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ABSTRACT

Purpose of this paper is to develop a pricing model for
bond options with long term to expiration using results from
time series analysis on interest rate movement.

In this paper the yield curve model for bond option
pricing (Ho and Lee, 1986) is extended in three aspects.
1 Forward short-term rate structure is used instead of

zero-coupon bond price structure.
2 Interest rate movements were modeled at three different

points on the forward short-term rate curve.
3 ARMA process with Jump/GARCH-M disturbance is used to

model the movements of forward short-term rates.

We performed time series analysis on innovation in
forward short-term structure {It}, defined as It=R t-R j+1't1
where Rj t is j period forward short-term rate observe at time
t.
Our findings on innovation series are as follows.
1 For shorter j, {IV} has positive autocorrelation. Risk

premium have serial autocorrelation and/or market is
inefficient.

2 For longer j, {It} is negatively autocorrelated. This is
consistent with mean reversion in interest rate movement.

3 The series {It} is heteroskedastic. For shorter j, jump
style heteroskedasticity is dominant, while for longer j,
autoregressive conditional heteroskedasticity (ARCH) is
dominant.

4 Time varying risk premium (GARCH-M effect) are detected.

Although we worked on data from Japanese bond market, our
methodology can be applied to other markets as well.

Thesis Supervisor: Dr. Andrew W. Lo
Title: Associate Professor of Finance

Thesis Reader: Dr. Chi-fu Huang
Title: Professor of Finance
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1. Introduction

1.1 Purpose of this paper

Immediate purpose of this paper is to develop a pricing

model for bond option with long period to its expiration. We

also expect that we develop better understanding on movements

of term structure of interest rates and that our model will be

applicable to interest rate contingent claims in general.

Our methodology in this paper is to develop a extended

version of yield curve model for bond option pricing using

technique of financial time series analysis. Here we briefly

list the major sources of our key ideas. The base of our

model is the yield curve model by Ho and Lee', which is

flexible enough to be accommodated with theories and findings

on interest rate financial time series. From the field of

1. Ho, Thomas S. Y., and Sang-bin Lee, 1986a. "Term
Structure Movement and Pricing Interest Rate Contingent
Claims." The Journal of Finance, Vol.41 No.5, pp.1011-
1029.

Ho, Thomas S. Y., and Sang-bin Lee, 1986b. "Term
Structure Movements and Interest Rates Contingent Claims
Pricing." Working paper series, number 375. Salomon
Brothers Center for the Study of Financial Institutions,
Graduate School of Business Administration New York
University.

Ho, Thomas S. Y., 1990a Strategic Fixed Income
Investment. Dow Jones Irwin, Chapter 11.
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empirical study on interest rate movement Fama and Bliss

(1987)2 provided us useful discussion on mean reversion and

time varying risk premium. In the field of financial time

series analysis we obtained the concept of time varying

conditional variance from Taylor model3 and ARCH models4, and

we also learned from discussions on alternatives of random

walk hypothesis in financial time series in Lo and MacKinlay

(1988)s.

1.2 Structure of this paper

We start this paper with an overview of relevant theories

and methodologies of option pricing, interest rate movement,

2. Fama, Eugene F. and Robert R. Bliss 1987 "The Information
in Long-Maturity Forward Rates" The American Economic
Review Vol.77 No.4, pp.680-692

3. Taylor, Stephen 1986 Modeling Financial Time Series, John
Wiley & Sons Ltd.

4. Many versions of autoregressive conditional
heteroskedasticity models are developed. Bollerslev,
Chou and Kroner (1990) provides exclusive survey of those
models.

Bollerslev, Tim, Ray Y. Chou, and Kenneth F. Kroner 990
"ARCH Modeling in Finance: A Review of The Theory and
Empirical Evidence," Working Paper No.97 November, 1990,
Kellogg Graduate School of Management, Northwestern
University

5. Lo, Andrew W. and A. Craig MacKinlay 1988 "Stock Market
Prices Do Not Follow Random Walks: Evidence from a Simple
Specification test," The Review of Financial Studies
Vol.1 No.1, pp.41-66



and financial time series analysis in section 2. In section

3, we describe observed characteristics of forward short-term

interest rate movement. Our findings are serially correlated

prediction error of pure expectation hypothesis, mean

reversion, and autoregressive conditional heteroskedasticity.

In section 4, we build ARMA model (autoregressive moving

average model) with jump and GARCH-M (generalized

autoregressive conditional heteroskedasticity in mean)

disturbance and perform maximum likelihood estimation of its

parameters. Estimated model is used to extended yield curve

model in section 5. We conclude in section 6.



2. Theories and Models

2.1 Pricing Models for Interest Rate Options

Our direct motivation is to fill the needs for better

method in pricing callable corporate bonds. A callable

corporate bond can be valued as the portfolio of a non-

callable corporate bond and a call option or series of call

options. Typical structure of a call provision embedded in a

callable bond is;

(a) European call for the first half of the life of the

host bond, and American call thereafter with call

price declining according to a schedule over time,

or

(b) Series of European calls expiring in sequence on

each coupon payment date during the latter half of

the life of the host bond, having call price

declining sequentially to the par value.

Dyer and Jacob (1989)6 reported that three categories of

6. Dyer, L. J., and D.P. Jacob 1989 "A Practitioner's Guide
to Fixed-Income Option Models," The Journal of
International Securities Markets, Spring 1989, IFR

9



interest rate option pricing models are used in practice.

They are:

(1) Black-Scholes models, which assume log-normally

distributed bond price,

(2) binomial models, which assume log-normal

distribution of yield to maturity, and

(3) yield curve models, which model dynamics of the

yield curve.

Dyer and Jacob 1989 reasonably commented that the former

two categories involve inappropriate assumptions (constant

discount rate and constant volatility) and uncomfortable

results (arbitrage opportunities and negative interest rates),

while yield curve models can be set up in some consistent way.

Furthermore, it is reported that although the three categories

are in reasonable agreement for short-term options, yield

curve model is the clearly preferred method for long term

options.

Hull (1989) 7, and Hull and White (1990)8 provides useful

7. Hull, John, 1989, Options, Futures, and Other Derivative
Securities, Prentice Hall, Chapter 10.



overview of methods for interest rate derivative securities.

According to Hull and White (1990), yield curve model

initiated by Ho and Lee (1986) is unique in that their model

is consistent with any shape of currently observed term

structure. Two other major models developed by, Cox,

Ingersoll, and Ross (1985)9 and by Vasicek (1977)10 were also

extended to be consistent with given shape of term structure

by Hull and White (1990).

The information contained in the shape of the yield curve

observed at time t implies a structure of forward rates. The

forward rate structure at time t can be interpreted as the sum

of expected spot rates and risk premium. Therefore, models

that are consistent with particular shape of yield curve

observed in the market at time t, are consistent with

expectation by market participants about the future interest

rates as of time t. This is one of the common advantages of

the yield curve models that are consistent with yield curve at

t=O, while models of older generation examined in Dobson,

8. Hull, John, and Alan White 1990 "Pricing Interest-Rate-
Derivative-Securities." The Review of Financial Studies
Vol.3 No.4, pp.573-592

9. Cox, J. C., J. E. Ingersoll, and S. A. Ross 1985 "A
Theory of the Term Structure of Interest Rates,"
Econometrica, Vol. 53 No. 2, pp. 385-467

10. Vasicek, O. A., 1977, "An Equilibrium Characterization of
the Term Structure," Journal of Financial Economics,
Vol.5 pp. 177-188



Sutch, and Vanderford (1976)11 are not based on expectation

incorporated in forward rates prevailing in the market.

Another major advantage of yield curve models is that it

allows us to concentrate on modeling process of change in

interest rates, while other models those deal price change of

bonds require us to trace mixed effects of seasoning of bonds

and movement of interest rates. Since we attempt to perform

time series analysis of rate movement, free from contamination

by seasoning effects, this property is important.

The original version of the yield curve model by Ho and

Lee (1986a) was a single factor model of yield curve. The

yield curve was to be transformed under path dependent

condition and arbitrage-free condition in some stochastic way

by a perturbation function, which is a function of term and

independent of time and state. As noted in the Ho and Lee

(1986a) and developed somehow in Ho and Lee (1986b), their

model can easily be extended to have time varying parameters,

11. Dobson, Sutch, and Vanderford (1976) provides a list of
models for expectation on interest rate. Most of them
are some kind of ARIMA model based on time series of the
past and present short term rates, and some others are
ARIMA model for the transformed same series. Clearly,
these models do not count for unique information included
in the currently prevailing forward rates, which are
implied in the currently prevailing yield curve.

Dobson, Steven W., Richard C. Sutch, and David E.
Vanderford 1976 "An Evaluation of Alternative Empirical
Models of The Term Structure of Interest Rates," The
Journal of Finance Vol.31 No.4, pp.1035-1065

12



state dependent form and/or multiple factors.

This flexibility allows an extension of the yield curve

model using the idea such as "key rate durations" in Ho

(1990b)12 , which suggests to expand the single factor method

of modelling term structure movement to multi factor method.

Key rate duration is an idea to explicitly model interest

rates movements at multiple points along the yield curve,

rather than to look only at short-term rate.

Heath, Jarrow, and Morton (1990)13 is an attempt to

extend Ho and Lee model in the three ways;

(1) Extension from single factor model to two factor

model (it allows more general N factor model),

(2) Generalization from discrete time model to

continuous time model, and

12. Ho, Thomas S. Y., 1990b, Key Rate Durations: A Measure of
Interest Rate Risks Exposure, Working Paper Series S-90-
17, Salomon Brothers Center for Study of Financial
Institutions, Leonard N. Stern School of Business, New
York University

13. Heath, David, Robert A. Jarrow, and Andrew Morton 1990
"Contingent Claim Valuation With a Random Evolution of
Interest Rates," Review of Futures Markets, Vol.9 No.1,
pp.54-82, Chicago Board of Trade

Heath, Jarrow, and Morton (1990) contains two comments
from Hull, John of Toronto University and Habeeb, Gregory
G. of PaineWeber Inc., and some discussions.

13



(3) Use of forward rates instead of price of zero-

coupon bonds, i.e. yields.

Regarding the appropriate direction to which yield curve

models are to be extended, Hull, John commented to Heath,

Jarrow, and Morton (1990) that it is possible to model either

of bond price, forward rate, or short-term rate, and also that

short-term based model do not need significant arbitrage-free

condition except non-negativity of short-term rate, while

other two types needs careful treatment to avoid arbitrage.

2.2 Interest Rate Movement Theories

ARMA models, or distributed lag models, have been popular

method for modeling interest rate movements. A catalogue of

empirical models on interest rate movement is presented by

Dobson, Sutch, and Vanderford (1976). All of the models

discussed were single factor time series models, which can be

seen as some kind of ARIMA model. Such models had been

presented as candidates for good linear estimator of interest

rate movements. However, it is not clear why interest rate

movement follow such process that has serial autocorrelations

and whether such serial correlation implies violation of

martingale. If there exists predictability, which can be

represented using ARMA models, in interest rate movement on



average, why such opportunities are faded out through

arbitrage ?

For survey of interest rate theories, the following two

literatures provided good starting points. Wood and Wood

(1985)14  provided useful overview of development in

expectation theory of interest rates, starting from

traditional expectation theories to modern expectation

theories by Cox, Ingersoll, and Ross (1981)1-. Melino

(1986)16 also provides thorough overview of development both

in theoretical literatures and empirical studies on term

structure of interest rates.

After survey of literatures, our major concern on

modeling interest rate movement were summarized as the

following points;

(a) market inefficiency (in the sense of martingale),

14. Wood, John H., and Norma L. Wood 1985 Financial Markets,
Harcourt Brace Jovanovich, San Diego, California, Chapter
19

15. Cox, John C., Jonathan E. Ingersoll, and Stephen A. Ross
1981 "A Reexamination of Traditional Hypothesis about the
Term Structure of Interest Rates," The Journal of Finance
Vol.36 No.4 pp..769-799

16. Melino, Angelo, 1986, The Term Structure of Interest
Rates: Evidence and Theory, NBER Working Paper Series
No.1828, National Bureau of Economic Research

15



(b) mean reversion (autoregressive rate movement),

(c) risk premium (constant term premium, or time

varying risk premium, etc.), and

(d) source of observed excess

predictability of conditional

effects, jump effects, etc.).

kurtosis

variance

For discussion on martingale, some aspects of mean

reversion, and risk premium, we found helpful discussions in

the literatures on interest rate movements. For discussion on

some other aspects of mean reversion and excess kurtosis (fat

tailed shape) of distribution, we found relevant discussions

in several literatures on financial time series other than

interest rate movements.

2.2.1 Martingale, risk premium, and serial correlation

Martingale in forward short-term interest rates is

studied theoretically and empirically by Roll (1970) 1

17. Roll, Richard 1970, The Behavior of Interest Rates, An
Application of The Efficient Market Model to U.S.
Treasury Bills, Basic Books, Inc., Publishers, New York,
London

and

(ARCH



following model of Samuelson (1965)18. Roll (1970) stated

that:

Denoting;

Rj,t as j-1 year forward one year rate observed

at time t,

Lj,t as risk premium included in Rj,t, and

Bt as knowledge available as of time t,

and defining

Xj,t as Rj,t-Lj,t,

the sequence {Xj,t} follows pure martingale, or

equivalently,

Et-1 jt-LJt I Bt-1) = Rj1,t-1-LJ+1,t-1,

where Aj,t and Lj,t at time t-l are random variabls.

This provides definition of martingale for process of

risk premium adjusted forward short-term interest rates, which

Hull, John (1990) suggested to use as the easiest-to-handle

building block for extended yield curve models'9 . The

observable variable {Ij,t} defined as Ij,t=Rj,t-Rj+1,t-1 here is the

sum of the following two components.

18. Samuelson, Paul A. 1965 "Proof That Property Anticipated
Prices Fluctuate Randomly," Industrial Management Review
Vol.6 No.2, pp..41-49

19. Hull, John (1990) comment to Heath, Jarrcw, and Morton
(1990), Review of Futures Markets, Vol.9 No.l, pp..77-78,
Chicago Board of Trade



(1) Unexpected innovation in forward short term rate,

Xj,t-xj+1,t-1"

(2) Difference between Lj,t and Lj+1,t-1.

Since risk premium L1,t is unobservable, we have to identify

functional forms of Lj,t to be tested. This is necessary, when

we attempt to answer the questions,

(1) if {Xj,t} follows martingale, and/or

(2) if there are some evidence for certain type of risk

premium.

Cox, Ingersoll, and Ross (1985) model assumes term

premium increasing with maturity, while Fama and Bliss (1987)

pointed out that behavior of expected returns is inconsistent

with simple term structure models in which expected returns

always increase with maturity, and suggested time varying risk

premium. We consider the following two types of functional

representation of risk premium.

(1) L as a monotonously increasing function of j

and independent on t. This corresponds to the

18



original idea of liquidity premium by Hicks

(1946)20. In this case, series of innovation in

forward rate, {IJ,t} defined as Ij,t=Rj,t-RJ+1,t-1

follows random walk with negative drift C=LJ-LJ+*<0.

From martingale hypothesis,

Et-_1[Xj,t] = XJt-1

and by definition,

Et-_[Xj,t]+Lj,t = Et-1[Rj,t], and

Xj+1,t-1+Lj+1,t-1 = Rj+1,t-i.

Then,

Et_-1[ RJ,t ] -Rj+1,t-1

= {Et-_1[Xj,t] -Xj,t-1}+{Lj,t-Lj÷l,t-11

= L-Lj+1  = C < 0.

(2) The second method is the use of ARCH-M model

by Engle, Lilien, and Robins (1987)21, which

revealed that expectation hypothesis holds under

the ARCH-M style time varying risk premium and that

the result is robust. Time varying risk premium

also provides explanation for the rejection of

expectation hypothesis by recent studies where

constant term premium hypothesis is wrongly applied

20. Hichs, John (1946) Value and Capital, 2nd ed., Oxford
Press, London

21. Engle, Robert F., David M. Lilien, and Russell P. Robins
1987 "Estimating Time Varying Risk Premia in the Term
Structure: The ARCH-M Model," Econometrica Vol.55 No.2,
pp.391-407



for volatile periods.

The risk premium at time t, LJ,t, is defined as

a linear function of Het, where Ht is conditional

variance of Rj at time t. Specifically, we use

jump/GARCH process as {Ht}, and define Lj,t=P1H t,

where P is a positive constant. This is a extended

version of the GARCH-M model by Bollerslev, Engle,

and Wooldridge (1988)22 to include jump components.

In this case, time series of innovation in the

forward rate {It}, defined as Ijt=Rj,t-RJ+1,t-1

follows a process as follows.

Ij t  = [Rjt-Rj+1,t-1 ]+P[rHj,t- Hj+1,t-_1

= Xt + PA[Ht] + Ct'

while denoting D as difference operator and

assuming change of H3,t due to small change in j is

negligible. Then, it is clear that test for serial

correlation of {It} is insufficient as the test of

martingale property of {Xt}. We need to estimate

{Ht} process and adjust for serial correlation

caused by it. We need to test It-PA[IfH] for serial

correlation in order to make inference if E[Xt]=O,

i.e. whether the rate movement is efficient in the

22. Bollerslev, Tim, Robert F. Engle, and Jeffrey M.
Wooldridge 1988 "A Capital Asset Pricing Model with Time-
varying Covariances," Journal of Political Economy
Vol.96, No.1

20



sense of martingale.

2.2.2 Mean reversion

Although the idea of market efficiency leads to the

concept that risk premium adjusted forward short-term rate

process {Rt} should follow pure martingale, there exists

another important point of view for interest rate movement.

The idea of mean reversion in the interest rate movement

process leads to stationary ARMA style process rather than

random walk suggested by martingale concept. Importance of

mean reversion is examined by Hogan and Breidbart (1990)23.

Hogan and Breidbart compared a yield curve model without mean

reversion against another yield curve model with mean

reversion features, and concluded that different handling of

mean reversion results large price difference in long-term

options, while price difference is smaller for shorter-term

options.

Theoretical and empirical study on forward interest rate

by Fama and Bliss (1987) presented a mean reverting model.

23. Hogan, Michael and Seth Breidbart 1990, "The Long-Term
Behavior of Interest Rates And Options Pricing," The
Journal of International Securities Markets, Spring 1990,
pp..49-56

21



They used AR(1) time series to show that mean reversion is a

general property of stationary ARMA processes, and that mean

reversion counts for half of the forward rate volatility in

the long run. Suppose a time series of forward one year rate

observed at time t follows the AR(1) process,

Rt  = C + ORt-1 + E, Iei < 1

where Rt is forward one period rate at time t,

1-0 is a parameter for the speed of

reversion,

C/(1-0) is the unconditional mean, say I,

or the target of the reversion,

Ct is disturbance at time t, and

the inequality imposed on 0 is condition

for stationarity.

The following equivalent expression,

Et_1[Rt] = 8Rt-1 + (1-8)A,

presents that E[Rt] is the point which divides the vertex of

[R_~,p~] with the proportion of (1-0):0. Another expression,

Et_1 [ Rt-Rt-l ] = - ( 1-0) (-Rt-1),I

22



shows that expected one period change in Rt on condition Rt_1

has a size proportional to the distance between Rt.- and L and

that the change has direction from R_-1 to ;L. As a general

property of stationary ARMA model, when s gets larger;

(1) Conditional expectation of E[R+,,IR t] quickly

approaches unconditional mean of E[Rt], and

(2) Covariance between Rt and Rt,,, COV(Rt,Rt+,), converges

to zero.

Therefore, conditional expectation and conditional variance of

rate change between time t and time t+s can be written as

follows.

(1) E[ Rt+.-Rt Rt ] = E[R+.BIRt] - Rt

When s get larger, this approaches to

I - Rt,

where A is the unconditional mean E[Ft].

(2) VAR[ Rt+.-Rt Rt ]

= VAR[R+.,I R] + VAR[Rt] + 2COV[Rt+.,Rt]

When s gets larger,

VAR[Rt,,] approaches VAR[Rt],

COV[Rt+,,Rt] approaches 0, and

VAR[ Rt+,-R t I Rt ] approaches 2VAR[Rt].



Therefore, the proportional contribution of mean

reversion to the entire variance,

VAR[Rt+] / VAR[Rt+5-Rt] approaches 50%

from the lower side.

There are several bond option pricing models, which

applied the idea of mean reversion. Jamshidian (1989)24 used

a mean reverting stochastic process, Ornstein-Uhlenbeck

process, for the pricing of option on zero coupon bonds and

derived closed form solution. Cox, Ingersoll, and Ross (1985)

also applied the mean reversion hypothesis. From the point of

view of empirical study, Fama and Bliss (1987) provided

supporting evidence for mean reversion hypothesis.

2.3 Models for other financial time series

Outside the studies on the term structure of interest

rates, we could find relevant literatures for our purpose.

Mean reversion had long been discussed for movement of

term structure of interest rate. However, recently mean

reversion is reported and discussed in the stock markets and

foreign exchange markets as well with discussion on

24. Jamshidian, F., 1989 "An Exact Bond Option Formula" The
Journal of Finance Vol.44 No.1 pp.205-209

24



statistical techniques for detection and modeling.

Heteroskedasticity is reported for stock market data,

foreign exchange market data, commodity market data, and

almost all other kinds of financial time series data.

Techniques to analyze such heteroskedasticity have also been

developed and ready to be used in the field of interest rate

study.

2.3.1 Other aspects of mean reversion

Lo and Mackinlay (1988), Poterba and Summers (1988)25,

and Fama and French (1988)26 provides discussion on mean

reverting properties of financial time series. Although those

discussions are based on data of stock returns, methodological

points are easily applied to other financial time series.

Among these, Poterba and Summers (1988) reported that;

(1) stock return over short horizon tend to show

positive autocorrelation, while those over longer

horizon tend to show negative autocorrelation, and

25. Poterba, James M., and Lawrence H. Summers 1988 "Mean
Reversion in Stock Prices Evidence and Implications,"
Journal of Financial Economics Vol.22 pp.27-59

26. Fama, Eugene F., and French R. Kenneth 1988 "Permanent
and Temporary Components of Stock Prices," Journal of
Political Economy Vol.96 No.2 pp.246-273

25



that

(2) these observations on serial correlation are so

subtle that random walk hypothesis cannot be

-rejected in many cases at conventional size of

statistical tests.

Poterba and Summers (1988) used sum of a random walk and

a stationary mean reverting process as their model and also

reported that standard statistical software packages fail to

estimate an ARMA(1,1) plus a random walk model from a data set

generated by Monte Carlo simulation, when random walk

components contributed 75% or more of the entire variance.

Variance ratio test is examined and suggested to detect

serial correlation from both homoskedastic or heteroskedastic

data sets by Lo and MacKinlay (1988), Lo and MacKinlay

(1989)27, and Poterba and Summers (1988).

2.3.2 Excess Kurtosis in distribution

Financial time series tend to have leptokurtic

distribution rather than to have normal distribution. Early

27. Lo, Andrew W., and A. Craig MacKinlay 1989 "The Size and
Power of the Variance Ratio Test in Finite Samples,"
Journal of Econometrics Vol.40 pp.203-238

26



study on this point can be found in Davies, Speeding, and

Watson (1980), where skewness and kurtosis is analyzed for

ARMA process with non-normal residuals29 . This can result

either from some generating process with leptokurtic

distribution, like student's t-distribution and logistic

distribution, or from heteroskedastic behavior of

conditionally normally distributed generating processes of

financial time series. Further, as is pointed out in

Mandelbrot (1963)29 large change in speculative price series

do not distributed uniformly, rather they are somewhat

clustered. This suggests some serial dependence among

conditional variances, i.e. heteroskedasticity with serial

dependence.

These observations and ideas combined, lead to a group of

models called autoregressive conditional heteroskedasticity

(ARCH), where series of conditional variance is assumed to

follow ARMA processes. The original ARCH model, where

conditional variance was assumed to follow MA(4) process with

28. Davies, Neville, Trevor Speeding, and William Watson 1980
"Autoregressive Moving Average Processes with Non-Normal
Residuals," Journal of Time Series Analysis, Vol.1 No.2,
pp.103-109

29. Mandelbrot, Benoit. 1963 "Forecasts of Future Prices,
Unbiased Markets, and 'Martingale' Models" The Journal of
Business Vol.36, pp.394-419
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specific lag pattern, was developed by Engle (1982)30o. This

model was analyzed by Milhoj (1985)31, Weiss (1986)32 and

also extended to ARMA model with ARCH disturbance by Weiss

(1984)33. The model followed a quite natural course of

development and was extended by Bollerslev (1986)34 to have

conditional variance time series that follows ARMA process

(generalized autoregressive conditional skedasticity, GARCH).

GARCH process is discussed by Engle and Bollerslev (1986)3-,

and by Bolierslev (1988)36. In ARMA process with ARCH

disturbances by Weiss (1984), ARCH model was applied to

residuals from usual ARMA method. However, from the point of

view of risk-return trade off, the estimated magnitude of

30. Engle, Robert F. 1982 "Autoregressive Conditional
Heteroskedasticity with Estimates of the Variance of U.K.
Inflation," Econometrica Vol.50 No.4, pp.987-1008

31. Milh0j, Anders 1985 "The Moment Structure of ARCH
Processes," Scandinavian Journal of Statistics Vol.12
pp.281-292

32. Weiss, A.A. 1986 "Asymptotic theory for ARCH models:
Estimation and testing," Econometric Theory Vol.2 pp. 107-
131

33. Weiss, Andrew A. 1984 "ARMA models with ARCH errors,"
Journal of Time Series Analysis Vol.5 No.2 pp.129-143

34. Bollerslev, Tim 1986 "Generalized Autoregressive
Conditional Heteroskedasticity," Journal of Econometrics
Vol.31, pp. 307-327

35. Engle, R.F., and Tim Bollerslev 1986 "Modeling the
persistence of conditional variances," Econometric Review
Vol.5 pp.1-50

36. Bollerslev, Tim 1988 "On the Correlation Structure for
the Generalized Autoregressive Conditional
Heteroskedastic Process," Journal of Time Series Analysis
Vol.9 No.2 pp.121-131
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conditional variance should be reflected in the estimation of

conditional expectation, i.e. conditional expectation and

conditional variance must be estimated simultaneously, not one

after another. Then, ARCH-M model was developed for time

varying risk premium by Engle, Lilien, and Robins (1987).

This course was followed by GARCH(1,1)-M model for testing

CAPM in Bollerslev, Engle, and Wooldridge (1988), and by

Factor-ARCH model in Engle, Ng, and Rothchild (1990)37.

Nelson (1990)3" studied continuous time version of ARCH

models. Bollerslev, Chou, and Kroner (1990) provides

exclusive survey of ARCH models, and Akgiray (1989) 39

provides comprehensive introduction of several types of ARCH

models with applications.

While ARCH type models provide explanation for some

portion of excess kurtosis reported in many financial time

series, residuals from ARCH models still tend to have excess

kurtosis. There should be different source of

heteroskedasticity. Here jump processes, which are not

serially correlated, are introduced as a candidate for the

37. Engle, Robert F., Ng, Victor K., and Rothchild, Michael
1990 "Asset Pricing with a Factor-ARCH Covariance
Structure" Journal of Econometrics Vol.4%, pp. 213-237

38. Nelson, Daniel B. "ARCH Models as Diffusion
Approximations," Journal of Econometrics Vol.45, pp.7-38

39. Akgiray, Vendat 1989 "Conditional Heteroskedasticity in
Time Series of Stock Returns: Evidence and Forecasts,"
Journal of Business Vol.62 No.1, pp.55-80
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model of remaining excess kurtosis. This model was studied

for stock returns and foreign exchange markets by Jorion

(1989)40. A model for interest rates which includes both

jump and diffusion components are also developed in Ahn and

Thompson (1988)41.

2.4 Summary

We analyze the time series of {Ij,t}, innovation in

forward rate structure, defined as Ij,t=Rj,t-Rj+1,t _. We

concentrate on detecting and estimating the following

features of the {It} process at different length of j, since

these are relevant for bond option pricing.

(1) Market efficiency in the sense of martingale.

(2) Evidence for constant term premium hypothesis or

for time varying risk premium (jump/GARCH-M).

(3) Evidence for identifying source of excess kurtosis

(jump or GARCH).

40. Jorion, Philippe 1989 "On Jump Precesses in the Foreign
Exchange and Stock Markets," The Review of Financial
Studies Vol.1 No.4, pp.427-445

41. Ahn, Chang Mo, and Howard E. Thompson 1988 "Jump-
Diffusion Processes and the Term Structure of Interest
Rates," The Journal of Finance Vol.43 No.1 pp.155-174
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(4) Evidence for mean reversion.

3. Time Series Analysis on Innovation in Forward Short-Term

Rates

3.1 Description of Data and Notation

In this section we explain what the data used are, how we

transformed them, and what the significant properties of the

time series are.

Data used here are three daily time series of Japanese

bond yield. The three series are "NIKKEI bond indexes" for

"short-term bonds," "medium term bonds," and "long term

bonds." Description of the indexes are as follows.

NIKKEI Bond Index

[Publisher]

The Japan Economic Journal (Nihon Keizai Shimbun)

[Distinction of terms]

Short-term, medium-term, or long-term bonds indexes

are the average of yield to maturity (YTM) of each group

of bonds which fall in the same maturity class defined as

follows.



NIKKEI BOND INDEX
Dal Iy

- 971 90
YEAR

- SHORT - MED I UM - LONG

Fig. 3.1.

Short-term :

Medium-term :

Long-term :

respectively.

less than 3 years,

3 years to 7 years, or

7 years to 10 years,

[Type of bonds included]

Government bonds, government guaranteed bonds,

municipal bonds, bank debentures, corporate bonds, and

Samurai bonds.

[Method of calculation]

Yield to maturity (YTM) is calculated for each bond

using internal rate of return (IRR) method based on 6

month of compounding period length. This is because
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Japanese bonds have semiannual payments. Annual YTM is

obtained by just doubling the 6 month period based IRR.

To obtain index arithmetic average is calculated for

bonds within each maturity classification.

[Source of data]

Mean of the bid-ask quotations is used for the YTM

calculation. The quotations are taken from "bench-mark

bond quotations, daily" published by the Japan Securities

Dealers Association.

The bench-mark quotations are arithmetic average for

each of bid and ask quotations reported by market makers

who are members of the association. Quoted bid and ask

prices at 9 A.M. are reported.

[Notes]

NIKKEI Bond Index is not adjusted for early

redemptions and durations. Bonds are classified to each

term based only on the remaining period to final

maturity. When bonds are called, such bonds are removed

from calculation.

The index is subject to change in membership of the

"bench-mark quotation". The membership is changed by the

association considering maturity change caused by

seasoning, announcement of early redemption, and trading
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volume.

A major problem of using the NIKKEI bond index for our

study is the difficulty in deriving implied forward rate

structure. Since the indexes are neither representing spot

rate curve, nor are par-yield curve, there is no straight-

forward way to derive forward rate structure from these data.

To derive accurate implied forward rates, detailed

information on each bonds included in the index is required.

Since such detailed information was not available, we prepared

rough estimator of duration for each class of maturity and

assumed that the rate of index of each maturity class

represents the spot rate, or IRR of discount bonds, having

such time horizon that equal to the duration of the maturity

class. Such duration changes depending on coupon rates of

bonds included within each class and also on market discount

rate. However, for simplicity, we assumed that coupon rates

of all bonds were 5.5% par annum throughout the period, and

discount rate were also constant st 6% for the purpose of

duration derivation.

This rough adjustment shows that short, medium, and long

term bond index correspond to discount rate for 1.86 years,

5.0 years and 6.93 years, respectively.
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Table 3.1

TERM LENGTH ADJUSTMENT USING DURATION

Short Medium Long

Duration (Years) 1.86 5.00 6.93

Accumulated (Days) 679 1823 2528

Incremental (Days) 679 1145 705

For future study we strongly urge to use spot rate data

from the market, which is currently under joint development by

Industrial Bank of Japan and J.P.Morgan.

For this paper, we assume piecewise constant forward rate

structure. Assuming the figures for short-term, medium-term,

and long-term indexes are representing discount rates for 1.86

years, 5.00 years, and 6.93 years, we can derive forward rate

structure which is piecewise constant for each interval of

[year 0 to year 1.86], (year 1.86 to year 5.00], and (year

5.00 to year 6.93]. Figure 3.2 presents the movement of the

three forward rates. When compared with the original NIKKEI

Bond Index presented in the figure 3.1, the effect of the

transformation from yield curve into forward rate curve is

evident. Short term forward rates show quite similar movement

with short term yield, long term forward rate turned out to

stay within relatively stable range, and medium term forward
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rate is in-between. This is understandable because yield is

geometric average of forward rates, or logarithm of yield is

arithmetic average of logarithm of forward rates.

MOVEMENT OF IMPLIED FORWARD RATES

0 06

0 05

0 04

0 03

YEAR

5- SHORT -- M MEDIUM - L LONG

Fig. 3.2

For convenience of the following discussions, we take log

of the rates and use the following notation.

(1) We basically follow the notation used by Roll

(1970). Rj,t represents j period forward short-term

rate (one year rate starting year j-1 and ending

year j) observed at time t. Since we only have

three different j,

= 1.86 years,
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5.00 years, or

6.93 years,

we also use the word "short", "medium", or "long"

term forward rate" or R.hort,t R i.,t, or Riong,t

equivalently.

(2) We also analyze innovation in the forward rate

series {Ij,t}. This is not equal to the first order

difference of {R~,t}. Beside the innovation caused

by information that newly arrived to the markets,

there are the following two sources of change in

{Rjti.

(a) Change in {Rj,t} caused by time-varying

risk premium.

(b) "Expected" change in {Rj,t} which is

already built-in to the slope of forward

rate structure observed at time t.

By the word "innovation," we will mean the

portion of change in {R,,t} that is not expected. If

j and t are measured on the same scale, unexpected

innovation can be defined as It=R-,t-Rj+1,t-1 as in Roll

(1970). In our data set, j is only three step with



interval of 1.86 years, 3.14 years, and 1.93 years,

while t is measured by day. Then, we pro-rated the

logarithm of yield according to the length of j.

Ij t  = Rj, t - {Rj,tDj + (d)(R+,t-1-Rj,t)}ID j ,

where j={short,medium}, and J+={medium,

long} respectively,

Rj', is logarithm of forward rate for

period j observed at time t,

Di is number of days included within

the period j, and

d is number of days between time t

and t-1, i.e. d=3 if t is Monday and

d=l for week days.

For the long term forward rate series, we

defined It just as the first order difference, since

no information on further longer term is available

from the market data.



3.2 Comparison of Forward Rate Process {rt} and Innovation

Process ({I,

HISTOGRAM OF IMPLILED FORWARD RATES

500

400

RETURN

0 SHORT + MEDIUM o LONG

Fig. 3.3

Figures 3.3 is the histogram of forward rates during the

6 year and 3 month period between January 1985 to March 1991,

which shows that {Rt} is concentrated within relatively narrow

range for longer j, while {Rt} is distributed over wider range

for shorter J.

How the different distribution of {Rt} for different j

can be explained ? Do {Rj,t} have different shape of

distribution for different j ? To answer this question, we

prepared histogram of the {Rt} for each j, year by year for

the 6 sub-periods which correspond to the calendar years.
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Figures 3.4, 3.5, and 3.6 show that the most of the difference

was caused by the shift of conditional distribution rather

than the different shape of distribution itself. For shorter

j, histogram of {Rt} shift around a lot over time, while

histogram is almost still throughout the six sub-periods for

longer J.

SHIFT OF FORWARD RATE HISTOGRAM
SHORT

RETURN

Fig. 3.4

This relative persistence in {Rj,t} for longer j seems to

be consistent with the idea of mean reversion. Because risk

adjusted forward rate is estimator for spot rate in the

future, persistence in {Rj,t} with longer j implies persistence

in expectation on spot rate in the distant future.
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Fig. 3.5
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The figure 3.3 also shows that for longer j the mode of

histogram of {Rjt} lays in higher class. This fact can be

interpreted in the following two ways.

(1) Term premium incorporated in {Rdjt) increase with the

length of J. This leads to the idea of constant

liquidity premium.

(2) Time varying risk premium as some increasing

function of uncertainty in {Rj,t}. As we see later,

data show that variance of innovation, VAR[Ij,t], is

greater for longer J.
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Figure 3.7 to 3.9 also present year-to-year shift in

range of forward rate distribution. These figures confirm

that most of the variance of {Rj,t) for short j is caused by

shift in distribution over time.

Although {R,,t} with shorter j have larger unconditional

variance over the entire period (January 1985 to March 1991),

this relationship reverse when unconditional variance is

calculated for smaller sub-periods.

HISTOGRAM OF INNOVATIONS

450
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Fig. 3.10

This point becomes more clear when we examine {Ij,t.

Figure 3.10 compares histograms of {I1j,t throughout the 6 year

and 3 month period for different J. Histograms are quite

similar for all j, which is quite different from the
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histograms of {Rj,t).

Figure 3.11 through 3.13 shows year to year shift in

histogram of {I3,t} for each J. All three distributions are

fairly stable throughout the entire period. This is quite

different from the behavior of {R,,t). This implies that great

portion of the shift in {Rst} distribution is expected changes

and that such expectation is implied in the forward rate

structure observed in the market.
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Figures 3.14 to 3.16 present year to year shift in range

of mean plus/minus 1 standard deviation, maximum, and minimum

of {It} distribution. Figure 3.17 presents the comparison of

the mean plus/minus 1 standard deviation range for the three

different J. When we see annual mean, they are almost zero

throughout the entire period. Based on t-statistics, they are

not significantly different from zero at each year. When we

observe annual standard deviation, it is apparent that;

(1) Annual variance of {Ij,t} is usually greater for

longer j, and that
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(2) Annual variance of {fI,} for different j, seems to

keep stable relationship roughly proportional to j.

MEAN +/- ONE STD RANGE OF INNOVATIONS
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Fig. 3.17

When compared to the forward rate series of {Rt), the

innovation series {Ij,t} are fairly stable both in the level

and shape of distribution over the 6 years. Also, as figure

3.10 shows, all three distributions are tightly concentrated

around zero, and have quite similar sharp peaked shape. It is

apparent that modeling innovation precesses {IJ,t) is much

easier than modeling forward short-term rates {Ri,t}.
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3.3 Mean Reversion, Risk Premium, Heteroskedasticity and

Market Efficiency of ({I,t)

In the following two subsections we examine

characteristics of {Ij,t} process. Figures 3.18 to 3.20

presents {Ij,t} for different j. Summary statistics of {Ij},t

are presented in table 3.2 through table 3.4 for j=short,

medium or long, and data set observed at different frequency

of daily, weekly and monthly. For most series average is not

significantly distant from zero. T-statistics are

insignificant at the usual 5% level. No evidence to support

constant term premium hypothesis is found, which expects {Ij,t}

has bias and tendency to take negative value.

Figures 3.18 to 3.20 show subtle differences among the

behavior of daily {I1j,t for each J. These figures suggest

that the {Ilong,,t} has negative autocorrelation and is

oscillating around zero, the unconditional mean, while {Ij,t)

(j=short, medium) have positive autocorrelation and are

meandering around zero. This is consistent with the ideas

that {Riong,t} is relatively stable and mean reverting tendency,

and that {Rjt} (j=short or medium) shift a lot over time and

have relatively strong positive autocorrelation, implying that

market is somewhat inefficient in the sense that it takes

several days to absorb new information.
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Fig. 3.19
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These findings about the behavior of conditional mean are

confirmed by examining autocorrelation functions (ACFs) and

partial autocorrelation functions (PACFs). Figures 3.21 to

3.38 are correlograms of the three innovation series using

ACFs and PACFs. ACF and PACF of the series of absolute value

and squared value of innovation are also presented.

For testing the significance of autocorrelation function

(ACF) of k-th order, p,, asymptotic distribution of

pk~N(O,VAR(pk)) is used. Bartlett's formula, VAR(pk)=1/N can

be used. However, when we remind that financial time series

tend to have larger magnitude of autocorrelation at lower

order, it might be more useful to use the following
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cummuratively adjusted Bartlett's formula

k-i

1+2 pi
VAR (pk) =

to test marginal significance of Pk, when k increases.

Moreover, in cases where ARCH effects are expected, it is

important to notice that Bartlett's formula tend to provide

too small variance, resulting too frequent rejection of the

null hypothesis that p==0. For ARCH(1) effect, Diebold (1986)

provided adjustment for Bartlett's formula42. Taylor (1984)

also pointed out that empirical study for various kind of

financial time series rcsulted variance for autocorrelation

coefficient being 2.5/n, 1.6/n, and 1.3/n for commodities,

foreign exchange, and stocks respectively430

Since we expect more general form of GARCH effect than

Diebold's ARCH(1), Diebold's adjustment for Bartlett's formula

is not directly available for us. We used the accumulation

adjusted version of Bartlett's formula for our correlogram

42. Diebold, Francis X. 1986 "Testing for Serial Correlation
in The Presence of ARCH' " American Statistical
Association 1986 Proceedings of the Business and Economic
Statistics Section, pp.323-328

43. Taylor, Stephen J. 1984 "Estimating the Variances of
Autocorrelations Calculated from Financial Time Series,"
ADplied Statistics Vol.33 No.3, pp.300-308
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analysis as a benchmark of VAR(pk), while keeping it in mind

that the criteria is biased. Then, our 5% significance level

is,

*1.

We use correlogram analysis for the purpose of model

identification and have chance to further examine significance

of parameters in the stage of model diagnosis. Then, we might

take the risk of choosing too deep order of autocorrelation at

this stage.

For the similar test of partial autocorrelation function

(PACF)s of k-th order, k,, is much easier. We can just apply

the Bartlett's formula and use VAR(Ok)=l/N for all k.

Therefore, usual 5% level criteria is ±1.96/(N.

Excess kurtosis is the most noticeable characteristics of

these data. Magnitude of excess kurtosis seems to depend on

two factors.

(1) Excess kurtosis of {IJ,t} is greater for shorter J.

(2) For each length of j, excess kurtosis of {Ij,t)

depends on the frequency of the data (i.e. daily,



weekly, or monthly). For daily data set excess

kurtosis is extremely large for all j. However,

with the observation frequency declines, excess

kurtosis also diminish quickly for all J.

Excess kurtosis can be explained in the following two

ways.

(1) Generating process of time series is conditionally

Gaussian, however, time varying conditional

variance causes spurious excess kurtosis.

(2) Generating process itself is fat-tailed. Student's

t-distribution, logistic distribution, Palate

distribution, etc. had proposed.

For our data set, heteroskedasticity seems to be

suitable. Since for all j, excess kurtosis is huge for daily

and weekly data, while it is insignificant at 5% level for the

monthly data, such change in variance can be seen as almost

averaged out for observation period longer than a month.

Clustering tendency of observation with large absolute value

of IJ,t also suggests heteroskedasticity rather than fat-tailed

generating processes. Such heteroskedasticity seems to be

larger for shorter j, since excess kurtosis of {Ij,t} is

greater for shorter J.
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Table 3.2 Summary statistics of short term innovation {I,}

N

AVG

STD.

T-RATIO

SKEWNESS

T-RATIO

KURTOSIS

T-RATIO

D.W.

RUNS

ABS. D. W.

ABS. RUNS

SQ.D.W.

SQ. RUNS

Note:

{I.hort}-daily

1523

0.00000118

0.00042632

0.003 I

5.50906869

87.771 S

74.2145408

567.300 S

1.65564963 M

0.00000000 S

1.23506006 S

0.00000000 S

1.92963064 I

0.48720000 I

S, M, and

marginal, or

{ I hort) -weekly

318

-0.00000544

0.00116631

-0.005

-1.39278524

-10.140

9.89154718

25.086

1.41679815

0.00000000

1.05405689

0.00010000

1.78096992

0.47510000

{ I.j} -monthly

74

0.00000996

0.00298994

0.003 I

-0.1610953

-0.566 I

2.90245451

-0.171 I

0.66072620 S

0.00390000 S

0.68051083 S

0.16830000 I

1.39414056 S

0.41560000 I

I mean statistically significant,

insignificant at 5% level.

ABS., and SQ. mean series of absolute and squared

values respectively.



Table 3.3 Summary statistics of medium term innovation {I~, }

N

AVG

STD.

T-RATIO

SKEWNESS

T-RATIO

KURTOSIS

T-RATIO

D.W.

RUNS

ABS.D.W.

ABS. RUNS

SQ.D.W.

SQ. RUNS

{ IdiuI} -daily

1523

-0.00001222

0.00046167

-0.026

0.07414016

1.181

14.47122413

91.381

1.68783012

0.00000000

0.94505203

0.00000000

1.54590632

0.00000000

{ I m }-weekly

318

0.00006071

0.00125236

0.048 I

-0.65827238

-4.792 S

7.87524352

17.746 S

1.24494833 S

0.00020000 S

0.75174014 S

0.00200000 S

1.23183166 S

0.02040000 S

{ Iu) -monthly

74

0.00027045

0.00340022

0.080 I

-0.73884445

-2.595 S

3.76369005

1.341 I

1.73092678 I

0.00080000 S

0.51265854 S

0.09020000 I

1.02249835 S

0.34240000 I

S, M, and

marginal, or

I mean statistically significant,

insignificant at 5% level.

ABS., and SQ. mean series of absolute and squared

values respectively.

Note:



Table 3.4 Summary statistics of long term innovation ({I~

N

AVG

STD.

T-RATIO

SKEWNESS

T-RATIO

KURTOSIS

T-RATIO

D.W.

RUNS

ABS. D. W.

ABS. RUNS

SQ.D.W.

SQ. RUNS

{ Ilong-daily

1523

-0.00000799

0.00087769

-0.009

0.30163894

4.806

18.22614754

121.293

2.20385784

0.30140000

0.82495765

0.00000000

1.12504864

0.00000000

{ I.ong}-weekly

318

0.00004050

0.00177209

0.023

-0.65601082

-4.776

6.52875150

12.845

2.06052583

0.24170000

0.80947049

0.00000000

1.50424043

0.00010000

{ I,~on}-monthly

74

0.00000000

0.00341096

0.000

-0.49501800

-1.738

3.52191631

0.916

1.96353238

0.24210000

0.80309896

0.11170000

1.41276741

0.48390000

S, M, and

marginal, or

I mean statistically significant,

insignificant at 5% level.

ABS., and SQ. mean series of absolute and squared

values respectively.
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Then, the next question of practical interest is, whether

conditional variance VAR[IJ'tlt-1] performs significantly

better than unconditional variance VAR[IJ1,]. Denoting the

process of conditional variance of {(I,t} as {Hj,t}, the

question is if {HI,t} is independent process or not. Even if

{Ij,t) or risk premium adjusted {IJ,t) is uncorrelated, {H',t)

can be serially correlated or, more generally, serially

dependent.

Such serial correlation of {H,,t} can be detected through

examining correlogram of {IIj,tl} or {(IJ,t) 2} presented in the

figures 3.21 through 3.38. Other tests for serial correlation

of time series are also available. Results of Durbin-Watson

statistics test and runs check for {IIJ,tI } and {(I ,t)2} are

contained in tables 3.5 through 3.7.

Results of these analysis on correlation structure of

{Ij}, { {IIJ,t|I}, and {(IJ,t)2} can be summarized as follows.

(1) {fI, } for j=short or medium have positive

significant autocorrelation up to about 5 days.

(2) Correlograms show that evidence for GARCH style of

heteroskedasticity is stronger for longer j, where

ACF or PACF for {II I,t} and/or {(I ,t)2} exceed the

magnitude of those for {IJ,'} of corresponding order.
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For shorter j, auto correlation of { I Ij,I and/or

{(Ij,t) 2} are almost equal to those of {I,t}). Hence,

such autocorrelation of {IIj,t}) and/or {(I ,t) 2 } do

not imply anything but autocorrelation of {I,t).

(3) Although greater excess kurtosis is observed for

shorter j, autocorrelation of {IIj,tj and ((I,,J) 2}

are smaller for shorter j. Then some source of

heteroskedasticity other than GARCH type should be

considered. Provable explanation might be jump

processes, which do not cause autocorrelation in

{IIj,tl} or {(IJt)2} processes, while generating

heteroskedasticity.

Ij,t and IJ,t+, for j=short and medium have strong positive

correlation for small s. Since Ij,t=[R,t-Rj÷1,t-1]+[Ljt-Lj÷1,t-. I

serial correlation in (IJI,} can be explained in the following

two ways.

(1) L ,t-Lj+1,t-1 is positively autocorrelated. This is

not consistent with constant term premium

hypothesis. However, some kind of time varying

risk premium, e.g. GARCH-M, might be consistent

with this explanation.
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(2) Rjt-Rj+÷,t-1 is positively autocorrelated. This

implies violation of martingale, and therefore,

suggests bond market is inefficient in reflecting

new information into price or, in this case, bond

yields.

There is another possible source of serial

correlation in Rj,t-Rj1÷,t-1 other than the two sources

discussed above. Since some of the bonds included

in NIKKEI Bond Index are not actively traded, there

might be seeming autocorrelation caused by non-

trading, which is similar to that for small stocks.

However, since quotations are revised at least once

a day, it is difficult to explain the observed

positive autocorrelation being significant at the

order of over of 4 days.

We attempted to identify ARMA order for the {Ij,t} process

over the 1523 daily observations from the 6 year and 3 month

period from January 1985 to March 1991, using Akaike

Information Criteria (AIC) and Shwarts Beysian Information

Criteria (SBIC). AIC is known to be inconsistent and to have

bias to suggest greater order, while SBIC is known to be

consistent and to have opposite bias for small data set.

Summary of these tests are in table 3.5 and all attempted
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models (ARMA(p,q), p+q52) are reported in tables 3.6 through

3.8.

ARMA model selection

Term SHORT

AIC ARMA(1,1)

SBIC ARMA(1,1)

using information

MEDIUM

ARMA(l1,1)

ARMA(1,1)

criteria

LONG

ARMA(2,0)

ARMA(2,0)

ARMA(1,1) was selected for {I.ht,t} and {~fI ,t}), and

AR(2) was selected for {Ilong,t). We need to have some

intuition on how these ARMA processes will behave when applied

to long run forecast. For this purpose we calculated variance

ratio using estimated parameters for these ARMA precesses.

Variance ratio for q periods, VR(q), is calculated as,

VR(q) =1+4(q-1)p+(0).

K-th order autocorrelation coefficient of ARMA process,

p(k), can be calculated as a linear combination of lower order

71
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correlation coefficients". For AR(2) with parameters ,,, ,2
using the relationship of

pgi=IpI1 1+12pI-2, P=l, and pi=pi,,

= ,IPo+0 2P- 1

= ,1 +02P 1

then,

p, = 2/( 122)+ 2

Pi = @tP-1+2Pi-2

For ARMA(1,1)

p1  =

Pi =

for i=1,

for i=2, and

for i>3.

with parameters 0 and 8,

(1+80)(O+8)/(1+200+r 2) ,

Opi-1 for i>2.

Numerical results are presented in the figure 3.39.

Variance ratios for all j, show convergence. For j=long,

convergence is relatively quick and the target of convergence

is less than 1, while for j=short and medium convergence is

slower and target values are far greater than 1.

Finally we develop some view on the behavior of {R,,t)

based on the above analysis on {I,,t}. We need to remind the

44. Anderson, Oliver D. 1984 "Mapping the Parameter Domain
onto the Autocorrelation Range for ARMA(p,q) Models,
p+qS2," Time Series Analysis: Theory and Practice 5,
pp.303-314, North-Holland
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VARIANCE RATIO OF ARMA PROCESSES

4,5

4

35

2 5

2

0.5

- SHORT - MEDIUM - LONG

Fig. 3.39

relation between {Ij,t} and {Rj,t), that

(1) Source of change in {Rj,t} is not only {It,j}, but

also the expected rate movements, which are

incorporated in the forward rate structure implied

in the market rates, and that

(2) Expected portion of rate movement seems to have

greater magnitude compared to {Ij,tl.

Since we have {Ij,t} process for three different length of

j, and we also prepared ARMA estimators, which are linear best

estimators, for each {Ij,t}, we can forecast {R',t} using these

ARMA estimators of {Ij,t). Since forecast on {Rj,,,}, s>0, is
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affected by {Ij,,t}, where j* is any of {short, medium, long)

that is longer than j, {Rjt) process can be understood as a

kind of vector autoregressive (VAR) process. From the above

results we expect a VAR process which has the following

characteristics.

(1) Rlong,t and Rlong,t+. are negatively autocorrelated. The

magnitude of negative autocorrelation reaches

stability in about 5 days around the level of 0.57.

When compared with random walk having equivalent

magnitude of daily variance, {Rong ,t} process is

persistent on its level, which suggests existence

of mean reversion.

(2) R adim,t and R.dim,t+. are positively autocorrelated for

small value of s. In the shorter time horizon, the

variance ratio of {Rdae,t} converges to about 4

within half a year. This positive autocorrelation

is inherent in the {I m=,t} process. However, in

much longer time horizon, effect of negative

autocorrelation inherent in the {Ilong,t+.} process

will overwhelm the positive autocorrelation through

VAR process.

(3) Rshortt and R.hort,t+ are strongly positively correlated

for small value of s. This is caused by strong



positive autocorrelation of {Ishor,t). As it was the

case in {R•u,n}, this positive autocorrelation in

{R.,hot,t} will be overwhelmed in the very long time

horizon by the negative autocorrelation of {I ong,t},

which penetrates into {R,,,,,t) through VAR process.

However, VAR effect from {I un, t} having stronger

positive autocorrelation than {(Ihort,t) might work to

the opposite direction, and over the middle length

of time horizon, {Rhort,t} might show complicated

behavior.

However, these discussions on mean reversion and market

inefficiency are subject to further examination about the

characteristics of the process of risk premium {LJJ. ARMA

models examined for {Ijt} process above are not adjusted for

ARCH in mean (ARCH-M) effects, which might cause spurious

autocorrelation in {IJ,}J through autocorrelation in risk

premium {LJ,t}. If {H.,t} follows process of ARMA type, i.e.

processes with serial correlation, {LsJ} might also follow

some process with serial correlation. If ARCH-M effects could

be identified and removed, serial correlation in {IIJ.tJ} and

{(Ijt )2} would be somewhat weakened. On the other hand, for

the long term innovation series, which has negative

autocorrelation before adjustment for {LJ,t), it is difficult

to guess what the ARMA process after removing ARCH-M effect

is.
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Table 3.6

ESTIMATED ARMA(p,q) MODEL FOR {Ish*m,t} PROCESSES FOR p+q52

SHORT CONSTANT AR(1) AR(2) MA(1) MA(2) AIC SBIC

ARMA(0,1) 0.000001 -0.14 -15.543 -15.539

T-RATIO 0.10 -5.75

ARMA(0,2) 0.000001 -0.13 -0.08 -15.548 -15.541

T-RATIO 0.10 -5.46 -3.16

ARMA(1,0) 0.000000 0.172 -15.548 -15.544

T-RATIO 0.09 6.81

ARMA(1,1) 0.000000 0.872 0.75 -15.578 -15.571

T-RATIO 0.04 24.11 15.29 MIN MIN

ARMA(2,0). 0.000000 0.153 0.106 -15.557 -15.550

T-RATIO 0.09 6.03 0.03



Table 3.7

ESTIMATED ARMA(p,q) MODEL FOR {Imdum, t} PROCESSES FOR p+qS2

MEDIUM CONSTANT AR(1) AR(2) MA(1) MA(2) AIC SBIC

------------------------------------------------------

ARMA(0,1) -0.00001 -0.13 -15.379 -15.375

T-RATIO -0.92 -5.19

ARMA(0,2) -0.00001 -0.12 -0.07 -15.384 -15.377

T-RATIO -0.88 -4.76 -3.04

ARMA(1,0) -0.00001 0.155 -15.383 -15.379

T-RATIO -0.89 6.13

ARMA(1,1) -0.00000 0.892 0.77 -15.422 -15.415

T-RATIO -0.57 28.14 17.52 MIN MIN

ARMA(2,0) -0.00000 0.138 0.109 -15.393 -15.386

T-RATIO -0.49 5.43 4.31

-------------------------------------------



Table 3.8

ESTIMATED ARMA(p,q) MODEL FOR {I,.,t) PROCESSES FOR p+q.2

LONG CONSTANT AR(1) AR(2) MA(1) MA(2) AIC SBIC

ARMA(0,1) -0.00000 0.122 -14.086 -14.083

T-RATIO -0.40 4.80

ARMA(0,2) -83.10000 0.096 0.078 -14.09 -14.083

T-RATIO -0.45 3.78 3.05

ARMA(1,0) -0.00000 -0.10 -14.084 -14.08

T-RATIO -0.39 -4.00

ARMA(1,1) -0.00001 -0.81 -0.83 -14.072 -14.065

T-RATIO -0.35 -4.88 -5.33

ARMA(2,0) -0.00000 -0.11 -0.10 -14.093 -14.086

T-RATIO -0.44 -4.42 -4.15 MIN MIN
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3.5 Correlation Among Forward Rates With Different Terms

Stability of correlation among innovations of different

terms are examined. All combinations of correlation between

two of the three innovation series are calculated for each

year (see figure 3.40), and each quarter (see figure 3.41).

The results show that medium-long correlation and short-long

correlation are slowly moving within the positive area, and

that short-medium correlation had negative coefficient in one

year (1988), when it was highly unstable, while for the other

5 years the coefficient stays positive.
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Fig. 3.40

When we examine figure 3.41, the negative correlation of
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short-medium are observed in Q1 1988, 03,1988, and Q4 1988.

On the other hand, in other quarters during the period of late

1987 and early 1989, short-medium correlation took large

positive value. Furthermore, figure 3.42 presents that

correlation coefficient, CORR(Ihon',ttIi,'t), has absolutely

clear single peak, while it also has long left tail. These

facts suggest existence of some stable correlation between

{Ishort,t} and {fdiM,tJ over some sufficiently long period.
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Figures 3.40 and 3.41 suggests that correlation among the

innovation series of different terms are changing slowly

within certain ranges, and that such correlations are roughly

predictable in the long run. This long run stability is

important, when we attempt to construct our extended yield

80



curve model for bond options with long period to expiration.
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Section 4. ARMA Model with Jump/GARCH-M effect

In this section we propose a time series model for {IJ,t)

process, and discuss on estimation methodology. We are

interested in modeling characteristics of {IJ,}J process

movements, especially taking care of the following points.

(1) Serial correlation in the risk premium adjusted

innovation series, which is related to market

inefficiency and/or mean reversion of interest rate

movement. We will attempt to estimate ARMA model

to capture this feature. ARMA(1,1) or lower order

is expected for {IJ,'}, j=short, medium. AR(2) or

lower order is expected for {I1,t}, j=long.

(2) Heteroskedasticity in GARCH form and jump form. We

consider heteroskedasticity as combined GARCH(1,1)

process and Poisson jump process. We expect for

shorter j, jump component might have larger

relative contribution, while GARCH effect will

dominant component of change in variance of {IJt

for longer J.

(3) Time varying risk premium, especially in the form

of jump/GARCH-M. Since our data are already in



logarithm, we will consider multiplicative form of

risk premium LJ0,t

where Ha,t is conditional variance of risk premium

adjusted Is,t process, and C is positive real

constant.

It is convenient to reconfirm our notation, before

proceeding further.

Forward short term rate {RdJt) is decomposed into two

components

Rt ; t=X t +LJi t

where, LJ,t is time varying risk premium and XJ,' is.estimator

for j period future spot rate at time t.

Correspondingly Innovation in forward rate {Ij,t} is

decomposed as,

Risk premium is assumed to be expressed as,



Then, following Jordin (1988), our model can be specified

as follows.

P u

n.

Ct=V •tZ Z+. Y, ZC-N(0,1) ,

H =C+E + 6z ,

where C, , (i=1,- .,p), 08, (1=1, ,q) are

parameters for ARMA(p,q) process,

{HI} is conditional variance in GARCH form,

C1, 0ii (i=1,- H,p), 8,, (i=1,* * ,qH) are

parameters for GARCH(p.,q,) process,

nt follows Poisson distribution with parameter

AI

Y"N(O8,6 2 ) is random variable for size of jump,

P is coefficient for the term of time varying

risk premium, and
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For maximum likelihood estimation of this model,

likelihood function is given in the following formula.

-71-2In(2a)+ In[ C1 1 exp( 2(H+8 2jc)
~2 I.C o EH 2 +iC2

p q

where T is the number of observation,

A is a parameter representing density of

Poisson jump,

0, and 6 size of Poisson jump, Y"N(J,,62),

Jc is count for number of jump in a unit

period, which can be neglected but for small Jc

for its amall provability, and

Parameters in the formula of Ht and C, are the

same as those in the model definition.

Estimation of these complicated time series using maximum
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likelihood method is not easy. Judge, etc. (1985)4" contains

overview of numerical optimization algorithms. Harvey

(1989)4" gave some practical comments on this problem.

According to Harvey (1989) the following methods are

suggested.

(1) Scoring method, or Gauss-Newton method, can be

used. While they are asymptotically efficient and

guaranteed to converge, they take time. An

algorithm by Berndt, Hall, Hall, and Hausman

(1974)'7 (BHHH algorithm) is mostly used example of

this category.

(2) EM algorithm by Watson and Engle (1983)4" can also

be used. This is also slow.

(3) As numerical optimization using computers, FORTRAN

45. Judge, George G. 1985 Appendix B, Numerical Optimization
Methods, The Theory and Practice of Econometrics. 2nd
Edition, pp.951-979, Wiley, New York

46. Harvey, Andrew C. 1989 Forecasting, Structural Time
Series Models and the Kalman Filter, Cambridge University
Press, London

47. Berndt, E.R., B. H. Hall, R. E. Hall, and J. A. Hausman
1974 "Estimation and Inference in Nonlinear Structural
Models," Annals of Economic and Social Measurement, Vol.3
pp.653-665

48. Watson, M.W., and R. F. Engle 1983 "Alternative Algorithm
for the Estimation of Dynamic Factor, MIMIC and Varying
Coefficient Regression," Journal of Econometrics, Vol.23
pp.385-400



subroutine EO4JBF of NAG library is said to work

well in practice".

(4) As a method for parameter estimation in the

frequency domain using fast Fourier transformation

(FFT) is recommended. Although this method is

efficient and speedy, sometimes results from this

method are different from those from time domain

estimation. In such cases estimator obtained from

frequency domain procedure should not be used.

Although we attempted maximum likelihood estimation by

BHHH algorithm implemented in FORTRAN 77 using IBM 4381

hardware, it did not performed well. Severe computational

difficulties were encountered. Even using the double

precision of the environment, execution errors of underflow

were unavoidable.
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Section 5. Taylor-M Model: An Easier Alternative

In this section we use Taylor model as an alternative

method for modeling financial time series with time varying

variance. We attempt to extend Taylor model to include time

varying risk premium. Taylor in mean (Taylor-M) model is

proposed. This extension is led by the identical idea that

extended ARCH model into ARCH-M model.

Taylor (1986) contains exclusive introduction and

development of many versions of Taylor model, while variety

of functional form of {Vt} process and estimation method for

it were proposed in many papers50 .

50. Taylor, Stephen J. and Kingsman, Brian G. 1978 "Non-
stationarity in Sugar Prices," Journal of Operations
Research Society, Vol.29 No.10, pp.971-980

Taylor, Stephen J., and Kingsman, Brian G. 1979 "An
Analysis of the Variance and Distribution of Commodity
Price Changes," Australian Journal of Management, 1979,
pp. 135-149

Taylor, Stephen J. 1980 "Conjectured Models for Trends in
Financial Prices, Tests and Forecasts," Journal of Royal
Statistical Society, Series A Vol.143 (1980) Part 3,
pp.338-362

Taylor, Stephen J. 1982 "Tests of the Random Walk
Hypothesis Against a Price-Trend Hypothesis," Journal of
Financial and Quantitative Analysis, Vol.17 No.1, pp.37-
61

Taylor, Stephen J. 1982 "Financial Returns by the Product
of Two Stochastic Processes-A Study of Daily Sugar
Prices, 1961-79" Time Series Analysis: Theory and
Practice 1, North-Holland
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The most basic idea of Taylor model is to decompose given

financial time series ({Xt into {U, } process and {Vt} process,

(Xt-M) = Vt x (Ut-p)

where, , is unconditional mean of Xt,

Vt represents conditional standard deviation at

time t, and

Ut has unit variance.

Analysis on {Vt) process leads to understanding on

behavior of time varying variance, and analysis on serial

correlation in {Ut} process leads to examination of market

efficiency in the sense of random walk.

Since {Vt} process is unobservable, functional form of

(Vt} process must be specified before parameters are

estimated. Taylor (1986) proposed many variation for ({Vt

process. Taylor (1983)51 applied his framework to develop a

trading rule which exploits market inefficiency.

We pick up the simplest version with the least number of

51. Taylor, Stephen J. 1983 "Trading Rules for Investors in
Apparently Inefficient Futures Markets," Futures Markets:
modellinga, managing and monitoring futures trading,
pp.165-198, Basil Blackwell
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parameters, where {Vt} follows exponentially weighted moving

average (EWMA) process, and then extend it to Taylor-M model.

,I- V= VtUt

V* = M '/0.798

M't = OMt- + ( 1-1 )M's-t

Mt = I -I- -A (Lt-)I

Lt  = P(Vt)

where, Ut is heteroskedasticity-rescaled stochastic

process with VAR(Ut)=1,

Vt is unobservable process of conditional

standard diviation of {It-&} process,

0.798 is the ratio, E[IXI]/ox, for X"N(O,1),

M's is estimator for Mt based only on

information as of time t-l,

8 is a parameter for speed of adjustment of M'"

process,

. is unconditional mean of It,

P is a positive real coefficient for risk

premium,

Lt is risk premium, and

A (Lt) =Lt-Lt_1.

As the initial value of M' we used average of IIt-AlI for

15t520.



I(II,-MIJI

Then

21st. We

following

we estimated the two parameters of 8 and P using

selected the value of parameters that minimize the

sum of squared error.

SSE = E(Mt-Mt) 2

Figure 5.1 through 5.6 presents sensitivity of the sum of

the squared error (SSE) against each of the parameters

estimated. Results for estimation of Theta and P for

different j are presented in table 5.1.

Table 5.1 Summary of Taylor-M model

PARAMETER SHORT

P 1.4

0 0.07

MEDIUM

0.87

0.08

LONG

1.5

0.13

Estimated Os in the Taylor-M model are greater for longer

J. This result seems to be insensitive for existence of risk

premium, when compared with the Os for the usual Taylor model
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of 0.065, 0.08, and 0.15 for short, medium, and long j

respectively. Estimated values for risk premium parameter of

P are interesting. Figure 5.7 presents the magnitude of risk

premium which is the products of estimated Pi and {Vj,t) for

each J. Risk premium for the longest term rate is by far the

largest, while risk premium for short and medium term are

almost equivalent magnitude and reverse their order from time

to time.

We may think that discount rates for longer j may contain

larger risk premium, because longer duration causes greater

magnitude of price risk for bond holders. Then, greater value

of Lj,t for long j is understandable, while it needs different

explanation that Lj,t for short and medium j are almost

indifferent. Our hypothetical explanation is that short-term

rate movements might contain some additional sources of risk

different from that contained in the longer term rates. One

of possible source of such risk might be jump component of

rate movement, which are not predictable from the past and

present rate movements.

We attempted another version of Taylor-M model, using

AR(1), instead of EWMA, for {V}) process. AR(l) process was

constructed so that M't reverts to unconditional mean of Mt.

However, Taylor-M with AR(1) could not outperform that with

EWMA in terms of SSE minimization.



SSE AND PARAMETER THETA
SHORT

THETA

Fig.5.1

SSE AND PARAMETER P
SHORT

0 0 2 0 4 0 6 0 8 1 1.2 1.4

Fig.5.2

93

0 0013

0 0012

0 0011

0.001

0 0009

0 0009

0 0007

0 0006

0.0005

0 0004

0 0003

0 0002

0 0001

0 0002001

0 0002

0 0001999

0 0001998

0 0001997

0 0001996

0 0001995

0 0001994

0 0001993

g 0 0001992

0 0001991

0 000199

0.0001989

0 0001988

0.0001987

0 0001996

0 0001985

0 0001984

0 0001993



0.00031

0 0003

0.00029

0 00028

0 00027

0 00026

0 00025

4 0 00024

0 00023

0 00022

0 00021

0 0002

0 00019

n on•0a

SSE AND PARAMETER THETA
MEDI UM

0 02 04 08

THETA

Fig.5.3

SSE AND PARAMETER P
MEDI LUM

0 0001834

0 0001833

0 0001832

0 0001831

0.000183

0 0001829

0 0001828

0 0001827

0 0001826

0 0001825
0 02 04 06 0.8

Fig.5.4

08

I
I



SSE AND PARAMETER
LONG

THETA

0 02 04 06 0.9

THETA

Fig.5.5

SSE AND PARAMETER
LONG

0 0 2 0 4 0 6 0 8 1 1 2 1 4 1 6 1 8 2

Fig.5.6

95

0.008

0.007

0 00DS

005

0 004

0 003

0 002

0 001

0

0 000618

0 000617

0 000615

0 000615

0 000614

0 000613

0 000611

0 000611

0 000609

0 000508

0 000501

0 000606

0 000605

0 000504

0 000603

0 000602

0 000601

0 0006

O 000599

0 000599

0 000597

F I ___ _ _ _ __ _ ___

)-



TAYLOR-M MODEL RISK PREMIUM
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Comparing summary statistics of {Ut} processes from the

usual Taylor model and from Taylor-M model (see table 5.2 and

5.3), we find that risk premium contributed a significant

portion of the excess kurtosis. This suggests an

understanding that excess kurtosis of {Ij,t} process is not

only caused by time varying variance, but also time varying

risk premium. Table 5.4 presents result of regression of Ijt

against change in risk premium, i.e. first order difference of

{L,,t). Coefficients were, of course, highly significant. The

magnitude of R-squared, being 30% to 40%, implies that roughly

one third of change in forward rate {Rj t} is attributed to

change in risk premium.
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Table 5.2 Sumwnmary statistics of Taylor-M Ut) process

N

AVG

STD

T-RATIO

SKEWNESS

T-RATIO

KURTOSIS

T-RATIO

D.W.

RUNS

SHORT

1502

-0.04515103

0.13365335

-0.338

1.29922663

20.556

11.24210842

65.203

1.35912665

0.0000

= = ==== =

MEDIUM

1502

0.06031681

0.09924514

0.608

-0.31057040

-4.914

10.47036042

59.098

97798220

0.0000

LONG

1502

0.01463858

0.16998269

0.086

1.35513798

21.441

5.39873405

18.976

1.87045222

0.8238

5, M, and I in the table mean gignificant,

Marginal, or Insignificant at 5%

respectively.

Note:

level



Table 5.3 Summary statistics of {UJ) process from usual Taylor

model

N

AVG

T-RATIO

SKEWNESS

T-RATIO

KURTOSIS

T-RATIO

D.W.

1513

0.04403108

0.03

5.12674677

81.41

66.14266157

501.35

1.62242739

1523

0.00743489

0.01

0.53190358

8.45

21.52328210

147.07

1.68840758

1513

-0.01231278

-0.01 I

0.21198975

3.37 S

9.09983082

48.43 S

2.07543024 I

S, M, and I in the table mean qignificant,

Marginal, or Insignificant at 5% level

respectively.
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Table 5.4 Analysis on the magnitude of Taylor-M effects

REGRESSEE REGRESSOR CONSTANT

D[V ] 0.000002

0.19

Im D[Vm] -0.00001

-1.23

I, D[V1 ] -0.00000

-0.44

COEFFICIENT

0.00010826

25.72

0.00015047

26.64

0.00030225

31.06

R-SQUARE D.W.

30.5% 1.05

32.0% 1.06

39.0% 1.73

Figures 5.8 to 5.13 presents plot and correlogram of

{Ij,t} series after eliminating risk premium. For short and

medium j, {Ij,t} show strong and long lasting positive

autocorrelation. Shape of correlograms suggest moving

average, MA(q), processes. On the other hand, {Ij,t} with long

j have almost no significant correlation at 5% level.
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With our Taylor-M model, so far, it is difficult to

analyze if mean reversion effect exists. This is mostly due

to the functional form of {Vt} process. EWMA process is,

unlike ARMA processes, non-stationary, and its long term

forecast is the very state where the process currently is,

while long term forecast of stationary ARMA processes

converges to their unconditional mean. In reality, large

magnitude of interest rate volatility, caused by some shock,

will be expected to gradually die out. It is not likely, as

EWMA implies, that a volatility shock changes the level of

expected volatility permanently.

Therefore, we should increase number of parameters and

use some stationary process for specification of {Vt,

especially for the use of long run forecasting. From the same

reason, the long lasting serial correlation presented in

figures 5.9 and 5.11, should not be taken as shown. It is

unlikely that martingale is violated over such a long time

horizon.

After all, with only two parameters, our Taylor-M model

performed well, except for the failure in capturing long run

effects of mean reversion.
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Section 6. Extended Yield Curve Model

In this section we discuss about construction of an

extended version of yield curve model, using our findings on

behavior of {RJ't} and {It}. We will provide some

mathematical way for pricing discount bonds, while we propose

Monte Carlo method for coupon bonds or more general interest

rate contingent claims.

Using the ARCH model with jump/GARCH-M effects discussed

in section 4, we can forecast {Ij,t}, i.e. we can have

E[Isjt+slt] and VAR[Ij,ts,.t] for s0O. As the common property of

stationary ARMA process, E[IJ,t+lIt] converges to zero as s gets

larger. While, VAR[Ijnt+.It] do not converge as s gets larger,

variance ratio of Ij,t,s converges to certain level above or

below 1, depending on whether {Ij,t} is positively or

negatively autocorrelated for each J.

Using these forecast on Ijt+., s20 and structure of Rj,t at

time t, we can derive conditional expectation and conditional

variance of spot discount factor for j period zero coupon

bonds at time t, say Sj,t, which usually defined as the

products of annual yield over the time horizon. In our case,

since data sets are in logarithm, Sj,t is just the sum of

logarithm of annualized yields. If the bond market is
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efficient in the sense that the series of risk adjusted

forward short-term rate follows martingale,

B

and

VAR [S ,,l t] = VAR [Rj -L, ] +2 COV[R, t-L, R t-L, ]
i<j

SVAR [Ii ,-ALj 4+2 C'OV[Z, -A ALj,t: ¾I, I-AL 1 , ,

where CORR(Ij,tIi,t), i~j are stable and p6sitive over period

longer than a year. Using these formula, expectation and

variance of price of zero coupon bonds, which is 1/Sj, t , can be

obtained under the assumption the { IJ,t-ALJ,t} has no

autocorrelation. There is need for adjustment using Jensen's

inequality,

1 1
X EI[X]

The piecewise constant structure of forward rates used in

this paper, makes it fairly easy to calculate these

conditional expectation and conditional variance.
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There remain two points to be discussed regarding the

violation of martingale property of innovation in risk

adjusted forward rates, {Ii,t-ALJ,t}. Positive and negative

autocorrelation of the series can be interpreted in the

following way. Positive autocorrelation of the adjusted

innovation series may be caused by delay of market reflecting

new information into interest rates. Market is "efficient"

with delay of about a week or so, taking that length of period

to fully reflect new information into interest rates. We

think this effect exists in our data for short and medium J.

Negative autocorrelation can be interpreted either as the

result of overreaction of market participants or the result of

mean reversion of risk premium adjusted forward rate series,

{RJ,t-LJ,t}. For our data set from Japanese bond market, it ir

difficult to tell either of the overreaction hypothesis and/or

the meat reversion hypothesis is there. Since long term bonds

are traded by dealers of institutional investors with heavy

volume and extremely short investment horizon of less than a

day, overreaction hypothesis might explain why negative

autocorrelation emerges only for long j. However, mean

reversion of {Rj,t-Lj,t} is also plausible, when we remind

stable distribution of {Rj,t} over time. To properly account

for these serial correlation in the risk adjusted innovation,

we need vector autoregressive (VAR) model.

To price coupon bonds or other interest rate contingent
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claims in mathematical way, highly complicated, non-linear

calculations are needed. Cox and Ross (1976)52 provided

option pricing model using alternative distributions other

than lognormal distribution. Non centered chi-squared

distribution, etc. are discussed. However, for practical use,

we think it is better to develop a Monte Carlo simulation,

which can be applied for pricing of any interest rate options

under estimated parameter set for movement of {Rj,t} and {IJ,t}.

When we develop such Monte Carlo simulation system, we should

care about the following points.

(1) The parameter for density of Poisson jump, A,

should be common for all j, because jump in {I,,t)

processes with different j are caused by the same

information which arrives at time t. Parameters

for magnitude of such jumps may differ for each j.

(2) Correlation between {Ij,t} for different j, must be

taken into account. Since these are positive over

long time horizon, failure to account for these

positive correlations leads to underestimation of

conditional variance of Sit. This underestimation

in volatility of interest rates causes underpricing

of interest rate contingent claims.

52. Cox, John C. and Stephen A. Ross 1976 "The Valuation of
Options for Alternative Stochastic Processes," Journal of
Economics Vol.3, pp.145-166
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Section 7. Conclusion

In this paper we attempted to capture (1) market

inefficiency as violation of martingale in the series of risk

premium adjusted forward rate {RJ,t-LJ,t}, (2) mean reversion,

(3) time varying risk premium as linear function of

conditional standard deviation, and (4) conditional

heteroskedasticity specified either as GARCH and/or jump

process. Then we tried to construct an extended version of

yield curve model for bond option pricing.

We found supporting evidences for the following points.

(1) Market is slow in fully reflecting new information

into interest rates. For short j, forward short-

term rates tend to shift in the same direction for

up to 5 business days, i.e. a week.

(2) For long j, forward short-term rate process is

persistent, when compared to random walk. Day to

day shift in forward rates with long j are

negatively autocorrelated, implying mean reversion

and/or overreaction.

(3) Time varying risk premium incorporated in forward
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short-term rates are significant, contributing

about one third of variance of forward rates.

(4) Excess kurtosis of {Ij,t} is significant for all j.

Although excess kurtosis is greater for shorter j,

autocerrelation of {IIj,t-ALJ,tl} and {(Ij,t-ALjt)2}

processes are greater for longer J. This implies

that heteroskedasticity associated with longer j is

explained relatively well by GARCH process, while

that associated with shorter j needs other source

of change in variance. Jump process might be a

possible explanation.

Although results from maximum likelihood estimation are

not available for this paper yet, Lagrange multiplier tests

and t-tests using such estimators will allow further

discussion on interest rate movement and development of model.

Use of VAR (vector autoregressive) model should also be

considered.
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