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Abstract

The thesis consists of three parts. In the first part, electric current fluctuations
in phase-coherent mesoscopic conductors are considered. For a dc transport, elec-
tron counting statistics shows that the fluctuations are reduced due to Fermi statis-
tics. Fermi correlations lead to regularity of electron flow, and to binomial counting
statitics. For a time-dependent voltage, the phase-coherence of electron transport
results in non-trivial behavior of current fluctuations. Current fluctuations due to
a pulse of voltage depend on detailed shape of the pulse and the mean square fluc-
tuations diverge if the flux contained in the pulse is not an integer, as a result of
Anderson orthogonality catastrophe.

In the the second part, current fluctuations in an ultra-small single tunnel junc-
tion are considered. Due to the Coulomb interaction, the charging energy tends to
suppress the fluctuations whereas quantum fluctuations of charge induced by an elec-
tromagnetic environment tend to wipe out the charging energy effect. The interplay
of the two effects makes current fluctuations depend on the part of the circuit in
which they are measured, and also on the impedance of the environment. For several
environments, the current fluctuations are calculated and for each environment, their
sensitivity to the measurement scheme is discussed.

In the third part, the excitations induced by switching are discussed. Two kinds
of perturbations are considered, an on-off operation and a switching-off perturbation.
Firstly, the excitations induced by an on-off perturbation depend on the duration
time 7 of the perturbation. High frequency modes with inverse frequencies smaller
than 7 are significanly affected by the perturbation while low frequency modes are
not excited. Secondly, the energy spectrum of the excitations induced by a switching-
off perturbation resembles thermal equilibrium spectrum. However unlike thermal
excitations, they are coherent which is manifest in the non-vanishing off-diagonal
correlation functions.

Thesis Supervisor: Leonid S. Levitov
Title: Assistant Professor of Physics





Acknowledgements

It is a great pleasure to finally have the opportunity to thank the people who made all

of this possible. I would like to express my deepest gratitude to my advisor, Leonid

Levitov. Leonid has brought my attention to recent developments in mesoscopics, and

provided me with many interesting and tractable problems. He was always willing

to take time to explain even the most basic facts in condensed matter physics, and

shared with me many of his deep physical insights.

Most of my understanding and knowledge in the condensed matter physics has

been acquired through excellent lectures by professors at MIT and Harvard. I would

like to take this opportunity to thank John Joannopolous, Mehran Kardar, Leonid

Levitov, and Bertrand Halperin.

During my :research works presented in this thesis, I have enjoyed working with

my collaborators, Alexi Yakovets, Andrei Shytov, and Michael Reznikov. They have

supplied valuable comments and suggested ways to resolve difficulties that caused me

to stumble. Also I have benefited from numerous discussions with other graduate

students and postdocs including Dongsu Bak, Yong Baek Kim, Don Kim, Ickjin

Park, and Kyeongjae Cho. They have exposed me to many interesting developments

in their research areas and helped me broaden my interest. In addition, I would like

to thank my former and present officemates, Bruce Normand, Menke Ubbens, Mitya

Chklovskii, and. Dmitri Ivanov.

At various stages of my stay at MIT, I have had a good fortune of having generous

mentors. Especially I would like to thank Manfred Sigrist and Peggy Berkovitz. They

have given me :pieces of invaluable advice when I was at a loss, and helped me enjoy

pleasant days. I would also like to thank all my friends including, but not limited to,

Young-Gyu Park, Jae Sang Kim, Seungheon Song, and Sukyoung Chey.

Finally I would like to thank my parents, Kwangja and Chongho Lee, and my

fiancee, Ji-Kyung Choi, for all the supports and love they have given me. Without

them this thesis could not have been written.





Biographical Note

Hyunwoo Lee was born in Seoul, Korea in 1969 and grew up there. From 1987 to

1990, he attended the Korea Institute of Technology (presently undergraduate course

of Korea Advanced Institute of Science and Technology), where he graduated with a

bachelor degree in physics. From 1990 to 1996, he attended graduate school at MIT

and studied theoretical condensed matter physics under professor Leonid S. Levitov.

In the fall of 1996, he will take a post-doctoral position at the Center for Theoretical
Physics at Seoul National University in Seoul, Korea.

Publications

[1] Hyunwoo Lee, L. S. Levitov, and A. V. Shytov, Excitations Induced by Switch-
ing Perturbations in Quantum Wires, in preparation.

[2] Hyunwoo Lee and L. S. Levitov, Flux Lattices in Layered Superconductors, in
preparation.

[3] Leonid S. Levitov, Hyunwoo Lee and Gordey B. Lesovik, Electron Counting
Statistics and Coherent States of Electric Current, preprint, submitted to J.
Math. Phys.

[4] Hyunwoo Lee and L. S. Levitov, Universality in Phyllotaxis: a Mechanical The-
ory, to be published in Symmetry in Plants (Cambridge University, Cambridge,
1996).

[5] D. A. Ivanov, H.-W. Lee, and L. S. Levitov, Coherent States of Alternating
Current, to be published in Phys. Rev. B.

[6] Hyunwoo Lee and L. S. Levitov, Current Fluctuations in a Single Tunnel Junc-
tion, Phys. Rev. B 53, 7383 (1996).

[7] Hyunwoo Lee, L. S. Levitov, and A. Yu. Yakovets, Universal Statistics of
Transport in Disordered Conductors, Phys. Rev. B 51, 4079 (1995).

[8] Hyunwoo Lee and L. S. Levitov, Estimate of Minimal Noise in a Quantum
Conductor, unpublished (cond-mat/9507011).

[9] Hyunwoo Lee and L. S. Levitov, Orthogonality Catastrophe in a Mesoscopic
Conductor due to a Time-dependent flux, unpublished (cond-mat/9312013).





Contents

1 Introduction

1.1 Transport properties of mesoscopic devices . . . . . . . . . . . . . . .

1.2 Single charge tunneling in nanostructures . . . . . . . . . . . . . . . .

1.3 Current fluctuations in macroscopic systems . . . . . . . . . . . . . .

2 Electron Counting Statistics

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 Measuring electric current . . . . . . . . . . . . . . . . .

2.3 Spin 1/2 as a galvanometer ................

2.4 Single-channel conductor. General formalism . . . . . . .

2.5 Equilibrium fluctuations ..................

2.6 Statistics of a dc current: quantum shot noise . . . . . .

2.7 Universal statistics of transport in disordered conductors

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Coherent States of Electric Current

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 Noise due to a voltage pulse: Orthogonality catastrophe .

3.3 Coherent states of current . . . . . . . . . . . . . . . . .

3.4 Conclusion . . . . . .. . . . . . . . . . . . . . . . ....

4 Current Fluctuations in a Single Tunnel Junction

4.1 Introduction ................................

13

13

16

19

25

... . 25

. . . . 26

... . 29

. . . . 32

.. .. 35

. . . . 37

. . . . 38

.. .. 48

49

49

50

56

62



4.2 Formulation ................ .

4.3 Tunneling current and relaxed current . . .

4.4 Noise spectrum of tunneling current . . . . .

4.4.1 Noise spectrum of tunneling current .

4.4.2 Low impedance limit .........

4.4.3 High impedance limit .........

4.4.4 Ohmic environment . . . . . . . . . .

4.4.5 Noise power .......... ....

4.5 Noise spectrum of relaxed current . . . . . .

4.5.1 Noise spectrum of relaxed current . .

4.5.2 Low impedance limit .........

4.5.3 High impedance limit .........

4.5.4 Ohmic impedance environment . . .

4.5.5 Experimental implications . . . . . .

4.5.6 Weak scattering limit .........

4.6 Conclusion ... ....... .... .....

5 Excitations Induced by Switching in Quantum Wires

5.1 Introduction ....... . ...............

5.2 Excitations generated by an on-off perturbation . . . .

5.3 Excitations generated by a switching-off perturbation

A Larmor Clock Measurement of Tunneling Time

B Asymptotic Expression for ((Qk))

C Variance of ((Qk))

D Correlation Function at Finite Temperature

.. . .. .... .. . 67

. . . . . . . . . . . . . 70

. . . . . . . . . . . . 73

. . . . . . . . . . . . . 73

... ... .... ... 74

... ... ... ... . 75

. . . . . . . . . . . . 78

... .. .... .... 78

. . . . . . . . . . . . . 79

. . . . . . . . . . . . . 79

... .. .... ... . 8 1

... ... .... ... 85

. . . . . . . . . . . . . 86

. . . . . . . . . . . . . 87

.. ... ... .... . 88

.. ... ... ... .. 88

91

91

93

97

103

109

111

113



List of Figures

1-1 Transport through a quantum dot. Two electrodes are separated by

an insulating gap, and in the middle of the gap lies a metallic island.

At low temperatures, the island induces the Coulomb blockade effect. 17

1-2 A single tunnel junction. Two electrodes are separated by an insulating

gap. Unlike the quantum dot in Figure 1-1, a single tunnel junction

does not contain an island. However it may still exhibit the Coulomb

blockade effect if electron relaxation in the leads is slow. ....... . 18

4-1 (a) A schematic diagram of the circuit. The circuit contains a sin-

gle tunnel junction, a voltage source, and external leads of impedance

Z(w). (b) The tunneling current and the relaxed current. The tunnel-

ing current represents the electron flow right at the potential barrier

of a junction. On the other hand, the relaxed current represents the

electron flow through the external leads. In the figure, an Ohmic en-

vironment with resistance R is shown. . ................. 69

4-2 The zero temperature current-voltage characteristics for three environ-

ments, Z(w) = 0.01RQ (solid line), Z(w) = 100RQ (dashed line), and

Z(w) == RQ (dash-dotted line). .................... .. 72

4-3 The zero temperature equilibrium noise spectra of the tunneling cur-

rent SrT(w) for Z(w) = 0.01RQ (solid line), Z(w) = 100RQ (dashed

line), and Z(w) = RQ (dash-dotted line). . ............... 74



4-4 (a) The zero temperature excess noise spectra of the tunneling current

SITk(w) for Z(w) = O.O1RQ (solid line), Z(w) = 100RQ (dashed line)

and Z(w) = RQ (dash-dotted line). Voltage bias of eV = 0.5Ec is

assumed. (b) Evolution of the zero temperature tunneling excess noise

with voltage bias in the high impedance environment Z(w) = 100RQ.

eV = 0.5Ec (solid line), eV = 1.5Ec (dashed line), and eV = 2.5Ec

(dash-dotted line) . . . . . . . . . . . . .. . . . . . . . . . . . ... . 76

4-5 The excess noise spectrum of the relaxed current SfR (w) (solid line) vs.

the excess noise spectrum of the tunneling current SfT(w) (dashed line)

at zero temperature. The dash-dotted line shows 1/(1+w 2R2C 2 )ST (w)

for comparison. (a) Z(w) = O.O1RQ, eV = 200Ec. The dash-dotted

line is not visible because it overlaps with the solid line. (b) Z(w) =

100RQ, eV = 0.5Ec. The solid line and the dash-dotted line are scaled

up by a factor of 104 to magnify their features. Note that SXR (w) is
negative around hw , +Ec . ................. . . . . . 83

5-1 Wave reflection. The evolution of the field q(x, t) can be obtained from

the analogy to the classical wave reflection problem. .......... . 95

5-2 The conformal transformations used to simplify the boundary conditions. 99



Chapter 1

Introduction

This thesis consists of three parts. In the first part, we discuss current fluctuations

in phase-coherent mesoscopic conductors. In the second part, we discuss the effects

of the Coulomb interaction on the current fluctuations in single tunnel junctions. In

the third part, we discuss excitations induced by switching perturbations in quantum

wires. The bulk of the work presented in this thesis has been presented in seven

research papers [1, 2, 3, 4, 5, 6, 7], which form the bodies of Chap. 2-5.

1.1 Transport properties of mesoscopic devices

In the last decade, there has been rapid progress in nano-fabrication technology.

Nowadays, it has become a rather routine task to build systems with controlled struc-

ture in sub-micron scale. In addition, it is now possible to reach temperatures in the

milikelvin range. At such low temperatures, many interesting phenomena occur in

small devices. In this section we discuss the effects of the quantum-mechanical wave

nature of electrons on transport properties of small devices.

In the conventional Boltzmann transport theory, it is assumed that electrons pos-

sess well defined positions and momenta. The basic quantity in the theory is the

electron distribution function f(r, p, t), describing the density of electrons at point r

with momentum p. The Boltzmann equation determines the evolution of the function

f(r, p, t), and all transport properties result from f(r, p, t).



The classical kinetic theory, however, ignores the wave nature of electrons. At

room temperature, electrons undergo many inelastic scatterings and loose phase co-

herence. In this situation, ignoring quantum mechanics is justified, and the Boltz-

mann equation is a good approximation. On the other hand, at very low temperature

the inelastic scattering rates become very small, and electrons maintain their phase

coherence up to some relatively large length scale, called the phase coherence length

Lo. For very small systems, L, becomes comparable to system dimension and the

quantum coherence becomes important. As a result, properties of such devices are

different from those of macroscopic devices, and the name mesoscopic devices is used

to emphasize this fact.

To take into account the quantum-mechanical coherence of electrons, it is useful

to adopt a different point of view, and to treat electron conduction as a scattering

problem, as first proposed by Landauer [8, 9, 10]. The Landauer's picture can be

explained with the Feynman functional integral description. For example, the trans-

mission probability T(ri -+ r 2 ) for an electron to go from ri to r2 is given by a

phase-coherent sum of amplitudes for all possible trajectories from rl to r2:

2

T(rl - r2)= ti(rl -+ r2) (1.1)

where ti(ri -+ r 2 ) is the amplitude for a trajectory i.

The difference from the Boltzmann theory becomes evident if Eq. (1.1) is split

into diagonal terms and interference terms,

T(ri -+ r 2) r2) 2  E t*(rl -+ r2)tj(r -- r 2 ). (1.2)
ii#j

While the interference terms tend to average out, and the diagonal terms are dominant

in conventional macroscopic systems, in the mesoscopic systems the interference terms

may give contributions comparable to the diagonal terms.

The Landauer's picture has been applied to various mesoscopic phenomena such

as Aharonov-Bohm oscillations in multiply connected geometry, or weak localization



in disordered conductors, and it has been proven useful.

Recently, the Landauer's picture has been applied to the noise study of the current

through a one-dimensional quantum wire [11, 12, 13]. For simply connected wires,

the interference effects are negligible, and naive reasoning suggests that the wave

coherence is also unimportant, and that transport in such wires exhibit classical

shot noise. In the strong scattering limit, the noise power P is indeed found to be

P = 2eI, in agreement with the classical shot noise theory. In the weak scattering

limit, however, it has been found that the noise is suppressed below the classical noise

level, P < 2eI.

To understand the suppressed noise, let us briefly review the classical shot noise

theory. Electron conduction through a one-dimensional conductor can be viewed as

successive attempts by electrons to pass through the conductor, with each attempt

having two outcomes, either passing or getting reflected. In the classical shot noise

theory, each attempt is assumed to be independent. As a result, there is no correlation

between two successive attempts, and the electron transmission becomes a Poisson

process. It is well known that the root mean square deviation of a Poisson process is

given by pN where N is the number of attempts and p is the transmission probability.

Applied to the noise problem, this analysis leads to the full shot noise power, P = 2el.

Then, following the classical shot noise theory, the full shot noise in the strong

scattering limit can be interpreted as an absence of the correlation between electron

tunneling events, whereas the suppressed shot noise in the weak scattering limit can

be interpreted as a presence of some mechanism that regularizes transmission events.

One may expect that the Fermi statistics of electrons should induce such correla-

tion. In fact, by incorporating the Fermi statistics into the conventional Boltzmann

equation, a recent theoretical calculation [14] has demonstrated that the noise can be

indeed suppressed due to the Fermi statistics.

In the first part of the thesis, we discuss electron transport in mesoscopic conduc-

tors. We concentrate on the nature of the correlation induced by the Fermi statistics,

and the effects of the quantum coherence of electrons on the fluctuations.

In Chapter 2, we study the electron counting statistics. Specifically, we first de-



velop a measurement scheme that allows us to directly probe the number of transmit-

ted electrons during a given time interval t. From the scheme, we derive a probability

distribution of the number of transmitted electrons. Then, by examining the depen-

dence of the probability distribution on the time t and the voltage V, we show that the

electron transmission becomes correlated due to the Fermi statistics. We also show

that the nature of the correlation can be quite accurately described by the binomial

statistics: the time average interval between every successive attempts is h/leVI, and

the fluctuations about the average are negligible.

In Chapter 3, we probe deeper into the correlation by discussing the current fluctu-

ations when a time-dependent voltage is applied. As a specific example, we calculate

the fluctuations due to a pulse of voltage, and show that due to the transport coher-

ence, Anderson orthogonality catastrophe [15] occurs. And as a result, we find that

the mean square fluctuations diverge logarithmically if the Faraday's flux contained

in the voltage pulse is not an integer.

1.2 Single charge tunneling in nanostructures

In the previous section, we have seen that quantum mechanics is important in meso-

scopic systems. In this section, we discuss another important effect occurring in such

systems, called Coulomb blockade.

Let us imagine that we have two electrodes separated by an insulating gap, and

in the middle of the gap lies a metallic island (see Figure 1-1). Suppose a voltage bias

is applied between the two electrodes. For current to flow, electrons in the source

first have to tunnel on the island, and then to the drain. During this process, the

number of electrons in the island changes from N to N + 1 and then from N + 1 to

N. Normally there is a large number of electrons, N - 1023, on the island, and the

change by one is not important. However, in mesoscopic systems, this is not quite

true. For example, in a metallic island of size 0.1 p m x 0.1 Mm x 1 nm, the number is

around 103 . Though the number is still large, the effect of the additional electron is

not negligible because of the Coulomb interaction.



Figure 1-1: Transport through a quantum dot. Two electrodes are separated by an in-
sulating gap, and in the middle of the gap lies a metallic island. At low temperatures,
the island induces the Coulomb blockade effect.

Since electrons interact via the Coulomb potential, there is an energy cost associ-

ated with adding a new electron. For an island with capacitance C, the energy cost can

be estimated by the charging energy Ec = e2 /2C. For the island mentioned above,

the capacitance is about 1 fF (10-15 F) and it corresponds to the charging energy

Ec - 1 K, which is rather high temperature in the cryogenics technology standard.

Then at temperatures below Ec, thermal fluctuations cannot supply electrons with

enough energy to overcome the energy barrier. As a result, at small voltage, the

current does not flow. This phenomenon is the so called Coulomb blockade.

The Coulomb blockade is observed in many systems. For example, it occurs for

a semiconducting island, and there the effect is usually stronger due to lower charge

density than in. a metallic island of comparable size. The effect occurs even in a

superconducting island and in this case, the Cooper pairs are affected by the charging

energy.

It is interesting that the Coulomb blockade may occur even without an island. In

a recent experiment [16] it was found that transport through a single tunnel junction

shown in Figure 1-2 can also be affected by the Coulomb blockade.

To understand the Coulomb blockade effect in a single tunnel junction is a bit less

simpler than the previous example. Let us assume that the time for an electron wave-

packet to tunnel from the source to the drain is T (for a discussion on the tunneling

time, see Refs. 117, 18, 19]). Since electrons travel at a finite speed vF, the size of the

wave-packet right after the tunneling is about VFT, and at the terminal of the drain

Source



Figure 1-2: A single tunnel junction. Two electrodes are separated by an insulating
gap. Unlike the quantum dot in Figure 1-1, a single tunnel junction does not con-
tain an island. However it may still exhibit the Coulomb blockade effect if electron
relaxation in the leads is slow.

there appears charge-unbalanced region of this size. Then, other electrons respond to

the injection of the extra charge, and the Coulomb blockade effect should occur.

However, this analysis captures only a part of the relevant physics. Let us compare

the single tunnel junction with the Coulomb island. The metallic island in the pre-

vious example is surrounded by insulators and so the charge on the island is a good

quantum number. In contrast, there is no region in single tunnel junctions where

electrons can be confined for a long time, and thus charge is not a good quantum

number. Then one should examine the quantum fluctuations of charge, and the anal-

ysis in the previous paragraph is not valid if the mean square fluctuations of charge

are larger than e2

Recently Devoret et al. [20] and Girvin et al. [21] have developed a theory of single

tunnel junctions that includes both the Coulomb blockade effect and the quantum

fluctuations of charge. The theory shows that the strength of the quantum fluctua-

tions of charge is determined by the electromagnetic environment of a junction, and

thus transport properties depend on the impedance of the environment.

In Chapter 4, we consider current fluctuations in a single tunnel junction. While

the charging energy tends to suppress the fluctuations, the quantum fluctuations of

charge tend to wipe out the charging effect. We find that the interplay of the two

effects makes the current fluctuations depend on the part of the circuit in which they

are measured. For illustration, we calculate the fluctuations of the tunneling current,

Source Drain



which is measured at the insulator between the source and the drain, and of the

relaxed current, which is measured deep in the drain, far from the tunneling junction.

For a low impedance environment, the charging effect is suppressed by quantum

fluctuations of charge. Hence the tunneling current exhibits Ohmic fluctuations while

the relaxed current shows fluctuations due to a shunt resistor. For a high impedance

environment, the charging energy effect survives and thus the fluctuations of the

tunneling current are strongly suppressed. Also the quantum fluctuations of charge

become correlated with electron tunnelings, and consequently the relaxed current

shows negative excess noise. The results are compared with recent experiments [22,

23], and good agreement is found.

1.3 Current fluctuations in macroscopic systems

Before we finish this chapter, it is useful to review the topic of current fluctuations in

macroscopic systems. Due to intrinsic stochasticity, the representation of fluctuating

quantities in terms of exact time evolution is not useful. Instead, such quantities are

usually characterized by averages and correlation functions. For the current, these

are (I(t)) and (I[(t1 )I(t 2)). For the current fluctuations, it is useful to define 6I(t) =

I(t) - (I(t)). Then the relevant correlation function is K(tl, t2) = (6I(tl)6I(t2)). For

stationary current flow, the correlation function is invariant under time-translation

and thus depends only on the difference = t 2 - tl: K(tl, t2 ) = K(T) = (61(0)6I(t)).

Due to time-translation symmetry, it is useful to analyze the correlation in the

frequency space:

K(t) = 1 e-iwtSI(w) , (1.3)

where the Fourier component St (w) is called spectral density. The spectral density

possesses the following properties:

(i) SI(w) = S(w)

(ii) SI(w) = SI(-w) (1.4)



(iii) S(w) > 0 .

In other words, it is a real positive number. From that, Si(w) can be interpreted

as an intensity of the current harmonic with the frequency w: (6I(w1)6I(w2))

27r26(W1 - W2)SI(W1).

White noise: Let us consider a resistor R at temperature T. Without external

voltage bias, there is no net current and the current correlation function K(t) becomes

(I(O)I(t)). It should be expected that K(t) vanishes for large t. In fact, K(t) has

a peak at t = 0 whose width is given by some microscopic time scale, and vanishes

rapidly away from the peak. Therefore, as long as we are not interested in the

microscopic times, the correlation function can be approximated by a delta function:

K(t) = Ko6(t). Here the magnitude Ko depends on R and T. Since the current

fluctuations are induced by thermal fluctuations, the magnitude K0 is proportional

to T. Also one can expect that K0 is inversely proportional to R since larger resistance

suppresses electron flow stronger. In fact, using the fluctuation-dissipation theorem

one can show that K0 = kBT/2R [24]

Then by taking a Fourier transform, one obtains

S k()= (1.5))- 27rR

the so called Nyquist theorem [25]. Note that S (w) is independent of frequency. For

that reason, this result is often referred as white noise, with the word "white" used

in analogy to visible light which is a mixture of harmonics with broad spectrum.

Johnson-Nyquist noise: The white noise spectrum (1.5) predicts no fluctuations

at zero temperature. However, even at zero temperature, the fluctuations do not

vanish since the uncertainty principle requires residual zero point motion of electrons.

Hence Eq. (1.5) is valid only at high temperatures where zero-point fluctuations can

be ignored compared to thermal fluctuations.

To generalize to lower temperature, we should formulate the problem quantum-

mechanically. The current I(t) should be replaced by a current operator I(t) and



the ensemble average (...) should be interpreted as Tr{p...} where p is a density

matrix. Also, the correlation function K(t) should be interpreted as the average of

the current-current anticommutator [26],

1
K(t) = i ((0), I(t) - (1(0))((t)) ,(1.6)

since two current operators at different times do not commute.

Callen and Welton [27] performed a quantum-mechanical calculation and obtained

1 =3hw
S (w) = hw coth , (1.7)

iR 2

which is usually referred as Johnson-Nyquist noise. For high temperature, kBT > hw,

it is reduced to the white noise. However, for low temperature, kBT < hw, it becomes

hlwl|/rR. Notice that the crossover from high to low temperature regime depends on

the frequency.

To understand the factor hw in the low temperature spectral density, let us recall

the approach to dissipative systems proposed by Caldeira and Leggett [28, 29]. A

resistor absorbs energy from all harmonics of the current. Quantum-mechanically, one

can imitate energy absorption at a particular frequency w by introducing a harmonic

oscillator with the same natural frequency w which is linearly coupled to the current.

In the Caldeira-Leggett approach, a resistor can be described by infinite number of

harmonic oscillators with natural frequencies ranging from zero to infinity.

In this approach, it can be easily shown that a harmonic oscillator with natural

frequency w is responsible for the spectral density SI(w) at the same frequency. The

average energy of thermal fluctuations in this harmonic oscillator at high temperature,

kBT > hw, is of the order of kBT, which corresponds to the white noise. At low

temperature, kIT < hw, the energy in the harmonic oscillator is only due to its zero

point motion, that is, it is equal to hw/2. Then, since this energy is responsible for the

spectral density, one can roughly expect that kBT in the white noise spectrum (1.5) is

replaced by hw at low temperatures, which agrees with the low temperature behavior

of Eq. (1.7) up to a numerical factor. So, the low temperature behavior of the Johnson-



Nyquist noise can be understood in terms of the zero-point fluctuations.

Quantum shot noise: So far we have considered thermal equilibrium. Now, let us

generalize to nonequilibrium situation when voltage bias is applied. Dahm et al. [30]

calculated the spectral density in Ohmic junctions and obtained

Si(w) = 2R (hw ± eV) coth 2(h + eV) (1.8)2rR+ 2

For simplicity, let us consider the zero temperature limit. The spectrum shows two

kinds of behavior depending on the ratio between the frequency and the voltage.

For high frequency, htw| > leV|, Eq. (1.8) reduces to hw/wrR, which is identical

to the Johnson-Nyquist noise at low temperatures. So, the voltage bias does not

affect high frequency spectral density. For low frequency, hJw| < IeV|, Eq. (1.8) gives

leV|/rR = eI/r. Here we see that the voltage bias affects only low frequency spectral

density.

Note that the low frequency spectral density is proportional to the electron charge

e, which implies that this noise would be absent if the electron charge has infinitesimal

value. In fact, this noise is related with the finiteness of electron charge. Each electron

carries finite charge and it generates a short pulse of current when it passes a cross-

section in which the current is measured. Overall current can be viewed as a train of

such pulses rather than a steady flow of charge fluid. Because of that, this noise is

often called "shot noise".

To gain some understanding of underlying dynamics, let us focus on the noise

power defined as P = 27SI(w = 0). For an Ohmic junction, one obtains

P = 2eI . (1.9)

The noise power has a simple physical meaning in terms of electron counting statistics.

Let us consider a net charge Q = fo dt'I(t') that has transmitted through an Ohmic

junction in a time interval t. For a dc transport, one obtains (Q) = (I)t. Next let us



consider fluctuations of Q. For its variance, one obtains

(6Q2 1(t)) = j dt dt2 KI 6i(ti, (t2 )}) , (1.10)

which reduces to 7rSi(w = O)t for the times much longer than microscopic correlation

time. Then one finds an interesting relation between the noise power and the variance:

(6Q 2P =2 (1.11)
t

This relation allows one to interpret P as variance of the number of transmitted

electrons per unit time.

By comparing the two equations, (1.9) and (1.11), one finds that (6Q2)/e 2 for an

Ohmic junction is equal to (Q)/e, that is, the average number of electron tunneling

is the same as its variance. Obviously, in the absence of correlation between electron

attempts to tunnel through a tunneling barrier, the probability distribution P(n) of

having n successful attempts becomes Poissonian, and by definition, the variance of

the Poisson distribution is equal to the average. Thus, the result (1.9) implies the

absence of correlations. It is plausible to expect that if there is any correlation that

regulates electron tunneling, the noise power will become smaller. In this sense, the

result (1.9 is referred as a "full" shot noise.





Chapter 2

Electron Counting Statistics

2.1 Introduction

Quantum transport in nanostructures has been a subject of many recent studies [31].

Transport properties like Ohmic conductivity can be understood in terms of the quan-

tum scattering problem in the conductor, which provides a theory of quantum coher-

ence of transport [8, 10, 9]. Fluctuations of electric current due to the discreteness of

electric charge are intrinsic to quantum transport [11, 12, 13, 32]. It has been found

that current fluctuations have interesting properties reflecting profound aspects of un-

derlying quantum dynamics [33, 34, 35, 36]. For example, the quantum noise caused

by a dc current is reduced below classical shot noise level [11, 12, 13, 32, 33, 34, 35, 36].

This suppression has been understood as an effect of enhanced regularity of transmis-

sion events due to Fermi statistics [37]. Besides theoretical interest, such phenomena

may lead to applications. Given the development of nano-technologies, the transmis-

sion of signals by single- or few-electron pulses will become common, and then one

will see the quantum statistics of current working.

In this chapter we present the theory of quantum measurement of electric cur-

rent [38]. Our goal is a complete description of charge fluctuations, rather than

developing measurement theory (see Secs. 2.2, 2.3). We shall derive a microscopic

formula for electron counting distribution (see Sec. 2.3, Eq. (2.10), and Sec. 2.4,

Eq. (2.25)) that can be used for any system, e.g., with an interaction or with a time-



dependent potential [39]. As an application, we test the method on the statistics in

a single channel ideal conductor for non-equilibrium and equilibrium noise at finite

temperature, and for zero-point equilibrium fluctuations (Secs. 2.4, 2.5). In partic-

ular, the fluctuations of a dc current at zero temperature are found to be binomial

(Sec. 2.6) with the probabilities of outcomes related with transmission coefficients of

elastic scattering in the system, and with the number of attempts N = eVt/h, where

V is applied voltage, and t is the time of measurement.

2.2 Measuring electric current

Instantaneous measurement is described in quantum mechanics by wave-packet re-

duction that involves projecting on eigenstates of an observable. A different kind of

measurement, extended in the time domain, is realized in detectors and other counting

devices. It is known that in such cases a certain revision of the measurement descrip-

tion is necessary. A famous example is the theory of photon detectors [40, 41, 42]

in quantum optics. Due to Bose statistics, photons entering a photo-counter are

correlated in time, and this makes the theory of photon detection a problem of many-

particle statistics. For a single normal mode of radiation field the probability Pm to

count m photons over time t is given by

Pm - ( (aa)me-ta+a : ) , (2.1)

where a+ and a are Bose operators of the mode, q is "efficiency" of the counter, (...)

stands for the average over a quantum state. The normal ordering : ... : is important

- physically, it means that, after having been detected, each photon is destroyed,

e.g., it is absorbed in the detector. Instead of the probabilities, it is more convenient

to deal with the generating function

x(A)= E Pmeim . (2.2)



For the single normal mode Eq. (2.1) leads to

X(A) = ( : exp rt(eiA - 1)a+a : ) . (2.3)

Eqs. (2.1,2.2,2.3) account very well for numerous experimental situations [43, 44].

Particularly interesting is the case of a coherent state 1z), alz) = z iz), where z is

a complex number. It corresponds to the radiation field of an ideal laser, and with

Eq. (2.3) one easily gets Poisson counting distribution,

PM = (Jt)me-Jt J = IZ 12 , (2.4)

which describes a minimally bunched light source.

Similar to the photon detection, electric measurement is performed on a system

containing an enormous number of particles - in this case fermions - and thus

one expects the effects of Fermi statistics to be important. Also, the duration of

electric measurement is typically much longer than the time it takes the system to

transmit one electron by microscopic tunneling, scattering or diffusion. Apart from

these similarities, there is, however, a crucial difference from the photon counting:

the number of electrons is not changed by current measurement, since electric charge

is conserved. This has to be contrasted with absorption of photons in photo-counters.

Related to this, there is another important difference: at every detection of a photon,

its energy hw is taken from the radiation field, which makes plain photodetectors

insensitive to zero-point fluctuations of electromagnetic field. On the contrary, the

measurement of current fluctuation is usually performed without changing energy

of the system, which makes the zero-point noise an unavoidable component of any

electric measurement [45]. (Let us emphasize that the difference has nothing to do

with the type of quantum statistics, Fermi or Bose. Rather it is the difference between

the two kinds of measurement, e.g., see [46], where counting of fermions was discussed

using an optical-like counter that has to capture an electron in order to detect it.)

In the classical picture, the measurement gives the charge Q(t) = fo j(t')dt' trans-

mitted during the measurement time t. The probabilities Pm of counting m electrons



can then be obtained by averaging 6(Q(t) - me) over the state of the system. In a

quantum problem electric current is an operator, and since currents at different mo-

ments do not commute, the operator of transmitted charge Q(t) = If j(t')dt' generally

does not make any sense. Instead, since we are interested in higher-order statistics

of current fluctuations, beyond (J(t)) and ((j(tl)j(t2))+, in order to compute elec-

tron counting distribution, we have to include the measuring system in the quantum

Hamiltonian. Our approach is motivated by the example of the quantum mechanical

systems with strong coupling to macroscopic environment, introduced by Leggett,

that can be treated consistently only by adding the "measuring environment" to the

quantum problem [47].

For that we introduce a model quantum galvanometer, a spin 1/2 that precesses

in the magnetic field B of the current. For a classical system, the rate of precession is

proportional to B(t), and B(t) is proportional to the current I(t): B(t) = const I(t).

Therefore, the precession angle of the spin directly measures transmitted charge 6Q =

fJI(t')dt'. We adopt the same measurement procedure for the quantum circuit, i.e.,

we include in the electron Hamiltonian the vector potential due to the spin:

A(r) = -/t& X (2.5)

where & = (ao, oy, a,) are Pauli matrices. Thus we obtain a Hamiltonian describing

motion of electrons, the measuring spin, and their coupling. Now, according to what

has been said, we have to solve dynamics of the spin in the presence of the fluctuating

current, find the distribution of precession angles, and then interpret it as a distri-

bution of transmitted charge. Of course, a question remains about the back effect of

the spin on the system, as in any other problem of quantum measurement. However,

as we find below in (2.17) and (2.18), only the phase of an electron state is affected

by the presence of the spin, not the amplitude. Moreover, the phase will change only

for the transmitted, but not for the reflected wave. As a result, the probabilities

we obtain do not depend on the coupling constant of the spin. This justifies the

assumption that the spin measures charge transfer in a non-invasive way.



It is worth remarking that our scheme resembles the "Larmor clock" approach [17,

18, 19] to the problem of traversal time for motion through a classically forbidden

region. In this problem one is interested, e.g., in the time spent by a particle tunneling

through a barrier. The Larmor clock approach involves an auxiliary constant magnetic

field B added in the classically forbidden region, and a spin 1/2 carried by the particle

that interacts with the field: 7 int = -&zB. The precession angle of the spin measures

traversal time. Comparing the two approaches is very tutorial: see Appendix A, where

the Larmor clock is reviewed.

2.3 Spin 1/2 as a galvanometer

Having clarified. our motivation, we proceed semiphenomenologically and choose a

new vector potential in the spin-current interaction -cjA. We replace the Ampere's

long-range form (2.5) by a model vector potential

Ai(r) = o4 Az ViO(f(r) - fo) (2.6)

concentrated on some surface S defined by the equation f (r) = fo. Here Io = hc/e, A

is a coupling constant, f(r) is an arbitrary function, and, as usual, the step-function

O(x) = 1 for x > 0, 0 for x < 0. The surface S defines a section of the conductor on

which the interaction is localized:

int = d3r = -- &z , (2.7)
c 2e

where is = fs jds, i.e., the spin now is coupled to the total current through the section

S. With the choice (2.6) of the vector potential one can study current fluctuations

in an arbitrary section of the conductor. Another advantage of the phenomenological

Eq. (2.6) is that it involves only one Pauli matrix, which makes the spin dynamics

essentially trivial. The choice of the quantization axis of the spin is arbitrary since

(2.6) will be the only spin-dependent part of the Hamiltonian. Finally, by switching

from the smooth function (2.5) to the singular form (2.6) we enforce integer values



of counted charge. To understand this, let us note that in the "fuzzy" case (2.5) the

measurement can start at the moment when one of the electrons is located somewhere

in the middle of the volume where A Z 0, and then a fractional part of electron charge

will be counted. On the contrary, in the "sharp" case (2.6), the spin reacts to the

presence of an electron only when it crosses the section S. We shall see below in a

microscopic calculation, that integer values of charge follow automatically from gauge

invariance, since the form (2.6) is a gradient of a scalar.

Thus we come to the Hamiltonian

e
W (, r), Wi~ = pi - -A , (2.8)

where the spin-dependent A is taken in the form (2.6). An essential feature of our

approach is that we treat the constant A of coupling between the spin and the current

as a variable, i.e., we consider the spin precession as a function of the parameter A. The

reason is that, unlike the photon counting problem, our measurement scheme directly

generates the function X(A), and then the counting probabilities Pm are obtained by

reading Eq. (2.2) backwards.

At this point we are able to formulate our main result. Let us define a new

Hamiltonian

= 7i(, r), Pi = pi - Ah ViO(f(r) - fo) , (2.9)

simply by suppressing ,z in Eq. (2.6). The Hamiltonian '7 x involves only quantities

of the electron subsystem. Below we show that by measuring precession of the spin

coupled to the current, one obtains the quantity

X(A)= (eit-it ). (2.10)

Here the brackets (...) stand for averaging over initial state of electrons. Note that

X(A) is written in terms of a purely electron problem, not involving spin variables.

We shall find that the function X(A) defines the result of any measurement of the spin

polarization at the time t when the spin-current coupling is switched off. Moreover, we



shall see that the function (2.10) has the meaning of a generating function of electron

counting distribution, i.e., Fourier transform of X(A) gives counting probabilities,

entirely analogous to (2.2).

Our goal now will be to express evolution of the spin in terms of quantities corre-

sponding to the electron system. The interaction is given by Eqs. (2.6),(2.8). Suppose

that the measurement starts at the moment 0 and lasts until time t, i.e., the spin-

current interaction is switched on during the time interval 0 < 7 < t. Let us evaluate

the density matrix ~,(t) of the spin, right after it is disconnected from the circuit.

We have

Ms(t) = tre(e-inWt Meint) , (2.11)

where 3 is initial density matrix /01s at t = 0, ~e is initial density matrix of electrons,

and tre(...) means partial trace taken over electron indices, the spin indices left free.

In terms of the spin variables, the operator e- int is a function only of &z, and hence

it is diagonal in spin: (fle -i n" t L ) = (e-iwitt) = 0. In other words, if initially the

spin is in a pure state, up or down, it will not precess. For &,(t) this remark yields:

S= P(O) X(A)P (O)] (2.12)
(t (-A)pt(0) pLw(0)

Here X(A) = tre(e-instIeei•Axt), where e- i nxt is the evolution operator for the prob-

lem (2.9). Now, after the spin degrees of freedom are taken care of by (2.12), we are

left with a purely electron problem, that involves only electron degrees of freedom

but not the spin. By using cyclic property of the trace one can show that X(A) in

Eq. (2.12) is identical to (2.10).

In principle, any entry of a density matrix can be measured, hence the quantity

X(A) is also measurable. In order to make clear the relation of X(A) with the distribu-

tion of precession angles, let us recall the transformation rule for the spin 1/2 density

matrix under rotation by an angle 0 around the z-axis:

oW( ) = . (2.13)eo•pýT P44



By combining this with Eq. (2.2) we write p,(t) as

ps (t) = 1 PmRn O=mA(p) , (2.14)
m

which assigns to Pm the meaning of the probability to observe precession angle mA.

Let us finally note that such interpretation of Pm is consistent with what one expects

on classical grounds, because for a classical magnetic moment 9' interacting with the

current according to (2.6) the angle 0 = A corresponds to the precession due to a

current pulse carrying the charge of one electron.

2.4 Single-channel conductor. General formalism

In order to see Eq. (2.10) working, let us consider an ideal single channel conductor,

i.e., the Schr6dinger equation

.0 01 A 2Z- = -2 x 2 6(x) + U(x) V (2.15)

in one dimension, where the potential U(x) represents scattering region and the vector

potential is inserted according to (2.6) at the x = 0 section. In order to describe

transport, we shall use scattering states, left and right. Their population nL(R)(E)

are equilibrium Fermi functions with temperature T and chemical potentials shifted

by eV, PL - I'R = eV, representing a dc voltage.

For the problem (2.15) one can write the time dependent scattering states as

fEt ikx BLE- ikx  x < -a/2
/L,k(X, t) - e- iEkt e + BLeikx, x < -a/2

eiA/ 2 A eikx, > a/2

/R,k(X, t) = - iEkt e-iA/2 ARe ikx, x< -a/2 (2.16)
e-ikx + BReikx, x > a/2

where a is the width of the barrier, and AL,R and BL,R are the transmission and

reflection amplitudes in the absence of the spin vector potential. To make expressions



less heavy, we suppress electron spin. The phase factors e±iZ/ 2 in (2.16) are found

immediately by observing that the vector potential in the Schr6dinger equation can

be eliminated by the gauge transformation 4'(x) -- exp(iA/2 O(x))4(x). Scattering

amplitudes form a unitary matrix:

= [eiA/ 2AL BR
SA = B -iX\/AR (2.17)[ BL e-i~A/ 2AR

We will study the range of small T, eV <K EF, when only the states close to the

Fermi level are important. In this case there is additional simplification because the

states near Fermi energy have almost linear dispersion law, and thus all wave-packets

travel with the speed VF without changing shape. Then, following Landauer and

Martin [35], instead of the usual scattering states (2.16), it is convenient to use their

Fourier transform. By ignoring the energy-dependence of AL,R and BL,R, which is

equivalent to saying that the scattering time is negligible, and assuming that the

dispersion is strictly linear, one obtains the representation of scattering in terms of

time-dependent scattering wave packets

PL,r(x, t) = ((2x), t <
eiA/ 2AL6(x_) + BL6(X+), t > 7

SR,7-t)= ((x+), t < T (2.18)Se--/2ARJ(X+) + BRS(X_), t > T

where x± = xIvF(t-7T). Here T is the moment of scattering of a packet, which in this

representation is a label in the continuum of states, like k in (2.16). The assumption

that the scattering amplitudes are energy-independent (and that scattering takes no

time) is equivalent to replacing the barrier U(x) of finite width by Uo6(x) and is

consistent with the closeness to EF.

Second-quantized, electron states (2.18) lead to (x, t) = 7L(X, t) + PR(x, t) with

4L(R) (x, t) = EOL(R),7 (x, t)61(2),- , (2.19)
T



where cl,, and c2,T are canonical Fermi operators corresponding to the states (2.18),

the left and the right respectively. One checks that fermionic commutation relations

for cl(2),7,

cz + cj, 'c6( = -') (2.20)
Ci,-Cj,,T + Cj,rCi, = 0 , + + c t ,c = 0i,Tcj, ,7' j,T T,, (2.21)

yield the usual commutation relations for •L(R) (X, t). From that one finds the meaning

of the summation in (2.19): Z ... = f_• ...dT. Mathematically, in this paragraph we
T

defined second-quantized O(x) in (2.15).

The advantage of introducing the basis of the wave-packets (2.18),(2.19) is that

now it is straightforward to write the many-particle evolution operator through the

single-particle scattering matrix Sx:

e- i t = exp dr E ln[SA]cc,,-,
ij

(2.22)

To verify (2.22) let us note that in the wave-packet representation (2.18) Fermi cor-

relations occur only for the pairs of left and right states that scatter at the same

instant of time. For each of such pairs the evolution operator e-imt is 1 if both states

are occupied or both are empty, otherwise it is given by the single-particle scattering

matrix (2.17).

Using similar arguments, we compute

ei-te - i ' t = exp j dT •ic3 c Cc , (2.23)
ij

where eW = S-1i is readily obtained from (2.17):

w eiA xAL 2 + BL 2  2i sinA ALBR 1
2i sin A BRAL e-i'AARI 2 + IBR 12

Using unitarity of ew and commutation rules for c,,, one can rewrite (2.23) in terms



of normal ordering:

t

ei•X -it E= :" expd- ]--[e - 1 jj (2.25)
0 j

This form is ready to be plugged into Eq. (2.10) and averaged over the initial state.

Let us note the striking similarity of the two formulas obtained by different means:

the fermionic Eq. (2.25) and the bosonic Eq. (2.3).

Also, let us mention that the periodicity of the matrix (2.24) in A ensures period-

icity of X(A), and thus guarantees integer values of charge.

2.5 Equilibrium fluctuations

Let us start with a simple example of a single particle in the state c;,jvac) that

corresponds to scattering at the moment T. In this case, from (2.25) and (2.10)

one gets X(A) -= eiIA12 + IB 2 for 0 < T < t, 1 otherwise. (IAI = IAL| = [ARI,

RBI = IBLI = IBRI) Evidently, according to Eq. (2.2), this simply means that for the

scattering occurring during operation of the detector, the counting probabilities are

identical to the one-particle scattering probabilities, as it should be expected.

Now, let us consider current fluctuations in an equilibrium Fermi gas. Assume

perfect transmission: BL(R) = 0. Then Eq. (2.24) gives W = iAuz, and thus Eq. (2.23)

becomes

ei-_xt -iAXt = exp iA j(c.ci,- - c2+c2,-)d- , (2.26)

i.e., the right and the left states separate. We observe that the averaging of (2.26)

over the Fermi ground state is identical to that performed in the orthogonality catas-

trophe calculation [48]. Thus, averaging of (2.26) can be done using the bosonization

method [49] that replaces the fermionic Hamiltonian by a bosonic one:

Bose iF : (V8L 2 : : (VOR) 2 : d , (2.27)



where OL(R) (x) are Bose operators,

[VOL(R) (), OL(R)(Y)] = ±27ri6(x - y) . (2.28)

The density of the left- and right-moving electrons is written in terms of OL(R) (x) as

PL(R)(X) = -VOL(R) (x). Therefore, the average of (2.26) is equal to the average

(exp (OL(t) - OL(0) - OR(t) + OR(0))) (2.29)
2x

taken over the ground state of the Hamiltonian (2.27). Performing this gaussian

average one gets

X(A) = e- ý 2 f (t T )  (2.30)

where A/27r + 1/2 = [A/2w + 1/2J, with [...J being the fractional part. The function

f(t, T) = c ( ctI,TC1,Td)2 (2.31)

S~-lnEFt , h/EF<t<hI/T
r (2.32)

Tt/h ,t > h/T

At long times, according to (2.2), this leads to gaussian counting statistics.

Let us remark that, incidentally, Eq. (2.30) also gives a solution to another prob-

lem: the statistics of the number of fermions inside a segment of fixed length in one

dimension. The relation is immediately obvious after one assigns to 7 in Eq. (2.26),

the meaning of a coordinate on a line. Thus, in this problem the statistics are gaussian

as well.

Now, it turns out that the general case B -€ 0 can be reduced to (2.26) by a

canonical transformation of c,,, that makes the quadratic form in (2.23) diagonal.

The transformation is related in the usual way with the eigenvectors of the matrix

W. Thus, we come to Eqs. (2.26),(2.30) with A replaced by A,:

sin A* = JAI sin 2 (2.33)
2 2



The counting statistics in this case are non-gaussian:

X(A) = e--A f (t T) . (2.34)

One checks that the second moment of the distribution

((m2)) = 2  21A 2f(t, T) (2.35)
A=0

agrees with the Johnson-Nyquist formula for the equilibrium noise.

2.6 Statistics of a dc current: quantum shot noise

Let us consider non-equilibrium noise. In this case, due to the asymmetry in the

population, nL(R)(E) = (exp(E±+eV)/T + 1)-', generally one cannot uncouple the

two channels by a canonical transformation. We calculate the statistics within an

approximation that ignores the effect of switching at T = 0 and 7 = t. Let us close

the axis - into a circle of length t, which amounts to restricting on periodic states:

V(T) = (T ± t) . (2.36)

For the t-periodic problem, by going to the Fourier space, one has

(A) = II [1+ A 2 (e- i - 1)nL(Ek)(1 - nR(Ek))
kEZ

+A 2 (ei" - 1)nR(Ek)(1 - nL(Ek))] , (2.37)

where Ek = 27rhk/t, k is an integer. For large t, t > h/T or t > h/eV, the product

is converted to an integral:

ln(x(A)) = 2trh i-, dE In 1 + IA12(e- i - 1)

xnL(1 - nR) + IAI2(eiA - 1)nR(1 - nL)) . (2.38)



We evaluate it analytically, and get

X(A) = exp (-tTu+u_/h) , (2.39)

where

u± = v ± cosh-'1 (AI 2 cosh(v + iA) + IB2 cosh v) , (2.40)

v = eV/2T. The answer simplifies in the two limits: T > eV and eV > T. In the

first case we return to the equilibrium result (2.34). In the second case, corresponding

to the recently discussed quantum shot noise [11, 12, 13, 32], we have

x(A) = (ei"A A2 + jIB2)e•iVt/h, c = sgnV , (2.41)

Analyzed according to Eq. (2.2), this X(A) leads to the binomial distribution

PN(m) = pmqN-mC'm

p = |A|2, q = IB 2, N = eIV t/h. One checks that the moments (m) = pN and

((m2 )) = pqN correspond directly to the Landauer formula and to the formula for the

intensity of the quantum shot noise [11, 12, 13, 32]. The correction to the statistics

due to the switching effects is insignificant [37].

2.7 Universal statistics of transport in disordered

conductors

The physics of current fluctuations at low temperature presents an interesting quan-

tum mechanical problem. Classical Johnson-Nyquist noise formula [25, 50] gives a

good description of current fluctuations due to thermal fluctuations. However, at low

temperature thermal fluctuations are small and a new type of noise becomes impor-

tant. At low temperature, the quantum nature of the current and the discreteness of

electron charge is the main source of current fluctuations and due to these reasons,



this noise is called "quantum shot noise".

Lots of the low temperature current fluctuation studies deal with a disordered

conductor because it has a simple and well established mathematical description based

on Landauer's approach [8]. Lesovik [11] and Yurke and Kochanski [12] studied the

quantum shot noise in a two-terminal conductor using this approach and found an

expression for noise power which is a factor 1-T off the classical shot noise, where T is

a transmission coefficient. This analysis was generalized to a multiterminal conductor

by Biittiker [13], and he also found the reduction of the noise. Physically, the noise

reduction is due to the Fermi statistics that leads to correlation of transmission events.

In Landauer's approach, details of current transport are determined by transmis-

sion coefficients and there have been many works on the distribution of the coefficients.

In the past decade, pioneered by Dorokhov [51], the random matrix theory of disor-

dered conductors was developed [52], motivated by theoretical discovery and experi-

mental observation of the universal conductance fluctuations. The theory succeeded

in providing a complete characterization of the distribution and it also succeeded in

providing the insight on the origin of the universal conductance fluctuations. One

of the fundamental results in the random matrix theory is the universality of the

distribution in the metallic regime and the universality provides a link between the

microscopically calculated transmission coefficients and the macroscopically measur-

able conductance.

Application of the universal distribution to current fluctuations also provides in-

sights on the current fluctuations of a disordered conductor. Recently Beenakker and

Biittiker [34] calculated the sample averaged noise power using the universal distri-

bution and found that it depends only on the conductance and that it is one-third of

the classical value.

Noise power is a useful characteristic of fluctuations that reveals the reduction of

noise due to Fermi correlation. However, compared to Johnson-Nyquist noise, our

understanding of the quantum shot noise is limited because not many things are

known besides the noise magnitude. Our goal in this paper is to explore the physics

of low temperature current fluctuations beyond the noise power. For that purpose,



it is useful to look at the behavior of current fluctuations in the time domain, which

brings one to the notion of counting statistics of charge transmitted in a conductor

over fixed time. A previous study of the counting statistics for a single channel

conductor revealed that the attempts to transmit electrons are highly correlated and

almost periodic in time, which leads to binomial statistics [37].

In the time domain picture, the charge Q(t) (measured in the units of e) transmit-

ted over a time interval t is the quantity of interest and the probability distribution

P(Q(t)) tells everything about the current fluctuations. Even at zero temperature,

P(Q(t)) has finite peak width due to the quantum nature of current. To study

P(Q(t)), it is useful to introduce the characteristic function X(A),

X(A) = E eiQAP(Q) for - 7r < A < , (2.42)
integer Q

because in many cases, X(A) is easier to calculate than P(Q(t)) itself. The function

X(A) is a Fourier transform of P(Q(t)) and so once X(A) is known, we can either

take inverse Fourier transform to get an explicit expression for P(Q(t)), or expand

its logarithm to get all cumulants of the distribution:

logx(A) = k! k)). (2.43)
k=1

In the linear transport regime, we derive a general expression for X(A) in terms

of transmission coefficients and by combining it with the transmission coefficients

distribution for quasi one dimensional conductors, we derive

log x(A) = G arcsinh 2 eA- 1 , (2.44)
e

where V is the dc voltage, G = g(e 2/h) = (Nl/L)(e2/h) is the average conductance,

and the bar on the left hand side represents the sample average. Cumulant expansion

of Eq. (2.44) implies that on average, for GVt/e > 1, P(Q(t)) has a Gaussian peak

at GVt/e with ((Q 2(t))) = GVt/3e. It also implies that even though the peak is

Gaussian, the tails show deviation from both Gaussian and Poisson distributions.



We estimate sample to sample variations of P(Q(t)) by studying variances of various

quantities and find that for GVt/e > 1 sample to sample variations of P(Q(t)) appear

only in the tails of P(Q(t)) and that around the peak, P(Q(t)) is universal.

Before we present the derivation of the above result, let us stress that there are

two kinds of averages involved. To avoid confusion, we will use a bar(.-=.) for an

ensemble average, or an average over samples, and a bracket((- --)) for a quantum

average, or a quantum expectation value. Also we reserve a double bracket(((...)))

for a cumulant of a quantum expectation value and "var"(var(..- )) for .. .2- --. 2

Now, let us derive Eq. (2.44). Following the Landauer's approach [8], we consider

a conductor sandwiched between two perfect leads. In the linear transport regime,

scattering properties of a conductor are described by a unitary scattering matrix S

that relates incoming and outgoing amplitudes, IL(R) and OL(R):

( =IL ( OR) (2.45)

where the subscripts L and R stand for the left and the right leads.

The unitarity of S is due to the current conservation, and it allows a system to be

decomposed into independent channels [53]. Then the decomposition motivates one

to study single channel transport first, where a transmission coefficient T determines

the transport. Recently, the counting statistics of the single channel transport was

studied [37]. In the low temperature limit (kBT << eV), the characteristic function

Xi(A) of a single channel system becomes

X1 (A) = (peiA + q)M, (2.46)

where p = T, q = 1 - T, M = eVt/h' and M > 1 is assumed. The inverse

Fourier transform of Eq. (2.46) gives the binomial distribution, which implies that

1The spin degeneracy is ignored. To include the degeneracy, M has to be multiplied by 2. Also
the positivity of M is assumed. If M is negative, Eq. (2.46) has to be complex conjugated with M
replaced by its absolute value.



the intervals between subsequent attempts to transmit electrons are quite regular.

This regularity is due to Pauli exclusion principle.

Having the characteristic function of a single channel, we write the total charac-

teristic function X(A) as a product,

X(A) = fl(Tjei + 1 - Tj)M ,  (2.47)

where Tj is a transmission coefficient of channel j. The product form Eq. (2.47) follows

from the mutual independence of channels. By taking logarithm of Eq. (2.47), we get

log x(A) = ME log Tei +1 - T), (2.48)

and by expanding Eq. (2.48) in terms of A, we find

((k()) = M T( - T) d- T|T=Tj, (2.49)

We note that both logx(A) and ((Qk(t))) are linear statistics of Tj's.

Current fluctuations are determined by distribution of transmission coefficients

and the distribution varies from sample to sample even though samples have the

same macroscopic parameters. Therefore in principle each sample exhibits distinctive

current fluctuations. However according to the random matrix theory of disordered

conductors, in the metallic regime(1 < g < N) where N is the number of channels,

the distribution approaches a universal one [52]. This result provides a motivation

to approximate the sample-dependent distribution by the universal one. To exploit

the universal distribution, we introduce new variables vj's and the density function

D(v) defined by Tj = 1/ cosh 2 vj and D(v)dv = D(T)dT, where D(T) is the density

function of Tj's. According to Ref. [52], D(v) is uniform over a wide range of v,

D(u) = g for v < v,. (2.50)



We combine Eq. (2.48) with the universal distribution to obtain

log X(A) = Qo dv log ei 1 (2.51)

where Qo = gM. In Eq. (2.51) the upper limit c, is replaced by infinity, which is valid

in the metallic regime because for large v, the integrand is exponentially small. The

evaluation of the integral then leads to Eq. (2.44). We note that because log x(A) is

a linear statistic, the universal distribution approximation is equivalent to taking an

average over samples.

Cumulants are useful in understanding features of the probability distribution.

By using the formula Eq. (2.43), we obtain sample averaged cumulants

((Q(t))> = Qo, ((Q 2 (t))) = 1Qo,

((Q 3 (t))) = ) Qo, ((Q 4(t))) =- QO0

((Q 5 (t))) = -i Qo, ((Q 6 (t))) = 1Q0,  (2.52)

((Q 7(t))) = 5 5Qo, ((Q8(t))) = 7 Qo,0

((Qg(t))) = 33Qo, ((Qlo(t))) = 683 Q ...

The first cumulant is trivial. It is just a definition of G and it shows where the peak

of P(Q(t)) is. The second cumulant measures the width square of the peak. It is also

directly related to the noise power P = fdt ((1(0)I(t))), a widely used measure of

noise magnitude, by ((Q 2(t))) = tP for large t, and its ensemble average is one-third

of the classical value Qo, as first pointed out by Beenakker and Biittiker [34]. The

third and the fourth cumulants are measures of skewness and sharpness of the peak,

respectively and they are related to 3 and 4-point current current correlation functions

by similar relations. We note that all cumulants are proportional to Qo and that for

Qo > 1, ((Q(t)T)k > ((Qk(t))). Therefore the peak of the distribution P(Q(t)) is

Gaussian for large conductance limit or long time limit. This result is quite expected

from the central limit theorem. Now, to see the structure of the tails of P(Q(t)), let

us study higher order cumulants. From Eq. (2.51), we obtain a general formula for



the ensemble averaged k-th order cumulants

Q r_ 1 00k-1

((Qk (t))) = ik dx dq eiq z  , (2.53)
4 -- 1 + e _ OO- - sinh(7q - iO+)'

and by using the steepest descent method twice (see Appendix B), we obtain the

asymptotics for large k,

Qo (k - 1)! (- 1) for even k,
((Qk (t))) k (2.54)(27r)k-1 (-1)-2 for odd k.

The high order cumulants diverge factorially, which suggests that at the tails, P(Q(t))

is different from both Gaussian distribution and Poisson distribution which describes

the classical current fluctuations. In comparison, ((Qk(t))) = 0 for k > 2 for Gaussian

distribution and ((Qk(t))) = Qo for k > 1 for Poisson distribution.

It is known that in the presence of time reversal symmetry, there are of the order

of M corrections to ((Q(t))) and ((Q 2 (t))) due to weak localization [36], and it is

natural to expect the same kind of corrections to higher order cumulants. However,

because we are interested in the metallic regime, these corrections are small by a

factor g and we will ignore them.

A proper next step is to estimate the magnitude of sample to sample variations

of P(Q(t)). Here instead of logx(A), we examine variance of ((Qk(t))) to see the

variations of P(Q(t)). ((Qk(t))) is a linear statistic and the general formula for the

variance of a linear statistic A = Ej a(Tj) is obtained recently by Beenakker and

Rejaei [54], and Chalker and Mecido [55],

var (A) = /2 j 00 dk k 2(k) (2.55)
07 0 1 + coth( wk)

a(k) = 2 du a 2 cos kcv, (2.56)

where 3 is a symmetry constant, 1, 2, or 4 depending on the symmetry. We use this



formula to obtain

2
var (((Q(t)))) = 12M 2M

46
var ((Q2(t))) 2835 2 , (2.57)

var (((Q3(t)))) 11366 M 2 . (2.58)
14478750

We note that for low order cumulants, ((Qk(t))) 2 is larger than var (((Qk(t)))) by at

least a factor of g2, which is large in the metallic regime. Low order cumulants decide

the shape of P(Q(t)) around the peak and therefore the small variance of low order

cumulants implies that the peak shape shows little sample to sample variations, that

is, it is almost universal.

To see the behavior of higher order cumulants, we obtain an asymptotic form of

the variance (Appendix C) from an approximate variance formula in Ref. [56],

ar (((Qk (t)))) 4(2- 1)M2 (2.59)(21r)2kp

According to Eq. (2.59), for high order cumulants, var (((Qk(t)))) becomes larger

than ((Qk(t))) 2 due to its rapidly growing factorial factor, which suggests that the

tails of P(Q(t)) show large sample to sample variations. We argue that this rapid

growth of var (((Qk(t)))) is not an artifact of the approximate variance formula used

above because it assumes stronger spectral rigidity than the formula Eq. (2.55,2.56)

and it has a tendency to slightly underestimate variances. Therefore large sample

to sample variations at the tails of P(Q(t)) obtained above is not an artifact of the

approximation.

In the above, we derived the shape of P(Q(t)) by examining log X(A) and its cu-

mulant expansion instead of log X(A), which might be an intuitively more appropriate

ensemble average because it is directly related to P(Q(t)). However we argue that in

contrast to the intuition, log y(A) is an appropriate ensemble average for the study

of current fluctuations. One reason is that as we remarked earlier, a k-point current

current correlation function is linearly related to ((Qk(t))), whose ensemble average



can be obtained from log X(A) by a simple expansion. Another reason is that as we

show later, logx(A) either becomes identical to log x(A) at short time limit, or is

dominated by the conductance fluctuations instead of the current fluctuations.

Calculation of x(A) is not simple because x(A) is not a linear statistic. Muttalib

and Chen [57] did this calculation recently by large N limit continuum approximation

and showed that in the long time limit, log X(A) becomes quite different from log X(A).

Here we present improved calculation by a perturbation method and we believe that

our calculation clarifies the reason why two averages become so different at large t.

Because X(A) is not a linear statistic, we need joint probability distribution of

transmission coefficients to average it over ensembles. After standard variable change,

T = 1/(1 + x), the joint probability distribution P({x}) is

P({x}) = exp (3 V(Xa, Zb) + U(Xa) . (2.60)
a<b a

We choose V(x, y) = (1/2) log(x-y)+(1/2) log(arcsinh2 V--arcsinh2 /-) and U(x) =

g arcsinh 2 (Vx) based on the exact calculation of the joint probability distribution

function for / = 2 by Beenakker and Rejaei [54]. Then,

ZM
S(A) = (2.61)

ZM J I drxaexp  PE V(xaXb) + E U(xa) + : M Xa +e i

Zo = lldxaexp ( / V(Xa,ZXb)+ U(Xa)Y
a a<b a

By expanding log x(A) in terms of M, we find

log x(A) = log X(A) + var (log x(A)) + 0(M) , (2.62)

and from the formula Eq. (2.55,2.56), we obtain

log x(A) = gMarcsinh 2 eiA - 1 (2.63)



M2 ( arcsinh ei 1- 3 log iA + -iA + 0(M3).

Note that for M <K g(short time limit), log x(A) reduces to log x(A). We expand

log X(A) in terms of A to see features of P(Q(t)):

log x(A) = gM(iA) + (M + M2 (2.64)

M+ M22 +O(M3)) + .-

15 315 3!

The first expansion coefficient shows that (Q(t)) = Qo = gM, which is trivial.

The second expansion coefficient, (Q2(t)) - (Q(t)) 2 = ((Q2 (t))) + var((Q(t))) =

Qo/3 + (2/1503)M 2 indicates that the peak width of P(Q(t)) has two contributions.

The first contribution is related to the noise power, and the second one to the uni-

versal conductance fluctuations because var((Q(t))) is proportional to the variance

of the conductance. (The factor 2/150 is precisely the variance of the dimensionless

conductance.) Note that as t -+ oc, the second contribution becomes dominant over

the first one. It; can be shown that the k-th order expansion coefficient contains k

different contributions and in the long time limit, the most dominant contribution,

which is proportional to Mk, is related to the k-th cumulant of the conductance fluc-

tuations. From this analysis we see that the behavior of X(A) for large t is governed

by the conductance fluctuations instead of the current fluctuations.

As a short remark, we report that the continuum approximation calculation

of log x(A), as suggested by Muttalib and Chen [57], produces the same result as

Eq. (2.63) up to M 2 order. In Ref. [57], however, they adopted linear confining po-

tential for U(x) and obtained a result which is quite different from Eq. (2.63) even in

the short time limit. We believe that this difference comes from their choice of the

confining potential which is a good approximation only for very small x.

In summary, we examine the counting statistics of charge to study current fluc-

tuations at low temperature. By calculating the characteristic function of the prob-

ability distribution P(Q(t)), we find that P(Q(t)) has a Gaussian peak at Qo with



((Q(t))) = Qo/3 and we also find that the tails of P(Q(t)) are much more intense than

the tails of Gaussian and classical Poisson distribution. By studying the variances

of the cumulants, we establish that even though the peak location of P(Q(t)) varies

from sample to sample due to universal conductance fluctuations, the peak shape of

P(Q(t)) is universal in the metallic regime, and that the sample to sample variations

show up only at the tails of P(Q(t)).

2.8 Conclusion

We introduced a quantum-mechanical scheme that gives complete statistical descrip-

tion of electron transport. It involves a spin 1/2 coupled to the current so that the

spin precession measures transmitted charge. The off-diagonal part of the spin density

matrix, taken as a function of the coupling constant, gives the generating function

for the electron counting statistics. We find the statistics in a single-channel ideal

conductor for arbitrary relation between temperature and voltage. In equilibrium,

the counting statistics are gaussian, both for zero-point fluctuations and at finite

temperature. At constant voltage and low temperature the statistics are Bernoullian

and the distribution is binomial.



Chapter 3

Coherent States of Electric

Current

3.1 Introduction

Another property of quantum noise that does not have classical analog is its phase

sensitivity [1, 58]. For the current correlator ((j(t1 )j(t 2 )))+ it results in a periodic

sinusoidal dependence on Faraday's flux due to applied voltage, D = c ft2 V(t)dt,

with the period 4I0 = hc/e. The phase sensitivity manifests in singularities of the low

frequency noise power in a junction driven by ac and dc signals together [59].

Even more remarkable is the behavior of current fluctuations due to a pulse of

voltage [1, 5]. Total charge that flows through the conductor due to a voltage pulse

fluctuates in such a way that the mean square fluctuation diverges whenever the flux

of the pulse is not an integer: p = f!. V(t)dt = 2wn. However, for integer V

the fluctuation of the transmitted charge is finite (Sec. 3.2). This result has simple

interpretation in terms of the Anderson orthogonality catastrophe theory, since the

flux c enters the time dependent scattering matrix of the conductor through the

forward scattering amplitude.

With this, one is led to address the issue of current states that minimize the

current fluctuations at fixed mean transmitted charge [2, 5]. It is found in Sec. 3.3



that such states are produced by time-dependent voltage of the form

V(t) = - : Tk , ~ > 0, (3.1)
7e k=1 (t - tk) 2 + Tk

a sum of Lorentzian pulses of unit flux each. It is remarkable that the minimal noise

due to such sequence of pulses is independent of the pulse positions tk and widths

Tk, which leads to obvious parallels with solitons. The noise minimizing current

states can be compared to the coherent states that minimize the quantum-mechanical

uncertainty. Apart from obvious similarity, there is a difference: the coherent current

states are many-body time-dependent scattering states. Their role in transport is an

interesting subject of future work.

3.2 Noise due to a voltage pulse: Orthogonality

catastrophe

Here we consider the fluctuations of current in a single-channel conductor induced

by a voltage pulse. The result will be that the dependence of the fluctuations on

Faraday's flux 4 = -cf V(t)dt contains a logarithmically divergent term periodic

in D with the period 0o = hc/e. The fluctuation is smallest near 4 = nro. The

divergence is explained by a comparison with the orthogonality catastrophe problem.

The Go-periodicity is related with the discreteness of "attempts" in the binomial

statistics picture of charge fluctuations presented above.

Historically, the orthogonality catastrophe problem emerged from the observation

that the ground state of a Fermi system with a localized perturbation is orthogonal

to the non-perturbed ground state, no matter how weak the perturbation [60]. Orig-

inally, the discussion was focused on the purely static effect of Fermi correlations on

the ground state that leads to the orthogonality, but then it shifted to dynamical

effects. When a sudden localized perturbation is switched on in a Fermi gas, the

number of excited particle-hole pairs detected over a large time interval t diverges as

In t/T, where 7 is the time of switching of the perturbation. This effect leads to power



law singularities in transition rates involving collective response of fermions, such as

X-ray absorption in metals [15, 61]. In this section we present an application of the

orthogonality catastrophe picture to the electric current noise.

Let us consider a single channel conductor in an external field described by the

one-dimensional Schr6dinger equation

i=(xt) = i(xt)

= - -i A(xt) + (3.2)
2 •x c

where the potential U(x) represents the scattering region and A(x, t) is the vector

potential corresponding to the applied pulse of electric field. Since the pulse duration

7 is assumed to be much longer than the time of scattering, one can treat the vector

potential as static and apply a gauge transformation in order to accumulate the flux

yý(t) = e/h ft _ V(t')dt' in the phases of the transmission amplitudes, thus making

them time dependent. By going through the argument presented in Sec. 2.4, one

obtains the scattering states (2.16) and (2.18) with time-dependent forward scattering

amplitudes:

AL(R) -+ AL(R) e±i (tr) , (3.3)

where the time tr = t - |X|/VF is taken retarded to account for the finite speed of

motion after scattering. As before, here we assume that scattering by the potential

and traversing the region where the voltage is applied takes negligible time compared

to the duration of the voltage pulse. In this approximation the amplitudes of backward

scattering BL(R) are time-independent constants.

To draw a relation with the orthogonality catastrophe problem, let us study the

effect of the voltage pulse on the scattering phases 61, 62. They can be found by

diagonalizing the scattering matrix

[ ALeis(t)+iA/2 BR

BL ARe - i v ( t ) - i A/ 2 (3.4)



that has eigenvalues ei', ei62. The relation between the phases 61,2 before and after

the pulse is written conveniently through 6A = (61 ± 62)/2. The phase 6+ does not

change at any time, and the phase 6_ changes according to

cos2 _ (t') + Cos 2 6_ (t) - 2 cos 6 (t') cos _ (t)

x cos Ac = IAL 2 sin2 A , (3.5)

where An = p(t') - o(t). Now, let us compare to the orthogonality catastrophe in the

Fermi system subjected to a time-dependent perturbation (3.4). Change of the flux

induces the shift of the phases 6± -+ 6' and makes the new ground state orthogonal

to the old one:

(0'|0) = exp -2* In L (3.6)

where L is the system size, AF is Fermi wavelength, and ei' * is an eigenvalue of the

matrix S-(1 (t = oo)(t = -oo):

sin -= ALI sin -(3.7)
2 2

In terms of dynamics this implies that the old ground state is shaken up so that

infinitely many particle-hole pairs are excited [15]. It should lead to a logarithmically

diverging contribution to noise, since for each of the particle-hole pairs there is a

finite probability (equal to IALBR12) that the particle and the hole will go to different

terminals of the conductor, thus resulting in a current fluctuation. The periodicity

in Faraday's flux 1 = -cf V(t)dt follows from the gauge invariance and is explicit in

Eqs. (3.5,3.7) for 6'. The logarithmic divergence vanishes at 1 = n1o, as expected,

since at integer 4 there is no long-term change of the scattering.

Let us calculate the mean square fluctuation of the charge ((Q2)) transmitted

through the system due to the pulse. For that, one can use the formula (2.25) with

the time-dependent scattering matrix (3.4). To get the second cumulant ((Q2)) one

expands the exponent (2.25) up to second order terms in A, and takes an irreducible



average using Wick theorem. The averages of ci,, have the usual form:

(cKtcTcc) = 6ij n(E)e- iE( -r ')dE
ijLl 27r '

(ci,,c,) = (I f(1- n(E))e -iE(-') dE (3.8)

where n(E) = (,EIT + 1)-i is the Fermi distribution. The result reads

((Q2 = ge2  (A41 1 eit 2 + AB 2 t e(t')+iwt'dt' 2) Oth hw dw (3.9)
27 A 1 e o 2 T 2r

The first term in (3.9) is a part of equilibrium noise since it does not depend on p.

To analyze the second term, let us take a step-like time dependence of p resulting

from an abrupt voltage pulse applied at the time to, 0 < to < t, the pulse duration 7

being much shorter than t. Taking the integral and keeping only the terms diverging

at t -+ oc, we find

ge2  eiw•t - 1+e 2 ri/-O eiuwt - eiwto 2 dw
I+ e W|-2 iw zw 27ge2 lntEF 21iw t)

=- In tF+ 2 sin2 D In , (3.10)

where the ultraviolet-divergent integrals are cut at frequency - EF/h. By subtract-

ing the result for D = 0 as corresponding to equilibrium one obtains a logarithmic

contribution to the non-equilibrium noise:

((Q2)) :ge2AB12 [2 g2 7()to _1_

((Q2) = g 2aJAB 2  sin2 -In -+ + ... , (3.11)

The origin of the non-diverging second term in Eq. (3.11) will be discussed below.

The dots in Eq. (3.11) represent corrections higher order in 0o/d1 and the equilibrium

noise
e2G tEF e2

((•))e 2  In tE G = gA 2 , (3.12)

that can be obtained in the same way at 1 = 0. The expression (3.12) agrees with



the Nyquist formula

((jj_-)) = e2G w coth (3.13)2T

taken at T = 0, Fourier transformed, and combined with the relation Q = fJ j(t')dt'.

The term in Eq. (3.11) proportional to 4I/(Io is obtained by rewriting the integral

in the second term of (3.9) as

J•idtidtt 2 ei((t )-
2(t2
)+w(t1- t2)), (3.14)

and extracting the contribution of almost coinciding times tl and t2 by going to new

variables t = (tl + t2)/2, t' = t - t2 and changing the order of integration:

Jdt f'i 1w Jfdtlei(t)-i0(t2)+iWt' = dt , (3.15)

where we replaced p(t) -~p(t2) = 1(t + t'/2) - p(t - t'/2) by b t'. The result (3.15) is

approximate: it does not give the log-term because the transformation (3.15) properly

takes care of the integral (3.14) only in the domain t l - t2 , under the restriction that

((t) is varying sufficiently smoothly. When I)(t) is a monotonous function, b > 0,

the integral in the r.h.s. of (3.15) equals 27r(/(Io and thus produces the second term

of Eq. (3.11).

It is clear from the derivation that the two terms of Eq. (3.11) arise from different

integration domains in the t1 -t2 space: the first term corresponds to It1 ,21 > T, tWt2 <

0, while the second one is due to almost coinciding moments, Itl - t2 < T. Since the

domains are almost non-overlapping, the two contributions to the noise (3.11) do not

interfere (cross terms are small).

In order to estimate the correction to the result (3.11), let us derive it by another

method that allows to trace out the higher order terms. For that, let us take the flux

in the form yp(t) = NA(t), where A(t) is a smooth monotonous function, A(-oo) = 0,

A(oo) = 2-F. For integer N > 1 the Fourier component of eiNA(t) entering Eq. (3.15)



in the stationary phase approximation is given by

Sei A(t)+itdt = •eiNA(tk)iWk + ... (316)
-- 00 k Ný (tk)

where the dots indicate terms O(N-3 / 2), and tk's are real solutions of the equation

NA(t) + w = 0. Then we can write

eiNA(t)+iwtdt = ) + O(N- 2), (3.17)
-OO k NA(tk)

and thus obtain

((Q2)) = A |wJdv + (3.18)
-00 k (tk) . (3.18)

where the dots represent higher order terms. By differentiating both sides of the

equation NA(t) = -w one finds the relation dw = -NA(tk)dtk, which means that

Iwldw/A(tk) = -- JI(tk) dtk, and therefore the integral in Eq. (3.18) equals N ffo dA =

27N. Since Iwldw scales as N2 , the correction to Eq. (3.18) can be evaluated as 0(1),

i.e., it is of the order of one for any N. This means that relative accuracy of Eq. (3.37)

is 0(1/N).

The second term in (3.11) is interesting in connection with the picture of binomial

statistics presented in Sec. 2.6. In the dc bias case, the distribution of charge for a

single channel situation was found to be binomial with frequency of attempts equal to

eV/h and the probabilities of outcomes p = IA12, q = IB12. Taken literally, this means

that the attempts to transfer charge are repeated regularly in time, almost periodic

with the period h/eV, with each attempt having two outcomes - transmission or

reflection - occurring with the probabilities p and q. However, the regularity of the

attempts does not lead to an ac component in the current, rather it appears just as a

part of statistical description of charge fluctuations. Still, the presence of a non-zero

frequency in a non-interacting system requires interpretation.

Let us suppose that the flux varies linearly with time, 1(t) = -cVt. Since the

e.m.f. = -&O/cOt, the linear dependence of 1(t) is equivalent in its effect on the



noise to constant voltage V. In accordance with one's expectation, second term of

Eq. (3.11) for a single channel is ((Q2)) = ge2 1AB|12I/o, i.e., it is precisely of the

form arising from the binomial distribution with probabilities of outcomes p and q,

and the number of attempts N = 4/D0o. (Let us recall that the second moment

of the binomial distribution equals pqN.) Taking into account that the time during

which the flux changes by 4)0 is h/eV, we can interpret the number of attempts in the

statistical picture as the number of flux quanta by which the flux is changed. Such a

conclusion suggests an interesting generalization of the picture of binomial statistics

by attributing the meaning of the number of attempts to the flux change measured in

the units of (o, regardless of the linear or non-linear character of the flux dependence

on time.

It is appealing to put the special role of integer fluxes in connection with the

binomial statistics of current, where the flux quanta are naturally interpreted as

discrete attempts to transmit charge. Although this picture is yet to be confirmed

by analytic treatment, it receives some support from the property of the Go-periodic

term in (3.11) to vanish at every integer 4. One may conjecture that the statistics

are close to binomial only when the flux change is an integer, and have diverging

logarithmic corrections otherwise. The distinction that Eq. (3.11) makes between

integer and non-integer values of the flux and the relation of integer flux change to

the number of attempts in the binomial distribution, gives another perspective to the

statistical picture of a current pulse.

To summarize, the fluctuations caused by a voltage pulse, in contrast to the aver-

age transmitted charge, distinguish between integer and non-integer flux change. As

a result, the dependence of noise on the flux is non-monotonous and has minima near

integer values.

3.3 Coherent states of current

The question we address in this section is about optimal way of changing flux that

minimizes induced noise. It is clear from what has been said that to achieve minimum



of the noise one should change the flux by an integer amount,

AP = WP(t = oo) - p(t = -oo) = 27rn, (3.19)

in order to suppress the logarithmically divergent term. However, since for a given Ac

the noise depends on the actual function p(t), not just on Anp, we have a variational

problem to solve for the noise as a functional of the time dependence of the flux. This

functional was derived in Sec. 3.2. At zero temperature it is given by

((Q2)) = AB2 eiv(t)+iwtdt 2 w I (3.20)

where A and B are transmission and reflection amplitudes, and g is spin degeneracy.

We shall study the variational problem (3.10) with the boundary condition (3.19) and

show that its general solution has the form of a sum of soliton-like functions:

4 n-(t a1 t - tk
S(t) = tan - tt) > 0, (3.21)

7 k=1 Tk

where tk and Tk are arbitrary constants. Under condition (3.19) any time dependence

of the form (3.21) gives absolute minimum to the noise:

min[ ((Q2)) ] = ge2 AB 2 n| . (3.22)

For an optimal time dependence of the voltage V = -1Ž/cOt therefore one has a

sum of Lorentzian peaks:

V(t) = T 2 (3.23)
Sk=l (t - tk) 2 - T

In order to compare quantum noise with conductance, let us mention that average

transmitted charge

((Q)) = geA 2 = gIA|2 JV(t)dt (3.24)((Q>>I = eA 1



is in accordance with the Ohm's law, i.e., there is no particular dependence on the

way the flux change Anp is realized.

The result (3.21),(3.22) has a simple interpretation in terms of the binomial statis-

tics picture of charge fluctuations. For the binomial distribution with probabilities of

outcomes p and q, p + q = 1, and with the number of attempts N, second moment is

known to be equal to pqN. The comparison with Eq. (3.22) suggests to attribute to

n = A1/4O the meaning of the number of attempts. This interpretation is supported

by the structure of the function (3.21) consisting of n terms, each corresponding to

unit change of flux. A remarkable property of the function (3.21) is its separability,

manifest both in the form of the terms and in the way the parameters tk, Tk enter the

expression. Let us note that by making some of the tk's close to each other one can

have an overlap in time of the "attempts". The overlap, however, does not change the

fluctuations (3.22). The situation reminds the one with solitons in integrable non-

linear systems, or with non-interacting instantons in integrable field theories. Also,

the absence of interference is interesting in the context of coherent nature of transport

in this system: after all, we simply have scattering by a time-dependent potential.

Perhaps, proper interpretation of this effect should be sought in establishing relation

with the theory of coherent states, known to eliminate to some extent the quantum

mechanical interference.

Let us now turn to the variational problem. It is convenient to do the integral

over w first and to rewrite (3.10) as

D r eiP(t)-ip(t)

(t-(Q22 dtdt' , (3.25)

where D = 2 I AB 2. In order to avoid divergence at t = t' the denominator in (3.25)

should be understood as

1 1 1
- + (6 - + 0 (3.26)

the condition that one obtains by introducing regularizatio in (3.10): - (3.26)

the condition that one obtains by introducing regularization in (3.10): |wj - |wle-1`16



By considering variation of the functional (3.25) we have the equation for an ex-

tremum:

Im ei(t) - tdt] = 0. (3.27)

By using Cauchy formula one checks that the functions

ei~(t) I - A Ak = tk + i , (3.28)Ht-A
k=1 - k

satisfy (3.27) provided all Tk are of same sign. Obviously, the functions (3.28) are just

another form of (3.21).

It remains to be shown that the functional reaches its minimum on the solu-

tions (3.28). To prove it we proceed in the following steps. Let us write ei&(t) as

ei,(t) = f+ (t) + f_ (t) , (3.29)

where f+(t) and f_(t) are bounded analytic functions of complex t in the upper

and lower half plane, respectively. Representation (3.29) exists for any non-singular

function and defines the functions f+ and f_ up to a constant. Then we substitute

Eq. (3.29) in (3.25) and apply Cauchy formula for the derivative,

iq f+ (t')dt'
frt (t) = f (3.30)2- J (t - t' ± i0)2 '

where the contour of integration is chosen in the half-plane of analyticity of f+ or f_,

respectively. Thus one gets

((Q2)) = -iD f (f+f - ff_)dt. (3.31)

On the other hand,

1 f din 2(J deeiw(t)dt

27- f (f+f+ + ff_)dt, (3.32)



where the last equality is a result of substituting (3.29) and using f f+f_ = f ff+ = 0

that follows from Cauchy theorem. Now, Eq. (3.31) can be rewritten through Fourier

components of f+ and f_ as

((Q2)) = D (I f(w) 2 + If(-w2) 1)w , (3.33)
0

thus demonstrating positivity of both terms in (3.31). (It is used that f+(w) =

f_(-w) = 0 for w < 0.) With this, by comparing (3.31) and (3.32) we obtain

((Q2)) > 2rD Inj . (3.34)

Equality in (3.34) is reached only when either f+(t) or f_(t) vanishes. Therefore, to

obtain the minimum one has to take the functions ei*(t) that are regular in one of the

half-planes. This remark is sufficient to see that the functions (3.28) form a complete

family of solutions.

It is worth mentioning that the method used to derive (3.34) copies almost entirely

the procedure of derivation of the duality condition in the theory of instantons. Like

in other situations where the duality condition holds our "solitons" do not interact:

((Q2)) shows no dependence on the parameters Ak of the solution (3.28). Among

numerous field theories that allow for exact solution of the instanton problem the

one most similar to our case is the theory of classical Heisenberg ferromagnet in two

dimensions. For this problem the instantons were found by mapping the order pa-

rameter space (i.e., the unit sphere) on the complex plane [62, 63]. Duality condition

was shown to take the form of the constraint of analyticity or anti-analyticity of the

mapped order parameter function (compare with the above derived condition f+ = 0

or f_ = 0). Multi-instanton solutions were given as products of single instanton

solutions (cf. Eq. (3.28)). This analogy obviously deserves more attention.

At this point let us examine an interesting non-optimal time dependence of the



flux, the sum of two solitons with opposite charge:

2(t) = 2 [tan ( - tan 1 (t ,t (3.35)
71 T2

7 1,2 > 0. This function corresponds to eiP(t) of the form (3.28) but with the poles in

both half planes. In this case Acp = 0 and thus ((Q)) = 0, so min[ ((Q2)) ] = 0. With

the function (3.35), however, one finds

((Q2)) = 47D A1 - A2 (3.36)

where A1, 2 = t1, 2 + i7 1,2 . For different values of the parameters t1,2 , T1,2 Eq. (3.36)

interpolates between two trivial limiting cases: (i) ((Q2)) -+ 0 when the two flux steps

in (3.35) have nearly the same duration and almost overlap; (ii) ((Q2)) -* 47rA, when

the flux steps either differ strongly in their duration or do not overlap. In the case

(ii) the noise is two times bigger than the noise due to a single step, as it should be.

We see that when AP/27r is of the order of one a non-optimal time dependence

V(t) can considerably enhance the noise. It is not the case, however, for Ac /2r >> 1.

This limit was studied in Sec. 3.2, where it was found that when o(t) is a monotonous

function the result

((Q2)) = ge21AB12JAp/27rl (3.37)

is rather accurate [1].

A more intuitive way to understand the accuracy of Eq. (3.37) is to note that for a

given n the number of parameters in the optimal flux dependence (3.14) is 2n, which

means that half' of them are in some sense redundant. Because of that any smooth

monotonous function with sufficiently large variation Ap~ can be rather accurately

approximated by a function of the form (3.14), and therefore the noise exceeds the

lower bound just slightly.

An implication of this result for the binomial statistics picture is as follows. As it

was discussed above there is a (conjectured) correspondence of the terms of Eq. (3.21)

and of the attempts. The deviation from the binomial distribution, that of course



should exist for a non-optimal flux function, will remain bounded in the case of a

smooth p(t) as Ap increases taking integer values. More precisely, the distribution

will be written as a mixture of binomial distributions with different numbers N of

attempts, P(m) = EN PNPN(m), where PN(m) = pmqN-mC,. The estimated cor-

rection implies that the distribution of attempts PN has finite variance in the limit

N = AP/27r -+ oo.

Before closing let us mention that in order to apply the results of Secs. 3.2, 3.3

to transport in a mesoscopic metallic conductor with disorder, described by many

conducting channels with transmission constants Tn, one just needs to replace JAB12

by &n Tn (1 - Tn), since different scattering channels contribute to the noise indepen-

dently. The condition of validity of our treatment then is that the variation of the flux

is sufficiently slow, so that min[Tk] > h/Ec, the time of diffusion across the sample.

However, at non-zero temperature one also has to satisfy the condition Tk << h/T,

the time of phase breaking. So, the temperature interval where our estimate of the

noise holds is T < Ec.

3.4 Conclusion

The theory leads to interesting conclusions applied to the current fluctuations pro-

duced by a voltage pulse. In this case, the noise has phase sensitivity: it oscillates as

function of Faraday's flux, cf V(t)dt, reaching minimum at integer fluxes. We stud-

ied the noise as function of the shape of the voltage pulse and found optimal time

dependence that provides absolute minimum of the noise for given average transmit-

ted charge. Solution displays interesting analogy with the problem of instantons in

the field theories obeying duality symmetry. Optimal time dependence is a sum of

Lorentzian peaks of voltage, each corresponding to a soliton of flux. The change of

flux for a soliton is equal to the flux quantum )0o. The solitons are interpreted in

terms of the binomial statistics picture of charge fluctuations as attempts to transmit

electrons, one electron per soliton.
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Chapter 4

Current Fluctuations in a Single

Tunnel Junction

4.1 Introduction

In small devices, at low temperature, electric current displays quantum effects, both

due to the Fermi statistics of electrons, and due to the Coulomb interaction. This

leads to interesting effects in current fluctuations that have recently drawn a lot

of attention. For example, the noise power in disordered conductors is suppressed

below the classical value [11, 12, 13] and the noise spectrum in the Luttinger liquid

is modified by interaction in a non-trivial way [64, 65].

Also, there have been experimental studies of the noise (see, for example, [66,

67, 68]). However, it turns out that comparison of experimental data with theoretical

predictions is not simple. Most theoretical works calculate current fluctuations at a

specific point of a device of interest, for example, at a potential barrier or in the middle

of a junction. In contrast, experiments do not directly measure the fluctuations within

a device. Instead, the fluctuations are measured, for example, at a resistor connected

to a device in series. Though the two fluctuations are certainly related, they are not

identical, as it was pointed out by Landauer et al. [69].

The difference between the two fluctuations originates from the fact that the noise

measuring part of the circuit, such as a series resistor, has its own intrinsic noise. To



compare experiments with theories, the effect of the intrinsic noise should be taken

into account. In the analysis of experimental data, it is commonly assumed that the

total spectral density of the measured noise is a linear sum of two spectral densities,

one for the intrinsic noise, and the other for the noise within the device (for example,

see Ref. [68]). To our knowledge, this assumption does not have a reserved name and

for definiteness, we call it the linear superposition assumption.

In this paper, we question the validity of the assumption by working out a specific

example. For that, we take a single tunnel junction connected to external leads.

We incorporate the effect of the leads explicitly into a formulation, and calculate

current fluctuations both in the middle of the junction and at the leads. The former

represents the fluctuations which most theoretical works calculate, while the latter

gives the fluctuations measured in a conventional experiment. We compare the two

fluctuations, and find that the linear superposition assumption is not universally

correct.

To summarize the results, it is found that the linear superposition assumption is

valid only in the frequency range where

1
IZ(w)| < . (4.1)

Here Z(w) is the impedance of the leads and C is effective capacitance of the junction.

In particular, for Ohmic leads, Eq. (4.1) implies that the assumption is valid only in

a low frequency regime. For low impedance leads (Z(w) = R < RQ = h/e 2 ), the

failure of the assumption in a high frequency regime is due to a finite relaxation time

of the charge on the junction. For high impedance leads (Z(w) = R > RQ), the

failure is a combined effect of the finite relaxation time and the quantum dynamics

of the leads.

In Sec. 4.2, a Hamiltonian of a single tunnel junction is presented which incorpo-

rates the charging energy and the external leads. In Sec. 4.3, we construct two current

operators. One corresponds to the current at the potential barrier of the junction,

which we call the tunneling current. The other corresponds to the current in the



leads, which we call the relaxed current. Expectation values of the two operators

are evaluated in several situations. In Sec.4.4, the noise spectrum of the tunneling

current is calculated. It is compared with existing theories, and an agreement is ob-

tained in several limiting cases. In Sec.4.5, the noise spectrum of the relaxed current

is calculated. It is compared to the noise spectrum of the tunneling current, and

the difference is identified. We discuss the origin of the difference and compare the

spectrum to results of recent experiments.

4.2 Formulation

In this paper, we use the formulation developed in Ref. [20] which incorporates the

charging energy and the external leads. Below the formulation is sketched briefly and

for more detailed discussion, we refer the readers to Ref. [20, 70].

In the weak tunneling limit, a single tunnel junction is almost identical to a capac-

itor. As a first step, one develops a description of a capacitor connected to external

leads. To model the leads, one notices that the primary role of the external leads is

to provide the capacitor with an electromagnetic environment. Then, since an elec-

tromagnetic environment is characterized by its impedance, it is reasonable to model

the external leads as an impedance Z(w). According to Caldeira and Leggett [28, 29],

a general impedance can be treated in a Hamiltonian formulation by introducing a

set of harmonic oscillators. Following Ref. [28, 29], one obtains a Hamiltonian Hen,,

of a capacitor connected to an impedance Z(w),

Henv = + +  - ) , (4.2)

where Q is the capacitor charge fluctuations in the steady state, Q = Q - CV, and

ýa is the phase fluctuations which is conjugate to Q,

[5, Q] = ie. (4.3)



The canonical variables of harmonic oscillators, qn and cp, satisfy similar commuta-

tion relations.

Next one develops a description of a single tunnel junction connected to exter-

nal leads (Fig. 4-1(a)). The Hamiltonian (4.2) should be modified to account for

quasi-particles and their tunneling. Quasi-particles can be described by the following

second-quantized Hamiltonian,

Hqp = Z_(Ek + eV)e kcko + qcq CqC , (4.4)
ka qa

where k and q label the quasi-particle states in the left and the right electrodes,

respectively, and a represents the spin.

The tunneling of the quasi-particles is taken into account by the following tunnel-

ing Hamiltonian,

HT = e- i' Z TkqCtqCk, + H.c., (4.5)
kqo

where Tkq is the tunneling matrix element. The operator cqcka (and its Hermitian

conjugate) describes the tunneling of the quasi-particles and e±i¢ accounts for the

change of the junction charge accompanied by the quasi-particle tunneling, which is

evident from the following relation,

eiQe-i = Q - e. (4.6)

Note that, since the change of the junction charge is explicitly accounted for by e±iz,

the macroscopic state operators of the junction, Q and ý can be separated from its

microscopic state operators,

[Q(P), Ck(q)] = (P) Ck(q) = 0. (4.7)

Now one obtains a Hamiltonian of a single tunnel junction by collecting the three
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(a)
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Figure 4-1: (a) A schematic diagram of the circuit. The circuit contains a single
tunnel junction, a voltage source, and external leads of impedance Z(w). (b) The
tunneling current and the relaxed current. The tunneling current represents the
electron flow right at the potential barrier of a junction. On the other hand, the
relaxed current represents the electron flow through the external leads. In the figure,
an Ohmic environment with resistance R is shown.



pieces (4.2),(4.4), and (4.5),

H = Hq, + Henv + HT . (4.8)

As a final remark, let us emphasize that the charging energy and the external leads

are incorporated in the Hamiltonian (4.8) without introducing non-quadratic terms,

and that the only non-quadratic terms come from the tunneling which is a small

effect in the weak tunneling limit. This feature of the Hamiltonian (4.8) makes such

a formulation useful, since simple perturbation calculation is possible.

4.3 Tunneling current and relaxed current

In order to calculate the current fluctuations, we first construct two current operators.

One represents the flow of electrons through the insulating barrier in the middle of the

junction, which we call the tunneling current. The other corresponds to the current

flowing at the external leads, which we call the relaxed current. The tunneling current

operator can be constructed from the following equation of motion,

IT= e= - iT C + H.c.) , (4.9)
qo, I kqor

and the relaxed current operator from its relation with the tunneling current operator

(Fig. 4-1(a)),

IR ="-H, + -] (L - p>). (4.10)

The difference between the two current operators is illustrated in Figure 4-1(b).

The expectation values of the two operators are identical, and give the current-

voltage characteristic. From a simple perturbation calculation, one obtains

2e
IT(V) = IR(V) = 2 Im (X,et (eV/h)) , (4.11)



where

X,ret(w) = -i dt o i(t)eit ( [A(t)e - i(t), At(0)eio(°)] ) (4.12)

and A(t) = Ekqv TkCqC,(t)Ck.(t) Notice that the reason why the two expectation

values are the same is that the external leads (or environment) are connected to the

junction in series. In the rest of the section, we drop the subscripts T and R. The

expressions (4.11),(4.12) can be evaluated to obtain the current-voltage characteristic

1 00e E
I(V) = (1- e-pe) dE E P(eV - E), (4.13)

eRT -oo 1 - e

P(E) = 2h dt exp (([M(t) - (0)] s (O))o + iEt/h) , (4.14)
2h f(4-1oo

([P(t) - (0)] ý0(0)) o = 2 d R (w) (4.15)o w RQ

x { coth hW (cos Wt - 1) - isinwt}

where Zt(w) = (Z-1(w) - iwC)- 1 and RQ is the resistance quantum h/e 2. The ex-

pressions (4.13),(4.14),(4.15) agree with Ref. [20] where the same expressions are

obtained from the Fermi golden rule.

Next, let us review some predictions of the expressions (4.13),(4.14),(4.15) in the

low temperature limit kBT < Ec = e2/2C, which later turns out to be related to the

current fluctuations. For more discussions on the characteristic, see Ref. [20, 70, 21].

Firstly, in the low impedance limit Z(w) = R < RQ, one obtains P(E) = 6(E) and

the characteristic becomes Ohmic, I(V) = V/RT. Secondly, in the high impedance

limit Z(w) = R > RQ, one obtains P(E) = 6(E - Ec) and the characteristic develops

a gap of width 2Ec. Finally, in the Ohmic environment Z(w) = R, the characteristic

shows an intermediate behavior between the above two limiting cases. For small

voltage bias |eVI < Ec, one finds

exp(-2yR/RQ) V [rR |eV 2R/RQ
I(V)== (4.16)F(2 + 2R/RQ) RT [RQ Ec

where y = 0.577... is the Euler constant. For large voltage bias eV > Ec, one finds
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Figure 4-2: The zero temperature current-voltage characteristics for three environ-
ments, Z(w) = 0.01Rq (solid line), Z(w) = 100RQ (dashed line), and Z(w) = RQ
(dash-dotted line).

that the characteristic asymptotically approaches the high impedance limit result,

1 RQE1
I(V) = eV- Ec + (4.17)eRT 7r2R eV

The zero temperature current-voltage characteristics are presented in Figure 4-2. For

the experimental measurement of the current-voltage characteristic, see Ref. [16].



4.4 Noise spectrum of tunneling current

4.4.1 Noise spectrum of tunneling current

The noise spectrum, or the noise spectral density of current, is defined as the Fourier

transform of a current-current correlation function,

S (w) = dt ewt (t), (0) - (()) (i(0)) . (4.18)

In this section, the subscripts T and R are restored since we later find that the

tunneling current and the relaxed current have different spectra. Calculation of SI, (W)

is straightforward and one finds

SIT(w) = I dE E E P(hw ± eV - E) (1 + e-.(hriev)) (4.19)

Structure of Eq. (4.19) is similar to the expression (4.13) for the current-voltage

characteristic and indeed, SIT(w) can be related to I(V),

e P(eV + hw)
SI,(w) = 2( E coth 2 I (V ± hw/e) . (4.20)

± 2

Eq. (4.20) enables one to obtain the noise spectrum of the tunneling current from

the current-voltage characteristic. Let us mention that in the equilibrium, V = 0,

Eq. (4.20) satisfies the fluctuation-dissipation theorem

SIT(w) = h coth 2 Im XT(W). (4.21)

Here XT(W) = (IT(t))w/fT(w) is a response function to the force fT(t) which is con-

jugate to the tunneling current.

In the following, we take an Ohmic environment for illustration, and consider

the equilibrium noise SIT(w; V = 0) and the excess noise STT (w; V) = SIT (w; V) -

SIT(w; V = 0) at zero temperature. The finite temperature noise will be discussed

only when it allows a simple analytic expression.



Frequency o (in units of Ec)

Figure 4-3: The zero temperature equilibrium noise spectra of the tunneling current
S,T(w) for Z(w) = 0.01RQ (solid line), Z(w) = 100RQ (dashed line), and Z(w) = RQ
(dash-dotted line).

4.4.2 Low impedance limit

Let us first study the low impedance limit Z(w) = R < RQ. In this limit, the current-

voltage characteristic is found above to be Ohmic. Here one finds that the noise

spectrum also shows Ohmic junction behavior. In equilibrium, Eq. (4.20) reduces to

(see Figure 4-3)
1 thhw

S(w) = w coth w (4.22)
7rRT 2

which is identical to the Johnson-Nyquist noise [27].

In non-equilibrium, the excess noise shows piecewise linear dependence on the

frequency (Fig. 4-4(a)),

eVj - IhWl for Ihw| < IeVj
SIT (; V) = 7RT (4.23)

0 for Ihwl > levl,



which agrees with the excess noise of the Ohmic junction [30].

4.4.3 High impedance limit

In the high impedance limit Z(w) = R > RQ, the equilibrium noise becomes

1 E
SIT (w) = (1 + e-O )  dE 1 - E P(hw - E), (4.24)

7RT oo 1 - e-

where
1 (E - Ec) 2

P(E) = exp - -4EkBT (4.25)
9\4rECkBT 4EckBT

Let us first study low frequency behavior of the equilibrium noise. At high temper-

ature kBT »> Ec, SIT(w) becomes (2kBT/WrRT)(1 - Ec/3kBT + O(Ec/kBT)2) for

hw < Ec. The first factor 2kBT/TrRT corresponds to the white noise and the second

factor represents the correction due to the charging energy. The effect of the charging

energy is more evident at low temperature. At low temperature kBT < Ec, SIT,(w)

becomes (2Ec/,iRT) exp (-Ec/kBT) for hw < kBT. The charging energy strongly

suppresses the noise far below the white noise level (Fig. 4-3). Next, let us study

the high frequency behavior. At high frequency, SIT (w) is largely independent of the

temperature and is given by

SIT(W) = hwl -Ec for |hwl > kBT, Ec. (4.26)
7rRT

Let us compare the equilibrium noise (4.24) with earlier calculation of Ben-Jacob

et al. [71] where they calculated the equilibrium noise of an open tunnel junction

which is not connected to external circuit. It is reasonable to expect that an open

tunnel junction and a closed tunnel junction in a high impedance environment have

similar equilibrium noise. Indeed, one finds that the two junctions share the same

limiting behavior both in the high temperature limit and in the low temperature

limit.

However, it turns out that there is delicate difference between the two junctions.

The difference becomes evident by casting Ben-Jacob et al.'s result into the form of



(b)

Figure 4-4: (a) The zero temperature excess noise spectra of the tunneling current

SIT(w) for Z(w) = 0.01RQ (solid line), Z(w) = 100RQ (dashed line) and Z(w) = RQ
(dash-dotted line). Voltage bias of eV = 0.5Ec is assumed. (b) Evolution of the
zero temperature tunneling excess noise with voltage bias in the high impedance
environment Z(w) = 100RQ. eV = 0.5Ec (solid line), eV = 1.5Ec (dashed line), and
eV = 2.5Lc (dash-dotted line).
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Eq. (4.24). Then their result corresponds to Eq. (4.24) with P(E) replaced by PBJ(E)

where

PBJ(E) = lntr q exp k 6 (E - Ec(2q + 1)) exp q . (4.27)

Notice that PBJ(E) is a sum of equal-spaced delta functions and the envelope of

the delta function is identical to P(E). Hence PBJ(E) and P(E) are discrete and

continuous approximations of each other, respectively. In the high temperature limit

kBT > Ec, they are excellent approximations of each other and the two noise spectra

become identical. However in the low temperature limit kBT < Ec, they become

distinct and the noise spectra agree only on their leading exponential terms presented

above.

To study the origin of this difference, let us recall that P(E) and PBJ(E) are prob-

abilities for a quasi-particle to emit excitations of total energy E when it tunnels [70].

In the open junction, it is certain that the entire energy E goes to increase the charg-

ing energy Q2/2C. Then, due to the charge quantization, the energy E should be

quantized and PBJ(E) should have a discrete form. On the other hand, in the closed

junction, the charging energy is coupled to the environment that has a continuous

spectrum. Then, since the coupled system also has a continuous excitation spectrum,

the energy is not quantized and P(E) has a continuous form. Therefore one finds

that the difference between Ben-Jacob et al. and the present calculation originates

from the character of the environment.

Next, let us discuss the excess noise in non-equilibrium. At zero temperature, the

excess noise shows piecewise linear dependence on the frequency. For small voltage

bias leVI < Ec, the excess noise becomes (see Fig. 4-4(a)),

_ l j- 1 l- Ecl for Ec - leVI < lhwl < Ec + leVI
S" w)= 27rRT (4.28)

0 otherwise.

Note that even though current does not flow when leVI < Ec, the excess noise does



not vanish around hw = ±Ec. At higher voltage bias, a finite current flows and

Fig. 4-4(b) shows the evolution of the excess noise with the voltage. The piecewise

linear dependence in Fig. 4-4(b) originates from the narrow energy range of P(E).

4.4.4 Ohmic environment

One can also obtain SI,(w) in an Ohmic environment with arbitrary impedance

Z(w) = R. At zero temperature, the equilibrium noise becomes

Sexp(-2yR/RQ) Ihwl R hwl 2R/RQ

SIT(w) . F(2 + 2R/RQ) IRT RQ Ec for (4.29)

1 [ RQ Eforjhwl - Ec + R for hw | >Ec.
7URT [ R h ~2R Ij

In the low frequency regime, the noise is suppressed by the charging energy and the

suppression gets stronger as the impedance becomes higher. In the high frequency

regime, the equilibrium noise eventually converges to the result of the high impedance

limit and the convergence is faster with the higher impedance (Fig. 4-3).

Next, let us study the excess noise in non-equilibrium. With finite Ohmic impe-

dance, the excess noise no longer exhibits piecewise linear dependence on the fre-

quency because P(E) allows a broad range of energy. Fig. 4-4(a) shows the excess

noise in the Ohmic environment and at zero frequency, one finds

z exp(-2-yR/RQ) leVi [-R |eV 1 2R/RQ

r(2 + 2R/RQ) 1FRT RQ Ec

4.4.5 Noise power

In the presence of a finite current, the correlation between quasi-particle tunneling

events can be estimated from the noise power P which is defined as P = 25Sr(w = 0).

If there is no correlation between the tunneling events, the noise power retains its full

Poisson value P = 2eI, and if there is any kind of correlation which regulates the

tunneling, it suppresses the noise power below this level (for example, see Ref. [11,

12, 13]).



In a single tunnel junction, one finds from Eq. (4.20) that the noise power of the

tunneling current has the full value independent of the environment,

PT = 2eI(V) , (4.31)

where the subscript T is employed to denote that this is the noise power of the

tunneling current. The origin of the Poisson-like noise power is that in the weak

tunneling limit, the time interval between two consecutive tunneling events is large,

and therefore, the Fermi statistics and the charging energy are not effective.

4.5 Noise spectrum of relaxed current

4.5.1 Noise spectrum of relaxed current

Usually, in a theoretical treatment of current fluctuations, the flow of electrons

through a particular cross-section of the device is considered. However, as Landauer

and Martin emphasize [69], conventional noise experiments do not directly measure

the noise within the device. Instead, the noise is measured, for example, using a volt-

age across a small resistor connected in series to the device. To clarify the relation

between conventional noise measurements and the noise spectrum calculated in vari-

ous theoretical works [11, 12, 13, 30, 33, 71], it is necessary to take explicit account

of the measuring part of the circuit. We assume that external leads connected to

a single tunnel junction are used for the measurement, and therefore SIR(w) corre-

sponds to the spectral density of the current fluctuations obtained in conventional

noise experiments.

Let us compare the relaxed noise SIR (w) with SI, (w) that corresponds to the noise

spectra calculated in theoretical works. The no tunneling limit RT - 00c (or Tkq = 0)

illustrates the difference of SIR (w) and SIT(w). In this limit, the tunneling noise

SIT,(w) vanishes since the tunneling current operator is proportional to the tunneling

matrix elements. On the other hand, the relaxed current operator does not depend



on the tunneling matrix elements explicitly, and one finds SIR (w) = S(0) (w), where

1 1 )h
SO() = -Re hw coth 3hw (4.32)

IR r Z(w) - (iwC)- 1  2

Note that SI (w) is a generalization of the Johnson-Nyquist noise [27] (1/rfR)hw

coth(Phw/2). Then it is clear that the two noise spectra SI,(w) and SIR (w) are not

identical even though the two currents IT(V) and IR(V) are the same.

The situation becomes more complicated if there is tunneling. In an analysis

of experimental data (for example, see Ref. [68]), it is commonly assumed that the

spectrum SI, (w; V) is a sum of the equilibrium intrinsic noise SIR (w; 0) and the excess

tunneling noise 51 T (w; V). The linear superposition originates from the assumption

that the two excess noises are identical, i.e., that SR (w; V) = SIT(w; V). In this

section, we question the validity of the linear superposition by calculating SR (w).

Explicit calculation of SIR (w) to the second order in the tunneling matrix gives

SIR () = SIO (w) +S (w), (4.33)

S(w) = S (2A) () + S(2B) () + C(2C)

where

I (2A ) 1 iwCZ 2 SIT() (4.34)

(2B) e IM 1 ±^d
S 2B)(w) = {m 1- i.CZ(}) coth I(V hw /e),

7F 1 - CZ(W) -- 2

S(2C) 21S (2w) = 2 Im { I z()}2coth hw
S(h2 1_2 2

x Re {Xret(-eV/h + w) - X,,t(-eV/h)}

The superscript (2) in S(2) (w) denotes that this is the second order contribution in

the perturbation calculation. Let us mention that in equilibrium, V = 0, Eq. (4.33)



satisfies the fluctuation-dissipation theorem

SIR(w) = h coth w Im XR(W) . (4.35)
2

Here XR(W) = (IR(t))w/fR(w) is a response function to a generalized force fR(t)

conjugate to the relaxed current. It should be noticed that even though SIR (w) is

different from SI,(w), it still obeys the fluctuation-dissipation theorem since it is

related to the different response function.

Now we are ready to discuss the linear superposition. At zero frequency, Eq. (4.34)

can be simply evaluated to give SIA) SIT(0) and S)IR (0) = S( (0) = 0. Hence

the superposition holds for an arbitrary environment at zero frequency. At finite

frequency, the situation becomes similar to the zero frequency case if

1
IZ(w) <C . (4.36)

One can use Eq. (4.36) as a criterion: the linear superposition holds only in the

frequency range where the condition (4.36) is true. It is worth mentioning that since

the assumption holds at zero frequency, the noise power of the relaxed current is

always the same as the noise power of the tunneling current,

PR = PT = 2el(V). (4.37)

For illustration, we take the Ohmic environment in the following, and discuss the

origin of the criterion (4.36).

4.5.2 Low impedance limit

Now, the real part of the retarded Green's function X,,t(w) has to be evaluated. At

zero temperature, with a constant tunneling density of states, one finds

Re f {Xret(-eV/h ± w) - Xret(-eV/h)} (4.38)



e2RT dE (P(E) - P(-E))
27re2RT

x {(eV - E ± hw) In leV - E + hw - (eV - E) In leV - El}.

In the low impedance limit Z(w) = R < RQ, S.C)(w) vanishes, and one finds the

zero temperature equilibrium noise:

SIR (w) = SI(R (w) + 1 Re 1 )) lhwI. (4.39)i RT (1 - iwRC)2

Note that Eq. (4.39) agrees, to the leading order in 1/RT, with the zero temperature

equilibrium noise S•h (w) calculated from a shunt resistor model of a junction,

S1h(w) = - Re 1 ) hw. (4.40)
( R + (-iwC + 1/RT)

- 1 
)

Next, let us calculate the excess noise. It is simple to verify that in the low

impedance limit, only S•A) (w) depends on the voltage bias and the zero temperature

excess noise is given by

S() = 1 + 2R 2 2 SI (w). (4.41)

Recalling that the linear superposition assumption is equivalent to the statement

SfR (w) = SfT(w), one finds that the assumption is valid only in the low frequency

regime w < (RC)- . Figure 4.5.2(a) shows the relaxed excess noise at zero tem-

perature in comparison with the tunneling excess noise. Here it is assumed that

eV > h/RC > Ec. Note that while the relaxed excess noise (solid line) has the

same magnitude as the tunneling excess noise (dashed line) at zero frequency, its

peak width is given by h/RC, making the decay of the relaxed excess noise faster

than the tunneling excess noise.

To understand Eq. (4.41), one can argue in the following way. In the classical

treatment of a tunnel junction, the junction is modeled as a capacitor, and the effect

of the tunneling is just to add additional charge to the plates of the capacitor. This



Frequencymo (in units of c)

(b)

Figure 4-5: The excess noise spectrum of the relaxed current S&R (w) (solid line)
vs. the excess noise spectrum of the tunneling current SxT (w) (dashed line) at zero
temperature. The dash-dotted line shows 1/(1 + w2 R2C2 )SfT (w) for comparison. (a)
Z(w) = O.O1RQ, eV = 200Ec. The dash-dotted line is not visible because it overlaps
with the solid line. (b) Z(w) = 100RQ, eV = 0.5Ec. The solid line and the dash-
dotted line are scaled up by a factor of 104 to magnify their features. Note that
SfR (w) is negative around hw e +Ec.IR 83
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(d)

(c) Z(w) = RQ, eV = 0.5Ec. SIR(w) has a single peak at w = 0, while SfT(w) has two
peaks. SR (w) deviates from 1/(1 + w2 R2C2)Sf (w) due to nontrivial behavior of the
zero point fluctuations. (d) Evolution of the zero temperature relaxed excess noise
with voltage bias in the high impedance environment Z(w) = 100RQ. eV = 0.5Ec
(solid line) (scaled up by a factor of 105), eV = 1.5Ec (dashed line), and eV = 2.5Ec
(dash-dotted line).
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problem can be solved by a conventional circuit analysis, and it is found that the

relaxation of the additional charge takes finite time, so that the relaxed current is

retarded:

IR(t) = ds Z(t - s)IT(s) + 6lR(t), (4.42)

where R(t) is the retarded response function with 1(t < 0) = 0, R(w) = 1/(1 -

iwCZ(w)), and 6IR(t) is the intrinsic fluctuation of the relaxed current which is not

correlated with IT(t). Then Eq. (4.42) quickly leads to Eq. (4.41), and one finds that

the extra factor in Eq. (4.41) originates from the finite relaxation time of the charge

on the junction.

4.5.3 High impedance limit

Let us first study the noise in a low frequency regime, w <K (RC)-1 . In this regime,

S(2A) (w) is dominant over other second order terms, and one finds the noise SIR (w) =

S (w) + SIT(w). Notice that, since S(0) (w) is independent of the voltage, the linear

superposition assumption is valid in this regime. However, it should also be noted

that this regime lies far below the charging energy Ec since h/RC = (RQ/IrR)Ec.

In a high frequency regime w > (RC)- 1, S2B) (w) becomes of the same order

as (2A) (w), and for small voltage leVI < Ec, simple calculation shows 2B)(w) =

--2S) (w) . S2C) (w) is smaller than the other second order terms by a factor of

(wRC) - 2, and one finds the noise SI(w) = S()(w) - (wRC)- 2SI,(w). Notice that

the total second order correction is negative, and that the excess is now negative.

Figure 4.5.2(b) shows the zero temperature excess noise of the relaxed current in

comparison with the tunneling excess noise. Here, it is assumed that Ec > eV >

h/RC. While the tunneling excess noise (dashed line) shows two peaks at hw = ±Ec,

the relaxed excess noise (solid line) instead shows two negative dips at hw ± ±Ec.

The relaxed excess noise is scaled up by a factor of 104 to magnify the dips. At higher

voltage bias eV > Ec (see Fig. 4.5.2(d)), the relaxed excess noise shows a peak at

hw = 0 and shallow dips at hw ± ±E c .

It is clear from the above discussion that the noise in the high impedance limit



is so non-trivial that the finite relaxation time alone cannot explain its behavior. To

gain an understanding, let us first study the noise in the no tunneling limit. Then,

the Hamiltonian Hqp + Henv is quadratic, and one can diagonalize Henv as a set

of independent harmonic oscillators. Due to the uncertainty principle, a harmonic

oscillator, even in the ground state, shows fluctuations. It can be verified that the

fluctuations of a harmonic oscillator with a frequency wo results in a finite spectral

density of the relaxed noise at w = wo , and that the zeroth order noise (0) (w) is the

sum of such contributions.

The situation becomes less simple if one turns on the tunneling. In the high

impedance limit, each tunneling of a quasi-particle induces an infinite number of ex-

citations in the environment with a total excitation energy Ec (for detailed discussion

on this point, see [72]). Those excitations alter the state of the environment, and

one finds that the fluctuation 6IR(t) in Eq. (4.42) is correlated with IT(t). Note that

this is in a clear contrast with the low impedance limit where the tunneling leaves the

environment essentially unperturbed [72], and therefore 6 IR(t) is not correlated with

IT(t). Then, the correlation in the high impedance limit results in additional contri-

butions to the excess noise, and the classical argument in Sec. 4.5.2 is no longer valid.

However, it is still surprising that the additional contributions lead to the negative

excess noise.

4.5.4 Ohmic impedance environment

Figure 4.5.2(c) shows the two excess noises at zero temperature in the Ohmic environ-

ment Z(w) = R. It is assumed that R = Rq = h/e 2 and eV = 0.5Ec. The tunneling

excess noise (dashed line) shows two peaks, while the relaxed excess noise (solid line)

shows a single peak at hw = 0. The dash-dotted line shows 1/(1 +w 2 2 2 )S7,(w) for

comparison. The dash-dotted line exhibits qualitatively the same feature as SIR (w),

and its agreement with the solid line improves with the lower impedance.



4.5.5 Experimental implications

Recently, there was an experimental study of the excess noise in a quantum point

contact in a low impedance environment [22]. The voltage bias V of the order of

lmV was applied, and the excess noise was measured at frequency w - 10GHz which

is much lower than the voltage, hw < eV. The frequency was chosen to avoid

complications due to other noise sources at even lower frequency such as the 1/f

noise. The measured excess noise was compared to theoretical calculations of the

noise power (for example, Ref. [11, 12, 13]), assuming that the measured excess noise

is essentially the same as the noise power, since hw < eV. This assumption is

apparently supported by theoretical calculations of the tunneling noise (for example,

see Ref. [30, 33] or SIj(w) in this paper). It was found that the experiment agrees

with the theory in the ballistic regime. However, in the pinched off regime which

corresponds to the weak tunneling limit, it was found that the measured noise level

for a relatively small current (< 100nA) is about 1/3 of the theoretical predictions' .

The quantum point contact in Ref. [22] is induced electrostatically in the plane of a

2DEG embedded in GaAs-AlGaAs heterostructure. Due to its low carrier density, the

behavior of a quantum point contact is in general different from that of a (metallic)

tunnel junction. However, we believe that the two must have the same behavior

in the weak tunneling limit (at least) and that the present noise calculation in a

single tunnel junction is applicable. Then, by recalling the relation (4.41) between

the relaxed excess noise and the tunneling excess noise, it is reasonable to expect

that the observed suppression factor 1/3 corresponds to the ratio of the two excess

noises, (1+w 2R2 C2 )- 1 in Eq. (4.41). From the estimations of R and C provided by the

authors of Ref. [22], we find that wRC is order of 1. This expectation is also supported

by a more recent experiment [23], where a similar measurement was carried out. The

experiment found that the noise suppression in the previous experiment vanishes

'The experiment also finds stronger noise suppression for a relatively large current (>100nA). We
believe that the large current result is beyond the scope of the present calculation since the model
Hamiltonian (4.8) assumes instantaneous tunneling. In contrast, the tunneling time in the large
current experiment can no longer be assumed to be instantaneous since the time interval between
two consecutive tunneling events is estimated [22] to be comparable with the tunneling time.



for a quantum point contact with much smaller capacitance, which is in qualitative

agreement with Eq. (4.41). At this point, however, we are unable to establish a

more quantitative agreement of the experiments with our result Eq. (4.41) because

the precise values of R and C are not available. More experiments, for example, on

the frequency dependence of the suppression factor, are required to test the present

calculation.

As another way of testing the present calculation, we propose to measure the

excess noise in the high impedance Ohmic environment. According to the result

(Fig. 4.5.2(b)) in Sec. 4.5.3, the excess noise SfR (w) becomes negative at frequency

hw ± +Ec. If observed, such unusual behavior of the excess noise would be a

verification of our calculation.

4.5.6 Weak scattering limit

Our calculation is restricted to the weak tunneling limit RT > RQ. It will be inter-

esting to extend the calculation to the opposite limit. In the weak scattering limit, we

expect that the relation between the tunneling noise and the relaxed noise should be

different from the relation in the weak tunneling limit since electron transport is more

"continuous" in the weak scattering limit. This expectation is supported by recent

theoretical works [73, 74] which find that the junction becomes purely Ohmic and

the capacitive effect vanishes in the weak scattering limit. However, further study is

required to gain the quantitative understanding in the weak scattering limit.

4.6 Conclusion

In this paper, we consider current fluctuations in a single tunnel junction connected

to external leads. We define two kinds of current, the tunneling current and the

relaxed current, corresponding to the current within the junction and in the leads,

respectively. We calculate the fluctuations of the two currents, and find that, contrary

to conventional expectation, they have different excess noises. In the low impedance

environment, the difference is due to the finite relaxation time of the charge on the



junction, whereas in the high impedance environment, the difference is due to the

combined effect of the relaxation time and the quantum dynamics of the environment.

In the high impedance environment, it is found that the spectral density of the relaxed

current at frequency hw - ±Ec decreases below the equilibrium level when a small

voltage bias is applied. In such a situation, the measured excess noise would be

negative.
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Chapter 5

Excitations Induced by Switching

in Quantum Wires

5.1 Introduction

The fabrication technology rapidly progresses, and it is now possible to create sam-

ples with desired structures in sub-micron scale. This leads to higher degree of circuit

integration, and thereby reduced size of electric devices. By reducing the size, one

can usually improve circuit quality. In small devices, electrons travel shorter dis-

tances, and so such devices are usually faster than larger devices. Also, because fewer

electrons are required to carry out logical operations, less power is consumed.

In the past decade, many experiments (for a review, see Ref. [75]) demonstrated

that it is possible to control electric properties of a device by a single electron. For

example, it is now well established that conductance through a quantum dot can

be altered by several orders of magnitude by adding (or removing) a single electron

to (from) the dot [76]. To make a comparison with present technological level of

electronics, let us note that the electric devices currently available are still quite large

on the atomic scale and their operations involve macroscopic number of electrons.

It is expected that the single electron devices will be smaller and faster by orders of

magnitude than the presently existing electrics. Because of that, the single electronics

has received great attention and simulated many theoretical and experimental works



(for a review, see Ref. [77]).

The operation of single electron devices raises several physical issues. One the the

fluctuations and noise. Another is the role of the excitations generated during circuit

operation. To control electrons on a microscopic level, one has to reduce the number

of generated excitations, which may require low temperatures as well as shielding the

circuit from external perturbations that may induce excitations. In fact, there is a

possibility that the factor that limits performance of single electron devices is the

effectiveness of the scheme to avoid excitations.

In this chapter, we consider perturbations such as an on-off switching, which are

generic in device operation. While their effects are negligible in conventional devices,

they have a potential of becoming a main mechanism of excitation generation in single

electron devices.

Here we study two kinds of problems. In Sec. 5.2, we calculate excitations gen-

erated in a quantum wire by an on-off switching. Specifically we consider breaking

a connection of a quantum wire and then restoring it after some time, that is, turn-

ing on the perturbation for a finite time interval. For low frequency modes whose

inverse frequencies are much higher than the switching time interval, we find that

the numbers of induced excitations vanish linearly in the mode frequencies. However

for higher frequency modes, we find that the perturbation induces logarithmically

divergent number of excitations.

In Sec. 5.3, we consider a situation when a connection in the middle of a wire is

broken by an external perturbation and electron flow between the two separate parts

is blocked. We calculate the excitations induced by such a switching-off perturbation.

We compare them to thermal excitations and discuss similarities and differences.



5.2 Excitations generated by an on-off perturba-

tion

A one-dimensional quantum wire can be described using the bosonization technique

(for example, see Ref. [49, 78]) by the following Lagrangian:

= fdx{ g(t)2 _- QC2( x)2 , (5.1)

where q(x, t) is a local displacement field of the electron liquid in the wire from its

equilibrium position. Here the parameters p and c depend on details of the wire. For

example, for free fermions the velocity is the Fermi velocity, c = VF, and the density

is related to the Fermi wave number, p = 2pF/wrh. This action is identical to the

action of a one-dimensional string, and for convenience, we will use terminology of

string below.

Now, let us suppose that the displacement of the string at x = 0 is fixed suddenly

at time t = -T and it remains fixed until it is released to freely vibrate at time t = 7:

¢(x=0, t) = (x = 0, t= -T) for Itl <T. (5.2)

We assume that the field q(x, t) is in thermal equilibrium at temperature T before

the perturbation is applied. If the temperature is low enough, the perturbation will

be the main source of vibration and we will calculate the vibration spectrum of the

string at time t > T.

This problem turns out to be simpler in the Hamiltonian formulation. For Itl > T,

the Hamiltonian is just the free string Hamiltonian, since the perturbation is localized

in time, and one can expand the field in Fourier components:

(x, t) == i(k)ei(kx-w(k)t) + t(k)e-i(kx-w(k)t) for t < -T,f dk 2 .

== J (k)e'(kx-w(k)t) + (k)e•i(kx-w(k)t)} for t > T, (5.3)

where w(k) = clk.



To calculate vibration spectrum at t > T, we need to study how the perturbation

relates cf(k) to q$(k) (for example, in the absence of the perturbation, qf(k) = Oi(k)).

In the Hamiltonian formulation, one can introduce the perturbation by interpreting

Eq. (5.2) as a constraint on the field operator $(x, t). Then the evolution of a traveling

wave k between -T < t < 7 is similar to the wave reflection at a hard wall. A portion

of a traveling wave exp(i(kx - w(k)t)) which reaches the perturbation is reflected and

travels in the opposite direction (see Fig. 5-1):

- exp(i(-kx - w(k)t)) + exp(iw(k)T) . (5.4)

Here the first term is the usual reflected wave and the second term comes from the

difference between the constraint (5.2) and the hard wall reflection. If we had adopted

the usual hard wall constraint, ¢(x = 0, Itl < T) = 0, this term would be absent.

Using the analogy to the classical wave reflection problem, one can relate the

field components f (k) and i (k). One can also generalize this analogy to relate

destruction operators of vibrational modes before and after the perturbation:

Sdq w (k) (-2 sin(w(k) - w (q))T 2 sin w(k)T iw(q)T}
af(k) = ai(k) + aj (q) <+ ew(q)T

S27r w(q) (w(k) - w(q))/c w(k)/c

fdq w(k) t(q) -2 sin(w(k) + w(q)) 2 sin w(k) (5.5)

2- 1 w(q) (w(k) + w(q))/c w(k)/ce

Before we move on to the calculation of the radiation generated by the string

fixing, let us recall the vibration spectrum of the string in thermal equilibrium:

(a!(k)ai(q)) = n(k)6(k - q),

(ai(k)af(q)) = (n(k) + 1)6(k - q), (5.6)

(ai(k)ai(q)) = (al(k)af(q)) = 0,

where n(k) = (exp(Phw(k)) - 1)- 1.

Now we have all ingredients and straightforward calculation produces a general



exp(i(kx-o(k)t))-exp(i(-kx-o(k)t))

+exp( im( io (k)t)

i(kx-(o(k)t))

Figure 5-1: Wave reflection. The evolution of the field q(x, t) can be obtained from
the analogy to the classical wave reflection problem.



expression of (at(k)af(q)). However this expression is rather long and so the expres-

sion is presented in Appendix D. Here we instead focus on the zero temperature limit.

At zero temperature, n(k) vanishes for any finite k. One can remove the zero mode

vibration as well by requiring that the center of mass of the string is fixed to zero.

Then only the second expectation value in Eq. (5.6) survives and from the relation

between at(k), af(k) and a,(k), ai(k), one finds

2 o ds •(k)w(q) sin(w(k) + w(s))r sin w(k)ri (S)T
(k)af(q)) o (s) (w(k) + w(s))/c w(k)/c

{ sin(w(q) + w(s)) sin w(q) (5.7)

(w(q) + w(s))/c w(q)/c

for non-vanishing wave vectors k and q.

Let us check whether Eq. (5.7) is well defined. For all finite s, the integrand is

well defined. For very small s, the integrand is proportional to s since each of the

expressions in curly brackets is proportional to s. For very large s, however, the

integrand decays as s - 1 and the large s gives logarithmically divergent contribution

to (at (k)af(q)). To regularize Eq. (5.7), we introduce an upper cutoff a- 1, where a

corresponds, for example, to an atomic spacing. Let us comment that if we would

have adopted the hard wall constraint, each second term in the curly brackets of

Eq. (5.7) would be absent and Eq. (5.7) would have logarithmic infrared divergence

instead.

For diagonal components (k = q), Eq. (5.7) simplifies further:

2 Pf ds w(k) sin(w(k) + w(s))T sin w(k)Tr i(s) 2 (5.8)
(a}(k)af(k)) = -_- _ _-- _k)+ _s)/ -- _e . (5.8)

f 7o i- w(s) (w(k) + w(s))/c w(k)/c

With a finite upper cutoff a -1 , this integration can be evaluated to

2 { sin2 w(k)·r c
(a(k)af(k)) - 2 CT sin2 w(k)T log + si(2w(k)T) (5.9)f 2 w(k)7 eaw(k)

S1(k) (log 2w(k) + - cos(2w(k))ci(2(k)) sin(2w(k)T)si(2w(k)T))
t2wu) o(2;)~i(2w- k- -) ,



where 7 = 0.577215... is the Euler constant. The functions si(x) and ci(x) are sine-

and cosine-integral, respectively:

i(x) = sintdt r
si(X) t dt = + x +... ,

00 cos t x2
ci(x) =- dt = 7 + log x - + .... (5.10)

It is reasonable to expect that since the perturbation is applied only for a finite

time interval 27, low energy modes with frequencies much lower than r- 1 are not

affected significantly. For w(k)T << 1, one uses the series expansions of si(x) and ci(x)

to obtain

(a}t(k)af(k)) -+T { w(k) log + -y) + O(w(k)r)2 . (5.11)
f 72ae 2(

Notice that for small k, the expectation value of the number of the excited quanta

indeed vanishes linearly in k.

However, for higher frequency modes the number of excitations is large due to

the logarithmically divergent factor. So we find that the perturbation excites higher

frequency modes more significantly.

5.3 Excitations generated by a switching-off per-

turbation

In this section, we consider excitations induced by a switching-off perturbation in a

quantum wire. Specifically we assume that the wire is cut at some time and remains

disconnected at all later times.

We again use the bosonized description [49, 78] of a quantum wire and the termi-

nology of the string. However, this time we perform an imaginary time calculation.

Imaginary time dynamics of a free string is described by the following action:

S{q (x,t)} = dtdx {e(o )2 + ~c2( )x 2} . (5.12)



Let us consider an external perturbation that breaks the string in the middle.

Specifically, we assume that the two ends of the string are stretched by a small force

f. This force introduces a perturbation to the action, S, = f dt f {(x = L/2) - 0(x =

-L/2)}, and the value of the total action becomes unbounded from below. Therefore

even an infinitesimal is sufficient to break the string and makes the connected string

metastable.

In an imaginary time functional integral approach, the tunneling from a metasta-

ble state to a stable state can be described by the instanton method [79]. The most

dominant contribution to the functional integral comes from the classical solution of

the imaginary time equation of motion, the so called "bounce".

This problem was studied previously in the context of quantum breaking of a

polymer [80], where it was found that the bounce solution is collective in its nature:

the displacement of the string is not localized, but rather it extends to large distance.

Due to its collective nature, the bounce solution can be obtained in good approxima-

tion by introducing a branch cut x = 0, Itl < 7, and imposing a boundary condition

on the field O(x, t):

O, x(x = 0±, t) = 0 for Itl < T. (5.13)

This simplification generates a correct bounce solution if the value of T is chosen

properly and following Ref. [80], we set 7 = 2pcEo/7f 2 where E 0 is the energy of the

broken connection.

Then one can obtain excitations induced by the string breaking perturbation by

calculating the density matrix at the time t = 0. Here the excitations are the vibra-

tions in the string, and for simplicity we assume that one is interested only in the

vibration on the right side of the string, and the measurement is restricted to the

semi-infinite region x > 0. For this purpose, we may just calculate a reduced density

matrix,

P{1 (zx), 2 (x)} = J D{$(x, t)} exp(-S{¢(x, t)}), (5.14)



r

Z W U

Figure 5-2: The conformal transformations used to simplify the boundary conditions.

where the field O(x, t) is subject to additional boundary conditions,

(i) ¢(x > O,t = 0+) = 01(x) ,

(ii) (x > O, t = 0-) = 02(x) -

(5.15)

The action S is purely quadratic and therefore one finds

(5.16)

where 0ci (x, t) is the unique solution of a classical equation of motion satisfying the

boundary conditions. However, evaluation of S1{q¢(x, t)} is rather tedious due to the

complex boundary conditions. Here, instead of dealing with the boundary conditions,

we exploit the invariance of the action under conformal transformations and perform

the following sequence of conformal transformations:

z = x + ict -+ w = z + (z 2 + C2T2) 1/ 2
(5.17)

(5.18)
w

w -+ u = r + is = cr log
CT

The action of these transformations is illustrated in Figure 5-2.

Let us call the displacement in u-space, V(u), which is related to O(z) by 0(u) =

I S

Ct CT
CCT

x C 2nt

X ,*)C

p{1l(X), 02(X)} c exp(-S{ 0,(x,t)}),



¢(z(u)). The boundary conditions on the new field 0(u) are

(i) 0rp(r = 0) = 0 ,

(ii) 0(r > 0, s = 0) = V1 (r) = /1 (x(r)) , (5.19)

(iii) 0 (r > 0, s = 27rcT) = 0 2(r) = ¢ 2 (x(r))

Now the boundary conditions are easier to treat and from a straightforward calcula-

tion one finds

p{fl(r), 02(r)} oc exp(-S{1c1(u)}) , (5.20)

oc dkk (2 (k)+ )2(k)) cosh 27rkcT - 2, 1(k)0 2 (k)
SI{cL(u)} = dk k A . (5.21)

7r j0 sinh 27rkcT

where 01(2)(k) = fo7 dr 41(2) (r) cos kr. Notice that this density matrix corresponds

to the density matrix of an semi-infinite string that is at thermal equilibrium with

temperature kBT = h/(27T).

Calculation of the vibration spectrum in the transformed space u is simple and

one finds
1

(at(k)a(q)) = 6(k - q) e- 1 (5.22)

where a(k) is a destruction operator of a normal mode k in the u-space:

a(k) = 4 i (2k) . (5.23)

Notice that the spectrum (5.22) is a Bose-Einstein distribution.

To obtain the vibration spectrum in the original space z, one may write down

Eq. (5.21) in terms of the original fields 1 1(x) and 02 (x), and calculate the expectation

value of (bt(p)b(q)) directly, where b(p) is the annihilation operator of the mode p at

time t = 0 in the original space,

b(p) = h i 2C (p ) , (5.24)
and (p) = fdx(, = 0) cos p.

and O(p) = fo' dxo(x, t = 0) cospx.
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Instead of that, we take a rather indirect approach. Specifically, we first find

a linear transformation relating b(p) and bt(p) to a(k) and at (k), and extract the

vibration spectrum in the original space z from the spectrum in the u-space, using

the linear transformation.

For this purpose, let us first find a relation between the fields:

O(p) = j dkA(p, k)4(k), (5.25)

where

A(pk)= dx cos kc sinh - -) cospx. (5.26)7 0o C7

One can also relate the field momenta:

h 6 r h6
i6(p) = A dk j X &(k)X(k, p), (5.27)

where
20 rx(k,p) = - dr cos crsinh cos kr. (5.28)
7 0 CT

These relations allow one to relate the two creation and destruction operators and

one finds

(bt(p)b(q)) = 12 
1 fdp Ki,(pcT)Ki (qcT), (5.29)

7 opq sinh rv

where K,(z) is a modified Bessel function of order v. Notice that the expectation

value is no longer proportional to the delta function 6 (p - q). This result is natural

since in the original space the excitation created by bt (p) is not a normal mode.

For diagonal components of the expectation value, Eq. (5.29) reduces to

(bt(p)b(p)) = dx sech 2x Ko(2pcT cosh x). (5.30)

Using the series expansion and the asymptotics of the Bessel function, one obtains
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the following limiting behaviors:

1 e-pCT
(bt(p)b(p) )  -- 1 for per > 1

4x/2-7p prcT
1 2log for pcT < 1. (5.31)

27r2p epcT

Notice that the spectrum shares the same features as the Bose-Einstein distribution

at finite temperature: exponential decay for large p and p-1 divergence for small p.

Therefore, in some loose sense, one may say that the breaking injects vibrations with

a finite temperature spectrum into the string, which originally is at zero temperature.

One notes, however, the difference between the calculated spectrum (5.31) and

the Bose-Einstein distribution, which is the logarithm factor in (5.31), as well as

the presence of off-diagonal components in the density matrix. For the expectation

value of off-diagonal components, one can write down an estimate by expanding the

expectation value around the diagonal components:

(bt(p + 6p/2)b(p - 6p/ 2 )) = (bt(p)b(p)) + C2(p)(p)2 + .... (5.32)

Naive physical intuition suggests that a peak would appear at 6p = 0 and C2 (p) be

negative. However, from the general expression (5.29), one finds that C2(p) is positive,

and that the off-diagonal correlation does not vanish. The increase of the off-diagonal

terms indicates that the excitations are coherent and thus they are somewhat different

from thermal excitations.
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Appendix A

Larmor Clock Measurement of

Tunneling Time

How long does it take a particle to tunnel under a barrier? More precisely, suppose

a particle of energy E is moving in one dimension, and is scattered on a potential

barrier:

i O(x, t)= -2 iz 2 + (z) 1(x, t) (A.1)

What is the probability that during the scattering the particle spends time T within

the region a < x < b under the barrier? Questions of that kind arise naturally in

discussion of any quantum-mechanical process that takes finite time, like nuclear or

chemical reactions, resonance scattering, or tunneling.

There have been several attempts to treat such problems [17, 18, 19] that resulted

in formulation of a very interesting concept of Larmor clock. It has various analogies

with the spin galvanometer discussed above, and it seems useful to review the Lar-

mor clock here using the same language. The Larmor clock uses an auxiliary spin

1/2 attached to the scattering particle, and an auxiliary constant magnetic field w

localized within the region of interest, a < x < b,

b

Iiint= 1 WOz 0(x)V(x)dx . (A.2)
a

103



The choice of coupling is such that the spin precession angle is proportional to the

time spent in the region a < x < b. The difference from our spin-galvanometer is

that the spin is not stationary, but travels with the particle, and also that the spin is

coupled to the particle density, rather than to the current.

To find the distribution of times one has to write down the system density matrix

evolved in time, and take partial trace over the particle outgoing states. (We assume

that one does not have to distinguish between different results of scattering, and is

interested in the tunneling time only, regardless of whether the particle went through

the barrier, or has been reflected.) Then, by following the argument of Sec. 2.3 one

obtains the spin density matrix:

,(t) = p (0) X (w (O) (A.3)

Here

X(w) = tre(e-imsteein -t) , (A.4)

where e- i dt is the evolution operator for the one-particle problem with no spin:

i (x, t=2x 2  U() -- 22 IIOab(X) (x, t) , (A.5)

where 0ab = 0(x-a)O(b-x). The auxiliary magnetic field w now turns into a constant

potential within the region a < x < b. Here again, with the spin degrees of freedom

taken care of by (A.3), we are left with a single particle problem. By using cyclic

property of the trace one finds

x(w) = (ein3 te-iWnt ) . (A.6)

Here the brackets (...) mean averaging over the particle initial state. Note that x(w)

is written in terms of a purely single particle problem, not involving spin variables.

The quantity X(w) obtained by measuring precession of the spin is a generating
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function for the distribution of times, which is clear from the Fourier transform

X(w) = f P(T)ei'rdT . (A.7)

The probabilities P(T) of different precession angles of the spin should be interpreted

as the scattering time distribution.

The probabilities P(T) defined by (A.5), (A.6), and (A.7) have several interesting

properties:

a) f P(T)dT:= 1.

b) P(T) are real numbers.

c) P(T) vanish at negative times T < 0.

The normalization property a) is derived from (A.6) by setting w = 0. Property

b) (real valuedness) is derived from X(-w) = g(w) which follows from (A.6). The

causality property c) follows from considering the evolution in the problem (A.5) with

w continued to complex values. One notes that both the solution 4(x, t) of Eq. (A.5)

and the evolution operator e-i~Iwt are regular in the upper half-plane Im w > 0, which

means that the same is true for X(w). From that, the causality property c) follows

by the usual argument using Cauchy theorem in the integral

P(r) = X(w)e -w) ' dw  (A.8)
-oo 2"

by closing the integration contour in the upper half-plane.

The properties a), b), c), suggest that P(T), so far defined formally as Fourier

spectrum of X(w), can have a meaning of probability. However, generally the sign of

P(T) can be either positive or negative, which makes the probabilistic interpretation

problematic.

For the one particle problem one can write the generating function X(w) in terms

of the scattering amplitudes A and B. For that, it is convenient to use the expres-

sions (2.22), (2.23) for the evolution operator in terms of the scattering matrix ,,
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written using the wave-packet scattering states (2.18). Specializing to one particle

and taking partial trace, one finds

X(w) = A_,(E)A,(E) + B_,(E)B,(E) , (A.9)

where A(w) and B(w) are the transmission and reflection amplitudes of the prob-

lem (A.5) taken at the energy E of incident particle.

To see the Larmor clock working, let us consider an example of resonance scat-

tering, where a particle is scattered on a potential forming a quasibound state of

life-time F. Using the method described above one can find the distribution of times

it takes the particle to scatter. For simplicity, suppose that the particle can be only

reflected, but not transmitted (A = 0). Then the reflection amplitude as function of

energy is given by the Breit-Wigner formula:

(E) - Eo- i/2
B(E) = o + i/2 (A.10)E - Eo + iI/2

Turning on the field w in the quasibound state region is equivalent to shifting the reso-

nance energy: E 0 -+ Eo - w/2. Thus, the generating function of the time distribution

is
E - w + iF E + w - i11)X(w) = , (A.11)E - w - ir e + w + ir (

where E = 2(E - Eo). The distribution P(T) is found by Fourier transform:

P(T) = [XiWeiw dw
4 2

= 6(T) - (r sin ET - E COS E r) -

- (0(T) - -4 sin ee-r' . (A.12)

The 6-function term corresponds to the non-resonance scattering channel. Other

terms describe dwelling in the quasibound state. In this example P(T) is changing

sign, which makes the probabilistic interpretation ambiguous.

The paradox arising due to negative P(T) is only an apparent one. Really, the mea-
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surement of time performed by the Larmor clock is not the usual quantum-mechanical

measurement, since the time is not an operator, and thus it cannot be measured in

the same sense as other quantum-mechanical observables. This should be contrasted

with the measurement of charge described above. Although the measurement scheme

we use looks quite similar to Larmor clock, there is a difference: Electric charge is an

observable in the usual quantum-mechanical sense, it takes quantized values, and the

probabilities of those values, as we verified by calculation, are non-negative.
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Appendix B

Asymptotic Expression for ((Qk))

For the evaluation of q integration, we note that due to its symmetry(or antisymme-

try), it is enough to integrate over q from 0 to oc. For example for odd k,

0
qk-1

Fj dq e-iqn q- ) = 2 Re I (B.1)
0-0 sinh(rq - iO+)

where

dqe-iqk- 1  e-q (B.2)

Similar relation holds for even k with Re replaced by iIm. Then we change the

variable from q to p = sq with s = k - 1

00L 2e-"Pj dpe-zSpX(sp)s (B.3)
o 1 - e - 2s rp  (B.3)

= 2ss" dp exp [sf,(p)] , (B.4)

f,(p) - logp - ip - log(1 -e- 2  (B.5)

Above expression is the standard form for which the steepest descent method gives

asymptotic expression for large s, except that fs(p) depends on s. However its de-

pendence is exponentially weak and therefore it is safe to ignore the dependence just

by dropping the last term of f,(p). Then following the standard procedure of the
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steepest descent method, we find

2(k - 1)!
I ( + i)k for large k. (B.6)

To perform the next integration in Eq. (2.53) over x, we introduce a new variable

v by ex =: sinh 2 i,

o1 1

J ] dXix)k (B.7)Foo Vf1 -+e-X (F + ix)k
2 du exp [kg(u)] , (B.8)

g(v) = -log (r + ilogsinh2v) . (B.9)

Even though its analytic structure is quite complicated because it requires many

branch cuts, still the above expression is the standard form of the steepest descent

methods. Then following the standard procedure of the steepest descent method, we

obtain
1 1-i

J for large k , (B.10)Vk (27r)k-1
and putting everything together, we finally get

((Qk(t))) Qo (k - 1)! (-1) 2 for even k, (B.11)

(2w)k- 1 V (-1)-' for odd k.
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Appendix C

Variance of ((Qk))

Beenakker derived a general formula for the variance of linear statistic A = E• a(Tj)

assuming the interaction between eigenvalues is exactly logarithmic [56],

var (A) = 72  dq a(q)a(-q)qtanh rq, (C.1)
roo 1

a(q) - dx eiqa( (C.2)
-oo 01 + ex

Instead of Fourier transforming each ((Qk(t))), we first take Fourier transform of

log X(A),

(q) = dx eikx log e 1 + e- x (C.3)

sinhk e-kA) for -r <A <r, (C.4)

and expand it in A to get Fourier transform ak (q) of the k-th order cumulant,

& (iA)k
E(q)= Tk! 5ak(k) (C.5)
k=l

k(q) = -M (i )k . (C.6)
q sinh wq
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Then we use Eq. (C.1, C.2) to obtain

var (((Qk(t) )) S o dq M 272 q2k-1 tanh rq
= 2 d sinh 2 7q
2M2 00 q2 k-1

S2M 2  dq
0fo sinh 27rq

M 2 
22k - 1 IB2kI

3 2 2k k

where B2kA is the 2k-th Bernoulli number. And by using an asymptotic expression for

Bernoulli number, we finally get

var (((Qk(t))))
4(2k - 1)! M2

(27)2kM
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Appendix D

Correlation Function at Finite

Temperature

At non-zero temperature,

(a'(k)af(q)) =: n(k)6(k - q)

-2 sin(w(q) - w(k)) T

(w((q) - w(k))/c

-2 sin(w(k) - w(q)),r
(w(k) - w(q))/c

ds Jw(k)w(q) n(s) -

(27)2 w(s)S--2 sin(w(q) - w(s)) T
S (w(q) - w(s))/c

ds w(k)w(q)
(2r)2 w(s)

2 sin w(q)Te i(k) _

w+ (q)/c

+ 2 sin w (k)r

w(k)/c

-i(s)r }

2 sin w(k)T *())
+ eZw(k)/cJ

-2 sin(w(k) + w(s))T
(w(k) + w(s))/c

--2 sin(w(q) + w(s))T 2 sin w(q)T eiw(s)r

(w(q) + w(s))/c w(q)/c
(D.1)
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w(k)

w(k)
w(q)

1

+
1+1

+/

+

-2 sin(w(k) - W(s))T 2 sin w(k)T e
(w(k) - w(s))/c w(k)/c

2 sin w(q)T iw(s)--

w(q)/c

r
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