. He also pointed out the duality of

the system with the Coulomb gas, whose ground state for T = 0 and I = 0 presents a

complicated dependence (devil's staircase) on the frustration . In a later contribution,

he observed that these ladders possess a thermodynamic critical magnetic field fl (I)

below which the Meissner-like no-vortex solution is the ground state of the system-

a behavior which resembles that of Type-II superconductors [41]. He estimated the

value of the critical field for an isotropic ladder as

2V0
fcl(I= 0) - 2 _0.29

which increases as the current is increased. Benedict [5] confirmed the exclusion

of vortices below fcl by performing a numerical search of the ground states with

a gradient descent method. He also concluded that, in the absence of an external

current, the ground states for f > fcl contain vortices and obtained the ground

states for commensurate frustrations f = 1/2 and f = 1/3.

In the very last stages of the writing of this thesis, it was pointed to me by Prof. M.

Kardar that this physical picture has been recently substantiated through a statistical

mechanics transfer matrix method for I = 0 [13]. Among other results, Denniston



and Tang estimate the critical field fAl and give a schematic procedure to obtain the

critical current for the depinning of the vortex. This static method arrives at some

of our conclusions and expressions with a more complicated formulation arising from

a different approach to the problem. Moreover, the effect of the current is not taken

into account in a unified manner.

Under this renewed interest in ladder arrays, two other numerical studies dealing

with superconducting states of the ladder have also appeared recently. The first one,

by Mazo et al. [55], explores the complicated landscape of ground states for I = 0 as

the frustration is varied and introduces a Langevin term to estimate how they relax

to equilibrium when a small temperature is present. On the other hand, Hwang et

al. [34] are much closer to our own work. They present numerical I-V characteristics

from dynamical simulations of overdamped ladders in two distinct geometries: a ring

and an open-ended array with parallel current injection. They conclude that the ring

presents vortex exclusion for a field fAl± < fl1 and there is no such vortex exclusion

in the case of the open-ended array. In Section 2.3, we will show how to interpret

these results from a dynamical point of view.

The body of numerical and analytical work for the non-superconducting regimes

of the ladder is much smaller. For the ohmic regime we do not know of any analytical

study for underdamped ladders as the one we will undertake in this chapter. Our

work is an extension of the concepts presented in [96, 99] for one-dimensional parallel

arrays and includes new features, applicable to fully two-dimensional arrays, which

will be presented elsewhere [95].

The flux-flow regime, in which the dynamics is determined by the propagation

of "kinks", or vortices, has been the object of more attention in the literature. The

methods and results in this area are largely based on the theory developed for the

solitonic solutions of the conservative undriven continuum sine-Gordon equation in a

periodic domain [18]. It was shown that even in the presence of damping and driving

current, similar solitonic travelling kink solutions exist and can become attractors

[51, 11]. Moreover, evidence for switching phenomena has also been provided in the

continuum case [25]. More difficulties are found when travelling kinks in discrete



lattices are to be described (see [19] for a short review on solitonic-like solutions in

discrete systems and [76] for a novel quasi-sine-Gordon discrete system which supports

kink travelling waves).

From a more operational point of view, Peyrard and Kruskal [65] showed that

the preferred velocities of propagation of kinks for a discrete sine-Gordon system

correspond to resonances with the eigenfrequencies of the lattice and are quite in-

dependent of the actual shape of the kink. At those velocities the kink propagates

in a quasi-stationary manner with almost no loss of energy. The phase-locking of

the propagating vortex and the radiation in its wake to form a travelling-wave con-

figuration was exploited by Ustinov et al. [86] to predict a series of steps in the

low-voltage region (flux-flow) of the I-V characteristic of a one-dimensional parallel

array. Since this array can be modelled with the discrete sine-Gordon equation when

only self-inductances are considered, they obtained a formula for the resonant volt-

ages at which the velocity of propagation of the kink resonates with the characteristic

frequencies of the lattice. A more mathematically rigorous derivation of this idea was

carried out in [94, 99] and checked experimentally on a 1-D parallel array in the ring

geometry. Recently, in the "wake" of this work, Ryu et al. [71] have shown that, un-

der certain approximations, a continuum version of the ladder array can be reduced

to a sine-Gordon equation with an effective coupling parameter. Thus, they identify

the ladder array with a one-dimensional parallel array with an effective inductance

produced by the presence of the horizontal junctions.

We will emphasize in the rest of the chapter that, although this can be a good

approximation under certain constraints, it oversimplifies the problem since the pres-

ence of the horizontal junctions introduces true two-dimensional characteristics in the

system. This can explain the similarities between the dynamical regimes of the ladder

array and of two-dimensional systems, despite the singular constraints of the ladder

configuration.



2.2 Introduction: model and methods

We now give a general introduction to the features of the underdamped square ladder

array with perpendicular current injection. We first describe the physical basis of the

device, establish the mathematical formulation of the physical principles involved, and

deduce the model equations for the system. In the second subsection, we introduce

the I-V characteristics, which constitute the experimental and numerical tools used

to characterize the system. We conclude by summarizing the main properties and

regimes of the I-V curves. The description and characterization of this behavior

constitutes the focus of the rest of the chapter.

2.2.1 Physical description and model equations

As an analytically tractable quasi-two-dimensional system, we choose to study an

open ended N x 1 square ladder array with perpendicular current injection. The

experimental array consists of two rows of (N + 1) superconducting islands weakly

linked through Josephson junctions. There are leads on every island of the top and

bottom rows, which inject a uniform dc current to the top and uniformly extract

it from the bottom. In addition, an external magnetic field Bext may be applied

perpendicularly to the plane of the array. A cell of this simplest example of a two

dimensional square array is represented in Figure 2-1; the complete array, in Figure

2-3.

The mathematical formulation of the problem results from the quantum mechan-

ical description of Josephson junctions, and of several simplifications which we now

discuss.

Within the macroscopic quantum model approximation [63], the state of each

superconducting island is described by a macroscopic complex quantum mechanical

wavefunction T with its corresponding magnitude r and phase O. When the electronic

density over the array is constant, the magnitudes can be taken as constant so that

our problem is completely defined by the 2N + 1 node variables: {9tp, E)ot} with

j = 1,..., N + 1 (i.e. the phases of the islands except for one which is grounded).
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Figure 2-1: Equivalent representations with node (left) and branch (right) variables
of the jth cell in the array.

We will find more convenient to work with branch variables associated with the

Josephson junctions. Each branch, or junction, is described by a gauge invariant

phase difference ¢ which, for the junction between generic islands I and m, is given

by

01,m = 61 - Om - mA. dl (2.1)

where 4~ is the quantum of magnetic flux and A is the vector potential of the total

magnetic field B.

Our first simplification appears here. The total B is the sum of two contributions:

the externally applied Be,,t and the induced magnetic field Bind. The latter is pro-

duced by the circulating electric currents in the array and can be obtained from them

through the inductance matrix. In our calculations, we neglect these self-field effects.

In other words, we take the inductances, and Bind, to be zero. This approximation

reduces considerably the complexity of the system and we will keep it throughout

this thesis. More realistic calculations, in which self-inductances -or even the com-

plete inductance matrix - are considered, yield qualitatively similar regimes although

y

U I



present characteristics of their own [67, 66, 85]. However, the present system exhibits

the relevant dynamical behaviors with considerably lower computational cost and, in

addition, allows analytical treatment. Moreover, it is physically realizable in arrays

of aluminum junctions in which, as explained below, self-fields are negligible.

Since the externally applied magnetic field is constant and perpendicular to the

xy-plane in which the array is contained, the total B becomes then

B = Bext = -(D

where 4 is the flux of the applied magnetic field. In what follows, both the area of

the cell and its length are taken to be unity.

Next, we eliminate the ambiguity in the vector potential A by choosing the gauge

A = 4Iy X^

which obviously fulfils the definition V x A = B. Substituting this A in (2.1), we

obtain the gauge invariant phase differences for our array

=H = o tp t -2rf j= 1,..,Ni 3 j+1

= --- E j = 1 . . N + 1
S bot _ bot - 47rf j = 1, N
l 3 "j+l.

where we have defined the frustration f = /940 as a parametrization of the external

magnetic field in units of the quantum of magnetic flux.

The first physical constraint, the fluxoid quantization, appears by requiring that

the quantum mechanical phase E be not multivalued, i.e. after integrating around a

closed path, the phase must differ by a multiple of 27r

V. dl = 2rn ne Z.

Consequently, the counterclockwise closed path around cell j shown in Figure 2-1
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Figure 2-2: RSJ model

yields our first model equation

, + -X +1- € = 2r(ny- f). (2.2)

This description in terms of the branch gauge invariant phase difference is sug-

gested by the two fundamental quantum mechanical results for the dc single Josephson

junction:

1. The supercurrent that goes through the junction is related to ¢ through

Isc = Ic sin ¢ (2.3)

where Ic(T) is the material and temperature dependent critical current.

2. When driven with a dc current I < Ic, the junction remains superconducting

and I = Ic,. However, at I > Ic the maximum value for the supercurrent

is exceeded and part of the current has to flow through non superconducting

channels where a finite voltage appears. This voltage is given as well in terms

of q by
<o dbV-= dt (2.4)
2rn dt

This introduces our second simplification: the adoption of the standard Resis-

Itot



tively Shunted Junction (RSJ) model with constant resistance. Thus, we mimic the

junction's behavior with an equivalent circuit element consisting of three branches in

parallel (see Figure 2-2):

* a superconducting element with the Josephson constitutive law mentioned above

ISe = Ic sin q

* a resistive element R where the voltage aforementioned obeys an ohmic law

Ires = V/R

* a capacitive element C introduced to account for the capacitor-like geometry of

the Josephson junctions. For this branch, Icap = CdV/dt

Using equations (2.3) and (2.4), we conclude that the total current entering the

junction is
40 d C4o0 d2q

Itt = I sin + d +  d (2.5)
21rR dt+ 2ir dt2

Now renormalize time

do 2xrIc
Sd= 7=c • = p t  (2.6)

and redefine variables
tot CR 2Ic2r

I = P = , (2.7)

where / is the McCumber parameter, w, is the plasma frequency and I is normalized

to units of Ic.

Thus, we can recast (2.5) in the standard form

I = + + sin D( () + sin - AT (¢). (2.8)

This is the main result of the RSJ model: it strictly maps the behavior of a Josephson

junction onto that of a driven damped nonlinear pendulum with "torque" I and

damping F = 1/Vr/. For simplicity of notation we have defined linear (D) and

nonlinear (M) operators.



The remaining physical constraints appear due to the geometry of the array and

Kirchoff's law of current conservation. Firstly, conservation of current at two generic

nodes in the top and bottom rows implies, respectively,

.7-1j1+I = ±1+ 3Y (2.9)

-1+ = I + (2.10)

where we have used the notation and system of reference specified in Figures 2-1 and

2-3.

However, the presence of edges introduces boundary conditions

I = I1 + I V  (2.11)

Iv = I + I h  (2.12)

H (2.13)
IN + I = -V+l (2.13)

IX+ 1 + I~h = I, (2.14)

that is, the currents have to return from the ends. Thus, these equations together

with (2.9)-(2.10), require necessarily that the currents in top and bottom rows be

equal with opposite signs, i.e.

If = -IP, VJ. (2.15)

This particular constraint makes the N+ 1 equations (2.10) redundant, and effectively

reduces the problem's dimensionality by N + 1.

The above "returning current" restriction (2.15) has further implications. There

are different configurations of phases {$H, q4} which fulfill that condition. However,

only one of them, i.e. H = _h, has been observed in our dynamical simulations.

We justify now that this is indeed an attracting solution for the system. To that end,
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Figure 2-3: Diagram of the ladder array and notation for branch variables.

we perform a standard linear stability analysis on the system

1
F+ F +sin FcosG = 0 (2.16)

with

F= 2
2

G 2
2

which has been obtained from (2.15) and (2.8). Note that the equation is invariant

under the transformation F -- F + ir, G -+ G + 7r.

The linear stability analysis [78] of this second order system yields the following

fixed points and corresponding stabilities:

1. F* = 0 = - cos G* > 0 = tI < 7/2: Stable fixed point.
cosG* < 0 => kHI > 7r/2: Saddle point.

2. G* = r/2 =:> Of - jh = r : Line of neutrally stable fixed points.

where all the phases are defined OjH mod 2r. The same conclusion is obtained with

global techniques by studying the Lyapunov function

.F2 F
V(F, F) = - + cos G sin2

2 2

which has a minimum at F = F = 0 and constantly decreases along any trajectory

with rate = -F_2//. This does not preclude the existence of running solutions

X

II

I



for which F is not a constant.

In summary, we confirm that the condition (2.15) is operationally equivalent to

V = -j. (2.17)

This is a stable fixed point of the system when fH'I < 7r/2 and becomes a saddle for

larger values of the vertical phases.

This solution has been consistently observed in the simulations of the ladder array

represented in Figure 2-3. Therefore, the system of governing equations in this case

is constituted by (2.2), (2.8) and (2.9), together with the constraint introduced by

returning currents (2.17). We can write it compactly as:

f() = 0 fj ( ) = A'(¢H-1) - f) - M(0y) + I = 0 j = 1, ... , N + 1

f(- = _ Vj+ - 2zH _ 27r(nj - f)= 0 j= 1,...,N

(2.18)

where we have defined artificial phases at the ends of the array

0H = + = o

'N+2 = N+1 + 21rf

0V = y - 2-rf (2.19)

to account for the boundary conditions (2.11) and (2.13).

One third global simplification is the elimination of the temperature as a variable,

i.e. all our analyses and simulations are carried out at T = 0. Thus, our numerical

integration of the system of governing equations (2.18) is purely deterministic and

does not include a stochastic Langevin term. Likewise, we do not deal with the

analytical study of the dynamics of states close to equilibrium [55].

In summary, the ladder array is modelled as an open-ended, frustrated square

lattice of coupled damped nonlinear pendula under external drive. We concentrate

on the effect of the intrinsic coupling due to the geometric and physical constraints,



and do not consider self-field effects. As will be shown later, the system still presents

most of the interesting behavior and regimes of two dimensional N x M square arrays

despite the simplifications introduced in the model equations.



2.2.2 Experimental I-V characteristics and numerical sim-

ulations

The standard experimental tool to study the dc properties of a junction array is the

measurement of the I- V characteristics, i.e. the dependence of the dc voltage, both

time and spatially averaged, on the injected current I. The de voltage is measured

as the current is swept up from I = 0 to Imax > 1 (direct path), and back to

the origin (return path). Hysteretic effects, i.e. direct and return paths not equal,

are observed under certain conditions. The experimental parameters are of three

types: applied magnetic field, temperature, and physical characteristics of the array

(material, geometry, dimensions, number of junctions).

Experimentally, different values for the inductance and the McCumber parameter

/ are achieved by varying the temperature. The inductance is inversely proportional

to the perpendicular penetration depth

4>oA1 = (2.20)
2I~2clod

where d is the length of the junction and 0uo is the permeability of the vacuum.

Neglecting field effects, as we do, is equivalent to working in the limit A± --+ oo. From

their definitions (2.7) and (2.20) we observe that / and A1 are directly and inversely

proportional to I, respectively. And it is precisely the critical current that depends

on the temperature as given by the Ambegaokar-Baratoff formula [2]

Ic(T) = 0.86 - tanh2eR 2kBT

with A the material dependent quasiparticle gap and kB the Boltzmann constant.

Thus, as T is increased, Ic is decreased, and A1 (P) increases (decreases). Moreover,

from equations (2.7) and (2.20) we obtain

CR2

,tod



where the right hand side is a combination of geometric and material dependent

measurable constants. Hence, it is possible to fabricate devices which cover the desired

range of (P, A1 ) before we reach the critical temperature where the device ceases to

be superconducting. The two most usual types of junctions, Nb - Al 20 - Nb and

Al, correspond to two different ranges of parameters. For niobium junctions, with

R E [10, 200], 0 remains large as we increase T and only small A1 can be attained. On

the other hand, aluminum junctions have larger R E [800, 1300] and, consequently, /
can become small and A1 , large. As self-field effects are least important in aluminum

arrays, they provide the best realization of our idealized model: T -+ 0, AX -+ oo

over a range of p.

We have simulated I- V characteristics of our system by numerically integrating the

governing equations (2.18) for given /, f and number of junctions N [66]. Similarly to

the experiment, we sweep the current up from I = 0 to Imax and back, at very small

increments (typically AI < 0.01). At each point of the I-Vcurve, the system of 2N+1

second order coupled differential equations is integrated using an algorithm based on

an Adams scheme [66]. First, the system evolves from a given initial condition for a

time ttrns to eliminate transients. Then, the phases and derivative of the phases of

all the junctions over a time tar are calculated. From equations (2.4), (2.6) and (2.7),

the potential across junction j is

I R

and the measurable spatially and time averaged voltage < V > is

< V >= IcR , (2.21)

where (q) and q represent spatial and time averages respectively. Similarly, < I >=

(7) = I. Hence, the I-V characteristics, < V > /IcR vs. I graphs, can be easily

obtained from our simulations.

Let us briefly describe the typical I-V curve and the critical parameters which de-



N = 7, = 10, f=0

0.5 1

f=0.3

0.2 0.4
I

f=0.5

vitch

0.

0.

0.

0.

0.

0.

0.6

Direct path Return path
I < Idep Superconducting I > Iist Ohmic

Idep < I < Iswitch Flux flow inst > I > Idep Flux flow
Iswitch < I Ohmic Idep > I Superconducting

Figure 2-4: I-V characteristics of a 7 x 1 ladder with 3 = 10 and varying magnetic
field f and table of characteristic currents.

1

0.8

• 0.6

v 0.4

0.2

n

C

0.6

0.5

--"0.4

0.3
v

0.2

0.1
n

(c) . Ohmic ..
I.. . . . . .. . . ... . . . . . .. . . . . " :

S........................

.. . . . . .. . . . . . . . . . . .. . . . . . . . . . . ..
FFsc. ....... **s

C
----------------- _1_______________ ----

f=0.2

0

vc



fine it. As for the direct path up, the system begins and remains on a superconducting

solution with zero voltage until it reaches a critical depinning current Idep when it

jumps to a non superconducting solution. At high currents, I -+ 00, the behavior

is ohmic, i.e. the average voltage per junction depends linearly on the characteristic

resistance of the junction < V >= IR. However, the system does not always jump

directly from the superconducting to the ohmic branch. For a range of f, it goes

first to an intermediate flux flow regime and eventually switches to the ohmic branch

at a certain Iswitch. The flux flow regime is usually characterized as a pseudo-ohmic

(quasi-linear) branch where < V >- IRff with Rff < R roughly proportional to f,

in the limit of f small.

The return path follows the ohmic branch until it becomes unstable at linsti If

the junctions are overdamped (# -+ 0) the direct and return paths are the same,

i.e. Iinst = Iswitch. If # is sufficiently large, there is hysteretic behavior and linst <

Iswitch. When the ohmic branch goes unstable, the system has two options: if linst <

Idep, it directly jumps back to the superconducting branch; if linst > Idep, it first

goes to the flux flow regime and then, at I = Idep, to the original superconducting

solution. Representative behaviors are shown in Figures 2-4 and 2-5, where numerical

I-V characteristics for different sets of parameters {N, f, )} are presented, and in

Table 2.1, where some numerical critical currents for the ladder are listed.

These data exemplify the following features:

* Idp only depends on f, with almost no P or N dependence. As f is increased,

Idep, decreases. We will address the issue of depinning of the array in Section 2.3.

* The instability of the ohmic branch occurs at a value winst • Is 5tnVK• for the

frequency of refeq:pendulum. This value is independent of 8 and very weakly

dependent on f and N. The instability of the ohmic branch is the object of

Section 2.4.

* The flux flow region is only dynamically accessible for f > fff( 0). It is not

observable if f is too small, as in Figure 2-4 (a) and (b), or for large 3, as in

Figure 2-5 (c) and (d).



Table 2.1: Ladder arrays: Values of critical currents for varying N, /3, f

* Despite the standard description of the flux flow regime as being quasilinear,

there is, for the ladder, some visible substructure in this region, specially when

f is large, e.g. Figure 2-4 (d).

* In general, there is a very weak dependence of the I-V curves with N. The only

observable changes correspond to slight variations in Iist and the smearing of

the substructure and loss of small hysteretic steps in the flux flow region -

compare Figure 2-4 (d) and Figure 2-5 (b). The rest of the parameters are

virtually independent of the dimension of the array.

* A new step appears on the return path when f = 0 and 3 is moderately large,

as in Figure 2-4 (a). It corresponds to a new intermediate state, different to

flux-flow, which will be fully characterized in Section 2.4.

Our aim is the explanation of these observations using both numerical and an-

alytical methods. We will focus on reexamining the simplified interpretation which

the doubly averaged I-V characteristics provide, under a more complete dynamical

N /3 f 'dep 'switch 'inst

7 10 0 1.000 1.000 0.491
1/7 0.796 0.796 0.472
0.15 0.784 0.784 0.472
0.2 0.70 0.70 0.46
0.3 0.51 0.60 0.47

0.35 0.43 0.56 0.47
0.4 0.35 0.54 0.484
0.5 0.24 0.54 0.492

25 10 0 1.000 1.000 0.492
0.05 0.944 0.944 0.492
0.1 0.868 0.868 0.484
0.2 0.692 0.692 0.468

0.25 0.602 0.630 0.478
0.3 0.51 0.592 0.472

7 100 0.1 0.87 0.87 0.15
0.3 0.51 0.52 0.16
0.5 0.24 0.24 0.17
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description of the spatio-temporal solutions of the system. Our scheme is based on

three steps:

1. Study the numerical spatio-temporal solutions to the governing equations (2.18)

for the different regions of the I-V characteristics.

2. When possible, find analytical approximations to the numerical solutions and

check their validity.

3. Interpret the observables of the I-V curves in terms of the assumed solutions.

The following sections of this chapter are organized as follows: we first study the

superconducting solutions in connection with the question of depinning. Secondly,

we concentrate on the ohmic branch in the return path with emphasis on repinning

and zero field steps. The third regime, the flux-flow region, is not addressed in this

thesis. Some studies on the propagation of vortices in a ladder have appeared very

recently in the literature [71]. Their numerical findings are similar to our results (not

included here) concerning the existence of travelling wave solutions which include a

modulation superimposed on a kink-like function.



2.3 Superconducting solutions

A numerical and physical description of the three characteristic dynamic regimes

of the ladder array -superconducting, flux flow, whirling- was introduced in Sec-

tion 2.2.2. However, a closer mathematical characterization of those regimes needs

to be introduced. We begin here by considering the superconducting branch, which

corresponds to time independent solutions, or fixed points, of the system. The de-

pinning current, at which a finite dc voltage appears across the array, corresponds

to these superconducting solutions going unstable or ceasing to exist. We divide the

section in three parts. Firstly, we describe the superconducting solutions observed

in our numerical simulations and obtain approximate analytical solutions which take

into account the presence of open edges in the array. Secondly, we investigate the

depinning transition in ladder arrays through the analysis of the stability of the fixed

solutions. Finally, we discuss in the third subsection how the presence of vortices

in the array modifies those conclusions. In particular, we describe the solution with

one vortex, obtain an approximate solution, and find a dynamical criterion for the

depinning of the single vortex in the ladder and its expulsion from the ladder. In

all of this, we study how the observed behaviors depend on both the parametrized

magnetic field, or frustration f E [0, 1/2] and the number of junctions N.

2.3.1 Observed and approximate superconducting solutions

As the current is increased from zero, the ladder array remains superconducting until a

critical current Idep, the depinning current, is reached. For I > Idep, the system ceases

to be superconducting and a finite dc voltage < V > appears. Here we deal with the

superconducting spatio-temporal solutions which are observed when we numerically

calculate the I - V characteristics. Remember that these are always generated from

an initial condition with all phases and time derivatives of phases equal to zero at

I = 0. Specifically, we investigate the fixed points of the system, i.e. the solutions

with b = ý = 0 for all the junctions. From the governing equations (2.18) and the

definition (2.21) of the spatially and time averaged voltage < V >, it is clear that



any fixed point of the system is a solution with < V >= 0. Although it is possible in

principle that a non-static solution with strict symmetry constraints might have zero

< V >, the restrictions involved make it very unlikely. We have never observed such

a solution.

The superconducting solutions which appear in all our simulations (for varying /

and N) are always time independent fixed points, i.e. static solutions, of two kinds:

* Solution A: Given in Figure 2-6 (a) and (b). Appears for a wide range of values

of f and is characterized by a constant value of all the phases far from the edges.

We denote it as the no-vortex solution, as explained below.

* Solution B: See Figure 2-6 (c) and (d). For values of f close to 1/2, the observed

solution presents, far from the edges, an oscillatory pattern in space with wave-

length equal to two cell lengths. This is named the half-filled solution or fully

frustrated solution.

It is also noticeable from Figure 2-6 that the solutions change as the edges are

approached. In the following, we deduce analytical expressions for both solutions

(A and B) compatible with the governing equations and we include the effect of the

edges. We emphasize that these are not the only static solutions of the system but the

ones numerically observed in our simulations. In Section 2.3.3 below we will argue,

however, that solutions A and B are indeed the relevant ones to explain the depinning

behavior of the array.

For a time independent solution, the governing equations (2.18) are simplified to

give

I + sinH 1 = sin qH + sin , j = 1,..., N + 1 (2.22)

S- V+ - 2H = 2(nj - f),1,...,N (2.23)

where we have defined the artificial phases O0H = H+ = 0 and the vertical phases

are restricted H' < r/2 Vj. Moreover, the set of integers {nj} can be set to zero with

no loss of generality if the phases are considered as continuous variables. Only when
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of the no-vortex solution (Solution A), obtained when f is small. When f _ 0.5, the
half-filled solution(Solution B) is observed, as in (c) and (d). This fully frustrated
solution is characterized by an oscillatory pattern with wavelength of two cell lengths.
The dashed line is given as a guide to the eye.
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the phases are restricted to the interval [-7r, r), these numbers are associated with

the presence of topological vortices in the cells.

The external parameters in these equations are f, I and N. It is important to

realize that 3, the other parameter of our arrays, does not affect the existence of su-

perconducting solutions, as it is not present in the equations. Thus, the independence

of the depinning behavior on 3 observed in the simulated I - V curves discussed in

Section 2.2.2) is justified. We find now analytical solutions for this system with the

features of the two numerical solutions described above.

A. No-vortex solution

Let us begin by obtaining an expression for the no-vortex solution valid far away

from the edges and studying its linear stability. The features of solution A (Figure 2-6)

in the middle of the array can be summarized as

Vt Ov t Ht H , nj = nj+1t

Substituting these restrictions in the governing equations (2.22)-(2.23), we obtain the

analytical expression for this solution when the effect of the edges is neglected:

t  vt arcsin(I) t _ 7 t rf, Vj (2.24)
7 - arcsin(I)

where f E [0, r/2]. This solution does not exist if I > 1 and implies moreover that

nj = 0, Vj. This means there are no topological vortices in the array, which makes

clear why we called this the no-vortex superconducting solution. Note that the other

possible solution cHt = rf - 7r is unstable for the assumed solution =H = _h (see

Section 2.2.1, page 33).

We digress now briefly to introduce a general method to study the stability of

solutions for the governing equations (2.18), i.e. the general linear stability analysis

of a given basic solution for our ladder array. It is performed as follows: add a



small perturbation to a given basic solution; obtain the dynamic equations for the

perturbation from the linearized governing equations of the system; deduce from the

dynamics of the perturbation equations what the stability of the solution will be. The

results from this development will be used throughout the chapter.

Given an unspecified solution f4*, H*}, which fulfills the governing equations

(2.18),

f(V*, jH*) = 0,

consider a solution with small perturbations uj, vj

Firstly, from (2.19), the boundary conditions for the perturbations are

vo = VN+1 = O, U0 = U1, UN+2 = UN+1. (2.25)

Secondly, linearize the governing equations (2.18) around the given solution to

obtain the dynamical equations for the perturbations

(D +cosbH *) (vVl -v 3 ) = ( + cosqy*)uj

uj - uj+ = 2vj+1. (2.26)

Combine these two expressions to eliminate vj and obtain the dynamical equations

for the perturbation in the vertical junctions uj

V2 Uj) - COS OV2q) = 0 (2.27)

for j = 1,..., N + 1. Notice that the discrete Laplacian, V 2uj uj+1 - 2uj + uj-1,

represents a spatial diffusive coupling. A similar term was obtained in one dimensional

parallel arrays when inductances are considered [96]. Its appearance here, however,

is solely due to the intrinsic coupling that the governing equations introduce. The

vertical junctions are coupled through the existence of the horizontal ones, even when

~~I--YI~·-·"---·--P-~11~-1 'L-----"~----



inductances are neglected.

We proceed now to obtain the modal equations for the perturbations in momentum

space by introducing the following pair of Fourier transforms

i 0
S2

N mr
+ E ZUm cos (j -

m=1 N+1

2 N+1
Urm N+ u j cos

j=1
m7r

N+ (j

1/2)] -1/2)]
IN mx

m= EMO os 1N+1 U

-1/2)]

which satisfy the boundary conditions (2.25). Note the usual definition of 'N

where only the term uio is multiplied by 1/2. The use of Fourier series is appropriate

since the Laplacian term becomes uncoupled in momentum space

N

V 2uj = ZE Um
m=1

-4 sin2 2(N 1)2(N + 1)
Substituting the Fourier transforms in the spatial equations for the perturbations

(2.27), and making use of the orthogonality property

cos N1 (j - 1/2)] = 6(m - n),

we obtain our general result for the linearized modal equations of the perturbation

around a solution {qo"*, jH*} in a square ladder array:

• 1 - 1 ,N
Um + 'Um + ---a n=oin(hnm + Vnm) = 070= am (2.28)

with

am = 1 +2sin2 2 (j ")12(N + 1)
2 N+1

hnm N+1 (am - 1) cos H* Cos
j=1

rmT rcos N (j
1N+1

= NIE cos O *cos IN (j

2 N+1
2 _ o s

N+ 1
j=1

1/2)]

-1/2)]

- 1/2)] (2.29)Vnmr

m7rcos [ (j - 1/2)]N + 1

mrN(J -N+ 1

nx -

N+ (j -1/2)]N+1
mT1-cos [ (j -1/2)N +1



It is interesting to note from this derivation that the eigenfrequencies of open-ended

arrays correspond to the observable frequencies for rings with twice the number of

junctions [99].

These expressions become considerably simplified for certain solutions, e.g. when

the basic solution is uniform in space. If this is not the case, the stability analysis of

the modal equations (2.28) has to be carried out numerically, usually with Floquet

methods.

We return now to the study of the stability of the superconducting no-vortex so-

lution {yvt, Ht} using the general linear stability analysis we just developed. Sub-

stituting (2.24) in the general modal equation for the perturbation (2.28) we get

1 1 + 1 (am - 1) cosf + cos t m= m = 0,...,N (2.30)mm + } mOum + -m
O am

where am = 1 + 2 sin 2 2 1)

We begin the stability analysis of the dynamical equations of the perturbation

(2.30) by rewriting it as a system of first order differential equations:

Um Pm

PM 1Pm bmfm

with the definition

bm =1 (am - 1) cos xf + cos Ovt
am

The only fixed point corresponds to the null perturbation um = im = iin = 0, Vm.

The Jacobian matrix of the system Jm is obtained by linearizing around that fixed

point

0 1
S-bm -1/V-

Since its trace is always negative, the fixed points will be of one of two types: a

saddle point if the determinant IJmJ is negative; or a stable point (spiral or node) if



IJmI > 0, where the sign of the determinant is given by the sign of bin. IJmI is always

positive for qvt = arcsin(I), Vm, I ; i.e. this fixed point is a stable node or spiral

for all I < 1. On the other hand, when qVt = x - arcsin(I), IJol < 0, VI < 1.

Therefore, this is a saddle point for the m = 0 mode and the total perturbation is no

longer linearly stable. In summary, when the effect of the open ends is not taken into

account, the only stable no-vortex superconducting solution far from the edges is

qvt = arcsin I, qHt = 7wrf, (2.31)

where I < 1 and all the angles are restricted to the first quadrant. It becomes unstable

at I = 1 through a saddle-node bifurcation in strict analogy to the single junction.

It is clear from Figure 2-6 (a) and (b) that this is indeed a very good approximation

to Solution A in the center of the array. However, as we approach the edges, the

approximation becomes increasingly worse. To take into account the effect of the

ends, consider a solution

cyt= vt + Aj, 0Ht =_ Ht - Bj (2.32)

where {Aj, By} are corrections due to the edges. For this solution to obey the gov-

erning equations (2.22)- (2.23), the corrections have to fulfill

A, - Aj+1 + 2By = 0 (2.33)

I + sin(irf - Bj- 1) = sin(wrf - Bj) + sin(arcsin(I) + Aj) (2.34)

Far from the edges the corrections are seen to be small. Thus, we linearize the last

equation and eliminate Bj and Bj_1 in the resulting system to obtain a second order

difference equation for Aj

Aj+1 - 2aAj + Aj- 1 = 0 (2.35)



with

a = 1 + (2.36)
cos rf

and
A- A

Bj = A+ - A (2.37)

The general solution for the difference equation is

Aj = Pr j - (N+1) + Qr'- j  (2.38)

where

r = a + V 2 - (2.39)

In conclusion, the correction from the edges can be approximated by a perturbation

which decays exponentially from both ends with a characteristic length

A = 1/lnr

dependent on I and f as given in (2.36) and (2.39). A(I, f) is a measure of how small

perturbations decay inside of an array with the no-vortex superconducting solution.

The last step in our calculation of the edge-corrected solution is the determination

of the constants P, Q of equation (2.38) from the boundary conditions

I = sin(irf - B1) + sin(arcsin I + A) (2.40)
I + sin(rf - BN) = sin(arcsin I + AN+1),

which are obtained from current conservation at nodes 1 and N + 1 respectively. Since

the value of the corrections {Aj, Bj} becomes larger close to the edges, we improve

our numerical solution by solving the boundary equations (2.40) numerically without

linearization. Hence, we substitute (2.37) and (2.38) in (2.40) to obtain a system of

two nonlinear algebraic equations for the two unknowns P, Q. We can further simplify

the solution when we consider the approximation A < N + 1. In this case, the effect
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from one end is negligible on the other extreme and the equations become uncoupled

I + sin f - - 1 - = sin(arcsin I + P) (2.41)

I = sin Irf + (1 - + sin(arcsin I + Q). (2.42)

In that case, P and Q can be obtained independently by solving the corresponding

transcendental equation from each boundary condition.

In Figure 2-7 we compare the calculated and observed solutions and find very good

agreement. The approximation accounts well for the effect of the open ends both for

long (N = 25) and short (N = 7) arrays. The prediction that the decay of the

perturbation from the edges can be parametrized by the characteristic length A(I, f)

is also checked satisfactorily in Figure 2-8. Moreover, the corrections A3 and Bj

grow as both the field and the current are increased. In addition, our approximation

captures other features of the solution like the spatial asymmetry of the correction

produced by the presence of a non-zero current I, as readily seen in Figure 2-7 by

comparing the rightmost and leftmost phases in those examples. It is also observable

from the figure that the largest absolute value of the phase is attained as we approach

the right end of the ladder. This suggests that it will be the junctions from the right

edge which will become unstable first, jumping to a non-static, non-superconducting

solution. Thus, when the static solutions cease to be stable, the "natural" direction

for the vortices to displace in the array will be from right to left. This is expected from

elementary electromagnetism, since the existence of a current produces a force on the

vortex, and, thus, introduces a preferred direction for the propagation of vortices in

the array.

Similarly, the expected symmetry of the solution under changes of f is easily

checked. The governing equations (2.18) are obviously periodic in f, that is, they

are invariant under the change f -+ 1 + f. Moreover, the observables of the system,

like the I - V characteristics, do not change when the transformation f -+ 1 - f

is performed. Thus, the restriction in the study of f to the interval f E [0, 1/2] is

justified. It is interesting to note, through a calculation not shown here, that the
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Figure 2-8: Exponential decay of the correction from the edges with varying: (a)
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from equations (2.36) and (2.39).

approximate no-vortex superconducting solutions for 1 - f, {'v, 1Hddagger }, and for

f, {f y, gHddagger }, are related by the transformation

(Pj = (N+2)-j (H H (N+1)-j - 2rf

In physical terms: the phase of the vertical junctions for 1 - f are a specular

reflection, with respect to the center of the array, of the vertical phases for the case

with frustration f. This implies that the depinning current will indeed be the same,

but the direction of propagation of the vortices will be the opposite: they enter the

array from the left and propagate to the right, as can be checked numerically.

We conclude by evaluating the validity of the obtained approximate no-vortex

solution. Since the value of the correction becomes larger as f and I are increased, the

approximation becomes worse in the limits f -+ 1/2, I -+ 1, as shown in Figure 2-9. In

fact, f = 1/2 is a singular limit for the approximation. Therefore, the approximation

is best when f and I are small. This establishes some limits on the applicability of

this approximate solution to predict the depinning current, as will be investigated in

Section 2.3.2.
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Figure 2-9: Variation of the error of the solution with (a) f and (b) I. As f and I are
increased, both the effect of the edges and the error of the approximation get larger.

B. Half-filled solution

The other relevant superconducting solution, the half-filled solution B, appears in

our simulations when f -4 1/2, as shown in Figure 2-6 (c) and (d). Following the same

scheme as for the no-vortex solution, we begin by obtaining an approximation with

the desired characteristics for the junctions far from the edges. The most prominent

feature of the observed solution in the middle of the array is its oscillation in space

with wavelength equal to two cells. Thus, we assume a superconducting solution for

the governing equations of the form

{ 2vt = 2x[a + (-1)jb] (2.43)
it = 27r[c + (-1)jd]

where a, b, c, d are constants to be determined from the equations.

Substitution of the assumed solution in (2.23) yields two equations for the un-

knowns c and d

c = f/2 - 1/4 (2.44)

d = b - 1/4. (2.45)
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To obtain this solution, it is necessary to assume an alternating sequence of zeros and

ones for the set of integers {nj } in the equations from the fluxoid quantization (2.23)

AY- - 2 = 2(nj - f), j=1,...,N.

This assumption is grounded on the numerics and has the following physical inter-

pretation: A vortex exists in cell j when, after restricting all phases to the interval

[-7r, 7r), nj = 1 in this equation. On the other hand, when nj=O, there is no vortex

in the cell. Thus, an alternating sequence nj = [1 + (-1)j]/2 corresponds to solutions

with a topological vortex in every other cell, hence the notation superconducting half-

filled solution employed here. In expression (2.45), the plus sign corresponds to the

solution with {nodd = 1, neven = 0}, and the minus sign to {nodd = 0, neven = 1}.

Although these two solutions are degenerate for an infinitely long array, or when pe-

riodic boundary conditions are imposed, this is not always the case when the array

is open and finite. Note, for example, that if the number of cells is odd, the array

contains one vortex more for the first solution than for the second.

The solution for the no-edge approximation is completed by obtaining the relations

for a and b in (2.43). Using the spatial periodicity of the numerically observed solution

to substitute Hj+2 = in equation (2.22), we obtain

v t v t 21sin O+ + sin j+2 = 2I

sinj+ - sin j+2  = in - 2sin $ 1 +sin j+2

which, together with the expressions for c and d, give the last two equations for the

unknowns

sin 27ra cos 27rb = I

sin 27rb cos 27ra - 2 sin 7rf cos 27rb = 0.

From these we can solve explicitly for a and b in terms of the parameters of the



problem f and I

a = arcsin L2 (2.46)

b = arccos (2.47)

where

L = L(I,f) = (1 + I2) ± V(1 - I2)2 - 2sin2 rf.

Moreover, this last equation defines an existence criterion for this particular solution,

given by the positiveness of the expression inside the square root. Hence, the half-

filled solution does not exist if

I > Ih = /4 sin2 frf + 1 - 2 sinirf. (2.48)

This criterion of existence will be meaningful when we investigate the depinning

transition in Section 2.3.2.

This concludes the analytical approximation for the half-filled solution far from

the edges or, in other words, when the array is infinite or edge effects are neglected.

In Figure 2-10, this no-edge, half-filled approximate solution is shown and compared

with the full numerical solutions with very good agreement except for the region near

the ends.

It is worth pausing at this point and checking the consistency of our result with

those available in the literature. Most of the previous studies on ladder arrays have

focused on the case where a magnetic field is present but there is no external driving

current, i.e. f > 0, I = 0. The main interest therein lies in the characterization of

the ground state, the complicated landscape of solutions at zero temperature, and of

the low-lying excitations around T = 0 [5, 40, 41, 55]. A check for our solution (2.43)

is provided in [5] where the ground state for f = 1/2 is calculated for I = 0. It is

immediate to verify that the particularization of (2.43)-(2.47) for I = 0 yields the
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same solution obtained there:

(vt _ (-1)7 arctan(2), 1Ht = (_l)j+l arctan(1/2).

There is another possible configuration

ivt 2 [1 + (-1)j] , H't = 0

which is unstable and is not the ground state of the system. Similarly, we observe

that our half-filled approximate solution exists for all fields when I = 0, i.e. there is

no critical field at which it ceases to exist.

Going back to our development, we analyze now the corrections that the edges

introduce in the solution. Following a similar scheme to the one developed for the no-

vortex solution above, we represent the effect of the edges as corrections superimposed

on the no-edge half-filled solution {lYj, v Ht }:

$ 2 vt D 1, . . ., ceil(N/2),
2i 2i + D 2 2i

(2.49)

with an added Ov+11 when N is even and with ,H I = 0 when N is odd. Note that

we use a double cell to simplify our calculations as suggested by the spatial periodicity

of the solution.

When far away from the ends, the corrections are small. Thus, linearizing the

governing equations (2.22)- (2.23) around the basic solution (2.43) we obtain:

Ci-Di+2E = 0 (2.50)

Di - Ci+ + 2Fi = 0 (2.51)

-E cos odH t -Fi cos eHn + D cos even (2.52)

-Fi cos ~O -t = -Ei+l cos H t + C+l COSdd V t (2.53)evnodd o il~u ydd



By eliminating Ei and Fi we get: first an expression for Di,

Di (2 cos e t cos + COS en = C dd Cil cos en ,
Leven +COS odd even, = C odd + C even (2.54)

and finally a second order difference equation for Ci,

Ci+2 + 2-CyQ+1 + Ci = 0, (2.55)

where

sin2 rf + cos 2-xf Cos 2 21b - 2 [(sin 2 If - sin 2 2xa) sin 2 27b + cos 2 27a]
f i s + 2 (2.56)sin2 wf - Cos 2 2rb

This difference equation has a general solution

(2.57)Ci = Pr i + Qr - .

r= -7 + y1

with

(2.58)

which characterizes the penetration depth for the perturbation to die off from the

edges. P and Q have to be calculated numerically using the boundary conditions

from nodes 1 and N + 1. Similarly, from (2.54), the spatial dependence of Di will be

Di = Rr + Sr - . (2.59)

Note that in both equations, i is the number of the double cell.

In Figure 2-11 we check the accuracy of this expression by comparing the cal-

culated penetration depth with data from numerical simulations. To this end, we

represent the deviation of the numerical solutions from the no-edge solution Oyt

Cq m= v 1 2 1 D, um = vt
2i-1 -- 2i-1 ' " 2i - Y)2i
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versus the number of the double cell. We expect from (2.57)-(2.59) an exponential

dependence close to the edges characterized by a characteristic length A = 1/ In r.

This is verified in the figure where the exponential dependence is indeed observed,

and the numerical values for r are seen to agree well with the prediction (2.58). We

also observe that the characteristic penetration depth for this solution is never large.

Therefore, the effect of the edges on the properties of the half-filled solution is not

critical and we will be able to effectively neglect them.

In summary, we have studied and introduced analytical approximations to the two

superconducting solutions of the ladder array which appear in our numerical simula-

tions when beginning from a wide spectrum of random initial conditions. Although

these are not the only solutions for the system, they exemplify the two extreme cases

of the no-vortex and half-filled array solutions. Moreover, we have introduced a gen-

eral method to take into account the effect of the edges for a given solution. The

effect that these corrections have on observables of the system will be explored in the

following sections.
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2.3.2 Instability of the superconducting solutions and de-

pinning

In this section, we concentrate on the depinning transition of the ladder array from

a dynamical point of view. As we increase the driving current I at zero temperature,

a critical current is reached for which a measurable average voltage appears. This

is the depinning current Idep for which the array ceases to be superconducting. Our

main aim is to connect Idep with the stability of the superconducting solutions of the

array calculated in the previous section. We emphasize the difference between this

global depinning of the array, also denoted critical current in the literature, and the

depinning of the single vortex which we also study in Section 2.3.3.

In page 46, we developed a general linear stability analysis for any given solution

of the system. In the preceding section, we used it to study the stability of the

no-vortex solution without edges and concluded that it becomes unstable at I = 1

through a saddle-node bifurcation (Section 2.3.1, page 49). However, the inclusion of

the edges introduces an exponential spatial dependence (ri j ) in the solutions which

does not uncouple when performing the Fourier Transform to momentum space. Thus,

the analysis of the modal equations (2.28) would have to be done numerically with

Floquet methods.

We choose instead to study the stability of the system directly from the system

of governing equations (2.22)-(2.23) by analyzing its Jacobian matrix. For any fixed

point, the Jacobian matrix contains the information about its linear stability. In

particular, for a system with M variables and equations, the M eigenvectors and

eigenvalues of the Jacobian matrix constitute the set of characteristic directions and

exponents which measure the linear growth of a small perturbation in the system.

Thus, when all the eigenvalues of the Jacobian are negative, the system is stable in

all eigendirections under the addition of a small perturbation. When one eigenvalue

is positive, the system is unstable in that direction and the perturbation will grow

exponentially. When we go from a situation where all eigenvalues are negative (sta-

ble point) to one in which one or more become positive (saddle point), the system



undergoes a bifurcation in its M dimensional phase space. We begin by identifying

that the depinning transition corresponds to another saddle-node bifurcation, as for

the case where edges were not considered.

In the following, we look for specific static solutions of the system: those whose Ja-

cobian is zero. From the implicit function theorem [39] it can be shown that those are

the points where zero-eigenvalue bifurcations (transcritical, pitchfork, saddle-node)

occur [78]. This constraint on the Jacobian adds one extra equation and one extra

variable to the original system, as discussed below.

The original system of 2N + 1 variables

X = (X17...X2N+1) _= N17 ... H iHN

and 2N + 1 equations for the superconducting branch (2.22)-(2.23) can be written as

Fi() = I + sin _ - sin sin = 0, i = 1,..., N + 1
(2.60)

FN+l+i(g) = sin [Y - 0 -_ + 27r f] - sin H = 0, i = 1,..., N

where we have used the constraint of the current returning at the edges, If = -I ,

and the definitions, H = = = 0. Until now, we have dealt with the problem of

obtaining and analyzing solutions to this system

F(Y) =0

for a given pair of parameters {f, I}. Our aim now shifts towards finding, for a given

f, the current I*(f) at which the Jacobian of certain solutions is zero.

The Jacobian matrix of the system, given by

SFi
Ji,j - ax

r_ _I______I___IIII1_I__111111.



is, in this case,

Jl,1 = - COS 1, J1,N+2 = - COS XN+2

J = - cos j

j = 2,...,N Jj,N+l+j = -COS XN++j

Jj,N+j = COS XN+j

JN+1,N+1 = - COS XN+1, JN+1,2N+1 = COS X2N+1

JN+1+j,N+l+j = - cos(x3 - Xj+l - XN+I+j + 2irf) - COS(ZN+±+j)

j = 1,..., N = cos(j - Xj+l - XN+I+j + 27rf)

JN+l+j,j+1 = - cos(xj - Xj+l - XN+1+j + 27rf)

with the rest of the elements equal to zero.

Consequently, we define an augmented algebraic system

where we have added one variable -the current I- and one equation - the determinant

of the Jacobian matrix equals zero- to (2.60):

Xj = xj, jT = Fj = 0, j = 1,..., 2N+ 1 (2.61)
X2N+2 = I, Y2N+2 = I(,j = 0.

We solve this system to obtain configurations of phases (solutions of the system), and

the current I* at which the bifurcation condition is met:

F(P, I*) = 0. (2.62)

There are, of course, multiple solutions for this algebraic system of equations. How-

ever, for each family of superconducting solutions, e.g. the set of no-vortex configu-

rations, only one of them, Y* with a certain current I* has a null Jacobian.

We verify in Figure 2-12 that the configurations and critical currents so obtained

for varying f are indeed equivalent to the solutions at depinning from dynamical
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simulations -in which the current is swept up from zero. Moreover, the no-vortex

configuration appears naturally for small f, while for f - 1/2 the half-filled is easily

obtained from the solution of the augmented system. Energy arguments would have

to be invoked to determine which of the possible solutions is the most stable for a

given f. However, we are able to state that the depinning instability corresponds

to the point where the Jacobian of the system is zero, and thus to a saddle-node

bifurcation:

Idep =P. (2.63)

When f is not close to 1/2, the no-vortex superconducting solution is the most stable

and, thus, relevant for the depinning transition. At f -+ 1/2, it is the half-filled

solution ceasing to exist which causes the depinning. This constitutes a rigorous

criterion for the depinning current. We emphasize that, by identifying this transition,

we are able to predict numerically the depinning current -and the configuration

of phases at depinning- for a given f, without "replicating" the experiment by

performing a dynamical simulation.

Analytical approximations for Idp,

We proceed now towards a more simplified calculation for the depinning current

Idep(f). As we stated above, both solutions (the no-vortex and the half-filled) have to

be studied to explain the depinning behavior in different intervals of the frustration

f.
At high field f -+ 1/2, the half-filled is the relevant solution for the system. Thus,

depinning occurs when this solution ceases to exist. We already obtained an analytical

criterion (2.48) for the existence of the half-filled solution, which gives the depinning

current as

Idep(f e 1/2) = Ihf(f).

Although obtained without taking the boundaries into account, this expression is still

a good approximation for the general case since edge effects are not important for the

half-filled solution, as seen in Section 2.3.1. This is confirmed by the almost exact



agreement between the numerical If depicted in Figure 2-12 and the analytical Ihf

from (2.48) as shown in Figure 2-13. And we check that Ihf(f = 1/2) = V- 2 =

0.236 is indeed very close to the observed Idep(f = 1/2) = 0.238.

On the other hand, at small f we must investigate the no-vortex solution. Nothing

similar to Ihf esists in this case, since the approximate no-vortex solution (2.32)-(2.38)

exists for all I < 1, which is not the observed depinning current in th presence of

magnetic field. Nevertheless, we attempt two simplifications: firstly, we obtain an

augmented system, -equivalent to the one obtained for the full system (2.62)- for

the approximate no-vortex solution, i.e. a simplified augmented system; secondly, we

propose another mathematical condition based on a physically plausible criterion.

The augmented system (2.62) can be reduced using the simplified description

provided by our approximation. Note that, for a given f, only three variables {P, Q, I}

-r is a function of I- suffice to describe the approximate solution (2.32), instead of the

2N + 1 phases for the full solution. Thus, the simplified augmented system would be

given by the equations (2.41)-(2.42) together with the condition that the determinant

of the 2 x 2 Jacobian matrix be zero. This system can be further simplified since the

equations are uncoupled and the only physically meaningful solution occurs when the

eigenvalue from equation (2.41) becomes positive. Then, the augmented system from

the approximate equation can be reduced to:

SI + sin irf - 1 - - sin(arcsin I + P) = 0 (2.64)

P r 1cos (rf - - 1- - - cos(arcsin I + P) = 0 (2.65)
OP 2r 2 JrJ

where r = r(f, I) is given by (2.39). This 2 x 2 system is solved numerically to obtain

the approximate depinning current Ired(f), such that

ft (Pred, Ired) = 0 (2.66)

which is the analogous expression to (2.62) for the reduced system from the approxi-

mate solution. The results of Ired(f) are presented in Figure 2-13 with good overall
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Figure 2-13: Analytical approximations for the depinning current. Circles represent
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agreement. The predicted values get worse when f nears 1/2, as expected from the

fact that the approximate solution is less accurate in that limit -see Section 2.3.1.

We finish this section by proposing an alternative physical heuristic criterion which

provides some insight on the mechanism of the depinning in the array in connection

with the well understood depinning of the single junction. For a given I, the sin-

gle junction has a superconducting solution ¢ = arcsin I which ceases to exist at

I,j = 1 =4 O,j = 7r/2 through a saddle-node bifurcation [78]. This is the solution

for each of the junctions far from the edges in the no-vortex solution for the ladder

(2.31); and that is precisely the stability criterion we found for that solution in Sec-

tion 2.3.1, page 49. Although this is a very good approximation for the phases far

from the boundaries, as we approach the ends, the correction Aj grows exponentially.

Therefore, the maximum phase is that of the N + 1 vertical junction. We intuitively

propose that the depinning of the complete array occurs when this end junction goes

unstable, i.e.

Ov+ = r/2 = arcsin he,, + P(Iheur) = 7r/2, (2.67)



This last expression is directly obtained from (2.38). Hence, equations (2.67) and

(2.40) yield an implicit transcendental equation for Iher (f):

r-1
arcsin(1 - Iher) + r arccos Iheur = irf (2.68)

with r = r(Iheur) given by equations (2.39) and (2.36). The numerical solution of

this equation for different values of f is also presented in Figure 2-13 and shows

surprisingly good agreement with the exact results.



2.3.3 Other superconducting solutions with vortices

The analysis of the depinning transition developed in the preceding section is based

on the particular solutions numerically observed in our dynamical simulations, which

are always performed at zero temperature. In those, we used the initial condition that

all phases and their derivatives are zero at I = 0. We have also checked numerically

that the same results are unchanged when beginning from a random initial condition.

This seems to support the idea that the observed solutions are indeed stable and have

a large basin of attraction. However, a more methodical search would be needed to

assert the generality of the observations, regarding the use of very special commensu-

rate configurations as initial conditions in the simulations. In this section we follow

this line of thought and investigate how our description of the depinning of the array

changes when configurations which contain vortices are used as initial conditions in

the dynamical simulations. We first summarize the observed numerical behavior and

then go on to obtain some analytical results.

Numerical simulations with vortices

The question arises of what the behavior would be if the initial condition were another

of the numerous static solutions of the system, specifically when vortices are present

in the array. To address this issue we perform a series of simulations where solutions

with vortices are taken as starting points for the simulations. In all of them, for

a given {I, f}, we begin with an initial condition which includes a number of 21r-

"jumps" in the vertical junctions and we observe its dynamical evolution under the

governing equations of the system.

Let us begin with the relevant case in which one jump of 27 is introduced in the

middle cell of the array

/(t = 0) = 0, (t = 0) = 2 ceil 1, N + 1
(2.69)

where O(x) is the Heaviside step function. This initial condition, not a solution of

the system, is allowed to evolve under the dynamical equations (2.18), until it relaxes



into a solution for our ladder. In most cases, it generates a static configuration with

a topological vortex in cell a of the array such that na = 1 and nj = 0, Vj 0 a,

once all the phases have been reduced to the interval [-w, ir). This is the one-vortex

superconducting solution. The behavior observed in the simulations with varying f

and I is as follows:

* There is a minimum field f, below which the one-vortex solution is not at-

tainable from this initial condition and the system evolves to the no-vortex

superconducting solution discussed in Section 2.3.1.

* When f > fc and I is small, the system relaxes into the one-vortex solution with

a vortex in the middle of the array, a = ceil(-N+). As the current is increased,

this remains unchanged as long as I < ILAT(f), at which point the vortex moves

from the center cell to the left. Our notation is in analogy to the well known

Lobb-Abraham-Tinkham critical current for two-dimensional junction arrays.

Using static methods, they numerically calculated the critical current for which

a vortex depins in the sinusoidal potential of an infinitely extended array [50].

This is equivalent to our ILAT calculated from dynamical simulations when the

vortex is placed far away from the edges in a long array.

* Only for a current I . ILAT does the vortex become pinned again between the

center and the ends. Unless the sweeping of the current is done very slowly

around ILAT, the vortex moves all the way to the left edge as soon as I > ILAT-

* There is a second critical current Iedge at which the vortex, located now at

the left end, is expelled from the array. At that point the no-vortex solution

is recovered again, and it remains stable until Idep is reached, as discussed in

Section 2.3.2.

This is summarized in Figure 2-14 where several snapshots of the system are repre-

sented at different values of I and f.

A simple picture serves us to interpret the snapshots depicted in Figure 2-14 in

more physical terms. When a current I is injected in the array, the vortex located in
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the center of the array is subjected to an electromagnetic Lorentz-like force -a Magnus

force in more precise fluid mechanical formulation- in the -X direction. However, the

motion of the vortex does not occur in free space but across the array of Josephson

junctions. It can be shown that this motion can be mapped onto the damped motion

of a particle in a sinusoidal potential, where the maxima of the potential correspond

to the vertical junctions and the minima are located in the middle of the cells [93].

Thus, an initial barrier has to be overcome to begin the motion, which explains

the existence of the critical current ILAT . This picture is at the heart of the static

calculation of Lobb-Abraham-Tinkham [50]. Intuitively, the presence of the edges

introduces an envelope, which decays exponentially from the edges, on the sinusoidal

potential. Thus, the vortex can move from the center of the array, where the barrier

between cells is smaller, and get trapped in deeper "wells" closer to the edges. In

addition, as we saw in Section 2.3.1, the effect of the edges dies off quickly as we

go into the array, which explains that the vortex moves almost immediately all the

way to the boundary and remains there where the edge barrier is larger. When the

critical current ledge is reached, the vortex is expelled from the array and the no-vortex

configuration is recovered, i.e. no new vortex enters the ladder.

The same physical picture emerges when we use a multivortex initial condition.

In that case, Nf 27r-"jumps" are placed in the array and let evolve. For I = 0,

the initial condition relaxes into a solution with Nf vortices in the array. As the

current is increased, they begin to move towards the left end where they accumulate

until they are expelled one by one at different currents. After the expulsion of the

vortices, we recover once again the no-vortex solution. In other words, no train of

vortices continues to propagate along the ladder; the depinning of the vortex, or

series of vortices, is not the same as the depinning of the whole array when edges

are present. This behavior is depicted in Figure 2-15 for f = 0.2 and N = 25, and,

consequently, five vortices are introduced in the array. This sequence becomes fuzzier

when the current is increased very suddenly or when many vortices are present in the

array. This is expected since in those cases the interaction between vortices plays an

important role.
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In summary, the numerical observations validate the assumption that even if initial

conditions which include vortices in the array are used, the no-vortex and half-filled

solutions are the relevant ones when the depinning transition is studied. The physical

picture deduced from the simulations implies that, as the current is increased, the

vortices are expelled from the array and, eventually, those limiting solutions are re-

covered. In describing the expulsion of the vortices from the array, we have focussed

mainly on the case where one vortex is present in the array. There we identified two

critical currents: one, ILAT, at which the dynamical depinning of the single vortex

occurs; the other, ledge, at which the vortex is expelled from the edge. In the remain-

der of this section, we concentrate on giving an analytical approximation to the one

vortex solution and describe this behavior.

Analytical approximation to the one-vortex solution

We obtain now an analytical approximation to the one-vortex solution using similar

techniques to the ones developed in Section 2.3.1. There, we calculated the effect

of the edges as corrections to basic solutions. Here, we do the same to include the

effect of the presence of a vortex located in cell a of the array. It is readily observable

from Figure 2-14 (a) that the solution far from the edges and from cell a, is still

the no-vortex superconducting solution, if all the phases are reduced to the interval

[-7r, r). Hence, assume a solution of the system (2.22)-(2.23) of the form:

{ = Vt +Aj, j= 1,...,N+1 (2.70)

H OHt-B , j = 1,...,N

where

Ovt = arcsin I, Ht =

and Aj, Bj are corrections which result both from the presence of the edges and of

the vortex in the array, i.e. n, = 1. Far from the ends and from the vortex center,

the corrections are small and, hence, the equations can be linearized to yield the

same result previously given in equations (2.36)-(2.39). Following the exact same



procedure spelled in Section 2.3.1, we obtain the following approximate solution for

the configuration with one vortex in cell a:

SPrj-a + Qr1-j  j a (2.71)
As = (2.71)

P'rj- (N + 1) + QIra+l - j , j> a

A,+1 - A,
B3 2 ' J a (2.72)

and

r = a -+ 1, a = 1 + (2.73)
cos rf

as given by (2.39) and (2.36).

This solution, depicted in Figure 2-16, has two distinct regions, j 5 a and j Ž> a+1.

Inside each of them, the solution is the no-vortex superconducting solution in the

presence of edges. The presence of the vortex in cell a, effectively introduces two new

"edges", at a and a + 1, which produce exponentially decaying corrections. However,

the conditions at those two points are closely connected by the fact that a topological

vortex is present at cell a rendering the following fluxoid quantization equation

Aa - Aa+1 + 2Ba 27r, (2.74)

which is the matching condition for the two regions of the solution.

There are five unknown constants P, Q, P', Q', Ba in our solution. First, we elim-

inate Ba by using the fluxoid quantization condition at cell a (2.74) to obtain

Plra-N + Q, _ p _ Qrl-a
Ba = + 2(2.75)

The other four constants can be determined from the boundary conditions

I= sin rf r-1 (Prl-(a-1) - Q)) + sin(arcsin I + Pr1- + Q) (2.76)

I+sin f - r1 (P - Qrl-(a-1))
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P'ra-N + Q' - P - Qrl-a (2.77)
sin(arcsin I + P + Qr ) - sin f - 2

( P'ra-N + Q' - P- Qr T1-a

sin(arcsin I + Q' + P'ra-N) +sin f r - 1 (P'r(a+l)N _ Q)) (2.78)

I + sin f - r1 (P' - r(a+1)N)) = sin(arcsin I + P' + Q'r - N ) (2.79)

which correspond to current conservation (2.22) at nodes 1, a, a +1 and N + 1 respec-

tively.

We solve numerically the above system for P, Q, P', Q' to complete the approx-

imation for the superconducting configuration with one vortex at cell a for given

current I and magnetic field f. We compare in Figure 2-16 this approximation with

the solutions observed numerically when letting the system dynamically relax from

an initial condition given by a 271 step function at cell a. The agreement is excellent,

specially for small f. The exponential decay both from the edges and from a, a + 1 is

explicitly depicted for different values of f and I in Figure 2-17, where the predicted

value of the characteristic penetration length is also checked.

Instability of the one-vortex solutions

We turn now our attention to the instability of this solution. We argued at the be-

ginning of this section that the electromagnetic force applied on the vortex is linearly

dependent on I. When the critical current ILAT is reached, the force is large enough

to produce the motion of the vortex in the sinusoidal potential which characterizes

the junction array. In the absence of edges, this corresponds exactly to the current

calculated by Lobb, Abraham & Tinkham [50] for two-dimensional arrays. We discuss

now that this critical current corresponds to the point at which the stability of the

one-vortex solution changes. To verify this, we follow the same procedure as for the

no-vortex solution in Section 2.3.2, pages 62-66. In short: we look for the current I'
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at which the one-vortex solution of the system fulfills the condition

.F2N+2 = max {I [eig(Ji,j)]} = 0. (2.80)

As in (2.62), we solve for the augmented system

F(, I*) = 0. (2.81)

This means we obtain the configuration where the solution goes from being linearly

stable to linearly unstable, since all the eigenvalues of the Jacobian matrix have

negative real parts except for one which is zero, as seen in Figure 2-18 (b). In Figure 2-

18 (a) we compare with excellent agreement the calculation of I*(f) from the static

augmented system (2.81) with the ILAT(f) obtained from numerical simulations where

a vortex is placed in the middle of the array and the current increased until the vortex

moves. Therefore, we conclude that

ILAT = I*,

i.e., we find a rigorous criterion for the depinning of the single vortex as the current

at which the single vortex solution goes unstable. In fact, the only difference with

the numerical procedure used in Section 2.3.2 to identify the depinning transition as

a saddle-node bifurcation (2.63) is the use of a different initial condition when numer-

ically solving the system (2.81). As we did there, we emphasize that the calculation

of IP is static and thus, we circumvent the mimicking of the experiment through the

sweeping of the current.

Moreover, we clarify the existence of a critical field f, below which the one-vortex

solution is not attainable. Indeed, for values of the field f < f, the one-vortex solution

is linearly unstable for any I, i.e. there is always one eigenvalue of the Jacobian

matrix with a positive real part, as shown in Figure 2-18 (b). Unless the array is

very small, so that the effect of the edges is felt in the center, this mathematical

condition is met at f, = 0.084, independently of the length of the array. However,



this minimum condition is only found when the sweeping of the current is done at

very small increments. In fact, when dynamical simulations are used, the one-vortex

configuration is only seen to be dynamically stable for values of f larger than - 0.12.

Let us state the differences between our ILAT and the calculation of Lobb-Abraham-

Tinkham [50]. As explained above, theirs is a static estimation of the energy barrier

Eb in infinitely extended two-dimensional junction arrays. The barrier is calculated

as the difference of energy between two configurations in which the vortex lies at the

center of the cell (low energy solution), or at a junction (high energy configuration).

By minimising the energy of assumed arctan(y/x) solutions for both configurations,

Eb is obtained, and, so is the critical current, which is one half of Eb. In our case,

we calculate the dynamic current at which the one-vortex configuration in the ladder

becomes unstable. The most fundamental difference lies in the distinct solutions as-

sociated with the vortex in the two-dimensional and the quasi-one-dimensional prob-

lems. Moreover, their static calculation does not include the effects of the field f, or

the injected current I, on the configurations. These effects are taken into account in

our case. In Figure 2-18 we observe that the vortex depinnning current is higher for

lower f. This is explained well in terms of the corrections that edges introduce on

the basic no-vortex superconducting solution: a smaller f implies a smaller correction

from the vortex on the rest of the array (see Figure 2-16) and, thus, a higher critical

current. Within this physical picture, the depinning of the vortex is equivalent to

study when the flux of the vortex enters the left side of the array.

One last result can be obtained from our approximation for the one-vortex con-

figurations: the current Iedge, at which the vortex is expelled from the array, must

correspond to the value of I at which the one-vortex solution with the vortex at the

end of the array becomes unstable. Therefore, we repeat the same procedure as above

for this configuration to characterize ledge. The same conclusions are reached: the

expulsion current observed in the dynamical simulations corresponds to the value of I

where the configuration with the vortex at the leftmost cell becomes unstable, i.e. the

maximum of the real parts of the eigenvalues of the Jacobian matrix is zero. Critical

fields are found as well for this solution, below and above which this configuration is
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linearly unstable. These calculations, analogous to those performed for the depinning

of one vortex at the middle of the array, are summarized in Figure 2-19.

Comparison with the continuum approximation

In the paragraphs above, we have pointed out the distinguishing features of our quasi-

one-dimensional vortex solution and the full two-dimensional one. In this last part

of the subsection we connect our results with the classical kink solution of the one-

dimensional sine-Gordon equation. This continuum solution, which approximates

well the vortex configurations observed in 1 - D parallel arrays, is not appropriate

for the one-vortex configuration in the ladder. This highlights the importance of the

presence of the horizontal junctions which introduce an implicit coupling between the

vertical junctions, via the fluxoid quantization condition. The observed discrepancy

implies that this coupling is not purely inductive, and the ladder cannot be easily

reduced to a one-dimensional parallel array with an effective inductance.



The time independent sine-Gordon equation with no forcing [18]

0sx - 1- sin ¢ = 0 (2.82)

has the well known kink solution

(x) = 4arctan [exp ( (2.83)

The solution corresponds to a 2wr-"jump" which is parametrized by xo - the center of

the kink around which the solution is symmetric- and A,,- its width, which represents

the characteristic length over which the jump from 0 to 27r is produced. This solution

is only exact when the domain of x extends to infinity.

Under certain approximations, the sine-Gordon equation describes our system.

Consider the time-independent equations for the ladder (2.22)-(2.23) when I = 0 and

in the limit of small horizontal phases d9 <K 1. Then the governing equations become

-1 = 4 + sin O$ (2.84)

= f + (2.85)2

Combining both, it is immediate to obtain

+, - 20y + =v-1= 2sino ,

which, in the continuum limit, results in

v, _- 2 sin cV = 0 (2.86)

with the cell size taken as unity. In this simple way, we arrive at the standard

approximation of the kink in the vertical junctions of the ladder with an arctan

functional form and penetration depth A,g = 1/v2/. This is valid when the phases in

the horizontal junctions are small. We now show how our approximation compares



to this formulation.

To this end, we particularize the one-vortex solution (2.70) far from the edges, i.e.

1 < a < N + 1, for I = 0. The boundary conditions (2.76)-(2.79) become then

r-l
7 f + Q2r

sin (7f - 2r

- sin (rf Q'-P

r-1
irf - P'/

2r

-Q

= sin P - sin (rf -

sin Q' + sin r f + r-l1Q
P,2r

= P',

(2.87)

(2.88)

(2.89)

(2.90)

from which the solution

is readily obtained. In conclusion, the vertical phases for the particular approximate

solution under consideration are:

O =t Pr j -a + Qr l - j ,

-(Pr a+l - j + Qrj-(N+1)),

j<a

j>a3 > a
(2.91)

with the constants P and Q given by

(2.92)

(2.93)

and r is given by (2.73).

Since the arctan approximation is infinitely extended and no edges can be consid-

ered, we concentrate on the region far from the edges, around the cell where the kink

2r
Q =f 3r - 1

sinP = sin (rf r- P) +sin(rf + P)
2r
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is located. Then the expression is further simplified to

V P exp[(j - a)/A], j < a (2.94)
-P exp[(a + 1 - j)/A], j > a

which has the same properties as the arctan approximation: odd with respect to

o = a + 1/2 and with a characteristic length A(I, f) = 1/ ln r, which is the same

penetration depth which measures the extent of the perturbations from the edges to

die away, as given in (2.39).

However, both their functional form and the interpretation of their parameters

are different. In Figure 2-20 (a) and (b), both approximations are compared with the

numerically observed one-vortex configurations. We conclude that ours is consistently

better than the sine-Gordon approximation, especially at small fields, i.e. the arctan

approximation gets worse as f -+ 0. As f increases, the characteristic length A of

the vortex decreases and both approximations converge. This can be observed also

in Figure 2-20(c) where the calculated A from both approximations is represented.

Again, at small f the sine-Gordon and our double-exponential approximations differ:

as f -+ 0, A,, -+ 1/ /2 while our A(0, 0) = 1/ lnr(0, 0) = 1/ln(2 + V3/). Therefore,

it is at low f that the difference between the two approximations becomes more

important.

In summary, the sine-Gordon approximation presents the following contradiction:

it gets worse as f -+ 0, when, at the same time, its validity is based on the assumption

that OH -+ 0 which is fulfilled when f -+ 0. However, precisely in that limit, the

characteristic length of the vortex grows and the discreteness of the array renders the

approximation invalid. This underscores the inappropriateness of the arctan solution

to describe ladder arrays with no inductances. Thus, the description of the ladder

as a one-dimensional parallel array where the presence of the horizontal junctions is

approximated as an effective inductance constitutes an oversimplification.



2.3.4 Summary and discussion

We have obtained in this section analytical approximations for the relevant super-

conducting solutions of the ladder array: the no-vortex, half-filled and one-vortex

configurations. A common feature to all of them is the fact that any correction

imposed on the basic solution decays exponentially in space with a calculated char-

acteristic length dependent on I and f. The mentioned correction can be due to the

presence of the edges, or of topological vortices in the array. In both cases, the effect

of the perturbations is highly concentrated in space and their behavior can be well

represented in terms of a local analysis. For instance, the depinning current of the

array can be well explained by the study of the rightmost cell, and the depinning of

the single vortex by the analysis of the cell where it is located. This explains why,

besides the obvious independence from the purely dynamical parameter /, the depin-

ning observables are also independent of the length of the array N. In addition, the

dependence on f is quantitatively explained within our framework.

Finally, we summarize in Figure 2-21 the stability of the superconducting solu-

tions analyzed in this section (no-vortex, half-filled, one-vortex) by representing the

critical currents at which each of them becomes dynamically unstable. In the absence

of a singular vortex in the array, the no-vortex or half-filled solutions remain stable

until Idep (solid line in the figure) is reached, at which the array ceases to be supercon-

ducting. If vortices are initially present in the array, the conclusions do not change.

The discontinuous lines represent critical currents associated with the one-vortex so-

lution: ILAT(- -) is the current at which a vortex in the center of the array depins,

while ledge(-.) shows the current at which the vortex is expelled from the edge. When

this current is reached, the no-vortex solution is recovered. Moreover, the one-vortex

solution is always unstable for small fields. When the field is not too large, similar

critical currents appear for multivortex solutions at which vortices begin to move and

get expelled from the array. Thus, away from the limit f - 1/2, Idep is always the

observable depinning current and the depinning of the array is edge-dominated.

This does not contradict the conclusions of Kardar [40, 41]. We note first that
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Figure 2-21: Summary of the critical currents for the analyzed superconducting solu-
tions of the array: Idep(-) is the current at which the no-vortex solution (at f < 0.45)
and the half-filled solution (for 0.45 < f < 0.5) become unstable. ILAT(- -) is the
dynamical Lobb-Abraham-Tinkham current which measures when the one-vortex su-
perconducting solution becomes unstable and, thus, a vortex in the center of the array
depins. Finally, ledge(-.) is the current at which the vortex is expelled from the edge
and the no-vortex configuration is recovered.

those calculations are carried out for I = 0 with a brief discussion of the effects of

a small current in the parallel direction. Thus, the extension of his results to the

case with a finite I in the perpendicular direction is not immediate. Nevertheless

he found that, for I = 0, the no-vortex solution is thermodynamically stable for

f < fc - 2/V/Z- 2 = 0.287, which we have checked numerically to good agreement.

Our results indicate that although the one-vortex solution is not the ground state of

the system, it is dynamically stable until ILAT is reached. That is: for fc < f < fIl

the vortex configurations are metastable solutions of the system.

We conclude this analysis by comparing our independent results to the very recent

numerical work on ladders by Hwang, Ryu and Stroud [34]. Among other simulation

results, they present numerical observations of the depinning (critical) current for: a

circular ladder with perpendicular injection, and for an open-ended ladder with par-

allel injection of current. In both cases overdamped junctions (0 = 0) are considered.

The fact that we used underdamped units with P = 10 does not modify the depin-

ning predictions, as stated above. Their numerical findings are in agreement with



our predictions. Although we have not considered the ring geometry in our analysis,

it is readily understood that the calculated depinning current of the vortex ILAT is

equivalent to the depinning current for a circular ladder array. Indeed, their values for

the Ic± of an isotropic array are very similar to the currents at which the one-vortex

configuration becomes dynamically unstable, ILAT. The small discrepancy observed

as f -+ 1/2 can be due to the relative importance of the edge effects in that limit.

Moreover, they find a numerical value of the field, fl± I  0.12 for which the depin-

ning current is Ic± = 1 and they find exclusion of field. As stated above, this is the

value below which the one-vortex configuration becomes dynamically unstable for all

values of the current. Thus, the no-vortex solution (which in the absence of edges has

a depinning current of unity) is the preferred superconducting solution of the system.

In a more technical note, we too found this field to be 0.12 in our dynamical simula-

tions. However, a more careful static calculation with the jacobian condition yielded

the value 0.084 for this critical field. We can imagine two possible explanations for

this difference: the numerical instability of the dynamical simulations which make it

difficult to follow the solution all the way to its critical value; or the possibility that

for small f the mechanism for the bifurcation of the one-vortex solution is no longer

a saddle-node bifurcation and the instability appear through a different mechanism.

Some research is needed to clarify this point.

The open-ended array they choose to study is the ladder with parallel current

injection. No direct comparison can be established at this moment, although pre-

liminary calculations indicate that the solution for this configuration would present

the same features as for the open-ended array with perpendicular current injection,

which has been extensively studied in this chapter. Hence, the depinning current

Icll (f) could be explained in terms of an edge-dominated depinning for the ladder as

the f dependence seems to suggest. We note also that Icl (f) for f < fl observed in

their simulations, seems to be accounted for with the analytical result of Benedict [5]

I = I, cos rf sin 6,



where

cos = [cos f - 1 + 15 sin2 f]

Future directions for this work will include a detailed analysis of ladder arrays

in the ring configuration and open-ended ladders with parallel injection along the

same lines developed here. Moreover, the obtained approximate solutions can be

used further to carry out energy calculations and establish thermodynamic stability

criteria which have been left out of this thesis. Finally, the inclusion of inductances in

the problem would constitute a major step towards comparison with a broader range

of experiments and to assess the influence of self-fields on the observables.



2.4 Whirling solution

In this section, we study the solution for the ladder array at large I, i.e the ohmic

branch, and the critical current Iinst at which it becomes unstable in the return path

of the I- V characteristics. In the first subsection, we present results of the numerical

integration of the equations for this regime and a description of the observed spatio-

temporal solution. From these observations we deduce an approximate solution for

the system, based on the "whirling" solution for the single junction. Finally, we take

into account the presence of edges in our open ended array. In the second subsection,

we study the mechanism for the instability of the ohmic branch by performing the

linear stability analysis of the approximate whirling solution. In the third, we focus

on the particular case f = 0 and some new solutions which appear as steps on

the return path. They will be shown to correspond to a set of subharmonic whirling

solutions for which the horizontal junctions oscillate non negligibly and can be related

to an alternative description of the repinning instability. The appearance of such

solutions illustrates the importance of the presence of the horizontal junctions and of

the implicit coupling they introduce.

2.4.1 Observed and approximate whirling solutions

As we saw in Section 2.2.2, the behavior of the system at large values of I is character-

ized by a linear dependence of the dc average voltage < V > with I, in what we called

the ohmic branch. This is always so, independently of the other parameters of the sys-

tem {•, N, f . The main feature of the spatio-temporal solution associated with this

branch is the linear dependence of the vertical phases both with time and with their

position in the array (Figure 2-22 (a) and (b)). They also have a small superimposed

modulation as evidenced when the linear dependence is subtracted (Figure 2-22 (c)

and (d)). Moreover, the horizontal phases oscillate around zero with a small ampli-

tude. In summary, the vertical pendula (junctions) "whirl" quasi-harmonically, with

almost constant frequency, while the horizontal junctions describe small librations.

Hence the name whirling mode to describe this solution.
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When no topological vortices are present in the array (i.e. nj = 0, Vj), the

governing equations (2.18) become

Y - 2~-H - y+1 = -27f (2.95)
I +I 1 = IY + I (2.96)

where the current in each branch, either vertical or horizontal, is related to the cor-

responding phase by
1.

Ij = j + 3 + sin .

Also, the boundary conditions are given by

I = IH + 1V IN + = I'N+1. (2.97)

We note that the whirling solution for the single junction can be calculated per-

turbatively as [98]
1 1€ = t + 12 sinwt+ 0( o(3)

where w = I/•5 and w- 1 is the small parameter. Using this fact and the observed

features of the solution, we assume a travelling wave solution for the vertical junctions

Ci
0v = + C sin(j + j) (2.98)

Cj = wt + 2rf j. (2.99)

Cj and 6j are functions to be determined consistently from the equations.

Let us begin with the simplest case in which we neglect the effect of the edges.

This is equivalent to studying the region far away from the edges in a very long ladder

array. Thus, we assume the following solution

00 A
t C = ý~-+ sin j (2.100)

where the amplitude of the modulation A does not change with j, since, when the



edges are at infinity, all the cells are equivalent.

Substitution of the assumed solution (2.100) in equation (2.95) yields the expres-

sion for the horizontal junctions

Ht -A
t= - sin(wf) cos(ýj + rf). (2.101)

From the expressions of the phases (2.100, 2.101), we calculate currents to O(1/w)

from equation (2.96). We then substitute them in (2.96) to arrive at the value of A

1
A = - cos (2.102)2 - cos 27 f'

which completes the solution far from the edges: {fyt, v Ht}.

We include now the effect of the edges by assuming a solution where the superim-

posed modulation depends on the position j both in its amplitude and in its relative

phase:
SAj B

= j + sin j + - cosj. (2.103)

We follow the same procedure as above to determine Aj and Bj. From substitution

of Oy1 in the governing equations (2.95)-(2.96), where we neglect terms of O(w-')

and higher, we obtain a system of two coupled second order difference equations for

Aj and Bj

cos 2x f sin 2xrf
2 (Aj-1 + Aj+1) - 2Aj + 2- (By-1 - Byzl) = -1 (2.104)

sin2f (Aj 1 - Aj) + 2 (BjI + Bj+±) - 2Bj = 0. (2.105)
2 2

After several algebraic manipulations, the general solution is found to be

Aj = A + cl (rei2 f )j-(N+1) + C2T ei27 f )1-j + C3(re-i2 f 1-j + C4(re-i2x f)j-(N+1)

By = A + cl•(rei2 f)j-(N+1) - C2 (rei2f )1- j + c3 (re-i2 f) 1- j - C4 (re-i 27f)j - (N+1)

r=2+ v



where c1, c2 , c3 , c4 are constants to be determined from the boundary conditions. Note

that, as in our analysis for the superconducting solutions in Section 2.3.1, r corre-

sponds to a characteristic penetration depth which measures how much the influence

of the boundaries is felt inside the array

r =e 1/ ,  = A=1/lnr=0.759.

The boundary conditions (2.97) allow us to solve exactly for the {ci}. However,

due to the small value of A, we can simplify the analytical expressions by taking the

limit A < N + 1 which is valid even for very small ladders. In that case we obtain

sin rf ie- i
_ 

7

S= 2- cos 2rf 3 - 1/r' C4

from the boundary condition at node N + 1. Similarly, from the boundary condition

at node 1 follows

C2 = C1, C3 = C4.

Substituting back in (2.103) and (2.95) we obtain the solution which includes edge

effects:

v = yvt A 2r sin irf r j-(N+) cos(g+1 + 7rf) - r - j cos((l - 7rf)} (2.106)
w2  3r- 1

H= H _t A (r - 1) sin rf {rN COS(N+1 + -7rf) + r1  cos( 1 - rf) (2.107)
w2  3r - 1 -

where {1Ht, Vt} is the solution in the absence of edges from (2.100)- (2.101). We

also summarize the notation introduced in the derivation

A = 1 cosr = 2 + v3, (j = wt + 27rfj, w = I . (2.108)2 - cos 2x rf

We show now that the obtained solution agrees very well with the numerics in its

defining characteristics:



* The almost linear dependence of qYj(t) both with t and j was introduced in

the travelling wave assumption (2.98) as our zeroth order approximation. This

characterizes this solution as a linearly extended kink in which the pendula

whirl with almost constant frequency. Both "slopes" (the frequency and the

wavenumber) are deduced consistently from the governing equations.

* The small superimposed modulation of O(w- 2) in the vertical junctions is a

result of the nonlinear term in the equation of the single junction. Significantly,

the coordinate for this modulation is still the travelling wave coordinate. Thus,

both the frequency and the wavelength of the accompanying oscillation are

commensurate with the zeroth order solution.

* The modulation of the vertical junctions produces an equally small, out of phase

oscillation of the horizontal junctions. Hence, these librate with amplitudes of

order O(w-2).

These results constitute the basic mathematical representation of the whirling mode,

i.e. the solution of our system for w -+ oo.

We can also check other predictions which can be deduced from the calculated

solution:

* The amplitude of the accompanying oscillations depends on the magnetic field

f. This is most easily seen if we consider the solution far from the edges

(2.100)-(2.102). In that case, the amplitude of the oscillations for the horizontal

junctions is
Htf sin 7f

max oj. _I 12/3-(2 - cos 2-rf)"

Good agreement is obtained in Figure 2-23 when checking this prediction with

the numerical values of the amplitude of the horizontal junction in the middle

(i.e. most distant from the edges) of a N = 25 ladder array for different values

of f.

* The effect of the edges, as introduced by the boundary conditions (2.106) and

(2.107), is mathematically expressed as an additional modulation from the end
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Figure 2-23: For different magnetic fields f, predicted (- -) and numerical (*) values
of the amplitude of the oscillations of the horizontal junction most distant from the
edges for the whirling mode of a 25 x 1 ladder array

junctions, wrapped in an exponential envelope. The decay of the perturbation

from the edges is parametrized with a characteristic length A = 1/ ln r = 0.759.

We test this prediction in Figure 2-24 by plotting the numerical values of rj -

q0#(to) - H_2 (to) for our array with f = 0.5. Let us calculate the predicted

value of this quantity from our solution. When f = 0.5, the wavelength is equal

to two cell lengths and q#t = H_-2t. From equation (2.107) we conclude that

xj decays exponentially with j from the edges

y (to) Hk 0 Ht2 (t)-j (2.109)
r - , j -+ 1N.r j - N  j N.

Hence, the slope of the logarithmic plot is predicted to be equal to - In r =

-1.317 close to the left end of the array, and 1.317 close to the right edge. The

agreement of this prediction with the numerical values, shown in Figure 2-24

(b), is excellent.

In summary, the influence of the edges in the whirling mode is virtually un-

noticeable. The characteristic length is small and the edge corrections die off

very sharply, as seen in Fig. 2-24 (a). In contrast with the importance of the

boundary effects for the superconducting solutions, we will not need to consider
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these corrections in the subsequent calculations for the whirling mode.

In connection with the previous points, we observe that in the absence of magnetic

field, the librations of the horizontal junctions have zero amplitude to this order of

the approximation, O(w-2 ). Likewise, edge effects also disappear. The mathematical

description of the whirling mode when f = 0 is then simpler: the phases of the

horizontal junctions are permanently zero, and the vertical junctions whirl in phase

and in unison with an almost constant frequency- the correction of O(w- 2) is Still

present for them. Consequently, it is tempting to consider the array as a collection

of N + 1 uncoupled junctions, which behaves as a single junction. We will see in the

following sections that this is not the case. The coupling, which the geometric and

physical constraints introduce, is still present and modifies the mechanism for the

instability of the whirling mode. Hence, the repinning for the array is not the same

as for the single junction.
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2.4.2 Instabilities in the whirling branch and repinning

We study now the mechanism for the observed instability of the whirling branch

following a procedure developed partly in collaboration with one of the authors in

[99, 96]. It is, in essence, a linear stability analysis of the whirling solution used there

to study one-dimensional parallel arrays. In those devices no horizontal junctions are

present and vertical junctions are coupled through an inductive term parametrized by

a normalized inductance A. The main conclusion obtained there is that the repinning

of the 1-D parallel array is caused by parametric instabilities of the whirling mode

when its driving frequency resonates subharmonically with the eigenfrequencies of

the array, regarded as an LC-transmission line. Depending on the value of A, the

sequence of instabilities of the different modes will produce a series of steps or a

single repinning instability.

However, no inductances are considered for our ladder array and the effective

coupling is intrinsic to the system. In summary, of the material and array dependent

parameters only the damping IF 1//3 remains as a variable, since we take the limit

A_ -- oo, T -+ 0. In close comparison with the one-dimensional parallel array, we

concentrate on studying three questions :

* when the instability happens;

* the possibility of observing steps as in the one-dimensional case;

* the comparison of the instability of the whirling branch of a ladder array with

the bifurcation which causes the repinning for the single junction.

The procedure follows closely on the linear stability analysis developed in Section

2.3.1, particularizing those results for the whirling solution from Section 2.4.1. There

we found that the whirling solution is well approximated by

* = + ( 0* =0(

with Cj = wt + 27rfj and w = I-6 > 1. This is valid both for the case in which

edges are taken into account and when their effects are negligible.



We begin by adding a small perturbation {uj, vj} to the basic solution above

{qV*, $H*} and studying the dynamical equations of the added perturbation in mo-

mentum space (i.e. the modal equations) as described in Section 2.3.1. Neglecting

terms of order O(1/w 2), substitution in equation (2.28) gives

1- a - 1 1 N

m + m + m + - E finnm = 0 (2.110)
am am n=O

vnm = N+ • coscos [NI, (j - 1/2)] cos N+(j - 1/2)
j=1

where Vnm is the coupling coefficient between modes n and m.

If f > 0, the basic solution is j dependent and the modal equations are coupled.

Thus, the analysis has to be done numerically by calculating the Floquet multipliers:

when any of the multipliers becomes larger than unity, the perturbation grows, and

the whirling branch becomes unstable. We do not consider here the case f > 0

but rather concentrate on the f = 0 case which allows more extensive analytical

treatment. However, numerical studies carried out for one-dimensional parallel arrays

[99] show that the main features of the analysis do not change in the presence of the

magnetic field, thus suggesting the general validity of the physical picture emerging

from the f = 0 case.

Case f = 0

When the applied magnetic field is zero, the basic solution is not space dependent:

cosj = cos wt. Then equation (2.110) becomes uncoupled and simplifies to

1 -2 ( _ 2 C W
Um + Um + + (1 - m)coswt} m = 0 (2.111)

282 2 mr
w2 2 = sin 2  m = 0 N.m 1 + 2s' m 2(N + 1) m 0, ,N.

Thus the dynamics of each of the Fourier modes of the perturbation im(t) is governed

by a Mathieu equation where the driving frequency is that of the basic whirling

solution w. The wm are the eigenfrequencies of the lattice. Notice in the expression
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for sm above, that modes from open ended boundary conditions correspond to modes

from periodic boundary conditions with double the number of junctions [99]. This

is a direct result of using Fourier transforms which fulfill the open ended boundary

conditions.

For the whirling solution to remain stable, the null-perturbation solution

im(t) 0, Vm

has to be stable, i.e. an added perturbation will not grow without bound. The ap-

pearance of instabilities in the whirling branch can be understood within this picture

as a result of the existence of instability regions in the parameter space of the Mathieu

equation corresponding to the modes of the perturbation [37]. To show this, we first

write 2.111 in the canonical form

d2 im diimd- •
2  + d-L + ( + e cosr 7)im = 0 (2.112)dr2 d7

by redefining

1 2 6
7 = wt W == E = (2.113)

-w w2  2s•"

Let us consider the undamped system (7 = 0) first. The theory of Mathieu

functions establishes that the stability of the solution ilm(T) - 0 depends on the

relative value of 6 and E. There exist regions of the (6, e) plane, called Mathieu

tongues, where this solution is unstable, the perturbation grows exponentially and,

thus, the whirling branch becomes unstable (Figure 2-25). Two observations are

important:

* e depends linearly on 5 with a slope 1/2s8, which is different for each mode

* the high I limit corresponds to w -+ o =ý (6, E) -+ (0, 0).

Therefore, the physical picture is the following: For high I -i.e. very small 6 and e-

the null solution for the perturbation is stable, and so is the whirling branch. As I
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Figure 2-25: First and second Mathieu tongues in (6, e) parameter space in the absence
of damping. Figure (b) is a blowup of (a). Dashed lines mark the boundaries of the
tongues, i.e. points where the stability of the solution changes. Close to the origin,
all modes are stable. Solid lines correspond to the modes m = 1,... , 7 for a N = 7
ladder.

is decreased, we move away from the origin following a different line for each mode.

Each of them becomes unstable for different intervals marked by the crossings of the

corresponding line with the first Mathieu tongue (Figure 2-25).

This overall description is unchanged in the presence of damping. When - > 0,

the tongues become narrower and their general shape is modified. If 7 is big enough,

the tongue's width shrinks to zero, and the interval of instability does not exist. Thus,

the mode will always be stable. This can be seen by perturbatively calculating the

boundary of the first Mathieu tongue [37] as:

6== F 1- + ( 0 2)  (2.114)

where c is the small parameter. The tongue disappears when 7 > e so that no

instability is observed for the mode in that case.

Hence, given 0, or the corresponding damping F = 1/y', the mth mode is unstable
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when w E [~;, t+] given by

2 2 2, 2
= 1- 2 + 2 - 2(2.115)

If -y > E, there is no instability. This expression is obtained by substituting the

definitions 2.113 in equation (2.114) and solving for w. It gives the crossing points

of the first Mathieu tongue and the mth mode line for y > 0 and e -+ 0 (similar

to the -y = 0 case depicted in Figure 2-25). Note that each interval is roughly

centered around w !_ 2wm. The theory of Mathieu functions predicts instabilities

at those points, which correspond to subharmonic resonances with the eigenmodes of

the lattice, at double their frequency.

Non-overlapping instability intervals for different modes will produce steps in the

I - V curves. While in these unstable regions of the whirling solution, the system

must evolve to another dynamic state. Once the stability for all modes has been

regained, the system can switch back to the whirling branch. However, this will not

happen if the intervals overlap or the separation between them is small. Moreover,

for the described instabilities to be observed they must occur before the whirling

solution ceases to exist, due to either a saddle-node or a homoclinic bifurcation [31],

at a critical current Iwhiri as explained below.

In summary, when studying the instabilities from the whirling branch for a ladder

array with N cells and a given / we must consider the following three criteria. The

step corresponding to the instability of mode m will not be observable if any of the

following conditions is met:

1. if there is overlap with another instability interval

Qee > Om,1 (2.116)

2. if, due to the magnitude of the damping, i.e. y > e, the tongue disappears.
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Figure 2-26: Iwhirl vs. F = p-1/2 for a single junction. For small F < r* _ 1.2, the
repinning occurs through a hysteretic homoclinic bifurcation. Above that value of
the damping, a non hysteretic saddle-node bifurcation takes place.

Imposing this condition in 2.115 results in

(1+ 2s )(4s - 16s 4 - 1) < < (1 + 2s )(4s / + 16s4 - 1) (2.117)

3. if the basic whirling solution ceases to exist before the instability of the mode

occurs

Qf < Wwhirl. (2.118)

Let us digress briefly to give a more detailed explanation of the third point. In

Section 2.4.1 we concluded that, within our approximation, the whirling solution

for the ladder array with f = 0 is effectively equivalent to a set of N + 1 almost

independent in-phase whirling pendula. The couplings, corrections and oscillations

of the horizontal junctions are negligible to order O(1/w 2). The same holds even when

edge effects are included. Therefore, the existence of the running periodic solution

for a single junction is a necessary condition for the existence of the whirling branch

for the ladder [78, 31]. The basic features of the single junction are represented in

Figure 2-26. In short, the single junction has a periodic attractor in its cylindrical

phase space which ceases to exist through two different bifurcations:
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. a saddle-node bifurcation at Iwhit, = 1 for 1/.V - r > F* _ 1.2

* a homoclinic bifurcation for r < r* characterized by the small damping limiting

behavior [31]
4

lim Iwhirl -
r-0 7

From this critical current I'whil we can obtain a lower bound wh•irl for the observa-

tion of any instabilities in the whirling branch. For the high I limit, the first order

approximation is good enough so that w _ Ix/0. However, as I gets smaller, we need

to consider higher order corrections in the perturbative expansion for the running

periodic solution of the single junction [98]:

1
= + 2 sin + COSin T + e33cpOST + r 4 - 2 sinr± sin 2T}

8
r r

+ E5{-F 3 CosT + - cos 2T + - sin 2T} + 0(E6 ) (2.119)
8 16

4

= (1 - -) I4 t (2.120)

= < 1 r (2.121)

Thus, the observed voltage (W) - w to 0(e 3 )

w (1- 1 )V = - (I )- 3
214) 2  2

is used to calculate Wwhirl for a given Iwhirl-

We return now to the discussion of the three criteria listed above for the obser-

vation of mode instabilities. They are summarized in Figure 2-27 (c) for a 7 x 1

ladder. There we represent, for different values of 3, all the existing instability in-

tervals [Q-, Q+], as given by Eq. 2.115, together with the instability frequency for

the single junction Wwhirl(P). The overdamped singular limit 3 = 0 is excluded from

the analysis. The overall features of our predictions agree well with the observed

numerical values of the repinning voltages for f = 0 and varying 3 (Figure 2-27 (b)):
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* The first important conclusion is that the ladder array in the limit of no in-

ductances presents no series of steps on the return path around the whirling

branch when this becomes unstable. This is so because the instability intervals

always overlap. There is no single mode whose instability region ends before

the next mode goes unstable. Therefore, once the first becomes unstable, there

is no interval in which the stability of all the modes is regained and, thus, the

whirling branch never restabilizes. In conclusion, no steps are observable.

* As 0 decreases (and the damping increases) the tongues corresponding to higher

number modes cease to exist and so do the instabilities associated with them.

Hence, the repinning frequency decreases with decreasing P.

* For the range of p considered, the homoclinic bifurcation is never reached.

The whirling branch becomes unstable before it ceases to exist. Therefore,

although the array for f = 0 can be viewed as a collection of "uncoupled"

vertical junctions, the repinning mechanism for the array is different to that of

a single junction. The eigenmodes of the lattice, modified by the presence of

the horizontal junctions, play a role in the instabilities leading to the repinning

of the array.

Two further comments are in order. First, as expected, the physical picture does

not change when N is increased. The distances between resonating frequencies de-

crease as their number increases and the above conclusions become more accentuated.

On the other hand, for smaller arrays the effects of discretization become more im-

portant. We have checked however that steps do not appear even for the smallest

ladder of N = 2 cells since the instability intervals still overlap. Secondly, the use of

equation (2.115) to approximate the width of the intervals is justified for large mode

number m - N + 1, since then e ý 1/8s 2 - 1/8. The approximation gets worse

for small m, when E becomes large. Consequently, we have verified that the general

conclusion does not change when the full numerical solution for the boundaries of the

tongues is used, as shown in Figure 2-25.

We finish this section by establishing the comparison of the ladder array with the
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of the modes of an open ended 7 x 1 ladder. (c) Central instability frequencies 2wm
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one dimensional parallel array studied by Watanabe et al. [99]. In their case, no

horizontal junctions exist and the coupling between vertical junctions is introduced

through the normalized inductance A, which is also a characteristic length of the kink

in the array. The dispersion relation was

Wpar = 2Asm

200zand the steps are not observable when the inductances are too small. Instead, we

have neglected the electric inductances in our arrays. The coupling between vertical

junctions is intrinsic to the geometry and due to the physical constraints the horizontal

junctions introduce. The dispersion relation is now:

ld 1 +2 2 sm. (2.122)

This modified dispersion relation has the effect of compressing the mode frequencies,

making their separation smaller. This, together with the smallness of A, explains the

impossibility of observing the steps produced by the restabilization of the whirling

branch. The introduction of non-zero inductances in the problem is an unresearched

direction of great interest.

From the comparison of the dispersion relations above, a small "intrinsic induc-

tance" Alad c [1/v2, 1/V1] 1/x/2 can be assigned to our ladder. This was precisely

the characteristic length for the sine-Gordon kink approximation as described in Sec-

tion 2.3.3. In fact, this is consistent with the description of the horizontal junctions

as oscillating pendula with very small amplitude. In this limit, their behavior can be

approximated as an inductor with the Josephson inductance Lj

V = •o/2ir o dl dl
V V = = Li . (2.123)

I = Ic sin _ Icq J 2-Ic dt dt

This renders our array equivalent to a one-dimensional parallel array, like the ones

studied in [99], with self-inductance 2Lj, i.e. A = 1/vf2. However, the dispersion
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relation already indicates that this is not a strict correspondence. Similarly, our

conclusions in Section 2.3 show that the identification of the horizontal junctions

as mere inductors is an oversimplification. The most compelling evidence for the

importance of the horizontal junctions, beyond providing an intrinsic coupling or

inductance in the system, is given in Section 2.4.3 where they are shown to participate

non-negligibly in new fully two-dimensional modes which exist only because of the

presence of these horizontal junctions.
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2.4.3 Novel subharmonic whirling state at zero field

In the preceding section we established that the instability of the ohmic branch for

the ladder array is caused by the instabilities of the Mathieu modes associated with

the whirling solution, much in the same way as for parallel arrays [96]. An alternative,

more particular, description of this process will be detailed now for f = 0. In this

case, and for a certain range of /, new branches appear on the return path of the

I - V curve when the whirling mode becomes unstable.

The usual I - V curve for a ladder array with f = 0 and / > 0 resembles the

single junction's. The single junction stays on the superconducting branch until it

becomes unstable at I = 1 and then switches to the quasi-harmonic whirling branch,

which is characterized by an almost linear dependence of V with I. If 0 > P* ~ 0.7,

the return path is hysteretic: the system stays on the whirling branch until it ceases

to exist at Ihiar < 1, at which point it returns to the superconducting solution

through a homoclinic bifurcation. If / < P*, the return path is not hysteretic and

the mechanism for instability is simply an inverse saddle-node bifurcation [31, 78].

For a ladder array with f = 0, the initial sequence is identical (i.e. all the junctions

in the ladder depin at the same time acting as a single junction). However, the return

path is not. Firstly, in contrast with the single junction behavior, the instability of

the whirling branch is due to subharmonic resonances with the eigenmodes of the

lattice (as in the Mathieu description in Section 2.4.2). Secondly, when the whirling

branch becomes unstable, in many instances the system does not return directly to

the superconducting solution but to a new intermediate branch with non-vanishing

V. Representative I - V characteristics in Figure 2-28 show this behavior. Note that

it is not observed for very small or very large /.

In the following, we obtain an approximate solution for this intermediate branch.

The appearance of such a solution is a consequence of the presence of horizontal

junctions which are intrinsically coupled to the vertical ones due to the physical

constraints of the system (i.e. Kirchoff's law and the fluxoid quantization). The

existence of this coupling is also necessary to explain the instability of the whirling

110



1

0.8

0.6
A

v 0.4

0.2

A
0 0.5 1

S= 15 0 =40

0.5

0.4

"X 0.3
v0.2

0.1

n

0

O

O

0 0.2 0.4 0 0.2 0.4
I I

Figure 2-28: I - V characteristics for ladder arrays with f = 0 for different values
of 0. The direct path is always the same, with Idep = 1. For 3 = 10 and 15 the
intermediate branch is observed.

111

:.Whirlilng!

S, In
.. ... . step.

.... .. I ........., SC

0 0.5 1



branch. In the simplest approximation for the whirling mode, the horizontal junctions

are ignored by assuming their phases are identically zero -and therefore uncoupled

to the vertical ones- and the vertical junctions, all in phase, behave like one single

junction. This simplification does not account for the observed branches and the

instability process.

Description of the observed solution and reduction of the system

Snapshots of a representative numerical solution for the intermediate branch are

shown in Figure 2-29. Its main feature is readily identified: the horizontal junctions

have the structure of a standing wave with a node on every other cell

O (t) = 0, V j, t (2.124)

We find now solutions for the ladder compatible with this restriction. By substi-

tuting the identity (2.124) in the governing equations (2.95)-(2.96), we obtain

Vj, t OH 2 2l(t) M (2.125)
S--1 + • 2-1(+)2 --M2j+1 (t)

which explains all the features of the observed solution (Figure 2-29).

Subsequent substitutions and rearrangements in the governing equations allow us

to express all the phases in terms of just two variables, i.e. the phases of the first

horizontal and vertical junctions ¢H(t) and f (t). This particular solution for the

complete ladder array is given by

2j+(t) (2.126)

1 _(t)= 17(t) -- (t) + (-1)i+'ql'(t)

2j+1 = 2 M(t).

Therefore, the time evolution of the whole system is governed by the dynamical

equations of those two variables.
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The equations for OB' and qv are obtained from the defining equations (2.18)

particularized at nodes 1 and 2

I = I1 + I1
I + Ij = I2V (2.127)

O = O - 20H.

The result is compactly expressed as

1
i)+ i• + sin v cos h = I

1 v
h+ h+sin h cos 2  = 0 (2.128)

v- 2

where we have defined

v= - OH  h -o H . (2.129)

In Figure 2-30 we show the comparison of the phase portraits of the full (2.18)

and reduced (2.128) systems dynamically integrated from the same initial condition.

It clearly shows their equivalence. Thus, for this specific solution, the dimensionality

of the system is drastically reduced. In effect, we have mapped our original system

of 3N + 1 coupled pendula onto a system of two coupled nonlinear oscillators. The

external drive is directly applied on one of them which in turn drives the other coupled

pendulum. Translated into our original context: the external current directly drives

the whirling of the vertical junctions which drive the horizontal ones via the intrinsic

coupling that the physical constraints of the system impose.

Analysis of the reduced system

The analytical study of the reduced system (2.128) is possible due to its lower di-

mensionality, drastically reduced from the full model (2.18). We begin the analysis

by checking that its limiting regimes correspond to the superconducting and whirling

solutions of the full system. Secondly, we will obtain an analytical approximation for
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the new observed solution and interpret its main properties in connection with the

original model.

Limiting regimes

* Static solutions: The fixed points {vt, ht} of the reduced system (2.128) are

obtained by requiring i = = i h = h = 0, which yields

sin(v,t) cos(ht) = I
(2.130)

[1 + cos(vst)] sin(hst) = 0.

There are three distinct solutions to this system:

1. vt = r and ht indeterminate: multiple solution, valid only when I = 0.

2. ht = 0 and sin vt = I: equivalent to the stable superconducting solution

with

O2H = 0 y = arcsin(I), Vj.

3. h,t = 7r and sin vt = -I: corresponds to the unstable superconducting

solution with

OH =0 +1 =r y = 7- arcsin(I).

As expected, these static solutions are the same as for the full system.

* Whirling solution: In the IV/- > 1 limit, the solution for the reduced system

is similar to the usual whirling mode in one dimensional parallel arrays [96] or in

ladder arrays (Section 2.4.1). To show this, rewrite the reduced system (2.128)

as

d2v 1 dv 2
+ 6-- + s2 in v cos h = (2.131)

dT2  V dT (2.131)
d2h 1 dh 1 + Cos V
d2h 1 dh 2 sinh cos 0 (2.132)
dT2 7~d• 2
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where e = 1/IJ is the small parameter, and time has been redefined as T =

IrJt.

In this limit, the solution for (2.131) is of the form v = 7- + O(e2) and (2.132)

becomes
d2h 1 dh 2 1 +cosT 0+ ---• + e sin h 0
dr2  d 2

with a stable fixed point at h* = 0. Then, (2.131) is just the single junction

equation in the whirling limit.

Analytical approximation for the intermediate branch

We consider now the intermediate regime of interest. Figure 2-31 shows the numerical

solution of the reduced system in the intermediate branch. We observe that this

solution is indeed another whirling mode since the basic solution for the vertical

junctions can be well approximated by 0v* = wt, plus a small modulation. However,

the voltage in Figure 2-28 is roughly half of the voltage for the usual whirling branch.

Since the voltage is equal to the frequency in certain reduced units, the frequency w of

this intermediate step is not given by If/, as for the usual whirling mode. Moreover,

in this case the horizontal junctions oscillate with a non negligible amplitude and a

frequency that is half of the driving frequency.

The regularity of the numerical solutions for v and h, Figure 2-31, suggests an

analytical form for the solution, which would not be obvious if the original variables

0' and 0' from the full system were considered. We assume a solution of the reduced

system 2.128 of the form:

v*(t) = o + wt+Acoswt

h*(t) = a sin (2t + . (2.133)

This is the simplest ansatz compatible with the numerics. The actual Fourier analysis

of the solutions shows that v has an infinite number of even Fourier components of

the basic frequency w/2. Similarly, h can be written as a Fourier series where only
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Figure 2-31: Numerical simulation of the reduced system (2.128): (a) v(t), solid
line, and zeroth order linear approximation vo(t) = wt + 0o, dotted line; (b) h(t),
dashed line, and v(t) - vo(t), solid line, obtained from (a). Graph (a) shows that
the intermediate step is well described by a whirling mode with a small superimposed
modulation. In (b) the superimposed modulation and the oscillation of the horizontal
junctions are represented. They can be well approximated with one harmonic.
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odd multiples of w/2 are present. However, the weight of higher harmonics is not

significant and, consequently, we only consider first harmonics.

In short, the assumed solution (2.133) is, in effect, another whirling mode: the

vertical junctions rotate with almost constant w and have a small superimposed har-

monic oscillation of the same frequency and amplitude A. In addition, the horizontal

junctions undergo out-of-phase oscillations of amplitude a with frequency half the

driving w.

The five parameters (0o, w, A, a, 6) are to be determined by substituting in the

system's equations (2.128) and using the method of harmonic balance. Furthermore,

the system depends parametrically on P and I. Our objective is to explain the

dependence of w on P and I. Since w is directly proportional to the average voltage,

this will give the I - V characteristic for this solution. In addition, A and a serve

as approximations for the amplitude of the oscillations in the vertical and horizontal

junctions, respectively.

The analytical procedure consists of three steps:

1. Begin by changing variables

dv
2z -=o + wt + i; v' - (2.134)

dz

and rewriting the system as

w 2  w
v" + v' + sin v [cos h] = I (2.135)4 2V0ý

2h" + h' + sin h 1 + cos 0. (2.136)
4 2

The assumed solution (2.133) becomes then:

v*(z) = 2z - r-Acos(2z- o0) (2.137)

h*(z) = asin(z + p) (2.138)

where p = 6 + (r - 00)/2.
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2. Standard expansions of sinusoidals of sinusoidals in terms of Bessel functions

[1] yield the following expressions needed for our analytical approximation:

cos v* = -Jo(A) cos 2z

- Z(-1)kJ2k(A){cos[(2k - 1)2z - 2ko 0] + cos[(2k + 1)2z - 2ko0]}
k=1

- E(-1)kJ2 k+l(A){sin[(2k + 2)2z - (2k + 1)¢0 ] + sin[-4kz + (2k + 1)o]J},
k=0

and

o0

sin h* = 2 1 J2k+l(c) sin[(2k + 1)(z + ()],
k=0

and

sin v* = -Jo(A) sin 2z
o00

- E(-1)kJ 2k(A){sin[(2k + 1)2z - 2ko 0] - sin[(2k - 1)2z - 2k¢o0}
k=1

+ (-1)kJ 2k+l(A) {cos[(2k + 2)2z - (2k + 1)0o] + cos[-4kz + (2k + 1)0o]},
k=0

and

cos h* = Jo(ao) + 2 J2k(a) cos[2k(z + y)].
k=1

3. Use the method of harmonic balance to obtain an algebraic system of five

equations for the five unknowns. This is done by substituting the expansions

above in (2.135)- (2.136); grouping terms; neglecting second and higher har-

monics in the expressions; and, finally, requiring that the equations be fulfilled

to first harmonics. In all of this, we assume that A, a are small enough to dis-

regard terms in J5 (A), J9(a) and up. This procedure results in a system of five

equations (three from the cos 2z, sin 2z and independent terms in (2.135); the

other two, from the cos z, sin z terms in (2.136)) for our five unknowns which

has to be solved numerically. Several solutions of the algebraic system exist, as
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Table 2.2: Parameters (a, 6, w, A, qo) of the assumed solution for the different branches
of the approximated algebraic system with # = 10 and varying I. See Figure 2-33.

discussed below.

In Figure 2-32 and Table 2.2 we represent, for fixed / = 10 and varying I, the

frequency w and oscillation amplitudes A and a for different solutions of the ap-

proximate algebraic system. These results are representative for a range of 0. The

branches can be described as follows:

* Branch (2), the usual whirling branch, is indeed a solution of the system -in

fact, it is the only solution as I/-» > 1. It is characterized by whirling of the

vertical junctions with frequency w _ Iv/7 with a small superimposed modu-

lation A ~ 1/w2 . Oscillations of the horizontal junctions are truly negligible

(a , 0). The numbers in Table 2.2 fully support this usual description.

* Branch (1) in Figure 2-32 corresponds to the intermediate branch observed in

the numerics of the full system. This is a subharmonic whirling solution in

which: the amplitude a of the oscillations of the horizontal junctions is large;

there is a non-negligible oscillation A of the vertical junctions; the subharmonic

whirling frequency w is roughly half of what the driving "torque" produces in

the usual whirling branch since some of the provided "energy" goes into the

oscillation of the horizontal junctions. However, these never whirl, and thus

< 0H >, 0, i.e. the voltage across the horizontal junctions is still negligible.

An example of the solution is presented in Figure 2-33. Note the good overall

agreement with the original solution of the reduced system with the same set

of parameters in Figure 2-31.
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Branch I a 6 w A 0o
(1) 0.55 1.889 -0.035 0.865 0.489 0.771
(2) 0.55 , 10-26 -0.312 1.639 0.349 1.386
(3) 0.55 0.972 -0.304 1.318 0.409 1.328
(4) 0.55 3.527 -3.838 0.381 -1.046 -5.293
(5) 0.40 10- 13 -0.432 0.354 -2.268 2.127
(6) 0.40 ' 10- 13 -0.058 0.229 -3.010 2.930
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Figure 2-32: w, A and a of different solutions of the approximate algebraic system
for {v*, h*} with p = 10. The different branches are explained in the text. Dashed
lines in (a) are lines of slope 1, 1/2, 1/3, 1/5, 1/7
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Figure 2-33: Approximated solution for subharmonic whirling branch, 3 = 10 I =
0.5. Compare to the solution of the reduced system in Figure 2-31 (b) for the same
parameters
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Figure 2-34: Frequency of the approximated( ... ) and full(o) solutions for the inter-
mediate branch of the reduced system: (a) vs. I at P = 10 and (b) vs. / at I = 0.5

To check the validity of the approximation method, we compare in Figure 2-34

the calculated frequencies for the approximated branch and the original nu-

merical solution for varying / and I with good quantitative agreement. The

approximate branch exists only for a range of /, as observed numerically. In

conclusion, the characterization of the intermediate branch as a subharmonic

whirling mode with large oscillations of some horizontal junctions and smaller

modulation of the vertical junctions is in agreement with the numerics.

* Branch (3) in Figure 2-32 is related to the instability of the main whirling

branch. It is another of the subharmonic branches in which the horizontal and

vertical junctions oscillate appreciably. We present in Figure 2-35 numerical

evidence which supports that the intersection of these two branches corresponds

to the onset of instability for the whirling branch. In more physical terms,

when the frequency of the whirling branch is equal ("resonates") with that of

a subharmonic branch where the horizontal junctions oscillate non-negligibly

with half the frequency of the vertical ones, the main whirling branch becomes

unstable and switches down to branch (1). However, the precise mechanism (be

it based on existence, stability or energy arguments) remains to be studied.

This approach is to be compared to the one developed in Section 2.4.2 where
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we related the instability of the whirling branch to the instability of Mathieu

modes obtained by linearizing the equations. In that case, the method was more

general and revealed a global mathematical mechanism for the instability of the

whirling branch. However, because of the approximations involved, the quan-

titative predictions were not very accurate. The present description, although

particular, seems to give an improved explanation of the observed numerical

behavior.

The origin of both mechanisms is fundamentally the same: the resonance of

the driving frequency with a characteristic frequency of the system causes the

instability of the whirling mode. In the case of the intermediate step, the

whirling branch with "silent" horizontal junctions "resonates" with the subhar-

monic modes where horizontal junctions are "active". This is a particular case

of the more general parametric instability picture developed in Section 2.4.2.

In fact, the quantitative connection between the two approaches can be made

more explicit. We observe that the interval of P for which the intermediate step

appears, roughly 3 E [10, 18] as seen in Figure 2-34 (b), is approximately equal

to the interval where the first parametric instability which the whirling mode

encounters on its return path is caused by the resonance with the mode with

m = 4-see Figure 2-27(b). It is revealing that the wavelength of the intermedi-

ate step solution (Figure 2-29) is also equal to 4 cell lengths and the horizontal

junctions can be described by a standing wave

oH = u(wt) sin (l(j -- 2))

which is equivalent to a wave with only the m = 4 mode excited, as given by

(2.26).

Overall, this suggests the following sequence: As the current is decreased, the

frequency of the whirling branch also decreases. When the driving frequency w

equals 2w 4 , the whirling solution becomes unstable due to the linear instability

of the mode with m = 4. Thus, a new mode where this wavelength is the only
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Figure 2-35: (a) Intersections of the subharmonic branch (3) with the main whirling
branch (1) for different values of P. (b) Comparison of the numerically obtained
repinning frequencies (o), above mentioned intersections (*), and Mathieu modes and
associated instability intervals (- - , - - -)

one, i.e. the intermediate subharmonic whirling mode, emerges as the stable

solution of the system.

* Finally, the solutions of branches (4), (5) and (6) in Figure 2-32 are charac-

terized by large modulations A and a and, thus, the approximations become

worse. Nevertheless, it is noticeable that the slope of w/1i- is approximately

given by I/n, with n = 5, 3, 7 respectively, thus emphasizing their subharmonic

character.

One further step to confirm the validity of our approximation is the use of the

approximate solutions as initial conditions for the full original system to observe if

solutions of the proposed form exist. To this end, we first obtain the corresponding

approximate phase configuration for the full system from (2.126) and (2.129). This

is then used as the initial condition for the full dynamical system of 2n + 1 second

order diferential equations (2.95)- (2.96). As expected, branches (2) and (1) evolve to

the whirling and intermediate branches respectively. All other branches fall into one

of the three already coexisting solutions: superconducting, whirling, intermediate.

Since no new solution is observed when using branches (3)-(6) as initial conditions,

we tentatively deduce that these branches are either artifacts of the approximations,

or correspond to solutions of the full system which are unstable or with a small
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Figure 2-36: Diagram of superconducting device equivalent to the observed interme-
diate mode. This decimated ladder is intermediate between a square and triangular
array

basin of attraction. Furthermore, a linear stability analysis of the five dimensional

approximated system remains to be done in order to explain the observed jumps

between branches in terms of stability or energy arguments.

We conclude by pointing out that the present mode of interest, in which the phases

of the even horizontal junctions in both top and bottom rows are identically zero, is

effectively equivalent to the physical device represented in Figure 2-36. This system is

intermediate between a full square ladder and a triangular ladder array. Note that the

triangular array can be obtained from a square ladder by removing all the even (odd)

horizontal junctions in the top (bottom) row. Since these two most commonly used

geometries have distinct properties and behavior, the proposed device could present

interesting features of its own, regarding, for instance, vortex propagation. It could

be also a realization where these subharmonic branches become observable.

In conclusion, the appearance of these modes illustrates the important role of the

horizontal junctions in two dimensional Josephson Junction arrays. The physical con-

straints they introduce (via current conservation and fluxoid quantization) modify the

behavior of the vertical junctions and allow the existence of new fully two dimensional

modes. Observations, or analyses, which focus exclusively on vertical junctions need

to effectively parametrize the presence of the horizontal links. Even then, a full two

dimensional description of the modes is likely to be needed to explain the behavior

of the arrays, especially in the intermediate, richer regimes.
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2.4.4 Summary and discussion

We have presented in this section a thorough description of the whirling mode in

ladder arrays in connection with the repinning transition. We began by obtaining

an analytical approximation for the whirling solution, for any field f, both far from

the edges and when edges are taken into account, to very good agreement with the

numerics. The effect of the boundaries on the solution is of O(w - 2) and, thus, almost

negligible. When f = 0, the correction is zero to this order of the approximation.

A linear stability analysis around this approximate solution, in the line of a similar

calculation introduced in [99], was performed to deduce the mechanism of the insta-

bility of the whirling branch. As a result, a dispersion relation which parametrizes the

presence of the horizontal junctions was obtained. The first, but not only, effect of the

presence of the horizontal junctions is the appearance of an effective inductance which

couples the vertical junctions. This results from the fluxoid quantization restriction.

The instability of the whirling solution is caused by parametric resonances of the

whirling frequency with the characteristic frequencies of the modes of the array and

is not a homoclinic-type bifurcation. The decrease of the repinning transition as the

damping is increased is also accounted for within this approach as the high frequency

resonances disappear due to the narrowing of the instability interval. Moreover, we

explain the absence of the expected restabilization steps on the return path [99] in

the numerics: the small value of the effective inductance introduced by the hori-

zontal junctions produces a cascade of overlapping instabilities which renders them

unobservable.

The important role of the horizontal junctions is fully displayed in a new interme-

diate step on the return path which was found for f = 0 and intermediate values of

3. It was fully characterized as a subharmonic whirling branch where the horizontal

junctions oscillate almost harmonically with non-negligible amplitude. By assuming

a standing-wave form for the horizontal junctions, we were able to reduce the dynam-

ical equations of this mode to a system of two coupled damped nonlinear pendula:

one being externally driven and then driving the other. Moreover, an analytical ap-
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proximation was derived for this reduced system through the method of harmonic

balance. From this approximation, the I - V dependence was predicted and checked

satisfactorily with the numerics. The other possible solutions for the analytical sys-

tem represent different subharmonic branches under the given restrictions. Although

they do not appear in the dynamical simulations, they deserve a closer look in the

future. For instance, numerical evidence suggests that the intersection of one of them

with the main whirling branch explains well the observed repinning currents. Thus,

the whirling branch becomes unstable when it resonates with a subharmonic solution

where the horizontal junctions oscillate appreciably. In this light, the new interme-

diate step is the result of a special case of the parametric resonance whose excited

mode generates a stable subharmonic solution. Indeed we proposed a new geometry

for a device (a decimated ladder) intermediate between a triangular and a complete

square ladder, where these and other effects could be observed. We conclude this

discussion by noting in passing that other reduced systems have been proposed for

the case f = 1/2 as an ansatz to simplify the system [75, 60]. We plan to investigate

the connection with our system in the future.

129



130



Chapter 3

Two-dimensional Josephson

junction arrays

3.1 Background

This chapter deals mainly with simulations of two-dimensional, square, open-ended

Josephson junction arrays with perpendicular injection of current and in the presence

of a magnetic field. For simplicity, all the simulations are performed in the limit of no

inductances and zero temperature. Our main aim here is the compact characteriza-

tion of the different dynamical regimes of these systems using the tools of nonlinear

dynamics. In addition, we will consider the dependence of their behavior on two of

the variable parameters of the physical system: the characteristic damping of each of

the junctions, as given by the McCumber parameter P, and the perpendicular applied

magnetic field, parametrized in terms of the frustration f. We restrict ourselves to

this simplified system in order to extract physically meaningful conclusions. Thus,

we do not investigate the dependence of the observables on temperature, self-induced

fields, the number of cells of the array in the x and y directions, or other types of

connectivity (e.g. triangular).
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Review of experiments

All of these parameters, and more, have been explored in the considerable amount of

experimental and theoretical work undertaken in the last fifteen years. As stated in

the Introduction (Chapter 1), the interest in these systems stems from their potential

technological applications mainly as high-frequency emitters [9], and their use as

wave mixers and detectors [49] is also important. The old idea of employing these

superconducting elements as memory circuits (due to their hysteretic behavior) has

not delivered on its initial technological promise [27].

From a more fundamental point of view, these devices are closely related to

other systems for which, in many cases, experiments are difficult. For instance, they

can serve as controlled models for phenomena occurring in high-T, superconductors.

These are ceramic materials (perovskite oxides) which, in their processing and syn-

thesis, form microcrystalline structures with numerous grain boundaries which act

as natural weak junctions [43]. Thus, the understanding of the I- V characteristics of

Josephson junction arrays could be of great help to further our knowledge of the more

complicated measurements in high-Tc superconductors [70, 52]. Even more funda-

mentally, some of these oxygen-deficient perovskites crystalize in highly anisotropic

layered structures with the superconducting transport occurring fundamentally in

planes separated by insulating sections [42]. Hence, they can be viewed as an intrin-

sic set of stacked quasi-continuous Josephson-junctions. Consequently, this line of

research has pursued the simulation and fabrication of stacked continuous junctions

[87, 64] and of stacked discrete one-dimensional parallel arrays [20]. Bridging the gap

between stacks of one-dimensional systems and truly two-dimensional devices, recent

experimental work [73] has explored the tunable crossover from one-dimensional to

two-dimensional arrays.

In a different direction, Josephson junctions provide a good testing ground for

fundamental concepts of Quantum and Statistical Mechanics which are at the heart

of the description of these devices. The prediction by Kosterlitz-Thouless-Berezinskii

[44] of the existence of a temperature- or field-induced phase transition has been the
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object of several experiments [91, 88, 84, 72]. Similarly, the predictions from the

theory of quantum vortices [23] have begun to be realized in the measurement of

some interference effects [21].

Finally, the study of the classical regime of the array (where charging energies are

negligible) has been experimentally rewarding. In this limit, the vortex can be consid-

ered as a classical particle which moves under the action of electromagnetic forces in a

sinusoidal potential. The ground states of the system form flux lattices which begin to

move in a flux-flow fashion similar to the one observed in continuous superconductors

when random pinning centers are present [54]. In the case of underdamped arrays,

when the current is increased further, row-switching events occur [92, 83] in which the

voltage loss is restricted to certain rows in the array. This spatially non-homogeneous

solutions have been observed experimentally with low-temperature scanning electron

microscopy [47, 15]. Moreover, the observation of ballistic motion of vortices, which

behave very much like a very massive particle with large inertia, in triangular arrays,

where the intercell energy barriers are small [89], is the object of ongoing theoretical

work and controversy.

Review of simulations

The experimental overview above stresses both the encouraging overall agreement

between theory and experiments, and the need for some insight to guide the search

for the optimization of specific applications within the huge space of experimental

parameters. This void has been filled with numerical simulations, which provide the

capability to concentrate on the effect on the behavior of some of the parameters. The

important body of numerical work is validated by the existence of a good quantitative

model (RCSJ) which faithfully reproduces the physical characteristics of the system.

The body of analytical work is considerably smaller for two-dimensional arrays [101,

24, 53] due to the difficulty of reducing the dimensionality of the problem in any

significant way. Simplifications to map the observed behavior of the arrays onto

other well studied systems are also difficult.

The freedom, when performing numerical simulations, to select the approxima-
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tions, or the limiting regimes, and to concentrate on different parameters and effects,

has produced a rich and disperse literature which we review briefly. To that end, we

summarize the main themes pursued, and the results obtained, through some relevant

examples. Some of the topics investigated in the numerical literature include:

Influence of self-fields By taking into account the inductances of the problem (i.e.

A finite), self-fields are shown, among other effects, to alter the depinning

current of the array and to introduce added asymmetries in the sequence of

row-switching events [67, 66, 70, 52, 85, 17]. Most of the simulations in the rest

of the literature do not include self-field effects since the computational cost is

increased substantially.

Underdamped vs. overdamped dynamics These two cases represent different

limiting behaviors with their own interesting characteristics. In the overdamped

limit, the McCumber parameter / is taken to be zero, and the equations of the

junctions become of first order. Thus, the inertia term is missing and neither

row-switching nor hysteretic effects are easily observed. This limit is physically

realizable in Nb-A120x-Nb junction arrays. Aluminum junction arrays, on the

other hand, where the junctions are underdamped, show hysteresis and row-

switching. Examples of simulations in overdamped arrays are found in [12, 22]

while arrays with capacitive junctions have been studied in [66, 105].

Influence of temperature In addition to the deterministic simulations at T = 0,

temperature can be introduced as a stochastic Langevin term in the dynamical

equations. The presence of randomness in the system reveals chaotic behavior

in certain regimes [7, 6, 22].

Influence of disorder In order to mimic more realistically the experimental set-

ups, disorder is introduced in the system of equations in different manners: as

random irregularities in the positions of the junctions [16]; as a random dis-

tribution of critical currents of the junctions [62]; or as disorder in both the

critical currents and the resistances [48]. Similarly to the effects of a non-zero
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temperature, the disorder uncovers complex properties. Dominguez [16] ob-

served the appearance of a plastic flow phase just above the depinning current

in overdamped irregular arrays with f integer. In that state, vortices flow in

channels across the array before entering a phase of homogeneous flow. Under

completely different considerations, Octavio et al. [62] concluded that the syn-

chronized states in two-dimensional arrays are more stable under the presence

of disorder than the corresponding coherent oscillations in series arrays. Even

more surprisingly, Landberg et al. [48] propose controlled disorder as a means

to enhance frequency-locking in arrays.

Influence of the geometry of the array Different topologies and connectivities

of the arrays have been used to explore distinct effects. One of the examples

where the most common square geometry was not used is [104], where sim-

ulations of triangular arrays were performed in search of ballistic motion of

vortices.

AC-driven vs. DC-driven The presence of an external driving frequency produces

additional resonances between the external and characteristic frequencies (Shapiro

steps) which have been extensively investigated [103, 68]. Similar effects appear

when the arrays are studied in the presence of an oscillating magnetic field [6].

Static vs. dynamic calculations Static calculations are performed, in the spirit

of the statistical mechanical principles, by searching for the ground states in

the complicated phase space of the system. The procedure commonly used

applies standard minimization algorithms based on Monte Carlo or simulated

annealing techniques [82, 81] or more advanced improved Newton's methods

[67]. In short, static calculations are based on the minimization of the free

energy of the system, while dynamical calculations simulate the time evolution

of the system from the equations of motion.

Common to all these studies, a series of physical pictures serve to present the

information gathered from the simulations. The most common are: the concept of
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vortex propagation in a viscous medium [32, 4, 93]; the analysis of spatiotemporal

structures in terms of flux lattices and defects [22, 29, 74, 54, 53]; the pendulum

analogy and the reduced mechanical systems [99, 60, 75, 100]; the connection between

the continuum and discrete models [93, 64]; and the reduction of the system to smaller

tractable units which are then coupled as a means to reproduce the larger system

[101, 24, 87, 99]. We will also use simulations to gain knowledge about the system

and will represent our results partly in terms of this well-known notation and, more

importantly, with concepts and methods of nonlinear dynamics which have not been

used in this context.

The chapter is organized as follows: In the first section we introduce the physical

description of the system, its mathematical formulation, the general notation, and an

explicit enumeration of the approximations introduced in the model. Furthermore,

we describe the mathematical methods used to characterize the system beyond the

standard time and space averaged I- V characteristics. In the second and third sec-

tions, we investigate, respectively, the dynamical regimes and physical observables of

underdamped (3 large) and overdamped (P = 0) arrays of junctions. In particular,

we explore the interplay between the formulations in terms of localized excitations

and of extended waves in the system; and relate the collective behavior of the array to

the motion of the individual junctions. For the underdamped case, we also establish

the connection of the two-dimensional results with those obtained for ladder arrays,

which we studied as an intermediate system towards the fully two-dimensional case.

Since the dynamical regimes in both systems correspond to similar physical pictures,

certain solutions of the ladder can be used to describe the regimes of two-dimensional

arrays and thus lead to some quantitative predictions. Finally, we characterize the

overdamped system numerically and relate the main features of its I- V curves to other

systems where flux-flow phenomena are dominant [74].
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3.2 Introduction: model and methods

3.2.1 Physical description and model equations

We begin by summarizing the physical features of two-dimensional arrays and in-

troducing the mathematical formulation for their modeling. Much of this section is

analogous to Section 2.2.1 for the ladder array, to which we refer the reader for a more

detailed account of some of the physical concepts underlying the equations. However,

the present system's greater complexity and absence of significant simplifying con-

straints require the introduction of a more general and compact matrix formulation

[66].
Consider an N x M open-ended square array of Josephson junctions. The system,

shown in Figure 3-1 together with its basic cell, is constituted by N + 1 rows and

M + 1 columns of superconducting islands, each of them weakly connected to its four

neighbours through Josephson junctions. A uniform dc-current is injected in the y

direction in each of the islands at the top row and extracted from the bottom. The

right and left boundaries remain free. In addition, an external magnetic field Bext

can be applied perpendicularly to the xy-plane which contains the array.

As explained when studying the ladder array, each island is described by a phase

Oij, and each junction by a gauge invariant phase difference qi,j given by (2.1). From

that definition and the notation introduced in Figure 3-1(b) we obtain the following

expressions for the phases of the vertical and horizontal junctions in the array:

2w f(i,j+1),v = i,j - Oij+l - A dl (3.1)

7(o f(idj)

i = ij - )i+1,, A dl (3.2)41)0 i,j)

where A is the vector potential of the total magnetic field B through the array.

Following a counterclockwise closed path in cell (i, j), shown in Figure 3-1, the

winding of the phases on the islands gives

(OE,j - Oi,j+~) + (Ei,j+~ - Ei+1,j+1) - (Ei+~,j - Ei+,1,+1) - (eij - ei+1,j) =
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(b) 1 -

Iy
11 , 11

12 12

Figure 3-1: (a) Cell of the 2-D array formed by four superconducting islands, with
the corresponding phase Oij weakly linked to the four nearest neighbors forming four
junctions denoted with a gauge invariant phase difference ij. (b) Schematic of a
7 x 7 array with free boundaries and current injection from top to bottom. Branch
variables Iij and Oi,j are defined in the figure.
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i,y + ¢H.+I - Oil,ji, -- h iH + 0 A -.dl (3.3)

which yields the fluxoid quantization condition for the cell

EO OVx -- Vv O 2r ,J-(3.4)(i,j)

where nij is an integer and (I is the total magnetic flux through the array whose

cell area is taken to be unity. The symbol i') denotes an oriented sum around cell

(i, j). To obtain (3.4), the univaluedness of the phase E -up to integer times 2-F- as

well as Stokes' theorem have been invoked. Also, the total magnetic flux ) results

from two contributions: the flux of the external field perpendicular to the array, and

the flux produced by the self-fields caused by the circulating currents in the system.

This set of N x M equations (3.4), one per cell, will be used to generate the

governing equations together with other relations obtained from:

1. Kirchoff's law: conservation of current at each node

jH ± = Th (3.5)

2. RCSJ model with constant resistance (2.5)-(2.8) for each of the Josephson junc-

tions
1

i,j = i,j + - i,j + sin ilj = Af(i,4j) (3.6)

or, equivalently,

Ii,j = + ij + sin ¢i,j, (3.7)

where 0' = d-_ /dm',, = q//i- . Here the current is measured in units of I, /

is the McCumber parameter and nV is a nonlinear operator. Thus the time

evolution of each junction strictly follows the equation of a forced damped

nonlinear pendulum.

These equations, which formalize the physical description of the system, can be

recast into compact matrix form following standard notation from circuit theory [14,
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66] and linear algebra [77]. To that end, we introduce the following definitions for the

array of N x M cells in Figure 3-1:

* Number of nodes (islands): S = (M + 1)(N + 1).

Number of edges: E = M(N + 1) + N(M + 1).

Number of cells: C = M N

* Vector of phases of the islands: Esxl.

Vector of phases of the junctions: qExl.

* Node current source vector: I4t. Zero for all islands except for those in the

top row, where current is injected (source of intensity +I), and for the nodes

in the bottom, where the current is extracted (sink of intensity -I).

Branch current vector: Iex 1.

Mesh current vector: ICx, . Circulating current associated with each cell as a

counterclockwise loop is described.

* Connectivity matrix: AExS. This is the topology matrix which takes into ac-

count the geometrical connections between nodes. Translates node variables

into branch variables (node-to-branch) and is equivalent to a node sum opera-

tor.

* Mesh matrix: MCxE. This is the edge-to-cell matrix. Relates the edge variables

to a counterclockwise loop around a cell, i.e. equivalent to a cell sum operator

like t(,) introduced in (3.4) .

The formulation is then simplified considerably:

* Equation (3.4) becomes

M O= 27r -- (3.8)

where n'Cxl is a vector over cells which contains integers nij, associated with

the existence of topological vortices on each cell, and ICxl is the vector of cell

fluxes.
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* Equation (3.5) becomes

AT = 'ext (3.9)

which establishes the balance of currents in each node.

* Equation (3.6) becomes

=(3.10)

The total flux on each cell (P can be separated into two parts

4 = Dext + Dind (3.11)

which we define as follows:

1. Flux of the applied constant field, which we parametrize in terms of the constant

frustration f -i.e. in fractions of the quantum of flux (o,

-ext = 0

where fcxl is a constant vector with all elements equal to f.

2. Flux of the induced magnetic field, produced by the circulating currents in the

array I m and given by
4ind = LI 1m

where Lmcxc is the cell-to-cell inductance matrix.

Therefore, the fluxoid quantization (3.8) can be written as:

1
M + L+ Lm I m = 2r(n - f) (3.12)AI

where Aj = (o/(2rIc~0o). In our simulations, however, we have considered only the

limit A± -+ oo, where self-fields are negligible and, thus, the total flux is only produced

by the external applied field. As discussed for the case of ladder arrays, this limit is

physically realizable in aluminum arrays with large normal resistance and large A±.
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With this approximation, (3.8) becomes

MO = 2-(i - f) (3.13)

where ni can be put to zero without loss of generality. This implies that

B = Bext = f Io Z. (3.14)

with an associated vector potential Aext such that

V X Aezt = Bext

For simplicity of the calculations we choose a Landau gauge where

Aext = f ýo y

such that equations (3.1)-(3.2) can be written as

=AO- - - (3.15)

where A is the connectivity matrix and ?Exl, an edge-vector, has value zero for all

the vertical edges and value 2irfj for all the horizontal edges in row j.

We are finally in a position to write the system of governing equations in an

operationally efficient form:

z - E(3.16)S= [(ATA)-' {ixt - AT sin(A2) - •) - z)

which follows directly from (3.7), (3.9), (3.10) and (3.15).

The time evolution of the physical system is obtained from the solution of this sys-

tem of equations beginning from a given initial condition of the phases and derivatives

of the phases {)0, 0o}. The number of degrees of freedom of the system of coupled
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differential equations is 2(S - 1) = 2(M + 1)(N + 1) - 2, since one of the nodes

is grounded to eliminate the redundancy of the phases, thus allowing the inversion

of ATA. It is easy to understand that the computational cost of numerical integra-

tion increases rapidly and the simulation of large arrays requires large computational

resources.

This system of equations corresponds to a strict mechanical analogue of our sys-

tem: a square lattice of coupled damped nonlinear pendula, forced by an external

torque I, with open ends and with a frustration f. This analogy of each junction

as a pendulum, will be exploited in our analysis of the behavior of the arrays under

variation of the damping 3, torque I, or frustration f.

143



3.2.2 Numerical analysis of simulated I- V characteristics

The measurement of < V >, the dc-voltage difference between top and bottom rows

of a two-dimensional array, as a function of the injected current I constitutes its I- V

characteristic. This is one of the standard experimental techniques to study how the

dc behavior of the arrays changes with the variation of external parameters like the

applied magnetic field f or the temperature T, which modifies A1 and /. The I- V

curve also serves to investigate the dependence on other intrinsic properties of the

array like its extension in the x and y directions or the material of the junctions. In

short, they are a first diagnostic for the relevant parameters which affect the design

of technological applications derived from these superconducting arrays.

The existence of multiple interdependent experimental variables, and the contra-

dicting effects they produce on the fundamental parameters of the equations, make

clear conclusions and simple physical pictures difficult to extract from the experi-

ments. Thus, numerical simulations provide a good substitute to obtain precise and

separate information about the dependence of the dc behavior on those variables.

To this end, and with the aim of clarity, we consider a simplified scenario where the

temperature is zero, self-fields are neglected (AI -+ oco) and the size of the array is

fixed to be 7 x 7. Under these simplifications, we study the f dependence of the I- V

characteristics of underdamped (/ = 10) and overdamped ( =- 0) arrays.

The simulated I- V curves, which reproduce similar experimental measurements

reasonably, are obtained by numerically integrating the system of governing equations

(3.16). The integration is performed with an Adams-based algorithm [67] to obtain

the time variation of the phases and phase derivatives {1t, )t} from a given initial

condition. From those, we calculate the measurable dc-voltage given by (2.21)

< V >= IcR ( ) (3.17)

where qj is averaged both in time q and in space (q) over the complete array. For

a given pair of parameters {f, p}, < V > is calculated as a function of I to give

the numerical I-V characteristic. The numerical simulation begins from I = 0, with
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Figure 3-2: Direct path of the I- V characteristic of a 7 x 7 two-dimensional array with
P=10 and f = 0.1. The corresponding spatially extended I- V is shown in Figure 3-3.
In Figures 3-4 and 3-5, we depict the space-time evolution of the point marked with
the solid arrow, I = 0.64.

the initial condition that phases and phase derivatives are zero, and the current is

swept up in small increments. An example of the direct path ("up") of an I- V curve

is shown in Figure 3-2. Even in this simplified system, and with the rough probing

tool that the I- V characteristic is, we can already observe the complicated landscape

of regimes, critical currents and hysteretic cycles that this physical system supports.

To gain some insight into the behavior of the system, we unravel the compressed

information contained in those graphs by considering the spatio-temporal solutions

which originate them. Therefore, we summarize now the numerical methods and the

notation which will be used to characterize the dynamical regimes of the system. All

refer to the example presented in Figure 3-2.

First, it is helpful to study the time-averaged but spatially extended frequency

of all the junctions in the array Oi,j as a function of the current I, i.e. the spatially

extended I- V. We choose to represent it as a 3-D plot where the index of the junction,

as given in Figure 3-3(a), is placed in the x-axis, i.e. the x-axis is a juxtaposition

of the rows of the array. Figure 3-3(b) depicts the spatially extended I- V for the

example of Figure 3-2. Note that that I- V curve is indeed the result of averaging

Figure 3-3(b) along the x-axis. The advantage of the spatially extended I- V is readily
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(a)

Vertical junctions

Row 1 (1-8)

Row 2 (9-16)

Row 3 (17-24)

Row 4 (25-32)

Row 5 (33-40)

Row 6 (41-48)
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Horizontal junctions

Row 1 (57-63)
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Row 5 (85-91)

Row 6 (92-98)

Row 7 (99-105)

Row 8 (106-112)
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O

4U 48
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j, index of junction

Figure 3-3: (a) Indexing of junctions in a 7 x 7 square array. (b) Spatially extended I-
V for the vertical junctions of the example presented in Figure 3-2 (/3 = 10, f = 0.1).
Consecutive rows of vertical junctions are juxtaposed along the x-axis of the graph,
following the indexation introduced in (a).
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observable from the figure: it helps to elucidate the existence of spatially inhomoge-

neous solutions, which are characteristic of these arrays.

More detailed information can be obtained about a specific point of the I - V

curve by analyzing the spatio-temporal solution associated with it. Note that the

only information from the solution in the I-V curve is its time and space averaged

frequency, while, in fact, the simulations provide the time evolution of all the phases

and their derivatives. A convenient way to summarize these data is in a space-time

diagram of the solution like the one shown in Figure 3-4(a) which corresponds to

the point marked with the arrow in the I-V diagram of Figure 3-2. The space-

time diagram is a contour plot of ijl'(t) and serves to study the propagation of

waveforms in the array. In effect, this is a compact way of representing an animation

of the system. Both the average speed and the non-uniformity of the propagation of

travelling wave solutions can be extrapolated from the study of these graphs, as will

be discussed below. Similarly, the periodicity and the space symmetry of the solution

become apparent from their examination.

In addition, the specific time evolution of each junction can be investigated through

its phase portrait, i.e. the graph of 0'(t) vs. 0(t). In this respect we recall the analogy

of the junction to a nonlinear pendulum and trace the motion that the pendulum

describes. In Figure 3-5, we depict the three types of motion found in the junctions

of these arrays:

1. Figure A corresponds to a libration. The pendulum oscillates around its equi-

librium position with its phase always contained between [0, 27r), i.e. it does

not "whirl" over the top. Moreover, the complicated motion is still periodic. It

is important to note also that, for this junction, qY _ 0. Thus the voltage drop

across the junction is zero and the junction remains superconducting.

2. Figure B shows a whirling junction, for which the pendulum goes over the top

periodically. Here, 0'(t) is roughly constant, which implies an almost harmonic

oscillation and a finite dc-voltage in this junction. This motion is qualitatively

equivalent to the running periodic solution of the single junction.
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(a) Contour map of oi': 7 x 7, 3 =10, f=0.1 - 1=0.64

Row 18 Row2 16 24 32 40 48 Row7 56
Row 18 Row 2 16 k, index of vertical junction Row7 56

(b) Vertical junctions: Row 6

200 250
Time

300

300 K, inaex

Figure 3-4: (a) Spatio-temporal graph of the solution for the same example of Fig-
ure 3-2, at I = 0.64. We represent a contour map of Oyl of juxtaposed rows of vertical
junctions indexed according to Figure 3-3(a).The different behaviors of the rows is
clearly visible and analyzable from the graph. For instance, row 6 -marked with
arrows in (a)- is studied in (b) by showing the time evolution of the phases /k and
the spatio-temporal dependence of /k' for this row, k E [41, 48]. It corresponds to a
clear pattern of vortex propagation, as discussed in Section 3.3.
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Figure 3-5: Individual motion of three vertical junctions of the array with the same
parameters as in Figure 3-4. For all three, the top row depicts 0(t) and the bottom
row corresponds to the phase portrait 0' vs. q. The first column (A) corresponds to
a librating junction in row 1. Column B shows a whirling junction in row 4. Finally,
column C shows a junction with whirling-ringing motion in row 6, where localized
kink-like excitations ("vortices") propagate.

3. Figure C presents a whirling-ringing solution. In this case the junction goes

over the top rapidly, producing a 27r jump in the phase, but describes also

some oscillations (ringing) around a ghost equilibrium point in between whirling

motions. The concept of ringing implies that there are regions in the phase

portrait where 0' < 0, and the pendulum displaces backwards.

In summary, using the techniques described above we can quantify the dependence

on f and I of several of the features of the I- V characteristics. We also achieve a

more fundamental description of the different regimes in the I- V curves in terms of

the dynamical behavior of the system. We have found the following properties helpful
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to describe the system:

1. Identification of non-superconducting rows. One of the main characteristics

of these arrays - and object of much recent research [92, 66, 83]- is the ap-

pearance of stable solutions which are spatially non-uniform. This feature is

readily observable from the spatially extended I-V (Figure 3-3) where non-

superconducting rows appear as the ones with a non zero average frequency.

2. Periodicity. We study Poincard sections in the phase portraits of Figure 3-

5 to obtain the period of each of the junctions. From this analysis we can

deduce the periodicity of the different rows and the overall periodicity of the

solution. Periodic repetition and spatial symmetry are also observable in the

spatiotemporal contour map in Figure 3-4.

3. Propagation of waveforms. Most easily studied in the space-time diagram (Fig-

ure 3-4), where patterns and waveforms can be seen to propagate from right to

left in some of the rows. We can quantify the analysis by numerically calculating

the velocity of propagation of the "waveform" and the degree of nonuniformity

of the propagation. This serves to distinguish between two types of propa-

gating waveforms: a train of localized excitations moving usually along a row

("vortices"); and another solution uniformly extended over the row linearly

dependent both on space and time ("whirling mode").

4. Type of motion of the pendula. We label the motion of each of the pendula

under one of the three categories described above: librating, whirling, whirling-

ringing. We will observe that this classification is directly related to the type

of propagation observed in the row.

This section summarizes the computational procedure used to simulate the I-V

characteristics and argues for a more complete use of the dynamical information pro-

vided by the spatio-temporal solutions so obtained. We have also introduced several

numerical tools which facilitate the understanding of the complicated dynamical be-

havior of the system. In particular, they serve to reveal the interplay and transition
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between regimes in which "particle" and "wave" interpretations are more appropri-

ate. Moreover, the pendulum analogy for the junctions introduces useful mechanical

concepts and terminology and is a powerful means of visualization for the system.

Only methodological and notational aspects have been addressed until now. In the

following sections we apply these tools to study the nonlinear dynamics of square

arrays of underdamped and overdamped Josephson junctions.
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3.3 Array of underdamped junctions

We begin the characterization of two-dimensional, open-ended square arrays by study-

ing the dynamical behavior of arrays formed by underdamped junctions, with P = 10.

The mechanical terminology stems from the analogy of each of the junctions to a

nonlinear pendulum with damping F = 1/vI3, as given in (3.6). A small damping

translates into a motion with large inertia, or large mass, with a small rate of decay

and a strong tendency to persist once it has begun. This is the reason for the ex-

istence of hysteretic phenomena in the I- V curves when 3 is large. Experimentally,

this limit corresponds to aluminum junctions whose resistance is large, as discussed in

Section 2.2.2, and, thus, have larger P. On the other end, we find Nb - A120x - Nb

junctions, with smaller resistance and /3, which are experimental realizations of the

ifnderdamped limit / = 0 and which we will address in the following section.

We have studied numerically the dependence of the simulated I- V characteristics

on the external magnetic field f for a 7 x 7 square open-ended underdamped array,

at zero temperature, in the limit where self-fields are negligible, (AL -+ oc). To

this end, we consider arrays of junctions with / = 10 and varying magnetic field

f = 0.05, 0.1, 0.2, 0.3. Each point of the simulated I-V curve for a given {/, f} is

obtained by numerically integrating the system of governing equations (3.16) for each

value of I, and averaging the calculated frequency over time and over the complete

array, (qij (t)) -- < V >. The current is then swept up at small increments to complete

the graph of < V > vs. I and the final phase configuration of each point is taken as

the initial condition for the next integration with the new I.

The resulting I- V characteristics for varying f, shown in Figure 3-6, have been

extensively studied in the literature as diagnostic tools which allow direct comparison

to the I- V curves of related systems, like the single junction, flux lattices or contin-

uous superconductors [78, 63, 74]. The different regions in the I-V characteristics

correspond to distinct dynamical regimes of the junctions in the array. Similarly to

the ladder array, there are three main regimes -superconducting, flux flow, whirling-

which are found as the current is increased. It is important to remember that a sim-
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ulated, or even experimental, I- V represents a dynamical path through the different

states, or solutions, of the system. This is closely related, but not exactly equivalent,

to finding the solution which is energetically most favorable at each point. In fact,

there are regions in which two or more dynamical solutions coexist and the state in

which the system finds itself depends critically on the past history of the experiment,

i.e. hysteretic effects are characteristic of these arrays. The usual sequence as the

current is increased can be observed in Figure 3-6 and summarized as follows:

1. The array is initially in a superconducting solution in which all junctions librate

with negligible amplitude and with zero average frequency. The calculation of

ground states for I = 0 is a well documented topic in the literature [82, 81]

although it is not trivial to extend those results to obtain the state of minimum

energy in the presence of a current. Independently of this, when the critical

current Idep is reached, all the fixed points of the system go unstable (or cease

to exist, presumably through a saddle-node bifurcation) and a solution with a

finite < V > appears.

2. After the depinning of the array, the system enters the flux-flow region, usually

characterized as a non-static (that is, non-superconducting) state with resis-

tance directly proportional to f, in the limit of small f. The flux-flow resis-

tance is seen to depend on A± [85] and is always much smaller than the normal

resistance of the array. In fact, this linear dependence is a simplification of a

more complicated behavior which includes some clear substructure.

3. The flux-flow solution becomes unstable at a current Iswitch where whirling

modes are dominant. In these whirling solutions, one or more of the rows of

the array can be described by a whirling mode, similar to those described for

the ladder in Chapter 2: all the junctions in the row whirl almost harmonically,

i.e. with almost constant frequency, and generally out of phase. There exist

spatially non-uniform solutions, called partially row switched states, where some

rows are in the whirling mode and others remain either superconducting or in

the flux-flow regime. As the current is increased, the final, most resistive totally
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Figure 3-6: Direct path of the I- V curves for an underdamped 7 x 7 array with 4 = 10
and varying f. We have indicated the three dynamical regions: superconducting (SC),
flux-flow (FF) and whirling modes (WM).

switched state is reached, where all rows (and junctions) can be described with

the whirling solution and the I- V dependence is ohmic with a resistance per

junction equal to its normal resistance R,.

This description of the I- V characteristics can be made more precise and quan-

titative by using the numerical tools described in Section 3.2.2. We choose the case

f = 0.1 in Figure 3-6(b) to exemplify the analysis which was also performed on

the other examples. In Figure 3-3(b) we can already observe the importance of

the spatially non-uniform solutions. The existence of partially row switched states-

where some rows oscillate with an "ohmic"average frequency while others remain

superconducting- is clearly visible for currents I > Iswitch - 0.52. In Figure 3-7 we

also summarize the detailed calculation of the period of the solution, the velocity of
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propagation of the waveforms, and the classification of the junctions-pendula accord-

ing to their type of motion. These are obtained numerically from the spatio-temporal

diagrams and the phase portraits of the junctions as explained above.

We briefly describe the dynamical behavior for this case f = 0.1 in terms of a

series of critical currents as follows:

* For I < Idep = 0.34, the array remains in a superconducting solution which con-

tains vortices. This is expected for 2-D arrays as the critical field for penetration

of vortices is f, e 0.08 [67].

* The interval 0.34 < I < Iswitch = 0.52, corresponds to the flux flow region where

the motion of the active junctions is of the whirling-ringing type as shown in

Figure 3-7(c). Moreover, the solution is not spatially uniform since only the

three central rows present a non zero average frequency. In fact, a process of

row activation is produced at I = 0.36 when the solution goes from one to three

active rows. It is also unexpected that the solution in this regime is periodic in

the interval 0.34 < I < 0.40. Below we explore this complicated regime in more

detail.

* The region where whirling modes are dominant begins at Iswitch = 0.52. The

sequence of row-switching occurs as the current is increased:

* For 0.52 < I < .60, one row is whirling while the rest are superconducting.

* From I = 0.60 to 0.68, the central row (number 4) remains whirling but

rows 2 and 6 get activated to a flux-flow whirling-ringing solution. That is, this

is a mixed solution where row 4 can be described with a stretched kink (whirling

mode) while rows 2 and 6 present propagation of localized waveforms or kinks,

in a typical flux flow pattern.

* At I = 0.68, rows 2 and 6 switch to whirling. This three-rows switched

state is observed until I = 0.88.

* The totally row switched state appears at I = 0.88. For currents above,

the behavior is purely ohmic.
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7x7: =10 f=0.1
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Figure 3-7: Detailed dynamical analysis of the I- V characteristic of a 7 x 7 array
with 3 = 10 and f = 0.1: (a) Frequency of the overall solution (2w/T = w/IV)
as a function of I. Note that whenever there is whirling motion, the frequency is
always 2w7/To ý I; (b) Velocity of propagation of waveforms in each of the rows as
a function the normalized current; (c) Number of junctions with each of the three
types of motions (libration, whirling-ringing, whirling) as a function of I. The flux-
flow region is characterized by whirling-ringing motion. Row-switching corresponds
to pure whirling motion.
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(a) Normalized current, I
Flux-flow region: No. of active rows

f Idep 1 3 5 7
0.05 0.63 0.63-0.64
0.1 0.34 0.34-0.35 0.36-0.50
0.2 0.24 0.24-0.48
0.3 0.24 0.34-0.53

(b) Normalized current, I
Whirling region: No. of switched rows

f Iswitch 1 3 5 7
0.05 0.66 0.66-0.83 0.85-0.95 0.97-
0.1 0.52 0.52-0.60 0.68-0.87 0.88-
0.2 0.54 0.54-0.69 0.71-
0.3 0.60 0.60-

Table 3.1: 7 x 7 underdamped array (/3 = 10): (a) Critical currents for the flux-flow
region: depinning and row activation sequence. (b) Row-switching sequence for the
whirling region: Intervals of I where the different spatially non-uniform solutions
exist.

This type of descriptive analysis is carried out for other values of f to obtain a

similar overall picture. The increase in magnetic field f produces the expected effects:

the flux flow of vortices takes place in more rows, and the critical currents at which the

row-switching in the whirling region, and the row-activation in the flux flow region,

take place, decrease. We have summarized these numerical results in Table 3.1.

We consider now a more detailed study of the spatio-temporal solutions of the

observed dynamical regimes. Analytical results for 2-D arrays are scarce, and mainly

constrained to overdamped arrays [53, 24] or deal with the in-phase state stability

[101]. Recently, analytical techniques based on a continuum approximation, with

fluid mechanical notation, have yielded a promising description for the solution of

the totally row switched state and its properties [95]. In this section, some analytical

work will be presented together with a numerical characterization of the solutions.

Moreover, we will establish a close parallelism between these regimes and the corre-

sponding behaviors in the ladder array, for which we obtained a rigorous description
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in Chapter 2. Therefore, the physical picture of the solutions, bifurcations and ranges

of validity for the regimes of the ladder can be used as a guide for the characterization

of the more complicated 2-D arrays. At the same time, the observed differences be-

tween the two devices are the result of both very strong constraints in the y direction

and dominance of edge effects in the ladder array.

3.3.1 Superconducting state and depinning

As discussed for ladder arrays (Section 2.3), the problem of depinning is related

to the calculation of the point where the ground state of the system undergoes a

bifurcation that affects its stability. We have not carried out an in-depth study of

the dependence of Idep vs. f. However, the depinning behavior of the ladder can

be used to establish some qualitative understanding of the depinning in 2-D arrays.

The behavior for ladder arrays can be summarized as follows: For f < fji - 0.29,

the configuration with a vortex in the array is not the ground state of the system.

Thus, one-vortex configurations are at most metastable, i.e. dynamically stable but

energetically unstable, and the vortices are expelled as the current is increased. In

this region, the depinning occurs when the no-vortex solution undergoes a saddle-node

bifurcation which, we concluded, is dominated by the effects from the edges. On the

other hand, for the small interval around f - 1/2, the half-filled solution dominates

the depinning behavior.

A similar phenomenon is observed for the two-dimensional case, the main dif-

ference being the small value of fl, the critical field for which the entrance of one

vortex is energetically favorable. A rough estimate of this field, obtained from the

continuum formula presented in [67], gives fjc _ In N2 /N 2 _ 0.07 for a 7 x 7 ar-

ray. Therefore, the region where the no-vortex solution is relevant, and, hence, an

edge-dominated depinning occurs, is very narrow. It is observable however, in I(f)

diagrams [12, 70, 73] as a smooth decaying region for f < fl, reminiscent of the

behavior observed in the ladder. An example of such a solution is found for f = 0.05

and shown in Figure 3-8. Although it should be amenable to analysis with the tech-

niques developed in Chapter 2, we have not yet followed that direction which might
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Figure 3-8: Example of no-vortex superconducting configuration in a 7 x 7 array -
equivalent to the no-vortex solution for the ladder. In the two-dimensional case, these
states are ground states of the system for f < fjl - 0.07 and, hence, relevant for the
depinning only in that interval. The depicted configuration corresponds to f = 0.05.

yield an analytical explanation to the numerical fitting obtained for the Ic(f) at small

field in [12].

For f > fjl the ground states with vortices are responsible for the critical current

of the array and the analysis of the depinning behavior becomes more involved. How-

ever, we note that the observed values of the depinning for 2-D arrays when f > fel

and incommensurate are similar to the values of Idep close to f = 1/2 in the ladder.

One could argue that the depinning of incommensurate configurations with many

vortices for open-ended arrays will be dominated by the barrier at the edges (roughly

given by the Iedge calculated for the quasi-one-dimensional ladder in Section 2.3.3).

Similarly, if periodic boundary conditions are considered, the barrier should be ap-

proximately ILAT . Commensurate states have to surmount added barriers and thus

appear as peaks of the Ic(f) when f is a rational number.

3.3.2 Totally row-switched state

At the other end of the I - V, the high I limit, the system is in the totally row-

switched solution. As stated above, in this state all the rows can be approximated
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with a whirling solution similar to the one obtained for the ladder array (2.98), i.e.

the stretched kink

y = j = w - + 27rf j + O(w-2), WH = O(w-2) (3.18)

where w = 10V/ is large. Recent analytical studies show that this assumed solution

can be made consistent with the equations of the system and the boundary conditions

at the edges, when applying a continuum formulation [95]. Moreover, it can be shown

that the implicit coupling in the y direction produces coherence between all the rows

when f = 0, as seen in the simulations. In other words, this totally row-switched

solution is similar to a stack of in-phase whirling ladders. Thus, the average voltage

is
<V>

- = Nj (3.19)

where Ny is the number of cells in the vertical direction. Moreover, the wavelength

of the waveform is A = 1/f. Both observations are shown in Figure 3-9 together

with similar data from partially row-switched states. In summary, the totally row-

switched state is virtually equivalent to the whirling mode of the ladder array which

is well described with the zeroth order solution (3.18), since the effect of edges can

be neglected, as seen in page 97 of Section 2.4. Therefore, the observables of the

2-D system which depend on the whirling mode will have the same behavior as for

the ladder. We have checked that the I- V dependence is indeed equivalent. We

expect also that the repinning behavior on the return path (not studied here) will be

the same, i.e. no steps will be observable for a 2-D array with no inductances, and

the repinning will be caused by the parametric instabilities that the whirling mode

undergoes due to the resonance of its whirling frequency with the eigenfrequencies

of the lattice. This equivalence of the repinnings of the ladder and the 2-D array

can be seen in several simulations [66] where the return path has been calculated

and, most dramatically, in [28] where the repinning of the single junction through

a homoclinic bifurcation and that of the array through parametric instabilities are

directly compared.
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As an illustration of the physical concepts underlying this system, we compare

now this "wave" description to the usual "particle" formulation of the problem, where

vortices are considered to be propagating in the array. Although they give equivalent

results for the totally row-switched state, we will show this is not the case for the

partially row-switched solutions, where only the wave description -in terms of the

whirling mode- is able to explain the numerical observations.

Within the vortex picture, the flow of magnetic flux is viewed as the motion of

particle-like vortices at constant speed ii = dx/dr across the array. Thus, ii is the

terminal velocity of a motion resulting from the competition between the electromag-

netic force, which tends to accelerate the vortices, and the dissipation of energy in

interactions with the lattice, which can be modelled as a drag force opposing the

motion.

We consider a N. x N, array with a uniform magnetic flux f. The voltage produced

by the uniform motion of a uniform vortex density f is given by Faraday's law as

dD dt 21rRI,
< V >= dt d Nyfo = IcRNy2rf i.

From (3.19) the speed of the vortices is then

I
I 27r (3.20)

It is immediate to check that this is precisely the phase and group velocities of the

stretched kink (3.18)
w I

p= g = k = 21rf

Hence, both descriptions are consistent for the totally row-switched case.

3.3.3 Partially row-switched states

As explained above, spatially non uniform whirling solutions exist for underdamped

arrays. In these, only certain rows switch to a whirling solution while the rest remain

usually superconducting, although they can also present vortex propagation. In fact,
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Table 3.2: 1/A for the switched rows of a partially row-switched solution in a 7 x 7
array, P = 10. 1/A', calculated with the vortex picture (3.22), is not able to reproduce
the numerical 1/AX " m obtained from several linear fits like the ones presented in
Figure 3-9, for different f and I. Our prediction from the wave description 1/A'
given in (3.32) and (3.32) is in good agreement with the numerics.

the observed I-V dependence is, expectedly,

< V >m V > = m (3.21)
IcR

where m is the number of switched rows (Figure 3-9).

One is tempted to apply the vortex picture, as for the totally row-switched state,

to obtain the speed of propagation of the vortices as

m I
um = N, 27r f

By equating rmn to the group velocity of the waveform, the wavelength of the whirling

mode (in the m rows which have switched) would be found to be

ml
Apred = 1 (3.22)m Ny f

In Figure 3-9 and Table 3.2, we show that the waveforms of the switched rows are

indeed whirling modes (3.18) but the wavelength does not agree with the predicted

value from the vortex picture (3.22).

Therefore, for partially row-switched states, the vortex picture does not explain
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Figure 3-9: Partially row-switched states in a 7 x 7 array, with / = 10, f = 0.1:
(a) I- V characteristic. The dotted lines have slopes 3/7 and 1/7 for the resistance as
given by (3.21). Moreover, the frequency of all the row-switched states (both partially
or totally) is w - Ivr, as shown in Figure 3-7. (b) Example of spatial dependence
of the switched rows. The dashed lines depict the linear dependence, as in a whirling
mode, with slopes 1/Anum given in Table 3.2.

the observation that

1/Anum,, P f, p E Z.

We show now that this dependence is a direct consequence of the constraints from the

edges and is accounted for within the whirling mode formulation. This calculation,

for a 7 x 7 array with notation from Figure 3-1, can be summarized as follows:

The conservation of current (3.5) imposed at the Ny + 1 = 8 right edge nodes

yields:
I + IT= I V

rV + I -, TV j = 2, .. ,7 + If = 0. (3.23)
j==

I V + I H = I 
j=1

8,7 + 7,8

That is, the balance of current moving in the x direction is zero. This is the condition

of returning currents when edges are present, as seen for the ladder array. It can be
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propagated successively to the left to yield the more general expression:

8

I = 0, V i. (3.24)
j=1

Let us consider now the solution for the 1 row-switched state. As observed nu-

merically, this solution corresponds to having row 4 in a whirling mode with all the

other rows in a superconducting solution:

i y" = arcsin I + A,, j = 1, 2,3,5,6,7 (3.25)i,4 = wT + ki + O(w-2 ), with w = IV large

where Ai,j are corrections introduced by the presence of the edges. Here we have used

the solutions obtained for the ladder as an approximation for each of the rows: the

whirling solution for row 4 and the no-vortex superconducting solution for the rest.

As a preliminary, but not trivial, calculation, let us consider the zeroth order of the

assumed solution (3.25), by neglecting the corrections Aij and contributions of order

O(w- 2). This zeroth order solution can be shown to fulfill the governing equations

(3.8)-(3.9) when the following conditions are met for all i,

.+1 - 0 -= -21rf , j= 1, 2, 3, 5, 6, 7 (3.26)

OH -_ H = k - 2irf. (3.27)

One last assumption is needed to obtain a solution for the one-row-switched state.

In Chapter 2 we established that the corrections Aij for the superconducting solution

near the edges are larger, of 0(1), than the corrections for the whirling mode, O(w-2).

Thus, we can assume that the current across the whirling row is roughly I

IV iIg V i. (3.28)

Substituting this in (3.24) we obtain two independent conditions for the upper and
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bottom halves of the array

4 8

= 0, = 0, V i. (3.29)
j=1 j=5

Thus, the presence of a whirling row divides the array in almost independent sides

coupled only through the existence of the horizontal junctions (3.27).

Some algebraic manipulations with (3.26),(3.27) and (3.29) yield the zeroth order

(no edges) solution for the one-row-switched state:

iHt = 37rf = it

Hit = wrf = OHt
i,(3.30)

OH t  --rf = OH t
i,3 i,7

iHt -- 37rf = ¢i,8 t{ yt = arcsinI, j = 1,2,3,5,6, 7
(3.31)

',4t = wr + ki, with k = 87rf,

and we take this solution to be valid for all i, since we are neglecting the effect of

the edges. Also, all phases have been reduced to the [-7r, 7r) interval. The calculated

wavelength for the only row switched is then

1/A1 = k = 4f. (3.32)
27r

The same calculation is performed for the solution with three switched rows to

obtain

O4'jf = (--1)j+'rf,

SYt = arcsin I for j odd
ZJ (3.33)
y-tf = w- + ki for j even, with k= 4irf.

Thus, in this case

1/A3 = 2f, (3.34)
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in agreement with the values of Table 3.2.

The comparison of these approximate solutions and the numerical results is pre-

sented in Figure 3-10. It is readily observable that the zeroth order approximation

captures the main features of the numerics and explains the values obtained for the

wavelength of the whirling rows (Table 3.2). The small discrepancies observed are

due to the effect of the edges which have been neglected in this simple calculation. A

future direction of work is the incorporation of those corrections using the techniques

developed in Chapter 2.

There is one last important observation to be made from this physical picture of

the row-switched states. Consider our 7 x 7 array in the dynamical state where three

rows (2,4 and 6) have switched to a whirling solution and the rest remain supercon-

ducting, as shown in Figure 3-10 (c)-(d). Comparing the approximate solution (3.33)

for this state and the solutions obtained in Chapter 2 for the ladder, we conclude that

the phase configuration of each the switched (superconducting) rows in (3.33) is the

same as the whirling (no-vortex superconducting) solution for a single isolated lad-

der. That is, the 2-D array with an alternating sequence of superconducting-whirling

rows is equivalent to a series of quasi-independent superconducting ladders, weakly

coupled. In this sense, the effect of a whirling row is to "uncouple" the regions above

and below it.

Because the three-switched-rows solution is roughly equivalent to four uncoupled

superconducting ladders with no vortices, an immediate consequence can be drawn:

the point at which the three-rows switched state becomes unstable is equivalent to

the point at which these four no-vortex ladders depin, i.e. the critical current for the

ladder for the given frustration. This prediction is checked to excellent agreement by

comparing the values for the end of the three switched-rows state in Table 3.1, and

the depinning currents for the ladder in Table 2.1. Likewise, the 2-D 7 x 7 array with

one row switched is equivalent to two quasi-uncoupled superconducting 7 x 3 arrays.

Hence, the switching point from the one whirling row solution, should correspond to

the depinning of a 7 x 3 array with no vortices present. We obtained numerically

values of 0.82 and 0.60 for f = 0.05 and 0.1 respectively in excellent agreement with
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7 x 7, 3 =10, f=0.1 1=0.8 --- 3 rows switched

1 9 17 25 33 41 49
k, index of junction

0.1

0.05

0
E

-0.05

-0.1
57 64 71 78 85 92 99 106

k, index of junction

1=0.56 --- 1 row switched

1 9 17 25 33 41 49
k, index of junction

0.2
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v 0
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k, index of junction

Figure 3-10: Partially row-switched state: - approximated {yi t fit } and o nu-
merical solutions for f = 0.1. (a) and (b) show the vertical and horizontal junctions
of the superconducting rows when rows 2, 4, 6 have switched. The same is depicted
in (c) and (d) for the case when only one row (number 4) is whirling. The whirling
rows effectively divide the array in quasi-independent regions. This feature can be
used to predict the critical currents for some of the row-switching events.
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the values in Table 3.1.

These observations supply evidence that the sequence of row-switching events can

be related to the depinning currents of smaller semi-independent subarrays in which

the global array is divided by the existence of whirling rows acting as separating

boundaries. The analysis presented here is, by no means, exhaustive. It is reasonable

to expect that it could be meaningful for small arrays where the row-switching steps

are clearly marked and visible, specially in the last row-switching jumps. Not so

much when the arrays are bigger with a larger number of vortices, since then the

row-switching sequence is more complicated resulting in smoother jumps. We note

also, that our studies are performed in the limit where self-field effects are neglected.

The presence of a finite A± modifies the row-switching process introducing added

asymmetries and complexity [85]. In conclusion, the "wave" formulation, in terms

of whirling modes, provides an accurate description of the problem, as shown by the

calculation of the wavelength of the waveforms and the good approximation obtained

for the phase configuration. On the other hand, the "particle", or vortex, picture is

not illuminating in high I limit and can lead to wrong conclusions.

3.3.4 Flux-flow regime

We finish this section with the numerical characterization of the flux-flow region.

This regime has been classically described in terms of the motion of vortices under

electromagnetic and drag forces as in the flux-flow of continuous superconductors.

This fluid mechanical model [63] translates into a linear dependence of < V > vs. I

with a resistance Rff, smaller than the normal resistance of the array. Moreover, Rff

is linearly dependent on f, in the limit of small f.

From the dynamical point of view, the flux-flow region presents two features which

we have used for the identification of the regime:

1. The spatio-temporal evolution of the system is dominated by the motion of kink-

like localized excitations, which can be associated with the motion of vortices.

These excitations produce jumps of 27r as they propagate in the array.
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2. If the junctions are viewed as mechanical pendula, their motion in this regime

can be characterized as whirling-ringing: periods of small oscillations around

a center (ringing) interspersed with rapid overturns (whirling). Operationally,

this means there is always an interval of the trajectory with negative velocity.

Note that the pendula are underdamped and there is some inertia in their mo-

tion, which intuitively explains the presence of the ringing due to overshooting

after the whirling. Moreover, these small oscillations can couple to the linear

modes of the lattice providing an additional mechanism for the dissipation of

energy in the propagation of the vortices in the lattice.

These two properties are illustrated in row 6 of Figure 3-4 and in Figure 3-5 C.

Although this qualitative description is not in conflict with the fluid mechanical

view of flux-flow expressed above, it underlines the oversimplification involved in such

a model as pointed out by Bobbert [81 and Beck [4]. Indeed, a nonlinear viscosity has

been recently introduced [32] to account for the observed quantitative discrepancies

with the linear viscous force model. However, the nonlinear functional form for the

viscosity is introduced ad hoc and its physical interpretation is not straightforward.

Other approaches have taken the interaction with spin waves to explain the non-

linearity of the propagation [90, 28]. Our observation of the dynamical simulations

supports the view of the complexity of the vortex motion in the array. First, the mo-

tion of the vortices is clearly nonuniform. Second, the horizontal junctions also play

a role allowing some vertical motion of the vortices. Thus, a simple and meaningful

statistical description could be difficult. A possible line of research would be the

characterization of the flow of vortices as a process of anomalous diffusion stemming

from a nonlinear deterministic system [3, 35, 80]. We do not follow this approach

here.

Instead, we study the spatiotemporal dynamics of the flux-flow region with the

tools described in Section 3.2.2 to identify features of the solution which can be

hidden if only averaged quantities are considered. The detailed numerical analysis for

f = 0.1 is summarized in Figure 3-11 where the I- V curve is shown together with the

dependence of the period and the velocity of propagation of vortices on the current.
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7 x 7, p =10, f=0.1 --- Flux flow region
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Figure 3-11: Detailed study of the flux-flow region for P = 10 and f = 0.1: (a) blow-
up of the I- V characteristic, (b) frequency of the solution. The critical currents which
mark the bifurcations have been indicated on the graphs. Note that the frequency is
N 10 times smaller than the corresponding whirling frequency.

We emphasize the following unexpected properties:

* Row activation: An active row is a non-superconducting, non-whirling row,

with a finite voltage difference caused by the propagation of kink-like excitations

along it. In a process similar to row-switching, rows become active as the current

is increased. In our example, a change from a one-active-row to a three-active-

rows state occurs at I _/ I = 0.3506. After that, only three rows are active. We

do not elaborate this point here since it will be treated more thoroughly in the

following section on overdamped arrays where the full scale of row-activation

can be observed. We note, however, that the critical currents at which a certain

number of rows become active (Table 3.1) are the same for underdamped and

overdamped arrays.
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* Periodicity: Despite its overall complexity, the flux-flow solution is periodic in

several intervals. The description of our case of study is:

* For 0.34 < I < 0.396, the solution is periodic with period T which changes

continuously with I. However, at 12 = 0.3645, T jumps discontinuously from a

value of 37.22 to 65.39. We have studied this transition carefully to conclude

that it is not exactly a period doubling bifurcation.

* At 13 = 0.3960, the system becomes aperiodic through an unspecified

bifurcation. However, the system remains close to the periodic solution and

some windows of periodicity reappear within the aperiodic region. This behavior

presents some characteristics of quasi-periodicity.

* The flux-flow solution switches to the whirling solution at 14 = 0.4978.

These transitions, depicted in the following figures, suggest the complexity of the

flux-flow solutions. A careful numerical analysis of the bifurcations to classify and

identify the traits in the behavior has not been undertaken in this thesis. We will

explore this regime in more depth in the next section, when we deal with overdamped

junctions. The impossibility of row-switching -due to the intrinsic properties of the

"pendula"- in that case, allows the unfolding of a larger region of "flux-flow" where

the features we have discussed can be fully developed.
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Figure 3-12: Transition from 1 to 3 active rows, i.e. (a) to (b). At I1 0.350, flux
begins to flow in rows 3 and 5. The junctions in those rows change from librating
to whirling-ringing. Note the similarity between the attractor of the libration, before
the bifurcation, and the ghost attractor around which the ringing occurs for junction
40 after I,.
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7 x 7, P =10, f=O.1, 1=0.364

(D
E
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Figure 3-13: Quasi-period doubling at 12 - 0.365. The period changes discontinu-
ously almost doubling. Note the second trajectory appearing in the phase portrait of
junction 28. Each of those correspond to a different vortex propagating in the row.
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0.5
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Figure 3-14: Sequence of states between 13 - 0.396, where the system becomes
aperiodic, and 14 z- 0.498, where the flux-flow solution becomes unstable and the
system switches to the whirling dominated states. In this region, there is a parallel
existence of periodic and aperiodic solutions which hints at a quasi-periodic pattern.
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3.4 Array of overdamped junctions

The general methodology for the simulations in overdamped arrays is identical to the

underdamped case, and we will not review it here. The procedure is mathematically

and computationally simpler since the equations for the individual junctions are first

order differential equations in the overdamped system, i.e. the overdamped junction

corresponds to the limit 3 = 0 in (3.7) which now becomes

' + sin ¢ = I. (3.35)

Thus, each individual pendulum is a first order system with no inertia. An exact

solution for this separable equation is readily obtainable, namely

= 2 arctanI +- (I2 tan 2)

which can be integrated over a period to give [63]

< V >= 1 dOdt= I 2 - 1.
T Jo dt

This is the non-superconducting solution for the single overdamped junction when

I > 1, i.e. after depinning.

Due to the properties of the individual junctions, we expect that the behavior

of the array is qualitatively different to the underdamped case. Very briefly, and

using the notation introduced in Section 3.3, the sequence of dynamical regimes is

the following:

1. For I < Idep, the solution is superconducting and the junctions librate negligibly.

2. At I = Idep, a finite voltage develops and the system enters the flux-flow regime,

characterized by propagation of solitonic excitations and by whirling-ringing

motion for the active pendula.

3. Contrary to the underdamped array, there are no row-switching events. This is
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Figure 3-15: Direct path of the I- V curves for an overdamped 7 x 7 array with / = 0
and varying f. The three dynamical regions, superconducting (SC), flux-flow (FF)
and whirling modes (WM) are indicated. Dashed lines in (b) and (d) are the I - V
characteristics of overdamped ladders with the corresponding frustration, f.
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the result of the lack of inertia of the pendula, which prevents the appearance

of regions of "localized whirling". Thus, the flux-flow region unfolds fully and

extends until the whirling solution is reached continuously at Iswitch. This makes

the overdamped limit ideal to study the complicated series of dynamical states

which take place in the flux-flow regime, as we will do in the remainder of this

section.

4. It is not clear from the I- V curves where the whirling mode starts since there is

no clear jump and the transition is continuous. However, we can denote Iswitch,

the current at which we enter the whirling region, in the sense introduced in

the previous section: that the motion of all the pendula is always forward and

no pendulum has intervals where q' < 0. In short, there is no more ringing in

the array.

This sequence is exemplified by representative I- V characteristics in Figure 3-15.

As seen above, the information contained in the I- V curves is not sufficient for a

satisfactory characterization of the regimes. The situation is greatly improved by the

systematic use of the numerical tools described in Section 3.2.2. The detailed numer-

ical study of the cases represented in Figure 3-15 yields some conclusions regarding

the three dynamical regimes which we now summarize.

First, the depinning current is roughly the same as for underdamped arrays. This

is expected from our studies of the depinning in the ladder array (Section 2.3) since

p3 does not have any effect on the existence of the superconducting solutions.

Secondly, at the other end of the I- V curve, the whirling solution, defined as

the configuration where all the pendula whirl and none undergoes a whirling-ringing

motion, is reached continuously from the flux-flow. This solution is characterized in

the literature as a phase of homogeneous flow [16] or in terms of the absence of defects

in the flux-lattices [22, 29]. Our definition in terms of the dynamics of the pendula,

though very different in nature, is in effect associated with the same physical picture:

a lattice of vortices propagating rigidly in time is incompatible with some of the

pendula describing whirling-ringing motions. These motions create the characteristic
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defects and mismatches of the last region of flux-flow.

Regarding the whirling solution, we also note that the asymptotic behavior of this

branch at high I is the same as that of a ladder of overdamped junctions under the

same frustration, as shown for f = 0.1 and f = 0.3 in Figure 3-15(b) and (d). This

can serve as a simplified path to calculate the limiting whirling configuration [53, 24].

Finally, we describe the most important regime in overdamped arrays: the flux-

flow region. Although its convoluted behavior with its precise details is difficult to

account for, we find the following three general features:

Sequence of row-activation The number of rows which participate in the flux-flow

is directly proportional to f and I. When f is sufficiently small, a sequence of

row-activation events is observed as the current is increased, as seen very clearly

in Figure 3-16 for f = 0.05. However, the rows do not jump to the whirling

mode, as in the row-switching phenomena of Section 3.3, and instead go now

from the superconducting to the flux-flow solitonic solution; that is, they go

from being silent to "active". The critical currents for the row-activation events,

presented in Table 3.3, imply a sequence of changes in the slope of the I- V curve

(Figure 3-16). It is intriguing to observe, by comparing Tables 3.1 and 3.3, that

the current intervals for which a given number of rows are active, are roughly

the same for p = 0 and 3 = 10. This seems to suggest that the number of active

rows depends on the flow and the current and not on P. In the underdamped

array, however, the full extension of the flux-flow is not realized as the system

switches to the states dominated by the whirling modes.

In all our simulations with no inductances we also note that the order in which

rows activate and switch follows different rules. In Section 3.3 we deduced that,

in underdamped arrays a switched row effectively acts as a boundary which

divides the array in two parts. Within this picture, the consecutive switchings

are equivalent to depinnings of smaller subarrays. This mechanism predicts that

the switched rows will be as separated from the edges and from other switched

rows as possible, since the center of the array is where the depinning is more
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flux-flow region of a 7 x 7 array of overdamped
shows a blow-up of the flux-flow region of the
in slope as the number of active rows changes.
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Normalized current, I
Flux-flow region: No. of active rows

f Idep 1 3 5 7 Iswitch
0.05 0.63 0.63-0.74 0.75-0.80 0.85-0.92 0.93-0.99 1.09
0.1 0.31 0.31-0.35 0.36-0.51 0.59-0.81 0.82-1.06 1.17
0.2 0.25 0.25-0.48 0.59-0.67 1.01
0.3 0.26 0.35-0.43 1.14

Table 3.3: Critical currents for a 7 x 7 overdamped array and intervals where flux-flow
is constrained to a given number of rows. Iswitch is the current at which all junctions
whirl with no ringing.

likely to be produced. The contrary occurs here: in overdamped arrays, active

rows tend to appear around rows which are already activated. This is expected

since the wake of the propagating vortices excites the junctions in the closer

rows, thereby favoring their activation.

Alternation of periodic and aperiodic solutions As the current is swept up,

periodic and aperiodic solutions alternate. Also, the period changes, both con-

tinuously and discontinuously. The periodicity of the overdamped system has

been discussed in the literature in connection with Frenkel-Kontorova models

[22, 29, 56, 53]. However, rigorous results which could justify either the asymp-

totic periodicity of the solutions (as obtained under special constraints for first

order systems with convex potentials by Middleton [58]) or the persistence of

truly chaotic metastable states under the dynamical evolution of the system

[56], are not applicable in this case. Thus, the observed aperiodicities cannot

be disregarded as mere transients. Numerically, however, we observe a strong

underlying periodicity in the system which manifests itself even in the aperiodic

intervals (Figure 3-17 (a) and (b) is a clear example of all these features).

Transition to whirling solution When all the rows are active, the end of the flux-

flow regime occurs through a final transition from a disordered, internally flexi-

ble phase of propagating vortices to an ordered, rigid whirling configuration [53],

where relative displacements between rows do not occur. The transition can be
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Figure 3-17: Frequency of the solution for 3 = 0 with f = 0.3 and transition to
the rigid whirling state. (a) and (b) show the frequency of each of the seven rows
and of the total solution respectively. In the interval 0.98 < I < 1.2, all the rows
are roughly periodic but with different periods. Thus, the overall periodicity is lost.
Observe in (c) the spatially inhomogeneous solutions in that interval. In effect, the
rows are displacing relative to each other. After the transition to the rigid whirling
state, these displacements do not occur.
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seen in Figure 3-17 and occurs for all values of f for values of I slightly larger

than 1. This is the point when all the pendula go to a state of pure whirling

motion and no whirling-ringing is left. As the current is increased further, the

motion of all the pendula becomes more homogeneous. Thus, a network of

whirling pendula with quasi-homogeneous motion tends to be equivalent to a

rigid space-time structure with no internal displacements.

In summary, the physical picture that emerges from these observations is the

following: for moderate f, and at low current, the I- V characteristic is dominated by

the consecutive activation of rows; once all of them are active, the variations in type

and number of defects in the flux lattice are responsible for the I- V dependence. The

transition to the whirling solution is produced when the flux-lattice becomes rigid

and internal relative displacements vanish.

The importance of the edges is shown in Figure 3-18, where the dynamics at

small f and current close to the depinning value is shown. In this case, the evolution

of the system is described as an aperiodic succession of individually propagating

vortices being nucleated and expelled at the edges. Sometimes they are reflected

from the boundary and propagate from left to right as antivortices. This dynamical

description explains the observations of Chung et al. [12] in their simulations for

small fields. As they hypothesized from inspection of the time-dependent voltage,

the spikes in this voltage correspond to propagation of individual vortices; the bursts

of spikes are the result of collisions and complex motion of the vortices. This behavior

is typical of the zero-field regime and has been documented both experimentally [47]

and in simulations [33]. We have also observed similar modes in the open-ended

ladder array for f = 0.

We conclude by emphasizing the similarities of this picture with the behaviors

which appear in systems, both continuous [74, 54] and discrete [16], where flux-

lattices move under a potential with a certain amount of randomness. In those cases,

three similar regimes to the ones listed above are also observed: channel-like mo-

tion of vortices; global "plastic" motion of the deformable flux-lattice; transition to a

rigid flux-lattice which displaces coherently in time. We conjecture that the presence
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Figure 3-18: (a) Spatio-temporal diagram of the solution at very small field f = 0.01
close to the depinning current of the array. The solution is given by an aperiodic se-
quence of propagating vortices and antivortices. In (b) an enlargement corresponding
to the solid rectangle shows propagating vortices, in row 6, and antivortices, in row
5, which can be viewed as reflecting from the edges of the array.
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of open boundaries is enough to produce those effects without the need of extrin-

sic randomness. We hope to investigate in the future this and the other outlined

conclusions.

3.5 Summary and discussion

In this chapter we have presented studies of square two-dimensional Josephson junc-

tion arrays. First, we have introduced the methodology to analyze the data from

numerical simulations. We underline the fact that space and time averaged quantities

provide a gross simplification of these systems which can present a subtle interplay of

both coordinates. Specifically, spatially inhomogeneous solutions are characteristic of

these arrays (as they are of other transport processes). Hence, we propose the study of

spatially extended averages, together with frequency and phase velocity as a means to

unfold the underlying structure. We have also established the connection between the

three types of motion of the individual pendula (libration, whirling-ringing, whirling)

and the three dynamical states of the array (superconducting, flux-flow, whirling).

Second, we have applied these methods, and other concepts drawn from the solu-

tions for ladder arrays, to two-dimensional arrays. The first conclusion concerns the

depinning current. Since the Meissner-like state is only stable for very small values

of the field, the depinning of the array is not dominated by the edges, as was the

case for the ladder. Here, different factors come into play since the depinning of

flux-lattices is the relevant factor. Thus, the commensurability of the lattice with the

underlying array will influence the critical current of the array. On the other hand,

when the lattice is not commensurate we expect to have an almost constant value for

the depinning current.

For the dynamical regimes, we have studied two different limits: underdamped and

overdamped dynamics. In underdamped arrays, we conclude that the whirling mode

is very similar to the ladder array's and the repinning picture is not modified: it will

be caused by parametric instabilities with no restabilization steps being observable.

Moreover, when the damping is small, row-switching events can occur. Using the
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solutions for the ladder array obtained in Chapter 2, we have obtained a zeroth order

solution which explains quantitatively the numerical solutions observed. In short,

when a row switches, it effectively acts as a boundary which separates and uncouples

the two halves ("up" and "down") of the array. Thus, the array is divided in subunits

which will now depin. The "depinning" of these subarrays corresponds to the next

row-switching event. The flux-flow in underdamped arrays is not fully observable

since the system jumps to this partially row-switched states.

In the overdamped arrays, row-switching is not possible. This allows the flux-flow

to unfold fully. Three features are worth noting: a sequence of row-activation for

small f; the alternation of periodic and aperiodic solutions but with a strong under-

lying periodicity of the system; and a final transition, coincident with the continuous

switch to the whirling mode, where the flexible flux-lattice turns into a rigidly dis-

placing entity with no internal relative displacements. The appearance of these three

phenomena, which have been described in systems with randomness, occurs in an

ordered system and can be due to the presence of edges which break the symmetry of

the system [29]. This is only one of the many unresearched directions, both numerical

and analytical, which we hope to investigate in the future.

185



186



Bibliography

[1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Dover,

New York, 1965.

[2] V. Ambegaokar and A. Baratoff. Tunneling between superconductors. Phys.

Rev. Lett., 10:486, 1963.

[3] M. Avellaneda, F. Elliott, and C. Apelian. Trapping, percolation and anomalous

diffusion of particles in a two-dimensional random-field. J. Stat. Phys., 72:1227,

1993.

[4] H. Beck. Anomalous vortex dynamics in two-dimensional superconducting ar-

rays. Phys. Rev. B, 49:6153, 1993.

[5] K.A. Benedict. The quasi-one-dimensional frustrated xy model. J. Phys. :

Condens. Matter, 1:4895, 1989.

[6] R. Bhagavatula, C. Ebner, and C. Jayaprakash. Dynamics of capacitive

Josephson-junction arrays subjected to electromagnetic radiation. Phys. Rev.

B, 45:4774, 1992.

[7] R. Bhagavatula, C. Ebner, and C. Jayaprakash. Spatiotemporal chaos in

Josephson-junction arrays. Phys. Rev. B, 50:9376, 1994.

[8] P.A. Bobbert. Simulation of vortex motion in underdamped two-dimensional

arrays of Josephson junctions. Phys. Rev. B, 45:7540, 1992.

[9] P.A.A. Booi and S.P. Benz. Emission linewidth measurements of two-

dimensional array Josephson oscillators. Appl. Phys. Lett., 64:2163, 1994.

187

i)i~l -·-~""D"I~~---~--'-C-LIII~----·---L- II_-1I



[10] O.M. Braun and M. Peyrard. Ground-state of the Frenkel-Kontorova model

with a transverse degree of freedom. Phys. Rev. E, 51:4999, 1995.

[11] S.E. Burkov and A.E. Lifsic. Stability of moving soliton lattices. Wave motion,

5:197, 1983.

[12] J.S. Chung, K.H. Lee, and D. Stroud. Dynamical properties of superconducting

arrays. Phys. Rev. B, 40:6570, 1989.

[13] C. Denniston and C. Tang. Phases of Josephson junction ladders. Phys. Rev.

Lett., 75:3930, 1995.

[14] C.A. Desoer and E.S. Kuh. Basic Circuit Theory. McGraw-Hill, New York,

1969.

[15] T. Doderer, V.K. Kaplunenko, J. Mygind, and N.F. Pedersen. Imaging of the

dynamic magnetic structure in a parallel array of shunted Josephson junctions.

Phys. Rev. B, 50:7211, 1994.

[16] D. Dominguez. Critical dynamics and plastic flow in disordered Josephson

junction arrays. Phys. Rev. Lett., 72:3096, 1994.

[17] D. Dominguez and J.V. Jose. Non-equilibrium coherent vortex states and sub-

harmonic giant Shapiro steps in Josephson junction arrays. Mod. Phys. B,

8:3749, 1994.

[18] P.G. Drazin. Solitons: an introduction. Cambridge University Press, New York,

1989.

[19] D.B. Duncan, J.C. Eilbeck, H. Feddersen, and J.A.D. Wattis. Solitons on lat-

tices. Physica D, 68:1, 1993.

[20] A. Duwel, E. Trias, T.P. Orlando, H.S.J. van der Zant, S. Watanabe, and S.H.

Strogatz. Resonance splitting in discrete planar arrays of Josephson junctions.

J. Appl. Phys., 79:7864, 1996.

188



[21] W.J. Elion, J.J. Wachters, L.L. Sohn, and J.E. Mooij. Observation of the

Aharonov-Casher effect for vortices in Josephson-junction arrays. Phys. Rev.

Lett., 71:2311, 1993.

[22] F. Falo, A.R. Bishop, and P.S. Lomdahl. I-V characteristics in 2-dimensional

frustrated Josephson-junction arrays. Phys. Rev. B, 41:983, 1990.

[23] R. Fazio, U. Geigenmiiller, and G. Sch6n. Quantum fluctuations in mesoscopic

and macroscopic systems. Quantum Chaos: Adriatico Research Conference

and Miniworkshop, ed. H.A. Cerdeira , R. Ramaswamy, M.C. Gutzwiller and

G. Casati. (World Scientific), page 214, 1991.

[24] G. Filatrella and K. Wiesenfeld. Magnetic-field effect in a two-dimensional array

of short Josephson junctions. J. Appl. Phys., 78:1878, 1995.

[25] M.G. Forest, S. Pagano, R.D. Parmentier, P.L. Christiansen, M.P. Soerensen,

and S.-P. Sheu. Numerical evidence for global bifurcations leading to switching

phenomena in long Josephson junctions. Wave motion, 12:213, 1990.

[26] Y.I. Frenkel and T. Kontorova. Zh. Eksp. Teor. Fiz., 8:1340, 1938.

[27] T.A. Fulton, R.C. Dynes, and P.W. Anderson. Flux Shuttle-Josephson junction

shift register employing single flux quanta. Proc. IEEE, 61:28, 1973.

[28] U. Geigenmiiller, C.J. Lobb, and C.B. Whan. Friction and inertia of a vortex

in an underdamped Josephson array. Phys. Rev. B, 47:348, 1993.

[29] N. Gronbech-Jensen, A.R. Bishop, F. Falo, and P.S. Lomdahl. Flux-lattice noise

and symmetry breaking in frustrated Josephson-junction arrays. Phys. Rev. B,

46:11149, 1992.

[30] G. Griiner. The dynamics of charge-density waves. Rev. Mod. Phys., 60:1129,

1988.

[31] J. Guckenheimer and P. Holmes. Nonlinear oscillations, dynamical systems,

and bifurcations of vector fields. Springer, New York, 1983.

189

I ~Y~___ IUIIIIIII



[32] T.J. Hagenaars, P.H.E. Tiensinga, J.E. van Himbergen, and J.V. Jos&. Nonlin-

ear viscous vortex motion in two-dimensional Josephson junction arrays. Phys.

Rev. B, 50:1143, 1994.

[33] T.J. Hagenaars, J.E. van Himbergen, J.V. Jos6, and P.H.E. Tiesinga. Vortex

reflections at boundaries of Josephson-junction arrays. Phys. Rev. B, 53:2719,

1996.

[34] I-J. Hwang, S. Ryu, and D. Stroud. Screening in Josephson-junction ladders.

Phys. Rev. B, 53:R506, 1996.

[35] T. Iizuka. Anomalous diffusion of solitons in random-systems. Phys. Lett. A,

181:39, 1993.

[36] A.K. Jain, K.K. Likharev, J.E. Lukens, and J.E. Sauvageau. Mutual phase-

locking in Josephson junction arrays. Phys. Report, 109:309, 1984.

[37] D.W. Jordan. Nonlinear ordinary differential equations. Oxford University

Press, New York, 1994.

[38] B.D. Josephson. Supecurrents through barriers. Advan. Phys., 14:419, 1965.

[39] W. Kaplan. Advanced Calculus. Addison-Wesley, Reading, MA, 1984.

[40] M. Kardar. Free energies of the discrete chain in a periodic potential and the

dual Coulomb gas. Phys. Rev. B, 30:6368, 1984.

[41] M. Kardar. Josephson-junction ladders and quantum fluctuations. Phys. Rev.

B, 33:3125, 1986.

[42] R. Kleiner, P. Miiller, H. Kohlstedt, N.F. Pedersen, and S. Sakai. Dynamic

behavior of Josephson-coupled layered structures. Phys. Rev. B, 50:3942, 1994.

[43] R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Miiller. Intrinsic Josephson effects

in Bi2Sr 2CaCu208 single-crystals. Phys. Rev. Lett., 68:2394, 1992.

190



[44] J.M. Kosterlitz and D.J. Thouless. Ordering, metastability and phase transi-

tions in 2 dimensional systems. J. Phys. C, 6:1181, 1973.

[45] Y. Kuramoto. Self-entrainment of a population of coupled nonlinear oscillators.

International Symposium on Mathematical Problems in Theoretical Phsyics, ed.

by H. Araki (Springer, NY), 39:420, 1975.

[46] Y. Kuramoto. Chemical oscillations, waves and turbulence. Springer, New York,

1984.

[47] S.G. Lachenmann, T. Doderer, D. Hoffmann, and R.P. Huebener. Observation

of vortex dynamics in two-dimensional Josephson-junction arrays. Phys. Rev.

B, 50:3158, 1994.

[48] A.S. Landberg, Y. Braiman, and K. Wiesenfeld. Effect of disorder on syn-

chronization in prototype two-dimensional Josephson arrays. Phys. Rev. B,

52:15458, 1995.

[49] K.K. Likharev. Dynamics of Josephson junctions and Circuits. Gordon and

Breach, New York, 1986.

[50] C.J. Lobb, D.W. Abraham, and M. Tinkham. Theoretical interpretation of

resistive transition data from arrays of superconducting weak links. Phys. Rev.

B, 27:150, 1983.

[51] K. Maginu. Stability of travelling wave solutions of the active Josephson-

junction transmission line. J. Diff. Eqns., 37:238, 1980.

[52] A. Majhofer, T. Wolf, and W. Dieterich. Irreversible magnetization effects in a

network of resistively shunted tunnel junctions. Phys. Rev. B, 44:9634, 1991.

[53] I.F. Marino and T.C. Halsey. Dynamics of two-dimensional frustrated Josephson

arrays. Phys. Rev. B, 50:6289, 1994.

191



[54] T. Matsuda, K. Harada, H. Kasai, O Kamimura, and A. Tonomura. Observation

of dynamic interaction of vortices with pinning centers by Lorentz microscopy.

Science, 271:1393, 1996.

[55] J.J. Mazo, F. Falo, and L.M. Floria. Josephson junction ladders: Ground state

and relaxation phenomena. Phys. Rev. B, 52:10433, 1995.

[56] J.J. Mazo, F. Falo, and L.M. Floria. Stability of metastable structures in dis-

sipative ac dynamics of the Frenkel-Kontorova model. Phys. Rev. B, 52:6451,

1995.

[57] D.E. McCumber. Effect of an ac impedance on dc voltage-current characteristics

of superconductor weak-link junctions. J. Appl. Phys., 39:3113, 1968.

[58] A.A. Middleton. Asymptotic uniqueness of the sliding state for charge-density

waves. Phys. Rev. Lett., 68:670, 1992.

[59] A.A. Middleton and N.S. Wingreen. Collective transport in arrays of small

metallic dots. Phys. Rev. Lett., 71:3198, 1993.

[60] M. Octavio, C.B. Whan, U. Geigenmiiller, and C.J. Lobb. Dynamical states

of underdamped Josephson arrays in a magnetic field. Phys. Rev. B, 47:1141,

1993.

[61] M. Octavio, C.B. Whan, U. Geigenmiiller, and C.J. Lobb. Dynamics of under-

damped Josephson arrays in a magnetic field. Physica B, 194-196:115, 1994.

[62] M. Octavio, C.B. Whan, and C.J. Lobb. Phase coherence and disorder in

Josephson-junction arrays. Appl. Phys. Lett., 60:766, 1992.

[63] T.P. Orlando and K.A. Delin. Foundations of Applied Superconductivity.

Addison-Wesley, Reading, MA, 1991.

[64] A. Petraglia, N.F. Pedersen, P.L. Christiansen, and A.V. Ustinov. Comparative

dynamics of 2d shorted arrays and continuous stacked Josephson junctions.

preprint.

192



[65] M. Peyrard and M.D. Kruskal. Kink dynamics in the highly discrete sine-

Gordon system. Physica D, 14:88, 1984.

[66] J.R. Phillips, H.S.J. van der Zant, and T.P. Orlando. Dynamics of row switched

states in Josephson-junction arrays. Phys. Rev. B, 50:9380, 1994.

[67] J.R. Phillips, H.S.J. van der Zant, J. White, and T.P. Orlando. Influence of

induced magnetic fields on the static properties of Josephson-junction arrays.

Phys. Rev. B, 47:5219, 1993.

[68] J.R. Phillips, H.S.J. van der Zant, J. White, and T.P. Orlando. Influence of

induced magnetic fields on Shapiro steps in Josephson junction arrays. Phys.

Rev. B, 50:9387, 1994.

[69] Z.H.L Qu, G. Hu, B.K. Ma, and G. Tian. Spatiotemporally periodic patterns

in symmetrically coupled map lattices. Phys. Rev. E, 50:163, 1994.

[70] D. Reinel, W. Dieterich, T. Wolf, and A. Majhofer. Flux-flow phenomena and

current-voltage characteristics of Josephson-junction arrays with inductances.

Phys. Rev. B, 49:9118, 1994.

[71] S. Ryu, W. Yu, and D. Stroud. Dynamics of an underdamped Josephson-

junction ladder. Phys. Rev. E, 53:2190, 1996.

[72] M.S. Rzchowski, S.P. Benz, M. Tinkham, and C.J. Lobb. Vortex pinning in

Josephson junction arrays. Phys. Rev. B, 42:2041, 1990.

[73] H.R. Shea, M.A. Itzler, and M. Tinkham. Inductance effects and dimensionality

crossover in hybrid superconducting arrays. Phys. Rev. B, 51:12690, 1995.

[74] A.-C. Shi and A.J. Belinsky. Pinning and i-v characteristics of a two-dimensional

defective flux-line lattice. Phys. Rev. Lett., 67:1926, 1991.

[75] L.L. Sohn and M. Octavio. Half-integer Shapiro steps in single-plaquette

Josephson-junction arrays in a magnetic field. Phys. Rev. B, 49:9236, 1994.

193



[76] J.M. Speight and R.S. Ward. Kink dynamics in a novel sine-Gordon system.

Nonlinearity, 7:475, 1994.

[77] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press,

Wellesley-Mass., 1986.

[78] S.H. Strogatz. Nonlinear Dynamics and Chaos. Addison-Wesley, Reading, MA,

1994.

[79] S.H. Strogatz and I. Stewart. Coupled oscillators and biological sunchronization.

Sci. Am., 269:102, 1993.

[80] A. Pikovsky T. Bohr. Anomalous diffusion in the Kuramoto-Shivashinsky equa-

tion. Phys. Rev. Lett., 70:2892, 1993.

[81] S. Teitel and C. Jayaprakash. Josephson-junction arrays in transverse magnetic

fields. Phys. Rev. Lett., 51:1999, 1983.

[82] S. Teitel and C. Jayaprakash. Phase transitions in frustrated two-dimensional

xy models. Phys. Rev. B, 27:598, 1983.

[83] T.S. Tighe, A.T. Johnson, and M. Tinkham. Vortex motion in 2-dimensional

arrays of small, underdamped Josephson junctions. Phys. Rev. B, 44:10286,

1991.

[84] T.S. Tighe, M.T. Tuominen, J.M. Hergenrother, and M. Tinkham. Measure-

ments of charge soliton motion in two-dimensional arrays of ultrasmall Joseph-

son junctions. Phys. Rev. B, 47:1145, 1993.

[85] E. Trias, T.P. Orlando, and H.S.J. van der Zant. Self-field effects on flux-flow

in two-dimensional arrays of nb Josephson junctions. Phys. Rev. B, submitted.

[86] A.V. Ustinov, M. Cirillo, and B.A. Malomed. Fluxon dynamics in one-

dimensional Josephson junction arrays. Phys. Rev. B, 47:8357, 1993.

[87] A.V. Ustinov, H. Kohlstedt, and C. Heiden. Possible phase-locking of vertically

stacked Josephson flux-flow oscillators. Appl. Phys. Lett., 65:1457, 1994.

194



[88] H.S.J. van der Zant, F.C. Fritschy, W.J. Elion, L.J. Geerligs, and J.E. Mooij.

Field-induced superconductor-to-insulator transitions in Josephson-junction ar-

rays. Phys. Rev. Lett., 69:2971, 1992.

[89] H.S.J. van der Zant, F.C. Fritschy, T.P. Orlando, and J.E. Mooij. Ballistic

vortices in Josephson-junction arrays. Europhys. Lett., 18:343, 1992.

[90] H.S.J. van der Zant, F.C. Fritschy, T.P. Orlando, and J.E. Mooij. Vortex

dynamics in two-dimensional underdamped, classical Josephson junction arrays.

Phys. Rev. B, 47:295, 1993.

[91] H.S.J. van der Zant, L.J. Geerligs, and J.E. Mooij. Superconductor-to-insulator

transitions in non- and fully frustrated Josephson-junction arrays. Europhys.

Lett., 19:541, 1992.

[92] H.S.J. van der Zant, C.J. Muller, L.J. Geerligs, C.J.P.M. Harmans, and J.E.

Mooij. Coherent phase slip in arrays of underdamped Josephson tunnel-

junctions. Phys. Rev. B, 38:5154, 1988.

[93] H.S.J. van der Zant, T. P. Orlando, and J.E. Mooij. Phenomenological model

of vortex dynamics in arrays of Josephson junctions. Phys. Rev. B, 43:10218,

1991.

[94] H.S.J van der Zant, T.P. Orlando, S. Watanabe, and S.H. Strogatz. Kink

propagation in a highly discrete system - observation of phase locking to linear

waves. Phys. Rev. Lett., 74:174, 1995.

[95] S. Watanabe, M. Barahona, E. Trias, H.S.J. van der Zant, S.H. Strogatz, and

T.P. Orlando. To be published.

[96] S. Watanabe, S. H. Strogatz, H.S.J. van der Zant, and T.P. Orlando. Whirling

modes and parametric instabilities in the siscrete sine-Gordon equation: Ex-

perimental tests in Josephson rings. Phys. Rev. Lett., 74:379, 1995.

195



[97] S. Watanabe and S.H. Strogatz. Constants of motion for superconducting

Josephson arrays. Physica D, 74:197, 1994.

[98] S. Watanabe and J. Swift. Stability of periodic solutions in series arrays of

Josephson junctions with internal capacitance. Journal of Nonlinear Science,

submitted.

[99] S. Watanabe, H.S.J van der Zant, S.H. Strogatz, and T.P. Orlando. Dynamics

of circular arrays of Josephson junctions and the discrete sine-Gordon equation.

Physica D, submitted.

[100] C.B. Whan, C.J. Lobb, and M.G. Forrester. Effect of inductance in externally

shunted Josephson tunnel junctions. J. Appl. Phys., 77:382, 1995.

[101] K. Wiesenfeld, S.P. Benz, and P.A.A. Booi. Phase-locked oscillator optimization

for arrays of Josephson junctions. J. Appl. Phys., 76:3835, 1994.

[102] A.T. Winfree. The geometry of biological time. (Biomathematics, vol. 8)

Springer, New York, 1980.

[103] W. Yu, E.B. Harris, S.E. Hebboul, J.C. Garland, and D. Stroud. Fractional

Shapiro steps in ladder Josephson arrays. Phys. Rev. B, 45:12624, 1992.

[104] W. Yu and D. Stroud. Vortex motion and vortex-friction coefficient in triangular

Josephson-junction arrays. Phys. Rev. B, 49:6174, 1994.

[105] W.B. Yu, K.H. Lee, and D. Stroud. Vortex motion in Josephson-junction arrays

near f =0 and f=1/2. Phys. Rev. B, 47:5906, 1993.

[106] S.P. Yukon and N.C.H. Lin. Dynamics of triangular and tetrahedral Josephson

junction oscillator arrays. IEEE Trans. Appl. Supercond., 5:2959, 1995.

196



O weiter, stiller Friede!

So tief im Abendrot.

Wie sind wir wandermiide-

ist dies etwa der Tod?

J. von Eichendorff
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