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Abstract

The generation of squeezed radiation in single-mode optical fibers is discussed. A
self-consistent theory for the quantum propagation of pulses in dispersive and Raman
active fibers is developed. A numerical implementation of the corresponding linearized
noise theory is presented. This code was used to design a new fiber squeezer operating
at 830nm. A closed-form solution to the nonlinear, stochastic and integro-differential
equation for the quantum envelope is found at zero dispersion. We use this solution to
study the resonance-fluorescence spectrum of a fiber excited by a monochromatic laser
field. We also evaluate the mean field and the squeezing level for fiber lengths where
the linearized approximation is no longer valid. The predictions of this continuous-
time theory are compared with those of the discretized-time model. We show that
quantum revivals predicted by the latter are spurious. We show that the linearized1/4
approximation in the soliton regime is valid for nonlinear phase shifts up to no . The
noise of the four soliton operators is shown to be minimized in a Poisson-Gaussian
soliton state. We propose a new method for generating squeezed vacuum using a low
birefringence fiber. This method relies on cross-phase modulation between modes
with orthogonal polarizations, and does not require a interferometric geometry. We
predict the nonlinear depolarization of an intense linearly polarized pulse coupled into
a low birefringence fiber due to its interaction with quantum noise. Finally, progress
in the construction of a fiber squeezer driven by a high repetition rate modelocked
Ti:Sapphire laser is reported.
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Chapter 1

Introduction

1.1 Quantum Noise

One of the most profound result of quantum mechanics is the fact that any system,

no matter how carefully prepared, displays a minimum amount of randomness. This

element of uncertainty manifests itself, for example, when two "non-compatible" (i.e.

non-commuting) measurements are performed on identically prepared systems. The

theory predicts that the outcome of at least one of these two types of measurements

cannot be predicted with certainty. This conclusion has challenged the minds of three

generations of physicists since its precise formulation by W. Heisenberg in 1927 [1].

The Heisenberg uncertainty principle takes the form of a constraint on the product

of the variances of non-compatible variables. For that reason, it does not prevent

a single variable from having a well-defined value and a predictable behavior under

measurement. In general however, the price to pay to reduce the uncertainty on one

variable of a system is an increase in the uncertainty of the variables that do not

commute with it.

A squeezed state of a quantum system can loosely be defined as one for which the

uncertainty on one of the dynamical variables is inferior to what one would expect

from a uniform distribution of quantum noise according to the Heisenberg principle.

A more precise definition in the context of quantum optics will be given in the next

chapter. It appears from the above definition however that squeezed states are quite



familiar objects in quantum theory. Indeed, according to our definition, an eigenstate

of any observable is a squeezed state since the outcome of a measurement of that

observable gives a predictable result. According to the von Neumann postulate, an

ideal measurement in quantum mechanics results in an eigenstate of the observable

being measured. Hence it appears that the generation of squeezed states can be

realized easily when an ideal measuring device is available.

1.2 Squeezed Light

Squeezed states of the electromagnetic field have been the focus of considerable re-

search over the last twenty five years [2, 3, 4, 5, 6]. Each mode of this field can be

thought of as a quantized harmonic oscillator with non-commuting "position" and

"momentum" operators. These operators, when properly normalized, are referred to

as quadratures. As will be explained in Chapter 2, the definition of a quadrature can

be extended when several modes of the electromagnetic field are considered. States

of light for which the level of quantum fluctuations of at least one quadrature of the

field is inferior to the level observed in vacuum are called quadrature-squeezed states.

These states constitute the main topic of this thesis. A particularly important role

will be played by squeezed vacuua, which are quadrature-squeezed states with no

coherent excitation.

The special interest devoted to the electromagnetic field is justified for two reasons.

First, most physical systems are affected, in one way or another by this field. The

interaction of the quantized Maxwell field with atomic systems thus leads to a rich

array of phenomena in laser physics, in spectroscopy and in statistical mechanics.

Squeezed light provides new initial conditions from which this light-matter interaction

can be studied. Although several new effects have been predicted in the last decade

[7, 8, 9, 10, 11, 12, 13, 14, 15], no experiment has yet been reported confirming

these new phenomena. The possibility to demonstrate experimentally new physical

phenomena arising from the interaction of squeezed light with matter has a strong

appeal. Very few groups around the world have pushed in this direction, in large part



because of the difficulties associated with squeezed light generation. For this reason,

this field still offers many opportunities for new discoveries.

The main engineering motivation for the experimental research on squeezed light

has been its potential in high precision measurements. Interferometric schemes are

ubiquitous in spectroscopy and in the measurement of the optical properties of par-

tially transmitting samples. Interferometers also have numerous applications as ultra-

sensitive motion sensors, like gyroscopes and vibration monitoring devices. For a

number of reasons, these systems sometimes need to operate with short integration

times or with low light levels. In such conditions, interferometers rapidly become lim-

ited by the quantum noise of the electromagnetic field. This noise puts a lower bound

on the magnitude of a signal that can be detected and therefore limits the sensitivity

of the interferometer. Caves showed in 1981 how one could use squeezed vacuum to

overcome this so-called standard quantum limit[16]. A number of experiments based

on Caves's original idea have been implemented in several laboratories, including MIT

[17, 18, 19, 20]. Other improvements in measurement sensitivity based on the use of

squeezed vacuum include frequency-modulation spectroscopy[21] which was demon-

strated experimentally at Caltech[22], and imaging of faint phase objects[23] which

was not yet observed. The hope to use squeezed light to operate an optical fiber

gyroscope [24, 25] has been the main motivation for the funding and the research

done on squeezed states at MIT and is an ongoing project in our group.

1.3 Generation of Squeezed Vacuum

As the previous discussion indicates, a squeezer aiming at improving the signal-to-

noise ratio of an interferometer must produce a squeezed vacuum. As it turns out, the

generation of these quantum states has not been as easy as the discussion of Section

1.1 might suggest. In fact, no ideal quantum measuring device for the quadrature

of the electromagnetic field exists. Most measurements of the optical field involve

photodetectors which absorb the photons being detected and therefore destroy the

state of the field. One cannot therefore prepare a quadrature eigenstate as one would,



for example, prepare a spin eigenstate using a Stern-Gerlarch apparatus. Up to now,

all generation schemes for squeezed light have relied on some form of parametric pro-

cess in nonlinear optical media. The various squeezers demonstrated in laboratory

can be divided in two broad categories, depending on the nature of the nonlinear

material used. The most widely studied squeezers use X(2) materials which medi-

ate interactions involving three photons. These crystals can convert, for example,

one high frequency photon into two photons of longer wavelengths, as in parametric

amplification[26]. They can also be used to mediate the inverse process where two low

frequency photons combine to produce a high energy photon. This property is rou-

tinely used, for example, to produce blue light from semiconductor lasers operating

around 0.9pm. Squeezed vacuum generation has been observed in both parametric

amplification[27, 28] and second harmonic generation [29]. In both cases, a squeezed

vacuum can be obtained by driving the crystals just below the threshold for the emis-

sion of coherent radiation. A detailed discussion of the mechanism responsible for

the compression of quantum noise in these systems is outside of the scope of this

thesis. The impact of optical nonlinearities on quantum noise will however be made

plausible in Chapter 3. A number of excellent reviews can be found which address

the X(2) squeezers specifically[30].

The second class of squeezers uses the X(3) nonlinearity of fused silica or of semicon-

ductors. Although fused silica has a very small Kerr coefficient, powerful optical pulses

focused on meter-long optical fibers with diameters on the micron scale can result

in significant nonlinear effects. Fiber squeezers based on the Sagnac interferometer

design[31] were first demonstrated at MIT[32, 33, 35] and IBM[34]. The use of semi-

conductor waveguide in Sagnac squeezers was also investigated recently[38, 36, 37].

The Kerr effect in these devices is several orders of magnitude larger than in fused

silica, so that very short squeezer can in principle be built. The detrimental effect of

guided acoustical wave Brillouin scattering (GAWBS) can in principle be eliminated

in this case. To avoid excess losses due to two-photon absorption, the carrier fre-

quency of the pulses is chosen below half the transition frequency corresponding to

the bandgap energy of the semiconductor.



1.4 Objectives and Organization of this Thesis

This thesis will provide a thorough discussion of the equations describing the evolution

of quantum noise in Kerr waveguides. Particular emphasis is given to the description

of pulses short enough to experience stimulated Raman scattering and to dispersion

regimes where no analytic solution of the field equations can be found.

Chapter 2 introduces basic concepts and definitions related to squeezed states.

The measurement of squeezing levels for optical pulses using balanced homodyne

detection is reviewed in that chapter. Section 3.1 reviews the operation of the Sagnac

loop squeezer[31]. The linearized theory of self-phase modulation is presented in

Section 3.2. Our treatment includes a response function for the Kerr nonlinearity and

a Raman noise source. The main goal of this thesis was to develop ways to overcome

the 5 dB noise floor affecting the experiment of Bergman et al [32, 33]. It turns out

that operating the Sagnac squeezer at wavelengths where fused silica is dispersive

makes it possible to overcome this saturation. Section 3.3 outlines the numerical

approach used to study dispersive squeezing using parametric Green's functions.

Section 4.1 presents a self-consistent quantum theory of Raman-active waveguides

that we developed. The exact relation between the response function and Raman noise

is explained. Section 4.2 investigates the dispersionless regime where the nonlinear

stochastic field equation can be solved in closed-form. This solution is used to analyze

the resonance-fluorescence spectrum of fused silica, the evolution of the mean-field

and the squeezing of quantum noise beyond the linearized approximation. These

predictions are compared with those obtained from a coarse-grained time model.

Section 4.3 investigates in more details the relation between the linearized and exact

theories.

Chapter 5 deals with the quantized solitons of the nonlinear Schr6dinger equation.

These states of bound photons form in standard optical fibers at wavelengths longer

than 1.3pm. We consider Poisson-Gaussian superpositions of Bethe eigenstates for

this equation (Section 5.2). We evaluate the soliton squeezing level at large nonlinear

phase shifts for these states and we probe the domain of validity of the the linearized



theory (Section 5.3). In Section 5.4, we compare the noise properties of Poisson-

Gaussian solitons with those of coherent states with identical initial mean fields. We

show in particular that contrary to the latter, Poisson-Gaussian soliton minimize the

fluctuations of the four collective soliton operators.

As part of this thesis, a new method to generate a squeezed vacuum in a fiber was

developed. This method presented in Section 6.1, uses cross-phase modulation (XPM)

between a linearly polarized pump and the vacuum fluctuations of the modes polarized

perpendicularly in a low-birefringence fiber. This technique avoids the interferometric

geometry used in Sagnac squeezers. Polarization XPM squeezing has not yet been

demonstrated experimentally. Section 6.2 discusses the depolarization caused by the

interaction of a linearly polarized pulse with quantum noise in a low-birefringence

fiber. We predict a power-dependent depolarization rate depending on the square of

the propagation distance.

Chapter 7 reviews progress in the ongoing construction of a new Sagnac squeezer

at 830nm, of a high repetition rate Ti:Sapphire laser and of a balanced detector.

Chapter 8 summarizes the results presented in this thesis and suggests avenues for

further investigations.



Chapter 2

Squeezed States of the

Electromagnetic Field

This chapter introduces basic concepts and definitions that will be useful in later

chapters. In Section 2.1, the quadrature operators of a single harmonic oscillator

are defined. These operators are used to describe the electric field of a single mode

of Maxwell's equations. Coherent states and squeezed states are then defined and

their noise properties are considered. An experimental definition of squeezed states

in terms of balanced homodyne detection is also given. In Section 2.2, quadrature

operators and squeezed states are generalized to the multimode case corresponding to

pulsed optical excitations. Pulsed squeezed states will be the main topic of subsequent

chapters. More complete discussions of squeezed states can be found in the original

paper of Yuen [2] or in the recent book by Walls and Milburn[30].

2.1 Single-Mode Squeezed States

2.1.1 Quadratures

Consider a system with non-commuting observables X1 and 1ý2. Let (A2X1) and

A2 1 2 denote the variances for a series of measurements of these two operators



performed on identically prepared systems

A2Xi ) XQ - (Xi (2.1)

for i = 1, 2. The Heisenberg uncertainty principle implies that the product of theses

variances satisfies the inequality [39]

KA2Xi1) (A2X 2 Ž 1 ([ 1 X2]) 21 (2.2)

A familiar example of this inequality arises in the context of a quantized particle with

position X and momentum P. The commutator of these two operators being ih, we

find that the product of their variances must be larger than h2/4.

Consider a single quantized harmonic oscillator with annihilation operator

P .X i P. (2.3)
V2h 2mhw

From the commutator of X and P, we find

[e, ] = 1. (2.4)

The quadrature operators, Q(0), for this system are defined as linear combinations

of & and at parameterized by a phase 0

e-io i t

(0) = (2.5)

The normalization factor was chosen such that

(2 =i. (2.6)

Using this expression and the general form of the Heisenberg inequality, we find

(K (+ 1A&2 Y - > - (2.7)
0())( 0 0 2)) - 41



From (2.3) and (2.5), Q(0) and Q(r/2) are seen to be proportional to X and P

respectively. Contrary to these operators however, the quadratures are dimension-

less. The Heisenberg inequality (2.7) has therefore a more symmetric interpretation.

Quadratures corresponding to arbitrary phases 0 are linear combinations of X and

P. Any pair of quadratures with phases differing by ninety degrees can provide the

two independent degrees of freedom of the oscillator. The Hamiltonian for example

takes the form

2
H = 2 {2(0 + Q( + w/2) , (2.8)

for any 0. We note here that the quadratures being Hermitean operators, they can

be measured, at least in principle. We will present in Section 2.1.4 an explicit mea-

surement apparatus for these operators in the context of optical fields.

2.1.2 Quantized Electromagnetic Modes

The quantized harmonic oscillator is the fundamental building block of quantum

electrodynamics. Each mode of the electromagnetic field is a quantized oscillator

and can be described by a pair of non-commuting quadratures. As a result this field

is affected by quantum noise which originates from the impossibility of specifying

simultaneously the state of these quadratures.

Consider the electric field operator corresponding to one mode of Maxwell's equa-

tions in a cubical volume V = L3 . Assuming periodic boundary conditions, we

have[30]

E(r, t) = [Q(0) cos(wt - k r) - Q ()sin(wt - k -r)] , (2.9)

where w = c Ik|2 , and

2xx2ony 27nz

k- 27rn ky kz- 2  , (2.10)
L (L L

are obtained from the integers nr, ny and nz. The variance of this operator in a



general quantum state is given by

(A2(r, t)) (-) (A2(0)) cos2 (wt-k. r)+ (A2 ( ) sin 2 (wt- k r)

- Cov (Q(O), Q ()) sin(2wt - 2k -r) . (2.11)

In this expression, we defined the covariance of two operators, A and B, as the

symmetric combination

Cov (A, B) - A +A) - (A) (). (2.12)

Expression (2.11) indicates that the variance of the electric field at a given point

varies periodically at twice the optical frequency. Below, we consider this expression

in more detail for coherent and squeezed states.

2.1.3 Coherent States and Squeezed States

The coherent states of an harmonic oscillator are defined as eigenstates of the anni-

hilation operator [39]

S|a) = a |1a). (2.13)

Since & is not Hermitean, its eigenvalues a are complex numbers. The vacuum state

is clearly a coherent state with a = 0. The variance of a series of quadrature mea-

surements for a system in a coherent state is

(A2) = 1 (2.14)
2'

which is independent from 0 and a. Hence, in a coherent state, all quadratures are

affected in the same way by quantum noise. Recalling the Heisenberg inequality

(2.7), one sees that 1a) is at the lower limit of the noise product imposed by the

uncertainty relation. The eigenstate relation (2.13) also implies that quadratures at



ninety degrees from one another are uncorrelated

Cov (Q(), Q + =0. (2.15)

Coherent states are of fundamental importance in quantum optics because they

approximate the output field state of a single-mode laser[40]. Consider expression

(2.11) for a mode of the electromagnetic field in a coherent state

A2(r, t) h (2.16)
(A2•('t) =2eoV"

Hence, the fluctuations of the electric field in a coherent state are stationary in both

space and time. The dependence of the variance on the quantization volume has been

investigated experimentally and leads to the Casimir effect[41]. The above expression

is independent of a. This indicates that the magnitude of the field fluctuations in

laser light is the same as that of vacuum so that this source of radiation is extremely

quiet.

Squeezed states of the harmonic oscillator can be defined in a way analogous to

coherent states. Let b and bt denote creation and annihilation operators related to

by

&= pb + v••, (2.17)

where the complex numbers p and v satisfy the constraint

|p 2 -_ V 2 = 1. (2.18)

This constraint is necessary if b and bt are to satisfy the same commutation relations

as & and &t. Squeezed states of the &-oscillator are defined as eigenstates of the

operator b [2]

b p•, v, a) = a 1p, v, a). (2.19)

Taking into account the two real numbers specifying a and the extra two real numbers

needed to label all transformations compatible with (2.18), one can see that squeezed



states form a family parameterized by four real numbers. For later convenience, an

explicit parameterization of p and v is given by the following expressions

p = coshq, (2.20)

v = e2i-sinh27. (2.21)

A squeezed vacuum is defined as a squeezed state with a = 0.

The mean deviation of quadratures of & in a squeezed state can be computed using

(2.5), (2.17) and (2.19). One finds the following expression

A2( 1 + 2 IV 2 + 2Re (e - 2iOpuv)
( )-2 2 (2.22)

As for coherent states, the noise level of the quadratures in a squeezed state is inde-

pendent of a. Consider the explicit parameterization of p and v given by (2.20) and

(2.21). The minimum noise level in (2.22) occurs when

2(0min - '7) = r, (2.23)

in which case we have

K /A2(min\)) 1 - 2e-' sinh (2.24)2 min) = 2(2.24)
2

This noise level is lower than the vacuum level 1/2 for any non-vanishing value of rq,

and decreases monotonically to zero when 91r -+ 0o. For this reason, 71 is known as

the squeeze parameter. The phase 7 on the other hand does not affect the minimum

level of fluctuations. It determines however the phase of the quadrature for which the

minimum fluctuations are observed. Figure 2-1 shows the variance of Q as a function

of 0 for a number of values of the squeeze parameter and for 'y = 0. As can be seen

from this figure, the reduced noise of one quadrature is compensated by an increase in

the fluctuations of the quadrature at ninety degrees. In fact, one verifies from (2.22)
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Figure 2-1: Normalized quadrature variance, (A2Q(0)) / (0 A2Q 10), as a function of

0. (a) = 0.2, (b) q = 1, (c) 4 = 2.

that
A2Q(0)) (A20 (0 + _1 + sinh 2 2q sin 2 (2(7y - 0)) (2.25)K2 K2 ( 2 (2.25)

which is always larger than 1/4, unless 0 = y + nr/4, with n integer. The uncertainty

relation (2.7) is therefore satisfied. One can also see from Fig. 2-1 that, as the squeeze

parameter increases, the range of phases over which quantum noise reduction occurs

shrinks. Using (2.12) and (2.19), one can show that

C (0(0) (0 + 2) = sinh 2, sin (2(7y - 0))

Cov + 2 2 (2.26)

This result indicates that, unless 0 = 7y + nar/4, with n integer, the quadratures at

ninety degrees are correlated.

Consider a mode of the electromagnetic field in a squeezed state. The next chapter

will indicate how such states can be created using optical fibers. Assuming that

7 = -7/2 (i.e. 0min = 0) and that q > 0 for definiteness, we find, using the general



expression (2.11) in conjunction with (2.24), (2.25) and (2.26),

A2(r, t) = 2V {1 + 2 sinhq (e7 sin2(wt - k -r) - e- cos 2 (wt - k -r))}.

(2.27)

Normalizing this expression to the constant vacuum level, we find that it reaches a

minimum given by
min (A2t) 1 - 2e-1Isinh 17(.

-- (2.28)
(01 A 2E 10) 2

Hence, the fluctuations of the electric field can be reduced momentarily below those

of the vacuum. As time evolves however, the level of fluctuations of the electric field

at a given point cycles through quiet and noisy phases at twice the optical frequency.

This time dependence, which is too fast to be resolved by standard detectors, must

be canceled by mixing the squeezed field with an optical field having the same carrier

frequency. This is accomplished through balanced homodyne detection.

2.1.4 The ]Balanced Homodyne Detector

Consider the arrangement depicted on Figure 2-2 [42, 43]. A weak monochromatic

signal, Es with annihilation operator as is mixed with an optical field EL with an-

nihilation operator aL using a 50/50 beamsplitter. The two fields are assumed to

have the same frequency and the same linear polarization. The beamsplitter outputs

are detected with photodetectors producing photocurrents that are electronically sub-

tracted. The resulting difference photocurrent is then proportional to a quadrature of

the signal field, with the phase of the quadrature corresponding to the relative phase

between the signal and the local oscillator. To derive this result explicitly, we express

Q(0) and Q(7r/2) in (2.9) in terms of creation and annihilation operators using (2.5).

We find, for the signal at the surface of the beamsplitter

Es(t) = 2 1/2 (aseiwt + itse-iwt). (2.29)

A similar expression is obtained for the local oscillator field, but with as replaced
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Figure 2-2: Balanced homodyne detector. BS is a 50/50 beamsplitter, D3 and D4 are

slow photodetectors, ID i3 - 14.

by eiOaL. The additional phase is introduced to take into account the relative phase

between the signal and the local oscillator. In practice, 0 can be adjusted by control-

ling the optical path length of the local oscillator. A phase shifter was introduced for

that purpose in Fig. 2-2. In general, the signal and the local oscillator can also have

different transverse profiles. For the situations considered in this thesis however, both

optical fields are extracted from the same optical fiber and therefore have identical

profiles.

The beamsplitter is a lossless device mixing linearly the fields of the signal and

of the local oscillator. The explicit transformation relating the input and output

annihilation operators on Figure 2-3 is given by[42, 44, 45]

a3  ral + te2 (2.30)

a4 = tal - r2 (2.31)

where r and t are the reflection and transmission amplitude coefficients satisfying

|r 2 + It 2 = 1, in accordance with power conservation. In the example considered on

a3
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Figure 2-3: Transformation of amplitudes by a lossless beamsplitter

Fig. 2-2, we have e1 = 's, a2 = eiaL and r = t - 1/v/2, so that

3= 1= (as + eiaL) , (2.32)

a4 = (as - eiZhL). (2.33)

Assuming perfect quantum efficiencies for detectors D3 and D4, each photon in beams

3 and 4 generates an electron in the corresponding detector. The photocurrents are

then

i = Ioatai (2.34)

for i = 3, 4. Note that no fast temporal dependence appears in the expression of the

photocurrents because the local oscillator and the signal have the same frequency. The

constant Io is the current generated by a single electron in the circuit. The difference

between the photocurrents can now be seen to be proportional to a3&3 -a 4 a4 . Inserting

the beamsplitter transformation (2.32) and (2.33) in this expression, we find the



difference photocurrent

ID 10 e-i0ts + ei 4ts) (2.35)

In balanced homodyne detection, the signal is very weak and the local oscillator is

an intense laser beam described by the coherent state ALO). One can express the

annihilation operator of this field as aL = ALO + AaL. The second term is the

annihilation operator of an oscillator in vacuum

A&L JALo) = (4L - ALO) ALo) = 0. (2.36)

The operator ASL, which measures the small quantum noise affecting the laser field, is

needed for aL to satisfy the commutation relation (2.4). Since it is small, it contributes

to second order in the difference photocurrent and can therefore be neglected. We can

assume without loss of generality that ALO is real since we have already introduced

the relative phase 0. We then have

ID(O) = V2o IALo QIs(0), (2.37)

i.e. the difference photocurrent is proportional to a quadrature of the signal with a

phase controlled by 0. As can be seen, the local oscillator acts like an amplifier since

its strength appears in the proportionality factor between these quantities [42]. Unlike

the electric field in the previous paragraph, the photocurrent is a "DC" quantity. We

therefore have a direct means to monitor the variance of the quadratures.

Assume that the signal port is left unexcited. The photocurrent produced by

balanced homodyne detection will vanish in average, but a series of measurements

will produce small values scattered around zero with a dispersion

(A2 ishot = I- ALo 2 , (2.38)

where (2.14) was used. This expression is known as the shot noise level and is inde-



pendent of the phase 0. When the input signal is a squeezed vacuum and when the

phase 0 is stabilized so that the quiet quadrature is measured, one observes reduced

fluctuations of the photocurrent. Using (2.24) we have

(A2 !min) = (A2Ishot) (1 - 2e-"I'sinh | ). (2.39)

The reduction of balanced homodyne photocurrent fluctuations below the shot noise

level can be considered as the experimental definition of a squeezed state.

2.2 Pulsed Squeezed Light

Squeezed light generation results from nonlinear optical processes which are intrinsi-

cally weak. In order to achieve measurable degrees of squeezing, optical fields with

large intensities must be used. In practice, the powers needed can only be reached with

pulsed lasers. In this paragraph, we generalized the previous definitions of quadra-

tures and of squeezed light to take into account the multimode nature of pulsed

excitations. In particular, we will consider the noise level of a balanced homodyne

detector when the signal and the local oscillator are both pulsed [46, 47]. Our main

interest is in the mode-matched signals and local oscillators produced by fiber squeez-

ers. We will assume that a narrow band of frequencies is excited around a carrier

frequency w0 . Since the bandwidth is measured relative to wo, pulses as short as a

few tens of femtoseconds can still be considered as narrow band because of the very

short optical cycle (- 1if s). The waveguide is assumed single-mode and lossless in the

band of excited frequencies. This set of assumptions constitutes a very good model

for communication-grade optical fibers in the wavelength region between 700nm and

1.8nm.

In Appendix B13, we introduced the quantum envelope operator defined by

A(z, t) - eizwt-i/o30z d (~)(1, t)eipz. (2.40)

This scalar field is the quantum analog of the slowly-varying envelope familiar from



nonlinear optics[53, 54, 55]. We showed how to recover the electric field operator from

the envelope and its spatial derivatives (see (B.12)). We also introduced the retarded

time as

7 = t - Z/Vg, (2.41)

where v9 is the group velocity. We indicated that if the dynamics of the field inside

the fiber does not couple forward and backward propagating modes, the following

equal-space commutation relations were verified

[A(z, T), A(z,T')] = 0

[A(z, T), At(z, 7')] = 6(7 - T'). (2.42)

We finally showed how the photocurrent produced by a slow photodetector excited

by an optical pulse could be simply related to the envelope by

I= Ioo J drAtt(7) A(7). (2.43)

2.2.1 Pulsed Quadratures and Pulsed Squeezed States

We consider the envelope at some point z, and we denote by A(T) the corresponding

field. In the case of a single harmonic oscillator, only two independent quadrature

operators can be defined, corresponding to the number of independent degrees of

freedom of this system. The quantum field A(T) has an infinite number of degrees of

freedom and, consequently, one can define an infinite number of independent quadra-

tures. We first define the annihilation operator for the field mode f

1/
af = 0•d• f *(T)A(T), (2.44)

where f is a normalized square integrable function

1 = dTIf(T)12 . (2.45)0CO



Using (2.42), we have

[af, ]- 1. (2.46)

The quadratures of this mode are defined by

e-ifo iO-t

Qf (0) = af e af

1 Do
= odT e-of*(T)(T) + eiof(T)At(T)}, (2.47)

and obey the commutator

(),(Q) (o + 2 = . (2.48)

The minimum quadrature variance associated with f leads to

mi KA2nt(o)) - + ) - (n) (Q" - Kft2) - .a 
•  (2.49)

Pulsed coherent states are defined as eigenstates of A(M)

A(T) a1) = a(T) la). (2.50)

In free space, the field operator depends only on T and the above coherent states are

equivalent to usual spatial coherent states in the distant past to -+ -00

A(z, to) a >= A(- = to - z/vg) Ja >= a(to - z/v,) a > . (2.51)

One can therefore prepare a pulsed coherent state at the input of a fiber by form-

ing a spatial coherent state in the distant past and letting it propagate toward the

fiber end. Coherent states describe approximately the output of modelocked lasers.

We note however that no quantum theory of modelocked lasers has yet been devel-

oped. Although the exact nature of the quantum state of the field at the output

of a multimode laser is not known, coherent states are used as an approximation

throughout the literature and have led to results consistent with experiments. This



assumption generalizes the well-known result for single-mode lasers. We shall make

this approximation in this thesis, except in Chapter 5 where quantized solitons are

described.

The fluctuations of all pulsed quadratures in a coherent state are easily shown to

have a variance

A21(0)) (2.52)

This result is identical to the single-mode variance and follows from the normalization

condition imposed on f. Note in particular that the above expression is independent

of a(-r) and therefore applies for a field in vacuum. It is also independent of the

function f, so that all quadratures have the same fluctuation level in any coherent

states.

Pulsed squeezed states for the field A(T) are defined in a way analogous to the

single-mode case. We first introduce a canonical transformation

A(T) d17-l' {1u(r; T')Ai(T') + v (T; 7-) A!(T1)} (2.53)

where the fields Ai(T) and At (-) obey

[Ai(T), A (T')] = 6(T• '), (2.54)

and the complex functions p and v satisfy the constraint

6(T- T') = dT" {pt(T; TI")p*(T', T") - v( T; T/")V* (', T")} . (2.55)

Pulsed squeezed states are eigenstates of the field Ai(-r)

Ai(T) Ij,-, V, = -a(r) Vtw, a) (2.56)

In particular, a pulsed squeezed vacuum of the A-field satisfies the above relation

with a = 0. An infinite number of such states can obviously be defined since the

constraint (2.55) is highly degenerate.



As for the single-mode case, pulsed squeezed states are characterized by reduced

levels of quantum fluctuations for certain quadratures. In fact, a more general defini-

tion of squeezed states would include any state displaying a reduced level of quadra-

ture fluctuations for at least one function f and at least one phase 0. In the context

of fiber squeezing, the field &(T) will be identified as the envelope at the input of the

fiber, i.e Ai(Tr) == A(0, T). The functions /p and v will be Green's functions describing

the evolution of the envelope through the fiber, and the field A(Tr) will be the envelope

at the output of the fiber, i.e. A(T) = A(z, T). Hence, a coherent state for the input

field will be a squeezed state for the output field.

Because of the infinite number of degrees of freedom in the present problem, the

formal analysis of general squeezed states is tedious and will not be carried out here.

Consider however the special case where the functions p and v are proportional to

delta functions

p(T; T') (= ( - -') (T), v(T7; T') (= ( - 7)•') V (T), (2.57)

with

1 = - ( T) 2. (2.58)

This type of canonical transformation occurs in dispersionless fiber squeezing and im-

plies that the noise properties of the field at each point across the pulse are completely

decoupled. Consider for example the variance of Q (0)

A2 (0))= fd• (T I 1 + 2 •v(T) 12 + 2Re [e- 2i( +±Of(T))1(T)V(T) (2.59)
= dTf() 2 j2 , (2.59)

where Of (T) is the time dependent phase of f (T). Comparing this expression with

(2.22), we see that the pulsed variance is the weighted sum of single-mode variances

associated with each value of 7. The function Of(T) changes the phase of the quadra-

ture associated with each point of the pulse. The fluctuations of Qf (0) are minimized

when 0 and the phase of f, are chosen so that the fluctuations of each oscillator are



minimized. In general, the phases of p and v will be time dependent, and Of(T) must

vary to cancel this dependence. When this is realized, we find

A~2 ,fo(O)) = dTI fo(T) {21 - 2e-1 7() sinh l(T)l} , (2.60)

where the time dependent squeeze parameter is defined such that I(T) 12 = cosh 2 
q(T),

and fo is any normalized square integrable function with the optimum phase profile.

2.2.2 Pulsed Homodyne Detection

Consider again Figure 2.2, and assume that both the signal and the local oscillator are

pulsed. By linearity, the transformations (2.32) and (2.33) apply for each frequency

component of the fields. Since by assumption the signal and the local oscillator

have the same carrier frequency and the same transverse profile, we find that the

beamsplitter transformation can be applied directly to the envelope fields. Hence,

the fields incident on detectors D3 and D 4 have the envelopes

A3 (T) (= As(r) + eiAL(T))

A 4 (T) = (As(r) - ei"AL(T)). (2.61)

Using formula (B.17) for the photocurrent generated by a pulse, we find, for the

balanced homodyne photocurrent

iD 10 T {e-iAt (T)As(T) + e"Ats(T)AL(T)}. (2.62)

Once again, balanced homodyne detection is usually performed on a weak signal and

with a strong local oscillator. Neglecting the quantum fluctuations of the latter, we

find [46, 47]

=D 10 dT {ýe-o Ao (T)As () + e.ALO (T)Ats (7)

- 10 2nof (0), (2.63)



where the modal function is

f(r) = ALO(7) (2.64)

and the photon number is

no = dT Ao 2 . (2.65)

Once again, the homodyne photocurrent is proportional to a quadrature of the field.

We showed in the last paragraph that the quadrature fluctuations were minimized

in the dispersionless case when the phase profile of f is chosen to cancel that of pv.

In practice it is very difficult to generate a local oscillator with this optimum phase

profile. For this reason, squeezing experiments are rarely able to detect the maximum

degree of squeezing of the field.



Chapter 3

The Dispersive Sagnac Fiber

Squeezer

In Chapter 2, we introduced the concept of squeezed vacuum for optical pulses. As

was pointed out in Chapter 1, these states are a fundamental ingredient of Caves's

scheme to make interferometric measurements beyond the standard quantum limit.

In the present chapter, we explain how one can generate a squeezed vacuum using

a nonlinear Sagnac interferometer. This device is presented in Section 3.1. Section

3.2 introduces the linearized equations for the evolution of quantum noise in single-

mode optical fibers. The solution of these equations at zero dispersion is also given.

In Section 3.3, a numerical implementation of the linearized equations for general

dispersion conditions is presented. We show in this final section that the saturation

in squeezing observed in current set-ups can be eliminated by operating the squeezer

either with optical solitons, or in the positive dispersion regime. The material of

Sections 3.1 can be considered as a review and follows closely the presentation of

[51]. The linearized equations presented in Section 3.2 are somewhat novel as they

incorporate the finite response time of the nonlinearity and Raman noise to be further

discussed in Chapter 4. Linearized noise equations have however been used long ago

by Carter [58], Shirasaki and Haus [31] and Haus and Lai [60]. Section 3.3 introduces

new results which were published only partially in [91, 92].



3.1 The Nonlinear Sagnac Squeezer

The propagation of an initially coherent pulse in a single-mode optical fiber results in

a pulsed squeezed state. As large optical intensities are required to achieve significant

squeezing levels, these squeezed states usually have large mean fields (i.e ja(T) 2 < 1

in (2.56)). In order to produce a squeezed vacuum, an interferometric scheme based

on the Sagnac loop must be used [31]. In this section, we review the operation

of this squeezer following the discussion of [51]. We obtain an expression for the

balanced homodyne photocurrent variance in terms of correlation functions of the

field at the output of the fiber. As we do not explicitly use the input-output relation

for the envelope, the formula we obtain is independent of the dispersion conditions

in the fiber, does not assume that the input state is coherent and does not rely on

the linearized approximation. We will use this expression in latter sections and in

Chapter 4. Other treatments of the Sagnac squeezer can also be found. In [31]

for example, the zero-dispersion case is considered in the linearized limit for input

coherent states. In [48, 49], the same case is analyzed, but without the linearized

approximation. A discretized-time quantization was implicit in these papers (see

Section 4.2 for a discussion of the limitations of this approach). In [50], a method to

treat non-coherent input states was developed.

3.1.1 Principle of Operation

The Sagnac squeezer uses the coherence properties of two identical pulses in an inter-

ferometer to separate a squeezed vacuum in one of its output ports. Fig 3-1 shows a

fiber loop interferometer made of polarization maintaining fiber and of a 50/50 fiber

coupler. This passive device is excited with a linearly polarized pulse coupled through

port A. The input field splits into two identical pulses at the 3dB coupler. Each of

these pulses travels the loop in opposite directions. When the pulses recombine at

the fiber coupler, their classical parts add coherently in port A and destructively in

port B. As a result, essentially all the optical power exits through the input port A.

No interference occurs for the uncorrelated quantum fluctuations of the two pulses.
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Figure 3-1: Sagnac fiber squeezer

For this reason, squeezed fluctuations exit both ports of the device. The net result is

a squeezed vacuum in port B and a squeezed pulse with a large mean field in port A.

The above picture derives from the linearized approximation and is not valid when

very large nonlinear phase shifts are achieved in the loop. In this limit, quantum noise

significantly smears the phase of the pulses which do not interfere properly at the fiber

coupler. When this regime is reached, significant optical power exits through port B

and the nonlinear Sagnac interferometer no longer produces a squeezed vacuum. The

analysis below is not limited to the linearized approximation.

3.1.2 Sagnac Noise Reduction Ratio

Figure 3-2 shows a balanced Mach-Zehnder interferometer followed by a balanced ho-

modyne receiver. Identical fibers were introduced in both arms of the interferometer.

This device is equivalent to the Sagnac loop except for the brief nonlinear interaction

taking place when the pulses meet halfway around the Sagnac loop. This effect is

irrelevant because it affects both pulses in the same manner (i.e. it is reciprocal) and

does not imbalance the interferometer. In practice, Mach-Zehnder interferometers
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Figure 3-2: Balanced nonlinear Mach-Zehnder interferometer followed by homodyne
receiver. BS denotes a 50-50 beamsplitter, D 3 and D4 are slow but perfect photode-
tectors, and M are perfect mirrors.

are difficult to balance and for this reason, no squeezer uses that geometry. It has

however a pedagogical value because all the modes of interest are spatially distinct

and can be labelled easily. One port of BS1 is excited by a short pulse. We are inter-

ested in the resulting fluctuation level of the photocurrent I obtain as the difference

between the photocurrents produced by detectors 3 and 4. We assume that the two

detectors are slow compared with the duration of the pulse and that their quantum

efficiency is 1. We will denote by A(o)(T) and A( )(T) the envelopes at the output of

fiber 1 and 2 respectively. Using the beamsplitter transformation (2.61) at BS2 and

BS3, the flux of beams 3 and 4 can be related to the fluxes A(') tA(') and A(2)tA (2).

The difference photocurrent of the Sagnac squeezer is therefore

I = lo dT cos (A(1) tA(o1) -A (2) tA(2)) iSin ' o) tA( 2) - A(2 ) tA(1)) , (3.1)

where Io is a constant and 0 is the adjustable relative phase between the two input

beams to BS3. Since both fibers are excited symmetrically, the moments of Ao0)

A^(1)A i1I



and A(2) are identical and the expectation value of I vanishes. Measurements of this

photocurrent for a large number of pulses prepared in the same quantum state give

data scattered with a variance [51, 52]

K2) I 2Fo + 2F sin2 o0 + F2 sin 20} . (3.2)

where F0 is the width of the photostatistics in each arm of the interferometer

Fo = (h) - (•o)2  (3.3)

with

S= d-Ato(T)Ao(T), (3.4)

and the expectation values F1 and F2 are given by

F, = JdTldT2  1T)Ao(T 2)) 12 - (AOT 1  T 2 )2 (3.5)

F2 = 4Im dTjdT2 (At(T 2)Ao(T 2)A o(T1)) (AtT)). (3.6)

In these expressions we dropped the superscripts "(1)" and "(2)" since both fields

have the same moments and either one can be used in F0 , F1 and F2 . We will show in

the next section that the photostatistics is preserved by the evolution of the field in

the Kerr medium. As a result, F0 can be evaluated directly from the input field. So

far we did not assume a specific input state for the envelope. If we restrict ourselves

to the case of Poisson input photostatistics, we have F0 = no, where no - (ho). For

0 = 0 or -, no mixing of beams 1 and 2 occurs and (12) = 212no. This is the shot

noise level. To display photocurrent fluctuations below that level, we minimize (3.2)

with respect to 0 and we normalize to 212no

mino < j2 (0)>
Rsagnac 1 + •noF• -• F1 2no F 2 + F 22. (3.7)

2I~o2no 2rio



Sub-shot noise fluctuations occur whenever F2 is different from zero. Expression (3.7)

is the main result of this section. It is valid beyond the small noise approximation

and for any dispersion regime. We shall come back to this expression in Chapter 4.

In the following, we assume that quantum noise is much smaller than the mean field.

In this case the above formula can be simplified. Let us write the output envelopes

as
A 1,2) (Ao()) + -(1,2)(T). (3.8)

The photocurrent is then

I io { dTe - i (Ao(T))* &I)(T) ei (A0 o(T)) (•) (T)

- 0 d~e-i0 KA,(T)),* et(2) (T) + e-io (A 0 (T)~ &(2) t(T)

+ Io f dT cos 06(&(i) t&(1) -_ (2) t&(2) + i sin (&1) t (2) (2) t&(1)) . (3.9)

The linearized approximation neglects the terms on the third line of this expression.

When this approximation is made, I is the sum of two quadratures of the independent

noise operators &(1) and a(2), which have identical moments. Defining the pulsed

quadratures of the noise

Qo(z) dA e-Jo (A*(z, T)) &(z, T) + eZo (A(z, T)) &t(z, T)}, (3.10)

and the SPM noise reduction ratio

RSPM(z) min (A2Q (z)) (3.11)
(01 A2QO 10)

we find that in the linearized limit

RSagnac(Z) RsPM(z), (3.12)

where fibers of length z were assumed. For longer fibers, the terms on the third line

of (3.9) become important and the Sagnac photocurrent (3.1) no longer measures



quadratures of the noise. It is known for example that RSPM rises rapidly above shot

noise beyond the linearized regime[73, 77]. It is however obvious that RSagnac is at

most equal to 1, corresponding to the choice 0 = 0 in (3.1) [51].

3.2 Linearized Theory of Self-Phase Modulation

In this section we provide equations from which the input-output relations for the

envelope of each fiber can be derived. Throughout the remainder of this chapter we

assume that quantum noise is much smaller than the mean field. This approximation

leads to the linearized theory. The validity of this approach will be investigated in

Chapter 4 and Chapter 5 for the zero-dispersion and soliton regime respectively. We

will show that it provides an excellent description of the quantum noise evolution for

almost all experimentally reasonable conditions. The linearized approximation treats

quantum and classical noise in almost identical manners, thereby emphasizing that,

for almost all practical purposes, quantum noise can be thought of in classical terms.

3.2.1 Linearized Equations of Motion

The quantum envelope introduced in Section 2.2 and in Appendix B can be decom-

posed as

A(z, 7) = (A(z, T))+ & (z, T). (3.13)

We insert this expression in the envelope evolution equation (B.33) and we treat &

as a small quantity. Equations for the mean field and for a are obtained from the

zeroth and first order Taylor expansion of the resulting equation. It can be seen in

particular that the mean field obeys the classical envelope equation. For this reason

we will denote

A(z, •T) = _A(z, 7)) (3.14)

and we shall refer to A(z, T) as the classical field, normalized to the photon flux. Note

that z and T are the propagation distance and the retarded time respectively. We



therefore have [53, 54, 55]

OA(z, T) = (D + iN(z, T)) A(z, 7), (3.15)
1z

where the linear dispersion operator is given by

.02 02 /03 &
D = -i- ± +.... (3.16)

2 aT2  6 ah 3

The constants 0, are defined from a Taylor expansion of the dispersion relation around

the carrier frequency

O(w) = 0o + 1( - wo) + -2(W - w0)2 + -3(W _ W0)3 +.... (3.17)
Vg 2 6

The bandwidth of the pulse determines the number of terms that must be retained in

this expansion. If T denotes the pulse duration, one can define characteristic lengths

scales for each term in the dispersion operator[54]

T"
L = n(3.18)

These length scales provide a rough estimate of the propagation distances over which

the corresponding operators affect significantly the evolution of the pulse. In standard

silica fibers, /2 takes negative values for carrier wavelengths longer than about 1.3pm

and positive values at shorter wavelengths. For this reason, 1.3pm is often called

the zero-dispersion wavelength. Typically, 02 is 35ps2/km at 0.8pm and -20ps 2/km

at 1.55pm, corresponding to L2 's in the tens of meters for picosecond pulses. In

contrast, /3 is typically of the order of O.lps3/km in the same wavelength window,

corresponding to L 3 - 10km for picosecond pulses. In general therefore, high order

dispersion terms are not significant for pulses longer than 0.lps, unless one operates

very close to the zero dispersion wavelength and at low intensities.



The nonlinear Kerr operator in (3.15) is

N(z, F) = 0 dT'h(T') A(z, T - T') 2 , (3.19)

with a response function

h(T) = 0.8K6 (T) + hR(T). (3.20)

In Section B.6 we assumed an instantaneous response function

N(z, T) = K |A(z, T)| 2 , (3.21)

which is appropriate for pulses longer than about lps. The construction of a self-

consistent quantum theory of pulse propagation in Kerr media with a finite response

time is postponed until Chapter 4. Here we included an explicit response function in

N(z, T) to discuss issues connected with the numerical approach developed in Section

3.3. Both terms in (3.20) describe the intensity-dependent refractive index of fused

silica. The first term is the electronic contribution with a response time much shorter

that the pulse duration. The second term is due to molecular degrees of freedom with

frequencies in the terahertz range. An explicit expression for hR(T) is available from

Raman gain measurements (Section 4.1.2). The Kerr coefficient K, which controls the

magnitude of the overall nonlinearity, is given by

J= dTh(T) - hwen2 (3.22)
cAeff

where n 2 = 3.2 x 10-16 cm 2/W is the nonlinear index coefficient of fused silica and

Aeff is the effective area of the propagating mode. In the units chosen here, K varies

roughly between 2 x 10- 19 s/km and 9 x 10- 19 s/km, depending on the mode field

diameter. In a fiber with Aeff = 65 pm 2, we find for example K _ 3.7 x 10-19 s/km

at a carrier wavelength A = 1.3 pm. A length scale can be defined beyond which the



action of the nonlinear term becomes important[54]

1
LN = 0)12 (3.23)

r |A(0, 0)

With the above values for n and A, a pulse with a peak power of 1kW has a peak

photon flux of 6.5 x 102 1 s-1, corresponding to a nonlinear length of 43cm. In prac-

tice, single-mode peak powers in excess of 100kW can be achieved directly out of

femtosecond modelocked lasers. Post-amplification of these pulses can lead to peak

powers in the megawatt region and beyond. It is clear that when these pulses are

coupled into a fiber, nonlinearities dominate their evolution, at least initially.

In (3.13), the quantum fluctuation operator obeys the commutation relations

[&(z, T), &(z, T')] = 0 ; [&(z, T), t (z, TI')] = 6 (T - T'). (3.24)

We are interested in the moments of this operator after it has propagated a distance z,

given that its statistics is known in the input plane. Typically, the quantum operator

is in vacuum at z = 0

&(0, T) lin >= 0. (3.25)

This condition guarantees that the total envelope field operator, A = A + a, is in

a coherent state with a mean field A. This condition is not essential however, and

more general input noise conditions can be considered. Isolating terms linear in the

fluctuations in (B.33), we find

( (D + iN(T)) &(T)

Oz

+ iA(T) J0 dT'h( - T') { A*(TI)&(T) + A(,T')t(T')}

+ ifh(T)A(T). (3.26)

The z-dependence of the fields was omitted. On the last line of this equation, a phase

noise source, rh(z, 7) was added. This term was notderived directly from (B.33). It

arises from the finite response time of the Kerr nonlinearity, and its introduction will



be justified in the next chapter. For the purpose of the present discussion, we note

that

[rfn(z, 7), e&(z', T')] = 0, (3.27)

for z' < z. The phase noise vanishes when the response function is instantaneous.

Equations (3.15) and (3.26) are the field equations of the linearized noise theory.

The first equation describes the evolution of the classical "pump" field unaffected by

quantum noise. The second equation indicates how the pump, acting as an external

driving field, couples the creation and annihilation operators of the noise. For general

dispersion conditions, this set of equations must be solved numerically. The evolution

of intense pulses at zero dispersion will however be dominated by the nonlinearity of

the fiber and a closed-form solution can be found.

3.2.2 Instantaneous Zero-Dispersion Solution

Consider the above equations for D = 0 and h(T) = K6(T) [31]

OA
= ir A 2 A, (3.28)

az

= 2ir, A 2 & + iKA 2 t. (3.29)
8z

If c(T) = A(0, 7) denotes the input envelope and if we define the instantaneous

nonlinear phase shift by

¢(z, T) - az a(T) 2 = zN(0, T), (3.30)

the envelope and the noise operator at the output of the fiber can be written as

A(z, T) = ei(z,•r)a(T), (3.31)

&(z, T) ei(zr) p(z, )&(O, ) + v(z, T)&t (0, T)} (3.32)



where

P(z, T) = 1 + i¢(z, T), (3.33)

v(z,•) = iKz'2(T). (3.34)

Consider the quadratures Qo(z) defined by (3.10). Introducing (3.31) and (3.32) in

(3.10), we find

Qo(z) = dT {B* (z, 7) & (0, T) + Bo(z, T) &t (0, T)}, (3.35)

where

Bo(z, 7) a1 {(•()*(z, T) 0i + a*(7)v(z, T)e-z0}. (3.36)

When the input noise is in vacuum, the expectation value of Q0 vanishes. We also

have in this case!

\ ( /z\ d T Bo(z, T) 2 = 1+ 4p6 2 sin 2 0 + 2p 4 sin20
z|2 ' (3.37)2 "

where

4(z) = q(z, 0) = tz Ia(0) 2 (3.38)

is the peak nonlinear phase shift. The pulse-shape dependent parameters pn are

defined as

Pn no -2  dT1•() In. (3.39)
noka(0)In f

For sech, gaussian and square pulses (see Appendix C), we find (p4,P6) = (2/3, 8/15),

(1/x/2, 1/1V) and (1, 1) respectively. At the input of the fiber where 4 = 0, we

recover the shot-noise or vacuum level (see (2.52)). For I) > 0, the magnitude of the

quadrature fluctuations depends on the relative phase 0. Using (3.11) and (3.37), we

find

RSM(z) = 1 + 2p61 2 - ( 2p6N 2) 2 + (2p4I) 2  (3.40)

This function is displayed on Fig. 3-3 for gaussian and square pulses. It is clear from
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Figure 3-3: Linearized SPM squeezing at zero dispersion with instantaneous Kerr
effect for gaussian and square input pulses.

this plot when b > 0, one can find quadratures of the field with fluctuation levels

below that of the vacuum. Another important property of SPM squeezing is also

evident. We first note that (3.40) saturates at large nonlinear phase shifts to

2

RsPM -- 1 - P (3.41)
P6

This limit, for sech, gaussian and square pulses, is 0.167 (-7.78dB), 0.134 (-8.73dB)

and 0 respectively. Hence, the linearized theory predicts that arbitrarily large degrees

of squeezing can be achieved with square pulses. Squeezing becomes less efficient as

the leading and trailing edges of the pulse fall to zero less abruptly and as the intensity

of the disturbance becomes less uniform. To explain the saturation in squeezing

occurring when the pulse is not square, we return to (2.59). We note that in the

present case, the phases of f and v are constants (remember that the overall phase

in (3.31) and (3.32) cancel in Qo), whereas the phase of M, given by arctanq(z, T),

varies across the pulse. Hence, the local oscillator used in defining the quadrature

Q•e does not have the optimum phase profile, unless a(T) is square. As 4 increases,



the spread between the phases of p at the peak and in the wings of the pulse widens,

and the choice of 0 in (3.37) will inevitably select noisy instantaneous quadratures

for some values of T. This leads to the saturation of R(z). It is interesting to note

that this phenomenon occurs even though squeezing on any individual portion of the

pulse becomes arbitrarily large. This indicates once more that it is easier to produce

squeezing than to measure and use it.

It is experimentally difficult to create pulses with square profiles while maintaining

appreciable peak powers. Modelocked lasers produce instead sech or gaussian pulses

[56, 57]. Bergman et al. [20, 32, 33] performed a series of squeezing experiments

where the conditions for D -- 0 were met. A Nd:YAG laser operating at 1.33pm

was used, producing 15ps gaussian pulses with a peak power close to 25W. The

propagation length in the experiments was 50m, leading to a peak nonlinear phase

shift 4) _ 4. The authors observed 5.1dB of quadrature noise reduction with this set-

up. Consider on the other hand the limit (3.41) imposed on zero-dispersion squeezing

for gaussian pulses. Taking into account the overall losses in the system independently

estimated at 15%, and using (A.2), we find a saturation level of -5.8dB. Hence, the

MIT squeezer operates very close to this limit and little room is left for improvement

at zero dispersion. It was suggested to use a local oscillator with a duration much

shorter than the squeezing pulse in order to take full advantage of the large degree of

squeezing occurring at its peak. So far this idea has not been tested successfully.

3.3 Dispersive Squeezing in Fibers

In order to overcome the saturation limit associated with gaussian pulses at zero

dispersion, we investigate in this section the use of pulses with carrier frequencies

different from 1.3pm. Since no analytic solution to (3.15) and (3.26) exists in general,

we turn to numerical simulations.



3.3.1 Parametric Green's Functions

We first note that the linear equation (3.26) implies a relationship between the input

and output noise operators of the form

&0(z, ) = d' {(z, T; T') ^&(0, T') + v(z,, ; T')t (0, T')

+ dT' dz' a(z, -; z', T-')?rn(z', '). (3.42)

The first two terms in this expression represent vacuum fluctuations entering the fiber

at z = 0 and transformed by their propagation through the fiber. The inhomogeneous

term in (3.42) represents the contribution to the optical noise from Raman scattering.

It is important to note that the slowly varying envelope approximation implicit in

(3.15) neglects backward traveling Fourier components of the optical field. Moreover,

Raman fluctuations at different locations of the waveguide are, by construction, to-

tally decoupled. There is therefore no mechanism within our theory by which the

optical field at z can be affected by the noise operator at z' > z. For this reason, the

spatial integral in (3.42) extends only from 0 to z.

The Green's functions p, v and a contain the whole dynamical information on the

noise evolution. It is convenient to express these functions in vector form. We first

define

G(z,; ') (z, T; (3.43)
G~~~zV T;T)= ,(Z, T; T')

with the boundary condition

G (0, r; r') - 6 •(r - r') (344
G(0T-;T') (3.44)7 1 0

Introducing (3.42) into (3.26), and isolating the coefficients of &(0, 7) and t (0, T), we

find that G obeys
OG(z, T; T') = (D + M) " G(z, T; T') (3.45)

Oz



where we introduced the notation

(D + M) . G(z, -r; T') dT" (D(7 - T") + M(, T; ")) G(z, ", 7'),

and we defined

D(j -T')

M(z, 7; 7T')

DO0
= 6(T -TI)( 2,)0 D*
= i6 (7 - T')N(-r)a 3

+ ih(T- ')3 A(r)A*(T') A(r)A(T')

( A*(T)A*(T') A*(7T)A(T')

with

3 = ( 0
-1

All the fields on the right hand side of

the coefficient of rh(z', T') in (3.26), we

(3.48) are evaluated at z. Similarly, isolating

find that

aH(z, -; z', 7-') )
H(z, 7; z', 7') = (Z, T; Z', T)

a* (Z, T; Z, T')

(3.50)

also obeys (3.45) for all 7' and for z > z'. The boundary condition for H is

H(z, 7T; z, 7T') = i6 (T - -')a 3 (
A(z, 7)

A*(z, T)
(3.51)

At this point, we have reduced the linearized quantum theory to the set of classical

equations (3.15), and (3.45)[91, 92]. We show below how to solve these equations

numerically.

(3.46)

(3.47)

(3.48)

(3.49)



3.3.2 Split-Step Formulae

We first show that the symmetrized split-step formula discussed in [54, 89, 90] can be

generalized to the case where the nonlinearity has a delayed component. From (3.15)

and from Taylor expansion, we have

[ Z .2 Az 2  2N

A(z + Az) = 1 + Az(D + iN)+ 2 (D + iN) 2 A(z) + 2 O A(z) + O(Az 3),2 2 Oz
(3.52)

where O(Az 3) represents terms of order Az 3. The terms within brackets provide an

expansion of exp(Az(D + iN)), which would be the exact evolution operator if N

were z-independent. The spatial derivative of N is obtained from (3.19) using the

evolution equation

&N(z, T) 0_
Oz -- fo dT'h(T- - T') {D*A*(z, T')A(z, T') + A*(z, T')DA(z, T')} . (3.53)

The absence of nonlinear contribution on the right hand side of this equation allows

(3.52) to be recovered from the following formula

A(z + Az) = exp (Z D exp (iAz7(z, T)) A(z) + O(Az?), (3.54)

where operators with a "tilde" are obtained from the "untilde" operators by replacing

A with

A(z,T) = exp( 2D) A(z,T). (3.55)

Explicitly, we have

N(T) = N(7) + dT'h(T - T') {D*A*(T')A(T') + A*(T')DA(T')} + O(Az3 ),

(3.56)
where the z-dependence was omitted. Expanding each factor in (3.54) up to terms

of order Az 2 , we recover (3.52). Formula (3.54) presents three advantages from a

numerical standpoint. First, compared to (3.52), it separates the dispersive and



nonlinear operations into a product of operators, and therefore reduces the number

of times one has to alternate between the time and frequency domains. Second, the

input of each factor in (3.54) is the output of the previous one. This property leads

to a numerical code "marching forward", and is therefore easy to implement. Finally,

one can regroup the half steps of dispersion at the end and the beginning of adjoining

intervals into a single dispersive "joint leap", thus increasing by almost 50% the speed

of the code. In [91], a simpler un-symmetrized split-step formula was used in the case

where the nonlinearity is instantaneous

A(z + Az) = exp (AzD) exp (iAzN(z, T)) A(z) + O(Az 2). (3.57)

One easily verifies that this formula is only accurate to first order.

Consider now the solution of equation (3.45) to second order in Az. Once again,

we have

Az 2 8M . ~)+OAa. (.8
G(z + Az) = exp (Az(D + M)) - G(z) + 2z -G(z) + O(Az'). (3.58)

2 Oz

Contrary to the previous case however, the spatial derivative of M is not governed

entirely by dispersion. We find instead &M/Oz = (&M/&z),i, + (&M/&z)nlin, where

the first term in this expression is the contribution from the dispersive terms, and

(M(T&M r;T=) -n h(T - T') (N(T) - N(T'))(A (Q)A*(T' )  0

nz nuin 0 A*(T)A(T')

- h(- - T') (N(T) + N(T')) 0 A(T)A(T')

(A* (T)A* (-r) 0

All the fields are evaluated at z. In the absence of nonlinear contribution to OM/&z,

one could derive a formula identical to (3.54) for G(z + Az). Adding a correction for

the nonlinear term, we have

G(z + Az) =-exp D [ exp (Az) + A 2  (z) + O(Az), (3.59)
S2 / Lz 2 \ inz O +(



where we defined

G(z, i; T') =- exp ( D) G(z, T; T'). (3.60)(2
Formula (3.59) offers the same advantages as (3.54) from a numerical point of view.

It can be written in the following, more useful way

G(z + Az) = exp 2 -D) -exp (AzN(z) 3). (1 + AzK). G(z) + O(Az 3 ), (3.61)

where

K(z, T; T") = ih(T - T") A(z, ) (A*(z, T"), A(z, T")). (3.62)
A* (z, 7)

Once again we note that in [91], a simpler first-order formula was proposed for the

instantaneous case

G(z + Az) = exp (AzD) -exp (AzM) -G(z) + O(Az 2), (3.63)

The split-step formulae (3.54) and (3.61) are the main results of this section. To

test their accuracy, we define the error functions for the field

AA(Az) = ~Jd AAz(T) - A(Tý)~2, (3.64)

and for the Green's function

AG(AZ) = I/ d-dT' {I[/&z(T;T.) - [L(T;T')12 + IVAz(T;7.) - V(; T,) 2} (3.65)

In these expressions, the functions with a subscript are evolved with the split-step

formulae using a step size Az, and the functions without subscript represent the exact

solutions to the field equations. We approximate the latter with the split-step formu-

lae by using a very fine step size. Fig.3-4 and Fig.3-5 show AA and AG respectively

as functions of Az, for the first- and second-order formulae presented above. The

slopes on these log-log plots indicate the power dependence on the step size of the

numerical error and confirm the second order accuracy of (3.54) and (3.61). Note
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Figure 3-4: Field error AA as a function of step-size. (a) first-order code based on
(3.57), (b) second-order code based on (3.54).
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based on (3.61).



that for a given distance, the number of propagation steps is inversely proportional

to the step size, so that AA and AG from the second order code depend on Az 2

3.3.3 Dispersive Squeezing

We now use the above code to predict squeezing levels in the presence of dispersion.

Using (3.10) and (3.42), we have

Qo(z) Sd7' {B;(z, T')&(O, T') + Bo(z, T')a&(0, T')

+ J dz' Co(z, ', z')n(z', j'), (3.66)

where (see (3.36))

Bo(z, ')= 1 Id7 (A(z, T)p*(z, T; T')e + A*(z, T)V(Z, T; T')e - io}

is the local oscillator backpropagated with the adjoint system [87, 88] and

I
Co(z, T', z') dr {A(z, T)a*(z, T; z', T')eO + A*(z, T)a(z, T; z', T')e i.

(3.68)

The two noise sources affecting the field are independent and contribute separately

to the variance of the output quadrature. The noise reduction ratio is therefore

RSPM(z) = 2 min (0z)0 + 2 min A2 QR(O,z),0

where the factors 2 arise from the normalization of RsPM to the vacuum level (see

(2.52)). The evolved vacuum variance is

(3.70)A2 v(o1z)) =2J dTBo(Z, T)12,-O- /O

and the Raman noise contribution is

KA2 R(O, z)) = J h(w)coth27r
hw(2kT (3.71)oZ dz Co(z, w, z') 2

(3.67)

(3.69)
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Figure 3-6: Linearized SPM squeezing with sech pulses. (a) zero-dispersion, (b)
positive dispersion (02 = lps2/km), (c) soliton (32 = -20ps 2/km). The 100fs input
pulses were identical in all three cases. The inserts show the output envelopes.

In this last expression, we defined

Co(z , w, z') = dTr exp(iwT)Co(z, T, z'),(3.72)

l)= JdTsin(WT)hR(T). (3.73)

Figure 3-6 displays RSPM(z) for three dispersion coefficients. The input pulse in

all cases was a sech with a 100fs duration. An instantaneous response function,

h(T) = K6(T) was assumed. The curve labelled (c) in this figure corresponds to the

formation of an optical soliton [58, 59, 60]. The conditions for the formation of such

pulses are met when /2 is negative (A > 1.3pm) and when the pulses are long enough

for the higher order dispersion terms to be negligible [61, 62]. In this case, equation

(3.15) is the well-known nonlinear Schr6dinger equation which admits the solution[63]

A(z,T ) = Ioexp (i2) sech (), (3.74)

-0.5 0 0.5

1 Time (ps)
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0.5
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where the peak flux and the pulse duration are related by the area theorem oa1 =

/IT21 /I. An analytic solution for the noise reduction ratio can be found when the

local oscillator is a specific combination of the adjoint functions associated with pho-

ton number and phase fluctuations [60, 64]. No closed-form expression exists however

for R~SpM(z). As can be seen from Fig. 3-6, no saturation of squeezing arises in

this case. This can be understood from (3.74) where, contrary to the phase ¢(z, T)

of the dispersionless case, the nonlinear phase shift rzIo/2 is independent from 7-.

The soliton therefore acts as a unit, with a single nonlinear phase shift attached to

the whole pulse. As for a square pulse, the phase of the integrated quadrature can

therefore be chosen to satisfy the optimum squeezing condition everywhere across this

pulse. Two experiments were carried out to test the soliton squeezing curve[34, 35]

and resulted in poor results. The failure of these attempts was attributed to the noise

performance of the color-center laser systems used in these experiments. Chapter 5

further discusses soliton squeezing beyond the linearized regime.

The curve labelled (b) in Fig. 3-6 was obtained assuming a positive dispersion

coefficient. It can be seen that in this case too, no saturation is apparent. This

phenomenon can be understood from Fig. 3-7 which shows the envelope of the pulse

as it propagates through the fiber. This plot indicates that in the positive dispersion

regime, the profile of the pulse evolves initially into a square. The squeezing properties

being more uniform across the pulse, a larger integrated squeezing level results for

the integrated quadrature. Contrary to the soliton case however, the pulse eventually

disperses out and squeezing degrades.

The results presented in this section indicate that the saturation in squeezing asso-

ciated with non-square input pulses at zero-dispersion can be avoided when dispersion

is present. From an experimental point of view, the positive dispersion regime is par-

ticularly attractive. In this case, no obvious constraint on the energy of the initial

pulse is apparent from our simulation. Soliton squeezing on the other hand requires

pulses of well-defined energy for a given pulse duration and dispersion coefficient. For

5 0 0ps solitons in standard fibers (32 = -20ps 2/km) for example, the resulting peak

power must be 125W. Working with low power pulses is demanding for two reasons.
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Figure 3-7: Evolution of an initially unchirped gaussian pulse in a medium with a
positive dispersion coefficient. The distance is normalized to the dispersion length L 2

and the parameter N = 30 is roughly the ratio of the nonlinear length LN over the
dispersion length L2 After Ref.[54]

First, longer fiber loops are needed to achieve significant phase shifts. Second, the

local oscillators derived from these pulses lead to lower shot noise levels unless high

repetition rates are used. Eventually, the electronics noise floor of the detector be-

comes comparable to the shot noise level, and no squeezing can be measured. The

positive dispersion regime is much more flexible in terms of peak powers. This fact,

combined with the availability of powerful laser sources in the 800nm wavelength re-

gion make this regime very promising. Figure 3-8 shows the noise reduction ratio for

a 100fs pulse with a peak power of 110kW. Similar intensities and pulse durations

can be achieved with KLM Ti:sapphire lasers. The dispersion coefficient was chosen

to be appropriate for fused silica around 800nm. As this plot indicates large degrees

of squeezing can be achieved over a few centimeters.

All the curves presented so far were obtained from an instantaneous Kerr nonlin-

earity. For pulse durations of the order of lps or less, the finite response time of the

nonlinearity must be taken into account. Although we indicated previously how to
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Figure 3-8: Linearized SPM squeezing with a 75fs sech pulse and a peak power of
150kW. The dispersion coefficient was /32 = 34ps2/km.

modify our numerical code to take this effect into account, we did not yet provide

expressions for hR and rnh. This is in part the goal of the next chapter.



Chapter 4

Finite Response Time of the Kerr

Effect

As we saw in Chapter 3, the operation of a fiber squeezer at wavelengths where the

fiber is dispersive can lead to significant improvements in quadrature noise reduc-

tion for the output field. Due to the absence of squeezing saturation in this case,

a clear advantage obtains when pulses with large peak powers are used. Very large

pulse intensities are generally achieved with femtosecond sources. The evolution of

such pulses in optical fibers is complicated by the finite response time of the Kerr

nonlinearity. Section 4.1 presents a self-consistent quantum theory of short pulse

propagation in optical fibers. We show that the equation of motion for the envelope

contains a response function for the Kerr effect, and a Raman scattering noise source.

These quantities are related to Raman gain in Section 4.1.2. In Section 4.2, a closed-

form solution to the integro-differential, stochastic and nonlinear quantum envelope

equation is found in the absence of dispersion. Non-perturbative expressions for vari-

ous physical quantities are obtained from this solution. We compare these expressions

to those obtained from the discretized-time model which will also be reviewed briefly.

In Section 4.3, we consider the linearized limit of the nonlinear solution. A simple for-

mula for RisPM is obtained which applies to pulses of arbitrary duration and includes

the effect of Raman noise. The domain of validity of the linearized theory is clarified

and it is shown that the discretized-time model can be used to monitor departures



from this theory. The material of this chapter was published in [51, 65, 66].

4.1 Pulse Propagation in Raman Active Fibers

The envelopes of pulses with bandwidths larger than about 1THz, vary substantially

over time intervals comparable with the response time of the Kerr nonlinearity. For

these pulses, the intensity-dependent change of the refractive index cannot be assumed

instantaneous as was done in Section B.6. As frequency components of the pulse

beat and excite molecular resonances in the fused silica matrix, stimulated Raman

scattering occurs. It is not immediately clear whether the advantage gained by using

short and intense pulses in squeezing experiments still obtains when Raman scattering

noise is taken into account. To clarify this point, we consider in more detail the

dynamics of the nonlinear index change and we justify the equations introduced in

Section 3.2.

4.1.1 Model for the Nonlinear Index

The Kerr effect in fibers arises from a change in the local refractive index of silica

induced by the dynamics of material oscillators. This index change modifies the

envelope equation of the linear dispersive medium (see (B.30)) to

az-Az )=DA,(z, )+4dN(,T)A(z, T), (4.1)

The Hermitean operator tNL represents the electronic and molecular variables cou-

pling to the envelope. The coupling constant p is chosen so that fiNL measures the

refractive index change. The dynamics of this operator is coupled to the optical field

and, in general, depends on the intensity of the latter. Since optical nonlinearities

are usually very weak, we can expand pIiNL to first order in AtA

fOOt[NL (Z, T) = dT' h(T')I(z, T - T') + ri(z, T). (4.2)-0O



where

I(z, t) = At(z, t)A(z, t). (4.3)

The function h describes the delayed response of the index change to an applied

optical field. By causality, the index at time T can only be influenced by the field at

earlier times, so that h(T') must vanish when T' < 0. The hermitean operator r^n(z, T),

on the other hand, describes the quantum and thermal fluctuations present in rNL in

the absence of optical field. Inserting expression (4.2) into the field equation for the

envelope, (4.1), we find

a fD [00 ".' A(z, ) 44-A(z, T) = D+ i dT' h("')I(z, T - T') + irin(z, T) I T). (4.4)Oz i-co v'

This equation describes the evolution of a pulse in a Kerr medium with a response

function h. As can be seen, the index fluctuations represented by fn translate into a

source of phase noise for the optical field. The spectral properties of these fluctuations

are closely tied to those of the response function. To specify this relation more

precisely, we model the noise background as a collection of localized and independent

harmonic oscillators

fin(z, T) j dw W2 I dc,(z)ei + h.c. , (4.5)

where the spectral weighting function W(w) is, as yet, unspecified. The operators

d,(z) and dt(z) obey the commutation relation

[w(z)) , (z') = 6(w - w')6(z - ),
[dL (z),d, (z')] = 0 (4.6)

This model assumes that the material oscillators at different points do not interact.

This is consistent with a picture where tNL is created by localized molecular vibra-

tions. At first sight, it seems that acoustical index fluctuations are excluded from our

theory since they couple different parts of the waveguide. We note however that the



coherence length associated with acoustical modes in a fiber is very short[67] so that,

in this case too, a spatial delta function correlation seems appropriate. The localized

nature of the noise operator, combined with the slowly-varying envelope approxima-

tion, which neglects any coupling of the envelope to the backward propagating modes,

imply that the noise operator at z can only affect the field at z > z'. In particular,

we have

[A(z, 7), n(z, T') = 0, (4.7)

i.e, the field and the noise at a given point of the waveguide are independent degrees

of freedom.

Recall from Appendix B that

[A(z, r), A(z, T')] = 0, [A(z, T), At(z, T')] = (r - T'). (4.8)

The spectral weight function W(w) is determined by requiring that the commutation

relations of the field be preserved by the equation of motion (4.4) [65, 68]. Consider

the derivative of one of these commutators

[A(z, T),At(z,)] lim 1 {[A(z + Az, T), At(z + Az, T')]
az AZ-A A Z

- A(z, T), At(z, T') . (4.9)

Using the equation of motion, we have

A(z + Az) = A(z) + Az (D + if dT'h(r')At (z, T - r')A(z, T- T')) A(z, )
o

+i dz' (z', -)A(z', T).

Using this expression in (4.9), we find

[A(),A____= iAt(T')A(T) {h(r - T') - h(r' - T)}
Oz

1 z+Az
+ dz'dz" [f(z', -), ^(z", T')] A(z', T)At(z", -').



Since we require the derivative to vanish, we want

[rfin(z, T), r(z', -')] = -i6(z - z') {h(T - T') - h(r' - T)}. (4.10)

Computing this commutator with (4.5) and (4.6), we find that the weight function

must be given by

W(w) = 47rh"(w) > 0, (4.11)

where

h"(w) = dr sin(wT)h(r) (4.12)

vanishes only if h(r) is even. Since h(r < 0) = 0, the only possible symmetric response

function is proportional to a delta function, which leads to a singular quantum field

theory in the absence of dispersion (Section 4.2 and 4.3). With the above choice

for W(w), the commutator [A, A] is also preserved. We will show below that h"(w)

is essentially the Raman gain for a signal propagating with a frequency wo - w.

The inequality h"(w > 0) > 0, which is required for the hermiticity of rf is then a

stability condition verified experimentally by the positivity of the Raman gain on the

Stokes side of the carrier frequency. Below, the material oscillators will be assumed

in thermal equilibrium:

< (z)d., (z') >= 5(w - w')6(z - z')nth(W), (4.13)

where nth(W) = (exp(hw/kT) - 1)-1 is the Bose-Einstein distribution. The phase

noise operator then has a gaussian statistics.

We close this paragraph by observing that the commutators (4.8) imply

[I(z, T), I(z, T')] = 0, (4.14)

which indicates that the photon fluxes at two different times across the pulse are

independent.



4.1.2 Kerr Response Function and Raman Gain

In the last paragraph, we showed how the spectral properties of ?h and h were related.

In this paragraph, we show how these quantities can be obtained from Raman gain

measurements. Consider a field made of an intense pump at the carrier frequency

and of a signal with frequency w, < wo

A(z, T) = Ap(z) + As(z)e in, (4.15)

where

S- 27rv - wo - w•s. (4.16)

Experimentally, one observes that for v between about 0.5THz and 75THz, the signal

is amplified by the pump. This phenomenon, called Raman amplification, occurs from

the conversion of pump photons into signal photons, with the simultaneous excitation

of Raman oscillators with frequencies in the terahertz range. The evolution of the

signal in these conditions is described by the equation

8 IA j 2 _Gohwo (A,|2 2:A2 - GohwoJA 2 g (u) As , (4.17)
8z Aeff

where Go is the peak Raman gain and where we neglected dispersion for simplicity.

The measurements reported in [81] at a carrier wavelength of 795nm give Go -

1.2 x 10- 1 cm/W. The function g(u), which is dimensionless and equals 1 at its peak,

is shown on Fig. 4-1 as a solid line. At low frequency, the curve fits 0.02v + 0.04v3 ,

where v is expressed in terahertz. Raman gain measurements were also reported in

[79, 126]. The factor hwo in the gain coefficient of (4.17) arises from the normalization

of the envelope in units of photon flux.

The above gain equation can be derived directly from the envelope equation. We

first introduce the decomposition (4.15) into equation (4.4), neglecting D and -h and

interpreting all fields as classical functions. Isolating the coefficient of eiMT in the
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Figure 4-1: Raman power gain coefficient (solid line) and thermally enhanced Raman
gain (dashed line). The latter is introduced in Section 4.2.3.

resulting equation, we find

09Z = i {'A 2+ +Ic IApI 2} As + h"(Q) IA, 2 As, (4.18)

where r and rc are the Kerr and cross Kerr coefficients respectively, and are given by

J = dTh(T), (4.19)

c = dTh(r) (1 + cos(QT)). (4.20)

The function h" is defined by (4.12). From (4.18), we have

8 IA,|2i I

az = 2h"(0) Ap2 Asj .
(4.21)

Comparing (4.17) with (4.21), we find that h" is linearly related to the Raman gain

coefficient
Go

h"() = hwo  o g (). (4.22)
2Aeff



The Kerr nonlinearity in fibers arises from two independent mechanisms. The first

source of nonlinearity is of electronic origin and accounts for about 80% of the overall

Kerr coefficient [125, 126]. This nonlinearity is extremely fast on the time scale of the

envelope, even for femtosecond pulses. The second mechanism has its origin in the

coupling of molecular vibrations to the optical field. As the separation between the

nuclei of a molecule influence its susceptibility, a nonlinear dependence of the medium

polarization arises. These two different mechanisms contribute separately to h

h(T) - he(T) + hR(T), (4.23)

where he and hR are the electronic and molecular response functions respectively.

he should not be included in h" of (4.22). The electronic oscillators, which have

frequencie higher than the carrier frequency of the pulse, cannot mediate Raman

processes. Indeed, the latter would involve signal photons with negative frequencies.

Instead, UV resonances are responsible for two-photon absorption. In principle, the

two-photon absorption spectrum of fused silica [69]) can be used to determine he.

Currently available pulses are too long however to resolve the details of this function

which are therefore largely irrelevant. Instead, we used

he(T) = Ker" ,rl (4.24)
Te

with a subfemtosecond response time Te = 0.5fs. The constant Ke - 0.8K is the

electronic contribution to the Kerr coefficient. One can verify that the imaginary

part of the Fourier transform of this function essentially vanishes in the Raman gain

window.

Returning to hR(T), we note that this function is real. We therefore have

'o dQ - oc dQ
hR(T) = -27 cos(QT)hR(Q) + -o 27r sin(QT)h'(Q), (4.25)

with h'(w) = f dT cos(QT)hR(T). Noting however that hR(T) vanishes at negative

times, we find that the two integrals above are equal. The Raman response func-
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Figure 4-2: Raman response function of fused silica.

tion can therefore be expressed entirely in terms of h" . Using the symmetry of the

integrand and (4.22), we finally obtain[80]

hRr)= w0 2G0  oh() wo2G 0 dv g (v) sin(27rvT). (4.26)Aef f fa
Figure 4-2 shows the function hR corresponding to the Raman gain measurements

of Fig. 4-1. Although this function shows structure extending up to 0.5ps, its most

important contribution occurs within 100fs. Expressions (4.24) and (4.26) provide

our explicit model for the response function. The function h" is also used in the

spectral weight function W given by (4.11) and therefore specifies the Raman noise

operator needed to preserve the commutation relations of the field.

4.2 Closed-Form Solution at Zero Dispersion

In this section we consider the zero dispersion regime where a closed-form solution

to the stochastic integro-differential equation (4.4) can be found[51, 65, 66]. We first

note that the hermiticity of niNL, combined with D = 0, imply that I is z independent.



This indicates that, even though the phase of the envelope is affected by the medium,

the flux of photons travels unchanged at the group velocity. If all photons were of the

same frequency, I would be proportional to the z-component of the Poynting vector.

However, A(z, -) contains modes of a finite bandwidth coupled to the medium. Since

photons can exchange energy with the medium and simultaneously change frequency,

the conservation of the flux of photons does not imply the conservation of the energy

of the pulses. Expressing the photon flux operator in terms of the input field, we have

I(T) - A (7) Ai (7-). (4.27)

Consider therefore the commutator of the index operator at different locations z and

z', with z - z'

1[iiN n ( z , -) , h N L ( z ' , "T' ) ]  1 2 10 Mds ds'h (s) h(s') [I(s - 7),I1(s' - r')]+ 1 -i[rh(z, T), rh(z',•T')]+
= 0, (4.28)

where we used (4.7), (4.10) and (4.14). Nonlinear index operators at different loca-

tions along the waveguide are therefore independent. This allows (4.4) to be inte-

grated without path ordering, as if iNL were a c-number. We find the closed-form

solution

A(z, T) = exp ip o dz' ftNL (Z', 7) Ai(,-). (4.29)

Using again the fact that the Raman noise operator, mn commutes with the photon flux

operator, and assuming a fiber of length 1, we can write the following input-output

connection

Ao(T) = exp (i(T)) exp (i(T)) Ai(T), (4.30)

where the self-phase modulation operator is

$(7) = 1f dT' h(T')I( T - 7'), (4.31)
J0



and the Raman phase noise operator is

(T) = dz mh(z, T). (4.32)

The relative order of exp(iq) and Ai is important in (4.30), but the noise exponential,

which commutes with the field factors, can be inserted anywhere.

4.2.1 Resonance-Fluorescence

Consider a piece of fiber excited with a monochromatic laser field. Due to the various

transitions taking place in this medium, a resonance-fluorescence spectrum for the

optical field is obtained at the output of the waveguide. In this paragraph, we show

that Raman noise modifies qualitatively this spectrum. Consider a coherent input

state in) corresponding to a monochromatic pump at the carrier frequency. One

then has

Aji(r) lin) = I in), (4.33)

where the constant Ip is the photon flux. The solution (4.30) indicates that the field

autocorrelation function for this input state has the form

(Ao(0)Ao(T)) = Ip (e-i(0) ei() e-i$(O)ei(T)) . (4.34)

The two expectation values can be evaluated for any response function. Recall from

(4.14) that e-ik(o)e~(r) = e-i(o)+±i(T). By using the normal ordering formula (C.1)

with g(s) = il{h(s) - h(s - T)}, we find

=-i(o (r) exp (Ip ds {e (s) - 1}) . (4.35)

On the other hand, < e-i(o)ei(r) >-= ei• < e-i(o)+id(7) >, where this time a =

hR(T) - hR(--T). The expectation value of the last exponential is computed from the

thermal distribution (4.13) using the identity < exp(X) >= exp(½ < X 2 >) for X

with a gaussian statistics and with a vanishing average. We finally find the following



contribution to the autocorrelation function from the noise source:

(e - iO(o) eiO(r) - e-ioe- J(T), (4.36)

where

J(T) = J hj(w) sin2(wr/2) coth(hw/2kT). (4.37)
-oo T

The autocorrelation function can be Fourier transformed to give the spectrum of

the radiation leaving the medium[82]. Figure 4-3 displays normalized output power

spectra of a medium with a single resonance Q and with a damping coefficient F.

We assume that all the nonlinearity is of molecular origin. The resulting response

function is[78]

Q2
h( 2) u(T)e-T'sin( v2 - F2/4T), (4.38)h(6) = ]2/4u

where u(7) is the step function. The frequency on Fig. 4-3 is measured relative to

the carrier, and is normalized to the resonance. The dashed lines were plotted after

removing the Raman noise source. All plots use the same pump intensity. Defining

x = K~l/v, and 7 = F/Q to measure the propagation distance and the width of the

resonance respectively, we have: (a) x = 0.002, 7y = 0.4, kT = 0.5hQ, (b) x = 0.002,

y = 0.4, kT = 5h, (c) x = 0.1, 7 = 0.4, kT = 0.5hQ, (d) x = 0.1, 7y = 0.15,

kT = 0.5hQ. The spectrum near the pump was removed. For short propagation

distances, one can identify in these plots the contributions from individual low order

Feynman diagrams (Fig.4-4). Expanding (4.35) and (4.36) to lowest order in 1, we find

that the noise expectation value grows linearly with I whereas self-phase modulation

contributes only to second order

(e-i(o)eiy(r) = 1 + ilf ds {h(s) - h(s - T)} + O(12) = 1 + O(12),

T e-i(sor )e = 1 - i J(T) +e iT + 0(12).

The short distance output spectrum is then dominated by Raman noise. The corre-
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sponding processes are shown on Fig.4-4(a)(Stokes) and Fig.4-4(b)(anti-Stokes). At

low temperatures, such that kT < hA, the process of Fig.4-4(b), in which a photon

gains a quantum of energy from the waveguide, is discouraged due to the absence

of thermal medium excitations. In this case, most photons scattered from the pump

end up with a lower frequency. As Fig.4-3(b) shows, partial symmetry of the spec-

trum is restored at higher temperatures. Note that the spectra computed without

the Raman noise factor (dashed lines) are symmetric. This is readily understood

for short propagation distances since in this case the lowest order Feynman diagram

contributing to spectral broadening is shown on Fig. 4-4(c). Clearly this process, in

which the medium participates only as the mediator of the nonlinear wave mixing,

produces as many photons on the Stokes and anti-Stokes sides. The short distance

output spectrum is then qualitatively different when the noise of the medium is ne-

glected. This provides a clear experimental test for our model. The plots of Fig.4-3(c)

and Fig.4-3(d) show spectra at longer propagation distances, where the contribution

of individual Feynman diagrams can no longer be distinguished. The growth of sec-

ondary Stokes and anti-Stokes waves is obvious and is enhanced by a sharper medium

resonance. The medium noise is less important in that regime.

4.2.2 Mean Field and Discretized-Time Model

As we shall see in Section 4.3, the above solution becomes singular when the response

function h(T) is taken as instantaneous. The problem resides in the absence of a high

frequency cut-off when D is set to zero. In this case, the fluctuations of the elec-

tromagnetic modes with arbitrarily high frequencies couple back into the frequency

window of the pulse due to the Kerr nonlinearity. These white fluctuations lead to

diverging expressions for physical quantities[70]. This situation is, of course, unphysi-

cal and reflects the fact that we idealized the nonlinear processes in the fiber as being

instantaneous. As we discussed however, the nonlinearity cannot respond infinitely

rapidly to the fluctuations of the field. As a result, it is insensitive to its high fre-

quency zero-point noise. Hence, the response-time of the nonlinearity provides a new

frequency cut-off which regularizes the theory. Before the development of our model,



an alternate theory based on the discretization of the time axis was introduced in

[71, 72, 73]. In this model, the duration of the time intervals introduces a frequency

cut-off which removes the divergences of the instantaneous theory. This theory is

also self-consistent in the sense that the commutators of the field are preserved. This

approach has the advantage of leading to simpler expressions for physical quantities.

It is however an approximate model, and its domain of validity must be clarified.

This is in part the purpose on the next two paragraphs and of Section 4.3.

In this paragraph, we evaluate the expectation value of the field at zero dispersion.

We assume that the fiber is excited by a coherent pulse

Ai(T) lin) = a(r) in). (4.39)

Using the thermal correlators (4.13), the solution (4.30) and the above property, we

find

( 0 (-)) = e-M(o) exp (fo dT' {eilh(r') - 1} a(T - T)I)2) a(T). (4.40)

In this expression, we defined:

l M (T - T') = ()TAT'I) + (7T'AT))

1o dw hw
cos(w(T - '')) coth ') (w), (4.41)

-oo 7 2kT

so that we have

(exp(io(r))) = exp 2 (T))) = exp( M(0)). (4.42)

Hence we see that the only effect of the Raman phase noise on the mean field is an

overall damping. The function M(T) for fused silica at room temperature is displayed

on Fig. 4-5. From this plot, we find a characteristic Raman damping length

1l -M() - 105 km (4.43)
'M (0) '
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Figure 4-5: Noise function M(T) for fused silica at room temperature.

which is very large. For all practical purpose therefore, Raman damping of the mean

field is negligible. The other factor in (4.40) was computed using the normal ordering

formula (C.1), with g(s) = ilh(s).

As for the above continuous-time model, the discretized-time theory allows to

evaluate the output mean field in closed-form. We replace the envelope by a sum of

variables defined on each time interval[71, 72, 73]

1
A(z, 7) = n(z) for 7 between nAT and (n + 1)AT, (4.44)

where [&n, &am] = 0 and [&n, &t] = 6n,m. Introducing this expression in (4.4), with

h(T) = rd6(-) and r^ = 0, one finds, for each time slot, operator

d'

S= i a a (4.45)
dz AT

Each of these n decoupled nonlinear equations can again be solved:

n(1) = exp i an(O)&n(O) &(0). (4.46)
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Figure 4-6: Mean field. Solid line=continuous-time model, dashed line=discretized
time model, dash-dotted line=continuous-time model without Raman noise.

The coherent state expectation value of the field in the discretized theory is evaluated

using (C.2)

< Ao(T) >= exp exp(i••) - 1 AToa(T) 2 a~(T), (4.47)

where a(T) = an/ ' for T between nAT and (n + 1)AT, and an is the amplitude

of the coherent state of tn-

Differences between (4.40) and (4.47) are immediately apparent. First, the discre-

tized-time formula neglects any Raman damping. Second the discretized expression

exhibits a spatial periodicity with a period 1 = 27rAT/r. No such periodic behavior

occurs in the continuous-time model. Figure 4-6 compares the magnitude of the

mean field at the center of the pulse, normalized to its input value for both formulae.

The solid and dashed curves were obtained from the continuous- and discretized-time

formulae respectively. A gaussian pulse with a peak power of 75pW was assumed,

and the Raman noise damping was computed at room temperature. For modest fiber

lengths, both expressions predict the same departure from the constant classical value.



This was achieved by a proper choice of AT in (4.47) which we shall discuss further

in Section 4.3. As the fiber length increases, the predictions of the two theories differ,

with the discretized-time formula displaying revivals and the continuous-time formula

leading to an irreversible decay. The irreversibility in the latter case is not due to

Raman noise, but to the infinite number of field modes. This is made apparent on

Fig. 4-6 where the dash-dotted line, which was obtained from the continuous-time

theory without the Raman noise factor, displays the same irreversibility.

4.2.3 Sagnac Photocurrent Fluctuations

The predictions of the continuous- and discretized-time theories for the quantum

noise reduction achievable with a Sagnac squeezer at zero dispersion can also be

compared. We return to expressions (3.5) and (3.6), which provide the key to the

squeezing formula (3.7) for the Sagnac squeezer. The expectation values F1 and F2

are first evaluated using (4.30), which gives the output field of arms 1 or 2 in the

continuous-time theory. The input field for both fibers is assumed to obey (4.39).

The calculations are straightforward but lengthy and are outlined in Appendix D.

Here we simply give the final result

F1  = 2e - M(o) dTlidT2 0L(T1)O(T 2 ) 2
e-

2
no+Kcc(Tl,'2)

x sinh (IlM(T1 - T2) + K,,(Ti, T2 ))

F2 = 2e - 2M(o) dTa(T) 26-2no+Kc(T)K,(T). (4.48)

The function M(T) was defined by (4.41), and the K-integrals are

KS..S(Ti, ... , Tn) = 2f dT' a(T') 2 sin (1h(Tl - T')) ... sin (lh(ZT - T')) , (4.49)

and a similar definition for Kc...c with cosine functions. The integral M(T) gives again

the contribution from the noise exponential in (4.30). This function does not vanish,

even when T = 0, due to the zero point fluctuations of the heat bath. By setting

M = 0, one can evaluate the effect of the Raman noise on the squeezing performance



of the setup. Note from (4.41) that the Fourier transform of M(T) is proportional to

coth(hw/2kT)h"(w) and not to h"(w) itself. The hyperbolic prefactor, which is one

and therefore irrelevant at high frequencies, enhances the contribution to M from the

thermally excited low frequency Raman oscillators. The dashed curve on Figure 4-1

shows the effect of the hyperbolic prefactor on the Raman gain coefficient.

Before using the above expressions for F1 and F2 in Rsagnac for specific input

pulses, we turn to the discretized-time theory. Using (4.46) instead of (4.30), we find

F, = AT d-rIa(Tr)14 [1 - exp -4ATIa(T)|2 sin2( 1))],

F2 = 4sin(r 1)AT w dTa(T) exp (-4ATla(T)2 sin l2• 1) . (4.50)

One can show that (4.48) reduces to (4.50) when (i) M is set to zero, (ii) the integral

over T2 in F1 is approximated by AT times the integrand at T2 = T1, (iii) the response

function is taken as:

h( if) = 
(4.51)

0 otherwise

and (iv) the intensity of the pulse is assumed constant over a period AT.

Consider a gaussian input pulse (Appendix C)

a(Tr) = exp (4.52)

with 7Tp = 20ps and no = 2.8 x 109 . The parameter Tp is the pulse time scale introduced

in the next section (see (4.57)). In the case of a gaussian pulse, it is related to the

FWHM pulse duration by

2
TFWMH = 2• -P 0. 9 3 9 47Tp. (4.53)

The values introduced above for no and Tp are typical of the recent experiments at MIT

[32]. Since the pulses vary little over the characteristic time of h, the detailed form

of this function is not critical in the evaluation of the K-integrals in the continuous-



time theory. The most important feature of these integrals is the saturation of the

integrands due to the circular functions. This effect leads to a degradation of squeez-

ing when lh becomes large over a substantial region of the domain of integration.

As discussed in Section 4.3, the electronic response time determines the fiber length

where this effect occurs. To simplify the numerical analysis, we therefore evaluate

the K-integrals with the response function:

h(-) = e-/Te, (4.54)
Te

where Te = 0.5fs.

Figure 4-7 and 4-8 show RSagnac as a function of fiber length in the arms of the

interferometer measured in units of the peak nonlinear phase shift, 4 = Kl a(0) 2 =

(1, 0) (see (3.30)). The curves obtained from the continuous- (solid lines) and

discretized-time (dashed lines) theories are compared at room temperature. The

time constant of the discretized model was chosen so that the onset of the quan-

tum regime occurs for the same length of fiber as for in the continuous-time model.

Also displayed are the curves from the continuous-time theory without noise source

(dash-dotted lines), and the linearized curves with and without noise. A 0.1dB de-

parture from these curves occurs roughly at a phase shift of 85, where 1 _ 1.0km,

in accordance with the results of the next section. When the phase shift increases

well beyond the linearized regime, RSagnac deteriorates and eventually reaches the

limiting value of 1. No revival occurs in our continuous theory, even when the Raman

noise is neglected. This effect cannot be seen when the response function is ideal-

ized by the step function (4.51) and when noise is neglected as in [77]. In this case

the continuous-time theory predicts revivals. On the other hand the model with a

discretized-time axis clearly produces expressions for F1 and F2 which return to their

input value when 1 = 27r&AT/K, as for the mean field. Once again, we see that this

periodicity is an artifact of the discretization. Figure 4-7 compares the continuous-

and discretized-time curves in the same conditions as in Fig. 4-7 and 4-8, but with

no = 2.8 x 10 4 . In this case, the discretized theory predicts revivals for small phase



shifts. From figure 4-8, we see that the dashed line and the dash-dotted line overlap

beyond the linearized regime. This indicates that the discretized model predicts cor-

rectly the low order departure from the linearized approximation. As for the mean

field, Raman noise is completely neglected by this theory however. The next Section

considers in more details the breakdown of the linearized approximation.

4.3 Linearized Regime and Onset of the Quan-

tum Regime

We close this chapter with a discussion of the linearized limit. In paragraph 4.3.2,

we obtain a linearized squeezing formula including both the effect of Raman noise

and of the finite response time of the Kerr nonlinearity. We will also take advantage

of the availability of an exact solution at zero dispersion to find expressions for the

first order corrections to the linearized expressions for the cases considered in Section

4.2. The purpose of this calculation is to determine the value of AT required for the

discretized model to produce quantum corrections identical to those obtained from

the continuous-time model.

We first observe that the linearized theory is obtained from the exact field equa-

tions by taking the limit of large photon numbers, keeping nonlinear phase shifts of

order unity. For simplicity, consider one time interval of the discretized-time model.

Separating the field as A + &/ /A-, with A(z, T) = exp(iq(z, T))a(T), we have

&& 2 NA ,KA* s2=a 2i A|2 & + iA2 t + 2i + i 2 a-• + at (4.55)
0Z \' _A VATF A T

Dividing both sides by n Ia(0) 2, we find the equation

S= 2i& + ie2i&t + 2ie i¢  'T et + ie-i n  2 + •P at& T (4.56)
84 noAT no0 T noATr



U

-1

-2

-3

-4

-o -5

-6

-7

-8

-9

-_

0 100 200 300 400 500 600 700 800 900 1000
Peak Nonlinear Phase Shift

Figure 4-7: Minimum variance of the balanced homodyne photocurrent in a Sagnac
squeezer at zero dispersion. The variance is normalized to the vacuum level (see
Rsagnac defined in Section 3.1). Continuous-time (solid). Discretized-time (dashed).
Continuous-time without Raman noise (dash-dotted). Linearized with and without
Raman noise (dotted).
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Figure 4-8: Enhancement of the small phase shift region for the previous figure.
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Figure 4-9: RSagnac for long and weak gaussian pulses at zero-dispersion. The lines
have the same meaning as in the previous two figures.

where the pulse time scale, Tp, is defined by (Appendix C):

no

p- = n02 (4.57)
|a(0)1

When noAT/Tp becomes large, while P stays of order unity, the contribution of the

last three terms in (4.56) to the evolution of a becomes negligible. Dropping these

terms, we recover the linearized equation of Section 3.2.2. The above conditions for

the photon number and the phase shift are met in most fiber squeezing experiment.

For example, in the MIT fiber squeezer [32], one has no - 10' and D _ 4. Our

discussion also indicates that quantum corrections to the linearized expressions will

appear as a series of terms with increasing inverse power of the photon number.

4.3.1 Mean Field

Consider again the self-phase modulation factor in expression (4.40). We replace 1 by

4 as the evolution parameter in this expression and we expand the resulting formula



in inverse powers of the photon number. For pulses varying little over the time scale

of h(T%'), we have

exp ( dTr' {eilh(,r') - 1} a(T- T')12)

= exp (il a(T)2) 1 V 1 0 (a0) , (4.58)
S 22no |a(0)|2 Tq n0

where -p is defined by (4.57), and the material quantum time scale, Tq, is defined by:

1- 1 2 d1r' h2 (T'). (4.59)
Tq K- 0'2

The overall exponential in (4.58) is the classical nonlinear phase picked up by a pulse

in a Kerr medium[54]. Recalling that in the linearized theory, the mean field is given

by A(z, T), the first term in (4.58) can therefore be identified as the contribution

from the linearized theory. The following term of order 1/no arises from the non-

commutativity of the field and is the lowest order correction to the linearized theory.

Expression (4.58) indicates that rq determines the length of fiber beyond which sub-

stantial quantum effects occur for a given pulse intensity. Indeed, defining the length

!1 0. 2 TqTp (4.60)
K rn 0

the magnitude of the vacuum term at the center of the pulse becomes larger than 0.1

when the fiber is longer than 1q. Contrary to the Raman damping length ld, which was

power independent, 1q is shorter for intense pulses. The solid curve on Fig.4-10 shows

1q as a function of the peak power for pulses in fused silica fibers. In this figure we

assumed Tq = 1.5fs, corresponding to a material time scale typical of the electronic

Kerr effect. This value is more appropriate than the time scale of the much slower

Raman oscillators. Indeed, consider a medium where the Kerr effect arises from the

dynamics of fast and slow material degrees of freedom, as in fused silica. Assume also
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Figure 4-10: Length scales for the breakdown of the linearized approximation at
zero dispersion. The solid and dashed lines show the length scales beyond which
corrections to the linearized mean field and noise reduction ratio become important
respectively.

that the response function takes the simplified form:

h(T) = u(-) Ne exp(-T/T7) + KR exp(-T/TR) , (4.61)
Te TR

where u(7) is the step function and where re and KR are the contributions to the

Kerr coefficient from the fast and slow oscillators (Ke + KR = r). Typically [125]

Ke - 0.8K, KR = 0.2K, Te = 0.5fs and rR = 100fs for fused silica fibers. Using the

above model, one can estimate the material time scale

1 1 e2 2R r, e R .1 12 + ( +  +  
(4.62)

Tq 2 Te 2RTe + TR e 27 3T,

The above expression suggests the importance of the faster electronic nonlinearity in

fixing the length scale for the onset of the quantum effects.

Consider now the discretized expression for the mean field, i.e. equation (4.47).

Trading once again the propagation distance with the peak nonlinear phase shift and



expanding this expression in inverse powers of the photon number, we find

(Ao(T) I = e lIa()I2 -2 ATP (0 )2 + a(T), (4.63)2no AT |a(0)1 n 2

Comparing (4.63) with (4.58), we see that AT in the discretized theory plays the role

of Tq in the continuous theory, at least to lowest order in the quantum corrections.

One should therefore use[66]

1

AT = K 2  (4.64)fo0 dT' h (T')

4.3.2 Photocurrent Fluctuations

Consider now the continuous-time expression for F1 and F2 derived in Section 4.2.4.

The linearized expressions for these functions are obtained by expressing I in terms

of ( and by keeping only terms of order 1 in F1/2no and F2/2no

Fin = N4 + 2p6D 2 , (4.65)
2n 0

F'in2 - 2p4, (4.66)
2no

where the pulse dependent coefficients N, p4 and P6 are

N O)1 2 dT |a(T)|2 dTr' a(T - T')12M(T'), (4.67)nola(0) I2
P = no a(dTl(T)I 2  dT'la(T - TI) 12  n/2-1 . (4.68)

From formula (3.7), we therefore have the quantum noise reduction formula in the

linearized regime [51, 66]

Rlinac = 1 + (N4) + 2P6 4 2 ) - V(N4 + 2p64 2)2 + (2p4(j) 2 . (4.69)

As we indicated in Section 3.1, Rsagnac and RSPM have the same linearized limit. The

above expression should therefore be compared with (3.40) which was derived for an



instantaneous Kerr nonlinearity. In fact, assuming that the pulse varies little over

the characteristic time of M and h, the convolution integrals in the expressions for

pn and N can be simplified by letting Ca(T - 7')12 a() 2. In this case, p,, reduces

to expression (3.39) derived previously, and N = p47 with

J = dTM(T). (4.70)

We therefore see that even in the limit of long pulses, the theory presented in this

chapter leads to a slightly different squeezing formula than (3.40). Using (4.41), we

find an explicit expression for q

4kBT KR )S4kT ( ) TR, (4.71)

where we defined the Raman response time by[78]:

TR = 1 lim h ) (4.72)
KR W-+0 0

with KR -- 0.189r being the contribution to the Kerr coefficient from the Raman

oscillators. The low frequency fit of g(v) in [81] gives TR = 4fs, so that 7 = 0.12 at

room temperature. Following a similar approximation procedure for the discretized-

time theory, we recover the above formula for the function R~j"n , but with 7 = 0.

This function is displayed on Fig. 4-11 for gaussian and square pulses. It is clear from

this plot that the Raman noise in silica does not affect significantly the squeezing level.

This conclusion is consistent with previous work on Raman noise in the soliton regime

[78, 85, 86]. As can be seen from (4.71), this is due to the small value of TR and to

the small fraction of the Kerr nonlinearity arising from these degrees of freedom. We

note here that the Raman response time defined by (4.72) is much shorter than the

characteristic time of the Raman response function which, from Fig.4-2 is rather on

the order of 100 fs. This difference, which is due to the very small slope of the Raman

gain at v = 0, indicates that TR is not a good measure of the time scale involved in the

dynamics of the Raman oscillators. Due to our lack of information on the electronic
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Figure 4-11: Linearized SPM squeezing in the presence of Raman noise for square
and gaussian noise.

response function, we did not include the contribution from two-photon absorption

noise in q. It is however expected to be small as well. Indeed, for the exponential

response function (4.24), the response time

1 h,"(w)
Te - lim (4.73)

Ke W--+0 W

equals Te _ 0.5fs. The electronic contribution to n would therefore be

4kT Ke
7e= 4 hT()Te, (4.74)

which is about half the Raman contribution.

It is interesting to note that the Raman noise does not modify the asymptotic

squeezing limit found in Section 3.1.1. This result indicates that the Raman phase

noise builds up at a slower rate than the noise reduction by squeezing. The linearized

theory therefore indicates that one can overcome the loss of squeezing due to Raman

noise by using a longer fiber. Eventually, the linearized formula is no longer a good

CI



approximation and a slightly higher noise floor due to the Raman source is found, as

can be seen on Fig. 4-7 and Fig. 4-9.

Consider now the linearized formula for pulses shorter than lps. The discretized

model is inadequate to describe such pulses. We therefore use the continuous-time

theory where the convolutions in N and pn require a reasonable model for the response

function of silica. As long as the pulses are much longer than the electronic response

time, one can approximate the corresponding nonlinearity as instantaneous[84]. We

will therefore use in the linearized theory:

h(-) = 0.8 6 (T) + dwh"(w) sin(w-), (4.75)
K IFK Jo R

where u(T) is again the step function. Inserting h in the expressions for N, we obtain

the plot of Fig 4-12. This curve shows the noise parameter 7 = N/p4 for gaussian

pulses, as a function of the pulse duration. As can be seen, 7 doubles for pulses with

a duration of the order of 20fs and quickly decreases for shorter pulses. Referring

to Fig.4-11, one can therefore see that the effect of the Raman noise on squeezing is

never very important in silica. Figure 4-13 is a plot of the limiting value, 1 - p4/p,

for gaussian pulses as a function of the pulse width. This figure indicates that when

the noise is neglected, the dynamics of the Raman oscillators enhances squeezing for

pulses with a duration of the order of 20fs. For even shorter pulses, the Raman

nonlinearity becomes ineffective in (4.2) because hR, which vanishes at T = 0 cannot

rise fast enough. A more thorough analysis of squeezing with short pulses should

however include the effect of third order dispersion and self-steepening which were

neglected in our discussion, and becomes important for pulses shorter than 100fs [54].

The pulses used in [32] had a peak power of roughly 20W, corresponding to
1q " 2.6km. This small value indicates that squeezing experiments with more intense

pulses could well be affected by vacuum terms. Let us evaluate the correction to

Rinac from these terms. As for the mean field, the overall Raman damping does not

affect RSagnac for fibers shorter then a few thousand kilometers. We therefore neglectaffect Rsagnac for fibers shorter then a few thousand kilometers. We therefore neglect
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this effect. The small value of q for fused silica also makes this parameter irrelevant

to the determination of the fiber length where the linearized theory breaks down. Our

derivation of Rgnac is the first step of a systematic expansion of RSagnac in inverse

powers of the photon number. Keeping the first two terms in such an expansion for

F1 and F2, we have:

FI F in( 2P8(I 2  )

F2 - __ 2n- 1 - , (4.76)2no 2no P6 o (0) 2 Tq

F2 F~in (D 2
0 2 1 - P6 2  (4.77)

2no 2no P4 (O) 2 Tq

Note that PA = 0.5, 16/35 and 1 for gaussian, sech and square pulses respectively.

Let AR denote the change, in dB, from RMin due to the vacuum terms. Hence,1 SagnacI

if RSagnac g•nac(1 + 6) where 6 is a small number, we have AR = 10 6/ ln10.

Inserting the corrected expressions for F1 and F2 into the definition of Rsagnac, we

find AR = G(4D)/Tq a(0) 2 , where the monotonously increasing function G(4() is:

1 210 2psF i n  6 2no (P4 2no .

lnl0Rin/ P6 2no0  2 . (4.78)

For a fixed nonlinear phase shift, the correction to R~n increases with decreasing

a(0) 2 . Given Tq and a tolerance level for AR, the above relation establishes , for a

given 4D, the peak photon flux below which the correction to RMinac exceeds AR. The.Sagnac

length of fiber corresponding to these values of ( and a(0) 2 can then be found from

r = Il a(0) 2. Each point on the dashed curve of Fig.4-10 gives a fiber length and

a peak power obtained from the above procedure for gaussian pulses using different

nonlinear phase shifts and a 0.1dB tolerance level for AR. At fixed power, fibers with

length above this curve correspond to larger phase shift, to larger values of |G(()

and, therefore, to larger corrections AR.



Chapter 5

Quantum Noise of the

Fundamental Soliton

Soliton squeezing was briefly discussed in Section 3.3 using the linearized approxima-

tion. In the present chapter, we investigate in more detail the domain of validity of

this approximation in the soliton regime. To do so, we take advantage of the avail-

ability of an exact solution to the quantized nonlinear Schr6dinger equation (QNSE)

in 1 + 1 dimensions. The bound states of this equation were found in the 1960's using

Bethe's ansatz [95, 96, 97, 98, 99, 100]. We assume that at the input of the fiber, the

field is in a Poisson-Gaussian superposition of Bethe eigenstates. Using the known

time dependence for the latter, we follow the quantum noise evolution. Another ap-

proach to the study of dispersive squeezing beyond the linearized approximation uses

the positive P-distribution [58, 59]. Contrary to the analytical treatment presented

here, this method is numerical in nature, even for optical solitons. Our discussion

extends the work of Lai and Haus [104] who evaluated the mean field in a Poisson-

Gaussian superposition of Bethe states but did not consider their noise properties.

We show that the phase shift beyond which the linearized approximation does not
1/4

describe quantum noise properly scales as no , where no is the average photon num-

ber of each pulse. The fluctuations of the four soliton operators in Poisson-Gaussian

solitons are also considered. We show that these states minimize the uncertainty on

these collective operators. It was shown in [60, 64] that this cannot be done with



coherent states.

This chapter is organized as follow. In Section 5.1 we briefly review the quantum

theory of soliton propagation in the Schrddinger picture. In Section 5.2, the mean

field and the noise correlation functions for Poisson-Gaussian solitons are evaluated.

These correlators are key ingredients in the analysis of the following two sections. The

calculations are however tedious and their bulk is transfered in appendix. Section

5.3 is devoted to non-linearized squeezing. Finally, Section 5.4 introduces the four

soliton noise operators as pairs of conjugate variables. The noise properties of these

operators in coherent and in Poisson-Gaussian soliton states are compared. The

material presented in this chapter appeared in [93].

5.1 Quantum Soliton Propagation

We briefly review in this section the quantum theory based on the nonlinear Schr6-

dinger equation. More details and references can be found in [104]. We assume that

/32 < 0 throughout this chapter. We first introduce the notations

-c = , (5.1)

x = v ,) (5.2)
v 2|021

t 2, (5.3)

q(t, x) = - (z, 7), (5.4)

so that x is a distance, t is the square of a length, and c has units of inverse length.

For r = 4 x 10-19 s/km, vg = 2 x 108m/s and /32 = -20ps 2 /km, we have c- 1 = 10km.

The normalization of the field was chosen such that

[ )(t, x), 't(t, (')] ) 6(x - (t),
[S(t, x), q$(t, x')] = [•t (t, x), •t(t, x')] = 0. (5.5)



Introducing the above variables in (B.33), we find

i (t, 2x) = 2 (t x) + 2ct (t,x) (tX)(t, x), (5.6)0¢(t7 x) ¢O(t, x)+ 2c

which is the QNSE. Below we shall refer to t as time and to x as position to conform

with standard terminology for this equation.

Many-particle states take the standard form

>= 00 an d{x1}f,(xl,'" x,,t) *(xx) " ¢+(x,)|0 >, (5.7)n=0 "I f djif(1'lntO X)''0(nI

where the n-particle wave functions fn(xj, , Xn, t) are normalized so that the coeffi-

cients an determine the photostatistics. The evolution of the n-particle wavefunctions

is governed by the Schridinger equation

dihd | >= H/1 >, (5.8)

where the operator H is

H h A $•+(x) - (x)dx + c b+(x) 5(x)q(x)d(x)dx. (5.9)

Note that H preserves both the particle number

N = J t(x)q(x)dx (5.10)

and the total momentum

P = 4' 2 8 t (x) (x) - /t(x) a >(x)) dx. (5.11)

One also verifies that the photon number and momentum operators commute so

that common eigenstates of H, P and N can be found. Because c is negative, the

Schr6dinger equation (5.8) has bound states. A subset of these bound states is char-

acterized solely by the eigenvalues of N and P5. The wave functions of these states



are

fn,p= Nn exp ip xj
where Nj=1 is a normalization constant,

where Nn is a normalization constant,

ilX jI]
1<_i,j<n (5.12)

(n- 1)! c -1Nn 27r (5.13)

Using fn,p in (5.7) one obtains the n,p > Bethe states

|n, 1 > > d{x }fn,p(x"1 Xn, t 1(),•

n, p -- !
(5.14)

The wavefunction fn,p decays exponentially with the separation between any boson

pair. It describes an n-particle bound state with momentum P = nhp. The state

In, p > is an eigenstate of H with eigenvalue

E(n, p) p2  2 - 1)
12 (5.15)

Fundamental soliton states are defined as arbitrary superpositions of In,p > states

(5.16)1 >= E an f dpgn(p)n, p >.
n=O

The normalized function gn(P) 2 is the momentum distribution in the n-particle sub-

space.

5.2 Poisson-Gaussian Fundamental Solitons

In this section, we consider fundamental solitons with a poissonian photostatistics

an /-n e
_noa le

2

Vn!
(5.17)



cn is the probability to have exactly n photons in the bound state. The average

photon number and the photovariance in the uorresponding states are

(]f) = no, (5.18)

(N2 (N)2 = no. (5.19)

The momentum distribution is assumed gaussian

gn(p) = g(p)e - inpxo with g(p) exp (p - P o)2  . (5.20)

The gaussian g(p) describes the momentum distribution in every n-particle space.

The parameter x0 is real, and will subsequently be identified as the average position

of the soliton at t = 0. Similarly, hpo is the average momentum per photon. The

above expressions for an and gn(p) were proposed by Lai and Haus in [104] who studied

the expectation value of 0(t, x) in the corresponding fundamental soliton state (note

however the different definitions of g(p) and Ap used by these authors). They pointed

out that the width of the momentum distribution must satisfy

c < Ap << no. (5.21)

The lower bound is needed initially to localize the bound state in a region smaller

than the classical width of the soliton. The upper bound arises from the requirement

that quantum dispersion be negligible over a classical soliton period. The above two

conditions therefore give to the quantum bound state properties that are close to

those of a classical soliton. We will show in Section 5.4 that when one uses

AP = 0 (5.22)
Fýio 2'1

with p of order unity compared to no, the fluctuations in position and momentum

at t = 0 reach the lower bound set by the uncertainty relations. Note that the

above expression is compatible with the constraints (5.21). To evaluate the noise of



P2soliton operators and the noise reduction ratio associated with the above Poisson-

Gaussian fundamental solitons, we first consider the expectation value and the second

order moments of the Mld.

5.PH.1 Ilhe Field Expectation Value

Following [104], we use the matrix elements between n-particle soliton states (derived

in Appendix E) to evaluate the expectation value of the field in the above state. The

following expression is obtained in Appendix G

< 0(t)(X)k( ) > -pIn-( ( (exp i n(n + 1)t dvg(v)e i( z - )v- iv2

n= O

&,v / i~tn 1 02
+ 1+Xn(V) + 2i(+nl/nfO 1 2 +0sech (xn (V))

S4n 2n axn 8no 4n J n+1/2 • 2

(5.23)

with the abbreviations

noc2
nl- n o ct, (5.24)4

x(v) cn(x - Xo - 2vt). (5.25)
2

To obtain (5.23), we assumed

no > 1, (5.26)

1, (5.27)

Inl < no. (5.28)

This expression generalizes the result obtained by Lai and Haus where the terms

following 1 in brackets were neglected. Note that these authors had n replaced by

n + 1/2 in xn. The additional 1/2 is included as the third term within brackets in

our expression.

We seek an expression for the mean field including terms of order no, which domi-



nate in the classical limit, and noise terms of order 1. As pointed out by Lai and Haus,

the term of order no reproduces the classical soliton. Corrections to this profile arise

both initially and over the time evolution. At (n% = 0, the mean field deviates from a

classical soliton due, in part, to the imperfect localization of the bound state position

resulting from the finite width of the momentum distribution. Similarly, phase noise

is present at 'nL = 0 due to the finite width of the Poisson photodistribution. Other

corrections to the initial classical profile cannot be attributed to the widths of the

distributions in n and p and should be considered as intrinsic properties of Bethe

eigenstates used to construct fundamental solitons. The second type of corrections to

the classical soliton profile takes place during propagation. As the phase of the Bethe

states with different values of n and p walk out of step, the mean field slowly collapses.

As the nonlinear phase shift becomes larger, it becomes increasingly difficult to sum

and integrate the terms associated with different photon numbers and momenta in

(5.23). In Appendix G, we perform the sum over n and obtain an expression for

the mean field valid for (Dn, < no. Restricting ourselves further to ',,l <K i , we

are also able to carry out the momentum integral (i.e. the integral over v). This

complicated-looking expression is used in Section 5.3 to obtain squeezing curves for

large phase shifts. Here we provide the much simpler expression obtained when 1 nr

is of order 1. Defining the classical soliton profile as

Oo(t, x) = no c1/2 exp(id.i - ip2t + ipo(x - xo))sech (Xno(Po)) (5.29)
2

we find for Po = 0,

< (t) (x) 0(t) >= o0(t, x) 1 + , (5.30)
no

where

A(t, x) = inl 1 - - 2•2 + tanh2 no - + (5.31)
42 8

with xno = nlcl/2. The first term in A indicates that the phase of the mean field

walks off from the classical soliton phase as t increases. The following term signals



I~I~nit the uncertainty on the phase of the field increases during propagation, resulting

in a damping of its expectation value. The last three terms of (5.31) give the initial

corrections to the classical soliton profile and are independent of t when po = 0. For

large values of p, the momentum of the bound state is increasingly well-defined, but

substantial deviations from the classical profile occur in the initial mean field. When

p is chosen small on the other hand, the phase walk-off of the field increases more

rapidly.

5.2.2 Noise Correlators

The second order correlation functions of the field, < 4(t)|¢(x)q(x + T)f4(t) > and

< O(t)lqt(x)q(x + T)jl(t) >, are evaluated in Appendix H using the same technique

as for the mean field (Appendix E through G). We define the quantum noise operator

v(t, x) such that

(t, x) = ((t, x)) + '(t, x). (5.32)

Subtracting the mean field from the two-point correlators, we find the noise covari-

ances < O ýf(x)i(y ) > and < '&(x) (y) >. Instead of providing thes

for large nonlinear phase shifts here, we restrict ourselves once again to the case

n4 0 = O(1). Defining the classical soliton width as

2
no= no c' (5.33)

nio ~c

we find

< O t(X ) (X + T) > = l 4 D2 o o o s cse3 1
+ + + -- Xn(Xno + Tno)) sech(xno)sech(xno + Too)< t()•x •) -4 4 2px•

1 4~n PC~(•n ) -sn(in )))sh2(o)ec2(n+ ")

+- (Ino cosh(rTn) - sinh(Irno )))sech2 (Xno)sech2 (Xno Tno)
2

+(Xno + Tno)sech'(xno + Tno)sech(xno) + Xno0 sech'(xno)sech(xno + Tno) (5.34)

-- ini (2(xnosech'(xno)sech(xno + Tro) - (xn o + Tno)sech'(xno + Tno)sech(xno))
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mental soliton.

)rrelation function < Ot(x)i5(y) > for a minimum uncertainty funda-

2
+ -((x~o + T-o)sech'(xno)sech(xo + Tno)

A1
- Xno0 sech'(xno + T•no)sech(xno))) }

and

< V(x) (•( + T) >=

+ + Xno((x

1
+- ( 7•I cosh(T7no)

2

- 4 4( + - -no - Xno(Xno + T7no)) sech(xo10)sech(,,, + 7T,,))

o + o) + sech'(x )sech'(xo + ino )

- sinh(I no )))sech2(Xno)sech2 (Xno + Tno)

+(±Xno + T7,)sech'(xno + ,Tno)sech(xno) + Xnosech'(x,o)sech(xno + 7,o)

+iat (4sech(x,(o)sech(xno + T•o) (5.35)
+2(x.nosech'(x, o)sech(x o + T•o) + (xno + Tno)sech'(xno + ,rno)sechx.,,))

- 2((x o + Tno)sech'(xno)sech(xno + Tno) + xosech'(xno + Tno)sech(xno))

where the primes denote derivatives with respect to the corresponding argument.

Initially, when 'l = 0, these two correlation functions are real and are shown in Fig.

101
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Figure 5-2: Correlation function < i(x)i(y) > for a minimum uncertainty fundamen-
tal soliton.

5-1 and Fig. 5-2. In contrast to coherent states, the quantum noise of the fundamental

soliton is not white. This indicates that correlations among the particles are created

by the Kerr effect.

5.3 Squeezing

In this section, we use expressions (G.5), (H.3) and (H.6) to derive a scale for the phase

shift beyond which the linearized theory fails to describe quantum noise correctly. To

evaluate the covariance functions with '1 nl = O(1) in Section 5.2.2, we neglected

terms of the form

no n(5.36)
no

This led to the linearized expressions for these correlators. When the nonlinear phase

becomes of order nO/ 4 , the neglected terms become important and the linearization

fails. To show this, we evaluate the variance of the field quadratures associated with
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Figure 5-3: Reduction of quadrature fluctuations in a homodyne experiment with a
sech - shape local oscillator normalized to the standard quantum limit for photon
numbers 103 - 105, (-.-.-) linearized result, (- - -) linearized noise reduction for a

coherent initial state and optimum local oscillator according to Ref.[HausLai]

the mode

a = o (x, t) t(x, t)dx. (5.37)

The quadrature noise reduction ratio for this mode is (see (2.5) and (2.1))

Rl i n = 2min < A 2 Q >= 1 + 2(< t&&> - < t >< e > - <a 2 > - < a >2

(5.38)

The expectation values can be expressed in terms of the correlation functions (G.5),

(H.3) and (H.6). The result is shown in Fig. 5-3 as a series of solid lines corresponding

to increasing photon numbers. The dashed - dotted line is the linearized result ob-

tained by neglecting terms of order no0  2 in the correlation functions. When the

photon number is increased by a factor of 10 the range of phase shifts where the noise

reduction follows the linearized result increases as predicted by 101/4 - 1.8. Squeezing

experiments use pulses with no - 109. The linearized approximation should therefore

describe properly the evolution of quantum noise for phase shifts up to 100. The dis-
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crepancy between the soliton squeezing predictions and the poor results obtained in

laboratory [34, 35] can therefore not be attributed to a failure of the linearized theory.

It is interesting to note that the slope of the noise reduction ratio vanishes at -= 0

for the Poisson-Gaussian soliton states. This behavior contrasts with that of initial

coherent states[60]. The corresponding linearized squeezing curve is represented by a

dashed line in Fig. 5-3 where an optimum local oscillator was used.

5.4 Collective Coordinate Fluctuation Operators

The question of the relationship between the QNSE bound states and the classical

solitons has been the focus of considerable attention in the last 20 years [101, 102, 103,

104, 105]. We contribute to this analysis in this section by evaluating the variance of

the four soliton collective coordinates in a Poisson-Gaussian soliton state at t = 0.

5.4.1 Soliton Operators

Introducing the decomposition (5.32) in the definition of the total momentum and

photon number operators, we find

N = no +Af (5.39)

no = dx < Ot(x) >< 0(x)> (5.40)

A = dx < tt(x) > V(x) + h.c., (5.41)

P = hnopo + hnoAj (5.42)

Po = - x < t4 (x) >< (x) > (5.43)
no

AP = I dx < ¢t(x) > f(x) + h.c. (5.44)
no
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By construction, the quantum number p in In, p > is related to the momentum of the

center coordinate of the n interacting bosons which is defined as

X = lim • x Ot(x)q(x)dx(c + N)- 1  (5.45)

The limit over c is introduced to regularize the position operator for the vacuum state.

Introducing the decomposition (5.32) in the expression for X we have

S= xo 1 - - + +A (5.46)

1/
xo = dJ x < t(x) >< (x) > (5.47)no

=AX dxx < qt(x) > 3(x) + h.c.. (5.48)
no

Note that noA5 and A: form a conjugated pair

[noAPp, Ax] = i. (5.49)

To complete this set of collective coordinate fluctuation operators, we introduce the

operator conjugated to Af

AO = dx (i (< qft(x) > +x < &(x) >) - pox < q$(x) >) 13(x) + h.c., (5.50)
no

from which

[Aft, AO] = i. (5.51)

The four fluctuation operators Af, AO, AP andAx are unnormalized quadratures

of the noise operator. Since condition (2.45) is not satisfied, the variance of these

operators in a coherent state is not given by (2.52). Instead, we find [60]

< 0Ah > = no (5.52)
A2 -0.6075 

(5.53)
S> no(5.53)
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< > =
3noTn2o
1.645 T2

2 no

(5.54)

(5.55)

where 7no was defined by (5.33). The following uncertainty products,

= 0.6075 > 0.25,

= 0.27 > 0.25.

(5.56)

(5.57)

indicate that coherent states do not minimize the fluctuations of the collective vari-

ables.

5.4.2 Poisson-Gaussian Soliton Fluctuations

Consider now the variance of the collective variables in Poisson-Gaussian soliton states

for small phase shifts. Using expression (5.30) for the mean field with xo = Po = 0,

we obtain

J dxdyf_(x)f_(y)

+ 2Re dxdyf*(x)f*(y) < i(x) D(y) >

(5.58)

where Aij or ALj can be any of the four soliton operators, and where the adjoint

functions [60] are

noC c1/2= 2 sech (xno)

= c1/2 (sech (Xno) + Xnod

-ino cI3/2 d
= 4 dx- sech (Xno)

ddn- sech (xno)
tXn o

-= O /2xnosech (Xno)noIc|11
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< AL i. j >-

Lf (x)

L0(x)

fp (x))

f(x)

(5.59)

(5.60)

(5.61)

(5.62)

+f i(x)f (y) < O'(x) ý(y) >

J



with xo = =o I. The evaluation of the integrals in (5.58) using (5.34) and (5.35) is

straightforward but lengthy. The photon number and momentum variances obtained

this way are, of course, identical to those used in an and g(p)

1
< An 2 >= no, < A2 >= (5.63)

pznor7no

These values are time independent because N and P are constants of motion. The

phase variance for Poisson-Gaussian soliton is found to be

< A2 >=< A2 > +4 2' (5.64)no

with the initial phase fluctuations

0.25
< AR >= > (5.65)

Similarly, the uncertainty on the bound state position is given by

< A. 2 >=< Ai > +2• ~ -o0  (5.66)
no p

with the initial position fluctuations

0.25pTr2o 0.25< A4 >= = - (5.67)
no < noAi 2 >

As we anticipated in Section 5.2, Poisson-Gaussian solitons are minimum uncertainty

states for the four collective soliton operators. The parameter p determines the

relative magnitudes of the position and momentum uncertainties.
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Chapter 6

Quantum Polarization

Cross-Phase Modulation

In previous chapters, we considered the evolution of quantum noise in truly single-

mode silica waveguides. We assumed in particular that the degeneracy between modes

of orthogonal polarizations was lifted by breaking the circular symmetry of the effec-

tive index, as in polarization maintaining fibers. This chapter considers the evolution

of quantum noise in fibers where this symmetry is not broken. In Section 6.1, we con-

sider the effect of an intense linearly polarized pulse on the vacuum fluctuations of

the cross-polarized modes in these low birefringence fibers. We show that as a result

of the nonlinear interaction between the pulse and the noise, the latter is squeezed

during propagation. In Section 6.2, we show that the cross-polarized quantum noise,

in turn, depolarizes the pulse. The squeezer presented in Section 6.1 was proposed in

[114]. The results of Section 6.2 were not yet published.

6.1 Squeezed Vacuum from Polarization XPM

In Section 3.1, we showed that in order to produce a squeezed vacuum using self-phase

modulation (SPM) in a fiber, the latter must be inserted into a Sagnac interferom-

eter. In this section, we propose a different method to generate a squeezed vacuum

with an optical fiber. This approach uses cross-phase modulation (XPM) between
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Figure 6-1: XPM squeezer

optical modes of identical carrier frequencies, but with perpendicular polarizations.

Polarization XPM makes it possible to generate a squeezed vacuum directly out of a

low birefringence fiber and therefore eliminates the need for a Sagnac interferometer.

6.1.1 Physical Picture

Our squeezer is shown on Figure 6-1 [114]. An incoming pulse, linearly polarized along

the x-axis, is coupled into a low birefringence fiber. This pulse creates a parametric

interaction coupling the creation and annihilation operators of the y-polarized modes.

This phenomenon arises because the carrier frequency and the carrier wavelength of

the pulse match those of a band of y-polarized modes. As a result, the quantum state

of these modes, initially in vacuum, is that of a squeezed vacuum at the output of

the waveguide. At this point, a special polarization sensitive beamsplitter (SPBS)

is used to deflect part of the x-polarized pump and all of the y-polarized squeezed

light. The attenuated pump is used as the local oscillator in a balanced homodyne

detection scheme. The relative phase between squeezed light and the local oscillator

is adjusted using a birefringent plate. For a proper choice of this phase, the output
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photocurrent fluctuations of the balanced detector are below the shot noise level.

The noise reduction process described above can be understood physically in terms

of nonlinear polarization rotation. Suppose a small (one photon) y-polarized signal

is coupled in the fiber and leads the pump by a phase 0. The ellipticity and the

helicity of the field are controlled by 0, as shown on Fig. 6-2(a) and Fig.6-2(b). All

possible ellipses have the same projection on the y axis, but the width of their minor

axis depends on 0. The Kerr effect in the fiber core results in the precession of the

polarization ellipse of the field [127]. The direction of nonlinear rotation is clockwise

for 0 < 0 < r and counterclockwise for -r < 0 < 0. The rotation rate is maximum

for 0 = ±-/2 and decreases to zero for 0 = 0, ±ir. Due to this nonlinear effect, the

projection of the polarization ellipse on the y axis at the output of the fiber depends on

the initial phase 0, as can be seen on Fig.6-2(c) and Fig.6-2(d). Signals with the proper

phase relative to the pump are initially deamplified by the nonlinear propagation, up

to a minimum level given by the minor axis width of their polarization ellipse. Signals

with narrower minor ellipses are more deamplified but require longer propagation

distances to reach maximum deamplification due to their reduced nonlinear rotation
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rate. The periodicity of nonlinear polarization rotation indicates that, over very long

propagation distances, any signal is successively amplified and deamplified. When

the signal arises from noise with a random phase relative to the pump, as is the case

for vacuum fluctuations, one observes its deamplification for quadratures with the

proper phase.

6.1.2 Equations of Motion

To assess quantitatively the performance of our squeezer, we analyze the linearized

equations of motion for the quantum noise of the y-polarized modes. Consider first

the classical equations for A, and Ay, which are the x and y polarized envelopes

respectively. In fused silica fibers, most of the third order nonlinearity is of electronic

origin [125, 126], and the nonlinear coefficients X (3),, X (3) and X(3 ) are all nearly

equal. Taking these coefficients as being equal, one can derive simple evolution equa-

tions for the envelopes[54, 127]. Neglecting any residual birefringence effect in the

fiber, we find

-= (D + iNx)Ax + i-A 2 A2 , (6.1)
iz 3 x
aA Y= (D + iNy) Ay + i-AAy (6.2)

az 3 X Y7

where the nonlinear Kerr operators are given by

Nx(z,•) = l Ax(z,•) 12 + A(Z' _(6.3)
3

2 2K
Ny(z, 7) = |AY(z, T) 2 + , |Ax (z, T) 2 . (6.4)

3

As can be seen from these expressions, a field with a given polarization modifies its

own refractive index and the cross-polarized index by different amounts. The last

nonlinear terms on the left hand side of (6.1) and (6.2) are so-called coherence terms.

They arise when the carrier frequencies and the wavenumbers of the perpendicularly

polarized waves are degenerate. The generation of squeezed light through polarization

XPM depends critically on the presence of the coherence term in the y equation.
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Linear birefringence of the fiber tends to randomize the relative phase between the

two polarizations, canceling the effect of this term. For this reason our squeezer

requires the use of a low birefringence fiber. External factors resulting in strain or

stress of the fiber core should be avoided by a careful layout. Even in the best

conditions however, residual birefringence resulting from the manufacturing process

will remain. We consider only fibers much shorter than the corresponding residual

beat length. For currently available low birefringence fibers, this implies propagation

distances of less than about im.

We are interested in the situation where the y polarized modes are in vacuum in

the z = 0 plane, corresponding to a x-polarized input pulse. Replacing AY by &Y in

the above field equations and neglecting terms which are quadratic or cubic in this

field. We find

DAx =x DAx + iK Ax 12 Az, (6.5)
az

= D& + i [2 1 A 2 + A 2] (6.6)

Note that the field operator satisfies the commutators

[&y(0, T), &(0, TI')] = 0, ; [&-(0, T), &t(0, 17') = 6 (T - '). (6.7)

and that the state of the input fluctuations obeys

ay(0, T) in) = 0. (6.8)

We do not need to quantize the x-polarized modes since their quantum fluctuations

have little effect on squeezing of the transversely polarized modes.

The linearized set of equations can be integrated in closed-form in the absence of

dispersion. Using the notation introduced in Section 3.2.2, we have

Ax(z, T) = eio(z)a((-r), (6.9)

,(z, 7-) = eie(zr) {py(z, 7) &y(0, T) + Vy(z, T)bt (0, 7)}, (6.10)
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where

¢(z, 7) = Kz |A(z, T) 12  (6.11)

A(z, IT) = (1 - i , (6.12)

VY(z, T) = (i3 a2(Tr)). (6.13)

These expressions can be compared with the analogous formulae obtained for SPM-

squeezing at zero dispersion (see (3.31) to (3.34)). Apart from the identical overall

phase factor, expressions (6.10) and (3.32) differ by a factor 1/3 for the Kerr coefficient

and by a sign. The y-polarized noise therefore experiences squeezing. Indeed, consider

the integrated quadrature operators for the y-polarized modes1 0
Qy,o(z) = O dT {eiAAx(z, T)&,(z,7) + e-'oA* (z,T)&ay(z, T7)} . (6.14)

This operator is proportional to the balanced photocurrent measured on Fig. 6-1.

From (6.10) and for the input vacuum state considered here, we have (Qy, 0(z)) = 0.

Defining

RxPM(z) = min0 (,•A24YOz) (6.15)
(01 A2XQYo 10)

we have at zero dispersion

R PM(z) = 2+p6 2 (526 2 + (4) 2

=R (3) (6.16)

where R"', is given by (3.40). As can be seen, the smaller effective Kerr coefficient in

py and vy makes XPM-squeezing less efficient than the SPM-squeezing process. Note

however that the interferometric scheme used to extract squeezed vacuum from the

SPM-squeezed fluctuations requires a 50/50 splitting of the pump power at the fiber

coupler. For this reason, only half of the optical power is actually used to generate

squeezed light in each counterpropagating pulses. The scheme proposed here does
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Figure 6-3: Linearized XPM squeezing with input sech pulses. (a)0 2 = 0, (b)0 2
lps2/km and (c)0 2 = -50ps 2/km (soliton).

not require such a splitting. For a given optical power, this method is therefore less

efficient by a factor of 2/3 at zero dispersion. Figure 6-3 shows RXPM for unchirped

sech input pulses, a(T) = no/2usech(T/o), with no = 2.8x 109 and a = 100f s/1.763,

corresponding to a peak power of about 5kW at lpm. Three dispersion regimes are

illustrated: (a)0 2 = 0, (b)0 2 = lps2/km and (c)0 2 = -50ps 2/km (soliton). The

numerical approach developed in Section 3.3 was adapted to generate the curves with

32 7 0. We used , = 6.2 x 10-ps/km for all these curves.

When no dispersion is present, the output phase profile of the noise operator is

identical to that of the pump, as can be seen from (6.9) and (6.10). This property

is favorable to the measurement of squeezing by homodyne detection with the pump

pulse used as the local oscillator. The presence of dispersion tends to spoil the match-

ing of the phase profiles. This is illustrated on Fig. 6-4 which compares XPM- and

SPM-squeezing for 32 > 0. In this case, a dispersion penalty is incurred resulting in

linIpn(z) > Rcibc(z/3).

In actual fibers, the orientation of the principal axis of polarization of the fiber
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Figure 6-4: Comparison of XPM and SPM squeezing for /32 = lOps2/km. All other

parameters were chosen as in Fig. 3-8. The dashed curve is RspM(z/3). The differ-

ence between this curve and the XPM curve is the dispersion penalty discussed in

the text.

varies randomly as a function of z. When the polarization of the pump does not

correspond with one of these principal axis of birefringence, (6.5) and (6.6) do not

hold exactly, and part of the power of the pump is transferred to the y-polarized

modes. An upper bound on the optical power Py, scattered into the squeezed port

can be obtained by assuming that the birefringence axis maintains a 450 angle with

respect to the input polarization of the pump for the whole propagation distance.

This angle maximizes the power transferred and provides the worst scenario possible.

In this case, we find P, = Po sin 2 (rz/LB), where Po is the input pump power, and

LB is the residual beat length of the fiber. Typically, low birefringence fibers have

beat lengths between 30m and 50m[128], so that z/LB - 0.01 - 0.02 on Fig.6-3 and

Fig.6-4. One therefore expects at most 0.1% to 0.4% of the input pump power to be

transferred to the squeezed port in these cases. These numbers are similar to those

found for Sagnac squeezers when the imperfections of the fiber coupler are taken into

account. As for these devices, light scattered in the squeezed port will not prevent the
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observation of shot noise reduction in Fig.6-1, provided high enough RF frequencies

are considered, for which quantum noise dominates over the excess classical noise of

the background laser light.

6.1.3 Guided Acoustic Wave Brillouin Scattering

We close this section by mentioning a very important source of noise for fiber squeez-

ers. Fibers have a family of acoustical modes corresponding to radial vibrations of the

waveguide. The lowest frequency of these modes depends predominantly on the fiber

radius, and is typically around 20MHz. Due to their low frequencies, these modes are

thermally excited and produce noisy "refractive index ripples" on the fiber core. The

guided optical field couples to these modes until their frequencies are so high and the

ripples on the core so closely spaced that their net effect cancels. The scattering of

the pulse by this process is called guided acoustic wave Brillouin scattering (GAWBS)

[115, 116, 117]. The exact frequency at which the coupling cuts off depends on the

core size, and is typically 1GHZ. For most fiber experiments, light scattered forward

by this mechanism is too small to be of concern. In fiber squeezing however, this

scattered light raises the noise floor of the balanced photocurrent and can prevent

any measurement of squeezing. Historically, GAWBS has been the most important

obstacle to fiber squeezing. A number of techniques were however developed suc-

cessfully to circumvent this effect and to produce significant and usable degrees of

squeezing. Whereas SPM squeezers are affected by polarized GAWBS (scattering

x-polarized light back into the x-polarized modes), the polarization XPM scheme

proposed above will be affected by depolarized GAWBS (scattering x-polarized light

into the y-polarized modes). This is unfortunate since the frequency spacing of these

modes is somewhat irregular and leads to GAWBS sidebands occurring at much lower

frequencies in the balanced homodyne photocurrent. Suppose for example that the

input pulse train has an envelope

Ai(T) = Ane - ion -  (6.17)
n2
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where Qo/2ir is the repetition rate of the pulse stream. Neglecting damping of the

acoustic modes for simplicity, the output field has the form

A o (T) = Z Ane -ionr x ame-im• -, (6.18)
n m

where am are scattering coefficients and vm are the acoustic mode frequencies. This

expression shows that each frequency component of the field picks up sidebands at the

acoustical frequencies. As discussed, the lowest frequency is about 20MHz and the

coefficients am vanish for frequencies superior to about 1GHz. The output intensity

is obtained by squaring the field

|Ao(T)12 Z Bq12 e-i2 oqT X( amam, ei(v'm-vm)) . (6.19)
q \m,ml

In this expression q = n - n' and Bq 2 are numerical coefficients related to the An.

Hence the power spectrum of the output pulse is also made of a series of harmonics

of the repetition rate. The noise sidebands for the harmonics of this quantity occurs

however at the difference frequencies of the acoustical modes. Polarized GAWBS

modes are evenly spaced so that these sidebands extend from 20MHz to 1GHz

away from each harmonic. For depolarized GAWBS however difference frequencies as

low as 1.5MHz and 2.5MHz occur [115]. This smaller frequency spread can make

the high repetition rate method of GAWBS "suppression" difficult to implement for

XPM squeezing[33]. Note that in practice, each mode is damped, resulting in noise

linewidths of a few hundred kHz. These linewidths are typically below 200kHz when

the protective plastic coating of the fiber is stripped. This is to be expected since

this jacket dampens vibrations at the circumference of the fiber.

6.2 Depolarization from Quantum Noise

We have shown in Section 6.1 that a linearly polarized pump propagating in a low

birefringence fiber modifies the vacuum fluctuations of the modes polarized perpen-
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dicularly. In the present section, we show that these fluctuations affect, in turn, the

evolution of the pump and lead to a depolarization of the latter. We predict a power

dependent depolarization of the pump, increasing quadratically with the square of

the fiber length.

6.2.1 Physical Origin of the Nonlinear Depolarization

The physical origin of depolarization in isotropic fibers can again be understood in

terms of nonlinear polarization rotation. As figure 6-2 indicates, the projection on the

x axis of the polarization ellipses varies as the latter precesses due to the nonlinearity.

Hence, energy is transfered from the x to the y polarization, When the y modes are

driven by a source of noise with an arbitrary phase relative to the pump, this transfer

is irreversible. A steady state is eventually reached where both polarizations carry

half of the input energy.

The above picture indicates that almost any source of noise driving the modes

polarized perpendicularly to the pump in the input plane will lead to a depolarization

of the latter. These fluctuations can be of classical or quantum origin. In practice,

the cross-polarized modes are always excited by some residual light that cannot be

totally eliminated with a polarizer. Extinction ratios of 10- 4 - 10- 5 are typical of

very good polarizers. This background light is affected by classical noise expressed

as a fraction of the average power. Depending on the laser used, this fraction can

be between 0.1% and 5%. The origin of y-polarized residual light is twofold. First,

some cross-polarized light is generated in the laser itself by amplified spontaneous

emission (ASE). This portion of the background is not pulsed because the nonlinear

modelocking mechanism does not affect small power levels. For this reason, nonlinear

depolarization by ASE noise is very weak and can be neglected. The second source of

y-polarized light is polarization cross-talk in optical elements of the laser and of the

fiber coupler. A perfectly polarized pulse propagating in these elements will be slightly

depolarized due to the small birefringence created by stress, strain or manufacturing

imperfections. This mechanism provides a pulsed y-polarized background which can

act very efficiently to depolarize the pulse in the fiber. The discussion below focusses
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however exclusively on the depolarization induced by quantum noise, which is the

main theme of this thesis. Contrary to the noise sources discussed above, quantum

noise cannot be eliminated, even in principle. For this reason, it provides an ultimate

limit for the distance over which a linearly polarized pulse of large intensity can

be propagated in a low birefringence fiber. It is interesting to note that no such

limit arises for circularly polarized pulses. The latter constitute true propagation

eigenmodes of the fiber. Although depolarization from quantum noise is small in

most situations, it can lead to measurable effects for pulses with peak powers of the

order of 10MW. The coupling of such pulses in an optical fiber was recently reported

in [118] and stimulated my interest in their quantum propagation. Chen et al.[119]

recently reported the power-dependent depolarization of a linearly polarized wave in

non birefringent fibers. These authors attributed this phenomenon to imperfections in

the manufacturing process of their fiber. This type of depolarization, which is strongly

dependent on the fiber itself, has a linear dependence on the propagation distance. It

can therefore be distinguished from the quadratic dependence of the depolarization

predicted here. The effect discussed below affects all fibers in the same way and cannot

be avoided by careful manufacturing. It is closely related to the depolarization effect

discussed by Matera, Mecozzi and Settembre[124] for pulses propagating in long-haul

communication links. In this case however, the pump depolarization is caused by

ASE noise produced by amplifiers inserted along the fiber link. In the present work,

depolarization arises from the quantization of the electromagnetic field itself.

6.2.2 Field Equations

In Fig. 6-2, the change in the projection of the polarization ellipses on the y axis is a

first order effect in the rotation angle. This is why polarization XPM squeezing can be

described by the linearized theory. The change in the projection of the field on the x

axis is however a second order effect and cannot be obtained within this theory. This

is obvious from equation (6.5) which implies that the pump is unaffected by noise.

We therefore return to the non-linearized equations (6.1) and (6.2), where we replace

the classical envelopes by the field operators A), AY, At and At. These equations are
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best analyzed using circularly polarized fields

(z, T) - A(z, T) + iA•(z, T)
C/ (z' T) = (6.20)

These fields obey the commutation relations

[0±(z, T), C (z, T')] = 6(T - T'). (6.21)

All other commutators between these variables vanish. Expressing equations (6.1)

and (6.2) in terms of the circular fields, we find

O0+(z,T) =z (D + iN±(z, )) C±(z, ), (6.22)

where the nonlinear operators in the circular basis are

N±(z, ) = 2 ( + + 20O,) . (6.23)

Note that no coherence term appears in the circular polarization basis.

We restrict the following analysis to the zero dispersion case, D = 0, where the

nonlinear field equations can, once more, be integrated in closed-form. We shall

use the discretized-time model (Section 4.2.2) which allows to evaluate the first order

correction to the linearized theory (see Section 4.3). We discretize the time coordinate

in intervals of duration T -_ 1 fs, and we replace the quantum fields by a sum of

independent variables defined on these intervals. For example, we have

C± (z, 7T) C, (z), (6.24)

for 7- between nAT and (n + 1) Ar. The time-slot operators obey the commutation

relations

[ai,n, ,m] = 6 i,j 6 n,m, (6.25)
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with i, j = +, -. All other commutators involving the C and dt variables vanish.

Expressing the field equations in terms on the discretized variables, we find (D = 0)

,(z) = iN+,n(z)Y±,n(z), (6.26)

where N±,n(z), which equals N±(z, T) for T between nAT and (n + 1)AT, is given by

2, { + n"(6.27)N±,n (Z) N± N(z, T) -= ntz ±,n + 2ýty,n4,nl 6.7

One verifies from these equations that the operators cs,•n±,n are constants of motion.

The number of photons with a given helicity in each time interval is therefore unaf-

fected by the propagation. Replacing N],n(z) by N±,n(0) in (6.26), this equation is

readily integrated

ý+,n(Z) = exp (iN+,n(0)z) z+,n(O) (6.28)

Reverting to the linearly polarized envelopes, we find

( -A,(z, T) 11 i 'z + eiN-,n(O)z -i A,(0, T)

A (z, T) -i 1 i 1 Ay(0, T)

(6.29)
where n = T/AT. Contrary to the excitation number of the circular fields which

are constants, the photon number operators for the linear polarizations, At A and

SAtA, are not preserved individually during the evolution of the fields. This reflects

the fact that the phase between the circular fields varies, leading to a rotation of the

polarization ellipse. Classically, the nonlinear rotation rate of a linearly polarized

wave vanishes. Hence, the classical equations predict that a linearly polarized pulse

preserves its polarization state as it propagates in a non-birefringent fiber. Equation

(6.29) tells a different story however.

We will assume that Ax(0, T) is in a coherent state with input profile a(T), and

that Ay(0, T) is in vacuum. We therefore have

A(0, T) in) = a(T) in) (6.30)
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A,(O, ,T) in) = 0 (6.31)

a+,n(0) in) = 27 a(T) in). (6.32)

Clearly, in the input plane, the y-polarized photon flux vanishes. This photon flux in

the output plane is given by

----- 2 - Rela(7) C -iN+ (O)eN-°z }
KA ,(z,7)Ay(zT)) - 4 -i eiN(o)z i& (O)z _ iN_(O)z

= •T) 12 - Re Ki4+(o)zeik(o)z)}
2

2 {1- Re e ' t[(0)a+(0)) - (0yK

o(T) 12 -exp 2AT |Z(7)2• sin2 (3 ) } (6.33)

where in the last step we used formula (C.2)

(in| exp (iE6tn,n in) = exp 2 (AT ') (e- 1) . (6.34)

The same calculation for the x-polarized photon flux gives

A (z, T)A, (z, - ())= 2 {1 + exp [-2AT r() 12 si(3 ) 2 ,} (6.35)

so that the overall photon flux is a constant at any point across the pulse.

Expressions (6.34) and (6.35) display a spatial periodicity of period zrevival =

37rAT/K characteristic of the discretized-time model. As pointed out in Section 4.2,

these revivals are an artifact of the discretization procedure and disappear in the

continuous-time model. In fact, only the first term of the expansion of the sin 2

function is meaningful. The x and y average optical powers are therefore

PXY(z, T) -- PX(0)) 1 ± exp 2P( )(Z) 2  (6.36)
2 9AThwo

As announced, the depolarization for any given time slot increases linearly with the

power of the pump and quadratically with the propagation distance.
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It is important to emphasize that the transfer of photons from the x to the y

polarization is incoherent. This can be seen by computing the degree of polarization

for any time slot[120]

1d(z, -T) = (9k(Z, T) (6.37)
(oz '()) 6 k=1

In this expression, we introduced the Hermitean Stokes operators defined by

t^t ( .8

go(z, 7) = +, + ^-,,,C (6.38)
(t ^ (6.40)81 (z, T) = + ,nC_,n + C_ (6.39)

2 Z,-) -n- ( )+,n), (6.40)
C~t (641

a3(z, T)= n+,n - -, ,n. (6.41)

where n = T/AT. The function d takes values between 0 and 1. When the phase

between the x and y components is perfectly defined, the field is elliptically polarized

and d = 1. For any other situation, d is less than unity. In the limit where the

relative phase between the linear polarization states is perfectly randomized, d = 0.

The function d(z) is easily computed for our field by using the fact that s0 and s3 are

constants of motion. For an initial linearly polarized wave, both circularly polarized

modes are equally excited and we find (9 3(z)) = 0. One also verifies, using (6.28) and

(6.32) that the expectation value of 2 (z, T) vanishes. Putting everything together,

we find

(d(z, 7 (Z, T)) 2 p (-2P ( ) (z)2
d(z, )= 1) exp - (6.42)

(•o(0, T)) 9A-hwo

This expression indicates that the center of the pulse depolarizes faster than its wings.

This makes nonlinear depolarization hard to compensate since the polarization of the

field varies on the time scale of the pulse. The length scale over which nonlinear

depolarization from quantum noise becomes important is determined by the peak

power of the pulse
3 AhwoT

ZD = -0 1 (6.43)
'IWO"(, 0
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We compute ZD in two cases. The first one corresponds to the experimental condi-

tions reported by Chen et al. in their analysis of depolarization from manufacturing

imperfections [119]. These authors used pulses with a peak power of about 6kW,

corresponding to ZD -- 680m. It is clear from this number that quantum depolariza-

tion was not the effect measured in [119] since in this experiment, the fiber was only

1m long. On the other hand consider the experiment recently reported by Lenz et

al.[118]. In this experiment, pulses from a stretched-pulse fiber laser were post am-

plified with a KCl:TI + color center crystal amplifier. At the output of the amplifier,

200fs pulses with a peak intensity of about 10MW were measured. This very high

peak power yields a depolarization length of 16 m. Since the residual beat length

of low birefringence fibers is of the order of 30m to 50 m, the depolarization process

discussed in this section could be detected in this case.
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Chapter 7

Experimental Work

As part of this thesis, a Sagnac fiber squeezer, a modelocked titanium-sapphire laser

and a balanced homodyne detector were built. The squeezer based on a self-stabilized

design, operates at 830nm in the positive dispersion regime, and with very short

pulses. Although we were not yet successful in measuring squeezing with this system,

progress in this project is summarized here.

7.1 Balanced Homodyne Detector

A schematic of the electronic circuit of the detector is given on Fig 7-1 [121]. The leads

of two backbiased silicon p-i-n photodiodes are connected so that their photocurrents

subtract. The resulting difference photocurrent is converted into an output voltage Vo

using a transimpedance preamplifier stage. The choice of the photodiodes and of the

op-amp was based on their noise properties. Consider for example the noise circuit of

Fig. 7-2 which provides a simple model for the noise properties of each photodiode.

The shunt resistance RD in backbiased junctions is typically very large (> 1MHz)

and can therefore be neglected in the circuit. The capacitance CD depends on the

backbias voltage VBB and on the area of the photodiodes. In our case, VBB = 45V

for which CD ~ 6pF. The shot noise source arises from the quantization of the
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Figure 7-1: Electronic circuit of the balanced homodyne detector. D3 and D4 are
EG+G C30808E PIN photodiodes. A is an OP-27 op-amp. RG = 10kQ, Cs 1_ lpF,
RF = 1kQ and CF = 1pF.

electromagnetic field exciting the diodes, and provides a spectral noise density

'shot = 2e, (7.1)

where e = 1.6 x 10-19"C is the electric charge of an electron and I is the aver-

age photocurrent generated at each photodiode. Typically, I -_ 10mA, so that

'shot - 57pA/Hz. In squeezing experiments, the shot noise spectral density can be

considered as the signal that one attempts to measure against the noise background

provided by dark currents and amplifier noise. Dark currents arise when electron-hole

pairs are spontaneously generated in the junction without a photon excitation. Dark

currents flow through the feedback resistor of the amplifier and therefore experience

the same gain as shot noise. The magnitude of these background counts increases

with the surface of the diode, which should be kept small. The EG&G diode used in

our circuit has a 5mm 2 active area, leading to a dark current spectral noise density of

0.14pA/vHz. The excess noise in Fig 7-2 arises from the classical fluctuations of the
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Figure 7-2: Noise model for the photodiodes.

laser. Contrary to the dark counts which occur independently at each detector, the

excess noise at the two detectors is perfectly correlated and is therefore canceled in

the subtraction process. In actual detectors, excess noise cannot be canceled perfectly

due to the slightly different responses of the photodiodes. Excess noise therefore con-

tributes to background noise in the balanced detection process. Since the contribution

'excess grows linearly with I, it dominates over shot noise at high enough intensities,

the latter increasing only as VN. Shot noise is however a white noise source, leading

to a flat spectral noise density. Excess laser noise on the other hand rolls off beyond

a few hundred kilohertz. Hence, by monitoring the output voltage Vo at high enough

frequencies, the excess laser noise can be made insignificant. The detector built in

this thesis displayed a shot noise limited spectral density beyond about 400kHz for an

average photocurrent of about lOmA per diode. The light source was a modelocked

Ti:Sapphire laser pumped with an argon laser. This system is notoriously noisy due

to the argon pump. Laser noise cancellation in excess of 35dB was observed.

The noise of the op-amp on the other hand can be modeled by the circuit of Fig.

7-3, and includes both a voltage and a current noise source. The current noise here is
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Figure 7-3: Noise model for an op-amp. en is a voltage noise source and In is a current
noise source.

the shot noise corresponding to the input bias current Ib and has a spectral density

/ b. One should therefore use an op-amp with a low bias current. In the case of the

OP-27 used in our detector, In, was 0.4pA/-z for frequencies above 1kHz, which

is negligible compared to shot noise. The input voltage noise of the op-amp, which

is generally of thermal origin, is one of the most important design parameter. In

order to affect the voltage Vo, en must generate a current flowing into the photodiode

impedances. At low frequencies, the latter is dominated by the very large shunt

resistance, so that the voltage gain, 1 + R where RG - 10k2, is negligible. TheRD -

capacitance CD of the diode alters the feedback at higher frequencies, leading to a

significant gain for e,. In fact, both In, and en can be combined into a single frequency

dependent amplifier current noise source [121]

2mp ,I2 + 4e 2  CD, (7.2)

where RD was neglected. The voltage noise is more than 10dB below shot noise when

lImp < 0.212shotm ( The extra factor 2 comes from the fact that the shot noise of
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the two photodiodes add incoherently.) From the above condition and from (7.1), we

find that shot noise dominates the amplifier noise for RF frequencies smaller than

Vo= - (7.3)
47renCD

For the OP-27 used in our circuit, we have e, = 3nV/VHz, leading to v0 - 38MHz.

This value is well beyond the open-loop gain bandwidth of the amplifier which is

8MHz.

The bandwidth of the balanced detector is set by the open-loop gain bandwidth

and by the shunt capacitance C,. Stray capacitance typically contribute lpF to C'.

The detector built around the OP-27 has a bandwidth of about 1.5MHz. In principle,

a wider bandwidth could be achieved with the OP-37 since this component has an

open-loop bandwidth of 63MHz. We however encountered gain peaking noise with

this op-amp, and the shunt capacitance had to be increased to about 30pF, reducing

the bandwidth of the detector back to about 2MHz.

7.2 Modelocked Titanium-Sapphire Laser

Most of the problem associated with guided acoustic wave Brillouin scattering (Sec-

tion 6.1.3) can be eliminated by using a laser with a repetition rate superior to the

GAWBS cut off frequency. In this case, the frequency range of the sidebands asso-

ciated with each harmonic in (6.19) do not overlap, and GAWBS noise is confined

to narrow peaks. Squeezing can be observed between these peaks. The feasibility of

this approach was demonstrated experimentally by Bergman[33] at zero-dispersion.

In order to carry out the same program at 830nm, a modelocked titanium-sapphire

laser with a high repetition rate was constructed. A modelocked bandwidth of about

3.1nm was observed for time intervals of about 5 minutes with 190mW of output

power and a repetition rate of 700MHz. Due to the unstable nature of our system,

auto-correlation of the pulses was not attempted. A transform-limited pulse with the

above bandwidth would however have a duration of 240fs. The laser could not be
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Figure 7-4: PRF High repetition rate titanium-sapphire laser(After Ref.[123]).

stabilized by changing the alignment of the optical components. The laser clearly

needs a few modifications in order to become a useful tool. These modifications are

not however of a fundamental nature since a similar system is operated very success-

fully by Bret Bouma at MIT. Spectral bandwidths around 7nm, and output powers

around 500mW were achieved with his system. The source of instability in my system

is identified below.

A schematic of the laser is shown on Fig. 7-4, is based on the Pay&-Ramaswamy-

Fujimoto (PRF) design[122]. When the system is modelocked, a single pulse cir-

culates between the mirrors and produces a periodic output each time it bounces

on the partially transmitting output coupler. The repetition rate of the laser is in-

versely proportional to the cavity length. To achieve repetition rates around 1GHz,

cavity lengths of about 20cm must be used. To produce femtosecond pulses with

Ti:Sapphire, one must compensate the positive dispersion acquired by the pulse in

the gain medium by negative dispersion somewhere else in the cavity. In most lasers,

a pair of prisms is introduced for that purpose in the cavity, resulting in repetition

rates around 80MHz. In the PRF laser, the prism are incorporated directly into
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the gain medium and the output coupler, reducing considerably the cavity length.

Repetition rates in excess of 1GHz can therefore be achieved with highly dispersive

output couplers.

The pulse generating mechanism of our laser is Kerr-lens modelocking (KLM) [56].

In this approach, high intensities are encouraged in the cavity by maximizing the

overlap of the corresponding field with the argon pump. The transverse extension of

the modes in the cavity is modified at high intensities by self-focussing in the laser

gain medium. The latter becomes equivalent to a linear gain medium in series with

a lens having a :radius of curvature increasing with intensity. Due to the weak Kerr

effect, the action of the nonlinear lens requires long distances to produce a significant

effect. For this reason, KLM is harder to implement in our short cavity, and larger

intensities are required to reach stable operation.

The most important problem encountered with our laser is related to the coating

on the gain medium. This stack of quarter-wave dielectric layers was designed to be

highly reflective between 750nm and 950nm, and to be highly transmissive at the

argon pump wavelength (480nm-515nm). The focal point of the pump and of the

lasing mode occur almost on this coating which is therefore exposed to considerable

optical power. Although the coating was designed to sustain these powers, it invari-

ably burned when the pump exceeded 3W or when the laser was modelocked for more

than 5 minutes with a 2.75W pump. Each time the coating burned, the cavity had

to be realigned. The pump powers allowed by the coating were probably too low to

achieve stable modelocking. The reasons for the poor performance of the coating are

not clear since a similar coating is used in Bret Bouma's laser. It can be due to a

manufacturing imperfection, to the trapping of dust particles in the argon beam, or

to the formation of condensation on the crystal. In addition to the coating problem,

the system stability would clearly benefit from better mounts and from enclosing the

argon pump to shelter it from air currents.
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Figure 7-5: Self-stabilized Sagnac fiber squeezer.

7.3 Self-Stabilized Sagnac Squeezer

In the absence of a high repetition rate laser to "suppress" GAWBS noise, a differ-

ent approach using short fibers was investigated. GAWBS noise decreases with fiber

length and can eventually be reduced below shot noise. In addition, when the fiber

is very short, GAWBS noise can drop off completely. As we mentioned previously,

GAWBS imbalances the Sagnac interferometer by changing the index seen by the

counterpropagating pulses, resulting in a non-reciprocal transfer matrix for the sys-

tem. The frequency cut off for this process is about 1GHz, so that during one high

frequency GAWBS cycle, the pulse travels over 20cm in the silica fiber. Fiber loops

much shorter than this length will not be imbalanced by GAWBS noise. In practice

it is very hard to form a 5cm-long fiber loop, and for this reason a different geome-

try must be used for the interferometer. Consider the set up of Fig.7-5. A linearly

polarized pulse is coupled into a polarization maintaining fiber at 450 with respect

to its birefringence axis. Due to the high birefringence of the fiber, the pulse breaks

into two orthogonally polarized pulses traveling through the fiber at different group

velocities. At the fiber end, one uses a quarterwave plate and a mirror to exchange
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the polarization states of the two pulses, which are coupled back into the fiber. On

their way back, the slow pulse becomes the fast one, and vice versa. These pulses

combine at the entrance of the fiber, where they interfere to form a linear polariza-

tion state identical to the input pulse. The incoherent squeezed fluctuations traveling

with the pulses do not interfere however and produce a squeezed vacuum polarized

perpendicularly to the pulse. This squeezed light is separated using a special polar-

ization sensitive beamsplitter which also deflects part of the pump that is used as a

local oscillator[35].

This device clearly behaves like a Sagnac interferometer and allows to separate the

squeezed vacuum from the pump. The returning beams being spatially mode matched

to the fiber propagating mode, the destructive interference in the squeezed port is very

efficient, thus reducing the laser background in this port. The linear geometry of the

interferometer affords the use of very short fibers. Our implementation of this device

revealed however two shortcomings. The first one is related to losses occurring at the

fiber end with a quarterwave plate. Although one attempts to couple back a beam

perfectly matched to the fiber, we found that in practice coupling efficiency beyond

75% were very difficult to achieve. This 25% loss combined with additional losses in

the rest of the system reduce considerably the squeezing that can be achieved. The

other drawback of the above system arises from the narrow bandwidth of the zeroth

order waveplates (CVI QWO series). As a result, the energy of the pulse frequency

components extending beyond ±4nm of the carrier does not interfere properly at

the fiber input and is mostly directed into the squeezed port. We found that when

the bandwidth of the pulse was larger than about 6nm, the energy scattered into

the squeezed port prevented observation of squeezing due to the large classical noise

background. We confirmed our diagnostic by looking at the power spectrum of the

background light in the squeezed port. This spectrum showed a symmetric double-

hump structure with a dip at the carrier frequency and humps at ±5nm. As the

pulse bandwidth is increased, the humps extend further out and contain more energy,

whereas the power spectrum density in the dip is constant. When the frequency of the

laser is tuned without adjusting the setting of the waveplates, the spectrum becomes
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Figure 7-6: Set-up for the bandwidth measurement of the waveplates.

asymmetric, with one of the humps growing and the other one shrinking. Once again,

the height of the dip stays constant. The bandwidth of the quarterwave plate was also

measured independently using the set-up of Fig.7-6 which is somewhat similar to the

use made of this waveplate in the squeezer. The Ti:sapphire laser was operated CW

for these measurements, and its wavelength was tuned from 820nm to 840nm. For a

perfect quarterwave plate, the linear input polarization is rotated by 900 on its way

back to the polarizer. Hence, for an ideal waveplate, no light should be reflected on

the glass slide and Preflected = 0. In practice, some light is always detected by D1 . As

the wavelength of the laser is tuned, the action of the quarterwave plate becomes less

and less ideal and more light is reflected back to D1. The photodetector D2 is used to

monitor and compensate for the change in input intensity for different wavelengths.

By monitoring Preflected(A)/Pmonitor(A), the bandwidth of the waveplate can be

determined to be +4nm.
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Chapter 8

Summary and Future Research

In this thesis, we presented a theoretical framework within which fiber squeezing

could be described and predicted. The aim of this work was to provide a tool in the

design of better fiber squeezers. Special attention was paid to femtosecond pulses

and to dispersive fibers. We developed a theory of quantum noise incorporating the

finite response time of the Kerr effect and the associated Raman noise (Sections 3.2

and 4.1). We showed how the spectral properties of the response function and of

Raman noise were related, and could be determined experimentally from Raman gain

measurements (Section 4.1.2). The validity of the linearized theory was tested using

both the zero-dispersion limit (Section 4.3) and the soliton regime (Section 5.3). We

concluded that for almost any conceivable squeezing experiment, this approximation

provided a faithful description of the quantum noise evolution. This is a very useful

conclusion since in this simpler theory, the evolution of quantum noise can be thought

of in classical terms. We showed for example in Section 3.3 how quantum propagation

problems could be solved using Green's functions driven by the classical field.

As part of our investigation on the finite response time of the Kerr effect, we

presented a fully nonlinear and self-consistent theory of pulse propagation in disper-

sionless fibers (Section 4.2). Although this situation is described by a simple classical

equation, the straightforward quantization of the latter leads to a singular theory.

We showed how the divergences of this theory were removed when the finite response

time of the nonlinearity was incorporated. In this case, the high frequency zero
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point fluctuations of the field can no longer create index changes in the fiber and

thus do not affect the propagating pulse. Our treatment revealed the presence of a

nonlinear Langevin noise source in the field equation. Such noise sources are fairly

common in the description of systems interacting linearly with a heat bath. To our

knowledge however, our treatment provides the first example of a fully characterized

Langevin noise source arising from a nonlinear interaction. Our analysis suggests that

all material-induced optical nonlinearities are accompanied by noise.

As a bonus, our treatment of dispersionless Raman active fibers lead to a closed-

form solution of the field equation. This is somewhat unexpected as this equation is

both integro-differential and stochastic. We took advantage of the availability of this

solution to evaluate the mean field (Section 4.2.2) and the squeezing level (Section

4.2.3) of the field beyond the linearized approximation. We also probed the domain of

validity of the discretized-time model. We showed that this theory predicts spurious

quantum revivals and neglects Raman noise. It provides however a useful tool to

monitor departures from the linearized theory when its time constant is chosen of

the order of the electronic response time (Section 4.3). The discretized-time model is

also self-consistent in the sense that the commutators of its dynamical variables are

preserved. As such, it does not need a Raman noise source. We showed that even

though Raman noise had observable effects in resonance-fluorescence (Section 4.2.1),

its impact on fiber squeezing is rather modest.

In Chapter 5, we studied the Poisson-Gaussian soliton constructed as superposi-

tion of Bethe states. In addition to probing the limits of the linearized approximation

in this case (Section 5.3), we considered the fluctuation levels of the four soliton

operators. We showed that whereas coherent states cannot minimize these fluctua-

tions, one can construct Poisson-Gaussian solitons for which the uncertainty on these

variables is minimized (Section 5.4).

Our analysis of low birefringence fibers led to a new technique for the generation of

squeezed vacuum (Section 6.1). This approach uses the parametric process responsible

for nonlinear polarization rotation in these fibers. This effect, which is widely used

today to modelock fiber lasers, should operate as well for fiber squeezers. The main
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advantage of this technique is that it does not rely on an interferometric geometry

to separate the squeezed vacuum from the pump. It therefore provides a potentially

more rugged design. A second effect discussed in relation with low birefringence fibers

is the nonlinear depolarization arising from the interaction of a linearly polarized pulse

with the cross-polarized quantum noise (Section 6.2). Although this effect is weak for

most situation, we argued that it could lead to measurable effects when pulses with

peak powers in the megawatt range are considered.

The work presented in this thesis suggests many directions for further investigation

of quantum noise in optical fibers. The most interesting opportunities are probably

of an experimental nature. First, the enhancement in fiber squeezing at Ti:sapphire

wavelengths is very promising. The technology of these oscillators is mature and

very intense pulses can be generated with them. Unlike soliton squeezing where

the peak power of the pulses is constrained by the dispersion of the fiber, positive

dispersion squeezing can accommodate very intense pulses. The resulting squeezers

can therefore be made very compact, thus reducing the effect of GAWBS. Positive

dispersion squeezing was investigated experimentally as part of this thesis, but we

were not yet successful at demonstrating shot noise reduction. The demonstration of

appreciable degrees of squeezing at this wavelength would be very exciting.

So far, soliton squeezing experiments have led to disappointing results. It is not

clear why these experiments fared so poorly. One hypothesis explains these results by

the high noise level of the color-centered lasers that were used by both the MIT and

IBM groups. In recent years, erbium-doped modelocked fiber lasers were developed

to operate at 1.55pim. As a gain medium, erbium is very quiet, particularly when

pumped by a MOPA diode source. This arises from the slow response time of erbium

ions which act as a low pass filter. A new experiment is under way at MIT to

demonstrate soliton squeezing with this system. The outcome of this experiment will

provide an important test to the soliton squeezing theory.

Fiber squeezers based on polarization XPM should be tested at zero dispersion or

in the positive dispersion regime. Unless highly dispersive fibers are used, the weak

power levels associated with solitons would require excessive fiber lengths in this case.
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It is likely that the high repetition rate scheme used to localize GAWBS noise in the

frequency domain will not be very helpful in this case unless a very quiet laser is

used. Indeed, depolarized GAWBS produce noise sidebands within 1 or 2 MHz in the

homodyne photocurrent spectrum (Section 6.1.3). A shot noise reduction window

will occur below these sidebands only if the laser noise can be canceled at low enough

frequencies.

The nonlinear depolarization of linearly polarized pulses is probably observable.

In this thesis, we considered only the depolarization induced by quantum noise. This

provides an upper bound on the distance over which an intense linearly polarized

pulse can propagate in a low birefringence fiber. It is very likely however that the

dominant depolarization process will have a classical origin. The pulsed component

of the classical noise in particular probably acts very effectively at depolarizing the

pulse because of its higher peak power. This contribution should be studied both

theoretically and experimentally.

We showed in Section 4.3 that the response time of the electronic nonlinearity

determines the length scale for the breakdown of the linearized theory at zero dis-

persion. The frequency dependence of the two-photon absorption spectrum of fused

silica should therefore be used to determine the exact form of the electronic response

function.

Theoretical avenues can also be pursued. Although self-consistent, the quantum

theory of short pulse propagation developed in this thesis is far from complete. Short

pulses are affected by self-steepening, which was not addressed at all here. As it turns

out, Raman and self-steepening effects become important for pulses of roughly the

same duration. As for the Raman effect, self-steepening terms do not preserve the

commutators of the envelope and therefore require Langevin sources. Although we

did not present these results, we found a family of nonlinear noise sources which can

be used for that purpose. Unfortunately, a physical interpretation of these operators

is still lacking.

On a more speculative note, quantized solitons have been investigated extensively

by particle physics theorists as models for nuclear bound states. The availability of
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a source of solitons made of bound photons is tantalizing and suggests that tests of

the quantized soliton theory could be devised.
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Appendix A

Reduction of squeezing by Losses

Losses can be model by the introduction of a beamsplitter in the path of a beam. This

model allows one to evaluate the impact of losses on the amount of squeezing that can

be achieved in actual systems. Suppose that the squeezed signal mode is described

by the annihilation operator &j. Let a4 be the same signal after it experienced power

losses of 1 - r. Using (2.31) with t = Vi and r -1/ - c, we have

4 = V/al - •/- &2, (A.1)

where the mode &2 is in vacuum. The noise reduction ratio for the quadratures of &d

and a4 are therefore related by

R4 = ER + 1 t- 1-, (A.2)

We see that if E = 0.9 and R1 = 0 (infinite squeezing!), the noise reduction ratio

increases to R 4 = 0.1 because of the losses, corresponding to 10dB of squeezing.

140



Appendix B

Quantization of the

Electromagnetic Field in a

Dispersive Single-Mode Fiber

In this Appendix, we review a number of results on the quantum theory of the electro-

magnetic field in dispersive single-mode fibers. Our presentation is inspired by [123].

We first remark that according to the Kramers-Krdnig relations which enforce causal-

ity for dispersive media, a dispersive fiber must also be absorptive in some region of

the spectrum. The assumption made in this thesis is that absorption is negligible

over the narrow band of frequencies of interest. This approximation is excellent when

considering fused silica fibers in the infrared wavelengths between 750nm and 1.8nm.

In the classical treatment of optical fibers, it is customary to use frequency to

identify the propagating modes. This is a convenient choice since this parameter

is controlled experimentally at the input of the waveguide by appropriate tuning of

the laser source. This has led many authors to adopt a similar convention in their

discussion of the quantum theory of optical waveguides. Quantum electrodynamics

on the other hand usually uses the wavenumber to label the modes. This choice is

natural when the initial state of the field is known and one seeks its final state. One

can then decompose this initial field on the spatial eigenmodes and follow the time

evolution of these modes. Within the slowly varying envelope, both approaches are

141



equivalent. In this Appendix we adopt the standard labeling convention of quantum

electrodynamics and use the wavenumber to label the modes of the fiber. We indicate

in the last paragraph of this Appendix how our approach relates to the frequency

cnvention.

B.1 Fiber Modes

Consider a mode of the fiber characterized by its wavenumber 3. The electric and

magnetic Hermitean field operators for this mode can be written

E(r, t, 3) = E~(r, t,/3) + E-(r, t,/3) (B.1)

HI(r,t, o) = I + (r,t,/3) + -(r,t,/3) (B.2)

where the positive frequency parts are

E + (r, t, O) = e(x, y, /3)&(/3, t)eiOz, (B.3)

I:I+r~t fl = ~x~y•)8/3,t~ez z , (B.4)

and the "-" operators are the Hermitean conjugate of the "+" operators. In these

expressions, we introduced the operator &(/, t) which creates photons in the mode

at time t and satisfies the equal-time commutation relations:

[P(Ol, t), W(/)', t)] = 0 ; [&(O, t), &t(/ 3', t)] = 4(/0 - /3'). (B.5)

In the absence of nonlinearity, each annihilation operator evolves independently ac-

cording to

&(/3, t) = &(/3, 0) exp(-iw(0)t). (B.6)

The transverse mode profiles of the electric and magnetic fields, e and h, sat-

isfy Maxwell's equations where the z and t derivatives are replaced by i/ and -iw
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respectively. Writing e = et + ez and h = ht + he, we find

Po 1/2
et = ( -- 2Zx {3ht + iVhz },

h Co cn

(o ) 1/2 C2
h = ( / -zx {oet + iVtez},

CO

.PO 1/2 C
ez =2 -- z " Vt xht,

Eo (An

(Eo ) 1/2chz = -i -o c- Vtxet, (B.7)
Po W

where n = n(x, y) is the refractive index profile. For a non-absorbing waveguide,

n is real and the above equations indicate that one can choose a phase convention

where et and ht are real and ez and hz are imaginary. These functions also include a

normalization factor that will be determined in the next section. The parameter / is

free in the above set of equations and w(/) must be chosen to satisfy the boundary

conditions. In general, several solutions can be found for a given /. When the size of

the core and the index discontinuity are chosen appropriately small, this degeneracy

can be reduced to a minimum for a given range of wavenumbers. These fibers are

called single-mode and we restrict the analysis below to these fibers. Even in this

case, a given wavenumber supports two propagating modes corresponding to the two

possible polarization states of the field. In standard single-mode fibers these two

modes are degenerate in frequency, and travel at the same velocity. In polarization

maintaining fibers, the degeneracy is lifted by breaking the circular symmetry of the

core. This type of fiber is highly birefringent so that its eigenmodes have very different

group velocities. This reduces the interaction between the polarization components

and makes each polarization state very stable. Assuming that only one of these

transverse modes is excited by an incoming pulse, the latter will travel at a group

velocity
Ow

vg(3) (B.8)

where / is taken as the carrier wavelength. Unless the fiber is dispersionless and

perfectly linear, the intensity and phase profile of the pulse will evolve in addition to
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moving at the group velocity.

The transverse mode profiles are defined for linear waveguides. It is clear that the

Kerr nonlinearity will change the transverse characteristics of the field. One expects

for example that very intense pulses will be better confined to the core since they

increase its refractive index. For the intensities considered in this thesis however these

effects are very small. Consider for example a pulse with a peak power P0 = 100kW

confined to a core with an effective area Aeff = 32pm 2 . The change in the refractive

index of the core is

AnNL = n 2Po/Aeff = 10- 4 , (B.9)

where we used n2 = 3.2 x 10- 16 cm 2/W. This is a very small change compared to

the refractive index difference between the core and the cladding (An _- 0.01). We

shall therefore neglect the nonlinear change in transverse mode profile. Note that the

Kerr effect cannot be neglected when the propagatin of the pulse is considered since

even a small index change can have a significant effect when it accumulates over long

distances.

B.2 The Slowly-Varying Envelope Operator

We are interested in pulsed excitations where modes of the waveguide within a narrow

band of wavenumbers around i0 are excited. In this case, one can develop an approx-

imate quantum field theory of reduced complexity based on a single scalar quantum

field. Let w0 be the corresponding carrier frequency. We define the slowly varying

envelope operator by the expression:

A(z, t) = eiWot-i~oZ J d g ) &p(, t)eipz. (B.10)

An envelope operator can be defined for each transverse mode profile of the waveguide.

The need for the weight factor inside the integral will be explained in Section B.4. For

linear waveguides the time evolution of the annihilation operators is given by (B.6).

In this case, the space-time evolution of A occurs only due to the bandwidth of the
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superposition in (B.10).

The envelope operator provides a natural tool to describe the pulse evolution. The

fast space-time dependence associated with the carrier wave is removed by the action

of the prefactor in (B.10). The transverse mode profile, which is largely irrelevant to

analyze the propagation of the field, has also been suppressed. The positive frequency

part of the electric field operator for the excited modes, t+, is given by

E•(r, t) = J d3 e(x, y, O3)&(/, t)eifz, (B.11)
00

It can be obtained from the envelope by the relation

E(r, t) = eiwtize(x, y, 0o - i () A(z, t). (B.12)
z g o -i

A similar expression holds for the magnetic field.

By assumption, the only modes excited should have wavenumbers very close to 30.

In particular, none of the modes with / < 0 should ever be excited. It is important

to distinguish these modes from the backward propagating modes of the fiber which

have been eliminated from the approximate theory. The modes with negative 3 in

(B.10) are unphysical and have negative frequencies by definition. They are added to

the theory in order to endow it with a simple canonical structure (see Section B.4).

Hence, the exact theory and the model based on the scalar field A have different

Hilbert spaces. The approximate theory provides a good physical description if and

only if the added dimensions of its Hilbert space are left unexcited. Problems involving

the coupling of forward and backward propagating pulses can also be treated in the

slowly-varying envelope approximation if two independent envelopes with two distinct

sets of unphysical modes are used.
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B.3 Poynting Vector and Photodetection

The normalization of the transverse mode function can now be established by con-

sidering the flow of power in the fiber. The z-component of the normal-ordered and

time-averaged Poynting vector integrated over the cross-section of the fiber is given

by:

Sz(z, t) = dA(E x l- - + x E-)
= df d/ f3dA {e(x, y, 3) x h*(x, y, 3') + e*(x, y, 3) x h(x, y,/3')} 2

a t ( 3 , t)&(0', t) exp [i(3 - /3')z] , (B.13)

where dA= dxdy. The operator Sz(z, t) measures the power crossing the z plane at

time t. Upon integration over the whole fiber, we must find the total energy flow of

the field J dzSz (z, t) = J do hw(/)v9(3)&(0, t)0(0, t). (B.14)

This requires that the transverse mode profiles be normalized so that

dA {e(x, y, ) x h*(x,y, ) + e*(x,y, ) x h(x,y, 3)} - = hw()v( ) (B.15)2r

This is our normalization condition. Using this expression, one can derive a useful

approximate relation between the Poynting vector and the envelope. Noting that for

the narrow bandwidth pulses considered here, the transverse mode profiles change

little for the various excited wavenumbers, we can replace w(3)vg(3) by w(3o)vg(Wo)

in (B.15). We then find

Sz(z, t) A- hwoAt(z, t)A(z, t) (B.16)

Hence, for narrow bandwidth pulses, At(z, t)A(z, t) can be interpreted as the photon

flux operator.

In the electric dipole approximation, matter couples to the electromagnetic field

through the electric field. Glauber showed that as a result, photodetectors measure

the Poynting vector of this field integrated over its cross-section. In all cases con-
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thesis, the photodetector response time is much longer than the pulse

aoting by I the photocurrent operator generated by such a detector

v, e have, from the previous expression,

I = Io dtAt(z,t)A(z,t), (B.17)

where the constant Io is the photocurrent generated by a single electron circulating

in the electronic circuit.

B.4 Equal-Space Commutation Relations

The addition of the unphysical modes allow to derive simple equal-space commuta-

tion relations for the scalar envelope. Consider first a linear waveguide where the

annihilation operators obey (B.6). In this case one has has:

[A(z, t), At(z, t') = eiw° (tt') / d/d/'/vg(/)vg(/')ei( -/')z-iw(f)t+iw(I')t'[(/(), &t(/3')]

J 27-- eiw°(t-t')• -J-od ~Vg(/3 e(I)(t

odw e_=eiwo(t~t,) ] ° d-i--e(t-t')

= (tt'). 00o 27r

The true nature of the mode with 3 < 0 is revealed by the next to last step. If one

were to use w(-P) = w(/), which is appropriate for the backward propagating modes,

the function v,(13) would be odd and the integral would vanish. The delta function

arises only when the range of w extends over the whole axis. A similar calculation

can be done for [A(z, t), A(z, t')] so that one has

[A(z, -), A(z, r')] = 0, [A(z, 7), At(z, r')] = 6(r- T'). (B.18)

Note that the spatial coordinates being the same for both fields in the commutators,

one can use either the time t or the retarded time T = t - z/vg in these expressions.
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Assume now that the region between z = 0 and z = 1 contains a nonlinear medium.

We will ignore any reflection occuring at the interface between the linear and nonlinear

waveguides. The input envelope A(0, t) satisfies the equal-space commutators (B.18)

since it is incident from a region where these relations are satisfied everywhere. At

a distance z inside the nonlinear waveguide, the envelope is given by the unitary

transformation:

A(z, t) = e- izp z A(O, t)eizpz, (B.19)

where the operator Pz measures the total momentum of the field and of the waveguide

in the direction z. By assumption this system is closed so that Pz is a conserved

quantity. One therefore has

[A(z, t), At(z, t')] = e-izPfz[A(0, t), At(O, t')]eizP-z

= 6(t- t'), (B.20)

and a similar result for [A(z, t), A(z, t')]. The commutators (B.18) are therefore also

satisfied in the nonlinear waveguide.

B.5 The Frequency Convention

Due to the assumption of a one-to-one correspondence between frequencies and wave-

numbers, one can trade the previous expressions based on a wavenumber decomposi-

tion for frequency expansions. We first Fourier transform the operators &(P, t)

_ oc dt
_00 27

&(/,t) = dwa(/, w)e-iwt. (B.21)

When the medium is linear so that (B.6) applies, we find

a(/, w) = 6 (w - w(0)) e(0, 0). (B.22)
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Defining the frequency annihilation operator by

&(z,w)&(3, w)

- df3I vg(03)ei~zet(o/IW),

1 dz= j e6ipz(z, w).
27r

(B.23)

Using these definitions, one can write the envelope operator as

oo dw
A(z, t) = ei °wOt - i ]0z a(z,'w)e-iwt (B.24)

The commutation relations of the frequency annihilation and creation operators can

be obtained by Fourier transforming (B.18)

[a(z, w), &(z, w')]

= 6(w - '),

= 0. (B.25)

The positive frequency part of the electric field can be expressed as

E +(r, t) = dte(x, y, 3)eiOz J dw&(/3, w)e- iwt

= dwe-it J dz'(z', w) de(x, y, )e(z-z

As can be seen from this expression, the relation between the electric field and the

frequency operators is in general nonlocal. As the electric field itself is local, this

indicates that &(z, w) is nonlocal. When the bandwidth of the modes is so narrow

that the / dependence of the group velocity and of the transverse profile can be

neglected, the above relation becomes local

E+(r, t) = fdwe-ite(x, y, w)&(z, w), (B.26)
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where the frequency mode profile are efined by

e(xyw) e(x, y, ý(w)) (B.27)
Ve(x, y, w) = (W))

Expression (B.120 can then be traded with

E+(r, t) = e-iwat+i/30ze(x, y, wo + i a)A(z, t). (B.28)

B.6 Equation of Motion

Consider first a linear medium for which

&(z, w) = e a(w)za(0, w). (B.29)

Using this spatial dependence in (B.24), one can relate the spatial derivative of the

envelope to its time derivatives

OA 1 aA
Oz = at + DA(z, t) (B.30)Oz v, 8t

where D is given by (3.16). The Kerr effect creates a change in the local refractive

index proportional to the intensity of the field. This change modifies dynamically the

wavenumbers resulting in

/(w) -+ /(w) + A 3(z, t). (B.31)

When the pulse bandwidth is large, the exact relation between the index change and

the intensity of the envelope is complicated. This question will be partially addressed

in Chapter 4. For narrow bandwidth pulses however the intensity of the field is

proportional to AtA. Assuming that the index reacts instantaneously to the optical

field, we find

A3(z, t) = KAt(z, t)A(z, t), (B.32)
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where the constant K is the Kerr coefficient. This change in wavenumber leads to the

envelope equation

z A(z, T) = (D + iNl(z, T)) A(z, T), (B.33)

where

N(z,T) = At(z, T)A(z,T7) (B.34)

where we introduced the retarded time T = t - z/v, to eliminate the first order time

derivative. The above equation is the well-known quantized nonlinear Schrddinger

equation (QNSE) in 1+1 dimensions.

One does not need to use space as the evolution parameter in the description of

the envelope. Equation (B.30) was obtained by expressing 3 in terms of w in the

envelope. Similarly, a time derivative of the envelope can be related to a series of

spatial derivatives by expressing w in terms of 03. In this case, the envelope evolution

is described by the QNSE with a first order time derivative and a second order spatial

derivative. One is left with the problem of providing an initial condition for this sys-

tem. The QNSE is a fairly universal equation which describes the nonlinear evolution

of almost any scalar dispersive field for some range of intensities. Not surprisingly

then, it is recovered when time or space is used for the evolution parameter.
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Appendix C

Useful Formulae

In this Appendix, a number of useful formulas are summarized. The various expec-

tation values of the continuous time self phase modulation operator are evaluated

using:

exp (dsg(s)A•(s)Ai(s) =: exp (dsh(s)At(s)Ai(s) :, (C.1)

where g(s) is an arbitrary function and h(s) = eg(s) -1. Here : F(A, Ai) : means that

in the Taylor expansion of F, all creation operators are on the left of the annihilation

operators. A simpler formula is used in the discretized theory to evaluate expectation

values of the phase factor in (4.46) [83]:

exp (g&n(0)an(0)) =: exp (hetn(0)a,(0)):, (C.2)

where this time g is a complex number and h = eg - 1.

Gaussian, sech and square pulses are defined in terms of the pulse time scale (4.57)

by:

a(T) = fo/T exp (7rT2/2T7), (C.3)

ca(T) = o/T sech(2-/T-) (C.4)

ao(T) = ino /ac [u(T + L)- U(T -L P (C.5)

respectively. Note that in all cases we have f dTla(T)12 = no.
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Appendix D

Expressions for F1 and F2

In this Appendix, we outline the derivation of expressions (4.48) and (4.50) for F1

and F2 . Consider first the continuous theory. From (4.30) and (4.39), we have:

(At(Tl)Ao(T 2)) 12 = c(T 1)a(T2) 12 e-i (1) i (72 e -iM( )eio (T2) )12 . (D.1)

The self phase modulation exponential are first brought into a form suitable for

the use of the normal ordering formula (C.1). From [$(T1), $(T 2 )] = 0 and eAeB =

eA+B e1/2[A,B] , we have:

e-i¢(')ei4(r2) = exp ( dsg(Ti, T 2, s)A(s)Ai(s) , (D.2)

where g(i, T2 , s) = ifT 2 - s) - f(T1 - s)} and, by definition, f(7) vanishes for

negative 7. The expectation value of (D.2) in a coherent state is obtained by replacing

Ai and A• by a and a* on the right hand side of (C.1). The real part of h(r1 , 72 , s) =

eg(1,• T2 ',' ) - 1 then determines the norm of the expectation value of (D.2). We find:

KiC(ri)e i0(T2) ) = exp (-2no + Kcc(Ti, T2 )) exp (K,,(Ti, T2 )), (D.3)

where the K-integrals were defined by (4.49). The expectation value of the Raman

noise exponentials in (D.1) is evaluated in the following way. We first note that

[0(-r1), O(T2)] = il {f(T2 - 71)- f(71 - 72)}. One can then combine the noise expo-
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nents without affecting the norm in (D.1): ei(Tj),e0i(7_2) 2 - i(T1)+i(T2)) 2
Using (4.5) and (4.32), we have:

-iO(Ti) + iO(r 2 ) dz j dw {A(w)d()d }

lim ,LJbtj L* ij (D.4)
AzAw--+O .f4

with A(w) = i (ei~ 72  eiw- 1) "(w)/ir. On the second line we expressed the integrals

as the limit of a double sum, with bij = AzAwdj (z) and Lj = /AzwA(wj).
Note that [!,, t,] i,k 6 j,l, so that Dk,I are annihilation operators of independent

harmonic oscillators. Since, from (4.13), these oscillators are in thermal equilibrium,

we have:
2 .

e-io(e)eio(T2) = i TrPBEeLJD LJDi} 1 , (D.5)

where PBE is the density matrix for the Bose-Einstein distribution. The trace for each

harmonic oscillator yields the characteristic function for its symmetrically ordered

moments[94]. We therefore have:

Tr PBEeJD- L ,^) } 2 = exp ( LiI2coth ( ). (D.6)

The product of the exponentials in (D.5) transforms into the exponential of an inte-

gral, so that:

eio(nr) A (7-2) 2 =) exp -1m2 ho
i(-_1)ei(T)) 2 = exp (-1 dwIA(w)2coth 2-k)

Se - d(M (O)- M (
1
-r 2 ))  (D.7)

Using (D.3) and (D.7) into (D.1), we find:

K o(T1)Ao(T 2 )1 2 _=-lM(O) a(T 1 )cI(T 2 ) 2e-2no+Kcc(_1,.2)eKs(•1,iT 2)+lM(T1-2) (D.8)
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Following a similar procedure, one finds:

(Ao(T1)Ao(T 2 ) 2 r- eIM(O) (T1)x(T 2 ) 2 -2no+Kcc(T1,l2)e-Kss(rT,T2)--M(T1-2) (D.9)

This last result requires the use of the permutation formula:

Ai(Tl)ei4(T2) = eilf(72-r1) ei0(2)Ai(rTl), (D.10)

which follows from (4.31) after normal ordering of the exponential using (C.1). The

additional phase resulting from the permutation does not however affect the norm

(D.9). Expressions (D.8) and (D.9) together with the definition (3.5), immediately

yield F1 in (4.48). The expression for F2 is most easily derived when using the equality

Ao(T 2 )Ao(T 2) = it(T )A-(T2). One then has:

(AI(T 2 )Ao(T 2)Ao(Ti)) (At (Ti))

- cZ(Tl)1 2cy*(T 2 ) (Ai(T 2)eiý~(Ti) ) Ke-ik(1)~ ) (e i9(T1))1 2

- a(Tl)ca(T2 ) , I(T~2 Ke ~T)~ (eir)I 2 (D. 11)

where we used (D.10) in the last equality. The norm of the expectation values are

evaluated as before, with the result:

Iikri) 2 = - 2 no+Kc(-1) (D.12)

2= ee )MI e (D.13)

Using the above expressions in (D.11) and taking the imaginary part, we find F2 in

(4.48).

The derivation of the discretized formulas (4.50) is simplified by the absence of

Raman noise factors and by the independence of oscillators with different indices.

One verifies, for example, that F1 and F2 can be written as:

F = (0)&n() - &2 ()) 2}, (D.14)
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F2 = 41m 1n(0)(an(0)an(1)) (D(/) .
n

One can then use the normal ordering formula (C.2) instead of (C.1) to evaluate the

various factors arising from self phase modulation. We find:

&tn(O)t, n(0) 2 _ K &2 (l))2

0n(0)tetn(0)&n(1)) (&n(1))

= Ian4 {1- exp (-4 sin 2

= a() 4 exp -4sin2

x exp i 1 ,
( l2A))

(D.16)

leading immediately to (4.50).
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Appendix E

Matrix Elements Between

n-Photon Soliton States

According to [104] we obtain for the matrix elements of the field operator between

an n-photon soliton with momentum p' and an m-photon soliton with momentum p

= 6 m,n+l 1 + /nei((n+1)p-np')xsech (ra)
2 ci

F2 (n + 1)
IF(n + 1/2 + ia)|2 ' (E.1)

with a = P-P and where F(x) is Eulers Gamma function. For large photon number
IcI

we can expand the ratio between the Gamma functions in (E.1) according to [111]

IF(n + 1 i = n 1 (1+ - + a2 + O(1/n2)
|(nr+1/2+ia) 2 n 4

and obtain up to second order in the inverse number of photons

72
< ,(x)Mp x > 6m,n+ l sech (ra) ei((n+ )p- np')x

[1+ 1 (3'+a a2) + 0(1/n 2)]

(E.2)

(E.3)
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Employing the integrals derived in the appendices of refs.([104, 105]), we get for the

matrix elements of the two point correlation function

1 + 2/n i(n + 1)
< n, p'kb(x)b(x + T)|m, p> = 6m,n±2 2 sn~a

2 sinh(ma)
x ei(p-p')nx+iP(2x+-r)+±lS(nr) (E.4)

and

i exp [i(p - p')nx + ipr]

< n,p'| t(x)q(x + T) m,p >= 6m,n• exp[i(p - p')x + ip] S(n - 1) (E.5)
2n sinh(wa)

with

S~)=(-i)P 2(ri + 1) no~ *n l(-)[(13f 2 O (n± n O

S(n) = F(n +1 -i ia) (21 - n - ia)ei(n-1)(p-p'))+[-(1- ) )2+ )2 , (E.6)|r(n +1 +ia)|12 1=0

In the limit of large photon number we can also expand the sum S(n) with respect

to the inverse photon number. For doing so we scale the time in units of the soliton

width, i.e. we introduce Tn = nlcIT/2, y = Tn(p - p')/Ic| and change the summation

in eq.(E.6) to k = 1- n/2 where we assume for the moment that n is an even number.

ir2( ++n +Xia) n/2[( 2n
S(n) n iF + -Tn+iy e (2k- ia)e- i 2ky/n exp k2  (n) 2 2

|F(n + 1 + ia)|2  k=-n/2 )
F2 (n +l) 12 T iy a n -)

= e- Ci| r(n + 1 + ia)2 e a-

S -n/2 + 2Re i exp [-i2ky/n - 2(k(n - k))/n] (E.7)
k=0

The remaining sum in this equation can be evaluated by expanding the exponential

with the k 2 dependence and performing the remaining geometric series

n/2-1

Sexp [-i2ky/n - 2Tn(k(n - k))/n]
k=0

( () )D2 m -nTn+iY
= 2n 1 -- en n (E.8)

m=- m! 07n 1 - e-2rn+2iy/n
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This equation shows, that the sum consists of two parts. One which varies on a time

scale of the order of the soliton width T, and one part which decays on a time scale

n-rn. We can neglect this rapidly decaying part, expand the rest up to second order

in the inverse photon number and arrive at the expression

n/2-1

Sexp [-i2ky/n - 2r-(k(n - k))/n]
k=O

e +' • y Tcosh(T)
=+ 2 _+ Jn(E.9)
2sinh(T) 2nsinh2(Tn) 2nsinh3 (Tn) (E.9)

Substitution of this result into eq.(E.7) and the asymptotic expansion [111]

F2(n + 1) a22r(+1i) = 1 + - (E.10)
jF(n +1+ia)|2 n

leads to

( a 2 ) 7reiaTn

S(ri) = 1+ - Ielar
no sinh(7ra)

Ssin(am) cos(am)
x n +

sinh(n) sinh(m)

(aTncos(amn) + sin(aTn)
-e- (m sinh2 (m)

cosh () sin(am)

+me - ' n  sinh 3 (T) + O(1/n) (E.11)
sinh'(-r)

One can easily test on a computer, that the error between (E.6) and (E.11) vanishes

with 1/n 2
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Appendix F

Poisson's Sum Formula

In this appendix we want to lay out how to perform the average over the photon

number statistics, which are sums of the type

00
F = E e-(n-no)2/2nof () i(an2+bn)tF = Z 2 1  1e f(nh). (F.1)

Poissons sum formula gives the connection between a periodic function generated by

shifting a function G(y) by multiples of 27 and the corresponding Fourier coefficients

[113] according to
00 00

S G(y + 2n7) = h(m)e im"Y (F.2)
n=-oo m=-oo

with

G(y) = h(m)eimrdm. (F.3)

Since we are only interested in an approximation to eq.(F.1) valid up to second order

in the inverse photon number, we can extend the sum over n to minus infinity and

expand the function f(n) in a Taylor series around the maximum of the Gaussian.

Thus we are left with Gaussian integrals and obtain

0 00 (")k ka\
F = 0 c) f (k)(no) Go(y + 2/l)y=o (F.4)

k=0 )=-oo k. )
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with
ei(an2+ibno)t nf [y + (2ano + b)t]2

G(y) = exp 2ano (F.5)
ý1 - 2ianot 2 1- 2ianot
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Appendix G

Evaluation of the Mean Field

We use ref. [104] to determine the expectation value of the field operator but we

expand the results up to second order in the inverse photon number. In appendix

A we computed the matrix elements of the field operator for a fundamental soliton

(E.1). With the expression for the asymptotic behavior of the matrix elements for

large photon number (E.3) we obtain for the mean field with (5.7), (5.17) and (5.20)

(t)|()(t)> = Zp N I dp dp' 1

n=O vn+ 1 J -2irAp

x exp 1 [(P Po)2 (Pi PO)2]

(+ 4 (A2p ') 2  (n1)t

Transformation to the new variables ((n = (p - p')/2 and v = (p + p')/2 gives us
00 1

I) 1 2 exp i n(n + 1 )t

n ox J2 dvg(v)ei(x)viv2 t]
" sech [7r (p -p')  (.1

Transformation to the new variables u = (p - p')/2 and v = (p + p/)/2 gives us

< O(t~qý(x)10(t) > E •Pn IC-1/2 n/-on--exp i -n (n + 1) t

Xfdvg(v)ei ( - o)_-iv
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x duexp 2j2 - iu2t exp [i(2n + 1)(x - xo)u]

x(++( 6U2) +0( )  sech (27 (G.2)
4n IC12 n2 IC

If we evaluate the integral over the variable u we have to make sure that the resulting

expression is consistent with the desired expansion in 1/no. Using the expression for

Ap according to (5.22) we have to expand the Gaussian in u up to first order to obtain

a valid expansion

< (t)|(x)|(t) >= Pn V exp i n(n + 1)t dvg(v)ei( -Xo)v- iv2t
n=o

( +I+x" 0 p + 2i'IP1 /no 1 a2
X 1+~ +- +1 n 7 x +0

4n 2n Oxn 8no 4n 8Xn+1/2

x sech (Xn) (G.3)

where we have introduced x, = (x - xo - 2v t) and made use of the nonlinear

phase shift Pn1 = ldt .

To carry out the sum over n, the Poisson photodistribution is replaced by the

Gaussian
1 (n- no)2

Pn = exp - n . (G.4)[r 2no
This change is legitimate for large no and does not affect the moments of the distribu-

tion up to second order in the inverse photon number. Using Poisson's sum formula

(Appendix F), we find

< O(t)|4(x)¢1(t) >= f dvg(v)ei(x-Xo)v-iv2t FO (Xo(M)) (G.5)

with

S(Xno) = E 1 f (no) ( -i Gp(y + 2•l)Iy=o, (G.6)
1=-o0 k=0

where f(k) (no) denotes the k-th derivative with respect to no of the function fo defined
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f S(n) = 1v  1 + +X a
2 4n 2n Ox,

+ (/ n + 2 n) +1 (a) sech (xn) (G.7)8no 4n 8qX (n2

and

( ein(1+1/no) no [y + (1 + 1)(21n)]2
G0(y) exp 2no no (G.8)

/1 - 2in/no 2 1 - 2iDnl/no

Since we restrict ourselve to moderate phase shifts, 4)nt < no, the only important term

with in (G.6) has 1 = 0, the rest being exponentially suppressed. We can therefore

use
00 (_ )k () ()( )IY oF0(xno) = - ( fk)(no)G(k)(Y) O=0. (G.9)
k=0

We must retain only terms of order 1 and 1/no in this expression to be consistent

with our approximation level. The maxima of the derivatives of the function GO and

fo have the following scaling

Max{G(k) nok  (G.10)

and

Max{f(k)} nok  (G.11)

In order to obtain a result correct up to second order in 1/no it is enough to keep

the first three terms in (G.9). The function GO(0) describes the impact on the mean

field of the phase spreading due to photon number fluctuations. The absolute value

of this function is

1 44021 1 21
G()1 exp 4l 2[no ) (G.12)

V1 + (24I)nl/no) 2  no 1 + (2 " "

Thus as long as nl < Vic o the phase spreading is negligible and does not decrease

the mean field. Once the threshold (nl = is reached the mean field is rapidly
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suppressed. However, the phase spreading is only one quantum effect initiated by the

photon number fluctuations. The other effect is position spreading due to fluctuations

in momentum or center frequency of the soliton. We encounter this effect when we

perform the average over the momentum distribution, where we have to remember

that x~no(v) = noIc (x - xo - 2vt)/2. In (G.5) we have to perform a Fourier transform

over the product of a Gaussian with width Av = Ap = 1/( /noTo) and the function

FO which has, for example at x = 0, a width Av = 1/(41,To).

As long as Q'l < VXno the Gaussian is much narrower than FO and the average

over the momentum distribution will again result in a sech to leading order. For

4Pnl > Vno the average over the momentum distribution will smear out the mean

field in the same way as the enhanced phase fluctuations due to SPM do. This shows

that quantum effects due to group velocity dispersion are equally important as the

effect due to self phase modulation. As we have seen for 4nl < \/i the phase and

position spreading is negligible for the mean field which is then in leading order of

1/no that of the classical soliton.

For 4nl < v/ we can expand F4 in a Taylor series around po and we can perform

the remaining Gaussian integrals

< (t) (x)(t) >= (2i4nl)k (k) )F(k)no(P)) (G 13)< 0 MI W 1 M E Ho" Xno) 0 kXfo (Po))k=O

with
1 1 2

H4 (xno) = exp Xno (G.14)
1 + 2i)dj/(pno) 2,no 1 + 2i~in/(,pno)

The derivatives of H4 with respect to Xno0 scale like

H ) 1 1// k . (G.15)
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Appendix H

Second Order Correlation

Functions

Analogously to Appendix G, we can compute the second order correlation functions

by using the asymptotic expansion of the matrix elements (E.4), (E.5) and (E.11)

00

< V(t) t(x)q(x + '-)|(t) >= Z
n=O

4no 4n1

dv g(v)ei"'

( 1x sech (xn + -n) sech (x,) + ( FTn cosh(Tn)
2n

- sinh( rT•)) sech2 (Xn) sech 2 (Xn +

with rn = yn - xn and

< #(t)| (x)q(x +±T)|l(t) >= ~p e pn= - exp
n=O

2 n 2tl dvg(v)e2iv(x-xo+-/2)
- 2iv 2t

x 1 -Tn
n

x (sech(x + T) sech (n) + 1(I (7ncosh (T•) - sinh( T, )) sech 2 (n) sech 2 (Xn ±
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n'lcl

02

nx
+0 (H.1)

(H.2)

-n)) •

~I

+p - 41c/no
8no

1 ) 2
4n OX2 +O n2



Using Poisson's sum formula from appendix F to perform the average over the photon

number statistics results in

< 4(t) qt(x)q(x + T)I0(t) >= f dv g(v)FO,¢(xno(v)) (H.3)

for (H.1) with

F,(Xno) -= fo.O(no) + 2 f/4(2o)

foO(no)
= + 1{+

(H.4)

I - 2 02

8no Mn

+ 2  (no (ITncosh(Tno) - sinh(ITrno ))

x sech (Xno + Tno) sech (Xno)

x sech (xno + Tno) sech (Xno)

with Tno = Yno - Xno. And

(H.6)< 0(t) 1(x) (x + T) 1(t) >- /dv g(v)F¢¢(Xno(V))

2

FO(xnoG) = ZG2(k= ) f(no)
k=O

1- 2Tno0 + p - 2 + 4inl/no 02

2n 0 8no OXo0

- sinh(ITno ))sech (no + T no) sech ( eXn) sech (xno + T.o) sech (xno)

Goo(y) =exp
1 - 4i4ýn/no

no (4" + y) 2

2 1 - 4i(nl/no

From those equations we can compute the noise covariances from definition (5.32).
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with

and

fe (no)

(H.7)

+1 (-no Icosh(Tno)2n
(H.8)

(H.9)
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