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Abstract

We describe experimental and theoretical studies of the connection between quantum
and classical dynamics centered on the Rydberg atom in strong fields, a disorderly
system. Primary emphasis is on systems with three degrees of freedom and also the
continuum behavior of systems with two degrees of freedom. Topics include theoret-
ical studies of classical chaotic ionization, experimental observation of bifurcations
of classical periodic orbits in Rydberg atoms in parallel electric and magnetic fields,
analysis of classical ionization and semiclassical recurrence spectra of the diamagnetic
Rydberg atom in the positive energy region, and a statistical analysis of quantum
manifestation of electric field induced chaos in Rydberg atoms in crossed electric and
magnetic fields.
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Chapter 1

Introduction

1.1 Preface

The time evolution of a classical system is locally well known, described by Hamilton

equations of motion with given initial conditions. The solutions to the equations of

motion are always possible for short time, at worst by numerical integration. However,

simple nonlinear systems with as few as two degrees of freedom can display chaotic

behavior, in which the motion is unpredictable for sufficiently long times. One char-

acteristic of such chaotic motion is the instability of trajectories whose neighbors

diverge expenentially. The evolution of these trajectories is thus highly sensitive to

initial conditions. Our finite precision in measuring the initial conditions makes pre-

diction of the long time behavior impossible. Such chaotic behavior has been found

in numerous nonlinear systems (for reviews, see [Sch84] [Gle87]), most notably the

Henon-Heiles system [HH64].

Quantum mechanics provides a more fundamental description of nature than clas-

sical mechanics. One must replace classical mechanics with quantum mechanics when

studying phenomena at nuclear, atomic, and even molecular levels. Certain phenom-

ena, such as superconductivity, manifest quantum mechanical behavior on a macro-
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scopic scale. While the link between a classically regular system and its quantum

counterpart is well established through semiclassical quantization, the connection be-

tween a classically chaotic system and its quantum counterpart is far less satisfactory.

In particular, the quantum origin and signature of classical chaos in the semiclassical

limit are not well understood. As a result, quantum chaos - the study of quantum

behavior of a classically disorderly system - has attracted a great deal of interest

in the last decade. There have been numerous theoretical investigations in nuclear,

molecular, and atomic physics [SN87] [Cas85]. However, experiments capable of de-

tailed interpretation are few. One set of studies involves microwave ionization of

hydrogen atoms [BK74] [BK87] [KvL95]. More recently, the quantum kicked rotor

has been realized expermentally [MRB+95] [RBM+95].

In this thesis, we study the Rydberg atom in strong static fields. This system

offers a rich testing ground for quantum chaos. A review is presented in [HRW89].

1.1.1 Rydberg Atom in Strong Fields

The Rydberg atom in strong static fields has become a popular system for the study

of quantum chaos. It is one of the simplest systems whose classical behavior displays

a transition to chaos. In addition, Rydberg atoms can be readily studied experimen-

tally, and the external fields can be carefully controlled. Consequently, the chaotic

nature of such a system can be investigated experimentally with great clarity and

detail. Finally, powerful numerical methods have been developed to perform accurate

quantum computations in certain energy-field regimes.

1.1.2 Theories of Quantum Chaos

There are primarily two approaches to correlating spectral features with classical

dynamics. The first attempts to discern classical chaos through a statistical analysis
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of the energy eigenvalues [BG84]. In particular, the energy-level statistics of a system

with regular classical dynamics display a Poisson distribution [BT77], whereas the

energy-level statistics of a system with chaotic classical dynamics obey the statistics

of random matrix ensembles [BGS84]. This method emphasizes small scale spectral

fluctuations, and the most often used statistical quantity is the nearest-neighbor-

spacings distribution (NNS). While this statistical approach has enjoyed success in

many systems (i.e. the diamagnetic hydrogen atom [DG86]), it sometime fails (i.e.

the odd-parity diamagnetic lithium atom [Cou95]).

The second approach provides a more intuitive link between quantum spectra

and classical dynamics through the semiclassical periodic-orbit theory developed by

Gutzwiller [Gut90]. According to this theory, each classical periodic orbit modulates

the quantum density of states with the period of the orbit. Delos and co-workers

further developed the theory suitable for computing quantum spectra, the so-called

closed-orbit theory. This theory asserts that a quantum spectrum is modulated by

each classical closed orbit - a periodic orbit that is closed at the nucleus [DD87].

This approach relates large scale spectral structures to classical trajectories and gives

recipes for computing quantum spectra by summing over closed classical orbits. This

semiclassical theory has been successfully applied to many systems, including the hy-

drogen atom in a uniform magnetic field [HMW+88], alkali atoms in a uniform electric

field [ERWS88] [CJSK94], the helium atom in a uniform magnetic field [vdVVH93],

and the rubidium atom in crossed electric and magnetic fields [RFW91].

1.1.3 The Goal of the Thesis

Previous studies have focused primarily on bound states for the following reasons:

Quantum solutions are more tractable for bound states than for the continuum; clas-

sical motion can be conveniently portrayed by surface of section; and experimental
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studies are much easier to carry out and interpret for bound states than the con-

tinuum. Nevertheless, an understanding of an unbound system is essential for es-

tablishing the connection between quantum and classical descriptions of a general

disorderly system. As a step toward this goal, this thesis presents detailed theoretical

and experimental studies of a Rydberg atom in strong fields in the unbound regime.

In particular, we relate experimental quantum spectra of a Rydberg atom in a mag-

netic field and in parallel electric and magnetic fields in the unbound regime with the

classical dynamics through the semiclassical closed-orbit theory. We also investigate

theoretically the Rydberg atom in crossed electric and magnetic fields, a system with

three degrees of freedom.

1.2 Background of Atoms in Strong Fields

1.2.1 The Hamiltonian

The Hamiltonian of a hydrogen atom in uniform electric and magnetic fields (magnetic

field along the z-axis) is

_ 1 1 12X2+2H = 2 - BLz + B2(x 2  + y 2) Fzz + Fx, (1.1)
2 r 2 8

where F and B are the electric and magnetic fields, respectively, and L, = xpy - ypx

is the z component of the angular momentum. Atomic units are used here and, with

few exceptions, throughout this thesis. Some of the commonly used atomic units

are given in Table 1.1. Relativistic effects, spin couplings between electron and the

nucleus, and the effect due to finite mass of the nucleus 1 are ignored. These effects are

too small to be observed experimentally. The mass of the electron is understood to be

'This effect for an atom in crossed fields is discussed in Chapter 8.
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Physical Quantity Unit Size in cgs
Length h2/me 2 = ao 0.529177 x 10-8 cm
Energy me4 /h 2  2.1947464 x105 cm - 1

Velocity e2/h = ac 2.18 x 108 cm/sec
Magnetic moment eh/2mc 1.4 MHz/gauss
Electric field e/a 2  5.142 x 109 V/cm
Magnetic field h/ea2 2.350518 x 109 gauss

Table 1.1: Some of the commonly used atomic units.

the reduced mass of the system. Finally, for precision studies, the BLz/2 term should

be multiplied by a factor 0 = (mn - me)/(mn + me) to account for the motion of the

nucleus [HRW81] (m, and me are the nuclear and the electron masses, respectively).

The first two terms in the Hamiltonian are the unperturbed Hamiltonian for a

Coulomb potential. The solutions are well known and can be found in any intro-

ductory quantum mechanics books. The third term is the paramagnetic interaction,

giving rise to the usual Zeeman effect. If the system has rotational symmetry about

z-axis, this term is constant and can be trivially transformed away. The fourth term

is the diamagnetic interaction. Its cylindrical symmetry breaks the spherical symme-

try of the Coulomb potential. As a result, the system becomes nonseparable and the

classical system displays a transition to chaos in a certain energy-field regime. The

fifth term is the contribution from the electric field parallel to the magnetic field. In

the absence of the magnetic field, it gives rise to the familiar Stark effect. Finally, the

last term represents the interaction of the system with an electric field perpendicular

to the magnetic field. This interaction destroys the rotational symmetry about ei-

ther field axis. The paramagnetic term is not conserved. Furthermore, the potential

becomes velocity dependent.
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1.2.2 Rydberg Atoms

Our goal is to investigate the behavior of an atom in strong external fields. This

requires the external field strengths to be comparable to the unperturbed Coulomb

potential. Table 1.1 shows that the atomic units for electric and magnetic fields

are huge, exceeding the fields one can produce in a laboratory by many orders of

magnitude. However, modest laboratory fields can perturb Rydberg atoms greatly.

To see this, consider the interaction due to the magnetic field which consists of the

paramagnetic interaction,
1

Hp = 2 Bm, (1.2)
2

and the diamagnetic interaction,

Hd = 1 B2  2) 2 4, (1.3)
8 ( y 8 i +Y,

where n and m are the principal and the magnetic quantum numbers, respectively.

The ratio of the diamagnetic to paramagnetic interactions,

Hd 1 n 4
--= B, (1.4)

Hp 4m

is small for low lying states (small n) at laboratory field strength. For example,

Hd/Hp 10- 4 for the 2P(m = 1) state at B = 6 T. However, the situation is quite

different for Rydberg states where the size of the atom can be enormous. For example,

Eqn. 1.4 yields Hd/Hp = 1 for n = 20 (B = 6 T). In fact, for n >> 1, the diamagnetic

effect is comparable to the unperturbed electronic binding energy

1
(1.5)IHol = 2n2
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The ratio of diamagnetic interaction to the unperturbed binding energy scales as

Hd 1B2 6(1.6)

IHol 4

and at B = 6 T and n = 43, Hd/IHoI . 1. Similarly the electric field interaction

[BS57],
3

HF = Fz ;• - n F, (1.7)2
is also comparable to the electronic binding energy of a Rydberg atom at laboratory

field strength. This ratio scales as

Ho I

and HF/Ho ? 1 at F = 2000 V/cm and n = 32. Both the electric field (F = 2000

V/cm) and the magnetic field (B = 6 T) strengths as well as the Rydberg atoms are

readily accessible in the laboratory.

To summarize, the effects of laboratory electric and magnetic fields are not small

compared to the unperturbed electronic binding energy of a Rydberg atom. The

resulting system is in general not separable, and its classical counterpart may undergo

a transition to chaos. Finding the connection between the quantum and classical

behavior of such a disorderly system is the main goal of this thesis.

1.2.3 Symmetries

Symmetries are important in both classical mechanics and quantum mechanics be-

cause they correspond to constants of motion and allow separation or partial separa-

tion of the Hamiltonian, and thus simplify the problem. Constants of motion reduce

the dimensionality of the system. If a time-independent system with N degrees of

freedom has n constants of motion, then the dimensionality of the system is N-n+1.
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System Continuous Symmetry Discrete Symmetry

No field E, L,7 P
Electric field only E, Lz, Cz none
Magnet field only E, La P
Parallel fields E, Lz none
Crossed fields E PZ
Arbitrary fields E none

Table 1.2: Symmetries of various systems, where E is the total energy;
L is the angular momentum; A is the Laplace-Runge-Lenz vector; C is
the generalized Laplace-Runge-Lenz vector (see Sec. 4.1.2); P is parity;
and Pz is z-parity.

For example, a hydrogen atom in an electric field, having three constants of motion

(E, Lz, and Cz), becomes one-dimensional. E is the energy, and Lz and C, are the

angular momentum and the generalized Laplace-Runge-Lenz vector in the direction

of the electric field, respectively. This system is completely separable, and the exact

solutions can always be found. That is, the classical Hamilton equations of motion

can be trivially integrated and the Schroedinger equation can be solved by separation

of variables. The hydrogen atom in a magnetic field or parallel electric and magnetic

fields has two constants of motion (E and Lz), and is thus reduced to two dimensions.

This system is not completely separable and no general methods exist for finding ex-

act quantum solutions. The mixed symmetries of the spherical Coulomb potential

and the cylindrical magnetic field potential give rise to classical chaos. Finally, the

hydrogen atom in crossed electric and magnetic fields has only one constant of mo-

tion (E), and thus remains three-dimensional. The symmetries of these systems are

summarized in Table 1.2.
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1.3 A Brief History

1.3.1 Early Progress in Diamagnetic Rydberg Atoms

The first experimental investigation of the diamagnetic effect on a Rydberg atom was

performed by Jenkins and Segr6 in 1939 [JS39]. With a hydrogen lamp and a low

resolution spectrograph, they studied n = 10 to 35 states of sodium and potassium

at B 0. 2.7 T and observed a quadratic dependence of the energy levels on magnetic

field. Schiff and Snyder explained the findings using perturbation theory [SS39].

Furthermore, they divided the energy spectrum into I and n mixing regimes.

An important discovery was made by Garton and Tomkins in 1969 [GT69]. They

carried out absorption spectroscopy on barium at B f 2.4 T using a high resolution

grating spectrograph. They made measurements through the zero field ionization

limit, where they discovered unexpected oscillatory structures in the photoabsorption

spectrum superimposed on a smooth background. The frequency of this modulation

is very close to 1.5 times the cyclotron frequency, corresponding to the separation

of the Landau states of free electrons in a magnetic field. Hence this modulation

has been dubbed quasi-Landau oscillation. This important work stimulated modern

interest both experimentally and theoretically in Rydberg atoms in strong fields.

An explanation of this phenomenon was first provided by Edmonds [Edm70] and

later more quantitatively by Reinhardt [Rei83]. They showed that these oscillations

are correlated with a periodic orbit of the electron moving in a plane perpendicular

to the magnetic field. The period of the orbit turns out to be the same as the period

of the quasi-Landau oscillations. This classical periodic orbit hence manifests itself

as a sinusoidal oscillation in the quantum photoabsorption spectrum.
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1.3.2 Closed-Orbit Theory and Scaled-Energy Spectroscopy

In the mid 1980's, Welge and co-workers carried out a series of experiments on hy-

drogen atoms in a magnetic field using pulsed VUV and UV lasers with resolution

of 0.07 cm - 1. By Fourier transforming their spectrum, they observed a peak at the

period of the quasi-Landau oscillation, and also peaks corresponding to the periodic

orbits out of the plane [MWHW86][HWM+86]. In an attempt to make a quantitative

connection between classical orbits and the quantum spectra, Delos and co-workers

developed the closed-orbit theory [DD87]. In this theory, each classical closed orbit

modulates the quantum spectrum with the period of the orbit. The strength of the

modulation (the recurrence strength) is determined by the short-time stability of the

given orbit.

To characterize such a recurrence more quantitatively, Welge and co-workers de-

veloped a novel experimental technique: scaled-energy spectroscopy. They exploited

a classical scaling law of the system. The classical dynamics depends on E = E/B ,

not on E and B separately. By varying the experimental parameters to keep the clas-

sical scaled energy constant, they were able to observe recurrences associated with

classical orbits with unprecedented precision and detail [HMW+88] [MWW+94].

1.3.3 Spectroscopy on Lithium

The first laser spectroscopy on Li in external fields was performed by Liberman and co-

workers using a single UV laser [CLKP+86b]. Among other findings, they observed

the core induced anticrossing in the energy levels [CLKP+86a]. In addition, they

measured this anticrossing in Li in parallel electric and magnetic fields [CLLK+89].

The laser spectroscopy of Rydberg atoms in strong fields developed here at MIT

was first carried out by Kleppner and co-workers. The first experiments employed a

sodium atomic beam and a pulsed dye laser. Among other findings, this work provided
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evidence of an approximate symmetry [ZKK80] and led to its theoretical discovery by

Herrick [Her82]. Kash, Welch and Iu, our predecessors on the experiment, replaced

sodium with lithium and the pulsed dye laser with two CW dye lasers. They per-

formed high resolution spectroscopy on lithium in a strong magnetic field. Among

other important, contributions, they observed unexpected behavior such as narrow

resonances and orderly structures in the positive energy region [WKI+89b][IWK+89].

Some of the findings were eventually explained by Delande and Gay based on statis-

tical ideas from random matrix theory [GDG93].

1.3.4 Numerical Advances

Advances in computing power and computational techniques have resulted in steady

progress in accurate quantum computations.

Clark and Taylor were among the first to use the Sturmian basis, an efficient

basis set for calculating highly excited states of hydrogen in a uniform magnetic field

[CT82]. An oscillator basis in semi-parabolic coordinates was used by Wintgen and co-

workers [WF86a]. Their result shows good agreement with the experimental spectra

taken by Welge and co-workers far into the classically chaotic regime [WHW+86].

Furthermore, Wintgen and Friedrich performed a nearest-neighbor-spacings study

with their numerically computed quantum spectra. The result displays a transition

to a Wigner-like distribution as the classical counterpart undergoes a transition to

chaos [WF86b]. Large scale calculations have also been carried out by Wunner and co-

workers. Their computations agree with experimental results up to 12 cm - 1 below the

ionization limit [WZW+87]. O'Mahony and Taylor also performed similar calculations

for nonhydrogenic atoms [OT86].

More recently, spurred by high precision spectra from our laboratory, Delande

and Gay developed methods of complex rotation to achieve accurate quantum com-
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putations up to 30 cm 1 above the ionization limit [IWK+91]. This method has been

extended to hydrogen in crossed electric and magnetic fields by Main and Wunner.

They computed the quantum spectra above the classical ionization limit (the sad-

dle point) in their investigation of Ericson fluctuations in the crossed fields system

[MW92].

1.4 Overview of the Experiment

In this thesis, we report the result of an investigation of Rydberg atoms in strong static

fields. Experimentally we have conducted high resolution spectroscopy on lithium.

The CW lasers needed to perform high resolution spectroscopy on hydrogen Rydberg

states are not readily available. On the other hand, a two-step excitation scheme for

atomic lithium, the most hydrogen-like alkali atom, can be easily achieved as shown

in Fig. 1-1. In the presence of a magnetic field, parity is conserved. Our excitation

scheme excites the odd parity final states. Due to the relatively small quantum defect

of the P states (e 0.05), the quantum spectra of odd parity states have been shown

to be very hydrogenic [WKI+89a]. In the presence of an electric field, the final states

are a superposition of both even and odd parities. Due to the large quantum defect of

the S states (# 0.4), the quantum spectra of lithium and hydrogen are in general very

different. In particular, lithium atoms in strong fields can exhibit core induced chaos

[Cou95] [CSJK95]. In this thesis, we will primarily study the recurrence spectra -

the Fourier transform of the scaled-energy spectra - of the short period orbits, which

have been shown to be nearly identical to those of a hydrogen atom [ERWS88]. As we

will show, the lithium spectra can be interpreted in terms of the classical dynamics

of hydrogen.

Our experiment employs a lithium atomic beam that travels along the axis of a

split-coil superconducting magnet to reduce the motional electric field effect. A pair
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Rydberg
State

Dye Laser (Kiton Red)
7610 - 630 nm

3S

Dye Laser (LD7.0.) .....
735 nm

2P

735 nm

Figure 1-1: Excitation scheme. Lithium atoms are excited from 2S to
3S through a two-photon transition by a dye laser, and another dye
laser makes the transition from 3S to the Rydberg state. (Dye names
are enclosed in the parentheses.)

of field plates provides an electric field parallel to the atomic beam. Laser beams

intersect the atomic beam at right angles to reduce Doppler broadening. One laser

drives the 2S -+ 3S two-photon transition, and a second laser excites the Rydberg

states that are field ionized. The resulting ions are detected by a microchannel plate

(MCP). To generate conventional energy spectra, the laser frequency is varied at fixed

electric and magnetic fields. To perform scaled-energy spectroscopy, the magnet is

ramped, and the electric field and the laser frequency are varied accordingly in order

to keep the classical parameters constant.

1.5 Outline of the Thesis

This thesis deals with experimental and theoretical aspects of quantum chaos in

Rydberg atoms in strong external fields. Its content is divided into three parts:
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* Experimental details (Ch2 and Ch3).

* Theoretical background (Ch4 and Ch5).

* Experimental and theoretical results (Ch6, Ch7, and Ch8).

Chapter 2 presents a detailed account of the experimental setup. Primary empha-

sis is on the magnet, the interaction region, the detector, and data taking procedures.

Chapter 3 describes a new excitation scheme which we have recently implemented.

It includes a discussion of the fine and hyperfine structure of lithium as well as such

experimental details as lasers and optics. However, all data presented in this thesis

were taken with the old excitation scheme.

Chapter 4 and chapter 5 serve as backgrounds for classical and quantum chaos,

respectively. Chapter 4 addresses the issues related to integrable and nonintegrable

classical systems, and the origin of classical chaos. Chapter 5 provides necessary

background for a semiclassical approach to quantum chaos, the closed-orbit theory.

Chapter 6 deals with Rydberg atoms in parallel electric and magnetic fields in the

continuum. The focus here is on the transition to chaos as the system evolves from

an electric field to a magnetic field dominated region. The main results include the

experimental observation of bifurcations of closed orbits, and the connection between

recurrence spectroscopy and classical chaotic ionization.

Chapter 7 discusses diamagnetic Rydberg atoms in the positive energy regime.

The main result is the transition to regular motion as the scaled energy increases

positively. The semiclassical connection to quantum spectrum is established by the

recurrence spectroscopy.

Chapter 8 deals with Rydberg atoms in crossed electric and magnetic fields. The

techniques for characterizing classical chaos are presented. The quantum spectra are

computed numerically. Finally, the signature of classical chaos in quantum spectra is

revealed by a statistical analysis of eigenvalues. In particular, the nearest-neighbor-



1.5. OUTLINE OF THE THESIS 31

spacings distributions are shown to undergo a transition from Poisson-like behavior

to Wigner-like behavior as the classical system displays a transition to chaos.

Finally, eight appendices provide additional experimental and numerical details.
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Chapter 2

Experimental Techniques

The goal of the experiment is to measure the energy levels of lithium Rydberg

atoms in strong electric and magnetic fields. The method is based on laser spec-

troscopy in which the atoms are excited by the scheme that was shown in Fig. 1-1.

The excited atoms are detected by field ionization.

A simplified schematic diagram of our apparatus is shown in Fig. 2-1. The ex-

periment employs a lithium atomic beam that travels along the axis of a split-coil

superconducting magnet to reduce motional electric field effect. A pair of field plates

provides an electric field parallel to the atomic beam. The laser beams intersect the

atomic beam at right angles to reduce Doppler broadening. A fixed frequency dye

laser drives the 2S -+ 3S two-photon transition, and a second tunable dye laser excites

the Rydberg states. The excited atoms are field ionized, and the ions are detected

by a microchannel plate (MCP). To generate a conventional spectrum, the laser fre-

quency is varied at fixed electric and/or magnetic fields. To perform scaled-energy

spectroscopy, the magnet is ramped and the electric field and the laser frequency

are varied accordingly in order to keep the classical parameters constant. Finally, to

calibrate the energy scale, the laser frequency is measured accurately with an iodine

absorption cell and a high resolution calibrated Fabry-Perot etalon.
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Figure 2-1: Schematic diagram of the apparatus.
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2.1. ATOMIC BEAM

Major features and various details of the apparatus have been described in a previ-

ous thesis [Kas88]. Here we describe in detail only the new aspects of the experiment,

namely, the magnet, the interaction region, and the detector.

2.1 Atomic Beam

The atomic source produces a collimated beam of lithium atoms with sufficient flux to

produce strong signals in the interaction region. Although the laser beams intersect

the atomic beam at right angles, any divergence of the atomic beam can give rise

to first-order Doppler broadening. Furthermore, the finite interaction time, which

depends on the atomic beam velocity and laser beam size, gives rise to transit time

broadening. Consequently, the properties of the atomic beam largely determine the

experimental resolution. In this section, we discuss these issues and the atomic beam

source itself.

2.1.1 Atomic Beam Source

The tube oven used by our predecessors is ill-suited to the current experiment because

of the Lorentz force arising from the interaction between the large current that heats

the tube oven and the huge fringing field of our magnet (see Sec. 2.3). A mu-metal

shield is not useful because the magnetic field at the oven is too large (1 T).

We constructed a lithium oven following a design by Chun-Ho Iu at SUNY-

Stonybrook [Cou95]. The essential feature is a 3/4" diameter stainless rod bored

out to hold lithium. The oven is sealed except for a 0.040" aperture which allows the

lithium atoms to escape, thus forming an atomic beam. Four 20 Q heaters, connected

in parallel, deliver up to 1400 W of heating. We control the current through the

heaters with a variable transformer. We usually operate the oven at 650 °C, which

requires about 320 W of power, corresponding to 2 A through each heater. The tem-
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perature at the oven is monitored with a chromel-alumel (type K) thermocouple. The

time required to attain this equilibrium temperature is about 1 1/2 hours. At this

operating temperature, 2 grams of lithium usually last several hundred hours.

The oven is surrounded by a water cooled cold shield which condenses most of the

lithium except that which passes through a 1/2" diameter hole. The oven assembly is

mounted on a flange at the top of the oven manifold. A 6" diameter bellows between

this flange and the rest of the oven manifold allows adjustments of the oven position in

order to maximize the flux through the interaction region. The oven and interaction

region are about 40 cm apart. A 2 3/4" conflat gate valve, installed between the oven

manifold and the interaction region, acts as an on-off shutter for the atomic beam

and allows independent vacuum operation on either side of the valve.

The vacuum of the oven manifold is maintained by a 2" Varian M2 diffusion pump,

backed by a Varian SD-90 vacuum pump. A Varian 322 water-cooled baffle reduces

backstreaming into the oven manifold. The pressure in the foreline is measured with

a Hasting DV-6M thermocouple gauge, while the pressure in the oven manifold is

measured with a CVC GPH-320B Penning gauge. Overnight baking usually lowers

the pressure to less than 10-' Torr, below the lower limit of the Penning gauge.

At one point, we were concerned that diffusion pump oil was contaminating our

interaction region, leading to undesirable stray electric fields. A Varian V60 turbo

pump was installed. However, we found no evidence that the turbo pump reduces the

stray field. Moreover, the fringing magnetic field interferes seriously with the proper

operation of the turbo pump. Consequently, we switched back to the diffusion pump.

Future users should keep in mind that proper magnetic shielding must be provided

before a turbo pump can be operated in the presence of the magnetic field.

Finally, the source of our lithium is a 1/8" diameter lithium wire from LITHCO.

Its natural abundance consists of 6% 6Li and 94% 7 Li. Fortunately, our excitation

scheme permits laser selection of either isotope. While lithium reacts vigorously with
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Atomic beam flux 1.3 x 1014 atoms/cm2/sec
Atomic beam current 1.6 x 1012 atoms/sec
Atomic density 4.2 x 108 atoms/cm3

Velocity, v 2 x 105 cm/sec
Divergence, 50 3 x 10-3 radian
Diameter 2 mm

Table 2.1: Atomic beam properties in the interaction region.

water, we find that exposing lithium to air temporarily while loading the oven is

relatively harmless, though this should not be done in a humid environment.

Table 2.1 describes the atomic beam properties for an assumed operating temper-

ature (650 'C). 'These are based on elementary kinetic theory [Ram56].

2.1.2 Doppler Broadening and Transit Time Linewidth

The atomic beam and the laser beams intersect at right angles in the interaction

region. To estimate the residual first-order Doppler broadening, we consider atoms

with velocity v in a beam with divergence 60. These atoms experience a spread in

resonance frequency

6 VD1 = () V O. (2.1)
C

The transition wavelength is about 610 nm. Using the data in Table 2.1, the

residual first-order Doppler broadening is SvD1 = 10 MHz.

Second-order Doppler broadening is

VD2 = () V. (2.2)
We find 5VD2 = 2 kHz, which is negligible compared with the residual first-order

We find 6VD2 = 11 kHz, which is negligible compared with the residual first-order
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Doppler broadening and other broadening mechanisms in this experiment.

Our spectral resolution is also limited by the finite interaction time of the atomic

beam and the laser beam. For an atomic beam travelling at velocity v intersecting a

laser beam at its waist w at a right angle, the linewidth due to finite interaction time

is about

1 v
luto- = 2 (2.3)

27rw2w

When the laser beam is focused to a beam waist of 50 pm, the transit time

broadening becomes 5utof = 7 MHz.

Finally the natural linewidth of 3S state is about 6 MHz while those of the Rydberg

states are negligible. The laser linewidth is about 1 MHz. Our final experimental

resolution, about 25 MHz, is given roughly by the sum of all the effects discussed.

2.2 Lasers and Optics

Two Coherent CR699-21 ring dye lasers are used to excite lithium atoms to Rydberg

states in a two-step excitation scheme. Each laser is frequency stabilized to a reference

cavity with a resulting linewidth of about 1 MHz. However, the cavity and hence

the laser can drift as much as 100 MHz/hour depending on the stability of the air

temperature and pressure. To achieve optimum output power, the optics must remain

clean and well aligned. This involves substantial effort, much of which is described in

a previous thesis [Kas88]. Finally to reduce dye instability, we cool the dye jet with

a Neslab CFT-75 recirculating chiller.

The laser that drives the 2S -4+ 3S two-photon transition (735 nm) (the red laser)

uses LD700 dye and is pumped by a Coherent CR3000K krypton-ion laser. The

output power of the ion laser is relatively stable, even though its power supply is
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highly unreliable. We operate the krypton-ion laser multiline at 676.4 nm and 647.1

nm. At full current (60 A), the output power is about 6 W. At this pumping power, we

usually get about 1 W of single-mode output power from LD700 at 735 nm. Although

the dye laser power increases as a function dye circulator pressure, the dye jet tends

to be unstable at higher pressure. We operate the dye jet at 40 psi.

The laser that drives the 3S to Rydberg transition (610 nm to 630 nm) (the yellow

laser) uses Kiton Red dye and is pumped by a Coherent Innova 100-10 argon-ion laser

operating on the single line at 514.5 nm. At maximum current (50 A), its output

power is about 20 W multiline and 10 W at 514.5 nm. However, the dye jet must be

run at an unusually high pressure (80 psi) at this pumping power. The jet nozzle made

by Coherent is not suitable for this operating pressure. It causes dye overheating and

related instabilities 1. Consequently, we pump Kiton Red with 7 W single line at

514.5 nm (37 A) at a jet pressure of 55 psi. The single-mode output power is 250

mW to 300 mW at 620 nm.

Both dye laser beams are expanded with telescopes and overlapped with a dichroic

mirror (99% reflection at 735 nm and 70% transmission at 620 nm). They are then

focused by a 40 cm focal length lens onto the atomic beam in the interaction region

after passing through a broadband AR coated window. At the interaction region,

the beam waist of the red laser is about 50 pm and that of the yellow laser is about

65 pm. The intersection between the red laser and atomic beam is optimized by

maximizing the fluorescent signals (see Sec. 2.4.1). To achieve good overlap between

the two laser beams, the beams are first temporarily deflected by a plane mirror before

the window and then overlapped at their foci through a 50 pm diameter pinhole.

After removing the temporary mirror, the beams usually overlap well enough to give

detectable Rydberg signals. The final overlap is optimized by maximizing the Rydberg

'Recently, a German laser company, Radiant Dyes Laser Accessories GmbH, developed a new

nozzle that is suitable for pressure up to 100 psi.
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signals (see Sec. 2.5.1).

A small fraction of each laser beam is deflected from the main beam path for

frequency monitoring. A 1.5 GHz free spectral range Fabry-Perot etalon is used to

display the spectral characteristics of each laser. The resolution is rather low, but is

adequate for qualitative purposes.

To set the laser frequency to within a few GHz of the desired transition frequency,

we use a wavemeter consisting of a Michelson interferometer with a moving arm and

a single-frequency temperature stabilized HeNe laser. The wavelength is found by

comparing the number of interference fringes of the HeNe laser to the unknown laser

produced by moving one of the interferometer arms. The HeNe frequency is known to

within 2 GHz. The ratio of the number of fringes times the HeNe frequency thus gives

the wavelength of the unknown laser. The precision is about 2 x 10-6. This is sufficient

to find the 2S -4 3S two-photon transition frequency. However, this uncertainty is

too large for a precise measurement of the yellow laser frequency used to determine

the Rydberg energy levels accurately. The latter determination is accomplished by

an iodine reference cell and a high resolution Fabry-Perot etalon.

Iodine absorption signals serve as our frequency reference. A temperature and

pressure-stabilized Fabry-Perot etalon [Iu91] is used to transfer the known frequency

of an iodine peak to a Rydberg transition. The etalon has a nominal FSR of 300 MHz

and a finess of about 200 at 620 nm. The calibration of the FSR is achieved by using

Rydberg levels of lithium as the frequency standard. The most recent calibration

yields an FSR of 298.93779(3) MHz [Iu91]. The accuracy in assigning energies of

Rydberg states is about 0.001 cm - 1, primarily limited by the uncertainty in the

FSR calibration and the exact position of a given iodine peak. This is close to our

experimental resolution mentioned in Sec. 2.1.2. During each scan of the yellow

laser, the normalized iodine absorption signals and the Fabry-Perot output as well as

Rydberg signals are recorded (see Fig. 2-6 for such a scan).
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Rated central field 6 tesla
Rated magnet voltage 2.5 V
Homogeneity over 1 cm 3 volume 0.001
Inductance 112.8 henry
Inner (bore) diameter 5.25"
Outside diameter 13.25"
Length 7.5"

Table 2.2: Specifications of the magnet.

2.3 The Magnet

The magnet provides a strong and uniform magnetic field at the laser-atom interaction

point. We use a 6 T split-coil superconducting magnet, made by American Magnetics

in 1991. The windings consist of many filaments of superconductor, in our case,

Nb 3Sn, embedded in a copper matrix. The magnet is impregnated with epoxies to

prevent the movement due to the Lorentz force, the so-called "training" effect. Any

microscopic motion can quench the magnet. Finally, the magnet is welded into a 50-

liter liquid helium dewar which sits inside a liquid nitrogen dewar. The magnet can

provide magnetic fields up to 6 T with a homogeneity of 0.001 over a 1 cm 3 volume.

These and certain other specifications of the magnet are shown in Table 2.2.

The magnet is energized by an IPS 100A power supply made by Cryomagnetics.

The basic operating components are a sweep generator, a high current power supply

and a persistent switch heater power supply. The operational procedures are straight-

forward and are summarized in Appendix A. The vacuum jacket of the cryostat is

evacuated by a Varian V-60 turbo pump. At room temperature, the pressure can go

down to 1-2 x 10-6 Torr (monitored by an ion gauge). When the dewar is filled with

liquid helium, the pressure drops to 1 x 10-8 Torr. Detailed cryogenic considerations

are provided in Appendix B.
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2.3.1 Magnetic Field Profile

The magnet is a "high-field" type superconducting magnet. Apparatus such as a

turbo pump or a multi-channel electron multiplier does not work well in high magnetic

fields. For this reason, it is important to know the field in the vicinity of the magnet.

We have calculated the field by methods described in Appendix C. Figure 2-2 shows

the result of Bp and B, for various z and p. All calculations are for 1 T at the

center of the magnet. Figure 2-3 shows a comparison with measurements made with

a gaussmeter. The agreement appears reasonable.

2.3.2 Field Monitoring

The most straightforward method for monitoring the magnetic field depends on the

linearity between the field and the current. Our magnet is a type II superconductor.

The Meissner effect, a phenomenon of the repulsion of magnetic field by a super-

conductor, is incomplete in such a superconductor. (Kittel provides an excellent

introduction to this subject [Kit86].) An effect known as flux jumping, in which the

field lines penetrate into the superconductor, generates a non-linearity between the

magnetic field and the current. The filaments of our superconductors are twisted to

reduce this effect. To calibrate the field to current ratio, the field is determined by

using the atoms themselves (see Sec. 2.6.1). Currents up to 10 A are measured with

a Keithley 197 DMM current meter. The calibration yields 1158.5(1.0) Gauss/A.

To measure currents greater than 10 A, a shunt, whose resistance has been carefully

calibrated, has been connected in series with the magnet. Hence the voltage reading

across the shunt effectively translates into the magnetic field in the interaction region.

Our scaled-energy spectroscopy (Sec. 2.6.3) relies on this proportionality. The overall

uncertainty in the field determination, as described in Sec. 2.6.1, is about -±20 gauss.

We can also monitor the field in the interaction region using a Hall probe. We
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employ an F.W. Bell BHA-921 cryogenic semiconductor probe because of its wide

dynamic range (beween -15 T and +15 T) and its wide operating temperature range

(between -269 `C and 100 °C). The Hall probe is driven by a constant temperature

stabilized current supply. The electronic details are described in a previous thesis

[Kas88]. We usually place the Hall probe about 1" away from the interaction point.

Figure 2-4 shows the Hall probe voltage versus the magnetic field measured with

the atoms (Sec. 2.6.1). The linear relationship suggests that we could calibrate the

magnetic field to Hall voltage ratio in the same way as the field to current ratio. Since

the Hall probe is not at the interaction point, this cannot provide a reliable absolute

calibration. Nevertheless the Hall probe can be used differentially over small changes

in field. We measure the absolute fields at the end points of a small field interval, and

thus obtain AB/AVH. By measuring the Hall voltage along the interval, the absolute

magnetic field is deduced at every point.
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2.4 Interaction Region

The interaction region provides the environment in which the atoms are excited

by the lasers. The requirements of this interaction region are threefold. First, it

must be equipped to collect the 2P -+ 2S cascade fluorescence in order to monitor

the 3S population. Next, it must be capable of providing a uniform electric field at

the laser-atom interaction point. Finally, it must provide an environment with very

small stray electric fields.

A schematic diagram of the interaction region is shown in Fig. 2-5. It is con-

structed from an aluminum cylinder 2" long and 2" in diameter. Two mirrors and a

1/4" diameter light pipe are used to collect the fluorescent light (see Sec. 2.4.1) . Two

1 mm diameter knife-edge baffles (not shown) are installed along the laser beams to

minimize the scattered light. The inside surfaces of the interaction region are coated

by Aqua-dag, a black material that further reduces the scattered light.

2.4.1 Fluorescence Detection

The 3S state population is monitored by observing the 2P -+ 2S cascade fluorescence

at 670 nm. Two mirrors in the interaction region increase the collection efficiency

as shown in Fig. 2-5. The hole in the lower mirror holds a plexiglass light pipe.

The upper mirror focuses the light onto the light pipe which is then coupled into a

glass fiber bundle with 1/4" active diameter. The 12 foot long fiber bundle, made

by General Fiber Optics, Inc, has an overall transmission of about 25%. Exiting

the fiber bundle, the light passes through two Ealing narrow bandpass filters (about

10 nm bandwidth) at 670 nm before being focused onto a RCA Model C31034A

photomultiplier tube (PMT). This PMT has the special features of a very low dark

count rate and reasonable quantum efficiency at 670 nm. Its specifications are shown

in Table 2.3. The PMT becomes inoperative in the presence of few thousand gauss
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Photocathode material GaAs
Bias on the cathode 1680 V
Quantum efficiency at 670 nm 12%
Quantum efficiency at 813 nm 10%
Gain 6 x 105

Dark counts at -30 oC 5 cps
Active area 4 mm x 10 mm

Table 2.3: Specifications of the RCA C31034A PMT.

of magnetic field. The long length of the fiber bundle allows us to locate the PMT

sufficiently far from the magnet. The PMT is housed in a Products for Research

Model TE-104-RF cooler running at -30 'C. The bias on the cathode is supplied by

a Bertan Model 315 high voltage power supply. The pulses from the anode are fed

into a Modern Instrument Technology (MIT) Model F-100T amp-discriminator whose

TTL output goes to counters.

2.4.2 Electric Field Plates

To apply an electric field, we use a pair of 1 1/2" diameter field plates as shown

in Fig. 2-5. The plates have 0.125" holes in the middle for the atomic beam to pass

through. The uniformity of the field at the interaction point depends on the size of the

holes, the plate diameter, and the plates' separation. The separation should be much

less than the plate diameter. On the other hand, it should be much greater than the

diameter of the holes. We found the optimum separation to be about 0.75", which is

calculated to yield an rms field nonuniformity of 0.3% over a 1 mm3 volume. Biasing

the field plates symmetrically with respect to ground improves the field uniformity. To

detect photoionized Rydberg atoms, obviously the polarity of the bias is important.

For example, ion detection requires the field plate closer to the detector be biased

negative. A dual +/- 150 V amplifier built by Robert Lutwak is used to bias both
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plates. It consists of inverting and noninverting amplifiers. The input is controlled

by a D/A converter which outputs a voltage between 0 and 10 V. The difference in

magnitudes between the two channels can be made less than 1 in 105.

2.4.3 Stray Electric Field

Rydberg atoms are greatly affected by electric fields (see Eqn. 1.7). In particular,

a stray electric field has the undesirable effects of causing both parity states to be

excited, shifting the atomic levels, and otherwise complicating the spectrum. As a

result, a major requirement for the interaction region is to provide an environment

with a very small stray electric field.

Any contaminant, especially water, carried in by the atomic beam tends to form

an insulating layer on the surfaces of the interaction region. This layer holds charge

which in turn induces a stray electric field. One obvious remedy is to have all the

surfaces of the interaction region far away from the laser-atomic beam intersection

point.

Without the field plates, all the surfaces of the interaction chamber are at least 1"

away from the interaction point. In addition, the Aqua-dag coating is conductive and

hence reduces stray electric field. We also found that baking the interaction region

significantly reduces stray electric fields. A 20 Q heater is installed on one of the

end plates of the interaction region cylinder along with a type T thermocouple. We

usually bake the interaction region around 90 'C for several days. This end plate also

holds the Hall :probe mentioned in Sec. 2.3.2.

We can estimate the magnitude of this stray electric field by observing one partic-

ular n manifold of the lithium spectrum in the absence of the magnetic field. In the

presence of a stray electric field, we no longer excite just the P state but the entire n

Stark manifold. Because of the linear Stark effect, the width of this manifold, AVs,
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Figure 2-6: Experimental measurement of the stray electric field with
lithium n = 76 manifold. The stray field is about 5 mV/cm. The iodine
absorption lines and the transmission peaks of the 300 MHz etalon are
shown above.
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is proportional to the magnitude of the stray electric field [Kas88],

1.28 x 10-4cm - 1  
(

AVs f V cm n2F" (2.4)V cm

Figure 2-6 shows the result of such a measurement for n = 76. The effect of the stray

electric field on this particular day is hardly discernible compared to its experimental

linewidth. The field is about 5 mV/cm. However, the field does not remain constant.

It builds up as the atomic beam passes through. Smaller atomic beam flux helps

somewhat (i.e. running the oven at a lower temperature), but the stray electric field

strength may reach as high as 50 mV/cm. When the field plates are installed, their

surfaces are only 0.325" away from the laser-atom intersection point, and the stray

electric field can increase to about 100 mV/cm.

2.5 Detection of Rydberg Atoms

The Rydberg atoms are detected by ionizing them and collecting the ions with a

charged particle detector, to be described in Sec. 2.5.2. For Rydberg atoms that are

photoionized, the photo-ions are swept out of the interaction region and accelerated

to the detector. For Rydberg states that are not photoionized, the atoms drift out

of the interaction region and into a large electric field region, where they are field

ionized.

2.5.1 Field[ Ionization

The process of electric field ionization has been reviewed by Gallagher [Gal94]. How-

ever, for lithium it is known that the threshold for ionization is given by a simple

classical consideration [LKK78]. The potential due to the Coulomb and external
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electric field is
1

V(p,z) = + Fz. (2.5)
(P 2 + Z2)1/2 +Fz(2)

1/2 /21/
It has a local maximum at z = -1/F 1 / 2 and Vma,, = -2F 1/2. If the electron energy

is greater than Vm,, the electron can escape classically, a process that rapidly leads

to ionization. This critical field can be found by equating the energy with Vmaz,

1F, = 16n- (2.6)
16

The n - 4 dependence implies that the high n Rydberg states can ionize in a relatively

small electric field. The magnetic field along z direction has no effect on the motion

in the z direction.

The ionizing field in our system is created by the potential between the detec-

tor and the interaction region as described in the next section. Typically, the field

strength is about 80 V/cm which, according to Eqn. 2.6, will ionize any Rydberg

state higher than n = 38. However, we also detect Rydberg states lower than n = 38,

in particular the n = 21 states that are used for field calibration (see Sec. 2.6.1).

We believe this latter detection is due to collisional ionization. The idea here is that

Rydberg atoms have large radii (a n2) and thus the cross sections are rather large.

This poses the possibility that not all Rydberg atoms excited are detected. Indeed

we actually detect more Rydberg states at n = 76 than n = 21. Fortunately, the

oscillator strength for 21P is rather strong, and we only do spectroscopy on n = 21

for field calibration. Consequently, we are only concerned with location of the peak,

not the height of the peak.
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2.5.2 The Detector

Detecting Rydberg signals in a strong magnetic field is a formidable task. Field ion-

ization requires a high gain charged particle detector that is relatively insensitive to

magnetic fields. The conventional charged particle detectors, such as dynode elec-

tron multipliers or channeltrons, rely on cascading charge multiplication, in which

electrons bounce from surface to surface, creating a cascade of secondary electrons.

This process, however, is seriously impaired by a magnetic field. For example, the

diameter of a typical channeltron is about 1 mm. The cyclotron radius of a 2 keV

electron at 1 T is about 150 pm. The electrons tightly spiral about the magnetic field

lines, and this action inhibits the charge multiplication process. In a channeltron, we

have observed that the gain drops quickly to zero at only few hundred gauss.

Early Efforts

All detectors that are immune to magnetic field share one serious drawback: They

require very high energy thresholds for detection. A surface barrier diode has a thresh-

old energy of 20 keV for electrons and even higher for ions. High gain scintillators

like Nal require at least 100 keV threshold energy. Achieving this energy requires

either the detector or the interaction region to be floated to least 20 kV. Our prede-

cessors used a surface barrier diode. They floated the interaction region to 20 kV and

detected electrons. However, high voltage breakdown was a constant problem.

We spent a great deal of time developing a more efficient detection scheme. Ini-

tially, we tried a scintillator that has a relatively low threshold energy, about 12 keV.

It consists of a thin-film of a strontium alloy on a sapphire substrate, made by Quan-

tex. While not affected by high magnetic field, it exhibited a long afterglow after a

strong signal. That is, it kept scintillating (even in the absence of charged particles)

for several seconds. Attenuating the signals to avoid this afterglow resulted in the
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Number of channel plates 3
Maximum bias per plate 1000 V
Channel diameter 12 pm
Gain 108
Pulse height at full gain 50 mV
Diameter of the active area 2 cm

Table 2.4: Specifications of the microchannel plate (MCP).

loss of small signals. We also found that the quantum efficiency was much lower than

specified. Consequently, we could only detect a tiny fraction of the excited Rydberg

atoms.

Present Detector

We finally chose to detect ions using a microchannel plate assembly (MCP) made

by Galileo Electro-Optics Corporation. The charge multiplication process is similar

to that of a channeltron, but each channel of a MCP has only a 12 pm diameter,

which is significantly smaller than the cyclotron radius mentioned above. We expect

the multiplication process to be relatively unaffected by a moderate magnetic field.

The parameters of the MCP are given in Table 2.4.

We determine the gain by measuring the average output pulse height at different

magnetic fields. The pulses from the anode are enhanced by an MIT Model F-100T

amp-discriminator 2, whose TTL output goes to counters. We set the discriminator

level just slightly above the noise level of the discriminator, which has been carefully

calibrated with a Wavetek pulse generator to be about 0.5 mV. That is, only pulses

with pulse heights of at least 0.5 mV will be registered. Figure 2-7 displays the gain

of the MCP as a function of the magnetic field. As can be seen, the gain drops by

roughly one order of magnitude in a 0.6 T magnetic field. The average height of the

2 Care should be taken here since the magnetic field induces a slight noise in the amplifier
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Figure 2-7: The gain of the MCP in a magnetic field.

corresponding output pulses is about 2 mV, which fortunately is well above the noise

level. Consequently, the drop in gain does not affect the signal counts greatly.

Figure 2-3 shows that to ensure a field of 0.6 T or less at the MCP for a 6 T

field at the center of the magnet, the MCP must be placed at least 30 cm away from

the center of the magnet. To convince ourselves that the MCP can actually collect

all the ions at 30 cm, we did a numerical computation of the trajectory of a lithium

ion travelling in the fringing field of the magnet and the guiding electric field. The

magnetic field is assumed to be about 6 T at the center of the magnet. The spatial

field configuration is found as described in Sec. 2.3.2. The electric field is assumed

to be 80 V/cm (the actual electric field in our system) constant in the z direction.

The initial conditions are taken to be those of a most divergent particle, namely p =

0.5 mm, vP, = :2.0 x103 cm/sec, z = 0, and v, =2.0 x105 cm/sec. Physically these

parameters correspond to a particle at 0.5 mm off the axis with a divergence angle

of 0.02 radian. Figure 2-8 shows the result. At small z, the magnetic field confines
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Figure 2-8: The trajectory of a lithium ion in the fringing field of the
magnet from the interaction region to the MCP; the horizontal axis is
z and vertical axis is p; the cross marks the location of the MCP; and
the field parameters and initial conditions are discussed in the text.

the ion in the p direction. The ion spirals around the field line and at the same

time accelerates in the z direction. Farther from the center of the magnet at z =

50 cm, the ion begins to lose its confinement in the p direction. At still larger z, it

completely loses its confinement in the p direction and accelerates in the z direction.

The calculation clearly shows that at z = 30 cm, the ion has only diverged about 2

mm in the p direction. The active diameter of the MCP is about 2 cm (see Table 2.4).

As a result, the MCP located at 30 cm easily intercepts all the oncoming ions.

We detect lithium ions rather than electrons because the background noise is

lower. Also, ions can be conveniently collected on a negative biased cathode, allowing

the output anode to be at ground potential. To detect electrons, the input plate must

be biased at a reasonably high voltage to ionize the Rydberg atoms and to accelerate

the resulting electrons. The multiplier output needs to be at an even higher voltage
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in order to accelerate the secondary electrons. As a result, the anode must be floated

at 5 kV. The signals must then be coupled out capacitively. Figure 2-9 shows such a

biasing circuit.

Though the MCP can be biased up to -3 kV (Vinput - Voutput), we typically use

-2.4 kV. At larger voltage, the signal counts do not increase appreciably. This is

important because the lifetime of a MCP is seriously reduced with increasing bias.

The bias voltages come from Bertan Model 315 high voltage power supplies. The

detector assembly is mounted on a conflat flange on the axis of the atomic beam. To

avoid noise induced by the atomic beam and possible destruction of the detector, a

thin carbon foil, made by the Arizona Carbon Foil, Inc. and mounted on a copper

mesh, is used to stop the atomic beam. We apply a -2.3 kV bias on the carbon foil

to create the electric field needed to ionize the Rydberg atoms and provide the ions

with enough energy to penetrate the carbon foil and proceed to the MCP. We notice

appreciable decrease in ion counts if the thickness of the carbon foil is more than 5

pm. To shield the laser-atom interaction point from such an electric field and yet not

block the atomic beam, the atoms leave the interaction region through a 0.1" diameter

hole in the middle of a 3/8" thick disk. The external field does not penetrate very

significantly because of the small diameter to length ratio. The carbon foil assembly

is mounted on an aluminum disk, located about 1.5 cm in front of the MCP.

We found that the magnetic field can induce significant noise on the MCP. The

magnitude increases rapidly as a function of magnetic field strength. Enclosing the

MCP and the carbon foil in an insulating tube eliminates the problem. The only

direct path to the MCP is through the carbon foil. As a result, we suspect the

noise is induced by stray charged particles. The whole detector arrangement is shown

schematically in Fig. 2-10.
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Figure 2-9: The biasing circuit for electron detection. The shaded
regions represent the three channel plates of the MCP.
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2.6 High-Resolution Spectroscopy

This concluding section describes the calibration procedures for the electric and mag-

netic fields using lithium atoms (Sec. 2.6.1) and the procedures for conducting con-

ventional high-resolution spectroscopy (Sec. 2.6.2) and scaled-energy spectroscopy

(Sec. 2.6.3).

2.6.1 Field Calibration

Precision spectroscopy of atoms in fields requires accurate determination of the fields.

As always, the atoms themselves are the best calibrators. Our approach is to carry out

spectroscopy on low-level Rydberg states where quantum computations are uncom-

plicate'd and reliable. A careful comparison between computations and experimental

measurements yields accurate values for the applied fields.

Magnetic Field

The method for determining the magnetic field was developed by our predecessors.

We give only a brief overview here. Details can be found in [Kas88]. The field

is calibrated by measuring the energy difference between the lowest lying states of

m = +1 and m = -1 of the n = 21 manifold. From Eqn. 1.1, this energy difference,

1 cm - 1

AEB = B cm• 1 B, (2.7)
T

is entirely due to the paramagnetic interaction. (The diamagnetic term is the same

for both m states.) Figure 2-11 shows the quantum computations of the energy levels

of odd-parity lithium n = 21 in a magnetic field.

To measure the magnetic field, the laser polarization is oriented perpendicular to

the field so that only m = +1 and m = -1 states are excited. Figure 2-12 shows
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Figure 2-11: Quantum computations of the energy levels of odd-parity
lithium at n = 21 in a magnetic field. The solid lines are the m = +1
states, and the dash lines are the m = -1 states.

the spectrum observed in such a measurement. (The state in the middle is m = 0,

due to imperfect polarization.) Comparison of the energy separation between the two

peaks with the quantum computation in Fig. 2-11 gives the desired field value. In

this case the magnetic field was determined to be 0.542 T. In larger fields, the states

of m = +1 and m = -1 move so far apart that the laser must be mode-hopped to the

appropriate places. A separate scan is required for each state. The uncertainty in the

field measured in this way is about ±20 gauss, primarily limited by the determination

of the location of the iodine absorption peak. The fractional uncertainty AB/B

gets smaller as the field increases. However, we usually ramp the magnet between

0.5 T and 3 T as described in Sec. 2.6.3, corresponding to AB/B = 4 x 10-3 and

AB/B = 6.7 x 10-4 . By measuring the field for a few different current values, we

can determine the field to current ratio to roughly 1 in 103. Similarly by measuring

the Zeeman splittings for the beginning and the end of a small field interval, the Hall
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Figure 2-12: Experimental measurement of the magnetic field with odd-
parity lithium at n = 21. The one on the left is m = -1, the one on
the right is m = +1, and the one in the middle is m = 0. The iodine
absorption lines and the transmission peaks of the 300 MHz etalon are
also shown.
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probe can be calibrated (see Sec. 2.3.2).

Parallel Electric Field

We use the lowest lying states of odd and even parities of m = -1 at n = 31 to

measure the electric field parallel to the magnetic field. The m = 0 states cannot

be used here due to the huge quantum defect of the S state (a 0.4). Figure 2-13

shows the quantum computation of the energy levels of m = -1 lithium states of

both parities as a function of the magnetic field in the absence of an electric field. As

can be seen, the lowest lying states of odd and even parities are nearly degenerate.

An electric field parallel to the magnetic field mixes these two states and results in

a linear Stark effect. Figure 2-14 diplays this splitting in a 3 T magnetic field. The

bottom figure shows that the energy difference between these two states,

0.1 cm - 1 F
AEF, V F, (2.8)V cm

can provide a sensitive probe of the parallel electric field. Experimentally, as in the

case of measuring the magnetic field, we polarize the laser beam perpendicular to the

magnetic field, thus exciting only m = ±1 states.

By using the measurements for several applied voltages, we can obtain a field to

voltage ratio for a particular set of field plates. The result of one such calibration

is shown in Fig. 2-15. The diamonds are the measured points and the solid line is

a linear fit. The slope is the field to voltage ratio and the y-intercept is a stray

electric field in the system. For this particular set of field plates, the ratio is 1.782(2)

V/cm/V. The stray field is about 0.09 V/cm. The electric field thus determined has

an uncertainty of 1 in 103.
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Figure 2-13: Quantum computation of the energy levels of m = -1
lithium at n = 31 in a magnetic field in the absence of an electric
field. The solid lines represent odd-parity states and the dashed lines
represent even-parity states.
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Figure 2-14: Energy levels of the lowest lying states of m = -1 lithium
at n = 31 in parallel electric and magnetic fields. Top figure: the energy
levels in a 3 T magnetic field. Bottom figure: the energy level difference
as a function of the electric field.
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2.6.2 Conventional Lithium Spectrum

One goal of the experiment involves determining the energies of Rydberg levels in

strong electric and magnetic fields. As already described, we excite the atoms by

locking the red laser to the 2S -+ 3S two-photon transition and measuring the energy

by scanning the yellow laser and detecting either the field or photo ionization signal.

To take into account the variation in the power of the lasers, the computer records

the signals of the 2P -+ 2S fluorescence and the power of the yellow laser. To monitor

the frequency, the transmission signals of the iodine cell and the 300 MHz spectrum

analyzer are measured. The Rydberg and fluorescent signals are read by counters

while the rest are recorded by A/D's.

To generate a conventional energy spectrum of lithium in parallel fields, we scan

the yellow laser at fixed electric and magnetic fields. The yellow laser can be scanned

continuously for about 30 GHz. Then we must manually mode-hop the laser by
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changing the thick etalon in its ring cavity. Consequently we find it more practical

to scan the laser in the same frequency range for a few different field values and then

mode-hop the laser to the next frequency range and repeat the process. The scans

corresponding to each set of field values are later overlapped using iodine absorptions

which are common to the data of the two consecutive scans. Obviously, carrying out

high-resolution spectroscopy (0.001 cm-') over a wide frequency spectrum (60 cm- 1)

is a very time consuming process, over 10 hours. The magnetic field at the interaction

region is determined from the Hall probe voltage and the magnet current as described

in Sec. 2.6.1. We usually switch the magnet to the persistence mode at the desired

field. In this mode and at 2 T, the field of the magnet is stable to at least 1 in 103 over

the course of one day. We believe the magnet to be much more stable than this, but

we are limited by the uncertainty of the magnetic field determination as described in

Sec. 2.6.1. In any case, the value of the magnetic field does not need to be measured

very often. Before each laser scan, we apply a voltage to the field plates with a D/A

drive. At the beginning and the end of each scan (about 1 cm-1), a GPIB interface

reads this voltage from the Keithley 197 DMM. The electric field at the interaction

region is obtained from the field to voltage ratio as described in Sec. 2.6.1.

2.6.3 Scaled-Energy Spectroscopy

To perform scaled-energy spectroscopy, we vary the magnetic field, the electric field,

and the yellow laser frequency such that the classical parameters E = EB- 2/ 3 and

f = FB - 4/3 remain constant. Ideally we would scan the laser and vary the magnetic

field and the electric field simultaneously. This procedure relies on our ability to

quickly set the field values. The electric field can be set almost instantaneously by

applying a voltage to a pair of field plates. However, the magnet has a huge inductance

(112 H), and hence changing the current requires an enormous voltage drop across the
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magnet. The maximum slew rate with our magnet power supply is only 0.045 A/sec,

corresponding to 0.0051 T/sec. As a result, in practice we ramp the magnet and vary

the electric field and the yellow laser frequency while keeping e and f constant.

Procedure

The red laser remains locked to the 2S -+ 3S two-photon transition. We measure the

magnetic field by measuring the voltage across the calibrated shunt in series with the

magnet as described in Sec. 2.3.2. The value of the electric field needed for a given f

is obtained from

F = fB4/3. (2.9)

This desired electric field is conveniently set by applying a voltage to a pair of field

plates using the known field to voltage ratio described in Sec. 2.6.1.

The energy of the electron (or the yellow laser frequency plus the binding energy

of the 3S state) for a give E is determined according to

E = cB2 /3 . (2.10)

Unlike setting the electric field, it is tricky to set the laser frequency. As mentioned,

the yellow laser can be scanned continuously for only 30 GHz maximum. To set the

laser frequency, the laser must first be manually mode-hopped to the correct frequency

range. Next, the frequency of the laser at each point in the scan is determined by a

quick scan of the laser over the desired frequency interval while recording the iodine

absorption and etalon transmission. These data are then used to compute the laser

frequency at each point in the scan. Each laser scan covers about 25 GHz with 1024

data points. Each point corresponds to a voltage from the D/A of the computer.

As the magnet is ramped , the A/D of the computer records the shunt voltage.

For a given E, the correct value of the output voltage of the D/A of the computer
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(corresponding to the desired laser frequency) is calculated according to Eqn. 2.10.

This voltage is then sent to the external scan input of the yellow laser. When a laser

scan completes, we manually mode-hop the laser in a manner such that there is some

overlap between two consecutive scans. This means the magnet has to be ramped

back a little every time we mode-hop the laser. For each set of scaled parameters

f and E, the magnet is typically ramped between 0.5 T and 3 T. Depending on the

value of E, this can be a very time consuming process. In one limit E = 0, the laser is

left at one frequency while we ramp the magnet. For larger absolute values of E, for

example E = -0.4, we need to mode-hop about 40 times for the same magnetic field

range. We usually spend several hours producing scaled-energy spectrum for just one

set of f and E. Coherent manufactures a ring dye laser, called Autoscan, that would

produce a continuous scan over 100 cm - 1 automatically. Such a ring laser will greatly

speed up our data acquisition process.

Error Analysis

For each scaled-energy spectrum obtained, the fractional error in E is

de AE_• 2 t 2 AB 2A = ( )2 2AB) (2.11)
E E 3 B

= (10-7)2 + (2 10-3)2
V 3

= 6 x 10- 4,

and the fractional error in f is

Af F 4ABAF )2( 4 AB-)2 (2.12)
T=+= F 3 B

= (10-3)2 + ( 10-3)2
3

=1.7 x 10-3.
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The fractional error in E is limited by the uncertainty in the magnetic field determi-

nation, and the fractional error inf is limited by the uncertainties in both the electric

and the magnetic field determinations.

Figures 2-16 and 2-17 show two scaled-energy spectra and their Fourier trans-

forms, the recurrence spectra of diamagnetic lithium (f = 0) at E = -0.2 and

E = -0.1, respectively. In the scaled-energy spectroscopy, the scan is taken as a

function of w = B - 13 , and its Fourier transform is in the scaled action domain (see

Sec. 5.3.2 for more detail).

Limitations

We conclude this chapter by considering the intrinsic limitations of a recurrence spec-

trum. In particular, we are interested in the resolution of peaks associated with

individual orbits and the largest-action orbit that is observable.

The width of each peak in the recurrence spectrum is given by

1 (2.13)

where Aw is the range of w = B - 1/ 3 over which the spectrum is taken. We typically

scan the magnet from 0.5 T to 3 T, corresponding to Aw f 35.46 in atomic units.

This implies that the intrinsic width of each peak is 6S = 0.03.

Finally, the orbit with the maximum action observable experimentally is given by

7r
Smax = ~, (2.14)

Jw'

where Sw is the step size taken in w during a scan. However, in the actual experiment

our step size is smaller than the uncertainty in w and is limited by uncertainty in

the magnetic field determination. Therefore the uncertainty in the magnetic field
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Figure 2-16: Diamagnetic lithium at E = -0.2. Top: the scaled-energy
spectrum, w = B - 1/ 3. Bottom: the recurrence spectrum.
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determination actually limits the accuracy of the large action orbits. Our fractional

error in the field determination is about 10- 3 , which corresponds to 6w = 0.04 at

w e- 60. Substituting this value into Eqn. 2.14 yields Smax 85.
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Chapter 3

Stepwise Excitation Scheme

Notwithstanding the advantages of the excitation scheme in the previous chapter, the

2S -+ 3S two-photon transition is very inefficient. The red laser has to be driven at

the limit of its power capability (e 1 W), and the beam has to be focused to a small

waist size (e 50 pm). Due to the large detuning from the 2P intermediate state, the

intensity is still about one order of magnitude below the saturation intensity.

In this chapter, we describe a stepwise excitation scheme that was developed over

the last six months. Figure 3-1 shows the excitation scheme. As we will show, the

first two transitions, 2S -+ 2P and 2P -+ 3S, are easy to drive and can be easily

saturated. The excitation source consists of a tunable diode laser, and two tunable

dye lasers pumped by one large frame argon ion laser. Among other advantages, this

eliminates the use of the krypton ion laser, whose tube needs to be replaced every

four years or so at a cost of $35, 000. However, because a real intermediate state is

populated, the structure of that state must be analyzed in detail. Furthermore, the

shift in its energy levels in the applied magnetic field is a potential complication. In

this alternative method, the first two transitions are monitored by their respective

fluorescent signals, and the Rydberg signals continue to be detected through field ion-

ization. Experimentally, we discuss only the relevant features, the lasers (Sec. 3.4.1),



CHAPTER 3. STEPWISE EXCITATION SCHEME

Rydberg
State

Dye Laser (Kiton Red)

3S 7 7 --- L 610 - 630 nm

Diode Laser
813 nm

2P

Dye Laser (DCM)

671 nm

2S

Figure 3-1: New excitation scheme. Lithium atoms are excited from 2S
to 2P by a dye laser and 2P to 3S by a diode laser. Finally, another dye
laser drives the transition to Rydberg states. (Dye names are enclosed
in the parentheses.)

optics (Sec. 3.4.2), and the detection scheme (Sec. 3.4.3), since the rest of the ap-

paratus (i.e. the atomic beam, the magnet, and the interaction region) remains the

same. Again our multi-step excitation scheme allows the laser selection of the desired

isotope. We excite 7Li. The discussion in the entire chapter is limited to this isotope

with the exception of Sec. 3.2.3.

3.1 Two-Photon Transition vs. Stepwise Excita-

tion

The transition rate between two atomic levels is given by

R = 7( R/2)2
R = ^(R2 (3.1)62 + w2R/2 + (7/2)2 (3.1)

where -y is the spontaneous decay rate of the upper level, wR is the Rabi frequency,

and 3 is the detuning. For a resonant interaction (J = 0), the transition is saturated
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when wR f 7.

We consider the two-photon transition 2S -+ 3S. The two-photon Rabi frequency

wR is approximately [Pri92]

= 1 e2 < 2Sjxj2P >< 2Pjxj3S > 2I (3.2)
R 2h2  2rA cE0O

where A = 1302 cm - 1 is the detuning from the 2P intermediate state and I is the

laser intensity. 'y3s is 3.42 x 107 sec - 1, and the matrix elements are given in Table 3.1.

The saturation intensity Isat is calculated to be 98 kW/cm2. The maximum intensity

I we can achieve in the laboratory is about 1 W focused to 50 pm waist, I = 10

kW/cm2. Thus we are one order of magnitude from saturating the transition.

We can estimate the total signal counts (number of 3S atoms per unit time):

S3s = nA(2rlrw2) w 2R  (3.3)73S

where nA is the atomic density, r is atomic beam radius, and w is the waist size of

the laser beam. Table 2.1 gives nA = 4.2 x 108 atoms/cm3 and r = 1 mm. WR can

be found from Eqn. 3.2, (I = 10 kW/cm2). Substituting these values along with w

= 50 pm and ys = 3.42 x 107 sec- 1 yields

S3s = 5.3 x 109 sec- 1. (3.4)

Next we consider a stepwise excitation scheme 2S -+ 2P and 2P -+ 3S. The Rabi

frequencies are
S< 2Slz12P > (2I 1/2SWR(2S -+ 2P) < 2Sx2P / (3.5)

h \CEOI

and

WR(2P -4 3S) e < 2Pjxj3S > 21 )1/2 (3.6)
h( CEO
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'y2P is 3.8 x 10 7 sec- 1 and -y3s is 3.42 x 107 sec - 1. The saturation intensities are 0.006

W/cm2 and 0.009 W/cm2 for 2S -+ 2P and 2P -+ 3S, respectively. Clearly both

transitions can be easily saturated.

We can also estimate the total signal counts of the saturated 2S -+ 2P transition

(number of 2P atoms per unit time):

S 2 P = nA(2rlrw2 ) 2P (3.7)

Substituting the values of nA = 4.2 x 108 atoms/cm3, r = 1 mm, y2P = 3.8 x 107

sec - 1, and w = 0.5 mm 1 gives

S2 p = 1.2 x 1013 sec - 1. (3.8)

Similar calculations for the 2P -+ 3S transition yield

S3s = 4.8 x 1012 sec - 1. (3.9)

A comparison with Eqn. 3.4 reveals that the number of 3S atoms excited should

increase by a factor of 900 with the stepwise excitation scheme.

The laser that drives the Rydberg transition remains the same. To compare

number of Rydberg atoms excited by the two excitation schemes, we again focus this

laser beam to a 0.05 mm waist size. The ratio of the Rydberg signal from the two

excitation schemes is

S_(stepwise) Ss(stepwise) (0.5mm 2
= S 9. (3.10)

SR(two - photon) S3s(two - photon)

1We have plenty of laser power (;- 200 mW), and thus there is no need to focus the beam to a
small waist size.
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Atomic Natural Transition Matrix Element Isat

State Linewidth (MHz) Wavelength (nm) (atomic unit) (W/cm2)
2S - 670.8 2.38 0.006
3S 5 812.7 1.74 0.009

3D 12 610.4 2.29 0.025
4S 2 497.2 0.46 0.011
4D 4 460.3 0.82 0.022

Table 3.1: Parameters for transitions between 2P and some of the low
lying states of 7Li.

Transition
Wavelength (nm)

Detuning from 2P
(cm-')

Isat

(W/cm2)
735.1 -1302 98 x 103
639.3 735 82 x 103

571.2 2599 210 x 103

546.1 3404 381 x 103

Table 3.2: Parameters for the two-photon transition
some of the low lying states of 7Li.

between 2S and

Thus our Rydberg signal should improve by about one order of magnitude.

Table 3.1 and Table 3.2 list some useful parameters for other possible stepwise

excitations and two-photon transitions, respectively. Appendix D discusses other

possible excitation schemes for 7Li.

3.2 Fine and Hyperfine Structure

Performing high resolution spectroscopy on lithium in strong external fields requires

a detailed knowledge of the atomic structure in zero fields. As we will show, our ex-

periment can clearly resolve the atomic fine and hyperfine splittings of the low lying

states. Consequently, a detailed understanding of these interactions is essential. This

Atomic
State
3S
3D
4S
4D



CHAPTER 3. STEPWISE EXCITATION SCHEME

section describes the fine structure of 2P, the hyperfine structure of 2S, 2P 1/ 2, and 3S,

and the isotope shift of 2P 3/ 2. Our measurements are not intended to accomplish as

high a precision as achieved by such spectroscopic techniques as atomic beam mag-

netic resonance. Rather, the measurements are made as a check on our spectroscopic

method.

3.2.1 The Hamiltonians

The intrinsic magnetic moment of an electron interacts with the magnetic field due

to the motion of the electron through the Coulomb field of the nucleus. The resulting

spin-orbit interaction gives rise to the fine structure. The Hamiltonian is of the form

H1 = a(n, l)L. S, (3.11)

where n is the principal quantum number and I is the orbital quantum number. For

the hydrogen atom, a(n, 1) can be obtained exactly from Dirac's equation [Sak84]. For

alkali atoms, a(n, 1) can be determined approximately using quantum defect theory

[Sob72]:

a 2  
(Z*)2_(3.12)2 (n*)31(l + 1) (1 + 1/2)' (3.12)

where Z* I 0.94 for 7Li, n* is the effective principal quantum number, a is the fine

structure constant, and I > 0. (S states have no spin-orbit interactions.)

Hyperfine splittings result from the interaction of the nuclear multipole moments

with the multipole moments associated with the angular momentum of the electron.

Time reversal and parity invariance restrict the possible magnetic moments to dipole,

octopole, etc. and the possible electric moments to quadrupole, etc. The hyperfine

interaction is usually dominated by magnetic dipole and electric quadrupole interac-

tions.
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For the single valence electron of an alkali-metal atom, the hyperfine Hamiltonian

is [Wei78]

Hhf = h'mag + HQ = A(n,l,j) . J+ B(n,1,j)(2f. J) (2. J+ 1) (3.13)

where I = 3/2 for 7Li and I = 1 for 6Li. A(n, 1, j) describes the spin-spin magnetic

interaction, which requires I > 1/2 and J > 1/2. B(n, I, J) describes the nuclear

quadrupole interaction, which requires I > 1 and J > 1.

Similar to the fine structure interaction, the hyperfine constants A and B can be

approximated with semi-empirical formulas [Sob72]. For S states, A is given by the

famous Fermi-Segre formula

8 a2gi(Z*)3  03 c9A(nS2[ + -" ]cR, (3.14)A(nS2 =3 (n*)3 mn

where m, is the mass of the nucleus and 5, is the quantum defect for the S states.

For 1 5 0, A is given by

a2gi(Z*) me
A(nj) (n*)3(1 + 1/2)j(j + 1)--cR, (3.15)

Finally, the parameter of the electric quadrupole interaction B can be approximated

by

B(n,l,j) = 3 Q(Z*)cR
8 (n*)3(l+ 1)(l + 1/2)11(2I - 1)j(j + 1) (3.16)

where Q = -0.0366 is the electric quadrupole moment for 7Li. The expression for

the magnetic dipole hyperfine interaction is very similar to the spin-orbit interaction.

The ratio is
A mel- ý g, --. 1(3.17)
a mn Z*

Typically, the hyperfine interaction is smaller than the fine structure interaction by
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AE Magnetic Dipole Electric Quadrupole Total
2P3/ 2 (F = 0)- 2P 3/2(F = 1) 3.055(14) 0.228(30) 3.283
2P 3/2 (F = 1)- 2P 3/2(F = 2) 6.110(28) -0.221(29) 5.889
2P3/ 2 (F = 3)- 2P 3/2(F = 2) 3.165(42) 0.221(29) 9.387

Table 3.3: Hyperfine splittings of 2P 3/2 of 7Li. A(2P3 /2) = -3.055(14)
MHz and B(2P 3/2) = -0.221(29) MHz [AIV77] and all values are in
MHz.

the mass ratio of the nucleus to the electron.

3.2.2 Measured Values

The spin-orbit interaction keeps the total angular momentum of the electron J =

L + S constant. The fine structure splitting for a single electron atom is

AEf(n, 1) = a(n,l)(< L. -S >j=1+1/2 - < L - >j=1-1/2) = a(n,1l)(l + 1/2). (3.18)

Similarly, the spin-spin magnetic interaction allows the total angular momentum

of the system F = I+ J to remain constant. However, the hyperfine interaction splits

the atomic states into more than two nondegenerate levels if J > 1. In particular, the

2P3/2 states are split into 4 nondegenerate levels. These hyperfine splittings have been

measured previously and the results are shown in Table 3.3 [AIV77]. The splittings

are below our experimental resolution of 25 MHz. However, as we will show, the

hyperfine splittings of 2S, 2P 1/2 , and 3S are well resolved. These states have no

electric quadrupole interaction. The hyperfine splitting simplifies to

AEhf(n,l) = A(n,l)(< ffJ>F=I+1/2 - < I'J>F=I-1/2)) = A(n,1)(I+1/2). (3.19)

Both AEf (n, 1) and AEhf(n, 1) can be calculated by various methods [BJLS89],

but for our purpose their spectroscopic values are more reliable. The goal of our
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a(n, 1) Theory Previous Measurement Reference Our Measurement

2P 6708.20(15) 6702.16(15) [AIV77] 6703(3)

A(n, 1, j) Theory Previous Measurement Reference Our Measurement

2S1/2 402.47(5) 401.7520433(5) [AIV77] 402(3)
2P1/2 45.96(1) 45.914(25) [AIV77] 46(3)
3S1/2 93.24(2) 94.68(22) [SIW+95] 92(3)

Table 3.4: Fine and hyperfine parameters of 7Li. All values are in MHz.

measurement is not to set any unprecedentedly high precision, but to check our spec-

troscopic method.

Figure 3-2 shows the possible transitions between the fine and hyperfine states of

2S and 2P of 7Li and 6Li. As noted before, we do not resolve the hyperfine structure of

2P 3/2. To measure the fine and hyperfine splittings, we scan one of the lasers around

the principal transition 2S --+ 2P while monitoring the frequency of the laser with a

high resolution calibrated Fabry-Perot etalon. The fluorescent signal is detected by

a photomultiplier tube. Such a scan is shown in Fig. 3-3. Each peak corresponds to

one of the transitions in Fig. 3-2. Figure 3-4 shows a blowup about the 2S -+ 2P3/2

transition of 7Li, and Figure 3-5 shows a blowup about the 2S -+ 2P1/ 2 transition of

7Li. All transitions are labelled according to Fig. 3-2.

According to Fig. 3-2, the frequency difference between transition (c) and the cen-

ter of gravity of the transitions (a) and (b) gives the fine structure splitting AEf (2P);

the frequency difference between transitions (a) and (d) (or transitions (b) and (e))

gives the 2S hyperfine splitting AEhf (2S); and the frequency difference between tran-

sitions (a) and (b) (or transitions (d) and (e)) gives the 2P/2 hyperfine splitting

AEh (2P)1/2. 'The results of all these measurements are summarized in Table 3.4

which also contains previous high precision measurements and the theoretical results.

The agreement among the values is reasonable.
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2P3/2 - F=0,1,2,3

2P F=2
1/2F=1

2S F=2
2S 

1

d e f

abc

6Li

2P3/2- F=1/2,3/2,5/2

2P1/2 F=3/2
F=1/2

F=3/2
2S

' F=1I

Figure 3-2: Principal transition, 2S -+ 2P, between different fine and
hyperfine states of 7Li and 6 Li (not drawn to scale). We do not resolve
the hyperfine structure of 2P 3/2.
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Figure 3-3: Experimental scan of the 2S -+ 2P transition. The 300
MHz frequency markers are shown on the top.
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Figure 3-4: 2S -+ 2P 3/2 transition. The 300 MHz frequency markers
are shown on the top.
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Figure 3-5: 2S -+ 2P1/ 2 transition. The 300 MHz frequency markers
are shown on the top.

Unfortunately, the 2P -+ 3S transition wavelength (813 nm) is beyond the optical

range of our 300 MHz Fabry-Perot etalon. While we can excite the 3S state, we have

no way of measuring the transition frequency to the desired accuracy 2. However,

the 3S hyperfine splitting has been studied extensively by our predecessors in the

two-photon transition [Kas88]. The result is shown in Table 3.4.

Finally, both the fine and hyperfine splittings of the 2S, 2P, and 3S states of 7Li

are summarized graphically in Fig. 3-6. The transition wavelengths between these

states are shown in Table 3.5.

2 See however [SIW+95] for an ingenious method of measuring this hyperfine splitting using Stark
spectroscopy of Rydberg states.
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Figure 3-6: Fine and hyperfine splittings of 2S, 2P, and 3S states of 7 Li
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Transition Wavelength (nm)
2S -+ 2P 1/2  670.976
2S -+ 2P 3/2  670.961
2P1/2 -+ 3S 812.845
2P3/2 -+ 3S 812.868
3S -+ 21P 623.783
3S -+ 76P 614.925
3S to the Ionization Limit 614.209
HeNe 632.988

Table 3.5: Useful wavelengths (in vacuum).

3.2.3 Isotope Shift

Figure 3-5 reveals an interesting fact about the lithium isotope shift. As discussed

earlier, our atomic beam consists of 94% 7Li and 6% 6Li. We believe the frequencies

of transition (g) (2S(F = 1/2) -÷ 2P3/ 2 (F = 3/2,1/2) of 6Li) and transition (d)

(2S(F = 2) -+ 2P1/ 2 (F = 1) of 7Li) are degenerate. (Again, we do not resolve the

hyperfine structure of 2P3/ 2 of 6 Li.) This accidental degeneracy has potential problem

for the laser selection of the desired isotope. Fortunately, the 2P -+ 3S transitions of

the two isotopes are not degenerate. However, a two-step excitation scheme through

2P states, i.e. 2S -+ 2P -+ Rydberg states (see Appendix D), will require the use of

isotopically pure lithium.

Finally, the isotope shift, 7Li- 6Li, of 2S -+ 2P 3/2 (the frequency difference between

transitions (h) and (f)) can be determined from a continuous scan over both transi-

tions such as shown in Fig. 3-3. We find that a careful measurement yields 1033(3)

MHz. As far as we know, this has not been published previously. The isotope shifts

for other transitions are summarized in Table 3.6.
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Transition
2S -+ 2P3/2
2S -+3S
2S -+ 3D
2S -+4S

Isotope shift

Isotope Shift
10.33(3)
11.44(3)
13.312(4)
14.661(14)

of 7Li and 6Li.

Reference
[Jia94]
[KW188]
[KNS+78]
[KNS+78]

All values are in GHz.

3.3 Fine and Hyperfine Structure in a Magnetic

Field

The goal of our experiment is to determine the binding energy of the Rydberg states

as a function of external fields. We do so by measuring the wavelength of the laser

that drives 3S to Rydberg states. This requires a precise value of the binding energy of

3S in a magnetic field as well as its hyperfine structure. Furthermore, the 2S -+ 2P -+

3S excitation scheme requires that the lasers be properly tuned as the magnetic field

is varied, which requires the understanding of how the fine and hyperfine structure

varies in the magnetic field. We will discuss these issues in this section.

3.3.1 The Hamiltonian

In a uniform magnetic field, the Hamiltonian is

H(B) = HA+ Hd+ Hb (3.20)

where HA is the unperturbed atomic Hamiltonian, Hd is the diamagnetic contribution

in Eqn. 1.1, and

Hb = Hf + Hhf + ( + g gI .B. (3.21)

Table 3.6:
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-Figure 3-7: Fine and hyperfine states of 2P in a magnetic
24 states.

field, total of

Here P is the reduced mass factor [Kas88], g, = -1.1822130(6) x 10- 3 [AIV77] is the

nuclear g-factor, and g, = 2.002319304386(20) [CG87] is the electron g-factor. Hf

and Hhf are the fine and hyperfine Hamiltonians given by Eqn. 3.11 and Eqn. 3.13,

respectively.

3.3.2 2S, 2P, and 3S Energy Levels in a Magnetic Field

The eigenvalues of Hb can be found by solving secular equations. At small fields, F, J,

and m are good quantum numbers; at large fields, mi, m,, and m are good quantum

numbers. Because n and I mixings are negligible for low lying states at laboratory

field value, I and L are always good quantum numbers. For all field values, the states

can be written in either basis. Appendix E provides the Clebsch-Gordon coefficients

for such a superposition of basis states. The resulting Hamiltonian matrix can be

diagonalized.
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2P contains a total of 24 states. In general, the eigenvalues are found numerically

by diagonalizing a 24 by 24 matrix. However, states with different m do not mix, and

consequently the matrix can be reduced to 7 matrices with smaller dimensions, each of

which corresponds to a distinct m. Each of these matrices is diagonalized separately

using, for example, the Jacobi method. The calculations are straightforward but

tedious. The behavior of 2P fine and hyperfine states of 7Li in a magnetic field is

displayed in Fig. 3-7. (The diamagnetic effects are completely negligible for these

states in this field range.) Figure 3-8 and Figure 3-9 show blowups of Fig. 3-7,

displaying the hyperfine states of 2P 1/2 and 2P 3/2 in a magnetic field, respectively.

As the magnetic field increases, the total angular momentum of the electron, J,

and nuclear spin, I, become decoupled, the Back-Goudsmit effect. We define a critical

field

Bc = IA(n,l,j)I. (3.22)

For B >> BY, the decoupling is essentially complete ((Bf(2P1/2) = 35 Gauss and

B h f (2P 3/2) = 5 Gauss). As the magnetic field increases further, the spin S and the

orbital angular momentum L of the electron decouple, the Paschen-Back effect. We

define the critical field for the Paschen-Back effect as

B = Ia(n,1). (3.23)

For B >> BI, S and L decouple (BI(2P) = 5000 Gauss).

Finally, the eigenvalues of 2S and 3S of 7Li in a magnetic field are given by the

Breit-Rabi formula. The results are shown in Fig. 3-10 and Fig. 3-11. Details can be

found in [Kas88].
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3.3.3 Electric Dipole Transitions in the High Field Regime

Our excitation scheme consists of electric dipole transitions of 2S -+ 2P, 2P -+ 3S, and

3S -+ Rydberg states. In this section, we will present the corrections to the transition

frequencies due to the magnetic field and the fine and hyperfine interactions. We

usually operate the magnet at B > 0.5 T, where all spins and angular momenta

decouple (the Paschen-Back regime). The energy of a given state in Eqn. 3.20 can

be expressed in terms of the high field quantum numbers (ms, mI, mL) by using

perturbation theory. In this limit, the selection rule for an electric dipole transition

is Am, = Am, = 0 and AmL = ±1,0.

2S + 2P Transition

The energies of the 2S and 2P states in the Paschen-Back regime can be expressed as

1

E(2S) = EA(2S) + Ed(2S, B) + 2(gsms + g mj)B (3.24)

+A(2S)msmi,
1

E(2P) = EA(2P) + Ed(2P, B) + 1(OmL + gms + gjmj)B (3.25)

+A(2P)(mL + ms)(mi) + a(2P)mLms,

where EA + Ed are the eigenvalues of HA + Hd in Eqn. 3.20. 2S -+ 2P is an electric

dipole transition which requires Ams = Am1 = 0. The transition frequency is thus

v = {[EA(2P) + Ed(2P, B)] - [EA(2S) + Ed(2S, B)]} (3.26)
1

+-PmLB + A(2P)mLmI + [A(2P) - A(2S)]mjms + a(2P)mLms.

Due to the paramagnetic interaction ½I3mLB, the transition frequency is in general

a very sensitive function of the magnetic field (a (0.47 cm-'/T)mLB). However, by
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choosing AmL = 0, the transition is only slightly field dependent (solely due to the

diamagnetic interaction). In this case, the transition frequency simplifies to

V = {[EA(2P) + Ed(2P, B)] - [EA(2S) + Ed(2S, B)]} + [A(2P) - A(2S)]mjms. (3.27)

The shift in transition frequency due to the diamagnetic interaction and the hyperfine

interaction is given in practical units by

Av = (0.011 MHz/T 2)B 2 - (356 MHz)msmf. (3.28)

As can be seen, the diamagnetic contribution is below our experimental resolution,

and the transition is nearly field independent. However, the hyperfine interaction

makes a noticeable difference. There are eight transitions, but only four are distinct.

The observed transition peaks are separated by 178 MHz.

2P -+ 3S Transition

The energy of the 3S state in the Paschen-Back regime can be expressed as

1

E(3S) = EA(3S) + Ed(3S, B) + 2(gsms + gjm,)B + A(3S)msmi. (3.29)

The 2P -+ 3S is also an electric dipole transition which requires Ams = Am, = 0.

Again by choosing the AmL = 0 transition, the transition frequency given by

V = [(EA(3S) + Ed(3S, B) - (EA(2P) + Ed(2P, B)] + [A(3S) - A(2P)]mims (3.30)
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is independent of the paramagnetic interaction. The shift in transition frequency due

to the diamagnetic interaction and the hyperfine interaction is given by

Av = (0.9 MHz/T 2)B 2 + (46 MHz)msmi. (3.31)

The diamagnetic effect is again negligible. The hyperfine contribution is roughly at

our experimental resolution. Different m, and m, make a small shift. However, their

values are fixed by the 2S -+ 2P transition.

3S to Rydberg States

Our goal is to extract the binding energy of a Rydberg state from the wavelength of

the yellow laser. The energy of a Rydberg state can be expressed as

1
E(nP) = E(nP, B) + 2(gsms + 9gm)B, (3.32)

where E(nP, B) is the binding energy of the Rydberg state in a magnetic field B,

which includes the paramagnetic and the diamagnetic interactions. According to

Eqn. 3.12 and Eqn. 3.14, the fine and the hyperfine interactions have a (n*) 3 de-

pendence. For instance, the fine structure parameter a(21P) ? 5.6 MHz is below

our experimental resolution. The hyperfine interaction is even smaller. Hence, these

interactions are neglected in the Eqn. 3.32.

The transition frequency is given by (3S -+ nP is again an electric dipole transition,

Ams = Am, = 0)

v = {(E(nP, B) - [EA(3S) + Ed(3S, B)]} - A(3S)mims. (3.33)

Determination of E(nP, B) thus requires the accurate values of the binding energy of

3S, EA(3S), the diamagnetic shift Ed(3S, B), and the hyperfine coupling A(3S)mims.
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These values have been carefully investigated [Kas88] and are given by

EA(3S) = -16,281.067(5)cm - 1  (3.34)

Ed(3S, B) = (4.0 x 10- s cm - 1/T 2)B2 . (3.35)

Finally, the binding energy of the Rydberg state is

E(nP, B) = v- 16,281.067(5)cm - 1 - (0.00307cm-')mims (3.36)

+(4.0 x 10- 5 cm-1 /T 2)B 2 .

The diamagnetic shift of 3S is negligible in our field range. However, the different

values of ms and m1 make a measurable difference. We usually select mims= 3/4.

3.4 Experimental Realization

The discussions in the previous two sections provide the necessary background for

performing high resolution spectroscopy on lithium in strong external fields with the

stepwise excitation scheme. In this section, we will present details of the experimental

apparatus. In particular, we will discuss the lasers (Sec. 3.4.1), the optics (Sec. 3.4.2),

and the detection schemes (Sec. 3.4.3).

3.4.1 Laser Operation

The three transition wavelengths are 671 nm, 813 nm, and 620 nm. The lasers

involved are one large frame Coherent Innova 100-10 argon-ion laser pumping two

Coherent CR699-21 ring dye lasers with DCM and Kiton Red, driving the 2S -+ 2P

and 3S -+ Rydberg transitions, respectively, and a New Focus tunable external cavity

diode laser driving the 2P -+ 3S transition.
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At full current (50 A), the output power of the argon ion laser is about 20 W

multiline. Table 3.7 displays the spectral distribution of the output power. More

than half of the output power belongs to the 514.5 nm line. We operate the argon

ion laser at 13.5 W multiline (33 A). This power is split between DCM and Kiton

Red with a CVI high power argon ion laser beamsplitter. This beamsplitter reflects

45% and transmits 55% of the laser power. One side is AR coated to avoid doubly

reflected beams.

The reflected beam (6 W) is used to drive the red laser. A CVI CW argon ion

laser dielectric mirror is used to deflect the reflected beam onto the pump mirror in

the DCM ring laser. Despite the long travelling distance of the pump beam and the

resulting large beam size, we were delighted to find that the DCM dye laser works

extremely well. Moreover, we did not observe any long term instability.

The transmitted beam (7.5 W) is used to pump the yellow laser. However, Kiton

Red does not absorb the 488 nm photons. When pumped by multiline, the output of

the dye laser displays power drop and instability. However, we find that mixing some

DCM into the Kiton Red solution eliminates the problem, though the gain curve is

slightly red shifted and the overall gain drops by 10% 3. We should note that this

kind of trick does not always work. For example, Rhodamine 6G, a very efficient and

friendly dye, is tunable from 560 nm to 600 nm. However, in an attempt to red shift

the gain curve we added a small amount of Kiton Red and found the dye completely

inoperative.

DCM is adequate for the red laser that drives the transition 2S -+4 2P (671 nm),

though the peak of its gain curve is at about 640 nm (tunable from 630 nm to 680

nm). We actually use Exciton DCM Special, consisting of 25% Kiton Red and 75%

DCM, because we find it difficult to dissolve pure DCM in any convenient solvent.

3 See Appendix F for an alternative idea.
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Wavelength (nm) Percent % of Total Multiline Power
514.5 52
488 25
496 13
501 4
others 6

'Table 3.7: Spectral distribution of the argon ion laser.

The resulting gain curve is slightly blue shifted but has no drastic effect on the gain

at 671 nm 4. ]Recall that unlike the two-photon transition, we can easily saturate

the principal transition, and thus do not require much power. The dye solution is

obtained by dissolving 2 grams of Exciton DCM Special in 400 ml of reagent grade

benzyl alcohol, stirring for about 3-4 hours, and adding 600 ml of reagent grade

ethylene glycol. Although the lifetime of DCM Special is relatively short (about 400

Watts Hours), the gain is reasonable. With a circulator pressure of 40 psi and the

pump power of 6 W, the single-mode output power is about 600 mW at the peak of

the gain curve (640 nm) and about 300 mW at 671 nm. The laser optics used are the

standard DCM optics. The laser output is rather stable.

A mixture of DCM and Kiton Red is used for the yellow laser that drives the 3S to

Rydberg transition. The dye solution is made by dissolving 2 grams of Exciton Kiton

Red in 100 ml of reagent methanol, stirring for 2 hours, and adding 850 ml of reagent

grade ethylene glycol. Simultaneously we dissolve 0.2 grams of Exciton DCM Special

in 50 ml of reagent grade benzyl alcohol in a different beaker and stir for about 3-4

hours. The final dye solution is achieved by mixing the two solutions. Although the

lifetime of Kiton Red itself is about 1000 Watts Hours, the lifetime of the mixture is

unknown. As mentioned before, the gain drops by 10%. With a circulator pressure

4 DCM Special of Lambda has about 50% Kiton Red and 50% DCM. The gain curve may be too
far blue shifted to cover 671 nm.
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Laser
Dye
Rhodamine 6G
Kiton Red
Kiton Red Special
DCM Special
LD700

Tuning Range Peak Wavelength
(nm) (nm)

Pumping
Laser

560-600 575 Ar multiline or 514.5 nm
590-640 610 Ar 514.5 nm
590-640 615 Ar multiline
630-680 640 Ar multiline
710-780 740 Kr multiline red

Table 3.8: Useful laser dye information.

Laser Dye Recipe
Dye Amount Premix Solvent
Rhodamine 6G 1.0 g 50 ml methanol 950 ml E.G.
Kiton Red 2.0 g 100 ml methanol 900 ml E.G.
Kiton Red Special 2.0 g of K.R. K.R in 100 ml methanol 850 ml E.G.

0.2 g of DCM DCM in 50 ml benzyl alcohol
DCM Special 2.0 g 400 ml benzyl alcohol 600 ml E.G.
LD700 1.5 g 100 ml methanol 900 ml E.G.

Table 3.9: Useful laser dye recipes. E.G.=ethylene glycol. All solvents
should be reagent grade.

of 55 psi, and the pump power of 7.5 W, the single-mode output power is about 250

mW at the peak of the gain curve (620 nm). The standard Rhodamine 6G optics

are used. Some useful laser dye information is summarized in Table 3.8, and the dye

recipes are shown in Table 3.9.

Finally, a New Focus Model 6200 external cavity tunable diode laser is used to

drive the 2P -+ 3S transition. The cavity of the laser consists of a high reflection

coating on one end of the diode laser and a high reflecting tuning mirror. In addition,

a diffraction grating is used as a narrow spectral filter (passband, a few GHz) which

forces the laser to operate in single frequency. The beam from the diode passes

through a collimating lens and hits the grating at a grazing angle. The beam is then
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diffracted toward the tuning mirror. The reflected light forms the output beam. A

picomotor provides coarse tuning, and a PZT is used for fine tuning (continuous scan

range about 60 GHz). The laser head is temperature stabilized to about 10 mK. We

usually run the laser at 70 mA and the output power at 813 nm is about 17 mW.

Because of the diode lasing medium, the output beam shape is actually elliptical. We

use an anamorphic prism pair outside the cavity to correct the beam to a circular

shape.

3.4.2 Optics

Figure 3-12 displays the optical layout. In the main path, the goal is to overlap

all three laser beams and intersect them with the atomic beam at right angles. The

beams of the red laser and the diode laser that drive the 2S - 2P transition and the

2P -+ 3S transition, respectively, are first merged. These are then merged with the

beam of the yellow laser that drives the Rydberg transition. A small amount of the

beam from each laser is used to monitor its frequency.

The Red Laser: 2S -+ 2P

After passing through a thick glass plate, which reflects a small portion of the beam

for frequency monitoring, the main beam of the red laser passes through a +5 magni-

fication telescope, formed with -20 mm and +100 mm focal length lens. (The beam

is expanded to reduce divergence.) The expanded beam then traverses two linear

polarizers. The second polarizer is adjusted so that the polarization is parallel to the

magnetic field (exciting Am = 0 transition). The first polarizer then functions as an

attenuator. After being reflected by a CVI longpass dichroic beamsplitter DBS(a),

the beam then passes through another CVI longpass dichroic beamsplitter DBS(b)

before being focused into the interaction region by a 40 cm focal length lens (not
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Figure 3-12: The optical layout for the new excitation scheme. M: mir-
ror; L: lens; BS: beamsplitter; DBS: dichroic beamsplitter; SA: spec-
trum analyzer; P: linear polarizer; HW: halfwave plate.
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Dichroic
Beamsplitter

DBS(a)
DBS(b)

Transmission
620 nm 670 nm 813 nm

- 2 80
2 P 60 80

0.5 S

Reflection
620 nm 670 nm 813 nm

- 98 20
98 P 40 20

99.5 S

Table 3.10: CVI longpass dichroic beamsplitters. All values are in
%. P and S represent the parallel and perpendicular polarizations,
respectively.

shown). The properties of these two dichroic beamsplitters are shown in Table 3.10.

The system is not very efficient: Between the first glass plate and DBS(b), the loss

is about 50% 5. However, this is not important because we usually attenuate the

red laser power anyway. All mirrors are New Focus 5101 broadband visible dielectric

mirrors.

The two weak beams reflected from the thick glass plate are used to monitor

the laser frequency. One beam is deflected by a plane mirror onto a 1.5 GHz FSR

spectrum analyzer (640 nm to 780 nm optics with a peak finess of 200), which displays

the laser's spectral characteristics. The second beam is deflected by two mirrors onto

a dichroic beamsplitter (used to transmit a portion of the yellow laser) which reflects

about 50% of the incident laser power. The reflected beam then passes through a

second dichroic beamsplitter (used to overlap the beams from all three lasers) onto

the wavemeter.

The Diode Laser: 2P -+ 3S

The main beam of the diode laser passes through a beamsplitter (about 60% trans-

mission) before entering a +5 magnification telescope, formed with -20 mm and +100

5 The reason for such a high loss is due to the fact that the red laser wavelength (671 nm) and
the yellow laser wavelength (620 nm) are too close for efficient dichroic beamsplitting.
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mm focal length lens. The expanded beam then passes through a halfwave plate and

a linear polarizer. The polarizer is positioned such that the output polarization is

parallel to the magnetic field, and the halfwave plate is used to maximize the power.

A halfwave plate is necessary here because the diode laser power is limited. The

beam is then deflected by two mirrors onto DBS(a). The transmitted beam then

passes through DBS(b) before being focused into the interaction region by the 40

cm focal length lens. To achieve optimum overlap between beams of the diode laser

and the red laser, one of the mirrors is placed in an Aerotech mount with differential

screws, which are used to maximize the 3S -+ 2P fluorescent signal while the red laser

is locked on the 2S -+ 2P transition. It turns out that the optimum overlap is easily

achieved because the signal is usually huge. This system is also not very efficient:

Between the anamorphic prism and DBS(b), the loss is about 60%. But the intensity

in the interaction region is still well above the saturation intensity. All mirrors are

New Focus 5102 broadband near infrared dielectric mirrors.

The reflected beam from the first beamsplitter is split again at a second beam-

splitter. The reflected beam is directed onto a 1.5 GHz FSR spectrum analyzer (790

nm to 930 nm optics with a peak finess of 200), which displays the laser's spectral

characteristics. The transmitted beam is reflected by a dichroic beamsplitter towards

the wavemeter.

The Yellow Laser: 3S -+ Rydberg

After passing through a thick glass plate, which provides weak reflected beams for

monitoring purposes, the main beam of the yellow laser traverses a halfwave plate.

The beam then enters a -7.5 magnification telescope, formed with +20 mm and +150

mm focal length lens. The expanded beam next traverses a linear polarizer which

can be adjusted to excite either the Am = 0 or the Am = ±1 transitions. Again, the

halfwave plate needs to be rotated to give optimum output power. After deflection by
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two more mirrors, the beam passes through a thick wedge beamsplitter. The reflected

beam, used for power monitoring, is focused onto a photodiode. The transmitted

beam is then reflected by DBS(b) and overlapped with the other two beams before

being focused into the interaction region by the 40 cm focal length lens. DBS(b) is

positioned on an Aerotech mount with differential screws, and the optimum overlap

is achieved by maximizing the Rydberg signal while the other two lasers are locked on

their respective transitions. The system is relatively efficient: Between the first glass

plate and DBS(b), the loss is about 20%. All mirrors are New Focus 5101 broadband

visible dielectric mirrors.

The two weak beams reflected from the thick glass plate are used to monitor the

laser frequency. The first beam is deflected by three plane mirrors onto a beamsplitter.

The reflected beam from the beamsplitter is directed onto a 1.5 GHz FSR spectrum

analyzer (550 nm to 700 nm optics with a peak finess of 200), which displays the laser's

spectral characteristics. The transmitted beam is deflected by two more mirrors onto

a 300 MHz Fabry-Perot etalon, which sits in a temperature and pressure stabilized

box.

The second beam passes through two dichroic beamsplitters which are used to

overlap the beams of the red laser and the diode laser. The beam is then deflected by

another mirror onto a thick glass beamsplitter. The transmitted beam is directed to

the wavemeter, and the two reflected beams are used to monitor transmission through

the iodine cell, and to normalize its transmission signals.

Recently, a Burleigh model WA-20VIS wavemeter has replaced our homemade

Michelson interferometer. The new wavemeter is reliable, compact and easy to align,

though the accuracy remains about the same (1 part in 106). Some of the useful

transition wavelengths were shown in Table 3.5. All wavelengths were expressed in

values in vacuum because the Burleigh wavemeter measures wavelengths in vacuum.
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3.4.3 Monitoring the Stepwise Excitation

Figure 3-13 displays our detection scheme. The transitions 2S -+ 2P and 2P -4

3S are monitored through the fluorescent signals. Unlike the two-photon transition,

the incident and the fluorescent photons now have exactly the same wavelength.

The scattered light is completely depolarized, and it cannnot be easily filtered out.

Great care is thus needed in maximizing the fluorescent signal and at the same time

minimizing the scattered light. Unfortunately, sometimes this is still a problem. Both

fluorescent signals are coupled out of the interaction region with a light pipe and a

long fiber bundle as described in Sec. 2.4.1 and shown in Fig. 3-13. The collected

light is then split into two signals by a bifurcated fiber bundle from Ealing Optics.

The photons from the 2P -+ 2S fluorescence pass through an Ealing 670 nm

interference filter (bandwidth 10 nm) and are focused onto a Hamamatsu R669 red

sensitive PMT. Useful specifications of this PMT are shown in Table 3.11. The

focusing optics are two Melles Griot aspherical lenses, the first one with an 18 mm

focal length and the second one with a 26.5 mm focal length. The PMT is mounted

in a homemade PMT housing with a homemade gate valve and is operated at room

temperature. The dark counts are relatively high (e 5000 cps) and the gain is low.

However, the fluorescent signal from the 2S -4 2P principal transition is huge, about

3 x 106 sec - 1 when the oven is operated at 650TC. The scattered light is often 5-10%

of the total signal counts. We usually operate the PMT with 750 V on the cathode,

lower than the suggested 1000 V bias.

The collection efficiency, EpMT, is the product of the following factors,

EPMT = (fractional solid angle subtended by the light pipe = 0.05)

x (coupling into the light pipe = 0.5)

x (transmission of the light pipe = 0.5)
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Filter Filter

Figure :3-13: New detector arrangements. The fluorescences from the
first two transitions are collected by two PMT's and the Rydberg signals
are detected by a MCP.
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Photocathode material Extended Red Multialkali
Maximum bias on the cathode 1000 V
Operating bias on the cathode 750 V
Quantum efficiency at 670nm 5%
Quantum efficiency at 813nm 1%
Gain at maximum bias 3.3 x 10s
Dark counts at maximum bias 5000 cps (25°C)
Dark counts at operating bias 500 cps (25°C)
Active area 4 mm x 10 mm

Table 3.11: Specifications of the Hamamatsu R669 PMT.

x (coupling into the fiber bundle = 0.5)

x (transmission of the fiber bundle = 0.25)

x (coupling into the dual fiber bundle = 0.25)

x (transmission of the dual fiber bundle = 0.5)

x (filter transmission = 0.5)

x (lens transmission = 0.75)

x (PMT quantum efficiency = 0.05)

3.5 x 10- T.  (3.37)

With this efficiency, our observed counting rate of3x 106 sec - 1 implies that the lithium

atoms are emitting about 8.8 x 1011 photons/sec. Compared with the estimated rate

for the emission from a saturated transition given in Eqn. 3.8, this is about a factor

of 14 too low. Possibly the collection efficiency is over-estimated, but in any case this

is not too far below the calculated value.

The photons from the 3S -+ 2P fluorescence pass through an Ealing 810 nm

inteference filter (bandwidth 10 nm) and are focused onto a RCA C31034A PMT.

This is the tube used to monitor the two-photon cascade fluorescence. Its parameters
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were presented in Fig. 2.3. The focusing optics are two Melles Griot aspherical lenses

(HEBBAR coated), the first one with an 18 mm focal length and the second one with

a 26.5 mm focal length. We operate the PMT at -30 0 C. The fluorescent signal from

the 2P -+ 3S transition is about 5 x 104 sec - 1, when the oven is operated at 650 0 C.

The scattered light is about 5% of the total signal counts.

The collection efficiency for this detection, EpMT, is given by the product of the

following factors,

EpMT = (fractional solid angle subtended by the light pipe = 0.05)

x (coupling into the light pipe = 0.5)

x (transmission of the light pipe = 0.5)

x (coupling into the fiber bundle = 0.5)

x (transmission of the fiber bundle = 0.25)

x (coupling into the dual fiber bundle = 0.25)

x (transmission of the dual fiber bundle = 0.5)

x (filter transmission = 0.5)

x (lens transmission = 0.95)

x (PMT quantum efficiency = 0.1)

8.9 x 10- 7. (3.38)

With this efficiency, our observed counting rate of 5 x 104 sec 1 implies that

the lithium atoms are emitting about 5.6 x 1010 photons/sec. Compared with the

estimated rate for the emission from a saturated transition given in Eqn. 3.9, this is

about a factor of 85 too low. Again maybe the collection efficiency is over-estimated,

but this is still not too far below the calculated value.

At one point, we were concerned about angle tuning of our interference filter: The
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transmission peak shifts blue if the angle of incidence is away from normal. In general,

the photons exiting the fiber bundle will not be normal to the filter. Hence, the light

bluer than 813 nm will have higher transmission than light redder than 813 nm. In

particular, the fluorescent signal from the 2S -+ 2P transition is much stronger and its

transition wavelength 671 nm is bluer than 813 nm. Chun-ho Iu at SUNY-Stonybrook

reports that his detector for 813 nm fluorescence is completely overwhelmed by the

671 nm photons. To our delight, the counts due to the fluorescent photons from the

671 nm transition, as well as the scattered light from the lasers, are negligible for our

813 nm fluorescent PMT.

Finally the Rydberg states continue to be field ionized and the ions are detected

by the MCP as described in Sec. 2.5.1 and Sec. 2.5.2 and shown in Fig. 3-13. Bertan

Model 315 high voltage power supplies are used to bias both PMT's and the MCP.

The Modern Instrument Technology Model F-100T amp-discriminators are used to

enhance the signals from the anodes of all three detectors, and the output TTL pulses

are sent to the counters.

The Rydberg signal from this excitation scheme was found to improve by a factor

2 or 3. This is the same order of magnitude as the estimate in Eqn. 3.10. Data taken

with this stepwise excitation scheme will be the subject of a future thesis.
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Classical Chaos

We turn now to the scientific goal of this thesis: to understand the quantum me-

chanics of a classically chaotic system. Before exploring the world of quantum chaos,

some discussion of classical chaos seems appropriate. One of the pioneering works on

chaos is the analysis of a nonlinear oscillator by Henon and Heiles in 1964 [HH64].

They demonstrated that there exist simple, nonlinear systems which display chaotic

behavior in which the motion cannot be predicted, even in principle, though the laws

of motion are known. The evolution in time is described by Hamilton equations of

motion, and the solutions are possible for sufficiently short times by numerical inte-

gration. Yet for sufficiently long times, the motion can be unpredictable. The reason

for such chaotic: behavior is the instabilities of orbits. Two such orbits, with slightly

different initial conditions, separate exponentially in time, whereas regular trajecto-

ries separate linearly. In other words, the motion displays sensitive dependence on

initial conditions. Thus our finite precision in knowing the initial conditions makes

useful predictions of long time behavior impossible.

The aim of this chapter is threefold. First is to provide a general introduction to

nonintegrable Hamiltonian systems and the origins of chaotic behavior (Sec. 4.1 and

Sec. 4.2). Second is to intoduce the diamagnetic hydrogen problem as an archetype
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(Sec. 4.3). Finally, we discuss chaos in unbound systems - the so-called open systems

(Sec. 4.4). Since we are interested in time-independent Hamiltonian systems, non-

autonomous or dissipative systems are not discussed.

4.1 Integrable Hamiltonians

This section reviews the fundamental properties of integrable Hamiltonian systems

[Gol81] [Tab89]. It begins with the formulation of the necessary conditions for the

integrability of a given Hamiltonian system. Some basic ideas such as canonical

transformation and action-angle variables are introduced (Sec. 4.1.1). These ideas

are illustrated using an important example of an integrable system in atomic physics,

the hydrogen atom in a uniform electric field (Sec. 4.1.2). Finally, a useful numerical

method, the surface of section, is introduced (Sec. 4.1.3).

4.1.1 Hamilton Equations of Motion

Consider a time independent Hamiltonian with n degrees of freedom H(,ip) , where

q= (qi,...,qi, ... ,qn) are the generalized coordinates and p= (px,...,P i , ... ,pn) are the

conjugate momenta. The Hamilton equations of motion are

OH
api
aH

Pi = qi (4.1)

If we can find a canonical transformation (q -+ Q, p -+ P) so that

H(,pi == H'(P), (4.2)
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then the Hamilton equations of motion become,

Pi = 0

Q, = f,(J), (4.3)

which can be trivially integrated to get:

P, = const

Qi = fit + i, (4.4)

where 6i = Qi(O') are determined by initial conditions. Clearly, the Pi are n constants

of motion, and the Qi are known as cyclic coordinates. Thus the key to integrating a

time-independent Hamiltonian with n degrees of freedom is to identify n independent

constants of motion and express them in the form of n constant conjugate momenta.

To be more precise, a Hamiltonian system is completely integrable if there exist n

constants of motions F1, ..., F,, which are in involution, that is, for which all Poisson

brackets between them vanish,

[Fi, Fj] = 0, i = 1, ... , nJ = 1, ... , n. (4.5)

In other words, the F, all commute with each other [Tab89]. If these conditions are

satisfied, the Liouville-Arnold theorem [Arn78] states that each n-dimensional surface,

which each trajectory is confined to in a 2n-dimensional phase space, must have the

topology of an n-dimensional torus, the so-called invariant torus.

The phase space of an integrable system is thus filled with non-intersecting in-

variant tori. Each classical trajectory is confined on such a torus. The motion on an

n-dimensional torus is naturally periodic and can be considered as the direct product

of n independent 27r periodicities. Therefore it is convenient to find a canonical trans-
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formation, p -+ Ii and q -+ Oi, such that each Oi increases by 27r after each complete

period of motion. One can show that if Ii are defined as [Tab89]

li p . dq, (4.6)

where C, are n topologically independent closed paths on an n-dimensional torus,

then

= OH 0
I. - -=0

090i
i= OH9, w- . (4.7)'91 i

That is, H is only a function of li, and the 0i are cyclic. The Ii and 0i are known as

the action-angle variables.

The conserved classical action variables Ii play an important role in the semiclas-

sical quantization ideas in Sec. 5.1. To summarize, an integrable system of n degrees

of freedom has n constants of motion. The trajectories in 2n-dimensional phase space

lie on n-dimensional tori. They are called the regular trajectories. It is important

to note that for an integrable system, the trajectories are regular for all parameters

and initial conditions. Otherwise, energy conservation only guarantees that a given

trajectory is confined to a (2n-1)-dimensional energy shell. An obvious consequence

of the above discussions is that all Hamiltonians with one degree of freedom are in-

tegrable. Conversely, a nonintegrable Hamiltonian system must have at least two

degrees of freedom.

4.1.2 Hydrogen Atom in a Uniform Electric Field

As an example of an integrable Hamiltonian, we consider a physical system in atomic

physics, a hydrogen atom in a uniform electric field. The Hamiltonian in atomic units
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is
p2

H - - + F .r (4.8)
2 r

where F is the electric field. According to Sec. 4.1.1, this Hamiltonian is integrable

if there exist three constants of motion. One can easily show that the total energy

E and the component of the angular momentum in the direction of the electric field

(fL. F/F) are conserved. To show the existence of the third constant of motion, we

consider the Laplace-Runge-Lenz vector,

A= -i+ Lx1 37 (4.9)rA - + L x f,(4.9)r A

which is a constant of motion in the absence of electric field [Gol81]. In an electric

field, A is no longer conserved. Its rate of change is

dA (4.10)
dt L x F + (Fx F) x p. (4.10)

However, some simple vector manipulations show that

d d l -(A .F) - 2[(rF x F) x r]. F = 0. (4.11)

This implies that {A- [(f x F) x r1/2} .F is a new constant of motion [Red64]. The

vector
(r'x F) x r'_ = A- - 2 (4.12)

is sometimes known as the generalized Laplace-Runge-Lenz vector. The third con-

stant of motion is the component of C in the direction of the electric field. In the

absence of an electric field, C reduces to the Laplace-Runge-Lenz vector.

It is evident that the third constant of motion is a direct result of the conservation

of the Laplace-Runge-Lenz vector in the absence of an electric field. This symmetry
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is the result of the special nature of the Coulomb potential. The Coulomb potential

is supersymmetric in the sense that it has more constants of motion than necessary

for an integrable system. One would not expect this symmetry to hold for a general

central potential. In fact, a third constant of motion does not exist for an arbitrary

central potential in the presence of a uniform electric field. An example is an alkali

atom in a uniform electric field. Courtney offers a detailed description of this problem

[Cou95]. We will examine this system more closely in Sec. 4.4 in the context of chaos

in an open system.

4.1.3 Surface of Section

In the example in the last section, we managed to find all three constants of motion

analytically. However, except for some special cases, there are no systematic methods

for finding constants of motion for a given Hamiltonian. In other words, there are

no analytic methods to determine whether a given Hamiltonian is integrable. One

has to investigate the motion using numerical means. One technique for analyzing

the motion is the surface of section, developed by Poincard [Poi92]. This technique

is especially suited for studying Hamiltonians with two degrees of freedom, and the

discussion in this section is restricted to such Hamiltonians. Some methods for gen-

eralizing this method to systems with three degrees of freedom will be described in

Sec. 8.2.

Consider a two-dimensional Hamiltonian

2 + p2
H = PX2 Y+ V(x,y). (4.13)2

The phase space is four-dimensional, composed of p, py, x, and y. However, energy

conservation confines the trajectories to a three-dimensional energy surface, and there

are only three independent variables. For example, for a given energy, p, is determined
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within a sign by p=, x, and y. The key idea of a surface of section is to inspect the

behavior on a slice of the phase space, for example y = 0. One records the values

of Pz and x every time the trajectory intercepts this slice. This way every point on

the slice defines the state of the system within a sign. Clearly, this is only suitable

for a bound system. Section 4.4 will present methods for characterizing unbound

systems. For the rest of the discussion, we will restrict ourselves to bound trajectories.

These trajectories are obtained through integrating Hamilton equations of motion

numerically. From the discussion in Sec. 4.1.1, we learn that if the Hamitonian is

integrable, the trajectories are confined on two-dimensional tori. The interception of

one of the tori with the surface of section is a one-dimensional manifold, a smooth

curve. Otherwise the trajectories can migrate on the whole three-dimensional energy

surface. This is manifest on the surface of section as points on a two-dimensional

manifold.

We now return to our example of the hydrogen atom in a uniform electric field. We

take F = F2. Conservation of Lz effectively reduces the system to two-dimensional.

The Hamiltonian for Lz = 0 in cylindrical coordinates is

2 2
pP + p

_ 12 + + Fz. (4.14)

Before examining the surface of section, we can further simplify the problem by taking

advantage of a classical scaling rule,

F -+ FI

p # F1/4(

EF = B-1/2H. (4.15)
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Figure 4-1: Surface of section at z=0 of a hydrogen atom in
-electric field at EF = -3.0.

a uniform

The scaled Hamiltonian is

2 2
6F -- P + Z2 (•p2 + Z2 ) 1/ 2 (4.16)

which only depends on one parameter EF, not on E and F separately.

As our surface of section, we take a slice of the phase space at z = 0 and record

the points at p and pp. Figure 4-1 shows such a surface of section for EF = -3.0.

It is clear that all points lie on smooth curves. Each smooth curve corresponds to a

unique trajectory defined by a particular set of initial conditions. We conclude that

the motion is indeed regular for the given EF. One can actually show that this is true

for all values of EF, which agrees with the existence of the third constant of motion

in Sec. 4.1.2.
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4.2 Canonical Perturbation Theory and Classical

Chaos

In this section, we are concerned with what happens to the tori of an integrable system

under a small perturbation. An important example is the atomic system of this thesis,

the Rydberg atom in external fields. Although much of the material presented in this

section, i.e. the canonical perturbation theory, is not used explicitly in the studies

reported in this thesis, it is very helpful in developing our understanding of classical

chaos. We summarize some of the major ideas following the treatment by Tabor

[Tab89].

We discuss classical canonical perturbation theory for systems with one degree of

freedom in Sec. 4.2.1. Then we address the difficulties of this method for systems

with more than one degree of freedom in Sec. 4.2.2. Finally, we state the celebrated

KAM theorem and its consequences in Sec. 4.2.3.

4.2.1 One Degree of Freedom

In order to apply canonical perturbation theory, we represent a given Hamiltonian

system in the form of an integrable part H0 plus some nonintegrable part H'. In

terms of action-angle variables (I, 0) of the integrable part, we have

H(I, 0) = Ho(I) + H'(I, 0). (4.17)

The Hamilton equations of motion for this system are

OI = H(I,0) (4.18)

-= -H(I, 9). (4.19)ai/
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Due to the dependence on 0 in H', I is no longer a constant of motion. The basic idea

of canonical perturbation theory is to find a new pair of action-angle variables (J,p)

for the system such that there is a canonical transformation to a new Hamiltonian in

which p is cyclic (ignorable), that is, H(I, 0) -+ K(J). If this is possible, then the

new Hamiltonian becomes integrable and can be trivially integrated.

We start by expressing the nonintegrable part H' in a power series of E (E < 1),

H(I, 0) = Ho(I) + EHI(I, 0) + E2H2 (I, 9) + O (E3). (4.20)

Equations 4.18 and 4.19 become

= - H _ "2 H2

- I=_ - 82 +0(6 3 ) (4.21)6008
+ OH1  E28H 2

o() + + E +  (E3 ),(4.22)

where wo(I) H aHo(I)/0I is the frequency of an unperturbed trajectory around a

torus. In order to generate a new pair of action-angle variables (J,p), we need to

find the generating function S = S(9,J). (For a review of generating functions and the

Hamilton-Jacobi equation, see for example Goldstein [Gol81].) The relations between

the new and old action-angle variables are

aI = -S(9,J)

S= aS(0, J). (4.23)
0J

Through these relations and Eqn. 4.20, we obtain the time-independent Hamilton-

Jacobi equation

09S OS )S
Ho(-S) + eHi(--s.,0) + 2 H 2 (s 0,0) + 0(E 3 ) = K(J). (4.24)
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We expand S and K in power series of E,

S = So + ES + e 2S2 + O(E3 )

K = Ko+EK + E2K2 + O(E3). (4.25)

By using these series expansions in Eqn. 4.24 and expanding the right hand side in a

Taylor series, we get

+ 21 1 )S,2 2Ho
S-a J --5-

aS2 OHo
pp- J

+o0( 3) = Ko(J) + EK1(J) + E2K 2(J) + O(E3).

Equating powers of E, we have

0((E) : Ho(J) = Ko(J)

O(E) : a + H,(J, 0) = Ki(J)
09 OJ
1 (S01 2HoO(E2) 2(( ) a:JO2 a0 -5-J-2

as2 OHo+ a 5J + H2(J, 9) = K2(J).

These equations show that in zeroth order, Ko is found by replacing I by J in Ho,

0(E0) : J = I

S= 0. (4.30)

To find corrections to first order, we need to solve Eqn. 4.28 for S1. Let

H1 (J,0) = K (J) - H((J,.0),

0S1 0Ho
Ho(J) + e [ a+J + Hi]80 8J

+s1 OH100 H2]

(4.26)

(4.27)

(4.28)

(4.29)
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and together with Eqn. 4.7, we can write Eqn. 4.28 as

a 1-
$1S(0, J) = !•l (J, 0). (4.32)8 0WO (J)

An unperturbed trajectory is confined on a torus with frequency wo. It is reasonable

to expand both S1 and f•1 as Fourier series in the unperturbed angle variable 0,

00

HI (J, 0) = E Ak(J)eikO, (4.33)
k=0

00 OOk
S1(J, ) = Z Bk(J)ekO. (4.34)

k=O

The first order correction to the generating function is

iAk(J) eikO" (4.35)
S (Jo kwo(J)(4.35)k

Equations 4.23 can now be used to find the new action-angle variables to first order

in Ec,

S= 0 + E- SI(J, 0)

J= I -C • S1 (J, 0). (4.36)

This process can be generalized to higher orders in E. However, from Sec. 4.1.1 we

know that all Hamiltonians with one degree of freedom are integrable. Thus the

canonical perturbation theory here confirms something we already know: The new

action-angle variables, J and V (W is cyclic), can always be found for a one-dimensional

Hamiltonian system.
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4.2.2 Many Degrees of Freedom

We now attempt to generalize canonical perturbation theory to Hamiltonian systems

with more than, one degree of freedom. It will soon be obvious that serious difficulties

arise. These difficulties and the subsequent failure of classical canonical perturbation

theory are the roots of classical chaos. We proceed as in the one-dimensional case,

H(I, = H0 (I) + H'(I, O, (4.37)

where I = (I, .. , In) and 0 = (01, ... , 9,) are now the n-dimensional vectors of the

action-angle variables. We again attempt to find a new set of angle-action variables

(J, ý) such that are cyclic. Proceeding as in the one-dimensional case, the equations

for the generating function are

O(Eco) : Ho(J) = Ko(J) (4.38)

O(E1) : VoSi(J,-0 -VIHo(J) + H1(J,_0 = KI(J . (4.39)

Let

1 (J, 0) = KI(J) - Hg(J, ), (4.40)

and the n-dimensional frequency vector

wo(I = ViHo(I/. (4.41)

Equation 4.39 can be written as

o( • vos (0 J = fi (4.4 ). (4.42)
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Expanding both S, and H1 in Fourier series as before, we find

Am(J;it (M O-w (J)e-o (4.43)

Unlike the one-dimensional case, Eqn. 4.43 may not converge. In fact, when the

denominator mn w3o(J) = 0, the sum blows up! Physically, the components of 0o(J

correspond to the frequencies around an unperturbed torus. The physical situation

of Mi Wo0(J) = 0 thus corresponds to commensurable fundamental frequencies around

an unperturbed torus. Such a torus is sometimes called a rational torus. A torus

with incommensurable fundamental frequencies is called an irrational torus. Classical

canonical perturbation theory breaks down for rational tori. This is sometimes known

as the problem of the small divisors. As we will see later, this is essentially the source

of classical chaos.

4.2.3 KAM Theorem

The solution to the problem of the small divisors came in the form of the famous KAM

theorem. Qualitatively, the theorem states that all irrational tori of an unperturbed

system outside a region centered around each rational torus survive when perturbed,

though they may be distorted. The region centered around each rational torus is

known as a resonant gap, the width of which vanishes as the perturbation goes to

zero. The proof turns out to be highly complicated [Arn63]. What happens to the

tori inside the resonant gaps and the rational tori themselves? Tabor gives a detailed

analysis of the motion inside the resonant gaps around rational tori [Tab89]. Roughly

speaking, a perturbation destroys these tori. The motion inside the resonant gaps is

no longer confined on any tori and becomes chaotic.

We are now ready to describe the behavior of a typical integrable system under a

perturbation. For a small perturbation, the system displays essentially all the features
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Degrees of Freedom 1 2 3 4 n
Dimensions of phase space 2 4 6 8 2n
Dimensions of energy shell 1 3 5 7 2n-1
Dimensions of tori 1 2 3 4 n
Dimensions of surface of section - 2 4 6 2n-2

Table 4.1: Dimensions of various classical spaces vs. degrees of freedom
in the system.

of an integrable system. Almost all tori are preserved. As the perturbation increases,

more tori are destroyed. The so-called stochastic motion occurs in the vicinities of

these destroyed tori. At a certain value of the perturbation parameter, almost all tori

are destroyed. The motion becomes chaotic almost everywhere on the energy surface

in phase space. There are two critical perturbation parameters. One determines the

onset of destruction of tori and one determines the onset of global chaos. These values

cannot be predicted analytically, and must be determined numerically for individual

cases. We will give examples in Sec. 4.3 and Sec. 8.2. Since the existence of a torus is

associated with a constant of motion, i.e. a symmetry of the system, the destruction

of tori can be interpreted as symmetry breaking. The onset of classical chaos can

therefore also be characterized as the destruction of certain symmetries.

Finally, the ideas in this section are summarized in Table 4.1. First we note

for a one-dimensional system, the dimension of the energy shell and the dimension

of the tori are the same. This simply reiterates the fact that all one-dimensional

Hamiltonian systems are integrable. Secondly, the KAM theorem guarantees the

existence of irrational tori in a perturbed system. These tori are sometimes called

the KAM tori. For a two-dimensional system, these tori are two-dimensional and are

embedded on a, three-dimensional energy shell. This means they set up boundaries

for chaotic trajectories. In other words, the chaotic trajectories in one region are

separated from chaotic trajectories in another region by a KAM torus. We recall
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that a two-dimensional surface can divide a three-dimensional space into two distinct

regions. For systems with more than two degrees of freedom, this is no longer true.

For example, a three-dimensional system has three-dimensional tori embedded on a

a five-dimensional energy surface 1. In this case, the KAM tori do not confine the

chaotic trajectories. The chaotic trajectories can intersect every finite region of the

energy surface in phase space. This remarkable phenomenon will be demonstrated in

Sec. 8.2.3.

4.3 The Diamagnetic Hydrogen Atom

In this section, we will discuss a classically chaotic system: a hydrogen atom in

a uniform magnetic field, the so-called diamagnetic hydrogen atom. This problem

has been studied by a number of authors and has been shown to be nonintegrable

[Rob81] [DKN84] [HH83]. Excellent review articles are given in references [HRW89]

and [FW89]. In the literature, much of the discussion is restricted to the case where

the angular momentum along the magnetic field vanishes, a situation particularly

convenient experimentally. Here we will study the general situation and emphasize

the significance of the angular momentum barrier on the system.

The Hamiltonian in atomic units is

H=2 - + 1 - + x 2 (4.44)
2 r 2 8

where B = Bi is the magnetic field and L is the angular momentum. As in the

case of hydrogen in an electric field, the energy and L, are conserved. The system is

effectively two-dimensional, and the Hamiltonian obeys a scaling rule. In cylindrical

1Three-dimensional surfaces do not divide five-dimensional space into bound regions for the same
reason that lines cannot divide three-dimensional space into bound regions.
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coordinates the Hamiltonian is

p2 2 2 1
H = +p Z + -LzB + -B 2 p2 . (4.45)

2 2p 2  (p2 + 2)1/2  2 8

The scaling rules are

S- B2/3-

p B-11

1Z = B 1/3 Lz

e = HB- 2 / 3. (4.46)

The scaled Hamiltonian is

p2 +2 12E=p + + 1 + 1 2 (447)
2 2p2  (p2 + z2)1/2 • 8• p

The system only depends on two parameters, E and lI, not on B, E, and Lz separately.

At B = 6 T, for example, E = -0.5 corresponds to E = -95 cm - 1 and E = -0.1

corresponds to E = -20 cm - 1. We should emphasize here that lz is the scaled angular

momentum, not the actual angular momentum itself. Because lz is a constant of

motion, the classical dynamics in the cases of +l1 and -l, differ only by the trivial

paramagnetic interaction. For the rest of this chapter, we will only consider -lI.

Unlike hydrogen in a uniform electric field, this system does not have a third constant

of motion. As we will see shortly, the system is indeed nonintegrable.

One can define an effective static potential for the Hamiltonian in Eqn. 4.47 by

setting the kinetic energy to zero,

12V= +1 11 +1 P2 (4.48)
2p2 (p 2 + z2)1/2 2 Z8 (4
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This potential has a minimum which defines the boundary between the classically

allowed and forbidden regions. The angular momentum barrier prevents the electron

from getting close to the nucleus. This barrier vanishes in the limit that l, goes

to zero. The potential has a local maximum, above which the electron can ionize

along the z-axis. In this section, we are primarily interested in the classical dynamics

between the minimum and the local maximum.

4.3.1 Surface of Section

We shall examine behavior for z=0. The surface of section is then defined by (pp, p),

with Pz determined by conservation of energy within a sign. The Hamilton equations

of motion are integrated numerically. Appendix G describes the procedures.

Figures 4-2 through 4-7 show surfaces of section for lz = 0 to lI = -5. Each figure

shows surfaces of section for three values of E. For all l, at large negative E (Figs. a),

the whole phase space is filled with tori, implying the motion is regular everywhere. As

E increases (Figs. b), some tori are destroyed. Part of phase space is filled with chaotic

trajectories. These regions are bound by KAM tori, in agreement with the KAM

theorem. At still larger E (Figs. c), motion is chaotic almost everywhere. Note that

the angular momentum barrier excludes the trajectories from the origin for large l1.

The angular momentum barrier tends to prevent the system from becoming chaotic.

The explanation is straightfoward. Chaos in the diamagnetic hydrogen atom is a

result of the competition between the spherical symmetry of the Coulomb potential

and the cylindrical symmetry of the magnetic field. For large lI, the electron is being

kept away from the nucleus by the angular momentum barrier, and thus experiences

a smaller Coulomb potential than an electron with small l,. Figure 4-8 shows this

transition from regular motion to chaotic motion in the l, and E space. For all l1,

the systems undergo a transition from orderly to disorderly motion as E increases.
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Figure 4-2: Surface of section for hydrogen in a uniform
magnetic field for l = 0, a) E = -0.6, b) E = -0.35, c)
E = -0.1.
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p

Figure 4-3: Surface of section for hydrogen in a uniform

magnetic field for 1, = -1, a) e = -0.6, b) E = -0.35, c)

E = -0.1.
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Figure 4-5: Surface of section for hydrogen in a uniform
magnetic field for l, = -3, a) E = -0.35, b) c = -0.25,
c) E = -0.1.
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Figure 4-6: Surface of section for hydrogen in a uniform
magnetic field for 1, = -4, a) E = -0.35, b) E = -0.18,
c) E = -0.1.
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CHAPTER 4. CLASSICAL CHAOS

Figure 4-7: Surface of section for hydrogen in a uniform
magnetic field for 1, = -5, a) e = -0.25, b) E = -0.12,
c) E = -0.05.
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Figure 4-8: Onset of classical chaos in the 1, and E space.

However, for a given E, a system with large magnitude of l1 is less chaotic than a

system with a small 1..

4.3.2 An Approximate Constant of Motion

As mentioned in Sec. 4.2.3, we can correlate the onset of chaos with the destruction of

symmetries. The disappearance of tori with increasing magnetic field guarantees the

lack of an exact third constant of motion. However, the presence of tori everywhere in

phase space at small magnetic fields suggests the possible existence of an approximate

symmetry. Solov'ev indeed found such an approximate constant of motion [Sol81]. He

divided the electron motion into the motion along an unperturbed elliptical trajectory

and a slow variation of this ellipse due to a small magnetic field. The elliptical

parameters are chosen to be L and A, the angular momentum and the Laplace-

Runge-Lenz vector (see Eqn. 4.9), respectively. In addition to the exact constants
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of motion E and Lz, he found a third approximate constant of motion A, within an

accuracy of B4:

A = 4A 2 - 5A. (4.49)

One can describe the system in terms of the motion of A, which is directed along

the major axis of the ellipse. A rotates around the magnetic field if A is positive and

vibrates along the magnetic field if A is negative. In Fig. 4-2a, the tori that cross the

pp = 0 axis are the rotators (A > 0) and the tori that do not cross the pp = 0 axis are

the vibrators (A < 0). Onset of chaos can be interpreted as a gradual destruction of

A as an approximate constant of motion.

4.3.3 A Brief Remark

As mentioned in the introduction of this chapter, a fundamental characteristic of

chaotic motion is great sensitivity of the motion to small changes in initial condi-

tions. Closely neighboring trajectories diverge exponentially. A quantitative measure

for such exponential instability is provided by the Lyapunov exponent, which, roughly

speaking, measures the mean rate of exponential separation of neighboring trajecto-

ries. A number of authors have studied Lyapunov exponents for the diamagnetic

hydrogen atom [SNF+88] [Win87]. We will not discuss the Lyapunov exponent for

the diamagnetic hydrogen atom here, but we will return to the consideration of the

Lyapunov exponent in Chapter 8.

4.4 Chaos in Open Systems

Throughout this chapter we have limited our discussions to trajectories that are

bound. Through a judicious choice of a slice in phase space, one can describe the

motion with a surface of section. For an unbound system - the so-called open sys-
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tem - this luxury is lost. Positive energy behavior of an initally bound system is

related to the process of scattering. Several authors have studied the classical dy-

namics of nuclear scattering systems with model potentials [Eck87] [BS88]. Eckhardt

and Jung discovered that certain scattering systems exhibit sensitive dependence on

initial conditions, [EJ86]. More precisely, they studied the time delay, the time the

incoming particle spends near the scattering center, as a function of the impact pa-

rameter. They found that this time delay has a sensitive dependence on the impact

parameter. In particular, they showed that this dependence displays fractal prop-

erties. They called this behavior irregular or chaotic scattering. Main and Wunner

have reported its connection to fluctuations in quantum cross sections, the so-called

Ericson fluctuations [MW92] [MW94].

In this concluding section, we will apply these ideas to the unbound region of

Rydberg atoms in strong fields. We find that the classical dynamics of Rydberg atoms

in strong fields in the continuum can be conveniently characterized by considering

how the atoms ionize. Our atomic system is not a generic scattering system with

an asymptotically incoming and outgoing particle. Rather, the electron is initially

localized to the nucleus. This corresponds to the fact that in a real experiment, the

electron is excited from a low-lying state confined close to the nucleus. A trajectory

does not depend. on an impact parameter but on its initial angle with respect to the

external fields. We will define the classical ionization time Tion as the time a given

trajectory spends near the nucleus before it escapes to infinity. We will study Tio.

as a function of this initial angle for two systems: one that displays regular behavior

and another one that displays chaos.

To illustrate a regular unbound system, we will use the example in Sec. 4.1.2,

hydrogen in a uniform electric field. Recall that the integrability of this system is

guaranteed by its three constants of motion. The trajectories are launched from the

origin. If the electron has enough energy to surmount the saddle point potential that
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4.4. CHAOS IN OPEN SYSTEMS

resulted from the competition between the nuclear and the applied electric field, it

will generally ionize. Once the electron has passed the saddle point, it cannot return.

Following Main and Wunner [MW92], we define the ionization time Tion to be the

time required for an electron near the nucleus to reach the saddle point.

We study Tio, as a function of launching angle 0 with respect to the electric field

axis. Figure 4-9 shows Tio, versus 0 for an energy below the zero-field ionization

limit, but above the saddle point energy. The trajectories ionize very quickly from

0 = 0° to 0 = 1200. At 0 = 1200, the classical ionzation time rises sharply. Actually,

above 1200, Tio, is infinite, so we arbitrarily set the cutoff at Tio, = 250 in atomic

units. Since the system is integrable, these trajectories lie on tori and are bound

forever. That is, the motion is quasi-periodic. We note that Ti,. is a smooth function

of 0, except for the sharp rise at 0 = 1200. This is not surprising because regular

trajectories have a smooth dependence on initial conditions. We conclude that a

trajectory either escapes quickly through the saddle point or stays on a torus forever.

As we will see shortly, this is not the case at all for a chaotic open system.

Michael Courtney has shown that the lithium atom in a uniform electric field

displays core-induced chaos in the bound region. The surfaces of section indeed

confirm this chaotic behavior [CJSK94]. We will examine this problem above the

saddle point, i.e. in the continuum. The following model Hamiltonian can be used

for a lithium atom in a uniform electric field:

p2 1H =+ F F+ V (r), (4.50)
2 r

where V,(r) describes the deviation from the pure Coulomb potential due to the core

at short distances from the nucleus. We find that the generic classical behavior does

not depend strongly on the details of the core but only on the sizes of the quantum
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Figure 4-10: Classical trajectory of the valence electron of lithium in
a uniform electric field. Horizontal axis is p and vertical axis is z.
E = -50 cm - 1, F = 300 V/cm, and 9 = 108.50.

defects [CSJK95]. We employ the core potential

V(r) = (Z - 1)e-ar
(4.51)

where Z = 3 for lithium and a = 2.13 is chosen to agree with the measured quantum

defects [Cou95].

Figure 4-10 shows a typical trajectory of an electron launched from the origin. In

contrast to a hydrogen atom trajectory, this trajectory undergoes very complicated

motion near the nucleus for some time before it ionizes through the saddle point.

Figures 4-11 show Tio, as a function of 0. In contrast to Fig. 4-9, Fig. 4-11a shows wild

oscillations of Tio, about certain values of 0. Figures 4-11b, 4-11c, and 4-11d show

magnifications of 100, 1000 and 10000, respectively, of a region near 9 = 108.580. Tio,

displays very complicated structure even at a magnification of 10000. These structures
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actually persist to ever finer scales: The fractal behavior is evident. The physical

explanation lies in the great sensitivity of these trajectories to initial conditions. A

small change in initial condition, i.e. the launching angle 0, results in a huge change in

the classical ionization time. This is reminiscent of chaos in a bound system, where the

neighboring trajectories diverge exponentially. Following Main and Wunner [MW92],

we adopt the term chaotic ionization to describe the ionization process.

In summary, the fractal structure in the classical ionization time of an open chaotic

system is a consequence of the sensitive dependence on initial conditions, just as in a

bound chaotic system. The classical ionization time appears to provide a useful way

to characterize classical chaos for such a system.
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Chapter 5

A Semiclassical Method

The relationship between a classically integrable system and its quantum counter-

part is rather well understood. As we recall from Sec. 4.1.1, an integrable system

with N degrees of freedom has a set of N conserved action variables. The quan-

tum energy eigenvalues and the corresponding wavefunctions can be readily obtained

semiclassically through the appropriate quantization of these action variables. This

semiclassical quantization method will be discussed in detail in Sec. 5.1.

Such a quantization method fails for a chaotic system because a chaotic trajec-

tory does not lie on any torus and thus does not have any well defined conserved

action variables. The goal of quantum chaos is to correlate quantum structure with

classically chaotic behavior in a nonintegrable system. In this thesis, we focus on two

issues that are more relevant to quantum spectra: the manifestation of classical chaos

in quantum spectra and the possible prediction of quantum spectra from classical

dynamics. The semiclassical periodic-orbit theory and the closely related closed-orbit

theory were developed to address these issues. They relate large scale spectral struc-

ture to classical trajectories. In particular, periodic-orbit theory asserts that every

periodic orbit leads to a modulation of the spectral density of states. Closed-orbit

theory asserts that every closed orbit, a periodic orbit that is closed at the nucleus,
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modulates the photoexcitation spectrum. These will be the subjects of Sec. 5.2 and

Sec. 5.3.

5.1 Semiclassical Quantization

In this section we will review the semiclassical quantization conditions for an inte-

grable system. The familiar WKB expansion for bound systems with one degree of

freedom will be introduced (Sec. 5.1.1). This will be generalized to systems with N

degrees of freedom, the EBK quantization (Sec. 5.1.2). The difficulty of semiclassical

quantization for a chaotic system will be pointed out.

5.1.1 WKB Expansion and Bohr-Sommerfeld Quantization

We consider a one-dimensional time-independent Schroedinger equation

h 2 a2 7
+ (E- V(x))I = 0. (5.1)

2m X2 +(

The wavefunction can be written as

O(x) = Aeis(x)/h, (5.2)

where S(x) can be expanded in powers of h

h
2

S(X) =i SO + 5S. + eS2 + h l e. (5.3)

Substituting into Eqn. 5.1 and equating powers of h lead to

OS(h0) 2 p2 (5.4)
oOx)•
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0 (hi) : so s, i SO (5.5)ax Ox 2 x2'

where p2 = 2m[E - V(x)]. The bound solutions are

So(x) = p(x)dx, (5.6)

and

S1(x) = In p(x). (5.7)

The wavefunction to first order in h is

A i f B
() = exp(+h p(x)dx) + - exp(-- p(x)dx)

- sin( Ip(x)dx +a). (5.8)

This is the semiclassical WKB approximation to a true bound state quantum wave-

function in the limit h -4 0. In a region E > V(x) (classically allowed region), p(x)

is positive and the wavefunctions are oscillatory. For E < V(x) (classically forbidden

region), p(x) is negative and the wavefunctions are exponentially decaying. Careful

use of the connecting formulas in both regions (see any quantum mechanics book, for

example Liboff [Lib80]) and imposing single valuedness on the wavefunction give the

famous Bohr-Sommerfeld quantization rule for the quantum eigenvalues,

p(x)dx = 27rh(n + ), (5.9)

where f represents the integral around a closed path.
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5.1.2 EBK Quantization

The above discussions can be readily generalized to a system with N degrees of free-

dom. We define the action as

S(q" = f( - d-, (5.10)

where the integral runs over each topologically independent trajectory on a torus.

Together with a density function p(qJ (the density of the classical trajectories in phase

space, assuming a uniform distribution of initial conditions), the above equation can

be used to construct a wave function

(= jPr(T 12 exp(Sr (q), (5.11)
r

where the sum runs over all topologically independent trajectories on a torus. This

wavefunction satisfies the Schroedinger equation in the limit h -+ 0. As in the case

of one degree of freedom, the connecting formulas and single-valuedness of the wave-

function give the quantization conditions. However, here we have more than one

closed path. As mentioned in Sec. 4.1.1, an N-dimensional torus has N topologically

distinct closed circuits. As a result one should quantize the action variables as defined

in Eqn. 4.6,

jp dq = 27rh(nk + a), (5.12)
Ck 4

where Ck is over each topologically distinct closed path on a given torus and ak is the

Maslov index which keeps track of the number of caustics traversed 1. The quantum

spectrum (the set of eigenvalues) can thus be extracted from this semiclassical quan-

tization method, the so-called EBK quantization rule. This quantization condition

1In optics, caustics correspond to the coalescence of rays which leads to points of high intensity
such as those observed in the focusing of light.
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assumes the existence of a torus. Einstein was the first one to realize that if Ck is

not well defined, as in the case of a chaotic trajectory, this quantization rule and thus

the construction of a wavefunction from the classical trajectories will not be possible

[Einl7].

5.2 Periodic-Orbit Theory

In 1970, Gutzwiller develped periodic-orbit theory to help answer the key question in

quantum chaos: How can classical dynamics be used to predict the quantum energy

spectrum when the classical system is chaotic? [Gut90] In contrast to the EBK

quantization for an integrable system where the goal is to obtain the eigenvalue of

each individual state, period-orbit theory deals with the fluctuations in the spectral

density of states.

5.2.1 Background

The starting point of the theory is the quantum mechanical propagator K(' ", q', t)

which gives the transition amplitude for a particle to arrive at q " when its initial

location is at q'. That is,

q( •",t) = Jd3'K(q ", ',t)(04', to). (5.13)

Clearly, the time evolution of the wave function and hence the eigenvalues are com-

pletely determined if K(' ", ', t) and 4(q', t0) are known. The explicit formula for

the propagator is given by Feynman's path integral [Sak85]:

K(="'t) J D[, t]eiS(4,t)/lh (5.14)
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-I,

where S(q) is the action function defined in Eqn. 5.10. f4, D[q] is the path integral

summing over all possible paths, given by [Sak85]

9DD[qt] =_ lim (2 At) (-/2 d_,1  dx._2 . .. dx2. (5.15)
n-+oo (27ihAt' ~ - ~- .

In the semiclassical limit (h -+ 0), the propagator is given by a sum over classical

trajectories only. The contributions from other paths interfere destructively due to the

smallness of h. The explicit semiclassical approximation to Feynman's path integral

can be written as [Gut82]

g(•tt•t~ 1 -- (-• /• det &2Sr ]1/2
K( 27ri t) )N/2 1 d ei(Sr/h-pr1/ 2), (5.16)

where N is the dimensionality of the system, Sr is the classical action over one tra-

jectory, Pr is the same Maslov index as described in Sec. 5.1.2, and the sum is over

all classical trajectories. The determinant is the classical amplitude. It gives a semi-

classical approximation to the probability density. This semiclassical equation for

the propagator has a striking resemblence to the wave function constructed from the

EBK quantization in Eqn. 5.11. Indeed, for an integrable system where all trajec-

tories are confined on tori, this sum can be readily evaluated and the results are

identical to those achieved using separations of variables and the application of the

EBK quantization [Gut90]. For a chaotic system, where the trajectories do not lie on

any torus, evaluating such a sum is a formidable task. As of now, no general methods

are available.
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5.2.2 The Trace Formula

The problem becomes more tractable if one is interested only in the energy level

density of states. This is given by [Gut82],

p(E) 1 Im [G(q, q, E)]dq (5.17)

where

G(q, q, E) 0= eiEt/hK(q, q, t)dt (5.18)

is the Fourier transform of the propagator, known as the Green's function. p(E)

is also known as the trace of G(q", q', E) because one can think of G(q", q', E) as a

matrix with rows numbered by q" and columns numbered by q'. p(E) is essentially

the sum of the diagonal elements. The diagonal elements G(q, q, E) can be evalu-

ated using Eqn. 5.18 and Eqn. 5.16. Since the propagator of each diagonal element

K(q, q, t) starts and ends at the same position, we no longer need to sum over all

possible classical trajectories, but only those that start and end at the same position.

Gutzwiller also proves that the trajectories with different initial and final momenta

have negligible contributions [Gut90]. Trajectories with the same initial and final

positions and momenta are called periodic orbits. Thus the calculation of the spectral

density of state reduces to a summation over all periodic orbits. After many manip-

ulations using Eqn. 5.16, Eqn. 5.17, and Eqn. 5.18, the trace formula can be written

more explicitly as

1 Tr ei(S,-/h_-,r/2)  (5.19)p(E) = ih E 2 sinh(Xr/2) (5.19)

where T7, and S, are the period and the action of a given orbit, respectively, and

the sum is over all periodic orbits. The amplitude 1/2 sinh(x,/2) is proportional to

the density of neighboring trajectories. X, proportional to the Lyapunov exponent,
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determines the relative instability of an orbit. The situation is different for a stable

orbit, where the neighboring trajectories wind around it. In this case 1/2 sinh(xr/2)

becomes 1/2 sin(Xr/2), where X, = 27rm is the winding number. This presents a

singularity at sin(xr/2) = 0. As we will see in Sec. 6.3.2, this breakdown in the trace

formula corresponds to a classical bifurcation of periodic orbits.

It is worth emphasizing that periodic-orbit theory does not claim any relationship

between individual classical orbits and individual quantum states. It merely asserts

that every classical periodic orbit contributes a sinusoidal oscillation to the density of

states. A large number of periodic orbits (including very long period orbits) is required

to obtain an approximation to individual eigenvalues. The periodic orbits proliferate

and become increasingly unstable as the system becomes chaotic. Consequently,

hunting down all periodic orbits in a chaotic system poses a formidable task. It is

not yet known whether periodic-orbit theory converges. Nevertheless, a finite set of

short period orbits gives a semiclassical approximation to the finite resolution density

of states.

5.3 Closed-Orbit Theory

In a typical spectroscopic experiment, one measures either well resolved oscillator

strengths or the average oscillator strength density, but not a density of states. In

1987, Delos and co-workers extended the ideas of periodic-orbit theory to oscillator

strength density and developed closed-orbit theory.
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5.3.1 Basic Formulation

For an atomic transition between initial state Vi and final state -f, the oscillator

strength is given by

f = 2me(E/2-E) I < ?/ID0b, > 12, (5.20)

where D is the electric dipole operator. The transition rate to an excited state is

directly proportional to this oscillator strength.

If the final states are not resolved in the experiment, then the total transition rate

is proportional to the average oscillator strength density given by

Df(Ef) = ff p(Ef)g(E - Ef)dEf, (5.21)

where p(Ef) is the density of final states given by Eqn. 5.17, and g(E - Ef) is

the experimental resolution function. Using the Green's function of Eqn. 5.18 in

Eqn. 5.17, the average oscillator strength can be written as

2 me( E - E; )Df(E) = E2 ) Im < DbjG(E)jD4' >. (5.22)DfE rh2

Using the semiclassical approximation of Eqn. 5.16, Delos and co-workers obtained

an expression similar to Eqn. 5.19 for the average oscillator strength density [DD88a]

[DD88b],
00

Df(E) = Dfo(E) + E Dnk sin(TnkE + ,nk), (5.23)
k n=1

where Dfo(E) is a smooth background term. Because the initial state is usually the

ground state localized near the nucleus, the sum runs only over all periodic orbits that

are closed at the nucleus, the so-called closed orbits. In the above equation, k goes

over all primitive closed orbits and n runs over their repetitions. Tnk is the period of a
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given orbit. Dnk is the strength of the modulation, known as the recurrence amplitude

of each closed orbit. It contains information about the short-time stability of the orbit,

its initial and final angles, and the polarization of the incident photons. knk is a phase

that is computed from the Maslov index and other geometrical considerations. More

explicit expressions for Dk and knk can be found in [DD88b].

Equation 5.23 has a simple physical interpretation. When an atom absorbs a

photon, the electron goes into an outgoing Coulomb wave. This wave propagates

away from the nucleus to large distances. At these distances, the outgoing wave fronts

can be approximated semiclassically, and they are basically correlated with classical

trajectories. Eventually, the trajectories and the wave fronts are turned back by the

external fields; some of the orbits return to the nucleus, and the associated waves

interfere with the outgoing waves to produce the sinusoidal oscillations. This is the

essence of closed-orbit theory.

Finally, using closed-orbit theory to compute an experimental spectrum with res-

olution 3E requires summing over all closed orbits with periods up to 27rh/JE. The

theory has enjoyed considerable success for low resolution spectra [MWW+94]. But,

as with periodic-orbit theory, its applicability to high resolution spectra is still an

open question.

5.3.2 Technique of Scaled-Energy Spectroscopy

If the oscillator strength density is modulated by each closed orbit, then the Fourier

transform of the experimental spectrum will give signatures (known as the recur-

rences) corresponding to individual closed orbits. A typical photoexcitation spectrum

is taken at a fixed external field value while the laser frequency (corresponding to the

excitation energy E) is varied. This limits the useful energy range over which the

Fourier transform can be taken for two reasons. First, the period of each closed or-
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bit changes with excitation energy. Secondly, the recurrence amplitude also changes

rapidly as a function of energy. For these reasons, the Fourier transform of a regular

photoexcitation spectrum gives only recurrences of closed orbits that have relatively

constant periods over the given energy range, generally only very short period orbits.

To observe the recurrences of all closed orbits, the spectrum has to be limited to a

very small energy range. This has the implication that long period orbits may not be

observable.

To circumvent this difficulty, Welge and co-workers developed the technique of

scaled-energy spectroscopy. They originally applied the technique to diamagnetic

hydrogen, but it can be readily extended to other systems. The key idea is to exploit

a classical scaling law such as the one shown in Eqn. 4.46. The scaled Hamiltonian

of Eqn. 4.47 depends on E = E/B 2/ 3. Thus a spectrum generated under conditions of

constant E corresponds to the classical dynamics of an invariant Hamiltonian. In such

a scaled-energy experiment, the magnetic field and the laser frequency are varied so

that e remains constant. The Fourier transform of the resulting spectrum bears clear

signatures of the closed classical orbits.

We now turn to a more quantitative analysis. Equation 5.23 for a scaled spectrum

recorded as a function of B - 1/ 3 yields

00

Df(B- 1/3 ) = Dfo(B - 1/ 3) + B1_16  Dk sin(B-1/3S k + nk). (5.24)
k n=1

The recurrence amplitude Dnk and scaled action Snk of each closed orbit are kept

constant during the scaled-energy scan. The only dependence of the modulation

strength on B is via B 1/ 6 which is proportional to E 1/ 4, a very weak dependence. (This

weak dependence on B is negligible for a typical scaled-energy spectrum. However,

it needs to be taken into account for a spectrum covering a large range of magnetic

field.) The actions of the modulating orbits can be clearly identified in the Fourier
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transform of a scaled-energy spectrum, using B - 1/ 3 as the Fourier transform variable.
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Chapter 6

Rydberg Atoms in Parallel Fields

Our understanding of physics in the semiclassical regime - particularly the quantum

behavior of a disorderly system - has been deepened by theoretical and experimental

studies of Rydberg atoms in applied static fields [HRW89]. For a variety of reasons,

up to now these studies have focused on the bound state: Quantum solutions are

more tractable in the bound states than for the continuum; classical motion can be

portrayed by surfaces of section, a powerful method that is convenient for bound

systems only; and experimental studies are much easier to carry out and interpret

for bound states than for the continuum. Nevertheless, an understanding of unbound

systems is essential for establishing the connections between quantum and classical

descriptions of irregular systems. As a step toward this goal, we report in this chapter

a study of the behavior of a Rydberg atom in parallel electric and magnetic fields at

energies where the system is unbound.

The work described in this chapter builds on a foundation of experimental and the-

oretical studies by a number of groups. The technique of scaled-energy spectroscopy,

pioneered by Welge and his associates [HMW+88], is here extended to the two-field
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system 1. We interpret some of the essential features using the closed-orbit theory

of Delos and co-workers [DD87], which was developed from the periodic-orbit theory

of Gutzwiller [Gut90]. An early study of barium in parallel fields by Rinneberg and

co-workers [KNV+88] revealed some of the features one might expect, including a

transition from "Quasi-Landau" behavior [GT69] to electric field induced oscillations

[FEBL78]. However, the classical interpretation was limited to short period orbits

because the spectra were not taken at scaled energies [MRBF+93].

6.1 Qualitative Features

The Hamiltonian of hydrogen in parallel electric field F and magnetic field B (both

fields taken to lie along the z-axis) is

H=p2 1 B2p2 2 - Fz. (6.1)
2 r 8

In the limit of vanishing magnetic field, the system becomes the hydrogen atom in a

uniform electric field, which has an exact quantum solution and its classical motion

is regular everywhere. This system has provided a touchstone for closed-orbit theory

[GD94] and has served as a testing ground for our understanding of the generation

of closed orbits by bifurcations [CJSK95]. However, such a system is obviously not

suited to studies of irregular motion. In contrast, in the limit of vanishing electric field,

the system evolves into hydrogen in a pure magnetic field, the so-called diamagnetic

hydrogen atom, which is known to become strongly chaotic while in the bound regime.

From the above discussion, we expect a transition to disorder as the system evolves

from an electric field to a magnetic field dominated region. This is very nicely illus-

1Scaled energy spectroscopy has previously been employed in a study of Rydberg atoms in crossed
electric and magnetic fields in the bound regime [RFW91].
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trated by the surfaces of section of the parallel field system in the bound regime as

shown in Fig. 6-1. (See Appendix G for a discussion on the semiparabolic uv rep-

resentation.) The top figure (B = 0.0 T) displays tori everywhere in phase space,

signifying regular motion everywhere. Some broken tori appear to be islands-like, but

in fact they are rational tori. The middle figure (B = 1.0 T) shows the destruction

of some tori, hinting the onset of chaos. The bottom figure (B = 6.0 T) exhibits

disorder everywhere.

As mentioned in Sec. 5.3, closed-orbit theory provides a useful connection between

the classical and quantum descriptions of a disorderly system. In particular, it asserts

that every closed orbit modulates the quantum spectrum with its period. Figures 6-2

show an experimental spectrum from E = -48 cm - 1 to = -31 cm - 1 at B = 1 T

and F = 87 V/cm and its Fourier transform. Although this is not a scaled-energy

spectrum, the periodic structure is clearly visible in the spectrum. The oscillations

correspond to the closed orbit parallel to the external fields and extending from the

nucleus to the classical turning point. This parallel orbit is sometimes known as

the "uphill" orbit. The Fourier transform reveals the periods of the primitive orbit

and its first repetition. The recurrences due to higher repetitions as well as other

closed orbits are not discernible because their periods change rapidly as a function of

excitation energy as already discussed in Sec. 5.3.2. To observe these recurrences, we

need to employ the technique of scaled-energy spectroscopy described in Sec. 5.3.2.

6.2 Classical Ionization

Before carrying out scaled-energy spectroscopy in the continuum, it is first necessary

to characterize the classical motion in this region. As we have discussed in Sec. 4.4,

in search for a substitute to the surface of section, we have found that the concept

of ionization time Tion provides a useful signature for the transition from orderly to
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Figure 6-1: Surfaces of section of hydrogen in parallel
electric and magnetic fields in uv representation. E =
-20 cm 1 and F = 15 V/cm, a) B=0.0 T, b) B=1.0 T,
c) B=6.0 T.
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Figure 6-2: Photoexcitation and Fourier transform spectra at F = 87
V/cm and B = 1 T. Top: photoexcitation spectrum. Bottom: Fourier
transform spectrum.
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disorderly behavior in an unbound system. Consider a bound atom in parallel electric

and magnetic fields, which we take to lie along the z-axis. As we shall show, similar

to the lithium atom in an electric field (Sec. 4.4), Ti, here displays generic behavior

that reveals the nature of the classical motion.

6.2.1 Classical Ionization Time

Turning now to a quantitative description, the classical dynamics of this problem is

most conveniently described using scaled variables. Denoting the magnetic field and

electric field by B and F, respectively, the Hamiltonian can be rescaled using the

substitutions

r -+ B2/3

p -+ B-1/3p

f = B-4/3F. (6.2)

The scaled Hamiltonian H -+ B- 2/3H can be written

p2  1 12
H= 2 -r -+ p -f z. (6.3)

2 r 8

The classical dynamics depends only on the scaled energy e = EB - 2/3 and scaled

field f = FB - 4/ 3 , not on E, F, and B separately. In particular, spectra generated

under conditions of constant e and f correspond to classical dynamics of an invariant

Hamiltonian.

As f -+ 0, the system evolves into the diamagnetic hydrogen system which is

known to be strongly chaotic for E > -0.1 [HH83]. As f -+ oo, the system evolves

into the hydrogen Stark system for which the motion is regular everywhere. At energy

E > -2V (the saddle point energy), the system lies in the continuum and the motion
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6.2. CLASSICAL IONIZATION

is unbound.

To investigate the evolution of orderly into disorderly motion, we have studied

the behavior of the ionization time at a fixed value of e as f is varied. An electron is

launched from the origin at an initial angle 0 with respect to the z-axis, and T,, is

calculated. (0 =: 0' corresponds to initial motion directly toward the saddle point.)

We have chosen to calculate Ti0 at e = 0 because this energy is particularly convenient

for experiment. Figure 6-3 shows how Tion varies with 0 for f = 1.0, 0.4, 0.25 and

0.05.

In the pure Stark problem, the only periodic orbit is the "uphill" orbit, along the

axis with 0 = 1800. At other angles, the electron leaves essentially immediately. Con-

sequently, for very large f the ionization time would display almost a delta function

dependence on 0. For f = 1, (Fig. 6-3a), the system behaves very much like this

except Tion remains large for angles down to about 1700 due to the stabilizing effect

of the magnetic field. At f = 0.5 (Fig. 6-3b), the stable region extends to 1400, but

below this angle Tjo0 varies erratically for about 150. At f = 0.04 (Fig. 6-3d), the

erratic behavior extends to below 600, with the system displaying wild and random

fluctuations. Successive magnifications of a region near 1000 at f = 0.04 (Figs. 6-4)

show the randomly varying pattern similar to the lithium atom in an electric field

discussed in Sec. 4.4.

6.2.2 Relationship to Closed Orbits

To investigate the origin of chaotic ionization, we have examined numerically

the closed orbits - periodic orbits that are closed at the nucleus. Figure 6-5 shows

locations of these periodic orbits with scaled action up to S = 10, and Tio as functions

of 0. Each needle represents one periodic orbit, and its height indicates the relative

short-time stability of each orbit. These orbits themselves never ionize. Stable closed
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Figure 6-5: Classical ionization time and closed orbits as
a function of 0. Each needle represents one closed orbit,
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6.3. EXPERIMENTAL RESULTS

orbits tend to confine the neighboring trajectories for a very long time. An example

is given in the middle figure of Fig. 6-5 where the trajectories near stable closed orbits

tend to have a very long ionization time. The fractal structures appear to be localized

in the vicinity of unstable closed orbits. For unstable orbits the time their neighbors

spend near the vicinity before escaping to infinity depends sensitively on the initial

conditions. These orbits seem to exert a "trapping" effect on nearby trajectories:

The sensitivity of these trajectories to 0 is the source of the fractal behavior in Ti,,

[KB92]. Analogous behavior occurs in bound systems, where successive enlargements

of typical chaotic regions in a surface of section reveal a proliferation of islands and

hyperbolic points which correspond to periodic orbits.

6.3 Experimental Results

Closed orbits leave an imprint on the photoexcitation spectrum which can be inter-

preted using scaled-energy spectroscopy and closed-orbit theory [DD87]. Every closed

orbit leads to a modulation of the spectrum with a period corresponding to its scaled

action. The Fourier transform of the spectrum, known as the recurrence spectrum,

reveals the action of each orbit. Repetitions of a primary orbit generate successive

recurrences at multiples of its action. The intensity of a recurrence is related to the

stability of the orbit.

6.3.1 Recurrence Spectroscopy

We have performed scaled-energy spectroscopy on m = 0 states of lithium at scaled

energy E = 0 and scaled fields between f = 1.0 and f = 0.05. As mentioned before,

alkali-metal atoms in external fields are fundamentally different from hydrogen be-

cause they can exhibit core-induced chaos [CJSK94]. However, the recurrence spectra

are nearly identical for the short-period orbits studied here [ERWS88]. Consequently,
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the lithium spectra can be interpreted in terms of the classical dynamics of hydrogen.

Figures 6-6 show the photoionization spectrum and its recurrence spectrum of

lithium at E = 0 and f = 0.35. The periodic structures are evident in the pho-

toionization spectrum. They are more quantitatively characterized by the recurrence

spectrum. The heights of the peaks there correspond to recurrence strengths. These

peaks are actually the recurrences due to the "uphill" orbit and its repetitions. In

contrast to the unscaled spectrum of Fig. 6-2, higher repetitions are clearly visible

here. In fact, as we will see shortly, the big peaks here correspond to the approximate

locations of the bifurcations of classical periodic orbits.

6.3.2 Bifurcations

For large f, there is but one closed orbit, the "uphill" orbit. This orbit has been

extensively investigated for the pure Stark problem and was found to be unstable

at E > 0 [GD94]. As a result, none of its neighboring trajectories returns to the

nucleus. The spectrum contains a fundamental Fourier component from this orbit plus

harmonics from its repetitions. The amplitude of the harmonics decreases roughly

exponentially.

To investigate more general behavior, we have measured a series of recurrence

spectra for values of f between 1.0 and 0.05. Results are shown in Fig. 6-7. For

f = 0.9, a number of recurrences due to the repetitions of the primary parallel orbit

are visible, though the primary recurrence is not. As f is reduced, new recurrences

become visible. As we shall explain, these are due to new orbits created by bifurca-

tions of the parallel orbit and its repetitions. Most of these orbits are unstable and

their recurrence strengths are so small that experimental identification is not possible.

Near bifurcation points, however, orbits often generate large recurrences. A number

of these are evident in Fig. 6-7.
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Figure 6-6: Photoionization and recurrence spectra at E = 0 and

f = 0.35. Top: Photoioniztion spectrum as a function of w =B - 1/ 3

Bottom: Fourier transform or the recurrence spectrum.
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Figure 6-7: Experimental recurrence spectra at E = 0 for scaled fields
ranging from f = 0.05 to f = 1. The curve lines are the calculated
scaled actions of the parallel orbit and its repetitions. The bifurcation
points are marked with small ovals.
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The large increase in recurrence strength near a bifurcation is the result of the

focusing of the incoming wave nearly to a point. In its originally formulation, closed-

orbit theory actually predicts infinite classical amplitude. The physical reason for

this divergence :is connected with the singularity of the trace formula discussed in

Sec. 5.2.2. At the bifurcation, the neighbors of a closed orbit oscillate about it with a

period that is rationally related to the period of the orbit. After precisely n repetitions

the neighbors all come back together and are focused at the nucleus [GD94]. Such

divergences are familiar in geometical optics with predicts infinite intensity if a plane

wave is focused to a point. This can be quantitatively repaired by incorporating

diffraction effects in the closed-orbit theory [CJSK95].

A Map of Recurrence Spectra

We consider the motion in semiparabolic coordinates (u = (r + z) 1/ 2, v = (r - Z)1/2).

For the pure Stark system, the u and v motions are independent, but here they are

coupled. Consequently, one cannot define independent periods for the two motions.

However, an orbit is closed whenever it contains m cycles of motion along v and I

cycles of motion along u, where I and m are integers. We define the period ratio

of a closed orbit as I/m. Short period orbits correspond to ratios of small integers.

Many of these periodic orbits do not touch the nucleus. However, within each family

of periodic orbits with period ratio, m/1, there is one closed orbit. In Fig. 6-7,

the first bifurcation (the 1/2 bifurcation) and its repetition 2/4 occur at f = 0.65.

The recurrence at the classical bifurcation point is relatively small, but there is a

major enhancement at nearby values of f. This behavior is reminiscent of the pure

Stark system as the electrically scaled energy ef is reduced from positive energy into

quasi-discrete region [CJSK95]. For scaled fields between f = 0.6 and f = 0.4, the

bifurcations 3/5, 2/3, 3/4, and 4/5 are visible. At f = 0.35, the 1/1 bifurcation and

its first few repetitions take place, and at f = 0.1, the 2/1 bifurcation and its first
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Figure 6-8: The calculated maximum period ratio as a function of f.
Dark circles are experimentally observed bifurcation points.

three repetitions can be seen. It is noteworthy that we observed these bifurcations

experimentally before we could identify them numerically.

Proliferation of Closed Orbits

Closed orbits are believed to proliferate rapidly as a system becomes chaotic. A graph

of the maximum period ratio as f is reduced is shown in Fig. 6-8. Short period orbits

correspond to ratios of small integers. As the scaled field is lowered, a bifurcation

produces a new closed orbit every time the maximum ratio is a rational number.

Some of the experimentally observed bifurcation points are shown as dark circles in

Fig. 6-8. At a given f, a closed orbit exists for every rational period ratio between zero

and this maximum. A proliferation of possible closed orbits is evident as f is reduced

and the system becomes increasingly chaotic. This is contrary to a hydrogen atom

in an electric field, where the system is integrable. The maximum period ratio there
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increases slowly and approaches a finite number asymptotically as the scaled energy

is lowered from zero field ionizaton limit into the quasi-discrete region [CJSK95]. The

contrast is generic: A regular system possesses a limited number of closed orbits while

a chaotic one exhibits a proliferation of closed orbits.

6.3.3 Numerical Results

To check the experimental results, we have also conducted a thorough numerical

search of closed orbits. As the system becomes more chaotic, the long period orbits

tend to proliferate and become increasingly unstable. Numerical calculations for

these orbits tend to be unreliable. For this reason, our numerical efforts are limited

to short period orbits. For each orbit, its classical action and classical amplitude are

computed. Furthermore, bifurcation process of closed orbits is carefully monitored.

A map of such a calculation at E = 0 and scaled fields between f = 0 and f = 1 is

shown in Fig. 6-9. Some of the bifurcation points are marked. However, the peaks

shown are not at the exact bifurcation locations since the classical amplitudes diverge

there. A quick comparison with Fig. 6-7 shows reasonable agreement. Figure 6-10

displays pictures of some short period orbits in the (p, z) space. Each orbit is labelled

by its period ratio as discussed in the previous section. We note that each primitive

orbit is denoted by an irreducible fraction. For example, orbit 1/2 is a primitive orbit

and orbit 2/4 is its first repetition. Table 6.1 lists some properties of these orbits at

bifurcation points.

6.4 Summary

In summary, we have shown that one can characterize classical chaos in the continuum

through the concept of chaotic ionization, and we have demonstrated the validity of

the closed-orbit theory for interpreting the continuum spectra of a disorderly system.
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Figure 6-9: Classical computation of closed orbits at E = 0. Each
needle represents a closed orbit and the height is the classical amplitude,
indicating the stability of a given orbit. The dash lines are the parallel
orbit and its repetitions and the bifurcation points of some short period
orbits are marked.
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Figure 6-10: Pictures of some short period orbits. The labelling of each
orbit is discussed in the text. p is horizontal and z is vertical.
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Orbit
1/5
1/4
1/3
2/5
1/2
3/5
2/3
3/4
4/5
1/1
2/1

Initial Angle (in degree) fbi!

179.524966 2.04 3.291621
179.159996 1.52 2.834189
179.180260 1.05 2.331519
173.273118 0.80 4.160135
176.932876 0.63 1.765822
177.537908 0.51 4.655172
170.278623 0.45 2.881700
167.798490 0.40 3.957121
168.412112 0.38 5.010431
165.595461 0.34 1.029909
143.881599 0.09 1.436545

Table 6.1: Properties of some short period orbits at bifurcation points
at E = 0. fbif is the scaled field at which a given orbit bifurcates and S
is the corresponding scaled action.

In particular, bifurcations of closed orbits provide a natural way to interpret the

spectra as the system evolves from an electric field to a magnetic field dominated

region in the continuum. These results help establish a useful connection between

classical and quantum descriptions of an unbound chaotic system.
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Chapter 7

Diamagnetic Rydberg Atoms

There has been considerable theoretical and experimental progress on diamagnetic

Rydberg atoms since the discovery of the quasi-Landau oscillation by Garton and

Tomkins many years ago [GT69], but nearly all of them have been limited to the

bound (i.e.the negative energy) region. Consequently, relatively little is known about

behavior above the classical ionization limit. High resolution spectroscopy in this

region has revealed unexpected phenomena such as narrow resonances and orderly

structures [WKI+89b][IWK+89]. Statistical ideas from random matrix theory were

consequently used to explain some of the findings [GDG93]. In addition, methods

accurate for numerical computations were developed and the results were found to

be in good agreement with experimental results [IWK+91]. However, a clear physical

understanding of the system in this region is still lacking. The classical dynamics is left

largely unexplored, and the extent of classical chaos is for the most part unknown.

In this chapter, we undertake a study of this problem in two parts. In Sec. 7.1,

the classical dynamics in the positive energy region is investigated, including the

ionization process and its connection to closed orbits. In Sec. 7.2, a semiclassical

connection to quantum spectra is presented.
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7.1 Classical Description

The classical dynamics of diamagnetic hydrogen atom can be scaled as described in

Sec. 4.3, and the resulting scaled Hamiltonian is given by

p2  1 1 1 2
H = 2 + 24 + 8-p' (7.1)

2 22 8

The classical dynamics depends only on e = EB - 2 /3 and I, = B113Lz, not on E, LZ,

and B separately (see Sec. 4.3). 1z, a constant of motion, is usually negligible for

laboratory fields. Hence, the dynamics depends only on E and the initial conditions.

In the bound region, the surfaces of section reveal that the system is regular for

E < -0.54. It starts to demonstrate irregular behavior at E Z -0.54, and becomes

completely chaotic at E P -0.13 [HH83]. This transition to chaos also manifests

itself as a proliferation of classical closed orbits [MWW+94]. Physically, large nega-

tive scaled energy (e << 0) corresponds to large electron binding energy and small

magnetic field. As the scaled energy becomes less negative, chaos develops when the

strength of the magnetic interaction becomes comparable to the binding energy.

Characterization of classical chaos in the positive energy region is difficult because

the trajectories are not bound. The phase space is open and a "slice" cannot be

chosen conveniently. Consequently, the conventional description by surfaces of section

method is not useful. For value of E close to zero, the system appears to be extremely

chaotic due to the comparable strengths of the magnetic field and electron binding

energy. On the other hand, large positive scaled energy (E >> 0) corresponds to

large electron energy for a given magnetic field, or equivalently a small magnetic

field for a given energy. In either case, the electron behaves very much like a free

particle. In this limit we expect the dynamics to be regular. Consequently, we expect

the system to undergo a transition from chaos back to order as the scaled energy

increases positively.
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To explore this unbound region, we turn to its classical ionization properties as in

the discussion of behavior in parallel fields (Sec. 6.2). The electron is initially localized

near the nucleus. Its subsequent motion depends on the initial angle 0 with respect

to the magnetic field. The motion of its trajectory is bounded in the x-y plane, and

ionization can occur only in the z direction. We define the classical ionization time

as the time a given trajectory spends near the nucleus before it escapes to infinity

along the z-axis. However, unlike the situation in parallel fields or a pure electric field

where escaping across the saddle point gives an unambiguous signature of ionization,

here the ionization process is not clearly defined. In our calculation, we consider a

trajectory to have ionized if it reaches a certain cutoff distance along z-axis. The

choice of the cutoff distance affects the actual value of the ionization time, but not

the general characteristics of the ionization behavior.

A map of the classical ionization time as a function of 0 for scaled energies between

e = 0 and E = 10 is shown in Fig. 7-1. The dependence is smooth for angles between 0

and some critical angle 0c. In this range, the ionization time is essentially zero. These

trajectories have significant initial momenta along the magnetic field. They escape

through the potential "hole" along the z-axis before being deflected appreciably by the

magnetic field. Beyond Oc, the ionization time shows wild and random fluctuations.

Magnifications of these regions (similar to Figs. 6-4) reveal the same complicated

structures persisting to ever finer scales. Again, the structures appear to be fractal

so that the ionization can be characterized as chaotic.

In Fig. 7-2 we quantitatively characterize the degree of chaos of the system by

displaying as a function of scaled energy e the fraction of initial angles 0 whose ion-

ization trajectories are regular (i.e. their ionization time shows nonfractal behavior).

(The Lyapunov exponent of these trajecties was also found to vanish.) This fraction

increases rather rapidly. For example, at e = +5, almost 90% of the trajectories are

regular. In fact, in the limit of large scaled energy, all trajectories are regular except
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Figure 7-1: Classical ionization time as a function of the initial angle
relative to the magnetic field for scaled energy between E = 0 and
E = 10. The trajectories ionize quickly from 0 = 0 to 0 = 0c, beyond
which the fractal structures develop. As scaled energy increases, the
fractal structures rapidly converge onto 9 = 900.
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Figure 7-2: Fraction f of ionization trajectories that are regular as a
function of scaled energy E.

for a small region near the plane perpendicular to the magnetic field.

We again seek to correlate chaotic ionization with periodic orbits. Due to numer-

ical limitations, we examine short period orbits that are closed at the nucleus (scaled

action less than 10). Figure 7-3 shows the locations of these orbits and the classical

ionization time at scaled energy e = 0.1. The horizontal axis is the initial angle 0.

Each needle corresponds to a closed orbit and the height is proportional to its relative

short-time stability. Figure 7-4 displays the pictures of some of these orbits. Almost

all of them are found to be unstable. As expected, the fractal structures are most

pronounced in the vicinity of unstable closed orbits.
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Figure 7-3: The classical ionization time and closed orbits as a function

of the initial angle 0 at scaled energy E = 0.1. Every needle represents
a closed orbit and its height indicates the relative stability of the orbit.

The fractal structures are visible in regions where closed orbits exist.

Figure 7-4: Some of the closed orbits at E = 0.1. p is the horizontal
axis and z is the vertical axis. From left to right, the initial angle
0 = 90.000, 43.910, 48.690, 40.970, and 38.940, respectively.
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7.2. SEMICLASSICAL RECURRENCE SPECTRA

7.2 Semiclassical Recurrence Spectra

As we have seen in Sec. 6.3, closed-orbit theory provides a powerful tool for un-

derstanding the semiclassical behavior of Rydberg atoms in parallel fields. According

to closed-orbit theory, the inverse Fourier transform of a recurrence spectrum gives

the photoexcitation spectrum (Sec. 5.3). In the positive energy regime, the pho-

toionization spectrum is modulated by classical closed orbits. The strength of the

modulations depends on the relative stabilities of the orbits.

Figure 7-5 shows such a map of classically computed recurrence spectra. The

horizontal axis is the classical action of each orbit. Each needle corresponds to a

closed orbit or one of its repetitions. The height is the classical amplitude which

reflects the relative stability of each orbit. At e 0, we see a proliferation of closed

orbits, indicating a great degree of chaos. As the scaled energy is raised, closed orbits

rapidly disappear. For E > 3, the only survivor is the perpendicular orbit which

becomes unstable logarithmically as a function of E at large scaled energy [FW89].

Consequently, a. quantum signature of the classical transition to orderly motion as

the scaled energy becomes large is the disappearance of modulations of closed orbits

in the photoionization cross section. In this limit, the quantum spectrum is expected

to be weakly modulated by a very unstable perpendicular orbit and its repetitions.

We see that hydrogen is regular in the limits of both large positive and negative

scaled energy. In between these limits, chaos develops due to the mixed effects of

the spherical Coulomb symmetry and the cylindrical symmetry of the magnetic field,

reaching a maximum near e = 0. However, an important distinction needs to be

made between these two limits. At large negative scaled energy, the system is bound

and is characterized by the existence of stable parallel and perpendicular closed orbits

which in turn bifurcate and result in a proliferation of closed orbits as the system turns

chaotic; at large positive scaled energy, the system is unbound, the parallel orbit is no
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Figure 7-5: A map of the classically computed recurrence spectra be-
tween scaled energy E = 0 and E = 6. Horizontal axis is the classical
action. Each needle corresponds to a closed orbit and the relative sta-
bility is given by the height. The spectra are dominated by a rapid
disappearance of closed orbits as E increases.
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longer closed, and the perpendicular orbit becomes unstable. Detailed calculations

have shown that the Lyapunov exponent of the perpendicular orbit never vanishes in

the positive energy region [FW89]. According to basic bifurcation theory, an unstable

orbit cannot bifurcate [MD92]. Consequently, the onset of chaos as e decreases in the

positive energy region cannot be characterized by any bifurcation process.

We have carried out scaled-energy spectroscopy in this region. Figures 7-6 show

the experimental scaled spectrum and its recurrence spectrum at E = 0. Many weak

peaks are visible in the recurrence spectrum. However, the recurrences due to the

perpendicular orbit and its repetitions are absent. Since we excite m = 0 final states

of odd parity, all final states must have an angular distribution with a node in the x-y

plane. Hence this important contribution of the perpendicular orbit is absent in our

spectrum 1. As E increases positively, we expect the recurrences of the perpendicular

orbit and its repetitions to dominate the recurrence spectrum. Unfortunately, our

current excitation scheme is not suited for investigating such recurrences. An excita-

tion scheme that is capable of exciting even parity final states is needed to observe

the signature of the perpendicular orbit, see Appendix D for such excitation schemes

for lithium.

7.3 Summary and Discussion

Classical trajectory calculations for the positive energy diamagnetic Rydberg atoms

reveal the fractal nature of the ionization process, which characterizes the chaotic

ionization. In addition, this chaotic behavior is found to be confined near closed

orbits. Except for a small region close to the perpendicular plane, at large positive

scaled energy, corresponding to large electron energy and small magnetic field, the

'Our predecessors have also reported such absence of the "Quasi-Landau" behavior in their

spectrum [Wel89].

183



CHAPTER 7. DIAMAGNETIC RYDBERG ATOMS

50

40

30

20

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

U

1 2 3 4 5

Scaled Actior

6 7 9 10

Figure 7-6: Diamagnetic lithium at e = 0. Top: the scaled-energy
spectrum. Bottom: the recurrence spectrum.

LŽAAA,~AAA"

_

A •

184

I I I I

I 1+1iiI
i

!

j

I· m_II;Ii5
-

)-

Ir~L~



7.3. SUMMARY AND DISCUSSION

system displays a regular ionization process. This transition from chaos to order is

accompanied by a rapid disappearance of closed orbits.

Quantum manifestations of chaos can also be described by statistical methods

[DG86] [WF86b]. Gay and coworkers have used random matrix theory to explain

the existence of ultranarrow resonances observed experimentally [GDG93]. This use

of the random matrix model was justified by the classically chaotic nature of the

system. However, we expect this approach to break down as the system becomes

more regular at large positive scaled energy. For example, the nearest-neighbor-

spacing distribution (NNS) of the resonances of a regular unbound system obeys

a Poisson distribution [MW94]. The observation of such a Poisson distribution of

NNS will be another quantum signature of the transition to order classically. The

physical energy of the electron at which the system turns orderly is extremely high.

For example, at B = 6 T, E = +5 corresponds to E ; +865 cm - 1. At such a

field the highest energy currently achieved by experiments and by reliable quantum

computations is only E ? +30 cm - 1 [IWK+91]. Nevertheless, a rigorous quantum

mechanical study in this energy range will be invaluable in providing insights into the

quantum manifestation of this transition from classical chaos to order.
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Chapter 8

Rydberg Atoms in Crossed Fields

As we have seen in the last two chapters, a Rydberg atom in applied static fields is

well suited for the study of quantum chaos. Its classical behavior displays a transition

to chaos, and it can be investigated experimentally with great clarity and detail. Thus

far, however, we have only discussed systems that preserve rotational symmetry about

the field axis. The conservation of angular momentum along the field axis effectively

reduces these to two-dimensional systems, greatly simplifing the problem. As we have

seen in Sec. 4.1.3 and Sec. 4.3.1, the surface of section, being two-dimensional, can

be conveniently used to portray classical motion. Moreover, the quantum solutions

are reasonably tractable.

A system with three degrees of freedom is far less tractable. An immediate diffi-

culty is visualizing a surface of section that is now four-dimensional (see Table 4.1).

Furthermore, as mentioned at the end of Sec. 4.2.3, chaotic trajectories are no longer

confined by KAM tori but are free to explore all of the available phase space. Finally,

the number of basis states required to achieve accurate quantum solution can be enor-

mous. Nevertheless, understanding the chaotic behavior in such a system is essential

for connecting the quantum and classical descriptions of irregular systems. In this

chapter, we report a study of such a system: a hydrogen atom in crossed electric and
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magnetic fields.

Experiments have been performed on this system both below [RFW93] and above

[WMK+89] the classical ionization limit (the saddle point). In addition, numerical

methods have been developed to perform accurate quantum computations in certain

field-energy regime [MW92]. However, a quantitative comparison with classical me-

chanics was limited due to lack of a useful characterization of its behavior under

conditions of classical chaos. We undertake here a theoretical study of the classical

dynamics and a statistical analysis of its quantum spectra in the bound region (below

the classical saddle point). These results serve as a first step towards the goal of

establishing the connection between the quantum and classical descriptions of this

system.

The crossed electric and magnetic fields destroy the rotational symmetry about

either field axis, and the system remains three-dimensional. Furthermore, as in

Sec. 6.2.1, in introducing scaled variable, the crossed field system requires a sec-

ond parameter f = FB-413, where F is the electric field. As f -+ o0, the system

becomes the hydrogen Stark problem which has an exact quantum solution and its

classical motion is regular everywhere. As f -+ 0, the system evolves into the familiar

diamagnetic hydrogen system. Though nonintegrable, this system remains regular for

c < -0.55. As we shall show, an intermediate electric field can cause chaos in this

region.

In Sec. 8.1, we describe the Hamiltonian of the system and derive an approximate

one-body Hamiltonian from an exact two-body Hamiltonian. A detailed classical

description, including surfaces of section, Lyapunov exponents, and Arnold diffusion,

is presented in Sec. 8.2. In Sec. 8.3, we will give a brief review of energy level statistics.

In particular, we will discuss the nearest-neighbor spacings distribution (NNS). This is

followed by a discussion on the numerical techniques for computing quantum spectra

in Sec. 8.4. Finally. the NNS statistics are investigated for the crossed field system,
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and the results are compared with the Brody distribution as the classical counterpart

undergoes a transition to chaos (Sec. 8.5).

8.1 The Hamiltonian
The two-body Hamiltonian of a hydrogen atom in a uniform electric field F and

magnetic field , with magnetic vector potential A is

H = •e+2  )] + +  (~F - ) I- (8.1)
2 me 2M 1. -0F - *'#

where e and n denote electron and nucleus, respectively. (As usual for such problems,

spin and relativistic terms are omitted.) For a uniform magnetic field, it is convenient

to use the symmetric gauge, A =( x rl. Introducing R = (me9e+m Mn'n)/(me+mn)

and P = pe + p", 9F= ? - and if= (mnfl - mefP)/(mn - me), the center-of-mass

and relative coordinates and conjugate momenta, respectively, the Hamiltonian can

be written [JHY83]

1 - 1 . (m -me)e e2

H= 2M(IK+-Bxr 2 + 2(9+ 2Mc Bx 2 + eF -'- (8.2)2M c 2p 2Mc|F

where M = m. + me and y =m.+ are the total and reduced masses, respectively,

and K = P - ()( x r is a conserved generalized momentum (sometimes called

pseudomomentum). The cross term eK - (B x rJ couples the relative motion to the

center-of-mass motion. In particular, the electron experiences an additional electric

field induced by the center-of-mass motion of the atom. An example is the motional

electric field "seen" by the atom moving perpendicular to the external magnetic field.

Schmelcher and Cederbaum have demonstrated that 1( + +B x rl2 , the kinetic

energy of the center-of-mass motion, can be treated as part of the potential energy for

the relative motion [SC93b] [SC93a]. This coupling between the center-of-mass and
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the relative motion gives rise to unusual ionization properties as well as possible ex-

istence of localized states of almost macroscopic dimension [SC93b]. However, in this

thesis we are concerned with the dynamics below the ionization limit. In this regime,

Walther and co-workers showed that the motion of the nucleus is negligible [RFW93].

In this limit, m, -+ c00, Eqn. 8.2 reduces to the familiar one-body Hamiltonian given

in atomic units by

12 1 1H= -p _ + -F -•-F. (8.3)
2 r 2 8

The first two terms are the usual unperturbed Hamiltonian with the Coulomb po-

tential. The third term is the paramagnetic term, giving rise to the familiar Zeeman

effect. The fourth term is the diamagnetic term, the source of classical chaos in dia-

magnetic hydrogen atom mentioned in Sec.4.3. The last term F. r, responsible for

the Stark effect, maintains the integrabilty of the system in the absence of a magnetic

field as we saw in Sec. 4.1.2. As we shall show in the next section, if B and F are

perpendicular, this term can give rise to additional chaos.

8.2 Classical Dynamics

For the crossed fields system B = B2 and F = Fy , classical dynamics obeys the same

scaling law as for the parallel fields,

F B2/3

-- 1/3

F -~ 4/3

H - B B 2/ 3H. (8.4)
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The scaled Hamiltonian can be written in cylindrical coordinates

12 1 1 2 1 1 1
H p + p, + -P P + - Po + -•p - z2)/ 2 + fp sin 0. (8.5):2 2 z 2p 2 2 8 P2 + 2)1/2

Once again, the dynamics depends on two parameters f = B-4 / 3IF and E = B-2/3H

not on B, F, and H separately. Unlike the parallel fields system, however, 0 is

no longer ignorable. Consequently po is not a constant of motion and the term

Po cannot be trivially transformed away. The system remains three-dimensional.

Furthermore, pe, being the canonical momentum of 0, makes the potential energy

effectively momentum dependent, putting any simple static potential description out

of reach.

The evolution of a classical trajectory is found by numerical integration of the

Hamilton equations of motion (see Appendix G for details). Conservation of energy

constrains the trajectories on a five-dimensional surface in a six-dimensional phase

space (p, z, O,pp, pz, Po). A regular trajectory is confined on a three-dimensional torus

(see Sec. 4.1.1), but a chaotic one is free to wander over the entire five-dimensional

energy surface.

8.2.1 Surface of Section

In analogy to our approach to a system with two degrees of freedom, we choose for the

surface of section the plane at z = 0. We view the intersection of a classical trajectory

with the surface of section by noting a point in the (pp, p, Po,0) space whenever the

given orbit passes through the z = 0 plane. With pz determined within a sign by

energy conservation, a point on the surface of section completely determines the state

of the given classical trajectory. The surface of section is four-dimensional. Succes-

sive intersections of a regular trajectory with the surface of section, being confined

on a three-dimensional torus, will trace out a structure that is topologically two-
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dimensional - a two-dimensional manifold. Those of a chaotic trajectory will fill a

four-dimensional manifold. Determining whether or not a given classical trajectory

is chaotic reduces to determining the dimensionality of the manifold on which it lies.

Unlike the situation for a system with two degrees of freedom whose surface of sec-

tion is two-dimensional, finding the dimensionality of manifolds in a four-dimensional

space is not trivial.

To characterize such a four-dimensional space, we use a a method originally sug-

gested by Froeschle in his study of three-body problems in astrophysics [Fro70]. The

idea is to retain only three coordinates and plot the points in a three-dimensional

space. These points are the projection of the four-dimensional space along one of

its coordinates. We shall take that coordinate to be 0. A regular trajectory, con-

fined on a two-dimensional manifold in a four-dimensional space, also lies on a two-

dimensional manifold in a three-dimensional subspace. (A two-dimensional manifold

in a three-demensional space is just an ordinary surface.) A chaotic trajectory filling

a four-dimensional space will also fill the three-dimensional subspace. Thus the di-

mensionality of the manifold on which a given trajectory lies in the three-dimensional

subspace determines whether such a trajectory is chaotic.

Froeschle suggested visualizing the three-dimensinal space with the help of stereo-

scopic viewings. Here we take a different approach. The three-dimensional space is

divided into many slices along one of the coordinates. The intersection of a two-

dimensional manifold (regular trajectories) with one of these slices is a smooth curve.

The intersection of a three-dimensional manifold (chaotic trajectories) with this slice

is a two-dimensional manifold.

We choose to view the slices along the pe axis. In practice, these slices must have

some finite thickness in order to contain any points. The thickness needs to be small

to give a good approximation to an ideal slice, this is usually limited by numerical

efforts. We choose the thickness to be 0.1% of the maximum allowed po. Figure 8-1
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shows such a slice at po = 0.0. Surfaces of section are computed for increasing values

of f.
To investigate electric field induced chaos, we choose the scaled energy E = -0.55,

an energy for which the system is regular in the absence of the electric field f = 0.

This regular motion is shown graphically in Fig. 8-la, where all tori are intact. As

f increases, the destruction of tori indicates the development of chaos. At f = 0.01

(Fig. 8-1b), many of the tori in Fig. 8-la have vanished. At f = 0.05 (Fig. 8-1c), most

of the surface of section is chaotic though a few tori are still visible. Further increasing

f pushes the system over the saddle point, where the trajectories are unbound and

the method of surface of section is no longer useful. Furthermore, the exact two-body

Hamiltonian is required in this region. The nature of the motion in this unbound

region lies outside the scope of this discussion.

The surfaces of section clearly show that, as expected, a crossed electric field in-

duces chaos in the bound region that is regular otherwise. To completely characterize

the state of a classical trajectory, we have examined the surface of section at many

different slices along po. The result reveals the same generic behavior. One may note

the topological difference between the tori in Fig. 8-la and the surviving ones in Fig.

8-1c. In the absence of the crossed electric field, the system is two-dimensional. Each

curve in Fig. 8-la corresponds topologically to a slice of a two-dimensional torus in

a three-dimensional space, i.e. a simple curve. In a crossed electric field, the tori be-

come three-dimensional. Each curve in Fig. 8-1c corresponds topologically to a cross

section of a three-dimensional torus in a five-dimensional space. Each curve actually

consists of two simple curves crossing each other. A more mathematical discussion of

the topology of a multi-dimensional torus has been given by Arnold [Arn78].
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8.2.2 Lyapunov Exponents

Computing surfaces of section of many slices along the po axis requires enormous

numerical efforts. Consequently we have investigated an alternative approach to

characterize quantitatively the electric field induced chaos in E and f space. The idea

was first used by Meyer in his study of a Hamiltonian with two degrees of freedom

[Mey86]. Here we generalize it to systems with three degrees of freedom.

The goal is to calculate q, the fraction of the surface of section that is chaotic as

a function of E and f. We divide the four-dimensional surface of section into many

four-dimensional cells, Cijkl. Trajectories are launched and their evolution is calculated

by integrating Hamilton equations of motion. For each trajectory we compute the

Lyapunov exponent and store the indices ijlk of all the cells touched by the given

trajectory. If the Lyapunov exponent vanishes, then the motion is regular. Otherwise

the motion is chaotic. This way we keep track of nrjkl the number of times a given

cell has been touched by regular trajectories, and nafkl the number of times touched

by chaotic trajectories. We keep running the trajectories until every cell has been

visited. The numerical approximation to the fraction of the surface of section that is

chaotic is given by
q = n tj k (8.6)

ijkl (tlkl + nrUN1)(86

In order to minimize the error involved in calculating Lyapunov exponent, we usually

run each trajectory for a long time, more than 500 intersections with the surface of

section. At the end of the calculation, the average number of points in each cell is

about 100. The accuracy of computing q is limited by the size of the cell. To check

convergence, we reduce the the cell size until q changes by less than 1% when the cell

size is reduced by 50%. In our calculation, the widths of these cells are initially set
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. Figure 8-2: Onset of electric field induced chaos in the f and E space.

to be

Ap = 0.01Pma,,

AO = 0.010maz,

App = 0.01Ppmaz,

ApO = O.01Pomaz,

where the subscript "max" indicates the maximum value that variable can take on

a given surface of section, i.e. the boundary between the classically allowed and

forbidden regions. Smaller cell size however involves much longer computing time as

well as larger computer memory. A detailed description of the method for computing

Lyapunov exponents numerically is given in Appendix H.

By computing q for numerous values of E and f, we are able to map out the

electric field induced transition to chaos in the E and f space. The results are shown

graphically in Fig. 8-2. We arbitrarily define the onset of chaos at q = 0.05. The

electric field induced chaos is evident. In the absence of the electric field, chaos

(8.7)
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develops at e e -0.55. As f increases, e at the onset of chaos is lowered gradually.

At f m 0.22, the onset of chaos occurs at E - -0.95. This also corresponds to

the saddle point beyond which the system is unbound. For large f (f -+ 00), the

magnetic field is negligible and the electric field dominates. In that limit, the system

becomes hydrogen in a uniform electric field which is integrable. Consequently, we

expect the system to eventually undergo a transition to regularity as f becomes very

large. However, we find that such a transition does not occur below the saddle point.

8.2.3 Arnold Diffusion

The KAM theorem guarantees the survival of sufficiently irrational tori in a perturbed

system (the KAM tori). For a Hamiltonian system with two degrees of freedom, these

are two-dimensional manifolds embedded on a three-dimensional energy shell. They

set up boundaries for the chaotic trajectories. That is, the chaotic trajectories are

separated into distinct regions. For a Hamiltonian system with three degrees of free-

dom, this is no longer true. The KAM tori here are three-dimensional manifolds

embedded in a five-dimensional energy shell. The KAM tori are not able to isolate

the chaotic trajectories (see Sec. 4.2.3). Consequently, the chaotic trajectories can

intersect every part of the energy surface and are thus connected into a single complex

web (the Arnold web). This phenomenon is known as Arnold diffusion [LL83]. It was

first proven by Arnold for a specific nonlinear Hamiltonian [Arn64]. The time for a

given chaotic trajectory to explore the whole phase space is difficult to calculate, but

is typically very long. Although there have been a number of numerical investigations

[Fro72] [Chi79], a rigorous proof of Arnold diffusion has not been given. We demon-

strate Arnold diffusion in the crossed fields system by giving a qualitative example.

A more quantitative discussion on this subject has been given by Chirikov [Chi79].

To ilustrate Arnold diffusion, we select a trajectory in one of the stochastic layers
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at E = -0.55 and f = 0.01 as shown in Fig. 8-1b. Figures 8-3 show the evolution of

this trajectory as a function of n number of times it intersects the slice of the surface

of section at pe := 0.0. Figure 8-3a shows that for n = 5 x 103, this trajectory appears

to be isolated by KAM tori. If this were a system with two degrees of freedom, the

trajectory will be confined by KAM tori forever. However, as n increases, it slowly

diffuses through the phase space. Figure 8-3d shows that at n = 6.5 x 10i, it has

covered most of the available region. We have examined other slices along Po to verify

that this chaotic trajectory does indeed diffuse throughout the whole phase space.

This diffusion process is universal in that there is no critical perturbation strength.

That is, Arnold diffusion is present for arbitrarily small crossed electric field (although

the diffusion rate may be vanishingly small). This, we believe, is the first observation

of Arnold diffusion in this system.

8.3 Nearest-Neighbor Spacings Distribution

Turning now to the quantum description of the crossed field system. From the dis-

cussions in Chapter 5, it is reasonable to divide the quantum spectra into two parts,

a regular spectrum that can be quantized according to EBK and an irregular one

for which EBK is not applicable. Percival made this hypothesis in 1977 and conjec-

tured that these two classes of spectra have very different properties, reflecting the

differences in corresponding classical motion [Per77].

One of the earliest successes of quantifying these quantum spectra as the classical

counterparts undergo regular to chaotic transition was through the study of the energy

level statistics []BG84] [Haa91]. It emphasizes small scale spectral correlations and

has been used successfully to determine whether or not a classical system is chaotic

from the statistics of quantum spectrum. The most commonly used quantity is the

nearest-neighbor spacings distribution (NNS), which displays information about the
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interaction of adjacent events in a series. Let Ei be an energy eigenvalue of a given

Hamiltonian. For each Ei, i = 1,2, ..., n - 1, let si = Ei+1 - Ei, where si is the

ith energy level spacing. Then a histogram is made of the number of occurences

versus spacing. As more and more events are considered, the historgram approaches

a smooth curve P(s). The choice of bin size for the histogram is based on the total

number of events. A smaller bin size gives more resolution of the shape of the spacing

distribution, but the bin size must be large enough to contain a statistically significant

number of levels.

8.3.1 Regular Region

When the classical motion is completely regular, the normalized distribution of NNS

is Poissonian [BT77],

P(s) = e-'. (8.8)

where s is the normalized spacing between two energy levels. This Poisson-type distri-

bution has been observed experimentally by Kleppner and co-workers [WKI+89a]. In

particular, they undertook an experimental study of NNS distributions of odd-parity

diamagnetic lithium Rydberg spectrum in a regime of regular classical motion. The

results are shown to be Poissonian.

8.3.2 Chaotic Region

When the classical motion of a system invariant under time reversal becomes com-

pletely chaotic, the energy level statistics are surmised to obey the Gaussian orthog-

onal ensemble (GOE) of the random matrix eigenvalues. Its NNS is well described

by the Wigner distribution

P(s) = se . (8.9)
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The level repulsions exhibited by a nonseparable system are signified by P(0) = 0.

It has been conjectured that this phenomenon is generic for all chaotic systems with

the same time reversal symmetry [BGS84]. This transition of NNS from Poisson-like

to Wigner-like distributions has been well investigated numerically [WF86b] [DG86]

[WWZ+86]. In addition, Michael Courtney has also examined diamagnetic lithium

[Cou95]. The classical system displays core-induced chaos in a region where the

diamagnetic hydrogen is still regular. While the odd-parity quantum states behave

very hydrogenically, the even-parity states, due to the large quantum defect of the S

state ( 0.4), have very pronounced effects of the core-induced chaos. In particular,

the NNS of an even parity spectrum reveals Wigner-type distribution while its odd

parity cousin behaves very much Poissonian.

8.3.3 Transition Region

In the transition region, a semiclassical formula which interpolates between the regular

and chaotic regions has been given by Berry and Robnik [BR84]. However, there was

evidence that the formula is not accurate near the regular limit [WF87]. In particular,

the formula does not predict level repulsion due to small residual interaction in a not

exactly integrable system. This was eventually repaired by Hasegawa and co-workers

through a stochastic formulation of energy level statistics [HMF88].

In this section, we use a heuristic formulation first introduced by Brody [Bro73].

The Brody distribution which interpolates between Poisson and Wigner distributions

is

P(s) = Asq'exp(-asq *+l) (8.10)

with

q+ 2 qb+1
a = [F(qb + 1

vb 1)
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A = (qb+ 1)a.

For qb = 0, this becomes the Poisson distribution of Eqn. 8.8; for qb = 1, this re-

duces to the Wigner distribution of Eqn. 8.9. Thus qb gives a degree of irregularity of

the system. Though introduced phenomenologically, the Brody distribution has been

shown to accurately describe the NNS of the diamagnetic hydrogen atom [WF87]. In

particular, it predicts level repulsion for a not completely regular system, in agree-

ment with physical intuition that any small interaction in a not exactly integrable

system will cause a small level repulsion and make the probabilities for exact level

degeneracies strictly zero. The Brody distribution has been found to work extremely

well for diamagnetic hydrogen when the classical regular and irregular trajectories

coexist [WF87].

8.4 Quantum Computations

We have numerically computed the quantum spectra for the crossed field problem.

The energy eigenvalues below the ionization limit are found by diagonalizing a Hamil-

tonian matrix. We compute the matrix in the basis of field-free eigenstates. The

unperturbed Hamiltonian H0 is diagonal in this basis, and the matrix elements of H0

are just the unperturbed energies. The matrix elements of the perturbed Hamiltonian

are computed by numerical integrations. The resulting matrix is then diagonalized

numerically using Given-Household method. Similar to the classical counterpart, the

crossed electric field destroys the rotational symmetry around the z-axis. The quan-

tum number m, corresponding to the z component of the angular momentum, is no

longer a good quantum number. Consequently, the number of basis states needed to

achieve a desired accuracy may become astronomical. Computing quantum spectrum

of a crossed fields system thus requires a large numerical effort.
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In addition to the total energy, the Hamiltonian does possess a discrete symmetry,

the z-parity. That is, the system is invariant with respect to the z-axis. This symmetry

splits the basis into two nonmixing parts. For a given n, there are n(n + 1)/2 even

z-parity states and n(n - 1)/2 odd z-parity states. The total number of basis states

from n = 1 up to n = nf for a given z-parity is given by,

nf 1 
1Nodd 2 -(n(n - 1)) = 6 (86 - n/)

n--1

Neven = (n(n + 1)) = 6(n + 3nf + 2n). (8.11)
n=1

For our computation, we use the odd z-parity basis with states up to n=26. This is

about 2925 basis states. Due to numerical limitations, only eigenvalues are computed.

8.5 Results

The energy level statistics for this sytem have been investigated previously by

Hegerfeldt and Henneberg as a function of its quantum field parameters [HH94].

However, in order to make quantitative connections between classical and quantum

descriptions, we analyze the energy level statistics at scaled classical parameters E

and f. That is, the classical dynamics is kept constant. To compute the spectra

at constant e and f, the Hamiltonian matrix is diagonalized at a number of closely

spaced values of electric field and magnetic field. The energy levels at a given E and

f are then found by interpolation.

Figure 8-4 shows the NNS distributions obtained for E = -0.55 and f = 0.0, 0.01,

and 0.05. In each case, the bin size is 0.1 and the number of levels analyzed is about

500. The classical dynamics is displayed in the surfaces of section at Po = 0.0 of

Figs. 8-1. At f = 0 (top figure), the distribution is purely Poissonian corresponding

to regular classical motion. As f increases (middle and bottom figures), a minimum

203



CHAPTER 8. RYDBERG ATOMS IN CROSSED FIELDS

M~n spamng

Mean Spacing

Mean Spech

Figure 8-4: Distribution of the nearest-neighbor spacings
of energy levels calculated at E = -0.55 and different val-
ues of f. The solid lines show the fits obtained with the
Brody distribution. q is the fraction of phase space that
is chaotic and qb is the corresponding Brody parameter.
Top: f = 0.0. Middle: f = 0.01. Bottom: f = 0.05.
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8.6. SUMMARY

at vanishing level spacings becomes more pronounced, indicating the onset of chaos

of its classical counterpart. For a more quantitative description we have fitted to the

histograms in Fig. 8-4 the Brody distribution. The results clearly show the transition

from Poisson distribution at f = 0 to almost Wigner-like distribution at f = 0.05.

Also shown in Fig. 4 are the fraction q of phase space that is chaotic and the Brody

parameter qb. Though not derived on any physical connection to classical phase space,

qb gives reasonable agreement with q, the fraction of phase space that is chaotic.

Consequently, qb can be used to approximate the extent of classical chaos. In the

limit qb -+ 1 (the Brody distribution is Wigner-like), the corresponding classical

system becomes completely chaotic (q -+ 1).

8.6 Summary

In this chapter, we have characterized the classical chaos in hydrogen atom in crossed

electric and magnetic fields, a system with three degrees of freedom. We have found

that the electric field can induce chao in a system that is regular otherwise. Further-

more, this system exhibits Arnold diffusion. The classical behavior was compared

with the results of a statistical analysis of quantum spectra. In particular, the NNS

distributions of the quantum eigenvalues were found to be Wigner-like as the classi-

cal counterpart undergoes a transition to chaos. Finally, the quantitative connection

between the classical and the quantum descriptons is well described by the Brody

distribution.
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Chapter 9

Conclusion

This thesis has presented a series of experimental and theoretical studies of Rydberg

atoms in strong fields. We have investigated the connection between classical and

quantum behavior of a Rydberg atom in a magnetic field and in parallel electric and

magnetic fields in the unbound region, and a Rydberg atom in crossed electric and

magnetic fields. Here is a brief summary:

* We have studied the continuum behavior of a Rydberg atom in parallel electric

and magnetic fields. Calculations revealed that the classical ionization time

displays fractal behavior as the system is moved into a disorderly region, indi-

cating the development of chaotic ionization. Experimental recurrence spectra

obtained from scaled-energy spectroscopy of lithium revealed that the spectral

features can be naturally interpreted in terms of closed orbits in the continuum.

These orbits bifurcate rapidly, producing a proliferation of orbits as the system

becomes chaotic.

* We have investigated the classical dynamics of a diamagnetic hydrogen atom in

the positive energy region. The system exhibits classically chaotic ionization.

This chaotic behavior was found to be correlated with the existence of unstable
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closed orbits. Except for a small region close to the plane perpendicular to

the magnetic field, the ionization process becomes regular as the scaled energy

becomes large and positive. This transition from chaos to order is accompanied

simultaneously by a rapid disapperance of the corresponding closed orbits.

* We have conducted a numerical investigation of the relationships between classi-

cal and quantum dynamics of a hydrogen atom in crossed electric and magnetic

fields, a system with three degrees of freedom. Classical chaos was character-

ized by examing surfaces of section and by calculating the Lyapunov exponent.

The system was shown to exhibit Arnold diffusion. The quantum manifestation

of this classical chaotic behavior was investigated through energy level statis-

tics. In particular, the nearest-neighbor-spacings distribution was found to be

in good agreement with the Brody distribution in the region where regular and

chaotic trajectories coexist.
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Appendix A

Magnet Power Supply

We summarize in this appendix the operating procedures for the IPS 100A power

supply for the superconducting magnet:

1. Set the output current limit. The field to current ratio mentioned in Sec. 2.3.2

can be used to determine the current corresponding to the desired field. For

example, about 51 A of current is needed for 6 T of magnetic field.

2. Set the output voltage limit to protect the magnet from excessive voltage drop.

The output voltage is the sum of the voltage drops across the cables from the

power supply to the current leads, the current leads themselves and the magnet.

Figure A-1 shows these voltage drops as a function of the magnet current. The

diamonds are the measured voltage values across the cables and the crosses are

the measured values across the current leads. The lines are the linear fits from

which we get 8.01(.05) mV/A for the cables and 1.48(.05) mV/A for the current

leads. Table 2.2 gives the optimum magnet voltage. We usually set the voltage

limit at 5 V. If everything goes well, the output voltage should always be below

this value.

209



APPENDIX A. MAGNET POWER SUPPLY

200

150

100

50

20

Magnet Currant (A)

Figure A-1: Voltage drops as a function of magnet current. The dia-
monds and crosses are the measured values across the cables and the
current leads, repectively, and the lines are the linear fits.
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3. Set the ramping rate. The rate can be set between 1 A/sec and 0.016 A/sec 1.

The actual rate should be calculated from

dl
V =L -.d

dt
(A.1)

The inductance L is 112 H. For a magnet voltage of 2.5 V, the rate should be

set at 22 mA/sec.

4. Turn on the power supply to the persistent switch heater. It delivers about

45 mA. The magnet can now be charged up. Once it has achieved the current

limit, one can switch to persistent mode by turning off the persistent switch

power supply if desired.

'Recently, we have replaced the 10K potentiometer with a 100K potentiometer in the ramp
generator. Now the rate can go as low as 2 mA/sec. The corresponding magnet voltage is about
0.25 V.
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Appendix B

Cryogenic Considerations

This appendix provides details concerning cryogenics. The vacuum jacket of the

cryostat is evacuated by a Varian V-60 turbo pump. At room temperature, the

pressure, monitored by an ion gauge, is typically about 1 - 2 x 10-6 Torr. Mylar, a

material used for thermal insulation of the magnet, is a poor vacuum material. When

the dewar is pumped down from atmospheric pressure, it can take several days before

the mylar stops outgasing. However, we later found by purging the dewar with dry

nitrogen and/or baking the system at 50 °C while the dewar is at air, pump down can

be shortened to 24 hours. The key is to minimize water condensation on the mylar.

Once the desired pressure is reached, we follow the guidelines below to transfer liquid

helium to the LHe dewar:

1. While the LHe dewar is at the room temperature, pump on the dewar to elimi-

nate any water condensation. This process usually takes about 20 minutes. The

temperature is monitored by a Model 210 Cryothermometer made by American

Magnetics. We then back fill the LHe dewar with dry nitrogen.

2. Pump out the LHe transfer tube to < 5 x 10- 4 Torr. A Welch Duo-Seal Model

1402 mechanical pump is used to pump out both the LHe dewar and LHe
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transfer tube.

3. Pre-cool the LHe dewar with LN 2 while monitoring the temperature. Ideally, we

want to stop the flow when it reaches 77 K, LN 2 temperature. This is sometimes

difficult. We usually stop at 80 K to 90 K.

4. Close all ports and pump on the dewar while monitoring the temperature. The

temperature will initially drop due to evaporative cooling. When all the liquid

has been pumped out, the temperature will stabilize or rise sightly. However,

solid nitrogen forms if the temperature reaches 63 K, the freezing temperature

of nitrogen. Due to its relatively large heat capacity, the frozen nitrogen will

boil away large amounts of LHe until it finally cools to 4.2 K if there is any LHe

left. Thus, the system needs to be warmed up. Under no circumstances should

one transfer LHe before all the LN 2 has been evacuated.

5. Back fill with dry helium gas and close all ports. The system is now cold, and

care should be taken not to admit water or air. Simultaneously, the 50-liter

LN 2 dewar can now be filled with LN 2. We usually consume about 180 liters of

LN 2 in the whole process. The pressure in the dewar drops quickly to 10- to

10-8.

6. Now we are ready to transfer LHe. An extension tip is needed to reach the

bottom of a 100-liter storage LHe dewar. The whole storage dewar sits on

"Little Dickie", the hydraulic lift. We usually use 20 to 30 oz/in2 of He gas

to assist the transfer. All ports on the LHe dewar should be open to release

the pressure. The flow through the two vapor-cooled current leads should be

checked on a regular basis. Any blockage by air or water can damage the leads

when the magnet is being energized. One achieves the most efficient transfer

rate when the exit gas forms a light and soft flow of vapor.
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7. If everything goes well, it takes about 1 hour to reach 4.2 K and another 1 1/2

hours to accumulate about 35 liters of LHe. The LHe level is monitored by

Model 110 Liquid Helium Level Meter made by American Magnetics. The level

should only be checked quickly but not too frequently as the operation of the

sensor tends to boil away LHe.

We usually need about 100 liters of LHe to cool down the magnet and leave 35

liters of accumulation. The LHe serves as an excellent cryo-pump. We usually close

the gate valve and turn off the turbo pump. Recently, however, we noticed that the

pressure starts to rise slowly when the turbo pump is off. We suspect the background

helium gas in the room may be leaking into our system. Since the performance of a

turbo pump is seriously impaired by a magnetic field, Neal Spellmeyer has recently

installed a 16.5" long nipple extension between the dewar and the turbo pump. The

field at the pump is now a few hundred gauss, and the pump appears to operate very

well. Furthermore, we do not notice any decrease in pumping speed.

The magnet; must be fully immersed in LHe when it is operated. We do not know

the exact amount of LHe needed to cover the magnet. We have operated the magnet

with as little as 15 liters of LHe. However, we usually either transfer more LHe

or terminate the experiment when the level indicates 20 liters or less. The thermal

insulation of the LHe dewar is excellent: We lose about 5 liters a day when the magnet

is off or in persistent mode. However, the LHe storage dewars are even better, losing

only 1 liter a day. So the LHe dewar of the magnet should not be used as a storage

dewar. After finishing a run, we usually warm up the system quickly to avoid water

condensation. To speed up the warming process, we usually blow the LN 2 out of the

LN 2 dewar. Then we admit a little dry nitrogen. Again, care should be taken to avoid

water condensation. The whole system can be warmed up in 24 hours.
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Appendix C

Magnetic Field of a Finite

Solenoid

In Chapter 2, the magnetic field distribution generated by our superconducting mag-

net was presented. It was calculated by the following procedure.

The magnetic potential, A, in SI units is [Jac75]

A(Y)= 4o Jx" d3x, (C.1)4I &- x1 ,

where J is the current density. A solenoid is azimuthally symmetric. In cylindrical

coordinates, J lies essentially in the 4 direction and can be written

Jo = INM(p - a), (C.2)

where I is the current, N is the number of turns per unit length, and a is the radius

of the winding. Like J, A also has q component only. In the x-y plane J can be

written as

J= -Josin €'! + J4 cos 4'9. (C.3)
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To exploit the symmetry, we choose an observation point in the x-z plane (0 = 0).

Integration of Eqn. C.1 vanishes for the x component of the current. The final result

for A0 is

A4(p, z) = INpo cos 'dz'd (C.4)47r ((z - z')2 + a2 + p2 - 2apcos ý')1/2'

where z' is integrated over the length of the solenoid and €' is integrated over 27r.

The magnetic field B is then found from B = V x A,

B• 1 8
Bz = (pA¢), (C.5)p ap
B = A4  (C.6)Oz

Except for some special cases, for example on the axis of the solenoid, Eqn. C.4 needs

to be integrated numerically.

We calculated the magnetic field of our split-coil magnet by computing the field

due to each solenoid separately and combining the results through the superposition

principle. Some of the numerical results are shown in Fig. 2-2. The double integral

in Eqn. C.4 was solved numerically by applying Simpson's Rule twice [PFTV88].
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Other Excitation Schemes for

Lithium

The physics that one probes in this experiment depends critically on the excitation

scheme. Both excitation schemes mentioned in this thesis prepare the same 3S initial

state. This means we can excite only m = 0, ±+1 odd-parity states. The small quantum

defect of P states makes odd-parity lithium much like hydrogen, which is an advantage

for many purposes. On the other hand, these excitation schemes are not suited to

study core-induced chaos or high angular momentum states (m > 1). Figure D-1

displays the allowed electric dipole transitions among some of the low lying states of

7Li. In addition to using the transitions (2S -+ 2P -4 3S -+ Rydberg) and (2S -+

3S -+ Rydberg) that were employed in this thesis, there are several other attractive

possibilities.

D.1 2S -+ 3D -+ Rydberg

The 2S -+ 3D two-photon transition wavelength (639 nm, see Table. 3.2) is conve-

niently located near the peak of the DCM gain curve. With 8 W of pumping power,
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% )

3D(840)

Figure D-1: Some low lying states of 'Li and some important transitions
among them. The transition wavelengths are specified, and the number
in the parenthesis after a given state is the ionization wavelength of that
state (in nm).
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we have achieved more than 800 mW of output power from one of our Coherent

CR699 ring lasers. We believe that a better jet nozzle, higher jet pressure with suf-

ficient cooling, and higher pumping power can result in even higher output power.

Because of the large matrix element between 2P and 3D and small detuning from the

intermediate 2P state (Table 3.1 and Table 3.2), this two-photon transition is easier

to drive than, for example, the 2S -+ 3S. In fact, one of the earliest measurements of

the fine structure splittings of 3D employed this two-photon Doppler-free transition

[KNS+78]. A Ti::Sapphire laser can be used to drive the 3D to Rydberg transition at

840 nm. (Coherent claims that with 10 W of pump power, its 899 Ti:Sapphire can

achieve 2 W of output power [Coh93].) Both DCM and Ti:Sapphire lasers can be

pumped multiline with an argon ion laser. If we ever acquire a Ti:Sappire laser, this

excitation scheme can be implemented easily 1. Both lasers could be pumped by the

argon laser in the same manner as our current excitation scheme.

This alternative excitation scheme also has the advantage of being able to excite

P and F states. If the 2S -+ 3D transition is performed with Am = ±2, one could

excite Rydberg states of m = ±1, ±2, ±3. However still only odd-parity final states

can be excited.

D.2 2S -+ 2P --+ 3D --+ Rydberg

This excitation scheme prepares lithium atoms in the same inital states (3D) as the

previous one, but through a stepwise excitation. This scheme saturates the first two

transitions and thus provides a much higher Rydberg signal. The cost of this scheme

is a third laser, but it could be a diode laser. A diode laser and a dye laser with Kiton

'Recently, SDL Inc. announced that they have achieved an output power of 0.5 W for some of
their single frequency tunable diode lasers tunable in the wavelength range of 700 nm and 850 nm.
This could be a cheaper substitute to a Ti:Sappire laser.
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a(n, 1) Theory Previous Measurement Reference Our Measurement
3D 1081.4 1083.7(2.0) [KNS+78] 1074(8)

Table D.1: Fine structure parameter of 3D. All values are in MHz.

Red Special 2 (see Table 3.9) could be used to drive the 2S -+ 2P (671 nm) and the

2P -+ 3D (610 nm) transitions, repectively. A Ti:Sapphire laser could be employed

to make the Rydberg transition. Again, a single argon laser can be used to pump

both the Ti:Sapphire laser and the dye laser.

Fine Structure of 3D

In order to investigate this excitation scheme, we have studied the fine structure

of 3D. We observe the fine structure splitting AEf(3D) by locking one laser to the

2S(F = 2) -+ 2P 3/2 transition and scanning a second laser around the 2P -4 3D

transition. The frequency of the scanning laser was monitored with the 300 MHz

spectrum analyzer similar to the discussion in Sec. 3.2.2. The fluorescent light from

3D -4 2P passed through a 610 nm interference filter and was detected by a PMT.

The result of such a scan is shown in Fig. D-2. The peak on the right corresponds to

2P3/2 -+ 3D5/ 2, and the smaller one on the left corresponds to 2P 3/2 -+ 3D 3/2. (We

do not resolve the 3D hyperfine structure.) The stepwise excitation employed here

selects the initial state (2P 3/2) and eliminates the complication due to the hyperfine

levels of the ground state. Our result is shown in Table D.1, which also displays the

previous two-photon measurement and the theoretical result.

2 Kiton Red is not always a friendly dye to use. If desired, one can also use Rhodamine 6G.

Although 610 nm is on the edge of the gain curve, R6G is an extremely efficient dye and should
provide enough power to saturate this transition.
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Figure D-2: 3D fine structure splitting of 7Li. The 300 MHz frequency
markers are shown on the top.

D.3 2S -÷ 2P -+ Rydberg

The principal transition 2S -+ 2P can be driven by a diode laser or a dye laser

with DCM dye. The transition to Rydberg states (354 nm) can be achieved with

frequency doubling a dye laser with Pyridine 2 dye. Although the peak of the gain

curve is around 720 nm, the gain curve is relatively flat, and hence the gain is still

reasonably strong at 708 nm [Coh93]. According to Coherent, this dye can only be

pumped efficiently with an argon laser at 514.5 nm. If there is need to pump two dye

lasers with one argon laser multiline, some dye mixing may be necessary 3. Warning:

due to the accidental degeneracy in the principal transition frequencies of the two

isotopes (Sec. 3.2.3), an isotopically pure lithium atomic beam must be used in this

excitation scheme.

3 0r use the method described in Appendix F.
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This excitation scheme has the advantage of exciting even-parity Rydberg states,

but the disadvantage of requiring UV radiation for the second step. This path can

be used to investigate core-induced chaos and to conduct scaled-energy spectroscopy

in the positive energy region (see Sec. 7.2).

D.4 2S -+ 3P -+ Rydberg

The above excitation scheme may not be very efficient because the UV output from

frequency doubling may not have sufficient power to generate a strong Rydberg signal.

(Recall, the oscillator strength between a Rydberg state and the ground state scales

as n-3.) Thus, it is more efficient to avoid driving the Rydberg transition with a

UV laser. Such a scheme of exciting even-parity Rydberg states involves a stepwise

excitation through 3P. The transition 2S -+ 3P has a wavelength of 323 nm and can

be achieved by frequency doubling a dye laser with DCM dye. (646 is near the peak

of the DCM gain curve.) The matrix element between 2S and 3P is reasonable large,

so the transition can be easily saturated. The transition from 3P to Rydberg states

(816 nm) can be driven by a Ti:Sapphire laser.
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Clebsch-Gordon Coefficients for

the 2P States

In Sec. 3.3, we sought the eigenvalues of

1
Hj = a(n,l)L.- S + A(n,l,j)I.- J + -(+gS+ g1 I. B, (E.1)

2

for the 2P states. At small B, F and J are good quantum numbers; at large B,

m, and m, are good quantum numbers; L, I, and m = m, + ms + mt are always

good quantum numbers. At any field value, the states can be written as linear

superpositions of either basis states. For convenience, we have tabulated in Table E.1

the Clebsch-Gordan coefficients for such a linear combination. The horizontal states

are in the basis of IF, J >, and the vertical states are in the basis of Imi, mi, m, >.

There are a total of 24 states. States with different m do not mix, and consequently

they are divided into 7 nonmixing sets corresponding to 7 different m. The values

for m = -1, -2, -3 are similar to those of m = 1, 2,3, repectively, and thus are not

shown here.
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m=0 13,3/2> 12,3/2> 11,3/2> 10,3/2> 12,1/2> 11,1/2>

13/2, -1/2, -1 > 1/20 1/4 9/20 1/4 0 0

11/2,1/2,-1 > 3/20 1/12 -1/60 -1/12 -1/3 -1/3
11/2,-1/2, 0> 3/10 1/6 -1/30 -1/6 1/6 1/6
- 1/2,-1/2,1 > 3/20 -1/12 -1/60 1/12 1/3 -1/3
1- 1/2, 1/2, 0> 3/10 -1/6 -1/30 1/6 -1/6 1/6
S-3/2, 1/2, 1 > 1/20 -1/4 9/20 -1/4 0 0

m=1 13,3/2> 12,3/2> 11,3/2> 12,1/2> 11,1/2>
13/2, 1/2, -1 > 1/15 1/6 1/10 -1/6 -1/2
13/2, -1/2, 0> 2/15 1/3 1/5 1/12 1/4

11/2, 1/2, 0> 2/5 0 -4/15 -1/4 1/12
/2, -1/2, 1 > 1/5 0 -2/15 1/2 -1/6
S- 1/2,1/2,1 > 1/5 -1/2 3/10 0 0

m = 2 13,3/2> 12,3/2> 12,1/2 >
13/2,1/2,0 > 1/3 1/3 -1/3
13/2,-1/2,1 > 1/6 1/6 2/3
11/2,1/2, 0 > 1/2 1/2 0

m= 3 13,3/2 >
13/2, 1/2,1 > 1

Table E.1: Clebsch-Gordon coefficients for 7Li 2P m = 0, 1, 2, 3 states.
A square root operation applies to each and every coefficient, for ex-
ample -1/6 is understood to be - /i6.



Appendix F

An Alternative Pumping Scheme

In Sec. 3.4.1, we described how we split the argon laser beam to pump the yellow and

red lasers using a high power beamsplitter. Although this method works satisfactorily,

the output power of the yellow laser is bit low. Furthermore, the lifetime of the dye

mixture (Kiton Red and DCM) of the yellow laser is unknown. In this appendix, we

suggest an alternative approach to the preparation of 3S atoms.

As described in Sec. 3.4.1, the multiline output of the argon laser consists mainly

of 514.5 nm and 488 nm. The Kiton Red dye (yellow laser) strongly absorbs 514.5

nm light and DCM (red laser) absorbs primarily 488 nm light. The only additional

hardwares required for a new scheme are a halfwave plate at 488 nm and a cubic

polarization beamsplitter. (Both the halfwave plate and the cubic beamsplitter are

manufactured by CVI and are AR coated for the appropriate wavelengths.) The

schematic of such a pumping scheme is shown in Fig. F-1. The halfwave plate is

installed at the output end of the argon ion laser. The cubic polarizing beamsplitter

is placed between the halfwave plate and the two dye lasers. The polarization beam-

splitter transmits the light polarized parallel to the plane of incidence (P polarization)

and reflect the light with perpendicular polarization (S polarization). The beamsplit-

ter is positioned such that the plane of incidence is perpendicular to the optical table.
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Figure F-1: Schematic of an alternative pumping scheme.
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The halfwave plate rotates the 488 nm light by about 900 (S polarization) while the

514.5 nm light is relatively unaffected (remaining P polarization). (The polarization

of the original argon laser is vertical with respect to the optical table.) Consequently,

the beamsplitter transmits most of 514 nm light onto the pumping mirror of the yel-

low laser (Kiton Red dye). Most of 488 nm light is reflected vertically with respect

to the optical table. It is then deflected by two high power argon mirrors onto the

pumping mirror of the red laser (DCM dye). The pump power distribution between

the two dye lasers can be adjusted simply by rotating the halfwave plate.

We have attempted to implement this approach. The reflected argon beam pumps

DCM rather well. The output power of the red laser is reasonably stable. However,

the output power of the yellow laser fluctuates greatly. We find that the shape of the

transmitted laser beam is severely distorted. We suspect that 20W (; 300 W/cm2 )

of CW argon laser power is heating up the coating/epoxy in the center which holds

the two halves of the cubic beamsplitter together. Our CVI cubic beamsplitter can-

not handle this much CW power. We have attempted unsuccessfully to acquire a

cubic beamsplitter with a higher damage threshold. As a result, we had to im-

plement our current pumping scheme as described in Sec. 3.4.1. However, recently

Lambda Research Optics announced that it had successfully manufactured a polar-

ization beamsplitter suitable for a high power CW argon laser. The main feature of

this new beamplitter is the air gap between the two halves of the cube instead of the

usual fragile coating.
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Appendix G

Hamilton Equations of Motion

In this appendix, we present some of the numerical details involved in integrating

Hamilton equations of motion for a hydrogen atom in strong electric and magnetic

fields. The Hamiltonian for such a system in cylindrical coordinates is

H= + • +1Bpo + B2p2
2 2 2p2  2 8

1
(p2 + z 2)/ 2 + Fp sin 0 + Fz, (G.1)
(p2 +2 z/

whereB = Bi, F = FY~+Fi. Due to the singular nature of the Coulomb potential at

the origin, numerical methods of integration of the equations of motion break down

there. To remove this singularity, we use the semiparabolic coordinates originally

introduced by Schrufer and Robnik [RS85]

p = uv

vpu, + upV
pp =p -- u2 + v 2

1z 1 (V U2)
2
-up, + vp,

Pz u2 + V2
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dt = (u2 + v 2)dr. (G.2)

These variables are used to generate the "regularized" Hamiltonian

1(p2 + p2) - E(U" + V2) + !p2- 1 + 1 ) + Bpo(U2 + V2

+B 2u 2v2(u2 + U2 ) + fuv(u2 + v2) sin 0 + F, (v4 - u4). (G.3)

Note that the regularized energy is always equal to 2, and the real energy E enters

the regularized Hamiltonian as a parameter. The resulting Hamilton equations of

motion are

-= Pu
PPG1 1UV 2U4_0 2 V) U

Pu = 2Eu - B2 3v2 B2Uv4 - poBu + e - Fy sin 0(3u2v + v3) + 2F z u3
2 4 u3

v = p,
l2 4 3

2 - - F3 sin 0(3v2u + u3) - 2F0v3

=1 1 1

2 B(u2 v2)+P- 2 -)

io = -Fuv(u + v2) cos 0. (G.4)

These equations are integrated numerically using a variable step size fourth order

Runge-Kutta method. The integration subroutine is described in [PFTV88]. The

accuracy of the integration has been tested by calculating the value of E at every

integration step. The energy conservation is held to at least 1 in 108.

In the course of the integration, the values of the cylindrical coordinates are also

calculated by inverting Eqns. G.2. The trajectories can thus be displayed in either

representation. Likewise, surfaces of section can be generated in either representation.

In the cylindrical representation, we take a slice at z = 0. In the uv representations,

we take a slice at v = 0. At every integration step, the program holds the current
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values as well as those from the previous step. When a trajectory crosses the plane of

the given slice, these sets of values are used to extrapolate the values on the surface

of section. In the case of crossed fields, a close examination of Eqns G.2 reveals

that a surface of section at either u = 0 or v = 0 is impossible. The reason is that

either case corresponds to p = 0 which is forbidden by the angular momentum barrier

necessarily developed by the perpendicular electric field. Thus we are restricted to

the cylindrical coordinates. As we recall the surface of section is four dimensional. In

addition to a trajectory crossing the z = 0 plane, the orbit must also fall within the

thickness of a slice on the surface of section, typically po = 0 with thickness of 0.01.

A typical surface of section consists of about 20 randomly picked initial conditions

with 500 points for each initial condition. The computation time for a given surface

of section is usually ten times longer for the crossed field system than for the parallel

field system.
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Appendix H

Lyapunov Exponent

This appendix offers a detailed numerical method for computing the Lyapunov expo-

nent. The Lyapunov exponent is defined to be the mean rate of exponential separation

of neighboring trajectories. The Hamilton equations of motion in Eqn. G.4 can be

written

dxtd'-t= Li(xl, ... , za), i = 1, .... ,6, (H.1)

where x, = u, X2 = Pu, X3 = V, X = Pv, x 5 = 0, and x 6 = po. The Lyapunov

exponent can be defined as
1 d(t)a = lim -In ( )• (H.2)t-00t d(0)

where
d (t) J= 6x(t) (H.3)

i=-1

is the separation of two neighboring trajectories. Clearly, we need to obtain equations

of motion for Sxi.

In the limit 5xi goes to zero, we can linearize Eqn. G.4,

d Jxi n c9L.
dt(i S -). O i(H.4)

j=1 9x
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The matrix Ai- O is

0

2E- B 2u 2v2

-¼B2U4

-poB -3p

-6F uv sin 0 + 6Fzu2

0

-Bv 3u - Bvu3

-3Fyv 2 sin 9

-3Fy u2 sin 0

uB -

U
3

-3Fy u2v cos

-Fyv 3 cos 9

0

-Bu 3v - Buy3

-3Fyv 2 sin 0

-3Fv v2 sin 0

0

2E - B2v 2u2
124

1 B 2 U4
4

-poB -3p

-6Fyuv sin 0 - 6Fzu2

vB-

-Fyu 3 cos 9

-3Fy uv 2 cos 9

0 0

-3Fyu 2v cos 0 -Bu + 2P
U

3

-F yv3 cos 0

0 0
-3Fyv 2 u cos 9 -Bv +2

- Fy u3 cos 9

0

Fyu 3v sin 0

+Fyuv3 sin 9

1

0

(H.5)

This matrix is used in Eqn. H.4, and 6xj is found by integrating Eqns. H.4 and

Eqns. G.4 simultaneously. Eqns H.3 and H.2 are then used to compute the Lya-

punov exponent. However, in the actual numerical calculation, d(t) tends to diverge

exponentially. The related computation errors are likely to increase as well.

An ingenious scheme has been suggested by Benettin [BGS76]. Numerically,

Eqn. H.2 can be written as

= lim 1 d+l)
N-+oo nr j=1 d, (H.6)

where 7 is the integration step and N is total number of steps. The trick here is to
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Figure H--1: Numerical calculation of the Lyapunov exponents for reg-
ular and chaotic trajectories as a function of the integration time.

rescale dj+1 back to dj 1 at every integration step, such as

dj+1
j = 1, "j+1 = . (H.7)

Equation H.6 then becomes

lN
U = lim 1 In dj. (H.8)

N-+oo N =j--1

This way the numerical errors are not likely to grow. The typical Lyapunov exponents

for a regular trajectory and a chaotic trajetory as a function of the integration time

N- are shown in Fig. H-1. The Lyapunov exponent of a regular trajectory converges

quickly to zero. However the Lyapunov exponent of a chaotic trajectory oscillates

Idl is normalized to 1.

chaotic trajectory

regular trajectory
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around some nonzero value. To get a precise value, one needs to integrate for a

very long time. Except for special cases of periodic orbits [SNF+88], this is usually

very difficult. However, for the application in Sec. 8.2.2 where we are only interested

in whether the Lyapunov exponents vanish or not, this numerical method is quite

adequate.
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