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ABSTRACT

Purpose of this paper is to develop a pricing model feor
bond options with long term to expiration using results from
time series analysis on interest rate movement.

In this paper the yield curve model for bond option
pricing (Ho and Lee, 1986) is extended in three aspects.

1 Forward short-term rate structure is used instead of
zero-coupon bond price structure.

2 Interest rate movements were modeled at three different
points on the forward short-term rate curve.

3 ARMA process with Jump/GARCH-M disturbance is used to
model the movements of forward short-term rates.

We performed time series analysis‘ on innovation in
forward short-term structure {I .}, defined as I -Rj R+1¥q,
where R, . is j period forward short-term rate observed at 'time

I, t
t.
Our findings on innovation series are as follows.

1 For shorter j, {I.} has positive autocorrelation. Risk
premium have serial autocorrelation and/or market is
inefficient.

2 For longer j, {I,} is negatively autocorrelated. This is
consistent with mean reversion in interest rate movement.

3 The series {I,} is heteroskedastic. For shorter j, jump
style heteroskedast1c1ty is dominant, while for longer j,
autoregressive conditional heteroskedasticity (ARCH) is

dominant.
4 Time varying risk premium (GARCH-M effect) are detected.

Although we worked on data from Japanese bond market, our
methodology can be applied to other markets as well.

Thesis Supervisor: Dr. Andrew W. Lo
Title: Associate Professor of Finance

Thesis Reader: Dr. Chi-fu Huang
Title: Professor of Finance
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1. Introduction

1.1 Purpose of this paper

Immediate purpose of this paper is to develop a pricing
model for bond option with long period to its expiration. We
also expect that we develop better understanding on movements
of term structure of interest rates and that our model will be

applicable to interest rate contingent claims in general.

Our methodology in this paper is to develop a extended
version of yield curve model for bond option pricing using
technique of financial time series analysis. Here we briefly
list the major sources of our key ideas. The base of our
model is the yield curve model by Ho and Lee!, which is
flexible enough to be accommodated with theories and findings

on interest rate financial time series. From the field of

1. Ho, Thomas S. Y., and Sang-bin Lee, 1986a. "Term
Structure Movement and Pricing Interest Rate Contingent
Claims." The Journal of Finance, Vol.41] No.5, pp.101l1-
1029.

Ho, Thomas S. Y., and Sang-bin Lee, 1986b. "Term
Structure Movements and Interest Rates Contingent Claims
Pricing." Working paper series, number 375. Salomon
Brothers Center for the Study of Financial Institutions,
Graduate School of Business Administration New York

University.

Ho, Thomas S. Y., 1990a Strategic Fixed Income
Investment. Dow Jones Irwin, Chapter 11.
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empirical study on interest rate movement Fama and Bliss

(1987)2 provided us useful discussion on mean reversion and

time varying risk premium. In the field of financial time

series analysis we obtained the concept of time varying

conditional variance from Taylor model® and ARCH models®, and

we also learned from discussions on alternatives of random

walk hypothesis in financial time series in Lo and MacKinlay

(1988)°.

1.2

Structure of this paper

We start this paper with an overview of relevant theories

and methodologies of option pricing, interest rate movement,

Fama, Eugene F. and Robert R. Bliss 1987 "The Information
in Long-Maturity Forward Rates” The American Economic
Review Vol.77 No.4, pp.680-692

Taylor, Stephen 1986 Modeling Financial Time Series, John
Wiley & Sons Ltd.

Many versions of autoregressive conditional
heteroskedasticity models are developed. Bollerslev,
Chou and Kroner (1990) provides exclusive survey of those
models.

Bollerslev, Tim, Ray Y. Chou, and Kenneth F. Kroner 990
"ARCH Modeling in Finance: A Review of The Theory and
Empirical Evidence," Working Paper No.97 November, 1990,
Kellogg Graduate School of Management, Northwestern

University

Lo, Andrew W. and A. Craig MacKinlay 1988 "Stock Market
Prices Do Not Follow Random Walks: Evidence from a Simple
Specification test,"” The Review of Financial Studies

Vol.1l No.1, pp.41-66



and financial time series analysis in section 2. 1In section
3, we describe observed characteristics of forward short-term
interest rate movement. Our findings are serially correlated
prediction error of pure expectation hypothesis, mean
reversion, and autoregressive conditional heteroskedasticity.
In section 4, we build ARMA model (autoregressive moving
average model) with jump and GARCH-M (generalized
autoregressive conditional heteroskedasticity in mean)
disturbance and perform maximum likelihood estimation of its
parameters. Estimated model is used to extended yield curve

model in section 5. We conclude in section 6.



2. Theories and Models

2.1 Pricing Models for Interest Rate Options

Our direct motivation is to fill the needs for better
method in pricing callable corporate bonds. A callable
corporate bond can be valued as the portfolio of a non-
callable corporate bond and a call option or series of call

options. Typical structure of a call provision embedded in a

callabie bond is;

(a) European call for the first half of the life of the
host bond, and American call thereafter with call

price declining according to a schedule over time,

or

(b) Series of European calls expiring in sequence on
each coupon payment date during the latter half of
the life of the host bond, having call price

declining sequentially to the par value.

Dyer and Jacob (1989)° reported that three categories of

6. Dyer, L. J., and D.P, Jacob 1989 "A Practitioner's Guide
to Fixed-Income Option Models," The Journal of
International Securities Markets, Spring 1989, IFR

9



interest rate option pricing models are used in practice.

They are:

(1) Black-Scholes models, which assume log-normally

distributed bond price,

(2) binomial models, which assume log-normal

distribution of yield to maturity, and

(3) yield curve models, which model dynamics of the

yield curve.

Dyer and Jacob 1989 reasonably commented that the former
two categories involve inappropriate assumptions (constant
discount rate and constant volatility) and uncomfortable
results (arbitrage opportunities and negative interest rates),
while yield curve mcdels can be set up in some consistent way.
Furthermore, it is reported that although the three categories
are in reasonable agreement for short-term options, yield
curve model is the clearly preferred method for long term

options.

Hull (1989)7, and Hull and White (1990)%® provides useful

7. Hull, John, 1989, Options, Futures, and Other Derivative
Securities, Prentice Hall, Chapter 10.

10



overview of methods for interest rate derivative securities.
According to Hull and White (1990), yield curve model
initiated by Ho and Lee (1986) is unique in that their model
is consistent with any shape of currently observed term
structure. Two other major models deveioped by, Cox,
Ingersoll, and Ross (1985)° and by Vasicek (1977)° were also

extended to be consistent with given shape of term structure

by Hull and White (1990).

The information contained in the shape of the yield curve
observed at time t implies a structure of forward rates. The
forward rate structure at time t can be interpreted as the sum
of expected spot rates and risk premium. Therefore, models
that are consistent with particular shape of yield curve
observed in the market at time t, are consistent with
expectation by market participants about the future interest
rates as of time t. This is one of the common advantages of
the yield curve models that are consistent with yield curve at

t=0, while models of older generation examined in Dobson,

8. Hull, John, and Alan White 1990 "Pricing Interest-Rate-
Derivative-Securities.” The Review of Financial Studies

Vol.3 No.4, pp.573-592

9. Cox, J. C., J. E. Ingersoll, and S. A. Ross 1985 "A
Theory of the Term Structure of Interest Rates,"
Econometrica, Vol. 53 No. 2, pp. 385-467

10. Vasicek, C. A., 1977, "An Equilibrium Characterization of
the Term Structure," Journal of Financial Economics,
Vol.5 pp. 177-188

11



Sutch, and Vanderford (1976)!! are not based on expectation

incorporated in forward rates prevailing in the market.

Another major advantage of yield curve models is that it
allows us to concentrate on modeling process of change in
interest rates, while other models those ceal price change of
bonds require us to trace mixed effects of seasoning of bonds
and movement of interest rates. Since we attempt to perform
time series analysis of rate movement, free from contamination

by seasoning effects, this property is important.

The original version of the yield curve model by Ho and
Lee (1986a) was a single factor model of yield curve. The
yield curve was to be transformed under path dependent
condition and arbitrage-free condition in some stochastic way
by a perturbation function, which is a function of term and
independent of time and state. As noted in the Ho and Lee
(1986a) and developed somehow in Ho and Lee (1986b), their

model can easily be extended to have time varying parameters,

11. Dobson, Sutch, and Vanderford (1976) provides a list of
models for expectation on interest rate. Most of them
are some kind of ARIMA model based on time series of the
past and present short term rates, and some others are
ARIMA model for the transformed same series. Clearly,
these models do not count for unique information included
in the currently prevailing forward rates, which are
implied in the currently prevailing yield curve.

Dobson, Steven W., Richard C. Sutch, and David E.
Vanderford 1976 "An Evaluation of Alternative Empirical
Models of The Term Structure of Interest Rates," The
Journal of Finance Vol.31 No.4, pp.1035-1065

12



state dependent form and/or multiple factors.

This flexibility allows an extension of the yield curvé
model using the idea such as "key rate durations" in Ho
(1990b)!?, which suggests to expand the single factor method
of modelling term structure movement to multi factor method.
Key rate duration is an idea to explicitly model interest
rates movements at multiple points along the yield curve,

rather than to look only at short-term rate.

Heath, Jarrow, and Morton (1990)¥ is an attempt to

extend Ho and Lee mcdel in the three ways;

(1) Extension from single factor model to two factor

model (it allows more general N factor model),

(2) Generalization from discrete time model to

continuous time model, and

12. Ho, Thomas S. Y., 1990b, Key Rate Durations: A Measure of

Interest Rate Risks Exposure, Working Paper Series S-90-
17, Salomon Brothers Center for Study of Financial
Institutions, Leonard N. Stern Schocl of Business, New

York University

13. Heath, David, Robert A. Jarrow, and Andrew Morton 1990
"Contingent Claim Valuation With a Random Evolution of
Interest Rates,"” Review of Futures Markets, Vol.9 No.l,

pp.54-82, Chicago Board of Trade

Heath, Jarrow, and Morton (1990) contains two comments
from Hull, John of Toronto University and Habeeb, Gregory
G. of PaineWeber Inc., and some discussions.

13



(3) Use of forward rates instead of price of zero-

coupon bonds, i.e. yields.

Regarding the appropriate direction to which yield curve
models are to be extended, Hull, John commented to Heath,
Jarrow, and Morton (1990) that it is possible to model either
of bond price, forward rate, or short-term rate, and also that
short-term based model do not need significant arbitrage-free
condition except non-negativity of short-term rate, while

other two types needs careful treatment to avoid arbitrage.

2.2 Interest Rate Movement Theories
;

ARMA models, or distributed lag models, have been popular
method for modeling interest rate movements. A catalogue of
empirical models on interest rate movement is presented by
Dobson, Sutch, and Vanderford {(1976). All of the models
discussed were single factor time series models, which can be
seen as some kind of ARIMA model. Such models had been
presented as candidates for good linear estimator of interest
rate movements. However, it is not clear why interest rate
movement follow such process that has serial autocorrelations
and whether such serial correlation implies violation of
martingale. If there exists predictability, which can be

represented using ARMA models, in interest rate movement on

14



average, why such opportunities are faded out through

arbitrage ?

For survey of interest rate theories; the following two
literatures provided good starting points. Wood and Wood
(1985)* provided wuseful overview of development in
expectation theory of interest rates, starting from
traditional expectation theories to modern expectation
theories by Cox, Ingersoll, and Ross (1981)%%, Melino
(1986)!° also provides thorough overview of development both
in theoretical 1literatures and empirical studies on term

structure of interest rates.

After survey of 1literatures, our major concern on

modeling interest rate movement were summarized as the

following points;

(a) market inefficiency (in the sense of martingale),

14. Wood, John H., and Norma L. Wood 1985 Financial Markets,
Harcourt Brace Jovanovich, San Diego, California, Chapter

19

15. Cox, John C., Jonathan E. Ingersoll, and Stephen A. Ross
1981 "A Reexamination of Traditional Hypothesis about the
Term Structure of Interest Rates," The Journal of Finance

Vol.36 No.4 pp..769-799

16. Melino, Angelo, 1986, The Term Structure of Interest

Rates: Evidence and Theory, NBER Working Paper Series
No.1828, National Bureau of Economic Research

15



(b) mean reversion (autoregressive rate movement),

(c) risk premium (constant term premium, or time

varying risk premium, etc.), and

(d) source of observed excess kurtosis and
predictability of conditional variance (ARCH

effects, jump effects, etc.).

For discussion on martingale, some aspects of mean
reversion, and risk premium, we found helpful discussions in
the literatures on interest rate movements. For discussion on
some other aspects of mean reversion and excess kurtosis (fat
tailed shape) of distribution, we found relevant discussions
in several literatures on financial time series other than

interest rate movements.

2.2.1 Martingale, risk premium, and serial correlation

Martingale in forward short-term interest rates is

studied theoretically and empirically by Roll (1970)"

17. Roll, Richard 1970, The Behavior of Interest Rates, An

Application of The Efficient Market Model to U.S.

Treasu Bills, Basic Books, Inc., Publishers, New York,
London

16



following model of Samuelson (1965)!%. Roll (1970) stated

that:

Denoting;

Rj't as j-1 year forward one year rate observed

at time t,
L,,. as risk premium included in R ./ and
B, as knowledge available as of time t,
and defining
X,,as R, -L, ,
the sequence {th} follows pure martingale, or
equivalently,
Et-l(ﬁj,t_f‘j,t | B.,) = Ryit,e-17Dyug, 000
at time t-1 are random variabls.

where R, . and ﬁL

t t

This provides definition of martingale for process of
risk premium adjusted forward short-term interest rates, which
Hull, John (1990) suggested to use as the easiest-to-handle
building block for extended yield curve models?'?, The
observable variable {Ijﬂ} defined as Ij’,c-'=Rj't—Rj,,1'1,'_1 here is the

sum of the following two components.

18. Samuelson, Paul A. 1965 "Proof That Property Anticipated
Prices Fluctuate Randomly," Irndustrial Management Review
Vol.6 No.2, pp..41-49

19. Hull, John (1990) comment to Heath, Jarrcw, and Morton
(1990), Review of Futures Markets, Vol.9 No.1l, pp..77-78,
Chicago Board of Trade

17



(1) Unexpected innovation in forward short term rate,
let—xj"lrt'l *

(2) Difference between th and Lyhtd.
Since risk premium L, . is unobservable, we have to identify
functional forms of Ljﬂ to be tested. This is necessary, when

we attempt to answer the questions,

(1) if {X,.} follows martingale, and/or

(2) if there are some evidence for certain type of risk

premium.

Cox, Ingersoll, and Ross (1985) model assumes term
premium increasing with maturity, while Fama and Bliss (1987)
pointed out that behavior of expected returns is inconsistent
with simple term structure models in which expected returns
always increase with maturity, and suggested time varying risk
premium. We consider the following two types of functional

representation of risk premium.

(1) L, as a monotonously increasing function of j

and independent on t. This corresponds to the

18



(2)

original idea of 1liquidity premium by Hicks
(1946)%°., In this case, series of innovation in
forward rate, {ILt} defined as Ijﬂ=RLt-Rth4,
follows random walk with negative drift C=L,-L,,,<0.
From martingale hypothesis,
Et-llxj,t] = xj,t-l’

and by definition,

E.[X, J4+Ly

xj+1,t-1+Lj+1,t-1 = Rj+1,t-1 *

E.,[R,.], and

Then,
El Rj,t] -Rju,t-:l
= {E.,[X, ] -xj,t-1}+{Lj,t-Lj+1,t-1}

= LL,, =C < 0.

The second method is the use of ARCH-M model
by Engle, Lilien, and Robins (1987)%, which
revealed that expectation hypothesis holds under
the ARCH-M style time varying risk premium and that
the result is robust. Time varying risk premium
also provides explanation for the rejection of
expectation hypothesis by recent studies where

constant term premium hypothesis is wrongly applied

20.

21.

Hichs, John (1946) Value and Capital, 2nd ed., Oxford
Press, London

Engle, Robert F., David M. Lilien, and Russell P. Robins

1987 "Estimating Time Varying Risk Premia in the Term

Structure: The ARCH-M Model," Econometrica Vol.55 No.2,
Pp.391-407

19



for volatile periods.

The risk premium at time t, Ly s is defined as
a linear function of Jht, where H, is conditional
variance of Rj at time t. Specifically, we use
jump/GARCH process as {H,}, and define L, =PVH,
where P is a positive constant. This is a extended
version of the GARCH-M model by Bollerslev, Engle,
and Wooldridge (1988)% to include jump components.
In this case, time series of innovation in the
forward rate {ILt}, defined as Ijﬁ=RLt-Ry4mdf
follows a process as follows.

Ij,t = [Rj,t-Rj«!»l,t—l]+P[JHj,t-IHj+1,t-1]

= X, + PA[VH,] + €er

while denoting D as difference operator and
assuming change of H, . due to small change in j is
negligible. Then, it is clear that test for serial
correlation of {I .} is insufficient as the test of
martingale property of {X }. We need to estimate
{H )} process and adjust for serial correlation
caused by it. We need to test I -PA[VH,] for serial
correlation in order to make inference if E[X_]=0,

i.e. whether the rate movement is efficient in the

22.

Bollerslev, Tim, Robert F. Engle, and Jeffrey M.
Wooldridge 1988 "A Capital Asset Pricing Model with Time- .

varying Covariances," Journal of Political Eccnomy
Vol.96, No.l

20



sense of martingale.

2.2.2 Mean reversion

Although the idea of market efficiency leads to the
concept that risk premium adjusted forward short-term rate
process {R.} should follow pure martingale, there exists
another important point of view for interest rate movement.
The idea of mean reversion in the interest rate movement
process leads to stationary ARMA style process rather than
random walk suggested by martingale concept. Importance of
mean reversion is examined by Hogan and Breidbart (1990)2%.
Hogan and Breidbart compared a yield curve model without mean
reversion against another vyield curve model with mean
reversion features, and concluded that different handling of
mean reversion results large price difference in long-term

options, while price difference is smaller for shorter-term

options.

Theoretical and empirical study on forward interest rate

by Fama and Bliss (1987) presented a mean reverting model.

23. Hogan, Michael and Seth Breidbart 1990, "The Long-Term
Behavior of Interest Rates And Options Pricing," The
Journal of International Securities Markete, Spring 1990,
pPpP..49-56

21



They used AR(1l) time series to show that mean reversion is a
general property of stationary ARMA processes, and that mean
reversion counts for half of the forward rate volatility in
the long run. Suppose a time series of forward one year rate

observed at time t follows the AR(1l) process,
R = C+0OR_, +¢, [6] <1
where R, is forward one period rate at time t,

1-0 is a parameter for the speed of

reversion,

C/(1-0) is the unconditional mean, say u,

or the target of the reversion,
€, is disturbance at time t, and

the inequality imposed on © is condition

for stationarity.

The following equivalent expression,
Et-]_[Rt] = eRt-l + (1-6)“1
presents that E[R ] is the point which divides the vertex of

[R._,,#] with the proportion of (1-6):08. Another expression,

E.,[R-R.,] = -(1-8) (k-R_,),

22



shows that expected one period change in R, on condition R,
has a size proportional to the distance between R _, and u and
that the change has direction from R _, to u. As a general

property of stationary ARMA model, when s gets larger;

(1) Conditional expectation of E[Ru_IRt] quickly

approaches unconditional mean of E[R,], and

(2) Covariance between R, and R, , COV(R,R,, ), converges

to zero.

Therefore, conditional expectation and conditional variance of

rate change between time t and time t+s can be written as

follows.
(1) E[ R,,"R, | R, 1 = EIR,[R] - R
When s get larger, this approaches to
," = Rt’
where u is the unconditional mean E[F_ ].
(2) VAR[ R, R, | R, ]

= VAR[R,, |R,] + VAR[R] + 2COV[R,, ,R,]

When s gets larger,

VAR[R approaches VAR[R ],

tea)
COV[R,, ,R,] approaches 0, and

VAR[ R, -R, | R, ] approaches 2VAR[R,].

23



Therefore, the proportional contribution of mean
reversion to the entire variance,

VAR[R,, ] / VAR[R

t+8

-R,] approaches 50%

from the lower side.

There are several bond option pricing models, which
applied the idea of mean reversion. Jamshidian (1989)2% used
a mean reverting stochastic process, Ornstein-Uhlenbeck
process, for the pricing of option on zero coupon bonds and
derived closed form solution. Cox, Ingersoll, and Ross (1985)
also applied the mean reversion hypothesis. From the point of
view of empirical study, Fama and Bliss (1987) provided

supporting evidence for mean reversion hypothesis.

2.3 Models for other financial time series

Outside the studies on the term structure of interest

rates, we could find relevant literatures for our purpose.

Mean reversion had long been discussed for movement of
term structure of interest rate. However, recently mean
reversion is reported and discussed in the stock markets and

foreign exchange markets as well with discussion on

24. Jamshidian, F., 1989 "An Exact Bond Option Formula" The
Journal of Finance Vol.44 No.l pp.205-209

24



statistical techniques for detection and modeling.

Heteroskedasticity is reported for stock market data,
foreign exchange market data, commodity market data, and
almost al% other kinds of financial time series data.
Techniques to analyze such heteroskedasticity have.also been

developed and ready to be used in the field of interest rate

study.

2.3.1 Other aspects of mean reversion

Lo and Mackinlay (1988), Poterba and Summers (1988)2°,
and Fama and French (1988)%% provides discussion on mean
reverting properties of financial time series. Although those
discussions are based on data of stock returns, methodological
points are easily applied to other financial time series.

Among these, Poterba and Summers (1988) reported that;

(1) stock return over short horizon tend to show
positive autocorrelation, while those over longer

horizon tend to show negative autocorrelation, and

25. Poterba, James M., and Lawrence H. Summers 1988 "Mean
Reversion in Stock Prices Evidence and Implications,"
Journal of Financial Economics Vol.22 pp.27-59

26. Fama, Eugene F., and French R. Kenneth 1988 "Permanent
and Temporary Components of Stock Prices," Journal of
Political Economy Vol.96 No.2 pp.246-273

25



that

(2) these observations on serial correlation are so
subtle that random walk hypothesis cannot be
rejected in many cases at conventional size of

statistical tests.

Poterba and Summers (1988) used sum of a random walk and
a stationary mean reverting process as their model and also
reported that standard statistical software packages fail to
estimate an ARMA(1,1) plus a random walk model from a data set
generated by Monte Carlo simulation, when random walk

components contributed 75% or more of the entire variance.

Variance ratio test is examined and suggested to detect
serial correlation from both homoskedastic or heteroskedastic
data sets by Lo and MacKinlay (1988), Lo and MacKinlay

(1989)?’, and Poterba and Summers (1988).

2.3.2 Excess Kurtosis in distribution

Financial time series tend to have 1leptokurtic

distribution rather than to have normal distribution. Early

27. Lo, Andrew W., and A. Craig MacKinlay 1989 "The Size and
Power of the Variance Ratio Test in Finite Samples,"
Journal of Econometrics Vol.40 pp.203-238

26



study on this point can be found in Davies, Speeding, and
Watson (1980), where skewness and kurtosis is analyzed for
ARMA process with non-normal residuals?®*. This can result
either from some generating process with 1leptokurtic
distribution, 1like student's t-distribution and logistic
distribution, or from heteroskedastic behaviér of
conditionally normally distributed generating processes of
financial time series. Further, as is pointed out in
Mandelbrot (1963)%° large change in speculative price series
do not distributed uniformly, rather they are somewhat
clustered. This suggests some serial dependence among

conditional variances, i.e. heteroskedasticity with serial

dependence.

These observations and ideas combined, lead to a group of
models called autoregressive conditional heteroskedasticity
(ARCH), where series of conditional variance is assumed to
follow ARMA processes. The original ARCH model, where

conditional variance was assumed to follow MA(4) process with

28. Davies, Neville, Trevor Speeding, and William Watson 1980
"Autoregressive Moving Average Processes with Non-Normal
Residuals," Journal of Time Series Analysis, Vol.1l No.2,

pp.103-109

29. Mandelbrot, Benoit. 1963 "Forecasts of Future Prices,
Unbiased Markets, and 'Martingale' Models" The Journal of

Business Vol.36, pp.394-419
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specific lag pattern, was developed by Engle (1982)3%. This
model was analyzed by Milhgj (1985)3, Weiss (1986)3? and
also extended to ARMA model with ARCH disturbance by Weiss
(1984)3. The model followed a quite natural course of
development and was extended by Bollerslev (1986)3* to have
conditional variance time series that follows ARMA process
(generalized autoregressive conditional skedasticity, GARCH).
GARCH process is discussed by Engle and Bollerslev (1986)%,
and by Bollerslev (1988)3, In ARMA process with ARCH
disturbances by Weiss (1984), ARCH model was applied to
residuals from usual ARMA method. However, from the point of

view of risk-return trade off, the estimated magnitude of

30. Engle, Robert F. 1982 T"Autoregressive Conditional
Heteroskedasticity with Estimates of the Variance of U.K.
Inflation," Econometrica Vol.50 No.4, pp.987-1008

31. Milhgj, Anders 1985 "The Moment Structure of ARCH
Processes,”" Scandinavian Journal of Statistics Vol.1l2

pp.281-292

32. Weiss, A.A. 1986 "Asymptotic theory for ARCH models:
Estimation and testing," Econometric Theory Vol.2 pp.107-
131

33. Weiss, Andrew A. 1984 "ARMA models with ARCH errors,"
Journal of Time Series Analysis Vol.5 No.2 pp.129-143

34. Bollerslev, Tim 1986 "Generalized Autoregressive
Conditional Heteroskedasticity," Journal of Econometrics
Vol.31, pp. 307-327

35. Engle, R.F., and Tim Bollerslev 1986 "Modeling the
persistence of conditional variances," Econometric Review

Vol.5 pp.1-50

36. Bollerslev, Tim 1988 "On the Correlation Structure for
the Generalized Autoregressive Conditional

Heteroskedastic Process, " Journal of Time Series Analysis
Vol.9 No.2 pp.121-131
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conditional variance should be reflected in the estimation of
conditional expectation, i.e. conditional expectation and
conditional variance must be estimated simultaneously, not one
after another. Then, ARCH-M model was developed for time
varying risk premium by Engle, Lilien, and Robins (1987).
This course was followed by GARCH(1,1)-M model for testing
CAPM in Bollerslev, Engle, and Wooldridge (1988), and by
Factor-ARCH model in Engle, Ng, and Rothchild (1990)%.
Nelson (1990)3 studied continuous time version of ARCH
models. Bollerslev, Chou, and Kroner (1990) provides
exclusive survey of ARCH models, and Akgiray (1989)%

provides comprehensive introduction of several types of ARCH

models with applications.

While ARCH type models provide explanation for some
portion of excess kurtosis reported in many financial time
series,-residuals from ARCH models still tend to have excess
kurtosis. There should be different source of
heteroskedasticity. Here jump processes, which are not

serially correlated, are introduced as a candidate for the

37. Engle, Robert F., Ng, Victor K., and Rothchild, Michael
1990 "Asset Pricing with a Factor-ARCH Covariance
Structure" Journal of Econometrics Vol.4%, pp. 213-237

38. Nelson, Daniel B. "ARCH Models as Diffusion
Approximations,” Journal of Econometrics Vol.45, pp.7-38

39. Akgiray, Vendat 1989 "Conditional Heteroskedasticity in
Time Series of Stock Returns: Evidence and Forecasts,"
Journal of Business Vol.62 No.l, pp.55-80
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model of remaining excess kurtosis. This model was studied
for stock returns and foreign exchange markets by Jorion
(1989)%°. A model for interest rates which includes both

jump and diffusion components are also developed in Ahn and

Thompson (1988)%,

2.4 Summary

We analyze the time series of {Ibt}, innovation in
forward rate structure, defined as IjJ=RLt-Rthd' We
concentrate on detecting and estimating the following
features of the {I } process at different length of j, since

these are relevant for bond option pricing.
(1) Market efficiency in the sense of martingale.

(2) Evidence for constant term premium hypothesis or

for time varying risk premium (jump/GARCH-M).

(3) Evidence for identifying source of excess kurtosis

(jump or GARCH).

40. Jorion, Philippe 1989 "On Jump Precesses in the Foreign
Exchange and Stock Markets," The Review of Financial
Studies Vol.1l No.4, pp.427-445

41. Ahn, Chang Mo, and Howard E. Thompson 1688 "Jump-

Diffusion Processes and the Term Structure of Interest
Rates," The Journal of Finance Vol.43 No.l pp.155-174
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(4) Evidence for mean reversion.

3. Time Series Analysis on Innovation in Forward Short-Term

Rates
3.1 Description of Data and Notation

In this section we explain what the data used are, how we

transformed them, and what the significant properties of the

time series are.

Data used here are three daily time series of Japanese
bond yield. The three series are "NIKKEI bond indexes" for
"short-term bonds," "medium term bonds," and "long term

bonds." Description of the indexes are as follows.

NIKKEI Bond Index

[Publisher]
The Japan Economic Journal (Nihon Keizai Shimbun)

[Distinction of terms]

Short-term, medium-term, or long-term bonds indexes
are the average of yield to maturity (YTM) of each group

of bonds which fall in the same maturity class defined as

follows.
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NIKKE! BOND |INDEX
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Fig. 3.1.
Short-term : less than 3 years,
Medium-term : 3 years to 7 years, or
Long-term : 7 years to 10 years,
respectively.

[Type of bonds included]

Government bonds, government guaranteed bonds,
municipal bonds, bank debentures, corporate bonds, and

Samurai bonds.

[Method of calculation]
Yield to maturity (YTM) is calculated for each bond

using internal rate of return (IRR) method based on 6
month of compounding period length. This is because
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Japanese bonds have semiannual payments. Annual YTM is
obtained by just doubling the 6 month period based IRR.
To obtain index arithmetic average is calculated for

bonds within each maturity classification.

[Source of data])

Mean of the bid-ask quotations is used for the YTM
calculation. The quotations are taken from "bench-mark
bond quotations, daily" published by the Japan Securities

Dealers Association.

The bench-mark quotations are arithmetic average for
each of bid and ask quotations reported by market makers
who are members of the association. Quoted bid and ask

prices at 9 A.M. are reported. ;

[Notes]
NIKKEI Bond 1Index 1is not adjusted for early

redemptions and durations. Bonds are classified to each
term based only on the remaining period to final

maturity. When bonds are called, such bonds are removed

from calculation.

The index is subject to change in membership of the
"bench-mark quotation". The membership is changed by the
association considering maturity change caused by

seasoning, announcement of early redemption, and trading

33



volume.

A major problem of using the NIKKEI bond index for our
study 1is the difficulty in deriving implied forward rate
structure. Since the indexes are neither representing spot
rate curve, nor are par-yield curve, there is no straight-

forward way to derive forward rate structure from these data.

To derive accurate implied forward rates, detailed
information on each bonds included in the index is required.
Since such detailed information was not available, we prepared
rough estimator of duration for each class of maturity and
assumed that the rate of index of each maturity class
represents the spot rate, or IRR of discount bonds, having
such time horizon that equal to the duration of the maturity
class. Such duration changes depending on coupon rates of
bonds included within each class and also on market discount
rate. However, for simplicity, we assumed that coupon rates
of all bonds were 5.5% par annum throughout the period, and
discount rate were also constant st 6% for the purpose of

duration derivation.

This rough adjustment shows that short, medium, and long
term bond index correspond to discount rate for 1.8% years,

5.0 years and 6.93 years, respectively.
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Table 3.1
TERM LENGTH ADJUSTMENT USING DURATION
Short Medium Long

Duration (Years) 1.86 5.00 6.93
Accumulated (Days) 679 1823 2528
Incremental (Days) 679 1145 705

For future study we strongly urge to use spot rate data
from the market, which is currently under joint development by

Industrial Bank of Japan and J.P.Morgan.

For this paper, we assume piecewise constant forward rate
structure. Assuming the figures for short-term, medium-term,
and long-term indexes are representing discount rates for 1.86
years, 5.00 years, and 6.93 years, we can derive forward rate
structure which is piecewise constant for each interval of
[year 0 to year 1.86], (year 1.86 to year 5.00], and (year
5.00 to year 6.93]. Figure 3.2 presents the movement of the
three forward rates. When compared with the original NiIKKEI
Bond Index presented in the figure 3.1, the effect of the
transformation from yield curve into forward rate curve is
evident. Short term forward rates show quite similar movement
with short term yield, long term forward rate turned out to

stay within relatively stable range, and medium term forward
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rate is in-between. This is understandable because yield is
geometric average of forward rates, or logarithm of yield is

arithmetic average of logarithm of forward rates.

MOVEMENT OF IMPLIED FORWARD RATES
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Fig. 3.2

For convenience of the following discussions, we take log

of the rates and use the following notation.

(1) We basically follow the notation used by Roll
(1970). Rj't represents j period forward short-term
rate (one year rate starting year j-1 and ending
year j) observed at time t. Since we only have

three different j,

j = 1.86 years,
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(2)

5.00 years, or

6.93 years,

we also use the word "short", "medium", or "long"

R

nodium,t’ or R

term forward rate" or R

short,t’ long,t

equivalently.

We also analyze innovation in the forward rate
series {Imt}. This is not equal to the first order
difference of {RLt}. Beside the innovation caused
by information that newly arrived to the markets,

there are the following two sources of change in

{R .}-

(a) Change in {Rﬁt} caused by time-varying

risk premium.

(b) "Expected" change in {RLt} which is
already built-in to the slope of forward

rate structure observed at time t.

By the word "innovation," we will mean the
portion of change in {RL:} that is not expected. 1If
j and t are measured on the same scale, unexpected
innovation can be defined as I =R, .-R,,, ., as in Roll

t

(1970). In our data set, j is only three step with
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interval of 1.86 years, 3.14 years, and 1.93 years,
while t is measured by day. Then, we pro-rated the

logarithm of yield according to the length of j.
I = Rjtt - {Rj'tvj + (d)(Rj’rt‘l-Rjtt)}/Dj’

where j={short,medium}, and j'={medium,

long} respectively,

R, . is logarithm of forward rate for

period j observed at time t,

D, is number of days included within

the period j, and

d is number of days between time t
and t-1, i.e. d=3 if t is Monday and

d=1 for week days.

For the long term forward rate series, we
defined I, just as the first order difference, since
no information on further longer term is available

from the market data.
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3.2 Comparison of Forward Rate Process {r.,} and Innovation

Process {I.}

HISTOGRAM OF IMPLILED FORWARD RATES
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Fig. 3.3

Figures 3.3 is the histogram of forward rates during the
6 year and 3 month period between January 1985 to March 1991,
which shows that {R,} is concentrated within relatively narrow

range for longer j, while {R,} is distributed over wider range

for shorter j.

How the different distribution of {R,} for different j
can be explained ? Do {Rj't} have different shape of
distribution for different j ? To answer this question, we
prepared histogram of the {R,} for each j, year by year for
the 6 sub-periods which correspond to the calendar years.
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Figures 3.4, 3.5, and 3.6 show that the most of the difference
was caused by the shift of conditional distribution rather
than the different shape of distribution itself. For shorter
j, histogram of {R )} shift around a lot over time, while
histogram is almost still throughout the six sub-periods for
longer j.

SHIFT OF FORWARD RATE HISTOGRAM

SHORT

190
180
170
160
150
140
130
120
110
100
80
80
70
&0
S0
40
30
20
10

FREQUENCY

T T 1T T T T UvrrrrrrrrTToa

v p : B . ‘88 #_ 88
0 030 0 035 D D40 0.045 D.050 O 055 0.060 0.065 O 070 0.075 0.0B0 0.085

RETURN

Fig. 3.4

This relative persistence in {RL:} for longer j seems to
be consistent with the idea of mean reversion. Because risk
adjusted forward rate is estimator for spot rate in the
future, persistence in {RLt} with longer j implies persistence

in expectation on spot rate in the distant future.
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The figure 3.3 also shows that for longer j the mode of
histogram of {RLt} lays in higher class. This fact can be

interpreted in the following two ways.

(1) Term premium incorporated in {RM} increase with the
length of j. This leads to the idea of constant

liquidity premium. .

(2) Time varying risk premium as some increasing
function of uncertainty in {RLt}. As we see later,
data show that variance of innovation, VAR[ILt], is

greater for longer j.
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Figure 3.7 to 3.9 also present year-to-year shift in
range of forward rate distribution. These figures confirm
that most of the variance of {RLt} for short j is caused by

shift in distribution over time.

Although {RL:} with shorter j have larger unconditional
variance over the entire period (January 1985 to March 1991),
this relationship reverse when unconditional variance is

calculated for smaller sub-periods.
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Fig. 3.10

This point becomes more clear when we examine {ILt}.
Figure 3.10 compares histograms of {ILt} throughout the 6 year
and 3 month period for different j. Histograms are quite
similar for all j, which is quite different from the
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histograms of {Rmt}.

Figure 3.11 through 3.13 shows year to year shift in
histogram of {1,,} for each j. All three distributions are
fairly stable throughout the entire period. This is quite
different from the behavior of {R,.}. This implies that great
portion of the shift in {RM} distribution is expected changes
and that such expectation is implied in the forward rate

structure observed in the market.
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Figures 3.14 to 3.16 present year to year shift in range
of mean plus/minus 1 standard deviation, maximum, and minimum
of {I .} distribution. Figure 3.17 presents the comparison of
the mean plus/minus 1 standard deviation range for the three
different j. When we see annual mean, they are almost zero
throughout the entire period. Based on t-statistics, they are
not significantly different from zero at each year. When we

observe annual standard deviation, it is apparent that;

(1) Annual variance of {ILt} is usually greater for

longer j, and that
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(2) Annual variance of {1,,.} for different j, seems to

keep stable relationship roughly proportional to j.
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When compared to the forward rate series of {R.}, the
innovation series {ILt} are fairly stable both in the level
and shape of distribution over the 6 years. Also, as figure
3.10 shows, all three distributions are tightly concentrated
around zero, and have quite similar sharp peaked shape. It is
apparent that modeling innovation precesses {I,.} is much

easier than modeling forward short-term rates {RLt}.
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3.3 Mean Reversion, Risk Premium, Heteroskedasticity and

Market Efficiency of {I,.}

In the following two subsections we examine
characteristics of {ILt} process. Figures 3.18 to 3.20
presents {Imt} for different j. Summary statistics of {ILt}
are presented in table 3.2 through table 3.4 for j=short,
medium or long, and data set observed at different frequency
of daily, weekly and monthly. For most series average is not
significantly distant from zero. T-statistics are
insignificant at the usual 5% level. No evidence to support
constant term premium hypothesis is found, which expects {Imt}

has bias and tendency to take negative value.

Figures 3.18 to 3.20 show subtle differences among the
behavior of daily {1,,.} for each j. These figures suggest
that the {Iimwt} has negative autocorrelation and 1is
oscillating around zero, the unconditional mean, while {ILt}
(j=short, medium) have positive autocorrelation and are
meandering around zero. This is consistent with the ideas

that {R } is relatively stable and mean reverting tendency,

long,t

and that {RLt} (j=short or medium) shift a lot over time and
have relatively strong positive autocorrelation, implying that
market is somewhat inefficient in the sense that it takes

several days to absorb new information.
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These findings about the behavior of conditional mean are
confirmed by examining autocorrelation functions (ACFs) and
partial autocorrelation functions (PACFs). Figures 3.21 to
3.38 are correlograms of the three innovation series using
ACFs and PACFs. ACF and PACF of the series of absolute value

and squared value of innovation are also presented.

For testing the significance of autocorrelation function
(ACF) of k-th order, p,, asymptotic distribution of
p,~N(O,VAR(p,)) is used. Bartlett's formula, VAR(p,K)=1/N can
be used. However, when we remind that financial time series
tend to have larger magnitude of autocorrelation at lower
order, it might be more useful to use the following
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cummuratively adjusted Bartlett's formula

k-1

142 2
_1+23 0l
VAR(p,) =N

to test marginal significance of p,, when k increases.

Moreover, in cases where ARCH effects are expected, it is
important to notice that Bartlett's formula tend to provide
too small variance, resulting too frequent rejection of the
null hypothesis that p,=0. For ARCH(1l) effect, Diebold (1986)
provided adjustment for Bartlett's formula‘’. Taylor (1984)
also pointed out that empirical study for varicus kind of
financial time series rsculted variance for autocorrelation
coefficient being 2.5/n, 1.6/n, and 1.3/n for commodities,
foreign exchange, and stocks respectively*’.

Since we expect more gener;i form of GARCH effect than
Diebold's ARCH(1), Diebold's adjustment for Bartlett's formula
is not directly available for us. We used the accumulation

adjusted version of Bartlett's formula for our correlogram

42. Diebold, Francis X. 1986 "Testing for Serial Correlation
in The Presence of ARCH'" American Statistical

Association 1986 Proceedings of the Business and Economic

Statistics Section, pp.323-328

43. Taylor, Stephen J. 1984 "Estimating the Variances of
Autocorrelations Calculated from Financial Time Series,"

Applied Statistics Vol.33 No.3, pp.300-308
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analysis as a benchmark of VAR(p,), while keeping it in mind
that the criteria is biased. Then, our 5% significance level

is,

+1.96

We use correlogram analysis for the purpose of model
identification and have chance to further examine significance
of parameters in the stage of model diagnosis. Then, we might

take the risk of choosing too deep order of autocorrelation at

this stage.

For the similar test of partial autocorrelation function
(PACF)s of k-th orcer, ¢,, is much easier. We can just apply
the Bartlett's formula and use VAR(¢, )=1/N for all k.

Therefore, usual 5% level criteria is +1.96/VN.

Excess kurtosis is the most noticeable characteristics of

these data. Magnitude of excess kurtosis seems to depend on

two factors.

(1) Excess kurtosis of {IM} is greater for shorter j.

(2) For each length of j, excess kurtosis of {1,,.}

depends on the frequency of the data (i.e. daily,
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weekly, or monthly). For daily data set excess
kurtosis is extremely large for all j. However,
with the observation frequency declines, excess

kurtosis also diminish quickly for all j.

Excess kurtosis can be explained in the following two

ways.

(1) Generating process of time series is conditionally
Gaussian, however, time varying conditional

variance causes spurious excess kurtosis.

(2) Generating process itself is fat-tailed. Student's
t-distribution, logistic distribution, Palate

distribution, etc. had proposed.

For our data set, heteroskedasticity seems to be
suitable. Since for all j, excess kurtosis is huge for daily
and weekly data, while it is insignificant at 5% level for the
monthly data, such change in variance can be seen as almost
averaged out for observation period longer than a month.
Clustering tendency of observation with large absclute value
of L. also suggests heteroskedasticity rather than fat-tailed
generating processes. Such heteroskedasticity seems to be
larger for shorter j, since excess kurtosis of {1,,.} is

greater for shorter j.

55



Table 3.2 Summary statistics of short term innovation {I_ .}

AVG

STD.
T-RATIO
SKEWNESS
T-RATIO
KURTOSIS
T-RATIO
D.W.
RUNS
ABS.ﬁ.W.

ABS.RUNS

- —— o —
mEESSs==s

{1,,..}-daily {I,..}-weekly {I__ }-monthly
1523 318 74
0.00000118 -0.00000544 0.00000996
0.00042622 0.00116631 0.00298994
0.003 I -0.005 I 0.003 I
5.50906869 -1.39278524 -0.1610953
87.771 S -10.140 s -0.566 I
74.2145408 9.89154718 2.90245451
567.300 S 25.086 S -0.171 I
1.65564963 M 1.41679815 S 0.66072620 S
0.00000000 s 0.00000000 s 0.00390000 S
1.23506006 S 1.05405689 S 0.68051083 S
0.00000000 S 0.00010000 s 0.16830000 I
1.92963064 1 1.78096992 I  1.39414056 S
0.48720000 I 0.47510000 I 0.41560000 I
S, M, and I mean statistically significant,

marginal, or insignificant at 5% level.

ABS., and SQ. mean series of absolute and squared

values respectively.
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Table 3.3 Summary statistics of medium term innovation {I_ .}

AVG
STD.
T-RATIO
SKEWNESS
T-RATIO
KURTOSIS
T-RATIO
D.W.
RUNS
ABS.D.W.
ABS . RUNS

1523
~0.00001222
0.00046167
-0.026
0.07414016
l1.181
14.47122413
91.381
1.68783012
0.00000000
0.94505203
0.00000000
1.54590632
0.00000000

S, M, and

marginal, or

{1, ia)-Weekly {I_,,..}-monthly
318 74
0.00006071 0.00027045
0.00125236 0.00340022
I 0.048 I 0.080 I
-0.65827238 -0.73884445
I -4.792 S -2.595 S
7.87524352 3.7636%9005
S 17.746 S 1.341 1
M 1.24494833 S 1.73092678 I
S 0.00020000 s 0.00080000 S
S 0.75174014 S 0.51265854 S
S 0.00200000 S 0.09020000 I
S 1.23183166 S 1.02249835 S
S 0.02040000 s 0.34240000 I
I mean statistically significant,

insignificant at 5% level.

ABS., and SQ. mean series of absolute and squared

values respectively.
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Table 3.4 Summary statistics of long term innovation (I, .}

{1, }-daily  {I, . }-weekly {I, ;}-monthly

N 1523 318 74

AVG -0.00000799 0.00004050  0.00000000

STD. 0.00087769 0.00177209 0.00341096
T-RATIO -0.009 I 0.023 I 0.000 I

SKEWNESS 0.30163894 -0.65601082 -0.49501800
T-RATIO 4.806 S -4.776 S -1.738 1

KURTOSIS 18.22614754 6.52875150 3.52191631
T-RATIO 121.293 s 12.845 S 0.916 I
D.W. 2.20385784 I 2.06052583 I 1.96353238 I
RUNS 0.30140000 I 0.24170000 I 0.24210000 I
ABS.D.W. 0.82495765 S 0.80947049 S 0.80309896 S
ABS.RUNS  0.00000000 s 0.00000000 S 0.11170000 I
SQ.D.W. 1.12504864 S 1.50424043 S 1.41276741 S
SQ.RUNS 0.00000000 S 0.00010000 S 0.48390000 I

Note: S, M, and I mean statistically significant,

marginal, or insignificant at 5% level.
ABS., and SQ. mean series of absolute and squared

values respectively.
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Then, the next question of practical interest is, whether
conditional variance VAR[ILtlt-I] performs significantly
better than unconditional variance VAR[ILt]. Denoting the
process of conditional variance of {Ijﬂ} as {Hﬁt}, the
question is if {HL:} is independent process or not. Even if
{ILt} or risk premium adjusted {ILt} is uncorrelated, {HLt}

can be serially correlated or, more generally, serially

dependent.

Such serial correlation of {H, .} can be detected through
examining correlogram of {IILtI} or {(Ijm)z} presented in the
figures 3.21 through 3.38. Other tests for serial correlation
of time series are also available. Results of Durbin-Watson
statistics test and runs check for {|ILt|} and {(Ijﬂ)z} are

contained in tables 3.5 through 3.7.

Results of these analysis on correlation structure of

{1, .}, {11,.]}, and {(I,,)?} can be summarized as follows.

(1) {IL:} for j=short or medium have positive

significant autocorrelation up to about 5 days.

(2) Correlograms show that evidence for GARCH style of
heteroskedasticity is stronger for longer j, where
ACF or PACF for {IILtl} and/or {(Ijﬁ)z} exceed the

magnitude of those for {ILt} of corresponding order.
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(3)

IJ.t

and Ij’t

For shorter j, auto correlation of {|I,.|} and/or
{(Ijﬁ)z} are almost equal to those of {Ijﬁ}. Hence,
such autocorrelation of {|Ibt|} and/or {(Ijﬁ)'} do

not imply anything but autocorrelation of {Ibt}'

Although greater excess kurtosis is observed for
shorter j, autocorrelation of {|ILt|} and {(IJA)’}
are smaller for shorter j. Then some source of
heteroskedasticity other than GARCH type should be
considered. Provable explanation might be Jjump
processes, which do not cause autocorrelation in
{IILtl} or {(Ijﬂ)’} processes, while generating

heteroskedasticity.

+

, for j=short and medium have strong positive

correlation for small s. Since Ijﬁ=[RLt-Rylﬂq]+[13ﬁ-Lth4],

serial correlation in {Ijﬂ} can be explained in the following

two ways.

(1)

L, .-L,,,., 1is positively autocorrelated. This is
not consistent with constant term premium
hypothesis. However, some kind of time varying
risk premium, e.g. GARCH-M, might be consistent

with this explanation.
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(2)

3.t Ryet,ea is positively autocorrelated. This

implies violation of martingale, and therefore,

R

suggests bond market is inefficient in reflecting
new information into price or, in this case, bond

yields.

There is another possible source of serial
correlation in R, -R, ., other than the two sources
discussed above. Since some of the bonds included
in NIKKEI Bond Index are not actively traded, there
might be seeming autocorrelation caused by non-
trading, which is similar to that for small stocks.
However, since quotations are revised at least once
a day, it is difficult to explain the observed

positive autocorrelation being significant at the

order of over of 4 days.

We attempted to identify ARMA order for the {Ijﬂ} process

over the 1523 daily observations from the 6 year and 3 month
period from January 1985 to March 1991, using Akaike
Information Criteria (AIC) and Shwarts Beysian Information
Criteria (SBIC). AIC is known to be inconsistent and to have
bias to suggest greater order, while SBIC is known to be
consistent and to have opposite bias for small data set.

Summary of these tests are in table 3.5 and all attempted
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models (ARMA(p,q)., p+gs2) are reported in tables 3.6 through

3.8.

Table 3.5 ARMA model selection using information criteria

Term SHORT MEDIUM
AIC ARMA(1,1) ARMA(1,1)
SBIC ARMA(1,1) ARMA(1,1)

ARMA(1,1) was selected for {I, ..} and {I

-.diul,t} ’

LONG

ARMA(2,0)
ARMA(2,0)

and

AR(2) was selected for {Ilong,t}' We need to have some

intuition on how these ARMA processes will behave when applied

to long run forecast. For this purpose we calculated variance

ratio using estimated parameters for these ARMA precesses.

variance ratio for q periods, VR(q), is calculated as,

g-1
VR(q) =1+%}_"‘1 (@-1)p ;+(0) .

K-th order autocorrelaﬁion coefficient of ARMA process,

p(k), can be calculated as a linear combination of lower order
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correlation coefficients*., For AR(2) with parameters &0 o0

using the relationship of

Py=®:Py.1*9,P, s P,=1, and p.;=p_,,

p, = é,p,+9,P_,
= é,+0,p,
then,
p, = ¢,/(1-¢,) for i=1,
p, = ¢,2/(1-¢,)+¢, for 1i=2, and
P, = ¢,p, ,%t0,P,_, for i23.

For ARMA(1,1) with parameters ¢ and 9,
P, = (1+¢0) (9+6)/ (1+2¢0+¢%),
P, = P, for i22.

Numerical results are presented in the figure 3.39.
Variance ratios for all j, show convergence. For j=long,
convergence is relatively quick and the target of convergence
is less than 1, while for j=short and medium convergence is

slower and target values are far greater than 1.

Finally we develop some view on the behavior of {RLt}

based on the above analysis on {ILt}. We need to remind the

44. Anderson, Oliver D. 1984 "Mapping the Parameter Domain
onto the Autocorrelation Range for ARMA(p,q) Models,
p+g<2," Time Series Analysis: Theo and Practice 5,
pp.303-314, North-Holland
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VARIANCE RATIO OF ARMA PROCESSES
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relation between {ILt} and {RL‘}, that

(1) Source of change in {RL:} is not only {Imj}, but
also the expected rate movements, which are
incorporated in the forward rate structure implied

in the market rates, and that

(2) Expected portion of rate movement seems to have

greater magnitude compared to {Imt}.

Since we have {ILt} process for three different length of
j, and we also prepared ARMA estimators, which are linear best
estimators, for each {ILt}, we can forecast {Rht} using these
ARMA estimators of {IL:}° Since forecast on {Rhtu}, s8>0, is
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affected by {Ij”t}, where j* is any of {short, medium, long}

that is longer than j, {(R,. } process can be understood as a

kind of vector autoregressive (VAR) process. From the above

results we expect a VAR process which has the following

characteristics.

(1)

(2)

(3)

R and R are negatively autocorrelated. The

long,t long, t+s
magnitude of negative autocorrelation reaches
stability in about 5 days around the level of 0.57.
When compared with random walk having equivalent
magnitude of daily variance, {ng,:} process is
persistent on its level, which suggests existence
of mean reversion.

R and R are positively autocorrelated for

medium, t maedium,t+s
small value of s. In the shorter time horizon, the

variance ratio of {R_, } converges to about 4

ium,t
within half a year. This positive autocorrelation
is inherent in the ({I_, ...} process. However, in
much longer time horizon, effect of negative
autocorrelation inherent in the {Inmmw.} process
will overwhelm the positive autocorrelation through

VAR process.

R and R

ahort,t short,t+a BLE strongly positively correlated

for small value of s. This is caused by strong
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positive autocorrelation of {Iore,}+ A8 it was the
case in {R ius,:}» this positive autocorrelation in

{R } will be overwhelmed in the very long time

short,t
horizon by the negative autocorrelation of L § SIS
which penetrates into {R,;c:.,.} through VAR process.
However, VAR effect from {I_, .} having stronger
positive autocorrelation than {I,0re,.} Mmight work to
the opposite direction, and over the middle length

of time horizon, {R } might show complicated

short,t

behavior.

However, these discussions on mean reversion and market
inefficiency are subject to further examination about the
characteristics of the process of risk pfemium {LL:}' ARMA
models examined for {Ijﬁ} process above are not adjusted for
ARCH in mean (ARCH-M) effects, which might cause spurious
autocorrelation in {Ijm} through autocorrelation in risk
premium {LLt}. If {HLt} follows process of ARMA type, i.e.
processes with serial correlation, {LL:} might also follow
some process with serial correlation. If ARCH-M effects could
be identified and removed, serial correlation in {|I, [} and
{(Ijﬁ)z} would be somewhat weakened. On the other hand, for
the 1long term innovation series, which has negative
autocorrelation before adjustment for {L, .}, it is difficult

to guess what the ARMA process after removing ARCH-M effect

is.
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Table 3.6

ESTIMATED ARMA(p,q) MODEL FOR {I_ . .} PROCESSES FOR p+qs2

SHORT CONSTANT AR(1) AR(2) MA(1) MA(2) AIC SBIC

ARMA(0,1) 0.000001 -0.14 -15.543 -15.539
T-RATIO 0.10 -5.75

ARMA(0,2) 0.000001 -0.13 -0.08 -15.548 -15.541
T-RATIO 0.10 -5.46 -3.16

ARMA(1,0) 0.000000 0.172 -15.548 -15.544
T-RATIO 0.09 6.81

ARMA(1,1) 0.000000 0.872 0.75 -15.578 -15.571
T-RATIO 0.04 24.11 15.29 MIN MIN

ARMA(2,0). 0.000000 0.153 0.106 -15.557 -15.550
T-RATIO 0.09 6.03 0.03
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Table 3.7

ESTIMATED ARMA(p,q) MODEL FOR {I

udiun,t}

PROCESSES FOR p+qs2

MEDIUM CONSTANT AR(1) AR(2) MA(1l) MA(2) AIC SBIC

ARMA(O0,1) -0.00001 -0.13 -15.379 -15.375
T-RATIO ~0.92 -5.19

ARMA(0,2) -0.00001 -0.12 -0.07 -15.384 -15.377
T-RATIO -0.88 -4.76 -3.04

ARMA(1,0) -0.00001 0.155 -15.383 -15.379
T-RATIO -0.89 6.13

ARMA(1,1) -0.00000 0.892 0.77 -15.422 -15.415
T-RATIO -0.57 28.14 17.52 MIN MIN

ARMA(2,0) -0.00000 0.138 0.103 -15.393 -15.386
T-RATIO -0.49 5.43 4.31
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Table 3.8

ESTIMATED ARMA(p,q) MODEL FOR {I,0ng,.} PROCESSES FOR p+qs2

3Pt F ¢+ Pt P+t + + 3 F + F F 1 5 £ 1

CONSTANT AR(1) AR(2) MA(1) MA(2)

AIC

ARMA(1,0)
T-RATIO
ARMA(1,1)
T-RATIO
ARMA(2,0)
T-RATIO

-0.

"830

00000
-0.40
10000
-0.45
00000
-0.39
00001
-0.35

-0.10
-4.00
-0.81
-4.88
-0.11
-4.42

-0.10
-4-15

0.122

4.80

0.096 0.078

3.78 3.05

-0083
-5.33

~-14.086

-14 . 09

~-14.084

-14.072

-14.093
MIN

-14.083

-14.083

"14 008

-14.065

-14.086
MIN
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3.5 Correlation Among Forward Rates With Different Terms

Stability of correlation among innovations of different
terms are examined. All combinations of correlation between
two of the three innovation series are calculated for each
year (see figure 3.40), and each quarter (see figure 3.41).
The results show that medium-long correlation and short-long
correlation are slowly moving within the positive area, and
that short-medium correlation had negative coefficient in one
year (1988), when it was highly unstable, while for the other

5 years the coefficient stays positive.
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Fig. 3.40

When we examine figure 3.41, the negative correlation of
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short-medium are observed in Q1 1988, Q3,1988, and Q4 1988.
On the other hand, in other quarters during the period of late
1987 and early 1989, short-medium correlation took large
positive value. Furthermore, figure 3.42 presents that
correlation coefficient, CORR(I, .. .,I_....), has absolutely
clear single peak, while it also has long left tail. These
facts suggest existence of some stable correlation between

} and { } over some sufficiently long period.

{ I short,t Imedium,t
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Fig. 3.41

Figures 3.40 and 3.41 suggests that correlation among the
innovation series of different terms are changing slowly
within certain ranges, and that such correlations are roughly
predictable in the 1long run. This long run stability is
important, when we attempt to construct our extended yield

80



curve model for bond options with long period to expiration.
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Section 4. ARMA Model with Jump/GARCH-M effect

In this section we propose a time series model for {Iht}

process,

and discuss on estimation methodology. We are

interested in modeling characteristics of {Ibt} process

movements, especially taking care of the following points.

(1)

(2)

(3)

Serial correlation in the risk premium adjusted
innovation series, which is related to market
inefficiency and/or mean reversion of interest rate
movement. We will attempt to estimate ARMA model
to capture this feature. ARMA(1l,1) or lower order
is expected for {ILt}, j=short, medium. AR(2) or

lower order is expected for {1,.}, j=long.

Heteroskedasticity in GARCH form and jump form. We

consider heteroskedasticity as combined GARCH(1,1)

process and Poisson jump process. We expect for
shorter j, Jjump component might have larger
relative contribution, while GARCH effect will
dominant component of change in variance of {Imt}

for longer j.

Time varying risk premium, especially in the form

of jump/GARCH-M. Since our data are already in
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logarithm, we will consider multiplicative form of

risk premium Lht,

Lj, t'P Hj‘ e

where H, . is conditional variance of risx premium
adjusted 1,. Pprocess, and C 1is positive real

constant.

It is convenient to reconfirm our notation, before

proceeding further.

Forward short term rate {RLt} is decomposed into two

components

Ry =X;,¢+Lj, ¢

where, LJ,t is time varying risk premium and th is estimator

for j period future spot rate at time t.

Correspondingly Innovation in forward rate {Ibt} is

decomposed as,

Ij, C=ij. C+ALj. L

Risk premium is assumed to be expressed as,
ALj, .=Lj,;~Lj, .1 =PAJH; ;.
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Then, following Jordin (1988), our model can be specified

as follows.

p q
I.-PA/H.= C"’;:l $,(I,.;-PAJH, ;) "';eiec-.t +e,,
e
et='/H_czc*; Yi’ Zt"N(o »1) ’
=]

Pnu u 2
H t=C,,+; &uH, 4 *; 0,181,
al =]l

where ¢, ¢, (i=1,---,p), O, (i=1,---,q) are
parameters for ARMA(p,q) process,
{H.} is conditional variance in GARCH form,
Cyr & (i=1,---,p,), 0O, (i=1,---,q;) are
parameters for GARCH(p,,q,) process,
n, follows Poisson distribution with parameter
A,
Y~N(0,,6°) is random variable for size of jump,

P is coefficient for the term of time varying

risk premium, and

84



For maximum likelihood estimation of this model,

likelihood function is given in the following formula.

I = pJec -(I,-PAJH;-pp,-0,3.)?
1=-TA-ZLin(2n) +3" 1n| l’ 1 exp ( ¢ . Tt _JC
2 g Jga Jel VH 85 P 2(H,+8%7,)

p q
|‘c=c+§¢i (I..,~PAJH, ) +;1013 -1

P du 2
He= CH*; &yH,_; "’;: 0y:¢t-1/
=1 a)]

where T is the number cf observation,
A is a parameter representing density of
Poisson jump,
6, and & size of Poisson jump, Y~N(9,6%),
j. is count for number of jump in a unit
period, which can be neglected but for small j,
for its amall provability, and
Parameters in the formula of H, and u_ are the

same as those in the model definition.

Estimation of these complicated time series using maximum
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likelihood method is not easy. Judge, etc. (1985)*% contains
overview of numerical optimization algorithms. Harvey
(1989)¢® gave some practical comments on this problem.

According to Harvey (1989) the following methods are

suggested.

(1) Scoring method, or Gauss-Newton method, can be
used. While they are asymptotically efficient and
guaranteed to converge, they take time. An
algorithm by Berndt, Hall, Hall, and Hausman

(1974)* (BHHH algorithm) is mostly used example of

this category.

(2) EM algorithm by Watson and Engle (1983)‘ can also

be used. This is also slow.

(3) As numerical optimization using computers, FORTRAN

45. Judge, George G. 1985 Appendix B, Numerical Optimization

Methods, The Theory and Practice of Econometrics, 2nd
Edition, pp.951-979, Wiley, New York

46. Harvey, Andrew C. 1989 Forecasting, Structural Time
Series Models and the Kalman Filter, Cambridge University

Press, London

47. Berndt, E.R., B. H. Hall, R. E. Hall, and J. A. Hausman
1974 "Estimation and Inference in Nonlinear Structural

Models," Annals of Economic and Social Measurement, Vol.3
pPp.653-665

48. Wwatson, M.W., and R. F. Engle 1983 "Alternative Algorithm
for the Estimation of Dynamic Factor, MIMIC and Varying

Coefficient Regression," Journal of Econometrics, Vol.23
pp.385-400
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(4)

subroutine EO04JBF of NAG library is said to work

well in practice*’.

As a method for parameter estimation in the
frequency domain using fast Fourier transformation
(FFT) is recommended. Although this method is
efficient and speedy, sometimes results from this
method are different from those from time domain
estimation. In such cases estimator obtained from

frequency domain procedure should not be used.

Although we attempted maximum likelihood estimation by

BHHH algorithm implemented in FORTRAN 77 using IBM 4381

hardware,

it did not performed well. Severe computational

difficulties were encountered. Even using the double

precision of the environment, execution errors of underflow

were unavoidable.

49.

In Mark 12 of NAG library E04JBF is announced to be
suspended but not to be withdrawn before Mark 14. EO4UCF

will be the alternative.
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Section 5. Taylor-M Model: An Easier Alternative

In this section we use Taylor model as an alternative
method for modeling financial time series with time varying
variance. We attempt to extend Taylor model to include time
varying risk premium. Taylor in mean (Taylor-M) model is
proposed. This extension is led by the identical idea that

extended ARCH model into ARCH-M model.

Taylor (1986) contains exclusive introduction and
development of many versions of Taylor model, while variety

of functional form of {V,} process and estimation method for

it were proposed in many papers®.

50. Taylor, Stephen J. and Kingsman, Brian G. 1978 "Non-

stationarity in Sugar Prices," Journal of Operations
Research Society, Vol.29 No.10, pp.971-980

Taylor, Stephen J., and Kingsman, Brian G. 1979 "an
Analysis of the Variance and Distribution of Commodity

Price Changes," Australian Journal of Management, 1979,
pp. 135-149

Taylor, Stephen J. 1980 "Conjectured Models for Trends in
Financial Prices, Tests and Forecasts," Journal of Royal
Statistical Society, Series A Vol.143 (1980) Part 3,
pPp.338-362

Taylor, Stephen J. 1982 "Tests of the Random Walk
Hypothesis Against a Price-Trend Hypothesis," Journal of

Financial and Quantitative Analysis, Vol.17 No.l1l, pp.37-
61

Taylor, Stephen J. 1982 "Financial Returns by the Product
of Two Stochastic Processes-A Study of Daily Sugar

Prices, 1961-79" Time Series Analysis: Theory and

Practice 1, North-Holland
88



The most basic idea of Taylor model is to decompose given

financial time series {X.} into {U,} process and {V.} process,
(X.-w) = V. x (U-p)

where, p# is unconditional mean of X.,
V, represents conditional standard deviation at
time t, and

lk has unit variance.

Analysis on ({V.} process leads to understanding on
behavior of time varying variance, and analysis cn serial
correlation in {U )} process leads to examination of market

efficiency in the sense of random walk.

Since {V,} process is unobservable, functional form of
{V.} process must be specified before parameters are
estimated. Taylor (1986) proposed many variation for (V. }

process. Taylor (1983)5 applied his framework to develop a

trading rule which exploits market inefficiency.

We pick up the simplest version with the least number of

51. Taylor, Stephen J. 1983 "Trading Rules for Investors in
Apparently Inefficient Futures Markets," Futures Markets:

modelling, managing and monitoring futures trading,

pp.165-198, Basil Blackwell
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parameters, where {V,} follows exponentially weighted moving

average (EWMA) process, and then extend it to Taylor-M model.

I.-p = V.U,

X2 =2 <

-

where,

(]

L}

M'./0.798

= oM, _ +(1-0)M°,
|1,.,-#-A(L,,) |
P(V,)

U, is heteroskedasticity-rescaled stochastic

process with VAR(U,)=1,

V., 1is unobservable process of conditional

standard diviation of {I -u} process,
0.798 is the ratio, E[|X]|]/0,, for X~N(0,1),
M, is estimator for M, based only on

information as of time t-1,

0 is a parameter for speed of adjustment of Mz
process,

u is unconditional mean of I,

P is a positive real coefficient for risk
premium,

L, is risk premium, and

A(L,)=L,-L__,.

As the initial value of M" we used average of |I -u| for

1<t<20.
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M, = E[|I,-u]1, 15t<20

Then we estimated the two parameters of 6 and P using

21<st. We selected the value of parameters that minimize the

following sum of squared error.
SSE = (M ,-M,)?

Figure 5.1 through 5.6 presents sensitivity of the sum of
the squared error (SSE) against each of the parameters

estimated. Results for estimation of Theta and P for

different j are presented in table 5.1.

Table 5.1 Summary of Taylor-M model

PARAMETER SHORT MEDIUM LONG
P 1.4 0.87 1.5
6 0.07 0.08 0.13

Estimated 0s in the Taylor-M model are greater for longer
j. This result seems to be insensitive for existence of risk

premium, when compared with the 6s for the usual Taylor model
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of 0.065, 0.08, and 0.15 for short, medium, and long 3
respectively. Estimated values for risk premium parameter of
P are interesting. Figure 5.7 presents the magnitude of risk
premium which is the products of estimated PJ and {sz} for
each j. Risk premium for the longest term rate is by far the
largest, while risk premium for short and medium term are

almost equivalent magnitude and reverse their order from time

to time.

We may think that discount rates for longer j may contain
larger risk premium, because longer duration causes greater
magnitude of price risk for bond holders. Then, greater value
of L, . for long j is understandable, while it needs different
explanation that L . for short and medium j are almost
indifferent. Our hypothetical explanation is that short-term
rate movements might contain some additional sources of risk
different from that contained in the longer term rates. One
of possible source of such risk might be jump component of
rate movement, which are not predictable from the past and

present rate movements.

We attempted another version of Taylor-M model, using
AR(1), instead of EWMA, for {V,} process. AR(1l) process was
constructed so that M', reverts to unconditional mean of M,.
However, Taylor-M with AR(1) could not outperform that with

EWMA in terms of SSE minimization.
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Comparing summary statistics of {U,} processes from the
usual Taylor model and from Taylor-M model (see table 5.2 and
5.3), we find that risk premium contributed a significant
portion of the excess Kkurtosis. This suggests an
understanding that excess kurtosis of {IL:} process is not
only caused by time varying variance, but also time varying
risk premium. Table 5.4 presents result of regression of I,
against change in risk premium, i.e. first order difference of
{LLt}. Coefficients were, of course, highly significant. The
magnitude of R-squared, being 30% to 40%, implies that roughly
one third of change in forward rate {RL:} is attributed to

change in risk premium.
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Table 5.2 Summary statistics of Taylor-M {Ut} process

SHORT MEDIUM LONG

N 1502 1502 1502

AVG -0.04515103 0.06031681 0.01463858

STD 0.13365335 0.09924514 0.16998269
T-RATIO -0.338 1 0.608 I 0.086 I

SKEWNESS 1.29922663 -0.31057040 1.35513798
T-RATIO 20.556 S -4.914 S 21.441 S

KURTOSIS 11.24210842 10.47036042 5.39873405
T-RATIO 65.203 S 59.098 s 18.976 S
D.W. 1.35912665 S 97798220 S 1.87045222 1
RUNS 0.0000 s 0.0000 s 0.8238 I
Note: S, M, and I in the table mean gignificant,

Marginal, or |Insignificant at 5% level

respectively.
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Table 5.3 Summary statistics of {U,} process from usual Taylor

model
U, u, U,

N 1513 1523 1513

AVG 0.04403108 0.00743489 -0.01231278
T-RATIO 0.03 1 0.01 I -0.01 I

SKEWNESS 5.12674677 0.53190358 0.21198975
T-RATIO 81.41 S 8§.45 S 3.37 s

KURTOSIS 66.14266157 21.52328210 $.09983082
T-RATIO 501.35 S 147.07 s 48.43 S

D.W. 1.62242739 s 1.68840758 M 2.07543024 I

Note: S, M, and I in the table mean Significant,
Marginal, or Insignificant at 5% level

respectively.
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Table 5.4 Analysis on the magnitude of Taylor-M effects

REGRESSEE REGRESSOR CONSTANT COEFFICIENT R-SQUARE D.W.

—— —— ——— ———— o s e w . At mm mm e G e At S e o
EESSESESIE EEESSNNSE Semm=m=m==

I D[V_,] 0.000002 0.00010826 30.5% 1.05
0.19 25.72

I D[v_] -0.00001 0.00015047 32.0% 1.06
-1.23 26.64

I, D{V,] -0.00000 0.00030225 39.0% 1.73
-0.44 31.06

—— e e e e i S —— — ) S o — o ——— o — o — e 2w - —
ESSSOoEESE SSoSERsESEE EEEsEsEE EESSEEEE=sEs _——=—=====

Figures 5.8 to 5.13 presents plot and correlogram of
{ILt} series after eliminating risk premium. For short and
medium j, {1, .} show strong and 1long 1lasting positive
autocorrelation. Shape of correlograms suggest moving
average, MA(q), processes. On the other hand, {Ijﬁ} with long

j have almost no significant correlation at 5% level.
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With our Taylor-M model, so far, it is difficult to
analyze if mean reversion effect exists. This is mostly due
to the functional form of {V,} process. EWMA process is,
unlike ARMA processes, non-stationary, and its long term
forecast is the very state where the process currently is,
while 1long term forecast of stationary ARMA processes
converges to their unconditional mean. In reality, large
magnitude of interest rate volatility, caused by some shock,
will be expected to gradually die out. It is not likely, as
EWMA implies, that a volatility shock changes the level of

expected volatility permanently.

Therefore, we should increase number of parameters and
use some stationary process for specification of ({V.},
especially for the use of long run forecasting. From the same
reason, the long lasting serial correlation presented in
figures 5.9 and 5.11, should not be taken as shown. It is
unlikely that martingale is violated over such a long time

horizon.

After all, with only two parameters, our Taylor-M model
performed well, except for the failure in capturing long run

effects of mean reversion.
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Section 6. Extended Yield Curve Model

In this section we discuss about construction of an
extended version of yield curve model, using our findings on
behavior of {RLt} and {ILt}. We will provide some
mathematical way for pricing discount bonds, while we propose

Monte Carlo method for coupon bonds or more general interest

rate contingent claims.

Using the ARCH model with jump/GARCH-M effects discussed
in section 4, we can forecast {IL:}' i.e. we can have
E[I |t] and VAR[I |t] for s20. As the common property of

J,t+s J,tes

stationary ARMA process, E[ILt“It] converges to zero as s gets
larger. While, VAR[ILtWIt] do not converge as s gets larger,
variance ratio of I, . converges to certain level above or
below 1, depending on whether {ILt} is positively or

negatively autocorrelated for each j.

Using these forecast on I, ., $20 and structure of R,  at
time t, we can derive conditional expectation and conditional
variance of spot discount factor for j period zero coupon
bonds at time t, say Sy,ev which usually defined as the
products of annual yield over the time horizon. 1In our case,
since data sets are in logarithm, Sy,¢ is just the sum of

logarithm of annualized yields. If the bond market is
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efficient in the sense that the series of risk adjusted

forward short-term rate follows martingale,

8
E[Sj,t+sl t] =; (Rj, C-Lj: C) ’
=]

and

8
VAR[S;, .,s|t) =Y VAR[R; -L; 1+2Y COVIR; .~Lj .+ R; ~L;,,]
J=1 i<y

g
~; VAR[I; .~AL; ] +2; covli; .-AL; ., I; .-AL; 1,
=] <J

where CORR(ILt,ILt), i*j are stable and positive over period
longer than a vyear. Using these formula, expectation and
variance of price of zero coupon bonds, which is llsjﬁ, can be
obtained under the assumption the {IJA—ALLt} has no
autocorrelation. There is need for adjustment using Jensen's

inequality,

1

1
Ell >

The piecewise constant structure of forward rates used in
this paper, makes it fairly easy to calculate these

conditional expectation and conditional variarce.
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There remain two points to be discussed regarding the
violation of martingale property of innovation in risk
adjusted forward rates, {IjJ—ALLt}, Positive and negative
autocorrelation of the series can be interpreted in the
following way. Positive autocorrelation of the adjusted
innovation series may be caused by delay of market reflecting
new information into interest rates. Market is "efficient"
with delay of about a week or so, taking that length of period
to fully reflect new information into interest rates. We
think this effect exists in our data for short and medium j.
Negative autocorrelation can be interpreted either as the
result of overreaction of market participants or the result of
mean reversion of risk premium adjusted forward rate series,
{RLt—LLt}. For our data set from Japanese bond market, it is
difficult to tell either of the overreaction hypothesis and/or
the mea‘ reversion hypothesis is there. Since long term bonds
are traded by dealers of institutional investors with heavy
volume and extremely short investment horizon of less than a
day, overreaction hypothesis might explain why negative
autocorrelation emerges only for 1long j. However, mean
reversion of {R, .-L,.} is also plausible, when we remind
stable distribution of {RLt} over time. To properly account
for these serial correlation in the risk adjusted innovation,

we need vector autoregressive (VAR) model.

To price coupon bonds or other interest rate contingent

106



claims in mathematical way, highly complicated, non-linear
calculations are needed. Cox and Ross (1976)° provided
option pricing model using alternative distributions other
than 1lognormal distribution. Non centered chi-squared
distribution, etc. are discussed. However, for practical use,
we think it is better to develop a Monte Carlo simulation,
which can be applied for pricing of any interest rate options
under estimated parameter set for movement of {RLt} and {ILt}'
When we develop such Monte Carlo simulation system, we should

care about the following points.

(1) The parameter for density of Poisson jump, A,
should be common for all j, because jump in {ILt}
processes with different j are caused by the same
information which arrives at time t. Parameters

for magnitude of such jumps may differ for each j.

(2) Correlation between {ILt} for different j, must be
taken into account. Since these are positive over
long time horizon, failure to account for these
positive correlations leads to underestimation of
conditional variance of Sy,¢e This underestimation
in volatility of interest rates causes underpricing

of interest rate contingent claims.

2. Cox, John C. and Stephen A. Ross 1976 "The Valuation of
Options for Alternative Stochastic Processes," Journal of

Economics Vol.3, pp.145-166
107



Section 7. Conclusion

In this paper we attempted to capture (1) market
inefficiency as violation of martingale in the series of risk
premium adjusted forward rate {RLt-LLt}, (2) mean reversion,
(3) time varying risk premium as 1linear function of
conditional standard deviation, and (4) conditional
heteroskedasticity specified either as GARCH and/or jump
process. Then we tried to construct an extended version of

yvield curve model for bond option pricing.

We found supporting evidences for the following points.

(1) Market is slow in fully reflecting new information
into interest rates. For short j, forward short-
term rates tend to shift in the same direction for

up to 5 business days, i.e. a week.

(2) For long j, forward short-term rate process is
persistent, when compared to random walk. Day to
day shift in forward rates with 1long j are
negatively autocorrelated, implying mean reversion

and/or overreaction.

(3) Time varying risk premium incorporated in forward
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short-term rates are significant, contributing

about one third of variance of forward rates.

(4) Excess kurtosis of {ILt} is significant for all j.
Although excess kurtosis is greater for shorter j,
autocerrelation of {IILt—ALLt'} and {(ILt-ALjJ)z}
processes are greater for longer j. This implies
that heteroskedasticity associated with longer j is
explained relatively well by GARCH process, while
that associated with shorter j needs other source
of change in variance. Jump process might be a

possible explanation.

Although results from maximum likelihood estimation are
not available for this paper yet, Lagrange multiplier tests
and t-tests using such estimators will allow further
discussion on interest rate movement and development of model.

Use of VAR (vector autoregressive) model should also be

considered.
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