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Abstract

Automatic detection and tracking of gust fronts from radar data is a difficult task for
three reasons: there are multiple features associated with gust fronts in radar data,
none of these features are unique to gust fronts, and the discriminatory power of each
feature varies for several reasons. As a result, a number of physical properties must be
considered simultaneously, and the information gained from each must be properly
combined in order to achieve good overall detection performance. In this thesis,
existing tools of data fusion were improved and applied to the fusion of radar data in
the context of gust front detection. A mechanism for computing pixel-level weights
was developed and tested with an eye towards eventually fusing evidence from two
radar sources, the Next Generation Weather Radar (NEXRAD) and the Terminal
Doppler Weather Radar (TDWR). The technique of using pixel-level weights was
tested and automatically scored using TDWR data that had been labelled by human
analysts. Both improved detection and a reduction of false alarms were seen, thereby
demonstrating the value of using pixel-level weights for combining evidence of varying
reliability from several detectors in the context of gust front detection.
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Chapter 1

Introduction

1.1 Motivation

Two major concerns of all transportation systems are safety and efficiency. An en-

deavor is being made by the Federal Aviation Administration to improve both the

safety and efficiency of air travel by providing air traffic controllers with tools to

better detect and predict short term weather conditions around airports.

Machine vision techniques applied to weather radar data allow computers to play a

major role in this through the automatic detection and tracking of important weather

features. As with many real world systems, no one technique or algorithm is inde-

pendently sufficient for the job, so many are employed. Combining information from

each of these, data fusion, is a task that poses some interesting problems.

1.2 Contribution of Thesis

This thesis will describe and discuss a method of data fusion that employs informa-

tion at the pixel level in the context of gust front detection. This pixel-level data

fusion technique is incorporated into the Machine Intelligent Gust Front Algorithm

(MIGFA). Prior algorithms for weather detection have used general image processing

techniques devoid of object- and context- dependent knowledge, and applied thresh-

olds at early stages of processing. MIGFA represents a new approach using several



intelligent (knowledge-based) feature detectors whose outputs are assimilated before

thresholding.

This thesis demonstrates ways to better use human knowledge in the fusion of

feature detector outputs. It will describe various factors that were considered and the

ways these factors were incorporated into pixel-level data fusion for MIGFA working

on data from the Terminal Doppler Weather Radar (TDWR).

1.3 Thesis Overview

This thesis consists of five chapters. Chapter two provides a physical description of

gust fronts and discusses motivations for detecting and tracking them. Chapter three

describes a method of gust front detection used by MIGFA. Chapter four describes

a method of knowledge- and context-based pixel-level data fusion used to augment

MIGFA. Chapter five contains a summary and discussion of the results, and recom-

mends directions for future research.



Chapter 2

Gust Fronts

2.1 Physical Description

When a strong downdraft of air from a thunderstorm reaches the ground, it will tend

to spread out horizontally as shown in Figure 2-1. The boundary where the spreading

outflow of cool air meets a calm area or an opposing wind is know as a gust front.

This boundary can typically grow to be several kilometers long and can propagate

very long distances away from the generating storm.

2.2 Motivation for Detection

There are two main motivations for detecting and tracking gust fronts: gust fronts

can be dangerous, and gust front prediction can help air traffic controllers plan. A

reliable system that can detect and track gust fronts is of great value because it can

improve both the efficiency and safety of air travel.

2.2.1 Dangers

An aircraft taking off or landing is very vulnerable to sudden changes in wind speed

and direction. The turbulence associated with a gust front is such that it can pose a

serious hazard to aircraft in these situations. Also, an unanticipated gust front can

create delays as traffic is rerouted. These delays can increase the risk of human error



Figure 2-1: Gust front created by a downdraft of air from a thunderstorm (adapted
from [1])
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Figure 2-2: Gust front passing over runway

as air traffic controllers try to compensate by reducing the distance between aircraft

taking off and landing.

2.2.2 Planning

Gust fronts present a boundary between regions with different wind velocity char-

acteristics, and winds following a passing gust front tend to persist for long periods

of time. Since runway planning must take into account wind direction and speed,

the tracking of gust fronts can enable air traffic controllers to make short term wind

condition predictions over specific runways, which in turn can help them streamline

airport traffic. Figure 2-2 shows the passing of a gust front over a runway. Before

the passage of the gust front, planes would have landed from left to right. After the

passage of the gust front, planes will have to land from right to left.'

'Planes are typically scheduled to land into a headwind.



Figure 2-3: Thin line reflectivity and velocity convergence signature

2.3 Radar Signature

Three physical characteristics enable us to track gust fronts on radar, a thin line of

increased reflectivity, a line of velocity convergence, and gust front motion.

2.3.1 Reflectivity

A thin line of reflectivity is caused by concentrations of scatterers (possibly dust

particles, insects, or water droplets) carried in the gust front itself. These thin lines

vary in width but typically do not exceed 3 kilometers. Radar reflectivity is measured

in dBZ, and gust front reflectivities typically exhibit values between 10 and 20 dBZ[1].

A gust front's thin line reflectivity signature can be seen in Figure 2-3 in the image

labeled DZ. (The TRUTH image shows gust fronts that have been labeled by a human

analyst.)

2.3.2 Velocity Convergence

A gust front marks the boundary where the cool outflow of air from a thunderstorm

converges with ambient air or opposing winds (Figure 2-2). On Doppler radar velocity

images, a sudden drop in velocity values is usually associated with the location of a



Figure 2-4: Convergence signature associated with a gust front

gust front. Figure 2-4 shows the convergence that would typically be seen along a

single radial of the radar image. The convergence of an entire front can seen on a

Doppler radar image like the one shown in Figure 2-3; the gust front labeled 4 in the

TRUTH image displays clear velocity convergence in the V image. Algorithms before

MIGFA relied almost exclusively on this characteristic[4].

2.3.3 Motion

Gust fronts move at a steady speed in a direction generally perpendicular to the

orientation of the thin line and convergence boundary. A comparison of consecutive

scans should reveal this motion. If a thin line and convergence boundary do not appear

to move at all, the signature on radar probably does not belong to a gust front or

at least to one that is of concern to air traffic controllers (unless it is experiencing

a change in behavior caused by an event like a collision with another gust front).

Figure 2-5 shows the history of a typical gust front's movement.
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Figure 2-5: History of gust front's movement

2.4 Challenges to Detection Algorithm

When considered individually, none of the three characteristics mentioned guarantees

the existence of a gust front, because none are unique to gust fronts - nor do fronts

necessarily show all of these characteristics. There are many factors that can cause

us to receive weak, ambiguous, or even contradictory signals.

2.4.1 Occlusion

Cloud formations and heavy precipitation can prevent us from seeing a reflectivity

thin line. The reflectivity of clouds and heavy rain is often comparable to or higher

than that of gust fronts, and these can cause the partial or even complete occlusion

of passing gust fronts (Figure 2-6). Static physical features like mountains can create

residual ground clutter to hide gust fronts too. In Figure 2-3, the gust front labeled

7 on the left side is partially occluded by clouds.



Figure 2-6: Occlusion caused by clouds in reflectivity image
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2.4.2 Orientation

Doppler radar only measures the component of the wind in a direction parallel to

the radar beam. Gust fronts oriented perpendicular to the radar beam can provide

strong Doppler signatures, while gust fronts oriented parallel to the radar beam may

not be seen at all in velocity images. Figure 2-7 depicts both of these situations. In

Figure 2-3, the gust front labeled 9 is oriented parallel to the radar beam and does

not show up clearly in the velocity image.

2.4.3 Sensitivity

A radar's sensitivity varies over range. Very close to the radar, we may have trouble

with things like ground clutter. The sensitivity of a radar is at a maximum at a

small distance away from the radar, and then decreases over distance. Because of

this variation in sensitivity, a gust front with a certain reflectivity signature may be

visible because it is close to the radar, while a gust front with the same reflectivity

may be invisible because it is at a distance away from the radar where the minimum

detectable signal is greater than the gust front's signal (Figure 2-8).



Figure 2-7: Detection affected by gust front orientation in velocity image
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2.4.4 Imitation

Other things can look like gust fronts on radar. For example, vertical shears, often

present in severe thunderstorms, can bias low-altitude velocity estimates, producing

apparent convergence signatures[l]. Flocks of birds, clouds of dust produced by con-

struction sites, elongated low-intensity precipitation echoes, and ground clutter, can

produce thin line signatures-some of these can also exhibit gust front-like motion[l].



Chapter 3

Gust Front Detection

Ideally, we want a system that will detect all gust fronts in all conditions with no false

alarms. The ideal is extremely difficult to achieve, even for human analysts, because

of the physical characteristics of gust fronts and radars. Humans do as well as they do

because they make use of knowledge about the sensor, knowledge about the behavior

of gust fronts, and knowledge of weather conditions and how they affect the likelihood

of gust fronts appearing on radar. Humans can assimilate weak, ambiguous, or even

contradictory evidence.

The following are a few more tractable goals.

1. Detect clear obvious cases with very high reliability.

2. Generate very few false alarms.

Improved performance of the Machine Intelligent Gust Front Algorithm (MIGFA)

over prior algorithms is due in large part to its ability to use human knowledge in

detecting gust fronts.

3.1 Design philosophy behind MIGFA

The conventional wisdom in computer vision/object recognition research has been

to use general image processing operations, ideally devoid of object- and context-

dependent knowledge, at the initial states of processing[1]. Such operations might

include edge detection, segmentation, cleaning, and motion analysis.



Image characteristics are then extracted from these general operations and repre-

sented symbolically. Machine intelligence is then applied on the symbolic representa-

tions at the higher levels of processing[1].

In contrast, sensor-, object- and context-dependent knowledge is applied in the

earliest (image-processing) levels of MIGFA processing. Knowledge of the problem is

used in three ways. First, knowledge is used to select from a library, those feature

detectors that are selectively indicative of the object being sought. Second, knowledge

is also incorporated within feature detectors through the design of matched filters

that are customized to the physical properties of the sensor, the environment, and

the object being sought. Third, knowledge about the varying reliability of the selected

feature detectors is used to guide data fusion[l].

3.2 Overview of Machine Intelligent Gust Front

Algorithm

The system diagram in Figure 3-1 provides an overview of MIGFA. In preparation

for processing, input images DZ (reflectivity image) and V (Doppler velocity image)

from the current radar scan are converted from polar to Cartesian representation and

scaled to a useful resolution.

These images are passed to several independent feature detectors that attempt

to localize features that are indicative of gust fronts. The outputs of these feature

detectors, most based on some application of Functional Template Correlation[3], are

expressed as interest images that specify evidence for where and with what confidence

a gust front may be present. These interest images are fused to form a combined

interest image, providing an overall map of evidence for where gust fronts are believed

to exist[1].

From the combined interest image, fronts are extracted and integrated with prior

history. The updated history is then used to predict where the gust fronts might be

several minutes in the future. These predictions are used in processing subsequent

images through a feature detector called ANTICIPATION, which selectively sensitizes



Figure 3-1: Overview of the Machine Intelligent Gust Front Algorithm
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Figure 3-2: Processed scan summary

the system to detecting gust fronts at specific locations.

Figure 3-2 is a summary of the processing steps for a single example. The images

correspond to the steps outlined in Figure 3-1. INTEREST shows the combined inter-

est image, INDEXED EVENT displays the extracted gust front, HISTORY displays

the updated history, and PREDICTIONS displays MIGFA's predictions.



Figure 3-3: Functional Template for thin-line feature detection
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3.3 Feature Detection, Functional Template Cor-

relation, and Interest Images

Most of the feature detectors used in MIGFA are based on some application of Func-

tional Template Correlation (FTC). (William Freeman discusses some similar ideas

in his thesis, "Steerable filters and local analysis of image structure"[5].) FTC is

described in detail by Richard Delanoy in [3], but can be briefly explained through

the study of an example.

Given some input image I, the output image O is generated through the use of

a given functional template. Figure 3-3 shows the functional template for thin line

detection. A functional template consists of a kernel K and some number of scoring

functions. Each pixel of the kernel corresponds to one of the scoring functions, or is

considered nil and does not participate in the computation of the score.

The kernel K is placed over a region of I (with the center of the region being

(Interest Image)

Output Image



I(x,y)) to compute a score for the pixel O(x,y) of the output image O. If the shape

of the object being matched can vary in orientation in I, then K is placed over I at

several orientations. To compute the score, each pixel of K uses the value of the pixel

directly beneath it in I, as an argument to the scoring function associated with that

particular pixel of K. The average of all the values generated by the pixels of K is the

score for O(x,y). If many orientations are being probed, then the score assigned to

O(x,y) is the maximum across all orientations. K is moved across Ito generate scores

for all the pixels of O.

The functional template in Figure 3-3 reflects what we know about the physical

characteristics of gust fronts. Gust fronts typically exhibit a thin line of reflectivity

between 10 and 20dBZ, and hence the functional template will contribute high scores

for a string of pixels in Iwith values between 10 and 20dBZ through scoring function

1. Surrounding the thin line, should be areas of low reflectivity, so scoring function

0 will contribute high scores for pixels with reflectivity values less than OdBZ. The

unspecified locations of K provide error bands to reflect the fact that gust fronts can

vary somewhat in width.

The output image generated by functional template correlation can be used as an

interest image. In an interest image, each pixel has a score which reflects the detector's

belief in the existence of a particular object over that pixel. This dimensionless score

provides a common domain in which to combine outputs from several independently

functioning detectors[2].

Figure 3-4 shows some of the interest images generated by MIGFA operating on

TDWR. Interest image TDWR-TL-DZ-CONV is generated by a feature detector that

couples a, DZ thinline functional template with a convergence functional template

scanning the velocity image. TDWR-DZ-CONV-MOTION is generated by a fea-

ture detector that couples a convergence functional template with a motion detector.

TDWR-ASSORTED-MOTION is the output of several motion detectors. TDWR-

HIGH-CONVERGE is the interest image generated by a detector looking for very

high regions of convergence in the velocity image.



Figure 3-4: Interest Images



Chapter 4

Data Fusion

MIGFA's approach to gust front detection seems to be better than previous ap-

proaches. The introduction of more knowledge to the detection stage of processing

seems to have improved overall performance[1]. No one feature detector is meant to

be a perfect, or even necessarily a good, discriminator of gust fronts and background.

But, when used together, several weakly discriminating feature detectors can achieve

robust performance depending on how the outputs are combined. Another improve-

ment in performance is expected with the introduction of more knowledge to the

method of combination.

Currently, each detector's interest image is assigned one confirming and one dis-

confirming weight to reflect a level of confidence in the entire interest image (Figure 4-

1). But, it is not the case that all the pixels of a given interest image are equally

reliable, because the reliability of different regions of evidence on the same interest

image can vary for several reasons as described in Chapter 2.

4.1 Proposed method

A better approach would be to provide a finer grade assignment of weights to smaller

regions in the interest image. In the limit, we could assign each pixel a weight

reflecting our level of confidence in the evidence provided by that particular pixel

(Figure 4-2). This is in fact the approach taken, because it provides the finest possible



Figure 4-1: Old Interest Image Weighting Scheme: Each interest image is given a
confirming and disconfirming weight for the entire image
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Figure 4-3: Doppler Effect
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grain map of reliability, and eliminates the need for mechanisms for dividing up large

interest images into smaller weightable regions.

What follows in this chapter is a discussion of some factors influencing an interest

image region's reliability, an algorithm for incorporating this knowledge into our pro-

cessing through the generation of pixel-level weights, and a description of how this

pixel-level weight computation is actually realized (in a Lisp- and C-based computer

vision development environment called SKETCH). This chapter will conclude with a

section describing how the newly computed pixel-level weights are used to fuse the

various interest images into one final combined interest image.

4.2 Orientation

The Terminal Doppler Weather Radar (TDWR) uses the well known Doppler effect.

Simply explained, when a radar beam of a given frequency f is aimed at an object

moving away from the emitter, the reflected frequency will be less than f(Figure 4-3).

~ Y:LLI u



Figure 4-4: Weather Reflectors
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On the other hand, when a radar beam of a given frequency f is aimed at an object

moving toward the emitter, the reflected frequency will be greater than f (Figure 4-3).

In weather applications, water droplets, dust particles, and sometimes insects,

provide us with our reflecting objects. Water droplets from a cloud moving slowly

away from a radar will return a signal that is equal to or slightly less than f (Figure 4-

4). Particles caught in a rapidly approaching gust front will return a signal that is

usually greater than f (Figure 4-4).

A problem arises when we consider particles moving at some oblique angle (Fig-

ure 4-5). Then, the signal received near the emitter will give us only a measure of

the component of the velocity parallel to the radar beam. In the worst case, particles

moving perpendicular to the radar beam will not be detectable at all through the

observance of any change in reflected beam's frequency (Figure 4-5).



Figure 4-5: Oblique Motion
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4.2.1 Orientation Considerations for Gust Fronts

Gust fronts move in a direction perpendicular to the thin line's orientation. Therefore,

a gust front oriented perpendicular to a radar beam can be clearly seen on a Doppler

radar scan (and consequently will be clearly highlighted in one of MIGFA's interest

images) (Figure 4-6). On the other hand, a gust front oriented parallel to a radar

beam will be very difficult to see on a Doppler radar scan (also Figure 4-6).

As a result, if a line of pixels oriented perpendicular to a radar beam is highlighted

in one of the interest images, we can be very confident that it is from a gust front.

On the other hand, if a line of pixels oriented parallel to a radar beam is highlighted

in one of the interest images generated by a detector working with Doppler velocity

values, we may be skeptical of whether or not that line was created by a gust front

because we know that gust fronts oriented in this manner are very hard to see in

Doppler images. Figure 4-7 depicts these two situations.

Emitter



Figure 4-6: Front Orientation
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Figure 4-8: Orientation Image

4.2.2 Computing Weights

MIGFA feature detectors using Functional Template Correlation will record an ori-

entation value for each pixel, which is an angle measure in degrees, of the orientation

at which the functional template provided the best fit (Figure 4-8). This orientation

value is used to compute an orientation-weight for each pixel of the interest image.

The diagram in Figure 4-9 outlines the algorithm used to compute orientation-

weights from the orientation map provided by the feature detector. The orientation

map uses absolute angle values where a vertical arrow pointing upward would des-

ignate zero degrees and a horizontal arrow pointing rightward would designate 90

degrees. This absolute orientation map is converted to a map of orientation values

relative to the radials extending from the center.

In Figure 4-9, two vertically oriented pixels (orientation zero degrees) are given

orientation values of 45 and 90 degrees in the relative orientation map.

A weighting function is then used to determine a weight for each pixel based on

its relative orientation. A relative orientation of 90 degrees would result in a high

weight, while relative orientations of zero or 180 degrees would result in a low weight.

The assignment of weights for the other angles between 0 and 180 degrees, can be



Figure 4-9: Compute Orientation Weights
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adjusted to conform to any realizable function that is determined empirically. A

linear relationship is shown in the figure.

4.2.3 Augment with confirming and disconfirming weights

The issues described above are relevant when trying to deal with pixels offering con-

firming evidence. But, a separate weighting scheme is required to deal with pixels

offering disconfirming evidence. 1

A flatter weight function for disconfirming evidence

When an area of clear air is analyzed by a feature detector, the interest image will

return low, disconfirming values everywhere, and the orientation with the best fit

becomes a rather meaningless statistic. A clear area's orientation value could just as

easily be zero or 90 degrees. For this reason, we would like disconfirming evidence

(as indicated by low interest image values) to not depend too heavily on the orien-

tation angle. So our disconfirming weight function should be much flatter than our

confirming weight function.

Lower weights for disconfirming evidence in general

Because gust fronts with the right orientation can often pass unnoticed by Doppler

velocity-based detectors, we should not rely on them too heavily for disconfirming

evidence. Disconfirming pixels from velocity-based interest-images are thus in general

given a lower weight than confirming pixels.

Slightly greater weight for perpendicularly oriented disconfirming evidence

A moderate to low interest-value (but a value still considered disconfirming) oriented

perpendicular to a radial could be an accurate reading of some existing low wind

shear. This is more probable than an accurate reading of some low wind shear oriented

1On a scale between 0.0 and 1.0, final interest values greater than 0.5 are considered confirming,
while the the values below are considered disconfirming.



parallel to a radial. Hence, we would still like to give stronger weight (though it be

disconfirming) to pixels oriented perpendicular to a radial.

Figure 4-10 shows an augmented orientation weighting scheme which references

the interest image to choose either the confirming or disconfirming weighting function.

The disconfirming weighting function is much flatter than the confirming function,

has lower values, but still indicates more confidence in the pixels oriented 90 degrees

relative to a radial from the center.

Both confirming and disconfirming weights are stored on the same orientation

weight image. There is no need for separate confirming and disconfirming weight

images because each pixel of the interest-image can be only one or the other, and

would use the weight stored in the corresponding location of the weighting image.

Figure 4-11 shows a Doppler velocity scan and its corresponding interest, orienta-

tion, and weight images.

4.2.4 Implementation

Appendix A lists the code used to implement the orientation weight computation.

Portions requiring high speed computation have been written in C, while the rest of

the functions are implemented in Lisp.

Weighting functions are implemented as tables created by the function build-

function-table. Representing the functions in a table transforms the computation

of weight to a simple table lookup, thereby reducing run-time computation require-

ments. This also enables the user to easily customize the weighting function in a very

direct and intuitive manner, without having to resort to a cumbersome formulaic

representation.

An angle-index is built to facilitate the conversion from absolute orientation to

relative orientation. The angle-index is built as an image with each pixel containing

a number indicating the absolute angle between a radial going through that pixel and

a radial pointing straight up. This early pre-computation allows the later conversion

from absolute to relative, to be achieved through a table lookup and a subtraction.

Again we enjoy an increase in run-time performance over an explicit formulaic com-



Figure 4-10: Confirming and Disconfirming Weights
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Figure 4-11: Sample Interest, Velocity, Orientation, and Orientation Weights

putation. The tables and index are stored in a list and assigned to the global variable

*angle-template*.

Currently, there are two functions for creating orientation weights. A function for

reflectivity-based interest-images does not incorporate the sharp angular dependencies

that Doppler-velocity-based interest-images do.

Although the system diagram seems to suggest that each step is completed on

an entire image before the next step begins, the actual C function weightangle

completes the performance of all three steps one pixel at a time as it moves along

the rows and columns of the original orientation-image, computes the final orientation

weight for the current pixel, and then stores the result in an orientation-weight-image.

This scheme takes advantage of many run-time computation optimizations.

4.3 Range

4.3.1 Range Considerations for Gust Fronts

A radar's sensitivity varies over range. Figure 4-12 is a graph of the minimum de-

tectable signal as a function of distance away from the radar. As explained earlier,



Figure 4-12: Range sensitivity effects on gust front detection
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a gust front that is close is very likely to be seen by the radar. Something that is

very close is less likely to be seen clearly because of ground clutter, while events that

occur very far from the radar are harder to see because the radar signal degrades over

distance.

4.3.2 Computing Weights

The diagram in Figure 4-13 outlines the algorithm used to compute range weights

from an interest image. For each pixel, the range is found by looking at a range index

image, which has precomputed distance from the center values. Then, by looking at

the interest image being weighted, we choose the confirming or disconfirming weight

function. The pixel's range weight is indexed, and then stored in the range-weight

image.

As we think about the two weighting functions, we realize that very close to the

radar, both confirming and disconfirming evidence can be viewed with only moderate

confidence because of ground clutter. A little further away, both confirming and

disconfirming evidence can be trusted with very high confidence. This is reflected

in Figure 4-13 with both confirming and disconfirming functions increasing. After

a certain point, the sensitivity of the radar begins to gradually drop. This again is

reflected in the gradual decrease of both the confirming and disconfirming functions.

At the furthest range values, the weight given to confirming evidence is higher



Figure 4-13: Compute Range Weights
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Figure 4-14: Sample Reflectivity, Interest, and Range Weights

than the weight given to disconfirming evidence, because the detection of a strong

gust front far away from the radar is still very likely. On the other hand, disconfirming

evidence far away cannot be trusted with as much confidence because a weak gust

front could be present there while avoiding detection because of the radar's reduced

sensitivity.

At moderate ranges, weight given to confirming evidence is higher than the weight

given to disconfirming evidence in order to bias MIGFA toward greater sensitivity. A

gust front that is seen by only a few detectors will have the positive evidence counted

more heavily than negative evidence thereby increasing the chances of detection.

(Note: This is just a current preference that can be changed later.)

Figure 4-14 shows a reflectivity scan and its corresponding interest-image and

range weights images. Once again, we note that both confirming and disconfirming

weights are stored in same range weight image.

4.3.3 Implementation

Appendix A lists the code used to implement the range weight computation. A range-

table is created for confirming and disconfirming weight functions using the tool



Figure 4-15: Occlusion caused by clouds
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build-function-table. A range-index is built simply as an image with each pixel

containing a number indicating how far away that pixel is from the center, where the

radar is supposed to be (this too reduces run time computational requirements). Both

of these are stored in a list and assigned to the global variable *range-template*.

The actual range weighting is performed by the C function weightrange. Just

like the orientation weighting function, the entire computation is completed one pixel

at a time. The program moves along the rows and columns of the original orientation-

image, computes the final orientation weight for the current pixel (whether it be

confirming or disconfirming), and then stores the result in a range-weight image.

4.4 Occlusion

4.4.1 Occlusion Considerations for Gust Fronts

Large cloud formations and heavy rain areas can hide a passing gust front (Figure 4-

15). For this reason, disconfirming evidence should not be given much weight in areas

with a lot of occlusion. But in areas where there is very little occlusion, disconfirming



evidence should be given more weight.

Confirming evidence in regions where there is little or moderate occlusion should

be given a lot of weight. Moderate levels of occlusion may still permit a gust front to

reveal itself.

4.4.2 Computing Weights

The block diagram in Figure 4-16 outlines the algorithm used to compute occlusion

weights from a reflectivity image and an interest image. We can create an occlusion

image from the reflectivity image, which will give each pixel a score reflecting the

level of occlusion surrounding that particular pixel. Then the interest image we are

weighting can be used to select a confirming or disconfirming weight function.

An occlusion image score of zero indicates the existence of almost no scatterers in

that region. Confirming evidence for a region with an occlusion score of zero or very

near zero, is given a very low weight because it is very difficult to find true confirming

evidence for a gust front in a region with no scatters for a radar beam to bounce off

of. With a moderate to high concentration of scatterers, confirming evidence is given

moderate weight.

Disconfirming evidence for an area with an occlusion image score of zero or near

zero, is given a high weight, because it is very difficult for a gust front to hide in a

region with no occluding scatterers.2 Disconfirming evidence for a region with a high

occlusion image score is given a low weight because we remember that a gust front

can be hidden in regions with a high concentration of scatterers.

The various weights are stored in an occlusion-weights image.

4.4.3 Implementation

To compute an occlusion image, we can use Functional Template Correlation with a

small circular kernel. The functional template is designed so that a gust front will not

be marked as an occlusive object. This is achieved by using a kernel that is wider than

2The assumption here is that gust fronts will usually carry some scatterers with them.



Figure 4-16: Compute Occlusion Weights
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the width of a gust front, and by using a scoring function that expects reflectivity

values greater than those exhibited by gust fronts. The functional template desired

is so similar to the one used for stratiform rain, that the interest image produced by

the stratiform rain template is used for the occlusion image.

Functional Template for stratiform rain and occlusion

(defun build-tdvr-strat-rain-fuzzy-template (kaux dz-index)
(let ((size 8))

(setq dz-index (create-ellipsoid-kernel size size 1))
(set-elements-in-interval dz-index dz-index 0 1 1 nil)

(setq *strat-rain-template*
(build-fuzzy-template
dz-index
'(0) ;;; angle increment

((0 -612) (40 -256) (60 256) (255ss 256))

4 ;;; pyramid level
(list size size) ;;; center
nil t))

*strat-rain-template*))

Appendix A lists the rest of the code used to implement the occlusion weight

computation. The confirming and disconfirming weight functions are again stored in

table form.

4.5 Putting it all together

Now that the individual pieces have been discussed, we can focus on the big picture of

how everything is put together. For each of the interest images generated by MIGFA's

feature detectors, a corresponding pixel-level weight image must be computed. The

diagram in Figure 4-17 depicts how pixel-level weights are computed for each interest

image.

First, we must decide which weighting scheme(s) to use for a particular interest

image. For example, reflectivity thin line templates are rotated but may not need to

be assigned orientation weights because reflectivity based sensors do not have strong

angular dependencies. Other interest images mark areas with a lot of occlusive clutter

with nil values and do not allow those pixels to contribute to the final interest image.



Figure 4-17: Compute a combined pixel-level weights image
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Figure 4-18: Graph of the squared average for two values
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The addition of occlusion weights may not affect the non-nil areas significantly, so

we could consider omitting occlusion weights. For most interest images, all three are

used.

Second, the pixel-level weights must be computed. These computations for the

various weighting schemes have already been described above.

Third, the various pixel-level weight images must be combined somehow. One

simple way to do this is through the use of a squared average (Figure 4-18).

wt1f = wtn
rZwt,

When all of the weighting schemes agree about the weight of a certain pixel (either

high or low) then a final weight value computed with a squared average will be in

the same range of the individual weights. If there is some discrepancy among the

weighting schemes, a squared average will tend to produce a final weight closer in

value to the higher weights. For this reason, squared averages were used instead of

some other method like a straight average.

i



Figure 4-19: Compute combined-interest-image
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Fourth, the resultant final weight image must be paired with the appropriate

interest image.

4.5.1 Combine Interest Images

The diagram in Figure 4-19 shows what is done after all the interest images and their

respective weights have been computed. They are fused into one final combined-

interest-image.

For each pixel, a weighted average between all the interest images is computed

and stored in the combined-interest-image

Sin(X, y) * wt(x, y)I wty) =

One adaptation is worth mentioning here. The old confirming and disconfirming

weight pairs for entire interest images are still accessible. One could ignore these and

experiment only with the newly computed pixel-level weights. On the other hand,
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one could try to benefit from the work that went into determining these pairs by

scaling the pixel-level weights by one of these old weights.

wt,(x, Y) = con fwt * wt,(X, Y)

or

wt,(x, y) = disconf _wt * Wtn(X, y)

This approach is used in the current implementation.

In the future, one might consider using only pixel-level weights and consolidating

the wisdom stored in the old weights with the new scheme by creating appropriately

pre-scaled weighting functions for each feature detector.

4.5.2 Implementation Issues

The code for computing the final combined-interest-image using pixel-level weights,

can be found in Appendix A under the section Computing an Average Weighted

Interest Image.

The following changes to the MIGFA system are necessary for the addition of

pixel-level weight based data fusion.

1. Incorporate tools for pixel-level data fusion

The files test.lsp, fusion_comb-interest.lsp, fusion.lsp, and fusionlibrarytools.lsp con-

tain tools supporting pixel-level data fusion. they must be included in the list of files

to load in file expxgft. Isp.

2. Cause pixel-level weights to be computed with interest images

The feature detectors defined in file xgft _library. lsp, require the addition of a line

like

(setf (has-weights match) (weight-interest-image match orient))

to cause the generation of pixel-level weights for each appropriate interest image.



3. Define and call alternate procedures for fusing interest images

The file expxgft . isp:

- Create functions compute-weight ed-interest-image,

combine-weighted-interest.

- Modify the function compute-xgft by replacing the line

(setq *interest* (compute-interest-image *interest-image-set*))

with the (setq *interest* (compute-weighted-interest-image *interest-image-set*))

4. Add a few data fusion specific flags and variables

The variable default-pixel-weight references an integer value used for the compar-

ison and the building of weight images. It can be placed in file xgft_control. lsp.

The flag *pixel-weights-off -dbg* determines whether or not pixel-level weights

should be computed. The flag *fusion-dbg* determines whether or not certain

intermediate images should be displayed. Both of the flags are set in xgftimode. lsp

and declared in xgft_control. isp.



Chapter 5

Results, Conclusions, and

Recommendations

5.1 Results

Figure 5-1 shows a snapshot of MIGFA without pixel-level weights processing some

data. Figure 5-2 shows a snapshot of the MIGFA with pixel-level weights processing

the same set of data. A visual comparison of the two pictures shows MIGFA with

pixel-level weights tracing the lower left gust front a little more completely.

Both combined-interest images of MIGFA highlight regions where the lower left

gust front exists, but the values of the pixels for MIGFA without pixel-level weights are

not enough to trigger a detection. The combined-interest image of MIGFA with pixel-

level weights has those same regions highlighted but with slightly greater intensity.

The pixel-level weights probably allowed confirming evidence to have greater influence

in the generation of the combined-interest image.

The performance of MIGFA with and without pixel-level weights on a common

set of data was evaluated against a human's interpretation of the same radar data,

using a automatic scoring procedure described by D. Klingle-Wilson in [6]. Table 5.1

summarizes the results of MIGFA performing on sets of data with and without pixel-

level weights.



Figure 5-1: MIGFA without pixel-level weights
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Figure 5-2: MIGFA with pixel-level weights



Table 5.1: MIGFA Performance without Pixel-level Weights

Percent Length Percent False Length
DATE Detected PLD Detected PFD
08/03/93 54.4 16.2
08/04/93 75.9 15.2

Table 5.2: MIGFA Performance with Pixel-level Weights

Percent Length Percent False Length
DATE Detected PLD Detected PFD
08/03/93 59.5 15.8
08/04/93 76.6 16.6

5.2 Evaluation

In general, MIGFA with pixel-level weights provided improved detection. It was also

possible to decrease the number of false detections, but there were cases where the

number of false detections increased as well.

The weighting functions require careful construction. Both the shapes of the

weighting functions and their relative values can influence the final output noticeably

(significantly negative effects are more easily noticed and produced than the positive

ones).

Depending on what characteristic is desired, pixel-level weights can be used to

push MIGFA's performance characteristics in one direction. Careful adjustment of

MIGFA's weights can result in higher detection rates, while only slightly raising the

number of false detections. Or, MIGFA's weights can be used to filter out a greater

number of false detections while only slightly lowering the detection rate.

The effect of using pixel-level weights on overall TDWR MIGFA performance is

small. However, TDWR by itself is not the final testbed. The goal is to fuse data from

multiple radars, which for any gust front will have differing viewpoints on orientation,

distance, and occlusion.

With the completion of Federal Aviation Administration's Integrated Terminal



Weather System approaching, future work would involve determining how interest-

images from a number of different radars ought to be combined.

5.3 Conclusion

The method of using pixel-level weights, enables us to have varying degrees of con-

fidence in data from the same image. It provides us with a good mechanism for

encoding and applying object- and context-dependent knowledge. For gust front de-

tection through MIGFA, pixel-level weights have shown that they can be a valuable

addition that shows promise for future uses.



Appendix A

Code Listing

A.1 Set Up Templates to be used by Weighting

Functions

A.1.1 Lisp Code

;;; Builds templates used for data fusion
;;; Assigns to global variables *angle-template* and *range-template*

(defun build-fusion-templates()
(setq range-index (an-array has-sizes *cart-sizes*

has-element-type a-short
has-exponent 0))
(setq angle-index (an-array has-sizes *cart-sizes*

has-element-type a-short
has-exponent 0))
(allocate-array angle-index)
(allocate-array range-index)
(build-range-index-c range-index)
(build-angle-index-c angle-index)

;;; Set up global weight variables ;;;

(setq *range-weights* (copy-of-array angle-index))
(setq *angle-weights* (copy-of-array angle-index))
(setq *occlusion-weights* (copy-of-array angle-index))

;;; Build Templates ;;;

(setq *angle-template*
(list
angle-index

;;; confirming weight
(build-function-table '(((0 128) (90 266) (180 128)))) ; weighted
; (build-function-table '(((0 128) (90 128) (180 128)))) ; neutral



;;; disconfirming weight

(build-function-table '(((0 128) (90 160) (180 128)))) ; weighted
; (build-function-table '(((0 128) (90 128) (180 128)))) ; neutral
;;; confirming weight for weak angle correlation like DZ
(build-function-table '(((0 160) (90 190) (180 150)))) ; weighted

; (build-function-table '(((0 128) (90 128) (180 128)))) ; neutral
;;; disconfirming weight for weak angle correlation DZ
(build-function-table '(((0 128) (90 150) (180 128)))) ; weighted

; (build-function-table '(((0 128) (90 128) (180 128)))) ; neutral

(setq *range-template*

(list

range-index

;;; confirming weight
(build-function-table '(((0 128) (10 350) (120 80)))) ;confirm
; (build-function-table '(((0 128) (120 128)))) ; neutral

;;; disconfirming weight
(build-function-table '(((0 128) (10 200) (120 60)))) ;disconfirm
; (build-function-table '(((0 128) (120 128)))) ; neutral

(setq *occlusion-template*
(list

(build-function-table '(((0 0) (10 180) (180 180)))) ;confirm
(build-function-table '(((0 200) (20 180)

(160 20) (180 20)))) ;disconfirm

A.1.2 C Code
/***************************************/

/* builds index for angle weighting */

int buildangleindex(angle_index)

object angle_index;

short * index = sar_sbase(angle_index);

short * temp;

int i, j;
double angle, xx, yy;

int x = angle_index->sar_xsize; int halfx = (int) x/2;
int y = angleindex->sar_ysize; int halfy = (int) y/2;

printf("ANGLEINDEX has size: (%d, %d)\n", x, y);
/******************/
/* print index */

/* print_arraysketch(angle_index);*/
/***************************/

/* calculate angle weights */

/***************************/
for(j=0; j<y; j++) {

for(i=0; i<x; i++) {
xx = (double) i-halfx; /* calculate x dis-
yy = (double) j-halfy; /* calculate y dis
angle = 180*atan(yy/xx)/3.14159;

/* calculate angle
if (angle < 0.0)

*(index+j*x+i) = (short) (180 + ((short)(angle)));
else

*(index+j*x+i) = (short)(angle);

tance away from center */

tance away from center */

in degrees from center */

*(index+halfy*x+halfx) = 0; /* manually set center value to zero */

/* print index */
/******************/

printf("* Finished building angle_index. *\n");



}
/***************************************/

/* builds index for range weighting */
/***************************************
int build_range_index(range_index)
object range_index;

short * index = sar_sbase(range_index);
short * temp;
int i, j;
double range, xx, yy;
int x = rangeindex->sarxsize; int halfx = (int) x/2;
int y = rangeindex->sar_ysize; int halfy = (int) y/2;

printf("RANGEINDEX has size: (%d, %d)\n", x, y);
/*******************/
/* calculate range */

/*******************/
for(j=O; j<y; j++) {

for(i=0; i<x; i++) {
xx = (double) i-halfx; /* calculate x distance away from center */
yy = (double) j-halfy; /* calculate y distance away from center */
range = sqrt(xx*xx+yy*yy); /* calculate absolute distance from center */
*(index+j*x+i) = (short) range;

}

/******************/
/* print index */
/*****************/
printi("* Finished building range_index. *\n");

}



A.2 Orientation Weight Computation

A.2.1 Lisp Code

;;; Computes weights for given input image base on orientation.
;;; Stores weights in global variable *angle-weights*.

(defun weight-interest-image-angle (img orient)
(assert (object-is an-array ing) nil
"interest images list contains a non-array element")
(assert (eq (sk-array-has-element-type ing) a-short) nil
"interest images list contains an array that is not a-short")
(assert (object-is an-array orient) nil
"interest images list contains a non-array element")
(assert (eq (sk-array-has-element-type orient) a-short) nil
"interest images list contains an array that is not a-short")
(allocate-array img)
(allocate-array orient)

(weight-angle-c ing orient *angle-weights*
(car *angle-template*) ; angle indices
(cadr *angle-template*) ; angle table-confirming
(caddr *angle-template*) ; angle table-disconfirming
(cadr *range-template*) ; unused
*default-pixel-weight*)
*angle-weights*

;;; Computes weights for given input image base on orientation
;;; for interest images with weak angle correlation like
;;; interest images generated from DZ.
;;; Stores weights in global variable *angle-weights*.

(defun weight-interest-image-angle-DZ (img orient)
(assert (object-is an-array img) nil
"interest images list contains a non-array element")
(assert (eq (sk-array-has-element-type img) a-short) nil
"interest images list contains an array that is not a-short")
(assert (object-is an-array orient) nil
"interest images list contains a non-array element")
(assert (eq (sk-array-has-element-type orient) a-short) nil
"interest images list contains an array that is not a-short")
(allocate-array img)
(allocate-array orient)

(weight-angle-c img orient *angle-weights*
(car *angle-template*) ; angle indices
(cadddr *angle-template*) ; weak angle table-confirming
(cadddr (cdr *angle-template*)); weak angle table-disconfming
(cadr *range-template*) ; unused
*default-pixel-weight*)
*angle-weights*

A.2.2 C Code

* Based on angle considerations
* Add confirming weights to conf.
* Indices found in ind.
* Lookup Table found in tab.
**********************s****s*************s*/

int weight-angle(img, orient, conf, angleind, angletab,
angletab2, rangetab,

defaultpixelweight)



object img, orient, conf, angleind, angletab, angletab2, rangetab;
int defaultpixelweight;

short * image = sarsbase(img);
short * orientation = sar.sbase(orient);
short * confirm = sarsbase(cont);
short * angle-index = sar-sbase(angle_ind);
short * angle-table = sar-sbase(angletab);
short * angle-table2 = sar_sbase(angletab2);
short * range-table = sarsbase(rangetab);
register short * temp, *otemp;
register short offset;
int val;

int x = orient->sar-xsize;
int y = orient->sarysize;
register int i, j;

printf("***Weighting based on angle.***\n");
/*************************************************
* Initialize weights to 0
*************************************************/

for(temp=confirm, otemp=orientation, j=O; j<y; j++) {
for(i=0O; i<x; i++) {
if (!satsmissing(*otemp)) {
*temp = 0;

} else *temp = *otemp; /* set to nil */
temp++; otemp++;

}
}
************************************************

* compute weight using angle template
**************************************************

for(temp=confirm, otemp=orientation, j=O; j<y; j++) {
for(i=0O; i<x; i++) {
if (!satsmissing(*otemp)) {
/*** angle with respect to origin = abs(*otemp - *angleindex + 90) ***/

offset = abs(*otemp - *angleindex + 90);
if (offset > 180)

offset -= 180;

if ( (*image) >= 128) {
/*****************************c**************/

/* pixel weight when evidence is confirming */
/**************************c*****************/

teamp = *(angletable + offset);
} else {
/c*********************************************/

/* pixel weight when evidence is disconfirming */

/***********************************************/
*temp = *(angletable2 + offset);

}

temp++; otemp++; angleindex++; image++;
}

}
/* printf("****Orientation****\n"); */
/* printarraysketch(orient);*/
/* printf("****Confirming weight:****\n");*/

/* printarraysketch(conf);*/
}



A.3 Range Weight Computation

A.3.1 Lisp Code

;;; Computes weights for given input image base on range.
Stores weights in global variable *range-weights*.

(defun weight-interest-image-range (img orient)
(assert (object-is an-array img) nil
"interest images list contains a non-array element")
(assert (eq (sk-array-has-element-type img) a-short) nil
"interest images list contains an array that is not a-short")
(assert (object-is an-array orient) nil
"interest images list contains a non-array element")
(assert (eq (sk-array-has-element-type orient) a-short) nil
"interest images list contains an array that is not a-short")
(allocate-array img)
(allocate-array orient)

(weight-range-c img orient *range-weights*
(car *range-template*) ; range indices
(cadr *range-template*) ; range table-confirming
(caddr *range-template*) ; range table-disconfirming
(cadr *angle-template*) ; unused
*default-pixel-weight*)
*range-weights*

A.3.2 C Code
*******************************************

* Based on range considerations
* Add confirming weights to conf.
* Indices found in ind.
* Lookup Table found in tab.
*********************************************/

int weight_range(img, orient, conf, range_ind, range_tab,
range_tab2, angle_tab,

defaultpixel_weight)
object img, orient, conf, range_ind, range_tab, range_tab2, angle_tab;
int default_pixelweight;

short * image = sarsbase(img);
short * orientation = sar_sbase(orient);
short * confirm = sar_sbase(conf);
short * range_index = sar_sbase(rangeind);
short * range_table = sar_sbase(range_tab);
short * range_table2 = sarsbase(range_tab2);
short * angle_table = sar_sbase(angle_tab);
register short * temp, *otemp;

register short offset;

int val;

int x = orient->sar_xsize;
int y = orient->sar_ysize;
register int i, j;

printf("***Weighting based on range.***\n");
/*************************************************

* Initialize weights to 0

for(temp=confirm, otemp=orientation, j=O; j<y; j++) {
for(i=0; i<x; i++) {
if (!sat_smissing(*otemp)) {

*temp = 0;
} else *temp = *otemp; /* set to nil */



temp++; otemp++;

}

* compute weight using range template
*************************************************/
for(temp=confirm, otemp=orientation, j=O; j<y; j++) (

for(i=0; i<x; i++) {
if (!sat_smissing(*otemp)) {
if ( (*image) >= 128) {

/* pixel weight when evidence is confirming */
/********************************************/

*temp = *(range_table + (*range_index));
} else (

/***********************************************/

/* pixel weight when evidence is disconfirming */
/***********************************************/

*temp = *(range_table2 + (*range_index));

temp++; otemp++; range_index++; image++;
}

/* printf("****Confirming weight:****\n"); */
/* print_array_sketch(conf);*/
}

A.4 Occlusion Weight Computation

A.4.1 Lisp Code

Computes weights for given input image base on occlusion.
;;; Stores weights in global variable *occlusion-weights*.

(defun weight-interest-image-occlusion (img orient)
(assert (object-is an-array img) nil
"interest images list contains a non-array element")
(assert (eq (sk-array-has-element-type img) a-short) nil
"interest images list contains an array that is not a-short")
(assert (object-is an-array orient) nil

"interest images list contains a non-array element")
(assert (eq (sk-array-has-element-type orient) a-short) nil
"interest images list contains an array that is not a-short")
(allocate-array img)
(allocate-array orient)

(setq *occlusion-weights* *stratiform-rain*)
*occlusion-weights*

A.5 Combining Weights

A.5.1 Lisp Code

;;; Combines weights. num-weights is number of maps of weights
to be combined.

;;; Returns an array containing the combined weights.

(defun combine-weights (num-weights)
(let* ((comb-w (copy-of-array orient)))
(combine-weights-c comb-w



*angle-weights*

*range-weights*

*occlusion-weights*

num-weights)

comb-w)

A.5.2 C Code
/*********************************************

* Method of combining weights
********************************************/

int combineweights(conf, angle-weights, range_weights, occlusionweights,

num_weights)

object conf, angle_weights, range_weights, occlusionweights;

int num_weights;

short * confirm = sarsbase(conf);

short * a_w = sarsbase(angle_weights);

short * r_w = sar_sbase(rangeweights);

short * o_w = sar_sbase(occlusion_weights);

register short * temp, *otemp;

double val, div;

register short a_val, r_val, osval;

int testing=O;
int notesting = 0;

int x = conf->sarxsize;

int y = conf->sar_ysize;

register int i, j;

if (num_weights == 2)
printf("***Combining Angle and Range weights***\n");

/*************************************************

* Combine weights
*************************************************/
for(temp=confirm, j=O; j<y; j++) {
for(i=0; i<x; i++) {
if (!sat_smissing(*temp)) {
if (!sat_smissing(*o_w)) {
if (*o_v > 128) testing++;

else notesting++;
} else notesting++;

a_val = *a_w; rval = *r_w; o_val = *o_w;
if (num_weights == 2) {

val = (double) ((a_val*a_val)+(r_val*r_val)) / (a_val+r_val);
*temp = (int)ROUND(val);

}

temp++; a_u++; r_w++; o_v++;

printf("*****occlusion testing:%d no:%d*****\n", testing, notesting);
}



A.6 Top Level Function for requesting the com-
putation of pixel-level weights for one inter-
est image

A.6.1 Lisp Code

;;; Computes weights for given input image and orientation
based on angle and distance from radar.

;;; Returns an array containing weights.

(defun weight-interest-image (img orient)
(weight-interest-image-angle img orient)
(weight-interest-image-range img orient)
(weight-interest-image-occlusion img orient)

(combine-weights 2)

(defun weight-interest-image-DZ (img orient)
(weight-interest-image-angle-DZ img orient)
(weight-interest-image-range img orient)
(weight-interest-image-occlusion img orient)

(combine-weights 2)

A.7 Calling for computation of pixel-level weights
in MIGFA

A.7.1 Lisp Code fragments
The following fragments are found in the file xgff_library.lsp in functions like
detect -tdwr-non-cell-conv-motion. They create the structural links between the
interest image and pixel-level weight map.

(setf (has-weights match) (weight-interest-image match orient))

(setf (has-weights match) (weight-interest-image-DZ match orient))

(setf (has-weights match) (weight-interest-image match orient))

(setf (has-weights match) (weight-interest-image match orient))

(setf (has-weights match) (weight-interest-image match orient))



A.8 Computing an Average Weighted Interest Im-
age

A.8.1 Lisp Code
These functions found in file expxgff . sp. They are among the upper level MIGFA
functions which call the necessary procedures to perform pixel-level weight based data
fusion.

(defun compute-weighted-interest-image

(koptional (interest-image-set *interest-image-set*))
(setq *interest-images* nil)
(dolist (detector interest-image-set)

(push (funcall (intern (concat "DETECT-" detector)))
*interest-images*))

(setq interest-imgs
(ecase *radar-system*
(asr9 (assemble-asr9-evidence))
(tdwr (assemble-tdwr-evidence))))

(setq *interest* (combine-weighted-interest interest-imgs))
(when *comb-dbg*

(display-interest-images)
(when *append-figures* (append-figure))
(conditional-break "done"))

*interest*)

(defun combine-weighted-interest (&optional (interest-imgs *interest-images*))
(if *pixel-weights-off-dbg*

(let* ((interest (average-interest-images interest-imgs)))
(print "COMBINING INTEREST")
(print "COMBINING INTEREST")
(setq interest

(average-interest-images
(list interest (get-interest-image 'anticipation))))

(setq *interest* interest))
(let* ((interest (average-weighted-interest-images interest-imgs)))
(print "COMBINING ***WEIGHTED*** INTEREST")
(print "COMBINING ***WEIGHTED*** INTEREST")
(setq interest

(average-interest-images
(list interest (get-interest-image 'anticipation))))
(setq *interest* interest))

average-weighted-interest-images

This is file fusion_comb-interest .isp. It has the function that performs the fusion
of interest images using averaged weighting at the pixel level.

create a set of default weights = 60 ;;;

(setq *default-pixel-weights-array* (copy-of-array angle-index))
(set-elements-in-interval *default-pixel-weights-array*

*default-pixel-weights-array*
*default-pixel-weight*
0 500 nil)

(eval-when (compile load eval)
(define-attribute 'has-weights))



Input: List of interest images.

;;; Effects: Combines several interest images into one interest image

based on pixel-level weights.
;;; Output: A combined interest image

(defun average-weighted-interest-images (intrinsic-images)

(print "In average-weighted-interest-images")
(dolist (img intrinsic-images)

(assert (object-is an-array img) nil
"interest images list contains a non-array element")

(assert (eq (sk-array-has-element-type img) a-short) nil
"interest images list contains an array that is not a-short")

(allocate-array img))

(let* ((confirming-weights (cons nil nil))
(disconfirming-weights (cons nil nil))
(pixel-weights (cons nil nil))
(number-images (length intrinsic-images))
(output (copy-of-array (car intrinsic-images))))

(assert (<= number-images 10) nil
"average-interest-images - max number of images is 10")

(unless (= number-images 1)
(dolist (img intrinsic-images)

(let ((pix-wt (has-weights img))
(con-wt (has-confirming-weight img))

(dis-wt (has-disconfirming-weight img)))

(if pix-wt (print "Using *default-pixel-weights-array*"))
(print "Confirming and disconfirming weights")
(print con-wt)
(print dis-wt)

(tconc pixel-weights (if pix-wt
pix-wt

*default-pixel-weights-array*))
(tconc confirming-weights (if con-wt con-wt 1.0))

(tconc disconfirming-weights (if dis-wt dis-wt 1.0))))

(ssu_avgweighted_interest-c output
intrinsic-images
(car pixel-weights)
(car confirming-weights)
(car disconfirming-weights)
*default-pixel-weight*
number-images))

output))

A.8.2 C Code
This function is found in file test.lsp with the other data fusion tools. It is grouped
with other compilable C functions.

ssu_avg_weightedinterest (output, imgs, pixel_weights, conf_weights, disconftweights,
default_pixelhweight, num_imgs)

object output, imgs, pixel_weights, conf_weights, disconf_weights;
int default_pixelweight;
int num_imgs;

{ short *xop = sar_sbase(output);



double c_wts[MAX_NUMBERIMGSTOAVG];
double dc_wts[MAX_NUMBER_IMGS_TOAVG];
short *p_wts[MAXNUMBERIMGS_T0_AVG];
short *xip[MAX_NUMBER_IMGS_TO_AVG];
int j,k;
int jsize = output->sarxsize * output->sar_ysize;
double sum, count, val, avg, wt, pwt, d_p_w;

printf("Using ssu_avg_weighted_interest-c\n");

d_p_w = (double) default_pixel_weight;
for(k = 0;

k < num_imgs;
++k, imgs = imgs->satcdr,
pixel_weights = pixel_weights->sat_cdr,
conf_weights = conf_weights->sat_cdr,
disconftweights = disconf_weights->sat_cdr) {

xip[kj = sarsbase(imgs->sat_car);

p_wts[k] = sar_sbase(pixel_weights->sat_car);
cwts[k] = conf_weights->satcar->sat_ldouble;
dc_wts[k] = disconftweights->sat_car->sat_ldouble; }

for(j = 0; j < jsize; ++j) {
for(k = 0, sum = 0.0, count = 0.0; k < numimgs; ++k) {

val = *(xip[k]);
pwt = *(p_wts[k]);
xip[k]++; p_wts[k]++;
if (!sat_smissing(val)) {

if (pwt < 0.0) {
pwt = 0.0; /* don't allow negative values */

}

/***************************************************************/
/* incorporate pixel weights by altering wt only */

if (val >= 128) {
wt = c_wts[k)*pwt/128.0;

} else {
wt = dc_wts[k]*pwt/128.0;

sum += val * wt;
count += wt; } }

avg = (count == 0.0) ? SAT_SMISSING : sum / count;
*xop = (int)ROUND(avg);
xop++; }

return(0); }

A.9 Lines to enable Lisp to access C functions
(defentry build-range-index-c (object)

(int build_range_index))
(defentry build-angle-index-c (object)

(int build_angle_index))
(defentry build-angle-index2-c (object)

(int build_angle_index2))
(defentry print-array-c (object)

(int print_array_sketch))
(defentry weight-range-c (object object object object object

object object int)
(int weight_range))

(defentry combine-weights-c (object object object object int)
(int combine_weights))

(defentry weight-angle-c (object object object object object
object object int)



(int weight_angle))
(defentry weight-angle-and-range-c (object object object object object

object object int)
(int weight_angle_andrange))

(defentry copy-elements-of-array-c (object object int int int int)
(int copy_elements_of_array))

(defentry add-elements-of-array-c (object object int int int int)
(int add_elements_of_array))

(defentry ssu_avg_interest-c (object object object object int)
(int ssu_avg_interest))

(defentry ssu_avg_weighted_interest-c (object object object object object
int int)

(int ssu_avg_weighted_interest))

(build-fusion-templates)
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