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Abstract

This thesis focuses on hadronic spin structure at low and intermediate energies, 0 <
Q2 < 3 GeV 2. The thesis is divided into two main sections. Each section addresses
a different aspect of spin dependent hadronic physics which has not been studied
previously in detail.

The first section studies hydrogen hyperfine splitting. A polarizability term de-
pending on the proton's G1 and G2 spin dependent structure functions is extracted
with a theoretical precision of 0.1 ppm. A detailed reanalysis of the elastic form factor
contributions is performed. Important radiative recoil corrections are calculated for
the first time. Weak interaction effects are examined and are found to contribute
only marginally at the current level of precision. A pion electroproduction parame-
terization of the existing low energy data data is constructed. The analysis yields a
polarizability correction consistent with the value extracted from hyperfine splitting,
but quantitative comparison of the extracted polarizability will require data from
CEBAF.

The second section studies the effect of higher twists or 1/Q 2 corrections to the
lowest moments of the proton's structure functions. The target mass corrections to
the moments of the spin dependent scaling functions gl and g2 are derived. The
twist-four corrections to the first moment of G1 are examined and the magnitude
of the effect estimated using the MIT bag model. A continuous parameterization
of the moment from low to high Q 2 is constructed. The resulting prediction should
be compared with experiment. The interplay between resonance structure and twist
corrections at low Q2 is studied using the spin independent structure function F2 . The
twist-four corrections along with estimates of the radiative corrections are extracted
from existing data. The analogous analysis for the spin dependent structure functions
awaits experimental data.

Thesis Supervisor: Xiangdong Ji
Title: Professor



Nature resolves everything into its
component atoms and never reduces

anything to nothing.

-Lucretius, (c.100 - c.55 B.C.)
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Chapter 1

Introduction

Understanding spin has always been an important and difficult hurdle towards for-

mulating a physical theory. Take for example atomic physics. After Bohr's corre-

spondence principle successfully explained the gross features of atomic spectra, dis-

crepancies due to the electron's fine structure motivated the development of QED.

The current situation in hadronic spin physics is perhaps analogous to the days just

after the invention of the Bohr atom. Lists of resonances are known and have been

classified according to their various properties. Models such as the nonrelativistic

quark model or the MIT bag model can predict resonance spectra with reasonable

accuracy. The magnetic moments of hadrons can also be calculated to within 10% or

so. There is however an important technical difficulty: while the underlying theory is

believed to be QCD, systematic calculations using QCD cannot be performed at low

energy due to confinement.

This thesis is concerned with the spin dependent structure functions G1 and

G2 of the nucleon at low and intermediate energy. These structure functions char-

acterize the spin dependent inclusive cross section observed when polarized leptons

are scattered off a polarized nucleon. Remarkably little is known about these struc-

ture functions experimentally. This is due to the technological difficulty of producing

strongly polarized targets and high intensity polarized electron beams. The existing

data taken at EMC, SMC, E142, and E143 have provoked much controversy owing

in large part to the tantalizingly small kinematic range of each experiment. The next



few years will see a wealth of spin dependent data coming from machines such as

CEBAF which are dedicated to studying low and intermediate energy spin physics.

We approach the intractability of QCD at low to intermediate energies by using

two approaches. Each addresses a different aspect of spin dependent hadronic physics

in a energy range which has not been explored in detail. Chapters Two and Three

concern the extraction of a low energy hadronic observable called the polarizability

from the hyperfine splitting of the 1S1/2 state in hydrogen. Originally it was hoped

that hyperfine splitting would provide a method of obtaining a very accurate test of

QED as the hyperfine frequency is known to 6 parts in 1013. However it was soon

realized that large hadronic corrections make this impossible and theoretical atten-

tion shifted to muonium. This large hadronic correction is actually very interesting

as it probes the spin structure of the proton for momentum transfer ranging from me

to mp. The hadronic correction can be decomposed into rigid contributions arising

from the proton's elastic form factors and the polarizability which represents virtual

excitations of the proton. We isolate the polarizability by removing the larger elastic

form factor dependence from the hadronic correction. The polarizability is related

to G1 and G2 through a dispersion like relation. The Q2 = 0 end point of which,

corresponds to the Drell Hearn Gerasimov (DHG) sum rule which is being actively

investigated at CEBAF. Chapter Two starts by reviewing atomic physics experiments

which are sensitive to hadronic structure. The nS1/2 states of hydrogen are all sensi-

tive to the proton's mean square charge radius, but are not sensitive to spin structure

since the hyperfine structure effects are easily removed from the analysis. The nS

states do offer a method of independently estimating the proton size which will be

important if the precision of these experiments can be improved. Chapter Three con-

tains the detailed analysis of hydrogen hyperfine splitting. The total hadronic effects

are isolated from hyperfine splitting with a relative error of 0.3%. The hadronic cor-

rections depending on the elastic form factors are then calculated to a precision of

1.5%. The error being determined by the elastic form factors. After calculating and

removing important QED radiative corrections we isolate a term which we attribute

to the proton's polarizability. We find 6(pol) = 2.42(58) ppm. The relative error on



the polarizability being 23%. This error can in principle be reduced to 5% if more

accurate knowledge of the elastic form factors becomes available. The polarizability

should be viewed as an important consistency check for high energy experiment. It

will be interesting to see whether the spin dependent data collected at for CEBAF

will support this number.

The second approach examines the problem of spin at intermediate energies

from the opposite end of the energy spectrum. This marks a departure from the

atomic physics of the previous chapters. Deep inelastic scattering is introduced in

Chapter Four. There are two important classes of corrections which need to be studied

at low energies. Radiative corrections, which have a logarithmic dependence on the

momentum transfer Q2 , and twist corrections which are of the form 1/Q2 . Both can be

understood using the operator product expansion (OPE) to systematically expand the

hadronic bilocal current. At high energies only the radiative corrections are important

but at intermediate energies twist corrections must be taken into account. Chapter

Five calculates twist-four corrections to the lowest moment of the spin dependent

structure function G1. The corrections resulting from this calculation are interesting

as a number of recent experiments have performed spin dependent measurements

at low Q2 where their interpretation is affected by twist corrections. The source of

concern is that measurements taken by E142 for example do not saturate the Ellis-

Jaffe sum rule for the proton, resulting in what has come to be known as the "spin

crisis". The final section, Chapter Six, concerns the duality between resonance physics

and the partonic picture used at higher energies. There is an interval in Q2 where

the higher twist corrections can be thought of as arising from the onset of coherent

behavior, which derive from the excitation of resonance structures. Using previously

measured spin independent observables it is possible to integrate out the resonance

structure and to continue using the language of deep inelastic scattering into the

resonance region. We extract the twist corrections and radiative correction from data

on F2 and study their behavior.



1.1 Publications

The work in the first section concerning hyperfine splitting, will be submitted to Phys.

Rev. D. The material concerning higher twists (Chapters Five and Six), has been

published and represents work done in collaboration with my supervisor Xiangdong

Ji. The references to this material are.

- X. Ji, P. Unrau, Phys. Lett. B, 333, 228 (1994).

- X. Ji, P. Unrau, Phys. Rev. D, 52, 72 (1995).



Chapter 2

Hadronic Structure and Atomic

Systems

The hydrogen atom has historically served as a test bed for quantum theory. The

advent of new experimental techniques has rekindled the study of atomic systems.

In particular, a number of exciting Lamb shift experiments have appeared recently

in the literature [1], [2], [3] which are sensitive to the hadronic charge radius. This

chapter describes the experimental and theoretical status of current work in this

area and comments on planned experiments to measure hadronic structure using

muonic atoms. Finally I examine the lowest order tree level contributions to hyperfine

splitting including the effects of weak interaction contributions before discussing in

detail higher order corrections in Chapter Three.

2.1 Lamb Shifts and Charge Radius

The standard Lamb shift measures the 1057 MHz fine structure transition between the

2S1/ 2 and the 2P1/2 states in hydrogen. While Bohr theory would predict degeneracy

between the 2S and 2P states, spin orbit effects actually split the degeneracy on

the 2P states, resulting in 2P1/ 2 and 2P3/ 2 levels. Further radiative corrections push

down the 2P1/ 2 levels relative to the 2S1/ 2 resulting in the classical Lamb shift. While

of historical interest, the classic Lamb shift is not the best system to study hadronic



effects as hadronic contributions are suppressed by a factor of 1/773 for excited states.

The magnitude of the hadronic effect is governed by the degree of overlap between

the electron and proton wavefunctions. Since the electron wavefunction at the origin

is given by,

= l, (0) ) ro10, (2.1)

the ground state has the largest hadronic contribution. Studying the Lamb shift of

the ground state however has been problematic. Only the relatively recent invention

of tunable dye lasers has made it possible to study optical transitions between the

iS and states with large n to high precision. D.J. Berkeland et al. [1] measured

AE1/2,3/2 = H(2S1/2 - 4P/2,3/2) - H(1S 1/2 - 2S1/2) to an accuracy of 6 ppm; the

highest precision to date for a Lamb shift experiment. The experiment is quite elegant

and involves measuring the beat frequency between the 4P -- 2S ard 2S -- 1S

transitions. Since the quantity AE is zero in Bohr theory, one clearly is measuring

important perturbative effects.

Fig. 2-1 shows the relevant levels and some fine structure details. Theoretically,

the higher energy states are well understood [4] and the only input from hadronic

theory is the proton charge radius. The notion of charge radius is largely historical

and we shall use it to easily differentiate between particular elastic form factor pa-

rameterizations. We shall always refer to the RMS charge radius using the method

of Sachs where,
<r2 > 8GE 2)

< - GE( Q2 =. (2.2)6 OQ2

The hadronic correction which effects the IS and 2S states can easily be calculated

naively where one finds,

AE(n, 1) 3= 6 min3 < r2 > 3o. (2.3)

This formula also holds for the formal analysis of the energy shift where G2 - 1

is Taylor expanded about Q" = 0 GeV 2 (see for example [5]). There exists in the

literature two inconsistent measurements of the charge radius of the proton: the
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older value of 0.805(11) fm measured by L.N. Hand et al. [6] and a more recent

measurement of 0.862(12) fm measured by G.G. Simon et al. [7]. The error from the

charge radius contributes about half the total 5 ppm uncertainty in the prediction of

the 1S energy for each charge radius, the remainder being uncalculated QED effects.

The systematic errors between the two form factor parameterizations are sufficiently

large that the 1S Lamb shift measurement can differentiate between them. The 1S

Lamb shift measurement is entirely consistent with the larger radius. A more careful

analysis of Eq. (2.3) that takes into account the Q2 dependence of the proton's

elastic form factors is missing in the literature. This will become essential when the

experimental measurement of the 1S Lamb shift improves along with QED theory

by a factor of five. When this level of precision is reached, one must also take into

account the proton's self energy. The result of an analysis by K. Pachucki [5] shifts the

1S level upwards by 0.6 ppm, thus in principle more accurate Lamb shift experiments

can tightly constrain the mean square charge radius.

2.2 Hyperfine Splitting

Hyperfine splitting results from the magnetic moment interactions between the proton

and electron. The standard derivation of the lowest order Fermi hyperfine splitting

given in textbooks is in the coordinate representation (see for example Sakurai [8] or

Itzykson and Zuber [9]) so for completeness we give the momentum derivation. This

exercise provides insight into how reduced mass effects arise and integrates with the

higher order corrections which are also given in the momentum representation. The

spin independent wave function in the coordinate representation is given by,

1 (2.4)3



Where 7 = am,, a being the fine structure constant and m, =m'emP the reduced

mass. Fourier transforming we find,

O(p) = -(27) 3i&(po) •( + 2. (2.5)
(P2 +7 2)2

the non relativistic nature of the solution being brought to attention by the delta

function in energy. Since the electron in hydrogen is only weakly relativistic (p ~

ame) this is a good starting wavefunction for bound state perturbation theory. The

following spin projection operator for the electron and proton,

( 2m + pi 1 + o(2.6)A(p) = 2m i) (2(2.6)

selects the correct non-relativistic spin contribution to hyperfine splitting. The cal-

culation of the lowest order diagram in Fig. 2-2 between particles with no magnetic

moment proceeds by evaluating,

I d4 p d 4 p' d4 q 2

EF = (2r)4 (2) 4 (2) 4 4 (p- p'-q) cp(p')t 2 (p) S(q, me, mp) (2.7)
(27r)4 (27r)4 (27r)4 q2 + if

Where p and p' are the electron momenta and q is the momentum transferred through

the photon. P and P' are the proton momenta; the spatial parts being equal and

opposite to the electron's. The spin dependent part is given by,

S(q, me, mp) = XAt(p')e•yOy7 A(p)e•e 0 XtAt(P')pyO°A(P)Xp,, (2.8)

where only the spin-spin interaction need be examined. The important term for the

electron resulting from the large component of the four-spinor is,

(a . p')ao + 'i(a p) +- - ieijkqjOk. (2.9)

The proton has an analogous term. Averaging over the angular part of q we find the

hyperfine splitting component is given by S(q, me, mp) = • Evaluation of Eq.3 me mp



Figure 2-2: The lowest order diagram, where q is the momentum transfer between
the proton and electron vertex. The wavefunctions before and after the interaction
are represented by the triangles to the left and right.

(2.7) is now straightforward and we find the Fermi result,

8 a 4m3
EF • r  (2.10)

3 memp

This result was derived neglecting the magnetic moment at each vertex. The addition

of the anomalous moment holds through use of the Gordon identity. The vertex used

above; -iey", must be replaced with

+ + i3 2m ' (2.11)22m

where x is the anomalous magnetic moment of the particle. For the electron this

number can be calculated explicitly by studying vertex corrections in QED, while for

the proton this number must be taken from experiment. The Gordon identity then

yields,

Y" -+ 7"(1 + a) - 2p A + q"  (2.12)
2m

- (1 + ). (2.13)



Where use has been made of the Dirac equation acting on states implied to the left

and right of the vertex. The second term in Eq. (2.12) does not contribute to HFS

and can be neglected. Thus the full lowest order Fermi calculation for hydrogen is

given by,
8 a m 3

EF ( + r P). (2.14)
3 memp

Since the 1 + r, term results from QED vertex corrections of the electron line, this

correction is traditionally separated from the lowest order Fermi result and grouped

with higher order QED corrections.

Higher order corrections to the Fermi result involve hadronic corrections. The

most sizable correction in this class involves the proton charge radius, or equivalently,

the slope of the proton's magnetic form factor at Q2 = 0 GeV 2 . The immediate conse-

quence of the new 1S Lamb measurement is that it invalidates all previous hyperfine

splitting analysis. All previous work has systematically used the smaller charge ra-

dius, which, if the Lamb shift result is correct, contain large systematic errors. The

smaller radius has been used owing to the early appearance of the standard dipole

proton form factors and the relative simplicity of the parameterization. While hy-

perfine splitting depends only linearly on the charge radius instead of quadratically,

the elastic form factors make an important contribution to the hadronic correction

which must be understood in order to correctly extract smaller effects such as the

polarizability.

Chapter Three treats these corrections in detail. The main point here is that the

next set of corrections for the proton are much larger than the nominal ac ln(1/3)

size which would be predicted for a structureless proton, with 3 = me/mp.

2.3 Muonic Systems

The primary reason for studying muonic hydrogen (j-p) stems from the "I enhance-

ment in hadronic signal. The heavier muon has a much smaller Bohr radius and

therefore has a much stronger overlap with the proton than the electron system. The



life time of the muon however,

r,= 2.19703(4) x 10-6 sec (2.15)

makes the actual experiments quite challenging. Not only does one need an accelerator

to generate the muon beam, but the muon must also be delivered at thermal energies

and in useful quantities before decaying. The muon's short lifetime also means that

transitions have a line width of about 145 KHz. The actual transition energies of

the muonic system are also awkward to reach using conventional laser technology.

Theoretically, electron polarization effects are much stronger than the hydronic case

and must be taken into account to higher order.

There are plans to measure the 3D -- 3P transition at PSI (Heidelberg) which

will be marginally sensitive to hadronic effects. The dominant correction3 being QED

vacuum polarization terms as the P and D orbitals do not overlap the proton strongly.

Future possibilities include measuring the 2S --+ 2P classical Lamb shift analog and

the n = 1 hyperfine structure, both have large hadronic contributions. The transition

frequencies for these experiments are on the order of 40 THz and are apparently

barely within reach of current technology.

We close this section by briefly discussing the status of muonium (F+e) hyperfine

splitting. Since muonium lacks hadronic structure, QCD contributions are negligi-

ble and QED can be used to greater accuracy. The theoretical precision currently

is 38 ppb (parts per billion!) the same accuracy as that of the muonic hyperfine

measurement itself. Actual comparison between theory and experiment is impossible

at this level due to an uncertainty of 300 ppb resulting from the muon mass in the

theory input. By comparison, the results of Chapter Three reduce the theoretical un-

certainty in hydrogen hyperfine splitting to the 100 ppb level. For additional reviews

on muonic systems consult Jungmann, Hughes and Putlitz [10] and for the latest

theoretical muonium results see Kinoshita [11].



2.4 Weak Interaction Effects

We estimate the magnitude of weak effects in hydrogen hyperfine splitting. Within the

framework of low energy effective theory, the effective Lagrangian for the interaction

between electron and proton is given by,

Lp -c = (Ail["^l5 -.IiY5sHi + Bi- Hi (2.16)

tLPNC G A H~y~y-H + Bll (2.16)

+ Cily'y 5l H I;m,Hi + D l7y" -Hiy1y5Hi). (2.17)

While the V-A (vector-axial) components of this Lagrangian can be measured by

parity violating experiments, separating the A-A and V-V from a large QED V-V

component can be complicated. Thus the A-A and V-V weak components have not

been explicitly measured. If one assumes that the Standard Model gives the axial

and vector couplings to the proton, then one can determine the coefficients Ai and

Bi.

A computation analogous to the Fermi splitting calculation just previous reveals

that only the A-A component of the Fermi interaction contributes to the hyperfine

splitting energy.

6(Weak) =Ewek _ 3GFpmmpeP A (2.18)
EF 2 V2_ a2 1 + Kp

0.117 ppm, (2.19)

where gA ; 1.257 has been used to estimate gp. We will include this estimate when

we come to isolate the hadronic terms later next chapter. The weak interaction

correction estimated here provides a small correction to the polarizability extracted

in Chapter Three.



Chapter 3

Hyperfine Splitting and Hadronic

Structure at low Q2

Hydrogen hyperfine splitting (HFS) contains many layers of physics; on the surface,

an atomic physics problem, while underneath a crossroads between QED and the

hadronic world of QCD. HFS deals with the coupling between the electron spin and

the spin structure of the proton. Unlike muonium, which only has point like spin

interactions, the proton's spatial extent and internal spin degrees of freedom must be

accounted for. This provides important constraints otherwise only accessible through

high energy physics experiments. The goal of this chapter is to understand a subset

of these hadronic contributions to better than one part in a million.

The two-photon exchange diagram includes rigid, radiative and polarizability

corrections arising from hadron structure effects. The rigid term or coherent recoil

requires accurate knowledge of the electric and magnetic form factors obtained from

high energy electron beam experiments. This contribution has been extensively re-

viewed by Bodwin and Yennie [12], who evaluated the recoil corrections using the

commonly found dipole parameterization for the form factors. The radiative recoil

corrections have not been calculated previously in hydrogen and we find contributions

at the level of a part per million. The polarizability effects in the structure calcula-

tion result from dispersion integrals over the two spin dependent nucleon structure

functions, G1 and G2. These structure functions characterize the internal excitations



of the proton's spin structure and are measurable in polarized target and beam ex-

periments. Previously the polarizability correction, b(pol) was bounded by Gnadig

and Kuti who found I6(pol)I < 4 ppm [13]. This result represents the largest uncer-

tainty in the hadronic theory of HFS. The 4 ppm limit was calculated generously by

using the positivity of the total scattering cross section to bound the spin dependent

structure functions by the measured spin independent ones.

This chapter provides a fresh outlook on these hadronic corrections to hydrogen

hyperfine splitting. We recalculate the rigid contributions using the more sophisti-

cated low energy parameterization of the proton form factors measured by Simon et

al. [7]. This serves to eliminate a large systematic error on the order of a few ppm

resulting from using the standard dipole form factors. The leading radiative one loop

corrections to this result are calculated for the first time. These calculations allow

the hadronic polarizability correction to be extracted with a theoretical precision of

0.1 ppm. We find a polarizability contribution of 6(pol) = 2.42(56) ppm. The domi-

nent source of error results from the error in the elastic form factors. An attempt

is made to directly calculate the polarizability correction using currently available

spin dependent hadronic data. Pion electroproduction data and recent deep inelastic

scattering (DIS) data are used to estimate the size of the polarizability correction.

The resulting model is consistent with the bound of Gnadig and Kuti, but the quality

of the data is poor and more precise experimental data will be required to make a

detailed comparison with our extracted result.

The chapter is divided into five sections. The first section discusses the isolation

of the hadronic contribution to the HFS and reviews the known QED contributions

in light of recent theoretical advances. The second section outlines how the hadronic

structure functions are related to the HFS problem at the one loop level. The third

section involves the calculation of the rigid correction, while the fourth and fifth

sections deal with the evaluation of the radiative and polarizability corrections re-

spectively.



3.1 The Hadronic Residual

The purpose of this section is to extract as uniquely as possible the hadronic contribu-

tions from the measured HFS. By using the existing QED calculation one can extract

a hadronic residual which is compared with hadronic calculations. To begin, we de-

fine what is meant by a hadronic residual: imagine neglecting all hadronic structure

effects except for the mass, charge and magnetic moment. Then in this muonic-like

system, one could calculate an expansion in powers of the fine structure constant a

and p, = me/rap. This expansion would yeild a systematic set of corrections to the

lowest order Fermi result. Since this is a bound state problem, logarithms of a and

Op can also appear. Generally two classes of terms will arise: ones which depend only

on a, and those which involve both a and P. Within the point-like approximation,

the former are called QED corrections and the latter recoil corrections.

The full calculation including all the effects of proton structure will produce a

subset of terms which, when the hadronic structure is suppressed, reduce to the recoil

terms in the point-like expansion. We group these terms together and call them

hadronic corrections. The expansion will still be in powers of Op but any logarithmic

dependence will have shifted to a structure dependent expression. The QED class of

corrections to the lowest order term, which depend only on a, remain unchanged and

are grouped together as before. Thus the exquisitely measured hyperfine frequency

[14] [15], can be decomposed as follows:

f(HFS)p = 1 420.405 751 766 7(9) MHz[15]

fFp + f(QED), + f(hadronic),, (3.1)

where fFp is the lowest order Fermi splitting given by,

16 3rn3

fFp -2 TP C2 cR( + p)

= 1 418.840 32(13) MHz. (3.2)

Here, mrp is the reduced electron mass in the hydrogen system and s, is the anomalous



magnetic moment of the proton. This lowest order result sets the maximum numerical

accuracy possible from the expansion. In this case, the error is primarily from the

value of a. The current precision of 0.1 ppm exceeds the precision possible in current

hadronic calculations by about a factor of five, the hadronic error being due primarily

to the uncertainty in the charge radius of the proton.

The QED radiative and binding corrections, f(QED), come from the momentum

region with p, I < ame. With such low momentum the electron samples only the static

dependence of the proton's charge and spin distributions. Since only the corrections

which couple the spins of the two particles are of relevance to the HFS problem the

result must be proportional to the magnetic moment of the proton and takes the form

[12],

f(QED)p = fFp (Za)2 + Ke + a(Za)(ln 2 - )

8a(Za)2  281
- 3ar In(Za)[ln(Za) - 2 In 2 + 4

+ (15.38 + 0.29) + a 2 ( (3.3)

D1 represents higher order QED corrections which contribute at the nominal order of

0.124 ppm. Recently T. Kinoshita and M. Nio [11] estimated the D 1 term and found,

D, = 0.813 ± 0.040.

Subtracting the leading Fermi and QED terms from the experimental splitting

isolates the hadronic dependent effects,

f(HFS)p - fFp - f(QED)p = 6(hadronic, QED)p = -32.71 (10) ppm. (3.4)
fFp

Here we define 6(hadronic, QED)p to be the hadronic residual extracted using the a

expansion in Eq. (3.3). The next section calculates the dominent hadronic contribu-

tions to this residual.



3.2 Structure Function Dependence

The hadronic structure must now be explicitly evaluated and compared to the es-

timates from the previous section. The term f(hadronic) in Eq. (3.1) contains

two-photon exchange diagrams (one loop) with hadronic structure dependence and

radiative corrections. Dominant parts of the three-photon exchange diagrams (two

loop) have been partially worked out by Bodwin and Yennie [12], which we will also

include along with weak interaction contributions. The hadronic term is therefore

given by,

S(hadronic)p = b(one-loop)p + b(one-loop-rad)p + b(two-loop)p + 6(weak)p, (3.5)

where the terms have been placed in decreasing order of importance.

The lowest order correction to the one photon result outlined in Chapter Two

is the two-photon exchange or one loop diagram diagram shown in Fig. 3-1. This

diagram actually contains within it twice the Fermi splitting. The reason for this over

counting stems from the lowest order calculation and resultant choice of kernel. The

non-relativistic wavefunction can in principle be obtained by summing to all orders in

the ladder approximation purely space-like interactions. If the time-like component

is set to zero in either of the photon legs in the one loop diagram, it reduces in

this scheme to the one-photon calculation. The one loop diagram therefore contains

twice the Fermi splitting (revealed when the time-like component is set to zero in

either of the photon legs) which must be subtracted off to give the correct one loop

contribution. This diagram is greatly simplified by the following approximation: since

the proton's momentum scale is vastly higher than that of the electron's, the two

photons must have equal and opposite momentum on the proton's scale. Otherwise

the electronic wavefunction would not be able to absorb the resulting momentum

transfer. This implies that the spin dependent part of the forward Compton scattering



Figure 3-1: The two photon exchange diagram, with crossed diagram suppressed.
The single photon diagram must be subtracted to prevent over counting.

amplitude T'V can be used to describe the proton side of the diagram:

T(, Q2 = i S(Q 2 ) + ((p. q)s - (s. q)p3) S2(VQ 2)) (3.6)
m m 4

P P

S, and S2 are the two spin dependent structure functions, q, is the momentum of

the incident photon and p, and s, are the proton's incident momentum and spin

(C0123 = 1). The traditional high energy kinematic variables are given by v = (p.q)/mp

and Q2 = -q 2 . For an excellent review of the spin dependent structure functions

consult Hughes and Kuti [16]. The Compton amplitudes Si can then be related by a

dispersion relation to the absorptive parts Gi,

4F1 F, + F2  2 00 v'dv'
Si(v, 2 _ 4( )2 - Q4 mth 4  ,2  G(v', Q2). (3.7)

S2 (v,Q 2) 4 2 ) m + 4 f 2vd' G2 (v', Q2). (3.8)
4(mPV)2 - Q4 p Jth V - V

The Gi are measurable in spin dependent inclusive electroproduction experiments.

The terms in front of the integrals take into account elastic scattering; F1 and F2 are



the Dirac and Pauli form factors. The pion threshold vth is a function of Q2 . The

forward Compton amplitude can also be defined for the electron which to lowest order

in QED yields:

4Q2  2S'(v, 4Q ) 4 2 (3.9)Q - 4(mv)2

Se(v, Q2 ) = 0. (3.10)

The calculation of corrections to the lowest order Fermi result consists of perturbation

theory about the non-relativistic solution. The characteristic momentum scale came

of the electron wavefunction seperates from the region of interest, which runs from me

to mp, weighting the calculation by the electron density at the origin. By selecting

the hyperfine splitting component of the spin-spin interaction the one-loop graphs

represent,

I (0) 2 gvd4  -e2 z 2
6(one-loop) = i 2Ef Tr ie e (3.11)2EF (27)4 2 + i q2 + if'

the { } mean to extract the HFS component. After extracting the HFS component

we find,

f d4q ( 3vq 2 S
(one-loop) = 2 q2(q4 - 4(mev) 2) + 2q2)S + S 2  (3.12)

where S1 and S2 are the proton structure functions. A rotation to Euclidean space

is performed using the transformation: v -- iq4, q2 ___ Q2 = 4 + q2. Subtracting a

piece which represents the over counting of the lowest order Fermi result gives the

total one loop contribution which is further decomposed into rigid and polarizability

corrections:

8m2 oo[ GM(3qNGM+2 2eFl)
6(one-rigid) = dq4dq 4 (Q4 4n o 94 4m2 2) . (Q + 4M2 2)

2qQ(1 + ps) - (3q4 + 2q 2)F" (3.13)
(44+ 4m q2) - (q + 4mq ) 4m2. Q2 (Q4 + 4Mq 2)I 'e \ 'p4 p 4 P eq41"'eQ



6(pOl), = 9 Q2 (22Q2) _ 1 , k 1(0)G,(v, Q2)

dq2 d du
+ 6 Q2  2(0)G2(vQ2) (3.14)

Q th M p

Where

S (1t- ~+ 0.453 ppm (3.15)
(1 + •p )7;m,

is a useful pre-factor to remove from the integrals. The functions /1 and 32 are,

,](0) =30 - 202 + 2(0 - 2) 0(1 + 0) (3.16)

z2(0) = + 20 - 2 0(1 + 0), (3.17)

with 0 = v2/Q 2. Finally, GM and GE are related to F1 and F2 by:

GM(Q 2) - F(Q2) + F(Q 2), (3.18)

GE(Q2) = F1 (Q2)_ Q2F2(Q2). (3.19)
4m2

The various terms in Eq. (3.13) are in direct correspondence with expressions

from Bodwin and Yennie [12] but are calculated by a much more direct route first ini-

tiated by Drell and Sullivan [17]. We have included the electron propagator correctly,

which is important at the current order of precision. The G 2 term corresponds to

AE(VV) Eq. (5.28) from Bodwin and Yennie, and the F22 term to AE( K 2)+AE(No.1)

and Eqns. (5.31+5.34). The two remaining terms correspond to the Zemach correc-

tion plus AE(VO), Eqns. (5.18 + 5.24 + 5.36).

An important point to note is that the F,2 and polarizability corrections lack an

explicit momentum cutoff. While the terms generated by the elastic form factors all

contain a factor (Q4 + 4mq4 ) in the denominator, the behaviour of the form factor

F2 and dispersion relations in the polarizability are crucial to ensure convergence.

Using the standard dipole parameterization for the elastic form factors, Bodwin



and Yennie obtained [12],

b(one-rigid,B&Y)p = -33.50(58 + unknown) ppm. (3.20)

This fortuitously cancels any discrepancy between theory and the residual in Eq.

(3.4) when combined with their two loop estimate of b(two-rigid) a 0.46 ppm. Note

however that important systematic sources of error remain and are indicated by the

unknown in Eq. (3.20). The dipole parameterization is known to overestimate the

data by roughly 2% at energies below 1 GeV and there are important corrections

to the slope which directly effect the proton charge radius [7]. Incorporating these

changes results in a shift on the order of a few ppm because the dominant correction

in the 6(rigid) term is very sensitive to the rms charge radius of the proton. As

mentioned in the introduction the current estimate of the b(one-pol) term is a 4 ppm

bound. There is clearly a need to estimate the hadronic corrections to a greater

precision using current data.

Finally, we conclude this section by pointing out that 6(one-rigid) can be easily

evaluated analytically in the point like approximation GM -+ 1 + ,P and GE - 1.

The result is,

b(one-rigid) = -3 - -. mem p In ( • (3.21)
7 m -m me 4(1 + )p)

= -2.01 ppm. (3.22)

The proton's structure makes significant modifications to this result as will be

demonstrated in the next section. The interesting feature of this result is that only

the anomalous moment squared appears in the correction (the Fermi factor has a

factor of (1 + ip) in the numerator). Higher order calculations in muonium are thus

greatly simplified since all terms contributing r,2 can be dropped to the current order

of precision. The complication when calculating higher order corrections in hydrogen

is therefore two fold: all terms with anomalous moments contributions must be kept

and all such terms in general have a form factor dependence.



3.3 Rigid Contribution Evaluation

The form factors that Bodwin and Yennie used to calculate the rigid part of the recoil

are given by the dipole parameterization:

GM(Q 2 ) 2 2
GEG(Q) (1 + Q) - GD(Q 2) = Q2), (3.23)(1 + ,•) 92 + 2

with Q = 0.843(12) GeV. This is equivalent to a charge radius of 0.811 fm. The latest

measurement of the charge radius by G.G. Simon et al. [7] yields a charge radius of

0.862(12) fm. This value is consistent with recent Lamb shift experiments [1] probably

ruling out the use of a smaller radius. Fig. 3-2 shows the Simon parameterization for

GE and GM. The fit is to a series of four monopole terms:

4

GE(Q2)= Q/i ?) (3.24)

The parameterization for GM, also incorporated into the evaluation of the rigid term,

is similar. These form factors are then used in Eq. (3.13) in order to calculate the one

loop rigid contribution. In many cases by changing variables to angular coordinates it

was possible to analytically integrate out everything but the momentum dependence.

This was then evaluated numerically using MAPLE. By far the most sensitive integral

is the GMF1 - (1 + rp) term which is very sensitive to the charge radius and hence

to the slope of the form factors at the Q2 = 0 GeV 2. The net result of this analysis

is encapsulated in Table 3.1. The current calculation produces a shift of -1.45 ppm

when compared with the work of Bodwin and Yennie. The shift is primarily due to

the change in charge radius, however significant modifications to the other terms have

also occured at the 0.1 ppm level.
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(GM/(GD(1 + Kp))
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Termr

Proton Radius:

F 2
GMF1 - (1 + yp)

6(one-rigid)

Boduwin & Yennie

0.811 fm
70.05(10)
-22.44(3)

-81.11(57)

-33.50(58)

Current Work

0.862(12) fm

69.87(10)
-22.36(3)

-82.46(54)
-34.95(55)

Table 3.1: Comparison between the work of Bodwin and Yennie and the updated
6(one-rigid) contribution. All values are in ppm except for proton radius.

3.4 One Loop Radiative Corrections

The radiative diagrams which affect the two photon exchange calculation are shown

in Fig. 3-3. Fortunately, to leading logarithmic order, only the photon polarization

insertion need be calculated, as shown in the structureless case by Casvell and Lep-

age [18]. The leading coefficients of the other diagrams cancel. This can be seen by

calculating the leading logarithmic behaviour of the three last diagrams in Fig. 3-3,

where the two electron vertex corrections are found to cancel the leading behaviour

of the other two diagrams. The dominant behaviour is therefore given by the re-

maining polarization insertion diagram. As eloquently demonstrated by Landau and

Lifshitz [19], the polarization insertion is calculated by replacing the regular photon

propagator with,

1 a dx1 2 (3X 2 ) 1
q -+ 3 d 23- 2)  - x2 -4q12 it6 37r o q2 2 - + Z2

(3.25)

where m is the

by,

mass of the lepton in the loop. We define a function p(Q 2 , m 2) given

P(Q2, i 2)

PL(Q 2, i 2 )

Sdx xZ2(3- 2) Q 2( X ) 4
PL(Q2,I M2) + pH(Q2

- 2)+4

SinQ 2 + 4m2 .
In( 4m2 _)_

(3.26)

(3.27)

(3.28)

I · _

_



The leading logarithmic behaviour is cleanly separated by writing x2 (3 - x2 ) = 2x -

x(1 - x) 2 (2 + x); the first term leading to the logarithmic term PL and the second to

PH.

We find that the polarization part of the radiative correction is given by,

6(one-loop-rad) = ia T(0) TeP(-q2 , m2 ) e (3.29)
37rEF (27)4 e q2 + iq 2 i (3.29)

where again the braces mean to extract the HFS component. A factor of two has been

inserted corresponding to the number of ways the polarization term can be inserted.

A complete calculation of radiative corrections to the two photon exchange diagram

must also include a term of the following form,

ia (0)12 f d4 -ie2  -ie2

6(electron-rad)- {TvEF R q q (3.30)

Re contains the renormalized contributions from the last three diagrams in Fig. 3-

3. The net effect is that Se -- RE picks up terms and Se --+ Re will contain terms

proportional to the electrons anomalous moment as a result of vertex corrections.

However, the worst singularities will cancel, leaving a correction of the same order as

PH for the photon polarization correction. Thus the leading logarithmic correction is

given by,

(one-loop-rad) 16a2 o dq4d qj [ + II.A + II.B + III]. (3.31)

Where the terms I, II.A, II.B and III are given by,

3GMq PL(Q 2  ) (3.32)I M 4,L M (3.32)
(Q4 + 4m2q2) . (Q4 + 4mq2 )'

2, (GMF - (1 + p)) . PL(Q2, m)
II.A =

(Q4 + 4mq) . (Q4 + 4mq)4e

II.B = 24(1+ ) + P) p, (3.33)
(q 4 (Q4 +4m q )



Figure 3-3: The radiative correction diagrams. Missing are the diagrams with crossed
photon legs. The diagram in the upper left is the dominant polarization insertion.

2(4 4 -- 2). (•-•2Pq) (3.34)

4m2 .Q2 Q4 + 4m0 q 2 (335)2

Term II has been broken up into structure dependent and independent terms for ease

of numerical analysis. Table 3.2 contains the results of numerically integrating the

terms in (3.31). The integration was performed analytically to obtain one dimensional

integrals which where then evaluated numerically using the MAPLE program. The

Term ppm
I 0.502

II.A -0.434
II.B -0.655
III -0.171

S(one-loop-rad) -0.758

Table 3.2: Contributions to the polarization insertion from the terms defined in the
text, using the Dipole form factors of Simon et al. All values are in ppm.

2



total contribution from all the leading terms was found to be -0.758 ppm. The naive

estimate for the non leading terms is - 0.1 ppm; nominally the magnitude of the

non leading terms should be suppressed by a factor of ln(mp/me) ,- 7.6 from the

leading result. Therefore the radiative calculation is consistent with the current QED

precision of 0.1 ppm.

3.5 The Polarizability Contribution

The first term of Eq. (3.14) looks highly divergent at low Q2 . That it is not relies on

the validity of the Drell-Hearn-Grasimov (DHG) sum rule. The DHG sum rule states

that,
fS00 dv F22 (0) - (3.36)

,th 4 4

Where again, Vth is the pion production threshold. The sum rule follows from applying

Low's low energy theorem to the dispersion relation for SI. An explicit calculation

to lowest order reveals that:

S1 (V 2 ) = -2F(F 1 + F 2)( 1 2 F22. (3.37)
l(vq2)__-2F1(F2mpy - Q2 + iZ 2rnmp + Q2 + ij 6 --

Therefore there is an implied relationship between F22(0) and the G1 dispersion in-

tegral evaluated at zero energy when Eq. (3.37) is compared with Eq. (3.7). The

DHG sum rule in combination with the properties of the 3i functions, insure that

the low Q2 behavior of the integrand is proportional to Q and not 1/Q for both dis-

persive integrals. The weight functions 01 and 32 are defined on 0 < 0 < oo. They

are bounded functions satisfying -9/4 < 01 < 0 and 0 < 32 < 1. The lower limit

in both cases corresponds to large 0, which in turn corresponds to the low Q2 and

deep inelastic scattering (DIS) regions. The expression for 6(pol) in Eq. (3.14) can

therefore be decomposed as follows:

6(pol) = 6(pol, Q < Qcut) + b(pol, Q > QCt). (3.38)



We find ourselves in the strange position of knowing less about the polarizabil-

ity below the cut than above. This is due to the large number of spin dependent

experiments which have been performed recently in a Q2 range between 2 - 10 GeV2 .

The majority of experiments in the resonance region have measured unpolarized pion

electroproduction cross sections. We analyze this exclusive pion channel data to recon-

struct inclusive spin dependent observables under the strong assumption that the one

pion channel dominates the low energy behaviour. The one advantage this has over

inclusive spin independent measurements is that inclusive data do not currently exist

in the resonance region. This resonance parameterization was then used to estimate

the low cut contribution to the polarizability. The high cut region was approximated

using the DIS expansion. There should be a region between 1 GeV2 < Q' t < 3 GeV 2

where this overlap makes sense as this is typically where resonance behaviour can be

understood in terms of higher twist corrections.

There are a number of internal inconsistencies in the available pion electropro-

duction data. Given a more complete data set it would be interesting to discuss the

saturation of 6(pol) from pion electroproduction; for this reason Appendix B con-

tains details of the parameterization. The Breit-Wigner approach used here has a

number of problems which are known to exist at the photoproduction point. Kar-

liner demonstrated that the one pion contributions to the DHG sum rule makes up

about 95% of the total sum rule [24]. When decomposed into isospin components,

he found that the isovector-isovector part saturates 83% of the DHG sum rule and

is quite independent of analysis. The isoscalar-isoscalar term is found to be small

and the isoscalar-isovector interference is of the wrong sign and yet accounts for the

remaining 10% [23] [24] [25] [26]. Attempts to include non-resonance effects tend to

oversaturate the sum rule by up to 10 - 25%. Assuming that these problems persist

into the electroproduction region, we concluded that the parameterization was prob-

ably good to about 30% overall. Somewhat remarkably if the data is normalized, so

that it saturates the DHG sum rule at Q2 = 0, 6(pol, Q < Q,,t) behaves quite well

(see Fig 3.4).

The basic picture to keep in mind when trying to understand the Q 2 dependence
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Figure 3-4: The dependence of the Resonance parameterization 6(pol, Q < Q,,t) on
Qcut

of the structure functions is that at low Q2, the dominant resonances such as the

delta couple to the photon through helicity violating transitions, giving G1 a negative

sign. As Q2 is increased these transitions rapidly drop off. At the same time helicity

conserving reactions gain strength and contribute to the non-resonance amplitude.

Finally, in the DIS region G1 becomes predominantly positive. Our analysis below

the cut does not include these non-resonance contributions and so 6(pol, Q < Qcut)

is essentially flat for Qcut > 0.6 GeV as shown in Fig. 3-4. In contrast, we shall see

that the twist expansion for 6(pol, Q > Qcut) falls appreciably for Qct > 1.0 GeV,

indicating the presence of these factors. Our interpretation of this state of affairs is

that incoherent behaviour makes important contributions at low Q2 to b(pol, Q <

Qc~t ) and that this information can really only be obtained from detailed experiment.

As shown by Fig. 3-4, the observed decay of the resonances with Q2 is sufficient to

neutralize the F22(Q 2 ) term in Eq. (3.14).

Now consider the polarization correction coming from above the cut: 6(pol, Q >



Qcut). We deal with the terms coming from Gi and G2 separately. The polarization

correction for G1 in the DIS regime is given by,

9 Qd2 32m2
6(pol, Gi, Q > Qout) = 8• dQ•, 2 F(Q2) 32m g .(xQ2)f1(0)dx , (3.39)

where gl(x, Q2) = v/mp - GC is the deep inelastic scaling function. We have changed

our set of integration variables from (v, Q2) to (x, Q2), x = Q2/(2mpv), 0 = Q2/(4mX22 ).

By expanding around the large 0 limit of f1 an expansion in terms of the moments

of gl is obtained. Note that for Q2  1 GeV 2, and x • 1/2, then 0 ; 1 and the

expansion makes sense as 0•(1)/ll(oo) ; 0.8. The twist expansion for the moments

is given by,

x2n (xQ2)dx = 7, (3.40)

where the logarithmic dependence from radiative corrections has been suppressed.

Thus b(pol, G1) above the cut becomes to the relevant order,

l( d 2_2 M2 m2••m
b(pol, Gi, Q> Qct) = 99 2 -Q (2,0 m 2 4,0 - -2,2 (3.41)

The following estimates have been extracted from spin polarized DIS experiments,

92,0 = 0.126(25), /1 4,0 = -0.023(15) and u2,2 = 0.021(10) and are used in the analysis

(see Chapter Four for explicit details). Fig 3-5 shows the result for this set of param-

eters. The cusp shown below Q2 = 1 GeV 2 should not be taken seriously, being in a

quite nonperturbative domain, but the polarizability correction for a cut larger than

. 2 GeV 2 should be accurate.

The 6(pol, G2 , Q > Qcut) can also be estimated by expanding 02 in the large 0

limit and using the scaling function: g2 = (v/rn) 2G2 to obtain,

6_m 4m,2
b(pol, G2, Q > Qcut)= PF2 - P4 . (3.42)

Recnt experiments at SLAC by the E143 group have provided estimates for the g2

Recent experiments at SLAG by the E143 group have provided estimates for the g9
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Figure 3-5: The parameterization above the cut, 6(pol, G1, Q > Q,.t). The horizontal
axis is Q', in GeV2 . The vertical axis is in ppm.

moments: £2 = -0.006(2) and F4 = -0.002(1) at Q2 = 5.0 GeV 2 [27]. We found that

the maximum contribution from this set of parameters was on the order of 0.01 ppm

and so the G2 contribution above the cut was neglected.

3.6 Conclusions

The goal of this analysis has been to extract as accurately as possible 6(pol) from

hydrogen hyperfine splitting. Before concluding that the observed discrepancy be-

tween theory and experiment is attributable to the polarizability term, we would like

to carefully review the various possible sources of uncertainty.

We start with possible QED effects. All the radiative corrections in f(QED)

from Eq. (3.3) have been calculated to a precision exceeding 0.1 ppm. Furthermore

these results are completely structure independent and are therefore also used in the

analysis of muonium. A recent analysis by Kinoshita [11] finds excellent agreement

between theory and experiment in muonium hyperfine structure. It is therefore seems

improbable that the extraction of the hadronic residual Eq. (3.4) is a significant source



of systematic error.

If no further corrections are considered, the data clearly favour a smaller charge

radius for the proton. The recent measurement of the iS Lamb shift [1] is however

entirely consistent with the 0.862(12) fm radius used in this study. In fact the data

prefer a marginally larger radius. Thus it would appear that explaining the discrep-

ancy by changing the charge radius is not a viable option unless there are significant

problems with the IS Lamb shift analysis at the 2 ppm level.

The uncalculated subleading radiative contributions could conceivably conspire

to produce an effect of the order 0.1 ppm. Likewise the two-loop calculation of Bodwin

and Yennie may contain uncalculated effects at the 0.1 ppm level.

Weak interaction effects mediated by Zo exchange where discussed in Chapter

Two. The standard model estimate of 0.12 ppm has been included in the analysis.

While it would interesting if these effects were not as predicted by the standard model,

the current estimates say weak effects are only marginally significant at 0.1 ppm

precision.

Table 3.3 shows the current theoretical understanding of hydrogen hyperfine

splitting. The first row indicates the rms charge radius corresponding to the form

factors used in this particular study. The last row shows the residual between hadronic

theory and the QED expectation, while the intermediate lines show the magnitude of

the effects as discussed in the text. All quantities are in ppm except for the proton

charge radius. The consequence of the current work is that the residual between

theory and experiment, ignoring polarizability corrections, stands at:

6(residual, QED) = -2.42(56) ppm. (3.43)

To the best of our knowledge, with uncalculated terms at the level of 0.1 ppm,

we can attribute the calculated discrepancy to the polarizability correction,

b(pol) = 2.42(58)ppm (3.44)

The error coming almost entirely from the proton elastic form factors. Shortly com-



Term Current Analysis ppm

S(one-rigid) -34.95(55)
b(one-loop-rad) -0.76

b(two-loop,B& Y) 0.46
6(weak) 0.12

6(net) -35.13(55)
6(hadronic, QED) -32.71(10)

S(residual, QED) -2.42(56)

Table 3.3: Summary of the current work in ppm. RMS charge radius: 0.862(12) fm.

parison of this prediction against the spin dependent structure functions Gi, extracted

at CEBAF in the relevant low Q2 kinematic range, will be possible. What is currently

required is a proposal to measure the elastic form factors to greater precision. There

is considerable need to know the form factors better in the range 0 < Q2 < m2. As

we have shown, the 6(rigid) is sensitive at the 0.1 ppm level to the . 2% corrections

in to the form factors in this range. Increasing the accuracy of the experiment by a

factor of five would bring the net error from 6(rigid) down to about 0.1 ppm. The

error would then be consistent with the current precision with which the hadronic

correction is extracted using QED. Unfortunately the slated CEBAF experiments will

not decisively change the uncertainty in the proton charge radius; the form factors

will be remeasured but with approximately the same error bars as now.

There are a number of other experiments which would be generally useful. The

ingenuity of the atomic physics experimentalists has been steadily increasing the pre-

cision of the various fundamental constants. The recent improvement of the electron

mass [28] by a factor of ten is a case in point. However, the extraction of the hadronic

term in Eq. (3.4) is currently limited by the error in the fine structure constant and

to a lesser extent by the magnetic moment of the proton (See appendix D for a table

of the relevant constants).

In conclusion, we have extracted from HFS splitting the polarizability contribu-

tion and find b(pol) = 2.42(56) ppm. This value is consistent with a 4 ppm bound

derived by Gnadig and Kuti [13] using unpolarized data and the pion electroproduc-



tion analysis which predicts 6(pol) P 0 ppm but with large uncertainties. The high

cut parameterization b(pol, G1, Q > Q,,t) behaves in a manner entirely consistent

with a positive polarizability. The extracted polarizability provides an interesting

independent constraint on the structure functions G1 and G2. All known corrections

at the 0.1 ppm level have been evaluated for the first time. Comparison of this result

with the spin dependent structure function data from CEBAF is eagerly anticipated.



Chapter 4

Deep Inelastic Scattering

This second section of the thesis deals with slightly higher energy and concerns the

calculation of twist corrections to the lowest moments of the spin dependent struc-

ture functions. After introducing the basic formalism for deep inelastic scattering

we discuss the operator product expansion and its application to scaling violations.

The scaling violations take the form of logarithmic corrections resulting from per-

turbative radiative corrections, and higher twist corrections which are important at

intermediate Q2 . By way of being an introductory chapter, large quantities of the

material presented here can be found in such texts as Muta [31] and Yndurain [32].

We include a discussion on target mass corrections to the spin dependent structure

functions which is not available in the literature.

Fig. 4-1 shows the standard one boson exchange diagram describing lepton

scattering on a hadron target. In inclusive scattering,

I + H --+ + W (4.1)

where H is the initial hadron and W represents the final state. No particles are

detected except for the scattered lepton 1. The kinematics are characterized by spec-

ifying two of the following kinematic parameters,

Q2 = 2 = -(k- k')2 (4.2)



W

Figure 4-1: Lepton scattering off a hadron target with initial momentum P and spin
S, the momentum transfer is given by q.

P qv = (4.3)

W2 (P q)2 =m + 2mpv - Q2. (4.4)

Here, Q2 is minus the momentum transfer squared, k and k' are the incident and

scattered momenta of the lepton, respectively. Since in this process the interacting

virtual boson is space-like, the invariant momentum transfer squared will be negative.

The energy transfer is given by v, with the hadron at rest in the lab frame. W is the

four momentum of the debris resulting from the scattering. The spin of the proton

is specified by S", with the normalization: S2 = -m . The mediating boson in this

interaction will typically be a photon, but y - Zo interference and W± interactions can

be studied at the expense of greatly reduced cross section. Implicit in this discussion

is the assumption that single boson exchange dominates the reaction. Since the

electromagnetic coupling is given by the fine structure constant aem,,, two photon

contributions to the cross section will be suppressed by a factor of aCm, which exceeds



the experimental precision of typically a few percent. QED radiative corrections

however are essential when analyzing the data. Our primary interest will be in photon

mediated scattering and we will hence forth limit our discussion to this case.

The cross section can be factored into a leptonic and hadronic tensor,

dor oc a L, W"".  (4.5)Q4

Where,

L"' = 2k"k" + (k q)gL" - k'q kq" + 2i-"Pckqp, (4.6)

W"" = 41 Jd4 e'.q(P, S [J'(i), J,(O)] P, S). (4.7)

By considering Lorentz symmetry, gauge invarience, and parity conservation W "' is

restricted to four tensor structures. The only objects available to build such tensors

are the vectors P" and q"; the psuedovector S"; the tensor g"" and psuedotensor eC"""P

There are two symmetric spin-independent structure functions, W1 and W2 and two

spin-dependent antisymmetric structure functions, G1 and G2 which multiply the

tensor structures. The conventional parameterization is,

W•p{L}(v, Q2) = g" + Wi(V, Q2)

(4.9)

W"" = W {"} + W 2" Q (4.10)

Regarding the kinematic variables Q2 and v defined earlier, it was observed by



Bjorken that when Q2 --+ 00 and v -- co in such a way that

Q 2

XB = (4.11)
2m,v

is held constant, the data becomes roughly independent of Q2 and v, and depends

only on XB. For large Q2 and v Bjorken scaling implies that qo - Iq' xsm, + O(+ -).

Kinematical constraints restrict the range of xB to lie between zero (completely inelas-

tic) and one (completely elastic scattering). This implies that the important physics

for scaling takes place when q is near the light cone. In addition, scaling implies

the existence of point-like structure within the hadron, pointed out by Feynman. An

analogous phenomena at much lower energy is quasi-elastic scattering on nuclei. The

underlying substructure there, consists of protons and neutrons, which compose the

nucleus. The nucleons are scattered incoherently when the wavelength -f the probe

becomes comparable to their characteristic size of ((fm), corresponding to the Im-

pulse approximation picture. The identification of hadronic substructure with valence

quarks in the nonrelativistic quark model or the MIT Bag model is therefore heuristic,

but the correct picture is more complicated. The scale breaking effects coming from

renormalization and the mixing of quark and gluon degrees of freedom need to be

taken into account through use of the renormalization group equation. Theory pre-

dicts and experiment finds that at large momentum transfer, the quarks only carry

about half the momentum of the proton, with the gluon fields responsible for the rest.

At lower energies the "bare" quarks seen at higher energies are dressed by clouds of

virtual particles and loosely correspond to the valence quark model picture.

The structure functions Wi and Gi as defined by Eqns. (4.8) and (4.9) are

dimensionless. This was accomplished by arbitrarily introducing the mass of the

hadron mp to balance dimensions. Since the rest mass of the hadron has nothing to

do with the scaling energy v we should instead define a new set of functions, with

v providing the normalization instead of mp. These functions should then scale, i.e.

become functions of Xs, and depending only weakly on Q2. This definition leads to



Figure 4-2:

= Im

A pictorial representation of the optical theorem relating the physical
cross section to the imaginary component of the forward Compton amplitude.

the following scaling functions:

Vi(vQ 2 ).

SGi(v, Q2 ).mP

F2(X, Q2)

gY2(x, Q2)

-W/ 2(v, Q2),
Inp

SG2(v, Q2).
m2 p

4.1 Dispersion Theory

A general structure function B(v, Q2) is related by the optical theorem to the corre-

sponding forward Compton amplitude A(v, Q2) as follows,

B(v, Q2) = Im(A(v, Q2)).
27,

(4.14)

Fig. 4-2 graphically represents this relationship. The analytic structure of the for-

ward Compton amplitudes can then be used to relate physical scattering information

along the branch cuts to moments of the structure functions. For a generic analytic

F l(x, Q2)

gi (x, Q2)

(4.12)

(4.13)



Figure 4-3: The complex v plane, showing poles, branch cuts and the two contour
integrals C1 and C2.

amplitude A(v) real, except along the branch cuts,

A(v) 1 A(v')dv' (4.15)
(4.15)27r i c, v - v

1_ j A(v')dv'
=v(4.16)27ri Zc v' - v

where the Q2 dependence has been suppressed and C1 and C2 are the contours outlined

in Fig. 4-3. The analytic structure provides two further constraints: the first is

that the reality of A(v) on a region of the R(v) axis implies a reflection property

discussed initially by H.A. Schwarz, and secondly the covariant formulation of the

Compton amplitude requires crossing symmetry to hold. These two powerful analytic

constraints,

A(v*) = A*(v) (4.17)

A(v)± = +A(-v)±. (4.18)



make further progress possible with Eq. (4.16). Specifically Eq. (4.9) tells us that

G1 is even and G2 is odd under the transformation {u +- v, q -+ -q} corresponding

to crossing symmetry in Eq. (4.18). Taking the contour C2 infinitesimally close to

the branch cuts quickly leads to two possible dispersion relations,

A()+ = P+ + 4 00 d'' B(')+ (4.19)

A(lu)_ = P_ + 4 dv' B(v'2)_ (4.20)

where P± are pole terms specified by the situation under study. The real functions

B± are defined by,

47riB(v)± = lim (A(v + ic)± - A(v - i~)), (4.21)

where the right hand side is twice the imaginary part of the forward Compton am-

plitude across the branch cut. Changing variables by substituting x = 2 at fixed

Q2 leads to the analytic expansion in ,

0) 1+ x/2n-1

A(x)+ = 4 d'B+(x') 2, (4.22)

A(x)_ = 4 d2nj.B (2) (4.23)
n=O

The pole terms coming from elastic scattering are located a x = 1, the integration

limit x -+ 1+ includes the elastic delta function contribution. Typically the lowest few

moments (n < 8) can be extracted from experiment and compared with the operator

product expansion.

4.2 Operator Product Expansion and Twist

Knowing that the dominant physics at high energy takes place near the light cone

leads naturally to the operator product expansion. The technique systematically

expands an operator about the light cone and takes into account the dominant light



cone singularities in an orderly way. This technique was developed originally by

Wilson and has proven generally useful in the analysis of high energy processes.

The primary observation is the existence of two scales in the problem. The first

scale is characterized by the momentum transfer Q2 used in the experiment. This

scale should be in a regime where perturbation theory is applicable. A second scale p2,

is chosen to be the renormalization scale. The bilocal matrix elements of the current

can be written as an infinite sum of local operators, where the high energy behaviour

has been separated from the low energy. An infinite tower of Lorentz contractions

links the two factors,

T"'"(Q 2 ,x) = as(Q2)) L Oi(P, S,,2),,...i. (4.24)

C; contains the hard or perturbative aspects of the operator. Ci is calculated us-

ing QCD perturbation theory and thus depends on the strong coupling constant as

at the renormalization scale of the calculation. Ci can be further expanded into a

dimensionless coefficient function Ci and a tensor structure built from q"; the only

quantity available containing hard momentum. Since T," and Ci are dimensionless,

the tensor structure determines the mass dimension of the low energy part. Oi are

the soft matrix elements and depend on the renormalization scale of the calculation

P 2 and are built out of P and S.

The actual physics however cannot depend on p2, and this leads directly to the

renormalization group equation:

(6 i + (g)g ) - C, (Q2 , s(Q2)) = 0. (4.25)

Here P(g) depends on the details of the theory and determines the evolution of the

coupling constant. Gross and Wilczek [35] were the first to notice that the # function

was negative for non abelian field theories like QCD. The implication is that the

strong coupling constant tends to zero at large energies, leading to the prediction of



asymptotic freedom at high energies since,

g92
at = g_(g), (4.26)

where the strong coupling constant is given by a, = g2/(47r) and t = ln(Q 2/P2). The

anomalous dimension matrix yij is given by

( , (4.27)

Where Zij is obtained by renormalizing the bare operators which are t2 independent,

OR(P2) = Zij(p~2)OB (4.28)

The actual method of solving the renormalization group is involved and we relegate

the details to the excellent review article by A. Buras [34]. The net effect will be

that the evolution of the operator with Q2 will acquire a logarithmic dependence.

In Chapter Six we will examine this evolution for the spin independent structure

function F2, until then we put aside the radiative corrections. We now consider

another important class of corrections called higher twists.

The twist of an operator is defined formally as the difference between the total

mass dimension Df of the soft operator, and the operator's spin D,. The operator's

mass dimension is easily inferred from the Lagrangian of the theory while the spin

is obtained by analyzing the symmetry of the Lorentz indices of the operator. An n

index tensor can generally be decomposed (Schwinger [33]) into a hierarchy of spins,

the highest spin being n. This tower of spins orders the contributions of the operator

at large Q2, with the leading term coming from the highest spin component. Since the

highest spin cannot exceed the number of indices in the operator, it is quickly noticed

that the lowest possible twist is 2. The twist specifies the leading 1/Q2 behaviour

of the operator as we will now explain. The overall mass dimension of T "' is zero,

therefore the mass dimension of the hard part must balance the soft and is given by

-Df. The hard part goes like Q-Df for purely dimensional reasons. The soft part



Matrix Element Mass Spin Twist

(P, SI T71 P, S) 3 1 2
(P, S ITys yIJIP, S) 3 1 2

(P, S| I7P9F1"2IP, S) 5 2,1 3,4
(P, SI ' 7"ys5iD iDD"2 ' F P, S) 5 3,2.1 2,3,4

Table 4.1: Mass dimensions and twists of various soft matrix elements.

however contains tensors built from P" and S". When the operator's indices are

contracted with the hard part, factors of mv are generated. Each 2mv/Q 2 = 1/x

removes in the scaling limit one power of Q from the denominator. In this way one

sees that the highest spin component will make the largest contribution in the scaling

limit.

Table 4.1 contains a few representative matrix elements and their possible twists.

The spin decomposition can be selected by choosing a particular symmetry of the

indices. For example, in the last term in Table 4.1, if the indices are completely sym-

metrized the spin is three, mixed symmetric spin two. The completely antisymmetric

component has spin one. Thus this matrix element makes contributions at twist-two,

three, and four.

4.3 Target Mass Corrections

One form of 1/Q 2 correction which can be simply understood are target mass correc-

tions. The leading twist-two calculation, does not depend on the mass scale of the

initial hadron due to the scale invariance of the underlying QCD theory. Target mass

corrections restore the mass scale in a systematic way. Consider the lowest order

forward Compton diagram for parton scattering shown in Fig. 4-4. Since the photon

probe can only couple with electric charge, this diagram measures the distribution

of charged partons or quarks within the hadron. Since the momentum transfer q is

much larger than the hadronic momentum scale, the factorization discussed earlier is

clear: the top parts of the diagram containing momenta of O(q) represents the hard



P,s

Figure 4-4: Lowest order forward Compton, parton diagram. k is the momentum
fraction of the parton, not shown is the crossing diagram.

process, while the bottom part contains the soft dynamics with momenta O(P). Se-

lecting explicitly the spin dependent antisymmetric component for a particular quark

field T = u, d, -. we find,

T -"I = if d 4  d kei('k (.(P, S•(O) (+q2  a)5 (4.29)I (21r) 4 \''kO q2 +(+2kq (.9

+ {q -- -q, <-4+ v} ) IFW)IP, S) (4.30)

Expanding the denominators followed by a series of integration by parts eliminates

the k dependence leaving the following antisymmetric local expression,

n=0

(4.31)
We would now like to systematically extract from this expression components

in order of their significance. Each term in Eq. (4.31) can be decomposed into

objects with definite spin. As discussed previously the dominant contribution will

come from the highest spin structure. We therefore need to construct symmetric,

traceless tensors with 2n + 1 indices to extract the leading twist-two component. The

only quantities available are the hadron momentum P" and its spin S". S" must

appear exactly once or not at all due to the linear dependence in WI"L and, since the



antisymmetric component currently under analysis contains the axial current

Y,/7sX = 2S,, (4.32)

every term must contain a spin factor. The combinatorics which insure the sym-

metrization and traceless condition are tedious, and we show only a representative

number of intermediate steps.

2= 2n+1• -1 (2n - + 1) 2,j
T[I = idv(q, Z q1 ...1 22 a2n . (4.33)

n=O 3=0 2 (2n + 1)! "'(32)

Where

In' 1 22n+1 gA* '2,-1 AP'22) Za 1 al('o J 2  At2 j +1 ... 992 n+1) (4.34)
{i2n+l }

£"'"+ = S p92. .pI2n+ + p1 S 2. =p2n+l + +P". .p•A2nS 2n+1 (4.35)
- 2n + 1

and the a2n i2) are defined by,

a2n {pA...*2n,) = (P, SI4!y/s'57iD,I . .. iD 2,,,) iP, S). (4.36)

The a2n (Y 2) coefficient is the expectation value of the soft matrix element and depends

on the renormalization scale as discussed earlier. The j = 0 term reduces to Eq. (4.31)

if the symmetry in £ is ignored. The higher j terms enforce the traceless condition.

Utilizing the symmetry of II allows the evaluation of Eq. (4.33). We find that

the complete set of twist-two corrections derived from Fig. 4-2 for S1 and S2 are given

after a change of variables in the double sum by,

2m 0 (m 2 )' (2n + j + 1)! (2n + 1) a2(n+j)
SJ(x, Q2) = (4.37)

Q n=Oj=Qo 2 (2n + 2j + 1)2 (2n)!j! x2n (4.37)

24m( Q2) O4 (2n + + 1)! a2(n+j)
S2(x, Q2)  - (4.38)4 n=1j=0 Q2) (2n + 2j + 1)2 (2n - 1)!j! X2n-1

The powers of x in the denominator appear by combined factors of P - q = mpv.



These result from contracting q"' against the P"I within HI. with leftover powers of

2/Q 2 as discussed in the last section. The powers of m2 in the numerator arise from

contracting powers of P" against themselves, a consequence of imposing the traceless

condition.

Applying dispersion theory to Si and S2 as done previously for the generic am-

plitudes and identifying powers of 1/x, leads ultimately to a relationship between

moments of the spin dependent scaling functions and the leading twist matrix ele-

ments:

1 2n 1 Q Im 1' 00 p2' (2n + j + 1)!(2n + 1)

Sdxx 2 g(xQ 2) = Q (2n + 2j + 1)2 (2n)! j!

dxx2ng2(x2 Q2)IT2 __ -- 2(n+j).(4.40)
o j=O Q-2 (2n + 2j + 1)2 (2n - 1) J!a2(n+j (4.40)

The first sum is valid for n = 0, 1, ... while the second is only valid for n = 1, 2,....

The actual derivation has nothing to say about the lowest moment of g2 but there are

arguments on the grounds of rotational invariance that Jfo dxg2 (x) = 0. This relation

is called the Burkhardt-Cottingham sum rule.

The twist-three target mass contribution can be extracted by analyzing indices

with mixed symmetry, thus reducing the spin by one unit.

d2nM[(A1192*... 2n) = (P, S(j F i7,'siDgIbiD]· 2 ... iD,4n)•IP, S) (4.41)

Where M is antisymmetrized in the first two indices and then symmetrized in all

except the first. The clearest way to analyze this term is to note that,

M.•1 ..".2n = SOPL ... -P -2n _ I ... 2n . (4.42)

The previous twist-two analysis then shows that the S1 contribution is zero,

and only S2 receives a twist-three correction with sign opposite to the leading twist



contribution. The total twist-two and three target mass corrections are found to be,

2n1 Q2 (2n + j + 1)!(2n + 1)Sdx2n1g(x, Q2) T2&3 4 •- (Q2j (2n + 2j + 1)2 (2n)! j!a2(n+) (4.43)

21 (P2 (2n + + 1)!dxx 2
2  

2 T2 3  Q2  (2n + 2 + 1)2 (2n - 1)! j! d2(n+J) - a2 (n+J)

(4.44)

These expressions will be useful, in Chapter Five, where we discuss twist-four correc-

tions to the first moment of G1. At twist-four other operators, in particular gluonic

fields such as the third term in Table 4.1 must be taken into account along with the

target mass corrections. The complexity grows as the number of matrix elements at

a given twist increases rapidly. As will be seen however, at the level of twist-four,

progress can be made by using the QCD equations of motion.

4.4 Bjorken and Ellis-Jaffe Sum Rules

The target mass corrections derived in the previous section contain the Bjorken sum

rule [36] as their leading term. For all that follows we systematically neglect radiative

corrections which we signify by not indicating any Q2 dependence. Consider the first

moment of gl. Taking j = 0 in Eq. (4.43) then the difference between the proton and

neutron moments is,

1 dx(gP (x) - g(x)) = l (ap - a ) (4.45)

The superscripts p and n refer to proton and neutron respectively and imply that

we have added a charge matrix to the results calculated in the previous section and

summed over the appropriate quark configurations. Since ao is related directly to the

axial current, Bjorken found

Sdx(gP (x) - g(x)) = (g' - gA) (4.46)n 1 1 6A A



1 gA= j(F+ D) = (4.47)6 6

where gi are the axial couplings for the particular quark current in question and

gA = 1.257 is the axial current. F and D are SU(3) matrix elements which can be

measured by studying semileptonic decays. By making assumptions about the flavour

structure of the quark distributions, Ellis and Jaffe [37] separated the Bjorken sum

rule into a proton and neutron dependent piece. This separation was made possible

by assuming that contributions from the strange quark were negligible. Under this

assumption they found,

j dxzg(x) = 1(9F - D) (4.48)
ldxg - 18
Sdxg' (x) = (6F - 4D). (4.49)

Experiments at EMC found that f~ dxg'(x) = 0.126(25), whereas the Ellis-Jaffe sum

rule predicts a larger value d 0.175. This lead to much discussion in the literature

and has come to be known as the "spin crisis". Experiments to measure the more

fundamental Bjorken sum rule have therefore become an important concern. These

experiments are performed using bound neutrons in light nuclei such as deuterium and

helium three, which complicate the analysis. The current situation however, seems

to indicate that the Bjorken sum rule is satisfied when finite Q2 effects are taken into

account. The next chapter addresses the twist-four corrections to this important sum

rule and proposes a model for the behaviour of the proton's first moment from low

to high Q2.



Chapter 5

Q2 Evolution of the G1 Sum Rule

Recently, polarized deep-inelastic scattering has proven to be an excellent tool for

studying the spin structure physics of the nucleon [38, 39, 40]. Supplemented with

the operator product expansion analysis in Quantum Chromodynamics (QCD), ex-

perimental data at high-energy provides a direct measurement of the matrix elements

of spin-dependent operators in the nucleon. A much discussed example in the current

literature is the axial charge, or the forward matrix element of axial current, whose

measurement by the EMC collaboration casts doubt on our traditional understanding

of the proton's spin structure [38].

A closely related question is can one learn anything about the nucleon's spin

structure from electro-production experiments away from the deep-inelastic limit? In

particular, what insight do the spin structure functions G1 and G2 provide at low and

moderate Q2? Not long ago, Anselmino et al. [41] pointed out that at the real photon

point (Q2 = 0), the first moment of GC (called the sum rule in the following text)

is related, via the celebrated Drell-Hearn-Gerasimov (DHG) sum rule [42], to the

anomalous magnetic moment of the nucleon, and thus the physics of the G1 structure

function again appears simple in the Q2 -+ 0 limit. Together with knowledge from

the deep-inelastic limit, the authors in Ref. [41] constructed a model for the sum rule

at all Q2. This has motivated a number of proposals to measure G1 and G2 at low

energy [43, 58].

In Ref. [45], Ji pointed out that the analysis made in Ref. [41] excluded the



nucleon's elastic contribution to the moment, which in the Q2 --+ 0 limit dominates

the entire inelastic contribution calculated from the DHG sum rule. He argued that

the moment has to include this contribution if it is to be analyzed in twist expansion

in the deep-inelastic limit and its experimental measurement is to be used to extract

the matrix elements of higher-twist operators.

In this Chapter we study the Q2 variation of the sum rule by exploring the physics

of the Q2 --+ 0 and Q2 --+ oo limits. In the first limit, we rely on the low energy result

derived in Ref. [45], to calculate the exact value and the first derivative of the sum

rule at Q2 = 0. In the second limit, we use a twist expansion appropriate for the

deep inelastic region, focusing on the 1/Q2 correction term. The matrix elements of

higher twist operators are related to moments of the quark distributions functions

gif(x) (i = 1,T,3 and f = u,d,s...) through a novel use of the QCD equations of

motion, which are in turn evaluated in the MIT bag model. As an application, we

discuss the correction of higher twists to the Bjorken sum rule in the deep inelastic

limit. Having obtained analytical results valid for the low and high ranges of Q 2,

we construct a simple parameterization to smoothly interpolate both limits, which

should be checked experimentally.

To begin we consider the following fixed-mass sum rule,

I(Q 2) 2 2 / (V, Q2) (5.1)2M2 fq2/2 v

where GI(v, Q 2) is one of the nucleon's spin dependent structure functions in the

nucleon tensor,

W Z = a•q [S- + -- (vS - P"(S . q))]. (5.2)

The lower integration limit in Eq. (5.1) implies the elastic contribution to G1 is

also included. Here P and S are the nucleon's momentum and polarization, q is

the virtual photon momentum, M is the nucleon mass, v = P - q and Q2 = -q2

(C0123 = 1). In deep-inelastic limit, one defines scaling functions g 1(x, Q2) = v/M 2 G1



and g2(x, Q2 ) = (v/M 2) 2G2. The sum rule then becomes,

r(Q2) = g1(x, Q2)dx, (5.3)

which is just the first moment of the scaling function.

Let us first consider the small Q2 behavior of the sum rule. Introduce a spin-

dependent virtual-photon Compton amplitude Si(V, Q2) whose imaginary part is pro-

portional to G1, and write down the unsubtracted dispersion relation,

S(v, Q') = 4 G(v', Q2).
I(, 92) __. 4 Jp2/2V - y,2V_ v (5.4)

Through this, we relate the sum rule to the Compton amplitude at v = 0,

2(Q2) =r(Q 2) = 8M 2 SI(0, Q2). (5.5)

At small v and Q2, the dominant contribution to S1

diagrams [45],

Spole(v, Q2) = -2M 2F1 (F1 + F2)
2v - Q2

comes from the nucleon pole

1 22v + Q2] - F2, (5.6)

where F1 and F2 are the Dirac and Pauli form factors of the nucleon. From this, we

obtain for Q2 --_ 0,
1 1FQ

p(Q2) = F~ (F1 + F2)8M2 22 8M2 2 (5.7)

This result can be shown to be accurate up to the order of Q2

by explicitly evaluating Eq. (5.1): The elastic contribution

to 6(2v - Q2), producing the first term in Eq. (5.7); the

contributions is just the DHG sum rule in the limit of Q2 --+

in Eq. (5.7) reproduces this in the same limit.

The elastic contribution vanishes identically at Q2 =

momentum conservation, and the DHG sum rule indicates

in the small Q2 region

to Gi is proportional

integral over inelastic

0 and the second term

0 because of energy-

F(0) = 0. Thus, due



to the elastic contribution, F(Q 2 ) is non-analytic around Q2 = 0, i.e.,

r(Q' = 0) # r(Q2 --+ 0). (5.8)

To remedy this, one can take two approaches: The first approach subtracts away

the elastic contribution from the sum rule for Q2 0 0. The new sum, ,(Q 2) =

F(Q 2) - 1/2FI(F1 + F2)), is a smooth extension of the DHG sum rule to virtual-

photon scattering. The approach we take in this chapter is to redefine F at Q2 = 0,

F(Q 2 = 0) =_ (Q 2 -+ 0). (5.9)

This approach ensures that the sum rule at low Q2 can be treated with the twist

expansion that we will discuss below. The expansion is for moments of the gl structure

function which include the integration limit x = 1, where the elastic contribution

resides.

Since Eq. (5.7) is accurate up to the order of Q2, we can determine F(Q 2) and

its first derivative in Q2 -__+ 0 limit,

rp(0) = 1.396,
r,(0) = 0,

drp(Q 2)
dQ 2  

1Q2= = -8.631GeV - 2 ,

dr"n(Q 2)
dQ2  Q2=0 = -0.479GeV - 2 , (5.10)

where p, n refer to proton or neutron and the squares of the proton and neutron charge

radii (r)c.r. = (0.862 fm) 2 and (r2)c.r. = -(0.342 fm) 2 have been used. The initial

slope of rp(Q 2) is primarily determined by the elastic contribution as the inelastic

contribution, -K2/8M 2 = -0.455GeV -2 , is only about 5% of the total. Therefore,

one expects that for small Q2, rp(Q 2) is mainly given by the elastic contribution.

In contrast, due to a numerical coincidence, the elastic part of Fn(Q2) is negligible

compared with the inelastic part.



In the limit of large Q2 (Q' >> A'QCD), 2(Q2 ) can be calculated in terms of the

twist expansion,

r(Q) = 2(Q) (5.11)7=2,4... (Q2) 2

where w,(Q 2) are matrix elements of quark-gluon operators which scale like A 2D- 2

The Q2-dependence in ,, are logarithmic and can be calculated in perturbative QCD.

If the nucleon mass were zero, /,(Q 2 ) would contain only twist-r operators. The effect

of the nucleon mass is to induce contributions to p,(Q2) from lower twist operators,

as we shall illustrate below.

The leading term in Eq. (5.11) is well-known,

1
U2 2= efaof, (5.12)

f=u,d,s...

where the summation covers quarks of all flavors f and aof is the axial charge defined

by the matrix element of axial current A' = "sf-y150If: (PS IAIPS) = 2aofSP. The

QCD radiative corrections have been calculated to the first order in a,(Q 2) [46] for

the singlet contribution (as = 2(aou + aod+ ao,)/9) and to the third order [47] for the

non-singlet contribution (aOs = (2aou - aod - ao0)/9). The proton-neutron difference

of the moment defines the Bjorken sum rule,

/(Q2 Q(Q 2 ) = - ) 3.58 2- 20.2 c.s( )3 +

(5.13)

where gA = ao, - aOd = 1.257 is the neutron decay constant.

The 1/Q 2 power corrections to F were first studied by Shuryak and Vainshtein

(SV) [59]. Using the collinear expansion technique [49], Ji has calculated in Ref. [50]

the entire 1/Q 2 corrections to the g, scaling function in terms of a few multi-parton

distribution functions. Specializing to the first moment, we find

4 = • 2e [a2f + d2f -4f 2 f]M2

= (A + D + F)M 2. (5.14)



where A = 1 Zf efa2f comes from the twist-two contribution and a2f is defined as,

(PSI( f((ysiDM' iD 2) f IPS) = 2a 2fS("P"l Pp2) ,  (5.15)

with (...) denotes symmetrizing the indices and subtracting the trace; D = - ed 2f

comes from the twist-three contribution and d2f is defined as,

(PSIgF (/'(yl 2) 1PS) = 2d 2 f S[l P(M']P2), (5.16)

with [..-] denotes anti-symmetrizing the indices and i~ = 1/2cF'0 `F, is the dual

of the gluon field tensor; F = _- Ef e2ff 2f comes from the twist-four contribution

and f 2f is defined as,

(PS jg fF""Uyf IFPS) = 2f 2 fM 2S". (5.17)

We note that the result quoted for 14 in Ref. [59] is (2A + 2D + F)M 2 .

To study the QCD radiative corrections to Y4, one has to consider operator-

mixing from gluon operators, the anomalous dimensions of which are not currently

available and their matrix elements are difficult to estimate. Therefore, in the follow-

ing discussion, we neglect entirely the scale dependence of /u4.

The higher twist operators in Eqs. (5.16) and (5.17) depend explicitly on gauge

fields. To calculate their matrix elements we need a wave function of the nucleon

containing gluon components. However, for special types of higher twist operators

such as the present case, we can eliminate the gluons in terms of the "bad" components

of quark fields using the QCD equations of motion [50]. Then the higher twist matrix

elements can be related to moments of parton distributions with no explicit gluon

fields. Indeed, by defining in the light-cone gauge (A - n = 0),

1 rdA
g(1,T,3)J(x) = je-iAx(PS If Q(1.T,3)Ys 5 f(An)IPS), (5.18)

where Q1 = n, QT = -ST/M, Q3 = -2p/M 2 and n and p are two null vectors



(n2 = p2 = 0 and p - n = 1), we find,

d2 f = JX2(3g2f(2)+ 2glf(x))dx,

f2f = Jx2(7gf (x) + 12g2f (X) - 9g3f (x))d, (5.19)

where g2f = gTf - gif. These relations are exact in QCD.

We choose to estimate the 1/Q 2 corrections to the sum rule in the simplest

version of the MIT bag model, in which the bag boundary simulates gluon confinement

[51, 52]. Using gif(x) (i = 1, T, 3) calculated in this model, we obtain for the proton,

AP = 0.0065, D P = 0.0092, and FP = 0.0155. Inserting them into Eq. (5.14), we have,

4P(Bag) = 0.031M 2 . (5.20)

Compared with the size of up = 0.126 - 0.025 from the EMC data or 0.175 from

the Ellis-Jaffe sum rule, the bag 1/Q 2 power correction is about 10% at Q2 = 2

GeV 2 and about 2% at Q2 = 10 GeV 2. Assuming there are no abnormal twist-six

or higher contributions, we conclude that most Q 2 variations of the proton sum rule

occur below 1 GeV 2. For the neutron, the bag model predicts, A' = D" = F " = 0,

and the 1/Q 2 correction vanishes:

1/(Bag) = 0. (5.21)

This follows from the SU(6) structure of the bag wave function, which also predicts

I" = 0.

The higher twist matrix elements have also been calculated using the QCD sum

rule (QSR) technique by Balitsky et al [53]. Their most recent result in terms of our

notation is

4/'(QSR) = -(0.023 ± 0.015)M 2,

4t(QSR) = -(0.006 ± 0.004)M 2 . (5.22)



Thus, the QCD sum rule calculation gives a power correction the same size as the

bag calculation with the correction for the neutron being significantly smaller than

for the proton. However, the sign of the correction differs from the bag result in Eq.

(5.20). This difference has a large effect on the Bjorken sum rule at small Q2.

The Bjorken sum rule has recently been extracted from the data on the proton

[38] and neutron [39] gl structure functions,

Sg~ (x, 2 GeV 2)dx = 0.146 ± 0.021[39],

= 0.152 ± 0.025[54]. (5.23)

In QCD, the Bjorken sum rule at low Q2 is contaminated by higher twist corrections

discussed above. If the QSR result is used for the correction, one obtains a theoretical

prediction at the same Q2,

1 gP-n(x, 2 GeV 2)dx = 0.160[54], (5.24)

On the other hand, the bag result produces,

jg 1 'n(x , 2 GeV 2)dx = 0.182. (5.25)

While Eq. (5.24) gives a corrected Bjorken sum rule within the experiment errors,

the bag calculation disagrees with the extraction of the sum rule by the E142 collab-

oration by 1.7a and with the extraction by Ellis-Karliner by 1.2c. In our opinion,

a deviation from the Bjorken sum rule means either a measurement of higher twist

matrix elements, or that the data are inconsistent.

From the high and low Q2 knowledge of the sum rule, we propose a model for

rp(Q 2) in the entire Q2 region,

1 Q2 31 + A3M 2/Q2
'P(Q 2 ) = F1 F 2)( - 2 ) X (5.26)

2 tM2 I A4M4 /Q4  (5.26)

where the first term is the elastic contribution with its derivative modified by the
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Q2 term. The second term is basically a + b/Q2 and the denominator serves to sup-

press the contribution at small Q2 . From the EMC data and the various constraints

derived above, we determine all Ai except A4 , which controls the size of the twist-six

contribution. The solid and upper-dashed curves shown in Fig. 5-1 are our param-

eterization with the bag and QSR higher twist matrix elements, respectively. [We

choose A4 = 0.3, which gives a ~P6  -0.03.] The dotted curve represents the result

of the twist expansion to order 1/Q2 and the dot-dashed curve represents the elastic

contribution. As can be seen from the figure, the different choices for higher twist

matrix elements result in about 15% difference in F in the Q2 = 0.5 to 1.0 GeV 2

region. A similar interpolation is made for the neutron, and the result is shown as

the lower-dashed curve.

Thus it appears that the Q2 variation of the F(Q 2) sum rule is quite simple.

Nevertheless, its experimental measurement is interesting, particularly around Q2 =

0.5 GeV 2 . If we know F(Q 2) in an extended Q2 region, we can fit data with a

parameterization similar to the one used in Eq. (5.26). Then by expanding in a 1/Q 2

power series, we can extract the higher-twist matrix elements, such as f2f, which shall

provide valuable insight into the spin structure of the nucleon.



Chapter 6

Resonances and Higher Twists,

Duality

In electron-nucleon scattering, one probes the substructure of the nucleon with virtual

photons of mass Q2 and energy v. Before the advent of Quantum Chromodynamics

(QCD), Bloom and Gilman [55] discovered an interesting phenomenon about the

nucleon structure function W2 (v, Q2 ), measured at SLAC. Simply speaking, when

expressed in terms of the improved scaling variable w' = 1 + W 2/Q 2, where W

is the final-state hadron mass, the scaling function F2(Q 2. ') = vW 2/mN in the

resonance region (W < 2 GeV) roughly averages to (or duals) that in the deep-

inelastic region (W > 2 GeV). Referring to a similar phenomenon observed in hadron-

hadron scattering, they called it parton-hadron duality. Moreover, the occurrence of

the duality appears to be local, in the sense that it exists for each interval of w'

corresponding to the prominent nucleon resonances. In fact, the assumption of an

exact local duality allows an approximate extraction of the nucleon's elastic form

factor from the deep-inelastic scaling function!

An explanation of the Bloom-Gilman duality in QCD was offered by de Rujula,

Georgi, and Politzer in 1977 [56]. Following the operator product expansion, they

studied the moments of the scaling function in the Nachtmann scaling variable 6 =

2x/(1 + 1 + 4x 2m/ 2), where x = Q 2/2mNv. They argued that the n-th moment



M,(Q 2 ) of F2 has the following twist expansion,

Mn(Q 2) = E Q2( B.k (Q2) (6.1)

where M02 is a mass scale - (400 - 500MeV) 2 and Bn,k(Q 2) depends logarithmically

on Q2 and is roughly on the order of Bn,0 . According to Eq. (6.1), there exists a

region of n and Q2 (n < Q2/MO), where the higher twist contribution is neither large

nor negligible, and where the dominant contribution to the moments comes from the

low-lying resonances. The appearance of local duality reflects the very existence of

this region. A more recent study on duality can be found in Ref. [57].

While these original studies of the parton-hadron duality were largely qualita-

tive, enormous progress has been made in understanding QCD in the past twenty

years. The radiative corrections have been evaluated to the next-to-leading order

for the twist-two part of the scaling function [58]; the structure of the higher twist

expansion has been clarified to the order of 1/Q 2 and some at the order of 1/Q4 [59].

The physics of the parton-hadron duality has been exploited ingeniously in the vac-

uum correlation functions, from which a powerful technique for calculating hadron

properties from QCD-the QCD sum rule method-has emerged [60]. Experimen-

tally, a large body of lepton-nucleon scattering data has been collected in the past 25

years [61]. With the CEBAF facility becoming available for making systematic, high

precision measurements in the resonance region, it is timely to re-examine duality in

its original context, and further explore the physics content of this important concept.

In this chapter we seek to sharpen the explanation of the duality offered by

authors in Ref. [56], with a few crucial differences. First, we choose to work with

the moments of Cornwell-Norton, instead of those of Nachtmann, thereby avoiding

the unphysical region of ( > ý(x = 1). Second, we look for a way to describe more

clearly the contribution of the resonances to the moments. Finally, we emphasize

a thorough exploitation of the consequences of duality. We furnish our discussions

with the example of F2, for which the abundant data allow an accurate construction

of its moments in the low and medium Q2 region. These moments offer a unique



opportunity for studying the effects of higher twists and the resonance contributions.

6.1 Parton-Hadron Duality Revisited

The Cornwell-Norton moments of a scaling function F(x, Q2) are defined as,

M,(Q 2) = dxxZ-2F(x, Q2) (6.2)

where the upper limit includes the elastic contribution. According to the operator

production expansion, the moments can be expanded in powers of 1/Q 2,
00 (Q2/L)M (Y2) 1 k

Mn(Q2 ) = Enk( 2/ )Mnk(I2) , (6.3)
k=O0

where Enk are the dimensionless coefficient functions which can be calculated pertur-

batively as a power series in the strong coupling constant a,(Q2),

00

Enk (Q2 /a 2 )= Z a(Q 2)enk , (6.4)
i=O

and Mnk(yu2) are the nucleon matrix elements of local operators composed of quark

and gluon fields. The renormalization scale (/u2) dependence cancels in the product

of the two quantities; however, when we talk about them separately, P2 is chosen

to be the hadron mass scale. The terms beyond the first in Eq. (6.3) are called the

higher-twist corrections, which include both the target mass corrections and the true

higher-twist effects.

The double expansions in Eq. (6.3) are asymptotic at best. Non-perturbative ef-

fects can invalidate both expansions at higher orders, and can mix the two, rendering

the separation of radiative and power corrections ambiguous [62]. In the following

discussion, however, we assume that in the Q2 region of our interest, the size of the

twist-four term (1/Q 2) is significantly larger than the smallest term in the asymptotic

expansion for Eo, beyond which the evaluation of Eo cannot be improved by includ-

ing higher-order terms, and so the ambiguity in defining the higher-twist corrections



8

6

4

2

1.0

0.8

C 0.6

o 0.4

0.2

n n'J.u
0 5 10 15 20 0 5 10 15 20

Q2  Q2

Figure 6-1: a). Three regions of differing importance to higher twists: Region A,
negligible higher twists; Region B, perturbative higher twists; and region C, the
twist-expansion breaks down. b). Kinematic regions corresponding to the resonance
and deep-inelastic scattering.

can be neglected [62]. We shall henceforth focus only on the structure of the twist

expansion.

Following Ref. [56], we assume the ratio of the twist-four term to the leading

twist in each moment is approximately nM2, where Mo is a scale characterizing

the matrix elements of the twist-four operators. We further assume that the twist

expansion is an asymptotic series in the parameter nMOL/Q2 . According to the above

assumptions, we can classify the higher-twist contributions to the moments. Consider

the n - Q2 plane as shown in Fig. 6-1(a), which is separated into three regions by

two solid lines. Region A is defined by nM2 < Q2, where the higher-twist effect are



negligible. Region B is where the higher-twist corrections become important but stay

perturbative, and thus only the first few terms in the twist-expansion are of practical

importance. Region C is where the higher-twist effects become non-perturbative,

and the power-expansion loses meaning. It is in this third region that the resonance

physics dominates the behavior of the moments and the quantum coherence, inherent

to resonance production, defies a description of the scattering in terms of a finite

number of quarks and gluons. In the later part of the chapter, we will show that the

first assumption is consistent with the behavior of the lower moments for F2 .

Now we consider the resonance contribution to the Cornwell-Norton moments

by examining the x - Q2 plane shown in Fig. 6-1(b), in which the resonance region

is approximately above the curve W - 2 GeV. For a large, fixed Q2 (say 15 GeV 2),

the resonance contribution to the lowest few moments is very small, and can be ne-

glected. When n increases, the resonance contribution is weighted more and becomes

significant. We can use a dashed line, as Q2 varies, in the n - Q2 plane to indicate

the separation of the two cases. The dashed line certainly cannot be in region A,

because the non-resonance experimental data have already detected the higher-twist

effects [65]. If the dashed line is in the region C, then the perturbative higher-twist

effects have nothing to do with resonance physics. The most exciting possibility is

when the dashed line lies in the region B, and this is what happened in reality.

When the dashed line is located in region B, then in the left portion of it, the

following statements are true: 1). the higher-twist corrections are perturbative, so

the moments are not too different from those at larger Q2, and 2). the resonance

contribution to the moments are significant. Thus in this region, the resonances must

organize themselves to follow the deep-inelastic contribution apart from a perturba-

tive higher-twist correction, or conversely, the structure of the higher-twist expansion

constrains the behavior of the resonance contribution. The degree of duality is de-

termined by the size of this region: the larger the region, the more the moments are

constrained, and the more local the duality will be.

Why should duality occur at all in QCD? On one hand, the quark transverse

momentum in the nucleon, which governs the magnitude of the higher-twists, is about



400 MeV. This makes the higher-twist corrections perturbative down to very small

Q2. On the other hand, the resonance contribution to the moments are already

significant at Q'2  5GeV 2 for low n. Thus the occurrence of the duality seems

unavoidable, unless QCD had two widely different scales.

The consequences of duality, like duality itself, are two-fold. If one knows data

in the resonance region, one can extract the matrix elements of the higher-twist

operators. The extraction, of course, is limited by our ability to calculate higher-

order radiative corrections, about which we have nothing to say. On the other hand,

if one knows the higher-twist matrix elements from other sources, such as lattice QCD

calculations, one can utilize them to extract the properties of the resonances. This

second use of duality has been pursued extensively in the QCD sum rule calculations,

from which a large number of interesting results has been obtained [60]. In the

present case, however, the number of higher-twist matrix elements is large, and they

are difficult to estimate in general. This severely limits our ability to check, for

example, the internal consistency of the duality predictions.

6.2 Twist-Four Matrix Elements from F2(, Q2)

We make the above discussion more concrete and quantitative by using the example

of the F2 scaling function, for which rich data exist in an extended kinematic region.

Most of the low Q2 data were taken in late 60's and early 70's at SLAC and DESY,

and they nearly cover the whole resonance region at large x. The data were fitted by

Brasse et al. [63] to a function with three parameters for each fixed WIT. In Ref. [64],

Bodek et al. have made a more extensive but different fit, covering higher Q2 resonance

data. The deep-inelastic data were systematically taken by SLAC, BCDMS, EMC,

and other collaborations during the 70's and 80's, and they have recently been shown

to be consistent with each other [65]. New measurements from NMC at CERN has

extended these data to lower Q2 and x [66]. In Fig. 6-2. we have shown the F 2 data

as a function of Bjorken x at Q2 = 0.5, 1.0, 2.0. 4.0, 8.0 and 16.0 GeV2 from the two

fits [64, 66] made in different kinematic regions.
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The salient features of the data can be summarized as follows. At high-Q2 , the

data is almost entirely deep-inelastic except for a small resonance contribution at large

x. The scaling function near x = 0 shows a rise due to perturbative QCD effects. As

Q2 decreases, small bumps become visible and slide toward low x. These prominent

excitations are believed to be the A(1232), S11(1535) or D13 (1520), and F15(1680)

resonances. The resonance excitations become very strong near Q2 = 2 GeV 2 and

clearly dominates F2 below Q2 = 1 GeV 2. As Q2 -+ 0 the data is compressed toward

x = 0 due to simple kinematics. At Q2 = 0, the whole photo-production physics is

shrunk to x = 0. Of course, one should not forget about the elastic contribution,

which contributes a delta-function at x = 1.

To understand the role of the resonances in the Cornwell-Norton moments, we

plot in Fig. 6-3. the ratio of the resonance part to the total, where the resonance

contribution is defined by a cut on W < 2 GeV. If one uses ten percent as a measure

of the importance of the resonance contribution, then this threshold is reached for the

lowest moment(n = 2) at Q2 - 4GeV2 . For higher moments, the transition occurs
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approximately at 2n GeV 2. This is quite surprising because the non-perturbative

physics becomes potentially important at Q2 = 16 GeV 2 for the 8th moment! At

Q2 = 8 GeV 2, the same moment receives fifty percent of the contribution from the

resonance region. The dashed line in Fig. 6-1(a) roughly corresponds to the ten

percent line shown in Fig. 6-3. The data on the F2 moments can be used to extract

the matrix elements of higher-twist operators. To effect this, we first subtract the

twist-two part of the contribution. We use a parton distribution (CTEQ2, [67]) fitted

to a large number of data on hard processes, and calculate the moments for each

quark flavor and gluon distribution at some large Q2 (=20 GeV 2 in our case). Then

we evolve these moments to lower Q2 using the perturbative QCD formula accurate

to next-to-leading order. Theoretical errors in evolution are mainly generated from

uncertainty in AQCD and unknown higher-order terms in the coefficient functions. In

our work, we take A(4) = 260 + 50 GeV [68], and the resulting error is added to

the experimental error which is taken to be 3% uniformly, yielding the total error on

the residue. The target mass corrections are further subtracted from the moments

according to the formula in Ref. [69]. In Fig. 6-4(a), we show the moments as a

function of Q2 and the twist-two part plus the target mass corrections (solid lines).

The residual moments, which are entirely higher twist effects, are shown in Fig. 6-4(b)

as functions of 1/Q 2.

We choose to fit the Q2 evolution of the moments with a pure twist-four contri-

bution,

AM,(Q 2) = a (• ) -) 2 (6.5)

where we have included phenomenologically the leading-log effects with an adjustable

exponent. The fitted %, represents an average of the anomalous dimensions of the

spin-n, twist-four operators, weighted by the size of individual matrix element. The

coefficient a, is a simple sum of the twist-four matrix elements at the scale Pu2 = 1

GeV 2. Inclusion of a twist-six term creates strong correlations among the parameters

and renders the fits indeterminate. Thus we have neglected such a term by restricting

the fit to the region with Q2 > n, where the twist-six contribution is presumably small.



n an(GeV ) Yn a/ (EnoM~o) 11Mo

2 0.030 ± 0.003 1.0 ± 0.5 0.14 0.26
4 0.042 ± 0.013 1.5 ± 0.5 1.00 0.50
6 0.047 + 0.021 2.5 ± 0.5 2.47 0.64
8 0.038 + 0.018 2.5 ± 0.5 3.45 0.66
10 0.052 ± 0.025 3.5 ± 0.5 4.73 0.69

Table 6.1: Extracted twist-four coefficients as, leading log parameters -y, followed by
an extracted mass scale in the final column.

The result of our fit is shown in Table 6.1. The correction to the n = 2 moment

(the famous momentum sum rule) is best determined, yielding a characteristic higher-

twist scale of 500 MeV. From this, we determine that the twist-four contribution to

the momentum sum rule at Q2 = 2 GeV 2 is 0.015, about ten percent of the total. The

exponent of the leading-log contribution increases gradually with n, in accord with

general expectations. The near constancy of the twist-four contribution is in sharp

contrast with the fast decrease of the leading-twist contribution with increasing n.

It confirms, though, the speculation that the higher-twist contribution become more

important for higher moments, and is a precursor for the onset of the resonance

region. In QCD, this can be explained by an increasing number of twist-four operators

compensated by a decrease in strength of individual matrix elements. The pattern of

the moments indicates a twist-four distribution negative at small x, positive at large

x and peaked near x = 1, qualitatively consistent with the fits in Ref. [65], where the

resonance data were entirely ignored.

Finally, we test the assumption about the higher-twist matrix elements in Eq. (6.1).

We show in the fourth column of Table 6.1 the ratio of the higher-twist matrix el-

ements and the twist-two part. From this, we extract an effective M0 by dividing

by n and taking the square root. The result is shown in the fifth column and is

approximately n-independent, although there is a slight hint of M0 getting larger for

larger n. However, this should not be taken too seriously because of the errors and

limited number of moments. If fifty percent of the higher-twist contribution is taken

as an indication that the twist-expansion is getting non-perturbative, we find a Q2



for each moment where the transition takes place. For n = 2, this is about 0.3 GeV2 .

For higher moments, this happens at about n - 1 GeV2 . The line which separates

regions B and C in Fig. 6-1 roughly corresponds to this. Thus the existence of the

duality zone is clearly established beyond any doubt.

To illustrate the other use of duality, one could, for instance, use the higher-

twist contribution extracted from the pure deep-inelastic region (as done in [65]), or

from some theoretical calculations, to determine the nucleon's elastic form factor.

However, we feel that the higher-twist matrix elements have not been determined

in other methods to a sufficient accuracy to allow a quantitative extraction of the

resonance properties. Qualitatively, however, knowing the higher-twist contribution

will surely improve the nucleon form factor extracted in Ref. [56], which shows a

systematic deviation from the directly measured GM, a clear indication of higher-

twist effects.

To sum up, we explored in this work the physics of the parton-hadron dual-

ity. We emphasized that the existence of duality allows one to determine the higher

twist matrix elements from data in the resonance region, or alternatively, knowing

the matrix elements enables one to determine the properties of the resonances. We

studied the duality picture offered by the F2 scaling function, and extracted the ma-

trix elements of the lowest few spin, twist-four operators. Clearly, this study can

be applied straightforwardly to the spin-dependent structure function G1 once more

data becomes available.



Appendix A

Bag Model Calculations

The MIT bag model is an attempt to simulate nonperturbative aspects of QCD.

Confinement is provided explicitly by confining the quark and gluon fields within the

bag. We quickly review the bag model and extract the following three distributions:

gi (x), g2(x) and g3 (x). Our discussion will be limited to the cavity approximation

where there are no gluon fields and quantum fluctuations are ignored. The equations

of motion satisfied by the quark fields are then simply,

-i q,(x) = 0 (x in bag) (A.1)

i q,(x) = q,(x) (x on bag surface) (A.2)

n, tq(x),oq(x), = 2B (x on bag surface) (A.3)

Where n is the inward pointing four vector normal to the bag boundary and

B is the bag pressure. The bag boundary conditions allow quark helicity flips, even

though the quarks are massless. This can seen from the second boundary condition

as the normal vector does not commute with the helicity projectors (1 + y5)/2. Thus

the model has nontrivial spin dependent dynamics.

The solutions within the cavity factor into radial and angular solutions. Applying

the boundary condition (A.2) specifies the eigenfrequency of the n'th radial mode,

tan(w,) = 1 (A.4)
-Wn w



The lowest energy mode being given by wo = 2.04278... Further it can also be shown

[70] that the proton mass and bag radius are related thru RM = 4wo. This is

accomplished by replacing Eq. (A.3) with an energy variational principle where the

bag pressure stabilizes the system. Fourier transforming the lowest mode yields the

momentum space representation of the cavity wavefunctions [71].

(p- = 0 - (A.5)S( t (W ,pRo) Ua

Where, Um is a Pauli spinor and,

tl(a, ) = 0 dxx2j (ax)j(3x) (A.6)

N(w) = 4rR (to(w,w) + t(w,w)) (A.7)

The ingredients now being present we apply the bag model to calculating the

g; distributions, used in Chapter Five. The distributions gl(x) and g2(x) have been

calculated previously by Hughes [71] and again correctly by Jaffe and Ji [72]. Applying

the cavity approximation results in,

91(x) = 0j dyy (t + 2tolY-•- + (2Y 1 + {x -+ -x} (A.8)

g2(x) = Qj dyy( - 2tOt ym +• t2(3 1)) {x -X-+ -} (A.9)
M2v 00 ( 2 y2

9 3 (X) = dyy (t - 2tot, + - {1 + { -- } (A.10)
A2 fIm I Y Y /

The normalization factor is given by,

5 4w 2

2r )(- 1)' (A.11)

and ym = (4x - 1)w..

The "unfolded" distributions are shown in Fig. A-1. We take the scale factor

A to be the nucleon mass. Defining the moment Mn = fo g(x)z"dx we calculate the

first few in table A.1.
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n 1g g2 93

0 0.175 0.000 0.176
2 0.029 -0.013 0.010
4 0.009 -0.005 0.002

Table A.1: The first three even moments of the distributions gi calculated in the bag
model.
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Appendix B

Pion Electroproduction and

Helicity Amplitudes

Consider the scattering of photons onto hadrons. A significant portion of the total

S-matrix amplitude is given by pion production at low energy. We examine the

contribution the pion decay channel makes to the inclusive structure functions F1,

F2, G1 and G2, where the final state dependence has been integrated out.

There are a total of twelve complex amplitudes which must be specified to fully

characterize pion scattering if no higher symmetries such as parity are considered.

Consider first the initial states in the center of mass frame. A photon with momentum

qom and spatial momentum q'interacts with a hadron having equal and opposite three

momentum. The amplitudes are most easily enumerated in terms of helicity. We

specify the photons helicity first, followed by that of the incident spin 1/2 hadron:

(1, 1/2), (1, -1/2), (0, 1/2), (0, -1/2), (-1,1/2), (-1, -1/2) (B.1)

The final states will have helicity along kcom the momentum of the outgoing pion.

Since the pion has no spin, and we are assuming the final state hadron is also spin

1/2, we have two possible outgoing helicity states. Therefore a total of twelve complex

helicity amplitudes must be specified to characterize the pion decay channel of the



reaction.

-hf, ( q]-, 0, ) (B.2)

where hi = hphoton - hhadron is the initial helicity and hf = -hhadron is the final

state hadron helicity. where 0 is the angle between q and k and p is zero in the

electron scattering plane. These twelve functions of 0 and o the angle of scattering

in the x-y plane relative to the x-axis, which for electroproduction we take to be the

electron scattering plane, and the helicity indexes, are related by parity so only six

are independent. (One further constraint results from an arbitrary phase chosen at

will.)

Helicity is a frame dependent quantity because the hadron is massive. One

might, therefore prefer to work with states of definite total angular momentum. Ex-

perimentalists extract information from the final state by measuring the final state

angular coordinates and the spin of the outgoing hadron distributions. Fitting the

data with spherical harmonics it is possible to work backwards and find the ampli-

tude of a particular contribution in the J'th channel of total angular momentum.

We therefore expand the helicity amplitudes in terms of states of definite parity and

angular momentum,

Hhf,h,(O, ) = E(2J + 1)HJF h Df h,( 0 , ), (B.3)

Sh, hf

where DJf h, satisfies,

dQ D1 J' 4 (B.4)
dG D, h'" D( , = , 6h ' ' h S ' . (B.4)J(2J+ 1) f

The matrix DJ is the rotation matrix which connects states of constant J. The ob-

served final state is therefore related to a state quantized along the c axis with known

helicity in the J channel. Resonances tend to contribute in a particular channel, the

delta for example contributes mainly with J = 3/2, 1 = 1 and is named A(1232)P 33

to reflect this.



The rotation matrix has the following properties under parity transformations,

DJ h, (0, €) = -ei(h,-hf)(7r-2)DJh -h,(0, ) (B.5)

(see the appendix C for more properties of the rotation matrix). This condition relates

one half of the helicity amplitudes to some reference set by parity. The accepted choice

is to take the first four helicity combinations in Eq. (B.1). The amplitudes can be

expanded in terms of Jacobi polynomials, themselves expressible as derivatives of

more standard Legendre polynomials to give the Walker amplitudes:

1_ 0 1 ,,
Hie, = H1/2,1+1/2= e sin(O) Cos() (BI+ - B(t+1))(P'" - PI1+) (B.6)

900
H 2 = H1/2,1-1/ 2 = V/2cos( ) Z(Al+ - A(1+1)-)(P - P[+1 ) (B.7)

1=0

H3e 2i = H-1/2,1+1/2 = 2 i sin(8) sin( ) 2 (Bl+ + B(t+l)-)(P' + P+'X)(B.8)

H4e = H-1/ 2,1-1/2 = v/2e sin(-) Z(Az+ + A(l+l)-)(P' + P/+1) (B.9)
2 1=0l=0

H5 = H1/ 2,0+1/ = 2cos(2) (Cl+ - C(t+I)- )(PI - P/ 1) (B.10)
1=0

00

H 6ei  = H-1/2,0+1/ 2 = /2ei6 sin() Z(Cl+ + C(l+1)-)(P' + P/+1). (B.11)
1=0

The notation 1+ indicates 1 = J - 1/2 and (1+ 1)- implies I = J + 1/2 where 1 is the

pion orbital angular momentum for a given J. The first four amplitudes encompass

the transverse polarization of the photon while the last two deal with the longitudinal

component.

B.1 Helicity Amplitudes, and Cross Sections

This section discusses the relationship between photoproduction and electroproduc-

tion, forward Compton scattering, Walker's helicity amplitudes and experimentally

measured cross sections.

The hadronic forward Compton scattering amplitude TP" describes the scattering



of a photon on a hadron. The word "forward" dictates the scattered virtual photon has

equal and opposite momentum to the incident photon. The utility of this restriction is

that the cross section for photo or electroproduction is related by the optical theorem

to the imaginary part of the forward scattering amplitude. The amplitude is defined

by the following tensor:

TA,"h(Q 2, v) = if d4 ei (p, h'IT{J~ Jt(()J"(O)} Ip, h). (B.12)

Where p,, and h,h' are the nucleon's momentum and initial and final helicity. The

electric current of the quarks coupling the hadron to the incident and scattered photon

is given by J". The four momentum q, transfered by the photon is expressed by

the Lorentz invariants Q2 = -q 2 and v = p q/mp. The helicity amplitudes are

then defined by saturating the indices of T "" with the scattered and incident photon

polarizations,

Thj,ht;h,,h = E*; TW'h I, (B.13)

hi is the helicity of the incident photon and hf that of the outgoing photon. When

probing this tensor one faces the following restrictions: first, only real photon beams

can be prepared experimentally. The incident photon in this case is transversely

polarized and has Q2 = 0. The longitudinal components are not sampled and the

kinematic range of T(Q 2, v) is restricted to the v axis. The second experimental

possibility is to use electroproduction. The virtual photon has none zero Q2 and its

polarization is determined by the preparation of the electron beam. We will discuss

polarization effects in terms of the following polarization basis,

1
±1 = T (0, 1, ii, 0) (B.14)

S= V 1 2 , 0, 0,1) (B.15)S mpQ (  v-

where the three momentum of the photon is along the ^ direction, and we work in

COM frame.

Having defined the Walker amplitudes previously, we now discuss how they can



be recovered from experiment. The differential cross section is described in terms of

a contraction between the hadron Wb" and lepton L"" tensors. The hadron tensor is

given by,

Wih = - d4 eiq'(p, h'lJit(l()J"(O)lp, h) = ImT"h" (B.16)

Using the following normalization,

(p', h'lp, h) = 2p0 - (27) 3 . 3(7_ p')ah',,h (B.17)

and inserting a complete set of states into W "' and obtain,

n=(2 l,h) m d31

(B.18)

Here the index n runs over the number of particles in the final state and X, =

2=•1 pi is the sum of the final state momenta. One must also sum over the helicities

of the final states, represented here by hn.

We now discuss the contributions from n = 2 with a pion and hadron in the final

state. In the COM, = -f, leaving only an angular integral over the pion helicity

amplitudes,

Ahb,h[:ha,h = bhI a-1 ~ di - Bhlha h  (B.19)

Ahb,hAh,,h - h,,h= -- 8(27r)3 W hf hf vhb-h,

Here hf = hi - h2 = -h 2 where particle one is the spin zero pion and particle two the

spin half hadron. The helicity amplitudes A can now be combined to give expressions

for the hadron structure functions. H is the pion helicity amplitude and the focus of

this section.

Hhl-h 2 ,hah = (pl,h l ;p 2, h2 ChaJIjIp, h) (B.20)

= (I, , q,, -h 2 Ch "J" p, h) (B.21)



(The helicity is specified along the pion momentum.) The amplitudes derived here

are directly proportional the Walker's helicity amplitudes discussed previously.

The lepton tensor is normally defined in terms of electron kinematic variables,

Li' = 2k' kA  + (k -q)g"' - ku qV - kV"q + 2icEua 3 k,,qp (B.22)

Where k is the incident four momentum of the lepton, q is the virtual photon momen-

tum and E0 123 = 1. We remark here that effects of the O(mr2) have been systematically

neglected. We would like to rewrite this tensor in terms of photon polarizations, so as

to relate the pion helicity amplitudes to standard definitions of the structure functions.

Working in the COM frame and choosing the ^ axis along the photon momentum,

one can express the antisymmetric parts of the lepton tensor in terms of the photon

polarization vectors as follows. The transverse terms are proportional to the following

density matrix:

PT} = e*E+ - F*_"_  (B.23)

Note that fE" = pFc". While the longitudinal-transverse interference terms are pro-

portional to:

p" = - +e_0 + 0C_ + - E+E" (B.24)

The two expressions are manifestly gauge invariant, antisymmetric and satisfy

the necessary crossing relations. The lepton tensor can be written in terms of these

densities [73],
L+ = 2Q2 pfA (B.25)

A1q3 2 T

where, 6 = 2 - y)- - 1) and y =- - is the energy loss. The imaginary

component is required to maintain the properties of the tensor under conjugation.

Take for example photoproduction, then the differential cross section given an

incident photon with helicity +1 on an unpolarized target is,

do(+,unpol) _ 1 I

dQ 32(27r)3W2  H,Iql-hHh,1-h (B.26)
q h1 ,h



32(21 r,)3 W I2 1i I IEH2 (B.27)32(2)=1 2 i- =1

Or for example photoproduction on a polarized target with ±1 helicity photon

beam,

do(+, +) du(-, +) 1 I' |d+ - d - P1 IH 112 - H2 12 + IH312 - IH412 (B.28)dG dQ 2 qI
Any given experimental configuration can easily be given in terms of these ampli-

tudes. The utility of this process resides in the fact that resonances tend to contribute

strongly to a particular helicity amplitude. Thus if from spin independent analysis

one fits to each resonance a multipole configuration one in principle can predict the

spin dependent behavior.

B.2 Breit-Wigner Analysis of Resonances

The analysis performed here is a modification of the work by Walker [20]. Each

helicity amplitude is separated into a resonance and Born term,

Hi = H" + Hý. (B.29)

The low J contributions are decomposed into states of definite angular momentum

to obtain the interference between the Born and resonance terms. In our case we

stopped after reaching J = 3/2, as all the prominent resonances are included by this

point. The resonances terms for a particular channel are then parameterized by the

Breit-Wigner method,

H(W)R, = H(WR, Q2),j( IRR WR 1 (B).30)[ii q-1 q R- W2 - iWRr\ Pi /7



Where the widths are a phenomenological parameterization to get the correct peak

shape. They are given by,

SI 21+1 ( 12 + X2  (B.31)
Fr@ 1j 2 + X2

, I - 12 + X2 h-

r q 1 + xr2 (B.32)
|qRl 1412 + X2

As before, Ip and q' are the pion and photon three momentum respectively. I is the

orbital angular momentum of the pion, while h, is the helicity of the incident photon.

Any quantities with a subscript R are specified at the resonance peak. FR is the

resonance width and X is typically a few hundred MeV and controls the peak shape.

The parameterization we used to calculate the polarizability contribution in

Chapter Three included the P33(1232), P11(1440), D13(1520), S11(1535), S11(1650),

F15(1680), D31(1700) and F35(1905) resonances. Using the total angular momen-

tum J and the orbital angular momentum of the pion decay channel as specified in

the Particle Data Book [30], the contribution of each resonance at its pole was de-

composed into Walker helicity amplitudes as a function of Q2. Isospin considerations

where added through the use of appropriate Clebsch-Gordon coefficients. For the

delta and some other prominent resonances these amplitudes have been extracted

from experiment, while reasonable parameterizations have been used for the weaker

resonances [23]. The values for X were taken from the photoproduction work of

Walker [20]. Due to the known isospin problems with pion photoproduction data

outlined in Chapter Three, we neglected the isovector-isosinglet interference term.

This term has an opposite sign at the photoproduction point than would be expected

from the DHG sum rule. This is most likely due to the small size of the singlet

channel; the isosinglet-isosinglet piece only contributes r 1 - 2% at the photopro-

duction point to the total. The resultant parameterization undersaturated the DHG

sum rule by about 30%, we therefore provided an overall normalization factor to force

saturation.



Appendix C

Algebraic Conventions

The notation used in this thesis is primarily that of Itzykson and Zuber [9]. A brief

table of useful formula follows:

The antisymmetric tensor is given by,

60123 = 1 = -60123 (C.1)

The low energy representation used for the Dirac matrices,

0 (I ,0I)
-I

y5 = (

0

-O'i

(C.2)

(C.3)

(C.4)

oi)

The anticommutative relation for the Dirac matrices,

f{7-',"} = 2g •" (C.5)



The cyclic property of the Dirac matrices.

S-y Y"3 = Sfp2 yy + A iv•c ~ , 5

where

SaTv =g aOtigC v c -g9 rC 9••V + gav

Trace and antisymmetric properties,

Tr( S 7•/y•by )

Tr(^/' 3 L1 )

(C.6)

(C.7)

(C.8)

(C.9)

-4ic'" v

4SceOlv

A8 gC vce3 - 9 A5 6 Avceo + gV(56AA + S j 6-iA,3 + g 06 c A (C.10)

In addition the following commutator relations of the total derivatives where found

to be useful,

[iD", iDV"]

{i4,V"}

= -igF "'

= 2iDA"

(C.11)

(C.12)

C.1 Rotation Matrices

The rotation matrix is given implicitly by:

= E'(-) k- m+m' V( +
\j -t- + -

m)!(j - m)!(j + m')!(j - m')!
k)!(j - m - k)!(k - m + m')!k!

cos()2j-2k+m-m'sin( )2k-m+m'
9 2

= (-1)ml-md- mm

= (1)m'-mdm,
--- d7l Trt

dmm (P)

d,'m (P)
d ,m (3)

(C.13)

(C.14)

(C.15)



The form of the rotation matrix that we are particularly interested is given as follows,

D(a, , -)m =- eio(m-m')dm (3) (C.16)



Appendix D

Fundamental Constants

For ease of reference, the results calculated in Chapter Two and Three made use of

the following constants, the uncertainties being in parts per billion:

Constant Value ppb

mP 1.007 276 466 6(6) u 0.6

me 5.485 799 111(12) x 10- 4 u 2.2

mA 0.113 428 913(17) u 150

Kp 1.792 847 386(63) 35

K 1.159 652 193(10) x 10- 3  8.6

A, 1.165 923 0(84) x 10- 3  7200

Roo 10 973 731.570 9(18) m- 1  0.16

1/C 137.035 989 5(61) 45

c 299 792 458 m/s exact

The constants in this

proton mass are from [28],

table where taken from reference [30]. The electron and

the Rydberg is from [10].
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