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ABSTRACT

The present oscillations in orbital eccentricity, if considered typi-
cal for geologic time periods, imply that the probability of Mercury's
having evolved to the 3:2 spin-orbit resonance state is only about 0.02.
This probability is too low to be believable and indicates that the two-
dimensional mathematical model hitherto used to describe the evolution
into resonance may be seriously in error. Mercury's average orbital
eccentricity (now 0.18) may have been significantly higher (>0.25) in
the distant past, or, perhaps, Mercury has a liquid core dissipatively
coupled to its mantle. The first possibility, if realized, would yield
a high capture probability but requires extensive calculations and has
not yet been explored. Investigation of the second showed that the
probability of penetration of the higher resonances, with subsequent cap-
ture into the 3:2 state, is only appreciable (>0.5) for a very narrow
range of core-mantle coupling constants. For a core whose moment of
inertia is one-tenth that of the mantle, the capture probability is a
maximum for coupling with a characteristic relaxation time of about
40,000 years. A three-dimensional model might lead to significantly
different capture probabilities but has not yet been analyzed.

Included in the thesis is a critical discussion of tidal models
appropriate for planetary spin-orbit resonance problems.
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SPIN-ORBIT RESONANCE OF MERCURY

I. In-troduction

Radar observations have revealed that Mercury's axial rotation is

direct with a sidereal period of 59 ± 3 days (Pettengill and Dyce, 1965;

Dyce, Pettengill, and Shapiro, 1967), rather than the previously accepted

value of 88 days (see, for example Dollfus, 1953). Peale and Gold (1965)

first proposed an explanation for this 59-day period solely in terms of

tidal torques; with an orbital eccentricity of 0.2 Mercury's orbital an-

gular velocity at perihelion slightly exceeds its spin rate so that the

tidal torque on the planet would be reversed in direction during just

that portion of the orbit when tidal interaction is strongest. Although

the planet does spend more time near aphelion than perihelion, the average

tidal torque could vanish for a rotation period of about 59 days, resulting

in a stable spin state. Colombo (1965) pointed out, however, that the ob-

served spin period was almost exactly 2/3 of an orbital period, or 58.65

days. He suggested that a nearly uniform rotation at just 3/2 the mean

orbital angular velocity might actually be stabilized if Mercury had a

slight permanent equatorial asymmetry. Approximate analyses by Colombo

and Shapiro (1965) and soon after by others (Liu and O'Keefe, 1965;

Goldreich and Peale, 1966a; Laslett and Sessler, 1966; Jefferys, 1966)

confirmed that such a spin-orbit resonance could, under certain conditions,

be stable.

An average spin period exactly 2/3 of an orbital period is also consis-

tent with many optical observations of Mercury (McGovern, Gross, and Rasool,

1965; Colombo and Shapiro, 1965; Camichel and Dollfus, 1967; Chapman, 1967).

Due to their quality and their spacing in time, these optical observations

are somewhat ambiguous; i.e. much of the data appears to allow multiple

solutions for the spin period (hence partially explaining the earlier

88-day result). But the purely statistical uncertainty of a given single

solution may be quite small -- perhaps 0.01 days (Camichel and Dollfus

1967). Radar measurements of the spin rate based on delay-Doppler mapping

(Dyce, Pettengill and Shapiro, 1967) are less precise, but have no such
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ambiguity. The radar and optical data taken together suggest that a

spin-orbit resonance condition in fact exists, with Mercury completing

three axial rotations with respect to the "fixed"stars, and one rota-

tion with respect to the sun, in two orbital periods.

In this paper we compute the probability that Mercury's spin state

would evolve into this resonance, for a variety of a priori assumptions

regarding the long-term variations of Mercury's orbit, the behavior of

the tidal torque, the size of the permanent equatorial asymmetry of

Mercury's inertia ellipsoid, and the possible existence and nature of

a fluid core within Mercury. The resulting computed probabilities allow

us to identify the most likely physical properties and parameter values

from among the various a priori possibilities considered. Many can be

excluded because they lead to a vanishing probabilities of occurrence

of the 3:2 spin-orbit resonance.

One might ask how probability enters into this problem, to which

deterministic classical mechanics presumably applies. After all, in

classical mechanics the equations of motion of a dynamical system and the

specified initial conditions determine the state at a later time with no

randomness. For the spin state of Mercury, however, we find that incredibly

small variations, either in the "initial" state of motion or in the values

of parameters in the equations of motion, affect decisively the final

(stable) state of the system, which usually corresponds to Mercury either

being in a spin-orbit resonance, or rotating at the rate for which the

tidal torque itself averages to zero. It is our ignorance of these ini-

tial conditions and parameter values for the planet Mercury which makes

only a statistical treatment reasonable.

Goldreich and Peale (1966b) were the first to publish calculations

of the probability for Mercury to be captured into the 3:2 spin-orbit

resonance state; they considered several tidal-friction models and a range

of fixed values of orbital eccentricity. The effect of a fluid core

within Mercury was not considered, although in a later paper, Goldreich

and Peale (1967) computed the effect of core-mantle coupling in the planet

Venus on the probability of capture of Venus' spin into a resonance with
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the relative orbital motion of the Earth and Venus. Goldreich and Peale

(1966b) also discussed the applicability of their Mercury calculations,

in which the orbital eccentricity e was fixed, to the real case in which

planetary perturbations cause secular variations of the orbital elements.

[According to calculations by Brouwer and van Woerkom (1950), Mercury's

eccentricity can vary between approximately 0.12 and 0.24 in a few hun-

dred thousand years, due principally to perturbations by Venus and Jupiter.]

Clearly if the rate of change of eccentricity is sufficiently slow, the

capture probability may be calculated for fixed values of the eccentricity

with the effective capture probability being an appropriate (weighted)

average over the separate values for each eccentricity that can occur.

Less obvious is the proper simplification for the opposite extreme case,

in which de/dt is so large that the eccentricity goes through many

oscillations while the spin state remains in the neighborhood of a resonance.

Having performed several thousand Monte Carlo trials on a computer, Gold-

reich and Peale (1966b) concluded for this case "with some confidence that

the over-all capture probability in an orbit of varying eccentricity is

intermediate between the largest and smallest values of the capture pro-

bability (calculated for fixed orbits) over the range of eccentricity."

For the eccentricity variation determined by Brouwer and van Woerkom

(1950) for Mercury, these largest and smallest values of the capture

probability, for the model used by Goldreich and Peale, are nearly one

and zero, respectively; hence their conclusion, although unassailable,

is not particularly useful. Moreover as they also realized, the actual

value of de/dt for Mercury lies between these limiting cases. A theory

of resonance capture is clearly needed which includes such orbital ele-

ment variations.

In this paper we consider the rotation of Mercury near a spin-orbit

resonance, developing a theory which encompasses possible variations in

orbital eccentricity as well as core-mantle coupling. Formulae are de-

rived for computing the probability of capture into a resonance and are

applied for various tidal models and for a range of values of the tidal

dissipation factor "Q", the permanent equatorial asymmetry (B-A)/C of

Mercury's inertia ellipsoid, the core moment of inertia, and the ef-

fective core-mantle viscosity.
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II. MATHEMATICAL MODEL

We will assume that Mercury's axis of rotation has always remained

normal to its orbital plane and so will neglect the effects of obliquity

in our analysis. The possible evolution of the direction of the planet's

spin axis and the effects of varying orbital inclination will be consi-

dered in a separate publication.

A. Torques

Mercury's rotational state is, of course, influenced by the

totality of torques acting on it. We consider only the two which seem

most important (Colombo and Shapiro, 1965): The torques exerted by the

sun on a permanent equatorial asymmetry of Mercury's moment of inertia

ellipsoid and on the tidal bulge raised by the sun. We discuss each in

turn. Defining Mercury's three principal moments of inertia as A, B,

and C, and assuming that the planet's spin axis coincides with the body

axis of maximum moment of inertia C(C>B>A), we find that the torque ex-

erted by the sun on this permanent asymmetry is given to sufficient pre-

cision by MacCullagh's formula (see, e.g., Danby, 1962)

3 GM
Tpa 2 3  (B - A) sin 2(0 - v) , (1)

r

where 1 is a unit vector parallel to the spin axis, (B-A) is the differ-

ence between the two equatorial moments, G is the gravitational constant,

M is the mass of the Sun, and r is the Sun-Mercury distance. Figure 1

shows that (8- v) is, by definition, the difference between the orbital

true anomaly v and the angle 0 between the axis of minimum moment of in-

ertia of the planet and the orbit major axis.

The other external torque likely to be significant is the tidal

drag torque (Darwin, 1908). The tidal torque is analogous to the asym-

metry torque just discussed, the main difference being that the asymmetry

in this case is not a permanent one but is due to the deformation of the
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non-rigid planet by the differential solar gravitational field. In a

mechanically lossless planet the tidally induced long axis ("high tide")

always points directly towards the sun, so that the torque due to the

tidally-induced asymmetry vanishes (cf. Eq. 1). If there is internal

dissipation, however, the motion of the tidal bulge lags behind the mo-

tion of the planet-sun direction, the dissipated energy being supplied

by the rotation of the planet.

The detailed mechanisms of tidal dissipation are uncertain, even

for the Earth, but it is possible to estimate the magnitude of the gross

effect (see, for example, MacDonald, 1964; Goldreich and Soter, 1966).

For our purposes the tidal torque is adequately described by its magni-

tude (its sense is assumed to be opposed to the planet's rotation as

seen from the sun) and the manner in which this magnitude depends on,

for example, the rate of rotation. In Appendix A, we show that the

tidal torque can be written as

6
45 -1 n RC

Tt 8 (T + 1 )  r sin 26 k , (2)

where n is Mercury's orbital mean motion, a its orbital semimajor axis,

R its radius, g the acceleration of gravity on its surface, pT its tidal

effective rigidity, and 6 the tidal lag angle. The relation of this angle

to Mercury's effective "Q"

sin 2 6 = (T + 1 Q 1  (3)

is also derived in Appendix A.

How does the tidal lag angle (or the Q) of Mercury vary with the

spin rate, or with the amplitude of the tidal strain? Unfortunately

the answer is unknown and we will therefore examine three models for

the lag angle: (1) 6 constant; (2) 6 proportional to the rate; and (3)

6 proportional to the amplitude of the tidal strain. The first was
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considered by Colombo and Shapiro (1965) and all three by Goldreich and

Peale (1966). Clearly other models could be constructed, but these

three should prove representative.

If the tide always lags the sun by a constant angle 6, independent

of the amplitude or rate of the tidal strain (model 1), Eq. (2) can be

written as

2 6 rdO dv 1+e cos v de dv
Tt/n C = -a(a/r) sgn -I - = -a 2 sgn .dM

(4)

in which M = nt is the orbital mean anomaly and a is a small positive

dimensionless constant:

45 T /n2R -1 -7 --1
PT8 2 Q-1 _ 2 x 10-' Q-1 (5)
(- + 1)2

where in the last relation we assume pT % 20 (see Appendix A). The
2

division by n C makes both sides of Eq. (4) dimensionless; this form

will be useful below. We may place an approximate lower bound on a

(upper bound on Q) by the following argument (Colombo and Shapiro, 1965).

Assuming that Mercury's Q has been constant since the planet was formed

(about 4.5 x 109 years ago), that Mercury's spin period was then about

20 hours, and that solar tidal friction was wholly responsible for the

slowing of the spin rate, we find that

2
-d 2 can (6)
dt

requires

a > 10 9  (7)

or

Q < 200 (8)
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This bound on Q is about the same as that implied by laboratory studies

on rocks and by seismic studies of the Earth's mantle. (See Appendix A.)

For model 2, we assume that the tidal dissipation is viscous or,

equivalently, that Q- 1 6 I dM dv . The corresponding mechanical

behavior is that of a linear, damped oscillator. Thus,

2 (l+e cos v)6 dO dv)
Tt/n2C = -a 2 dM dM , (9)1 - e

where a is again a small positive constant.

Because the tide-raising potential varies as r -3, Mercury's orbital

eccentricity of 0.2 causes the tidal amplitude at perihelion to be about

3.4 times greater than at aphelion. Therefore, an amplitude dependence

of dissipation mechanisms could be significant for Mercury. If the planet's

Q is taken inversely proportional to the strain amplitude (model 3), we

obtain

Tt/n C = -a 2 sgn -dM dM j (10)
1 2 e(T dM

in which a represents the small positive constant.

B. Equation of Motion

In our discussion of the spin equation of motion we take the tidal

torque from Eq. (4). The results of this section will, however, apply

as well to the other tidal torque formulae, (9) and (10).

With Eq. (1) representing the torque attributable to the permanent

asymmetry, the spin equation of motion may be written after division by

n 2C throughout, as

d2  +ecos si n 2 -v)-a l+e cos v 6 g de dv
2 2 2 sin 2 -v)-a sgn - dM1

dM 1 - e -e

(11)
where here and in what follows we use the dimensionless orbital mean

anomaly,M, rather than time as the independent variable, and introduce
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the asymmetry parameter B:

3 (B-A) (12)

Eq. (11) is not solvable in closed form. An approximate solution can

be obtained easily because a, 3 << 1; thus, in one orbital period (M

increased by 27) the change in the dimensionless spin rate dG/dM must

be small compared to unity. We may therefore integrate the right side

of (11) over an orbital period holding dG/dM constant in the integration,

to eliminate the time dependence introduced by v. For this purpose the

notation of Bellomo, Colombo and Shapiro (1966) is useful. The functions

appearing on the right side of Eq. (11) are denoted by P(e, 6, M) and

T (e, w, M) where

P(e,6,M) - (l+e 2 s v) sin 2(6 - v) (13)

T (e,w,M) - 2 sgn (w- ) (14)
1 -e

and

d6- d (15)

Assuming w to be constant in T (e,w,M), we may integrate to obtain

the average value TO(e,w):

1 27
TO(e,w) E 1- T (e,w,M)dM (16)

0

where the zero subscript indicates the zero-th coefficient in a Fourier

series expansion in M of the periodic function'T . In spite of the seeming

complexity of the function T, the integral in (16) may be carried out

analytically to obtain closed-form expressions for the average dimen-

sionless tidal torque'rT0 for each of the three models previously discussed.
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The resulting expressions for To(e,w) are given in Appendix B.

Before integrating P(e,0,M), we express 0(M) in terms of an ini-

tial value 00 E= (0) and an (assumed constant) angular rate w. Because

of our interest in resonances, we at first consider only half-integer

values of w, or

k
S= - k = ... , -2, -1, 0, 1, 2, 3, ... (17)

We observe that P(e,80 + kM/2,M) is a periodic function of M having
period 27rr. The result of an integration over an orbital period may be

expressed simply as

2Tr
-Pk(e) sin 20 2- f P(e,O 0 + kM/2,M)dM , (18)

0

where Pk is a function of only the orbital eccentricity e. The func-

tions Pk(e) have been derived by Bellomo et al. (1966) for k = -3, -2,...

..,7. Goldreich and Peale (1966b) have pointed out that coefficients

of series expansions in e through e7 for such functions as Pk(e) are

given in Cayley's (1859) tables. An expression valid for arbitrary k

is presented by Counselman and Shapiro (1969).

The angle e0 appearing in Eq. (18) is the instantaneous value of

6 at perihelion passage (M = 0). If indeed w = constant = k/2, then

0 = 80(mod 7T) at successive perihelia (M = 2n'r, n = 1,2,3...). The

orientation of the planet's principal axes of inertia with respect to

the orbit major axis is thus precisely the same at every successive

perihelion passage when w is a half-integer. For w at or near a half-

integer value, it is useful to imagine the planet's rotation as being

observed stroboscopically, i.e. only at perihelion passage, and to de-

fine the instantaneous orientation observed there as 8'. A so-called
"resonance" rotation state is characterized by a fixed value of 6'. If

the actual rotation rate w is nearly equal to a half-integer then 8'
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will appear (stroboscopically) to be slowly varying. We may then define

derivatives of 8' by

d6' d6 kd - < Ok >
dM dM 2

(19)

2 2d 28' d28dM2  dM

where the angle brackets signify averages taken over an orbital period.

The long-term behavior of 0' is given approximately by the solution of

the differential equation obtained by substituting the averaged expres-

sions (16), (18), and (19) for the corresponding (unaveraged) quantities

in Eq. (11). We obtain

d 26' k dO\
2 =-Pk(e) sin 20' +a T 0 e, + (20)dM

Because dO'/dM is small, T0 may be expanded near w = k/2. Defining

T 0 (e,k/2) [a T0 (e,w)] (21)

and dropping the prime on 0, we may write

d 2 , dO+2 +Pk(e) sin 26 = UT0(e,k/2) + UT0 (e,k/2) d• (22)
dM

For a given resonance number k and eccentricity e, the coefficients Pk

Tr0' and r 0 are constant. The near-resonance motion is seen to obey a

simple "pendulum" equation, to which a constant term and a term propor-

tional to rate have been added on the right side.

Eq. (22) is equivalent to the averaged equation derived earlier by

Goldreich and Peale (1966b). Our derivation makes more evident the as-

sumptions involved and allows one to compare the averaged equations with

the difference equations derived by Bellomo et al. (1966).
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Before discussing these assumptions, we describe the properties

of the solution to Eq. (22). Evidently the nature of the solution de-

pends on the relative magnitudes of the constants a, 1, Pk' T 0, and

T '. The constants a and 8 are small: a depends on the planet's tidal
-8

Q, which is unknown, but a may be expected to be in the range from 108

to 10 (Q between 20 and 200); 8, also unknown, would be 3 x 10-4 , if

Mercury's equatorial asymmetry were as large as the moon's. For the
-5Earth, 1 ~ 10 . Thus we can expect a and 8 to satisfy a << 8 << i,

with a probably on the order of 82. The parameter Pk depends only on

the orbital eccentricity e, for a specified resonance number k. For

the 59-day resonance (k=3), Pk = 0.64 when e = 0.2; usually Pk is on

the order of unity. The parameters TO and T 0' depend on the choice of

tidal model as well as on the orbital eccentricity and resonance num-

ber. We will be concerned primarily with physical conditions for which

T 0 -1 and -1 < T ' < 0. The parameters a and 1 are thus much less

than unity, whereas the magnitudes of Pk' 0, and T 0' are usually of

the order of unity.

By analogy with the familiar behavior of a pendulum, we now re-

view briefly the qualitative behavior of the solution to Eq. (22), here

rewritten in simplified form with a dot notation signifying differen-

tiation with respect to M:

6 + 1Pk sin 20 = a(T +T '0) . (23)

This review will be helpful in understanding the discussions in the fol-

lowing sections.

Clearly, two equilibrium points exist in the interval -w/2 < 6 < 7/2.

The equation is satisfied if 0 = 0 and

1 -1=eq 1 sin ' (C0r/Pk * (24)eq 27k

Since IaTol << Pk,' we have

6eq aT / 20Pk , (25)
eq
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eeq = -T/2 -a T0/2S Pk * (26)

Straightforward linear stability analysis (Bellomo et al., 1967) shows

that if Pk(e) > 0, the fixed point (26) is always unstable, and that if

TO' < 0, the other fixed point (25) is asymptotically stable. Small os-

cillations about (25) have a circular frequency approximately (28 Pk)1/2

and decay as exp (a T0' M/2) with M approaching infinity.

If a = 0 (or if a& 0, but TO' = 0), an energy integral exists

(Goldreich and Peale, 1966b). It is easily verified by substitution that

1 *2 _ 2E(e,O) = (2 8PkCos 0 (27)

is an integral of (23) if a = 0; if a / 0 but TO' = 0, then (E - aT T0)

is an integral. The first and second terms in (27) may be identified

as a kinetic and potential energies, respectively. Eq. (23) thus des-

cribes the one-dimensional conservative motion of a classical particle

in a periodic potential -BPkcos 2 if a= 0; if a ý 0, but TO' = 0, a slight

uniform slope is superimposed on the periodic potential pattern. The

equilibrium solutions (26) and (25) clearly correspond, respectively,

to particles balanced on the top of a potential "hump" and resting stably

in the bottom of a potential "well". In the particle-potential-well

analogy, a particle confined to one of the periodically spaced "wells"

represents Mercury trapped in a spin-orbit resonance. The planet ro-

tating faster than the half-integer resonance rate but being decelerated

by the tidal torque (T0 +TO'I < 0) is represented by a particle moving

through a force field composed of the gradient of a periodic potential

and a slight, velocity dependent drag term. Eventually the drag term

absorbs all of the particle's kinetic energy and it stops at a point cor-

responding to the "uphill" side of a potential well and begins to fall

backward. The subsequent motion will depend critically on the coeffi-

cient TO'. If TO ' = 0 the dynamic system is exactly reversible in time:

the particle's subsequent motion is just the reverse of that which pre-
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ceded the moment of zero velocity. The energy subtracted by the TO
term is replaced in full during the reversed motion. The analogous

planet slows to the resonance spin rate and passes on, continuing to

decelerate. If, on the other hand, TO' < 0, this term causes dissi-

pation both as the particle moves forward before stopping, and again

as it moves backwards through the same periodic potential. Depending

on how much energy is lost in the "final" well and on just how much

kinetic energy the particle had when entering the last well, the "re-

versed" particle may or may not be able to escape from this final

well. If it escapes, the particle will keep on going backwards; if

not, it will be trapped, moving back and forth with ever-decreasing

oscillations, tending asymptotically toward the stable equilibrium

position (eeq = dT0/28Pk) corresponding to the bottom of the well.

The planet corresponding to the trapped particle reaches the reso-

nance spin rate and passes it only temporarily, with the instantaneous

spin rate performing ever-decreasing oscillations about the resonance.

value. At final equilibrium the planet rotates by a half-integral

number of times per orbit, and the planet's equatorial principal axis

of minimum inertia makes an angle with the orbit major axis at peri-

helion passage of just 6eq = UT0/2SP k for Pk(e) > 0.

Assuming that the initial kinetic energy of the particle is a

uniformly distributed random variable, we can easily compute the "cap-

ture" probability for the particle, i.e. the probability that the par-

ticle becomes trapped in the well where it first stops, rather than

rolling backwards out of this well. The probability of capture is

obtained by considering the possible range of kinetic energy of the

particle as it enters the final well, and by comparing this range with

the energy dissipated in the final well due to TO' being negative

(Goldreich and Peale, 1966b).

If we denote the particle's position by 8, in analogy with the

variable describing the axis orientation at perihelion in the planet

case, then the particle's motion through the final (nth) well is boun-

ded by the unstable fixed points (near the potential maxima) at

-18-



n = (n 1) - TT0/2BPk and 6nl = (n + 1T)• aT-/2BPk" For this to
n 1 0 k.n+1 0ot

be the final well, the kinetic energy of the particle as it passes nn
must be less than 6, where

E H qTIT 0 , (28)

plus whatever energy the TO ' term causes to be dissipated in the mo-

tion from Bn to en+1. This dissipation is velocity-dependent, but the

velocity of the particle in the final well is given approximately by

Eq. (27), with the constant E appropriate for the conditions existing

at the particle's entry into the final well. Since the kinetic energy

will vanish in this final well due to dissipation caused by forces

proportional to a, and since a << B, we must have E << SPk in the final

well. Therefore, we set E = 0 in (27) and solve for 6 in terms of 0:

z (2Pk) / 2 cos . (29)

The energy dissipated as 0 increases from 0 to 0 is approximatelyn n+l1
6, where

n+l
6 f T aT O' 6d . (30)

n

(We are assuming, of course, that TO ' < 0.) Substituting (29) into (30)

and integrating yields

6 = 2a T0 ' (281Pk) 1/ 2  (31)

Thus at 6 = 0 the kinetic energy K must lie in the rangen n

0 < K < -7aT0 - 2aT 0'(2Pk)1/2 =  +  , (32)

in order for the kinetic energy to vanish within the nth well. The

particle will be trapped there unless Kn actually exceeds 26 because

the T0 ' dissipative effect acts independently of the sign of 6 and hence

is cumulative over the forwards and backwards motion within the nth well.
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If all values of Kn in the range (32) are equally likely, then the

capture probability P {capture} is simply

P {capture} = 26/(c +6) , (33)

as first given by Goldreich and Peale (1966b). If (33)yields a value

greater than 1, then of course P {capture} = 1. Hence capture becomes

certain when 6 > E. This condition has an appealing and useful inter-

pretation in terms of what may be called the "width" of the resonance,

W = (28Pk)1/2 • (34)

This width w is equal to the circular frequency of small oscillations

about the stable point (25). It is also equal to the amplitude of the

variation in the (average) spin rate e when the planet is first trapped
in the final well, as seen in Eq. (29). The condition 6 > E may be

written in terms of w as

2TO '0
> 1 (35)iT0

We see that capture is certain if twice the variation in tidal torque

across one resonance width exceeds 7 times the (average) value of the

tidal torque at the center of the resonance. Because w is so small

(W 10-2 when =10-4 ), the inequality (35) requires IT0' I>IT 01.

Because ITo' is of the order of unity for plausible tidal models and

reasonable values of orbital eccentricity, large capture probability

evidently requires that IT01<<1; in other words, for capture to be

likely, the resonance spin rate must be very nearly equal to that spin

rate for which the average tidal torque vanishes. Since the latter

rate is just the same equilibrium rate that would result in the absence

of an equatorial asymmetry (8 = 0), it would appear that resonance

capture does not alter the equilibrium rate substantially. Resonance

capture will be likely only at spin rates within a narrow "resonance
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width" of the tidal-torque equilibrium rate. In effect, Peale and

Gold's (1965) explanation of the 59-day spin period, although wrong,

is not far wrong if the assumptions upon which Eq. (33) depends are

valid.

How valid are these assumptions? As was already mentioned, the

effect of varying orbital eccentricity must be analyzed. But even for

fixed e, there are errors committed in passing from the original equa-

tion of motion (11) to the averaged Eq.(20). To the extent that terms

of order 82 may be neglected next to terms of order a, our derivation

is adequate. [These terms of order 82 may arise in the solution of

Eq. (11) through the "feedback" of the first order variation in 0 in

the term SP(e, 8, M).] But for Mercury it is quite possible that

82 > a. Let us consider the possible consequences of adding a term

of the form 82F(6,0)to the right side of Eq. (20), in which F(0,0) is

some function of 8,6 whose absolute value is not much greater than

unity for the 8,6 values of interest. We observe first that the posi-

tions of the equilibrium points eq [Eqs. (25) and (26)] may be shifted

slightly, by an amount of order S. This displacement compares to a

previously computed displacement of order (a/8) from the positions

o = 0 and 0 = ±+/2. Such displacements are inconsequential for a <<

8 << 1. Theequilibrium point near 6 = ±+r/2 must remain unstable. How-

ever, the stability of the other equilibrium point (near 0 = 0) is now

brought into question. With 82 terms neglected, this point was shown

to be asymptotically stable for Pk(e) > 0 and TO' < 0, with the dam-

ping rate being of order a. Additions to this very weak damping rate

of terms of order 82 could increase it or make the equilibrium unstable.

The damping of librations about the equilibrium near e = 0 is, however,

intimately related to the resonance capture mechanism: in our original

model it was this damping which allowed capture. Thus the discussion

of capture probabilities based on perturbations of order a to the energy

integral (27), may be rendered invalid by the presence of terms of order

82 in the averaged equation of motion (20).

-21-



Even if the potential difficulties we have mentioned do not occur,

we must still consider the possibility that the kinetic energy of the

"parti-cle" entering the "last" potential well is not uniformly distri-

buted in an interval, but takes on certain values preferentially, re-

sulting from the detailed dynamics implied by Eq. (11). In the next

subsection, we develop an approach to the solution of (11) which an-

swers these questions and allows us to explain adequately the spin-orbit

resonance capture conditions.

C. Transformation Method

A different method of solution of Eq. (11) which leads to Eq.(20),

but avoids the objections raised to simple first-order averaging, can

be based on a monodromy transformation. We first rewrite (11) in the

normal form

dO
dM

(36)

d = BW(e,O,w,M)

with

W(e,e,w,M) = P(e,e,M) + T(e,w,M) = P + yT (37)

where the functions P(e,O,M) and T(e,w,M) are the same as defined pre-

viously in (13) and (14), and y is considered to be a constant inde-

pendent of a. We then assume that the solution may be expanded in a

power series in 8:

00oo

e(M) = I ei(M) (38)
i=O

w(M) = I I(M i )
i=O

where

8i(0) = wi(O) = 0; i = 1,2,3,..., (39)
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and 80(0) and w0(0) match the initial conditions. Substituting these

expansions into the equations of motion and equating separately the co-

efficients of terms multiplied by the same power 8, we obtain

de.

dM- = W ; i = 0,1,2,... (40)

dw•0

dM
dM = W(e,60'owM) (42)

dMdw2  aw aw
dM = 1 (M) 70 + 01 (M) (43)

8=0 8=0

dw3  aW W [812 aa2W
cl = 82 (M) + 2 (M) + a= [ (M)-D +

8=0 $0 ae

Me- 2) W J awa (M) 2L (44)a2w 2 2aw+ 2 l (M)01(M) aeam + U1 ) -- ]  (44
8=0

etc. These equations may be solved serially to obtain explicit expres-

sions for the members 8i(M), Wi(M) of the power series solution (38).

[The solution complete to i = 2, together with expressions for e3(M)
and w3 (M) for the special case of vanishing orbital eccentricity, is

presented in Appendix C. The latter expressions are applicable to

general spin-orbit coupling problems, e.g. the problem of Venus' spin.]

The series solution (38) provides an explicit expression for the

planet's rotation angle 6 and spin rate w as a function of M and the

initial conditions e(0) and w(0), but cannot be expected to converge

for M much greater than a- 1 / 2 . However we expect that over one orbital
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period (0 < M < 2Tr) a good approximation to the exact solution is pro-

vided by the first few terms in the series. Although this expectation

might be (and has been)checked by accurate numerical solutions of Eq.

(36), a more general approach is possible and preferable.

Because the coefficients in the exact equation of motion are perio-
dically time-varying, the solution may be obtained in two steps. First,

the transformation is found which relates the values of 6 and w at time

M = 27 to the initial values 6(0) and w(O). The values of 6 and w at

times M = 2n7, n = 2,3,4,... are evidently obtained by iteration of

this single-period transformation (called a monodromy transformation

in differential equation theory). Second, the solution is completed

in an obvious way for all time if we know 6(M) and w(M) for 0 < M < 27

in terms of 6(0), w(0).

Of course we need to know only the monodromy transformation exactly

in order to describe the spin-orbit resonance evolution. The small fluc-

tuations in 0 and w which occur between the times of successive peri-

helion passages are represented sufficiently well by one or two terms

of (38) for the interpretation of observations of Mercury's rotation,

and are otherwise uninteresting.

A first approximation to the exact monodromy transformation for

Eq. (36) is provided by truncating (38) at i = 1 and setting M = 27.

We obtain (see Bellomo et al., 1967)

e(2T) = 60 (27) + 61(21T) + 0( 2)

, (45)
w(2Tr) = wo(27) + ýw 1 (27) = 0(e2 )

where

60 (27r) = 06' + 2•°w 0

, (46)
W0 (27) = WO•'

and
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2 27r cos 20'
01 (21) = 27r (a/B)To(e,Ow 0  + P.(e) j - 2

j=_ 0

sin (2 00' + 4(w ') - sin 2  (47)
(j - 2w0 )2 47)

-m P.(e)
w1(2n) = 2(xa/B)T 0 (e,w 0

1) + (j ) {cos (2e0'+47w0')-cos2e0'}

with 0 ' and w0' being the initial conditions: the coefficients P (e)

are as defined in Eq. (18) and TO is the average tidal torque, defined

in (16). Explicit expressions for TO are given in Appendix B. The

equilibrium points, or fixed points of the monodromy transformation,

are found by requiring 8(27r) = 60 ' (mod n), and w(2Tr) = w00' in Eq. (45).

In a linear stability analysis of these fixed points, the location in

the complex plane of the pair of eigenvalues of the matrix J,

a30(2rr) ae (2rT) ]
0 0

aw(27) aw(27r)
800 0w

(48)

is evaluated for the fixed points. It is possible to show that for

a = 0 successive values of 0,0 at times M = 2nr, n = 1,2,3,..., fall

along curves in the 8,w plane corresponding to constant-value contours

of the energy integral E given in Eq. (27) and derived from the

averaged equation of motion (22). In general we find, as expected, that

the above difference equation approach, used by Bellomo et al.(1967),

and that of Goldreich and Peale (1966b), both exact to first order in

a, are equivalent to this accuracy. In neither was the effect of

higher-order terms in 8 discussed.

In the second-order approximation to the monodromy transformation,
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6(27) = 80(2r) + 8O1 (2w) + 262 (2T) + 0(83

(49)

w(27) = w0(2r) + 3w1(27) + 82w2 (2n) + 0(83

we could set

o(2Tr) = o' )
(50)

w(27) = 0 '

and hope to solve the now incredibly more complicated (second-order in

0) equations to find the fixed points. Then a linear stability analysis

might be completed to determine the behavior of the solution in the

neighborhood of these points. Fortunately following this procedure is

unnecessary.

The precise locations of the fixed points near e = 0 and 0 = 7/2

are unimportant. Also the libration frequency at the point near 0 = 0

need not be known exactly, although the complex part of this frequency,

which measures the exponential damping rate of librations, must be known

with an absolute error much less than jaT 0O' . Similarly any terms in

(49) representing secular accelerations of the spin must be identified

if they are comparable to aT0. The latter two requirements are essential

because the libration damping rate and the secular acceleration together

determine the resonance capture probability.

Inspection of the results in Appendix C shows that the second-order

terms in (49) contain no secular-acceleration terms. Only the librational

damping remains to be examined. We may proceed without knowing the exact

fixed-point coordinates by taking advantage of the fact that Eq. (36) re-

presents a slightly perturbed Hamiltonian system (i.e. the monodromy

transformation of the system is nearly a contact transformation). This

fact is utilized in the capture probability calculation.

Following closely the development of Counselman (1968), we consider

the more general single degree-of-freedom dynamic system whose equa-

tion of motion is, in Lagrangian form,
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dt(9) q =L f*(q,q,t) (51)
dt 9q 9q

where a is a generalized coordinate, q = dq/dt, its associated gener-
alized velocity, and t the time. We assume that the Lagrangian L and

the generalized force f* have an explicit periodic time-dependence:

L(q,q,t+2T) = L(q,q,t)

(52)

f*(q,q,t+2T) = f*(q,q,t)

for -oo<t<oo. Evidently Eq. (11) is identical with (51) if we identify

q= e
t =M

1 dO 2 1 1 + e cos v
2 dM 2 2

1 e

f* = oT(e,dO/dM,M)

where T is the function defined in (14). It is easier, however, to

work with the more general equation, (51).

If the system (51) is Hamiltonian, it is always possible to eli-

minate f* from the right side by including an appropriate work function

in the Lagrangian. Hence we assume that f* represents only those foces

not so representable. The generalized momentum p =(DL/3q) and the

Hamiltonian H:

H(q,p,t) = pq - L (54)

may be defined in any case and yield the pair of first-order equations

DH

(55)
p =--H + f(q,p,t)ýq

-27-



in which the function f(q,p,t) replaces f*(q,q,t).

If a solution of Eqs. (55) is denoted by the 2 x 1 matrix x,

q(t)

x (t) = (t) (56)

and a neighboring solution by x + 6x, the deviation 6x obeys the linear

matrix differential equation

d
d- 6x = A(t) 6x (57)

in which A is the 2 x 2 matrix

A(t) =

a ZH a H
2qap 2

pqI a

32H af 2H af

aq2 +q - I paq ' •p

(58)

evaluated along x(t).

We are interested in the solution to (55) only at the times t = 2nn,

n = 0,1,2,3..., i.e. only stroboscopically. The general solution x(t),

evaluated at t = 27, defines the monodromy transformation of (55) which

maps (q,p) at t = 0 into (q,p) at t = 2T. A fixed point (q0 ,P 0 ) of this

mapping evidently corresponds to a periodic solution of (55). Such

periodic solutions, we have seen, characterize the spin-orbit resonance

of Mercury. Two fixed points exist for each resonance, one near (6,w)

= (0,k/2) and the other near (rr/2,k/2) for each integer k. (6 is de-

fined modulo 7T.) The behavior of the monodromy transformation in the

neighborhood of the fixed points is determined by Eq. (57).

When the matrix A(t) in (57) is evaluated along the periodic solu-

tion x(t) corresponding to a stroboscopic fixed point, then Eq. (57)

becomes a linear differential equation with periodic coefficients. This
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type of equation is the subject of Floquet theory. It is known in

this case (Counselman 1968) that the solution of (57) obeys

6x(2nr) = Jn 6x(O) ; n = 0,1,2,3,... (59)

in which J is the 2 x 2 constant matrix defined by Eq. (48) with the

elements evaluated at the fixed point. The stability of the fixed

point depends on the eigenvalues of J, which must be either both real

or a conjugate complex pair. The fixed point is unstable if either

or both eigenvalues fall outside of a unit circle centered on the

origin in the complex plane. The fixed point is asymptotically stable

if both eigenvalues fall inside the unit circle. If they fall on the

unit circle at angles#+ with respect to the real axis, then the strobo-

scopic values 6x (2n7) are periodic samples of purely oscillatory func-

tions of the form sin ($t/2Tr) or cos (t/2Tr).

The Jacobi-Liouville formula (Cesari, 1962) relates the determinant

of J to the trace (sum of diagonal terms) of A:

2Tr
det J = exp f tr (A) dt (60)

0

At this point the advantage of having used a general Lagrangian formu-

lation of the equation of motion becomes apparent: In the sum of the

diagonal terms of A(t) in Eq. (58) the mixed partial derivatives can-

cel, leaving simply

af
tr(A) =- (61)ap

Using the definitions given in (53) and substituting (61) into (60)

we obtain

det J = exp[27aT0 ' (e,k/2)+0(a )] , (62)
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where T0 '(e,k/2) is defined in (21). The determinant of J is, of course,

equal to the product of its eigenvalues. For the stroboscopic fixed

point near 8 = 0 we find from Eqs. (45) to (48), but to only first order

in 8, that these eigenvalues lie nearly on the unit circle in the com-

plex plane at angles of ±2n(28Pk 1 / 2 . Eq. (62) now contributes the ad-

ditional information that when aT0' = 0 these eigenvalues, to order aB,

lie on the unit circle. The eigenvalues are analytic functions of a

at a = 0. Therefore, since for Mercury a << ý << 1, these angles of

these eigenvalues are not changed significantly when a / 0. However

when aT0' < 0 the eigenvalues must lie slightly inside the unit circle

at angles near ±27r( 28Pk) /2, and their magnitudes must be almost exactly

equal to exp (aT0'M/2). There is no damping effect of order 82 and the

averaged equation of motion (20) with constant coefficients represents

the librational damping correctly at least to order aB.

D. Statistical Considerations

We now demonstrate that the statistical properties of the solution

of (12) are adequately represented by our simple model based on Eq.(20).

The above results are useful for this purpose. Only the near-resonance

behavior might be troublesome; i.e. only when w is within a few "resonance

widths" of the resonance rate k/2. Before the spin rate approaches that

near to a resonance, the fluctuations in rotation are small and rapid,

and the time required to decelerate from, say, 120% to 110% of the re-

sonance rate is determined mostly by the tidal coefficient a. Thus for

the k = 3 resonance with a - 10-8 we would expect on the order of 107

rotations to be completed in such a time interval, although the exact

number of rotations cannot be known any better than is the value of a.

The change in w during any fixed time interval M2 - M1 is similarly un-

certain, and is of the order of Aa*T0 (e,k/2)(M 2-M1) where As represents

the uncertainty in a. For Mercury it is reasonable to consider a as,

say, a gaussianly distributed random variable. If its standard devia-

tion is any more than about 10-6a, the two dependent random variables,

6(mod Tr) and w, after any reasonably large time interval, will be quite
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uncorrelated because their values depend on different numbers of inte-

grations of d 2/dM2 z (aT0). Since a is not known to within even an

order of magnitude, we may consider that at a time when the planet's

spin approaches a resonance to within a few "resonance widths", the

probability density for the spin state is nonzero and approximately

uniform in a part of the 6, w plane extending in 6 from -7/2 to +7/2,

and in w over an interval many times rrLaT0 1/2 . Using this probability

density in the phase plane, we can discuss the subsequent near-resonance

behavior of the system in which is describable conveniently in terms

of points in the phase plane. Every point in the region of non-zero

probability density will follow a trajectory which either converges

(stroboscopically) to the stable equilibrium point, resulting in "cap-

ture", or passes through the resonance region to "escape". Because the

generalized forces are explicitly time-varying, in general three variables

(e.g. 6, w, and M), must be specified to completely determine its future

motion. But the two variables 6, w suffice if we consider the state

only stroboscopically, that is at times M=2n7 with n an integer. For

simplicity when referring to motion near the kth resonance, we use the

abbreviation 6 - w-k/2 for the spin rate.

The spin motion satisfying Eq. (11) generates a sequence of points

6, 6 from any given initial point in the phase plane. The monodromy

transformation of the differential equation maps the nth point of this

sequence into the (n+l)st. These point sequences tend to fall nearly

along the continuous trajectories which satisfy Eq. (23). However, we

must establish that the motion of an ensemble of initial phase points,

satisfying a particular probability distribution, leads to the same

capture and escape probabilities as are implied by the same distribu-

tion for phase points which follow the pendulum equation (23). This

may be accomplished in two steps.

First, we show that initial points distributed uniformly over a

given area of the phase plane (area density E d) will remain uniformly

distributed within their boundary for all time, as each member point

is individually transformed according to the monodromy transformation.
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The shape of the boundary becomes distorted, but the density of points

within the area grows uniformly as the area shrinks, to the extent to

which TO' is constant over that region. These properties are derived

from the Jacobian of the monodromy transformation [see Eqs. (60)-(62)].

(Previously we evaluated the Jacobian only at fixed points of the trans-

formation, but Eq. (60) and (61) are valid for any solution.) Since

the derivative T ' of the tidal torque will be slowly varying, we may

employ Eq. (62) for the entire region - /2 < 0 < T/2 near the kth re-

sonance ll << 1 and write

d(27n) = exp (-27WTO' (e,k/2)n)d(0) (63)

which relates the density of points in the "occupied" part of the phase

plane after n orbital revolutions to the corresponding initial density,

d(0). (Here we neglect that part of the argument of the exponent which

is of order aB.) The monodromy transformation is area-preserving only

when TO' = 0, in which case it is a contact transformation and (63)

merely states Liouville's theorem: For a Hamiltonian system, the den-

sity of points in phase space is unchanged by the natural motion of the

system. When aT0 ' < 0 the mapping reduces area by a constant ratio over

the near-resonance region (i.e., where T0 ' remains constant). This

general contraction per orbital revolution is necessary, of course,

for there to be a convergence of trajectories at the stable equili-

brium point near (e,6) = (0,0).

The constancy of the Jacobian allows us to derive the resonance

capture probabilities very simply. We may consider the analogy between

trajectories in the e, 6 plane, emanating from points uniformly distri-

buted over some region, and streamlines of flow of a uniformly dense,

uniformly contracting fluid. The particles of fluid correspond to mem-

bers of the ensemble of systems whose initial conditions are uniformly

distributed over some (small) region of the phase plane. Of the total

flux of "fluid" passing from positive to negative 0 (actually, the flux
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of ensemble members, all of whose states migrate), that fraction which

converges to the stable equilibrium point is just the probability of

capture for the resonance. We may compute this fraction easily after

studying the phase-plane geometry shown in Fig. 2(a).

In Fig. 2(a) are drawn two trajectories, representing point sequences

which converge to the unstable equilibrium point, C. [Continuous curves

are drawn rather than sequences of points for convenience, but the exis-

tence of a stagnation point at C allows unique curves to be defined in

any case. There are two other sequences asymptotic at C, but along which

the motion is away from C (Bellomo et al. 1967).] The curves are drawn

for TO < 0 and TO' < 0, so that the spin rate can approach resonance

only from above (6 > 0). The coordinates of C are, approximately, (e,6)

(-7r/2 - aT / 2ýPk,0). The stable equilibrium at (0,6) z ([TO/2 ýPk,0)

is labelled D. At the unstable point C the two trajectories shown

in Fig. 2(a) lie in the direction of the eigenvector of J which cor-

responds to the real eigenvalue less than unity. (The other eigenvalue,

real and greater than unity, corresponds to the two trajectories along

which the motion is away from C.) Following the trajectories in Fig.

2(a) backward from C, we designate the points where they first cross

a vertical line (constant 0) through C, as A and B. For the trajectory

passing through A, 6 is positive everywhere along it.

In general, the 6 coordinate of points A and B could be obtained

numerically for given values of a, ý, etc., by using a computer to evalu-

ate iteratively, but backwards in time, the expressions for the mono-

dromy transformation, starting from initial points near C. This calcu-

lation has been done for various values of the parameters, but only as

a check, because an approximate analytic solution is possible for the

case of physical interest: a << ý << 1. We present here only the

analytic solution and a remark on its accuracy, based on the numerical

solutions. A manipulation of Eqs. (45) - (47) leads to the same result,

to first order in B, as was derived using Eq. (20), viz.:
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1 2

1 (B) = 26 (64)

1 2
2 0

where

E = -raTo(e,k/2)
. (65)

6 = -2aTO'(e,k/2)(28Pk(e)) 1/ 2

With this result, we can calculate the capture probability simply:

All of the fluid coming from the upper (6 > 0) half of the phase plane

crosses the line segment ABC exactly once. The component of flow velo-

city perpendicular to this segment, i.e. in the 6 direction, is just 0.

The total flux PAC across AC is just (suppressing the uniform density):

1 2
•AC = f di = 02 (A)2 (66)

0

and the flux PBC across the segment BC which flows toward the stable

point D and is "captured" is just

B * B 1 2
BC = d6 = 2 B)  (67)

0

Therefore the net probability of capture at the kth resonance is

CBC
Pc BC 26/(E+6) (68)

AC

Although we assumed for simplicity that TO and TO ' were both negative

near the kth resonance, the calculations for other signs of these
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constants are very similar. In particular, we find Eq. (68) to be valid

unless T0' > 0. With the tidal torque models we have considered it im-

possible that T0' > 0. However, variations of orbital eccentricity

with time have an effect equivalent to T ' > 0 under certain circum-

stances (see Section III). If TO' > 0 the equilibrium point at D be-

comes unstable and librations around it have an amplitude increasing

exponentially with time. In such a case if the planet's spin had been

captured earlier, it would now be driven out of the resonance. [See

Fig. 2(b).] The question then would be whether the planet escapes

with spin faster (6 > 0) or slower (6 < 0) than the resonance rate.

The calculation of the relative probabilities of these two events fol-

lows closely the lines of the derivation of Eq. (68) but with time re-

served. The results are very similar. If the probabilities of es-

cape with spin rate greater and less than the resonance rate are written

as Pe and P , respectively, we find that when TO ' > 0,e

P + = (6+E)/26
e

(69)

P = (6-E)/26e

where as usual the probabilities must lie in the range (0,1). Of

course, Pe + will be nonzero only if T (T0+TO') becomes positive

within the "resonance width".

Formulas (68) and (69) are strictly valid for laT01 << Pk , i.e.

for the equilibrium points lying close to 8 = 0 and 6 = 7/2(mod r).

Numerical calculations show that even for aIcTO /Pkl = 0.05, formula

(68) gives probabilities Pc which are too large by 0.04 when Pc is about

0.5, but the relative error is less at both higher and lower values

of Pc and improves monotonically as ]aTO/ PkI approaches zero. For

the treatment of Mercury's spin-orbit resonances, formulas (68) and (69)

are perfectly adequate.
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III. VARIATIONS IN ORBITAL ECCENTRICITY

A. Orbit Perturbations

So far we have considered Mercury's orbit to be a fixed ellipse.

In fact, all of Mercury's orbital elements vary because of perturbations

by the other planets. (The well-known effects attributed to general

relativity are insignificant here.) Unfortunately the current state

of development of celestial mechanics, and of planetary theory in par-

ticular, allows us to say nothing with certainty about Mercury's orbit

at times as remote as 10 years ago. Even the basic question of the

stability of the solar system over such a time interval remains open

(see, e.g., Hagihara, 1961). Perhaps the best estimate, really a guess

(Brouwer and Clemence, 1961), of the very-long-term behavior of planetary

orbits is provided by the "secular" variations which, by definition,

are those computed by limiting the planetary disturbing function to

the part independent of the mean longitudes. In the first-order solu-

tion of the planetary n-body problem by expansion in powers of the

disturbing masses there are in general both secular terms and periodic

terms. Because the spin-orbit resonance mechanism effectively averages

over many orbits, the periodic orbital variations are unimportant.

(An exception would occur if Mercury were involved in an orbital re-

sonance with one or more other planets.)

This method of secular perturbations has been applied to the pla-

nets Mercury through Neptune by Brouwer and van Woerkom (1950), who

refined it to include the principal effect of the great inequality be-

tween Jupiter and Saturn. The typical solution for the eccentricity

ea and longitude of perihelion 7ra, measured from a fixed direction in

inertial space for the planet a(a = 1,2,...,8), is of the form

10
Z = I N akexp (i'k - iskt)

k=l

(70)

IZl - e' E 2 sin ( .sin e) z e
e aO
a
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7ra = Arg Z

where iE 7 -1, and Nakk,' sk are real constants (k ranges from 1 to

10 because of the inclusion of the great inequality).

A very similar expression, yielding the inclinations ya and longi-

tudes ea of the ascending nodes (both referred to the invariable plane)

is obtained by replacing e ' by sin ya and 7r by e in Eqs. (70). A

different set of constants I ak and k replace N ak' k in this case.

The circular frequencies sk appearing in (70) are determined by the

planetary masses and semi-major axes, which remain constant. The pre-

sent values of the eccentricities, perihelia, inclinations, and nodes

serve to determine the constants of integration N ak' k' Iak' and *k'
The values obtained by Brouwer and van Woerkom for k,' sk' and Nlk
(a = 1 for Mercury) are listed in Table 1.

The inclination to the invariable plane of Mercury's orbit accor-

ding to this theory will never exceed the sum of all the Ilk' This

limit is less than 100, so that we shall here ignore variations of the

orbital plane. (However, in a study of the evolution with time of the

axis direction, the motion of the plane and the "ability" of the spin

axis to follow it must be analyzed.) Also unimportant are the uniform

and accelerated motion of the sun-perihelion reference line, measured

by the rate of advance of "1. The uniform part of the advance does not

play an important role. Only minor modifications are required: One

may consider the anomalistic period as basic and modify the equilibrium

points accordingly, taking into account the difference in (inertial)

orientation after each period. The accelerated part of the advance is

very small and also of no concern. Since N11 = 0.175 and

10
SINlkl 0.066,

k=2

a good approximation to the greatest possible magnitude of d2 '/dM 2

is given by
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d2l 10max 2  ~ 2N -11 NlkI(sl - sk) (71)

dM k=l

where n is Mercury's orbital mean motion given in the same units as sk.
Substitution of numerical values from Table 1 yields

2

max 1  2 x 10 13

dM2  (72)

which is more than three orders of magnitude smaller than the accelera-

tion due to the tidal torque alone when the tidal parameter a = 10-9.

Because the value and rate of change of Mercury's orbital eccen-

tricity in particular are crucial to the spin-orbit resonance phenomena,

we must know the behavior of this element during Mercury's past orbital

history in order to study properly these resonances. The time depen-

dence of e is given by

10
e(t) ~ el' = 1 Nlk exp (ik- iskt) . (73)

k=l

Part of this function is shown in Fig. 3(a). From the figure, or from

the coefficients in Table 1, it is evident that the behavior of e(t) is

dominated by three terms: N11, N12' and N15. Physically, this result

follows from Venus and Jupiter being the dominant planets in their per-

turbing effect on Mercury. Because N11 is much greater than the other

coefficients, the eccentricity has an average value nearly equal to N11,
and exhibits two superimposed nearly-sinusoidal oscillations of ampli-

tudes N12 and N15 with frequencies (S1-S2) and (s5-sl) , respectively.

The other seven terms in the sum in (73) contribute fairly small oscil-

lations of various periods.

The two frequencies (Sl-S2) and (s5-Sl) are nearly commensurable

in the ratio 8:5. In about 5.5 x 10 years the argument involving

(sl-S2) completes 8 cycles and that for (s5-sl) completes 5. The
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deviation from exact commensurability is about one per cent of the

period of the former so that in about 70 x 106 years the interference

pattern generated between the two terms repeats itself. However be-

cause of the fairly high order of 8:5 commensurability, a section of

length 5.5 x 106 years taken from the e(t) "waveform" looks about the

same regardless of its position in the 70 x 106 year interference

period. For practical purposes, therefore, the eccentricity may be

approximated by the periodic function,

e(t) = e 0 + I eksin[ 2 T nk(t/e )+Kk] , (74)
k=l

where Te is the period and the nk are integers. A six-frequency ap-

proximation to (73), generated by taking ei = N ,i+(i = 0 + 6),

Te 5.52 x 10 years, nk(k = 1 + 6) = 8, 50, 53, 5, 95, 11, with all

the Kk = 0, except K 1 = 194.70 and K4 = 152.63, is plotted in Fig.

3(b). This periodic eccentricity function has been used in the com-

putation of the Mercury spin-orbit resonance capture probabilities ac-

cording to the method described below. It has also been found that

no significant change in these probabilities occurs when the six-

frequency function is replaced with the much simpler and smoother

function obtained by taking k = 2 in (74), with e0 = N11 , el = N12'
e2 = N15' and n1 = 8, n2 = 5, preserving the same period Te. It is

reassuring that the small details of eccentricity behavior are in-

significant.

B. Spin Equation of Motion with Varying Eccentricity

From the preceding we see that the orbital eccentricity change

during one orbital period is small, so that the derivation of the aver-

aged spin equation of motion (30) from the original equation (20), which

is time-varying with orbital period, remains valid. We have

e + BPk(e) sin 20 = cT 0 (e) + aTO' (e)6 (76)
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in which the coefficients Pk(e), TO(e), and To'(e) are now considered

to be slowly varying. As a result we will find that multiple captures

and escapes may occur at the same spin-orbit resonance. For example,

during a time when the orbital eccentricity is essentially stationary

at a sufficiently high value, the planet's spin rate might be deceler-

ated by the tidal torque and be captured in a resonance, as described

in Section II. Librations of the instantaneous spin rate might then

decay. If the orbital eccentricity now begins to decrease, however,

the amplitude of librations about the resonance spin rate may actually

grow, through adiabatic "pumping", as the coefficient Pk(e) decreases.

Eventually the librations may grow so large that the spin motion ceases

to be libratory with respect to the resonance rate, and becomes circu-

latory. The direction of the circulatory motion might be in either

sense with respect to the resonance. If the relative spin becomes

circulatory in the positive sense (actual spin rate faster than re-

sonance rate), then certainly at some future time as the rate of ec-

centricity decrease diminishes the spin will again be slowed to re-

sonance. At such a time capture might again take place, or passage

through the resonance to slower spin might occur. In order to cal-

culate the probability of permanent, ultimate capture in a given re-

sonance, it is necessary to consider each possible temporary capture,

to consider the possibilities of escape following a capture, and so on,

combining these probabilities in the end to find the overall probability

of the compound event. Because each of these probabilities is now peri-

odically time-varying (i.e. a function of phase within a cycle of eccen-

tricity variation), a method will be needed to determine the times of

possible captures or escapes (when the actual spin rate reaches resonance,

or the stroboscopic rate 0 reaches zero).

The overall probability of ultimate capture is calculated by consi-

dering an initial set of systems with initial conditions uniformly dis-

tributed at a given epoch over an area in phase space somewhat above the

resonance region. (We are here discussing the probability of capture

into a particular resonance state on the assumption that all higher
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resonances have already been passed.) For any initial epoch the pro-

bability of ultimate capture for a (randomly chosen) member of the

initial set may be calculated by repeated partitioning and recombining

of the original set: We begin by computing the probability of "tem-

porary" capture at the original epoch. We adopt the notation P{C';t 0}

for this probability, where t0 is the initial epoch and C denotes cap-

ture, with the prime signifying "temporary". The original set of sys-

tems would thus be divided into two subsets with the probabilities of

a randomly chosen member belonging to the temporarily captured, or tem-

porarily escaping subset, being given by (respectively) P{C';t 0} or

1-P{C';t0 . Next, a (randomly selected) system from each of the two

subsets may be considered. For example, the evolution of a system tem-

porarily captured (first subset) is followed using the equation of mo-

tion (derived below) to determine the time (if any) of a possible es-

cape - to either faster or slower spin. The conditional probabilities

P{E+'; tllC'; tO} and P{E ';tl C';tO} - for temporary escape to faster

(E+') and slower (E ') spins at time t1 following temporary capture at

time tO - are then calculated and the first subset with associated pro-

bability P{C';t 0} is partitioned accordingly. The time interval be-

tween successive capture and escape opportunities is in general so great

compared to the libration period that we may safely assume that each

system has lost all "memory" of its state at the time of an earlier

capture. We are able, therefore, to use unconditional probability

formulae such as were derived in Section II.D for subdividing the various

subsets at times of possible captures and escapes. The calculation of

probabilities and subdivision of sets proceeds in this manner with each

alternate path being followed until permanent capture or permanent

escape occurs. (The criteria for these two terminal events will be

discussed below.) The overall probability of ultimate capture P{C;t 0}.

for a member of the starting set of systems is then obtained by recom-

bining the subsets (adding their associated probabilities) which reached

permanent capture. The overall probability P{C;t } will be given by a

sum of cascaded products of the type P{C';tnl E_ ';t n_} 'P{E_';tnlC';t n2}

...P{C';tO}. Although the number of branches or subdivisions of the
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original set might in principle be enormous, in practice with physi-

cally reasonable values of a and 3 the number of branches is small,

or the probability calculation can be stopped at a point where the

fraction of the original set whose ultimate fate remains undecided

falls below a small, arbitrary threshold.

The probability of ultimate capture P{C;t } so far determined still

depends on the initial epoch, tO. We must therefore ask: is the spin

rate equally likely to reach resonance at all times, to; or, since the

eccentricity variation is quasi-periodic, at all phases within a cycle?

In fact all phases will not be equally likely; it may even be impossible

for the spin rate to reach resonance at certain phases, for reasons

discussed below. It will be found, however, that only a few "resonance
1/2

widths" above resonance [w (2Pk 1/2 is the "resonance width"] the

distribution of arrival times becomes essentially uniform in phase.

It becomes possible, therefore, to average the computed capture pro-

babilities over one cycle in t0, provided that the spin evolution and

probability calculation is started beyond a few times w above resonance.

In order to follow the near-resonance spin motion when eccentricity

is variable, we will use a normalized energy function En of 6, 6, and e,

which is obtained by simply dividing the energy function E (Equation 33)

by the square of the (now time-varying) resonance width (Equation 39):

1 *2 -1 1 2
En (,6,e) = 2 (0) (2UPk(e)) - cos 6 (78)

In general the time derivative dE n/dM En is [using Equation (76)]

n n
=1 2 -1

E = [2 (0) (2 ) " T [2(To k/Pk) ]

+ [6(23Pk) -/ 2 ]*[aTO*(2SPk) 1/2] (79)

where

k E dPk/dM = (dPk/de)(de/dM). (80)
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Evidently if a = 0 and e = de/dM = 0 then (as expected) En is identi-

cally zero and En is an integral of the motion. Contours of constant

En may be drawn in the 6,6 plane, and these must coincide with phase

trajectories of Equation (76) when E =0. Examples of such contours
n

are shown in Fig. 4. The special contour defined by En=0 is called

the separatrix because it separates the two regions of circulating

trajectories (En > 0 with either 6 > 0 or 0 < 0 from the interior re-

gion of librating trajectories (-1/2 < En < 0).

We are not so much concerned with knowing Mercury's actual spin

state, as with knowing the changes in the value of En, because the

times when E = 0 are times of possible capture or escape events. When
n

En > 0, the planet is "outside" the resonance region; 
under the com-

bined influences of the tidal torque and eccentricity variation [through

k in Eq. (79)], En may slowly be reduced until it reaches zero. At

that time there is in general some probability that the spin will be

"captured" in the resonance (i.e., that En will go negative), and a

complementary probability that the spin state will pass through the

resonance (i.e, that 0 will change sign and En stay positive). The

probability formulas derived earlier for these events will of course

have to be modified to include the effect of eccentricity variations.

With appropriate probability formulas to treat the situations when En
reaches zero (from both positive and negative 6), and with a differential

equation to describe the time variation of En , we can determine the pro-

bability of ultimate capture in a resonance as described above, by com-

bining the probabilities for the individual events.

Eq. (79) is a differential equation describing the time dependence

of En , but (79) cannot be integrated directly because the right side de-

pends on 6 which is not uniquely determined by the values of En and the

time. [By the same token, of course, Eq. (78) is not of direct use

since it does not give En explicitly as a function of time.] Because

a << 8 and Pk(e) << 1, the energy function En will change only slowly

with time so that over moderately long time intervals the (stroboscopic)

spin state will follow closely a contour of constant En in the phase

plane. Thus, for libration (En < 0) when the amplitude is not large,
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the period is approximately 2T(2BPk) 1 / 2 , whereas En is of the order
-1/2of aB , so that the change of E during one libration period is of

-1 n
the order of aB , which for Mercury is small compared to unity. A

similar argument applies for circulation (En > 0) unless En is very

small, i.e. unless the circulating trajectory passes very near the un-

stable fixed point at (8,8) Z (- 2 ,0). In order to apply the theory

of capture probability developed in Section II, however, we must show

that the times spent on phase trajectories which do pass near the un-

stable equilibrium point [C in Fig. 2(a)] may be neglected in compari-

son with the period of eccentricity variation.

The influence of the unstable point causes libration and circula-

tion periods to diverge as E + 0:n

-1/2T . 1 -(2P k) In Ecirc nE +0n

(81)

Tli b + -2(28Pk ) - 1/ 2 In ]En]
n

[The second of Eqs. (81) yields a period twice as large as the first

near En = 0 because, by definition, the libration period extends over

a "round-trip" in the phase strip whereas the circulation period is only

a "one-way" affair.] Does this divergence of periods cause any diffi-

culties? From Fig. 2(a) we see that as a system enters the resonance

region from above (6 > 0), its trajectory must pass between points A

and C. Only an entirely negligible fraction of an ensemble of systems

with randomly chosen initial conditions will enter the resonance re-

gion with an energy sufficiently near zero to have a circulation or

libration period comparable to or greater than that of the eccentricity

variation. This statement is easily proved: from Eqs. (64), (65), (78)

and a simple calculation of the change in En attributable to Pk during

one circulation cycle, we find
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En(A) = I -7aT0/(2BPk)+[( k/Pk)-2aT']/(2Pk) 1/2 , (82)

-5 -
which is of order a/B and would be about 10-5 for Mercury if a = 10

and z 10- 4 . (The term Pk/Pk, being variable,could lead to cancella-

tions but these would certainly be so infrequent as to be quite negli-
-8

gible.) Even a trajectory for which E equals 10 passing point A,

will, according to Eq. (81), have a circulation period of only about
-4

500 yr (for 2ýPk z 10 ) - negligible compared with the period of ec-
6

centricity variation. Since, for this case, only about 1 in 10 mem-

bers of the ensemble will have a trajectory passing between A and C
-8

with E < 10- , our conclusion is established.
n -

We now return to the problem of integrating Eq. (79). Since

neither E nor Pk will change appreciably during a libration or cir-
I 2 -1

culation period, we may replace the quantities [2~ ) (2Pk) 0 ] and

[6(23Pk) 1 2 ] by their average values over such a period. Thus, for

En > 0,

T

circ 0

Tr/21 1 -1f . 6l(2SPk) de  (83)
circ -T/2

where we have used dM = d6/6. Substituting for 6 from Eq. (78) and

rearranging, we obtain

1 2(2L( (2E +1) -1/2
S(2Pk (2> k 1/2 n (84)

where

L( T/) - [1-u2sin22]1/2d6 (85)

0
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is the complete elliptic integral of the second kind. For T . , we

have

T .circ

TcircE f
0

'/2
dM = r dO = 2iK() (2Pk -1/2

-7r/2 181

p E (2En +1)/2
n

where

Trr/2
K(i) f f [1-p2 sin2] -1/2d6 (87)

is the complete elliptic integral of the first kind. Eqs. (84) and

(86) yield, of course

(1 2(2Pk)
2

L(p)
2

2p K(p)
En >0;n (88)

similarly, we find

S(2 Pk1/2> = )

k2JK (p) '

E > 0 ,n (89)

where the plus sign is valid for the region above the resonance (0 > 0),

and the minus sign holds for below (6 < 0).

Defining

6(M) E -2aTO'+Pk/Pk

C(M) E -wa TO/(28Pk) 1/ 2
(90)

in analogy with Eq. (65), we may now replace Eq. (79) by

- [2K ( -1 [-1L(p)(M) ()]
= -f2iiK(pi)] [ii L(ya)6(M)±E(M)]; E> 0 ,n (79a)
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where the right side has been averaged over a circulation period. The

M-dependence of 6 and E follows from that of Pk' TO, and T '

Inside the resonance region (En < 0), we find

1 -2
S 8 (28P k )

1
Tlib

00

1 1

T Tlib -e

81 in-l1/2
0 sin (1+2E )
1- n

ibib 1 *2 -11 (28Pk)  dM

1  (28Pk) -ld

1

1
S - -< E < 0

2 n

(91)

(92)

is the libration amplitude. Using Eq. (78) and the well-known integral

(see, for example, Gradshteyn and Ryzhik, 1965):

7r/2 2cos x dx 2 - 2 -
-2 2 1/2 = L( )+(l-sin )K(x) )

0 (1-Vt sin x)
(93)

-1/2in combination with the change of variables sin x = (2En+l) -  sin 0,

yields

1 2 (2 Pk)-1 = E+L(y- I)[2K (VI )-1

-1 1/2
p = (2E+l)n ; E < 0,

n
(94)

where we have used, in addition, the expression for Tlib:

lin

Tlib f dM = 2
0

1
01 de -1/2 -1
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Since for En < 0 the analog of Eq. (89) vanishes (in our approximation

the libration cycle is taken to be symmetric, therefore yielding a zero

average value for 6), we obtain

n = -{E +L(- )[2K( )] -}1(M) ; P = (2En +1)/2 ; E <0 . (79b)

The right sides of Eqs. (79a) and (79b) depend only on M, hence

these equations may be integrated numerically to determine the time

that En reaches zero, given any initial value of En0 at an initial

time M0. No difficulty is caused by the divergence of K(p) as pl+1(En+0);

the singularity is analytically integrable. Since Eq. (79b) is separable,

it is easier to use a new function Fn for motion inside the separatrix

where we define F = 0 when E = 0 and
n n

dFn = {En +L(- )[2K(- )] I}dEn (96)

Thus

dF

d = -6 (M) (97)

which may be solved by quadrature to follow the spin evolution inside

the separatrix, in particular to find the later time, if any, of escape

from a resonance following capture. When the orbital eccentricity is

a periodic function of time as in Eq. (75), then so is the function

6(M). For convenience in the numerical work, we separate 6(M) into

two parts: its average value (6(M)) and the periodic variation 6 (M)

about (6(M)>.

Because TO' (e) < 0 for all e, it is evident from Eq. (90) that

(6(M)> must be non-negative. It will also be useful to define the

definite integral I (M) of 6 (M):

M M
I p(M) E f 6 (M')dM' f (6(M') -(6) )dM' (98)

0 0
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Note that Ip (e) = Ip (0) = 0, where Te is the period of the ec-

centricity variation. This integral I (M) may be tabulated in advance

for one eccentricity period Te, and the table may be used to find the

time the spin state again reaches the separatrix following a (temporary)

capture. We thus avoid numerical integration, requiring quadrature

only once for given functions TO '(e), Pk(e), and e(M). At the instant

of capture, defined as M = M , we have F = 0, with F < 0. From
c n n

Eqs. (97) and (98) we have, for M > Mc,

Fn(M) = -(M-Mc) 6> - Ip(M)+Ip (Mc) (99)

which is valid as long as Fn remains negative. Escape from the separa-

trix occurs when F = 0 with F > 0, i.e. at the earliest time M1 in
n n 1

the interval M < M < M +T for which the condition
c 1 c e

I (M1) Ip(Mc) - (6) (Mc 1) (100)

is satisfied. Since (6> and Mc are known, we need only refer to the

table of I (M) vs. M, using interpolation as required, in order to de-
P

termine the escape time MI . The value of M1 modulo Te, of course, is

the tabular argument. Because I p(M) has period Te, and because the co-

efficient (6> of M1 in the right side of inequality (100) is positive,

it follows that if no solution M1 lies in the interval Mc < M < M +T

then none exists for larger M1 and the capture is permanent.

The probability formulae required for the moment when En reaches

zero from above (possible capture) or below (escape possible with either

sign of e) are given by Eq. (68) and (69), where the functions 6 and E

must be evaluated at the time En = 0 according to Eq. (90).

The theory needed to predict the ultimate fate of an ensemble of

systems which have initial energies spread near En0 at time M0 is now

completely developed. We review the procedure, which has been pro-

grammed for a digital computer. Eq. (79a) is integrated numerically
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from the given initial condition until En = 0 is reached. A step size

of a few thousand years is appropriate. The functions 6(M) and E(M)
-i

are tabulated in advance, as is the quantity [2pK(ji)]1 which is a

function only of En . The end time having been determined, the initial

ensemble is divided into two parts according to the capture probability

formula (68). The fraction which penetrates the resonance is "followed"

again by numerical integration of Eq. (79a), with the opposite sign now

used for E(M). If this fraction fails to return (within one eccentri-

city period) to the En = 0 state, it is recorded as having permanently

avoided capture at the resonance. If it returns to En = 0 again, it is

treated in the same manner as was the initial ensemble. That fraction

of the systems captured when En first reaches zero will be further divided

if Inequality (100) is satisfied at some time during the eccentricity

cycle. At such a time the probability formula (69) is used to partition

these systems into two classes: those that pass outside the separatrix

with 8 > 0 and those that leave with 0 < 0. The two classes are each

followed by the use of Eq. (79a) and ultimately disposed of in the manner

already described.

This algorithm has been programmed for an IBM 360/65 digital com-

puter following the description we have given. Because an arbitrarily

large initial ensemble may be divided in two in principle many times,

one might imagine the embarrassing result occurring that a veritable

aerosol of subensembles is obtained, the algorithm never terminating.

For the range of parameters believed appropriate for Mercury, no diffi-

culty has occurred because before a dozen subensembles have been pro-

duced that fraction of the systems either permanently captured or per-

manently lost approaches 99.9% of the total. After a few seconds have

been spent for the tabulation of the various functions required, typi-

cally less than one second of central-processor time is required to com-

pletely dispose of an ensemble of systems whose initial states lie five

to ten "resonance widths" above a resonance, with values of a, 8 cor-

responding, respectively, to tidal-effective-Q's varying from 10 to 500,

and planetary (B-A)/C varying from 10-4 to 10-6
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Two additional parameters must be considered before the total pro-

bability of (ultimate) capture at a resonance can be calculated for a

given a, 3 and choice of tidal model: the initial value of En and the

initial time. These are easily treated by (1) considering a range of

initial times distributed over an eccentricity cycle; and (2) observing

that the resultant probabilities become independent of the starting

value of E when it exceeds about 25 for a and B lying in the ranges
n

given above. (Recall that a value of En = 25 corresponds to +7w B

-+7V2BP , i.e. to an actual spin period only a few per cent more than

the resonance value.) The use of initial times distributed over an

eccentricity period Te does not constitute a Monte Carlo experiment.

The capture probability, determined by the fraction of the initial en-

semble captured permanently, is a well-defined function of the initial

time. The average probability, defined by the integral over a range of

initial times (corresponding to an eccentricity cycle), is approximated,

for example, by the use of a number of uniformly spaced initial times.

The number required for a given accuracy depends on the smoothness of

the probability as a function of initial time. In the limit of con-

stant eccentricity only one sample need be computed, and the present

method reduces to that described in Section II.
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IV. CORE MANTLE COUPLING

The theory developed in the preceding section is easily modified

to include a simple core-mantle coupling of the type considered by

Goldreich and Peale (1967) in an ingenious attempt to explain the con-

trol apparently exerted by the earth on Venus' spin. We will use the

same simple model in which a rigid axially-symmetric core is coupled to

a concentric outer shell (mantle) be a torque linear in the relative

angular velocities. We denote the core angular velocity by r, and take

the core-mantle torque proportional to the difference (0-n) such that

the exponential relaxation time for this angular velocity difference
-1

is a . If a <<1 and with the ratio of the core moment-of-inertia to

that of the mantle denoted by p, we may derive averaged equations ana-

logous to Eq. (20):

o + RPksin 20 = T0 + cx T0O' - po(0 - 1) (101)

for the mantle and

S+ an = o (102)

for the core where all quantities are defined in analogy with the uses

in prior sections; for example

3 (B-A)
2 C ] (103)

mantle

and

aT = tidal torque) /n 2 Cmantle o (104)

We define a new variable ý to describe the core angular velocity:

* )-1/2 (105)= 2 ( ; (105)

-52-



in terms of this variable, the time derivative of En , defined in Eq.
(78), becomes

1 2 -1E = [ (0) (2Pk) ]'*[2oTO (Pk/Pk)- (2pa)]

(106)

+ [6T - 1 (2Pk -1/2 -1/2+(2po)ý]

The derivative of ý satisfies

2
T -1 -1/2 1o IT (2 rT r (2 Pk) -(-k (/Pk) . (107)

If a2 << a and a << 8 we may average the 6-dependent quantities on the

right sides of Eqs. (106) and (107) over a libration or circulation

period of 8, keeping En constant as in the previous section. Defining

the averages g(En) and h(En):

g(En) ( ( O')2(2P/>k ) 1
(108)

h(En) < -1 (28Pk -1/2 >

which were computed in Section III, we obtain

2
= 2[ - h(E)-]-y(M) (109)

E = h(E )[-E(M) + (2p) ] -g (E)[6(M) + (2p)] (110)

where
1•

Y(M) =  (k/Pk) . (111)

The pair of equations, (109) and (110), replaces Eq.(79a). In the pro-

bability formulae (68) and (69) it is necessary only to replace the quan-

tity e by e-(2pa)ý and the quantity 6 by 6+2po. With these changes the
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algorithm developed in Section III may be applied as before. As men-

tioned there certain simplifications are possible when En is negative:

numerical integration of (79b) was not required in this region. Similar

simplifications remain available with the pair (109) and (110). When

En < 0, these equations become uncoupled:

= -[y(M)+]*C1

En = -g(E)[ 6 (M)+2p] En 0. (112)

In direct analogy with Eq. (97) we define Fn such that

dFn
dMn = -(M) - 2pa (113)

where F = 0 when E does. Hence the time of escape following capture
n n

may still be determined from the tabulated definite integral Ip(M) de-

fined in Eq. (98). The core-mantle coupling has the effect of modifying

only the constant part of 6(M). If the times of entry into and escape

from the separatrix are M0 and Mi, respectively, then the value of

at time M1 according to (112) is just

m) = (MO) [Pk(e0)/Pk (el)]1/2. exp [a(M0 -M1 )] (114)

where e0, el denote the eccentricities at times M0, M1, respectively.

With Formula (114) no numerical integration of either of equations (112)

is needed.
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V. DISCUSSION OF RESULTS

Using the methods described in the preceding sections, we have

computed capture probabilities for several (k = 3,4,5) spin-orbit re-

sonances of Mercury, assuming originally rapid prograde rotation. The

computations were repeated for each of the three tidal-torque models

discussed in Section II for the following parameter values: the tidal

parameter, a, was increased by factors of 2 from 0.5 x 10-9 to 1.6 x
-8

10 , corresponding to values of Q from 400 to 12.5 respectively; the

equatorial asymmetry parameter 8 E (3/2)(B-A)/C was increased by fac-

tors of 10 from 1.5 x 10-6 to 1.5 x 10-4; for the core-mantle moment-

of-inertia ratio p values of 10-2 , 10-1, and 1.0 were used in addition

to 0, or no distinct core at all; finally the core-mantle relative

velocity damping constant a was increased by factors of iTU from 108
-4

to 10 , corresponding to exponential relaxation times of about 4 x

106 yr to 400 yr, respectively. These parameter ranges were chosen

both on physical grounds and because early calculations showed these

ranges to include the region of nontrivial results, i.e. nonzero and

nonunity capture probabilities. We shall mention the most important

general features of our numerical results, before describing them in

detail:

(1) We found little difference between results obtained with dif-

ferent tidal torque models. With constant tidal lag angle (constant Q),

with lag angle proportional to the angular rate of the tidal bulge, or

with lag angle proportional to tidal amplitude, the results are remarkably

similar.

(2) Without core-mantle coupling the probability of capture is

inappreciable at resonances higher than k = 3 (spin period = 59 days),
and remarkably small even at the k=3 resonance. Without core-mantle

coupling this k = 3 probability depends only weakly on the tidal model

and on the tidal parameter a, but varies as the square root of the asym-

metry parameter ý. With = 1.5 x 10~-4 the greatest probability of
metry parameter 5. With S = 1.5 x 10 the greatest probability of
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capture at k = 3 - about 0.1 - was obtained for the amplitude-proportional

tidal lag with the rather extreme value a = 1.6 x 10-8, which corresponds

to an average Q less than 10. In view of the apparent capture of Mer-

cury's spin into the k = 3 resonance, one is naturally curious whether

core-mantle coupling could increase significantly the k = 3 capture pro-

bability.

(3) Core-mantle coupling does in fact act very strongly to increase

the local capture probability at each resonance. By the local capture

probability we mean the capture probability at the kth resonance given

that no capture occurs at the higher (k+l, k+2,...) resonances. Since

capture at any higher (k+l, k+2,...) resonance precludes capture at the

kth resonance, it is evident that core-mantle coupling might actually

reduce the net capture probability at the k = 3 resonance, rather than

increase it. We find in fact that such a reduction occurs for a large

range of values of a. But there does exist a value a > 0 which maxi-

mizes the net k = 3 capture probability for any given values of a, B,

and p ý 0. The greatest net capture probability found is about 0.5.

(4) We find in general that the capture probability for given a,

8, and k, is essentially unchanged within the ranges investigated if

both p is decreased and a is increased by the same factor. This simpli-

fication might not have been expected, because the range of core-mantle
-l

relaxation times (=- 1 a) involved went from much shorter to a few times

longer than the characteristic time of orbital eccentricity variation.

Because of this pa-product dependence, we use the intermediate value

p = 0.1 throughout in the detailed presentation of results; probabilities
-2

for p = 10-2 and p = 1 may be obtained by, e.g., reading the graphs

using a value of a reduced or increased by a factor of 10. Capture pro-

babilities for a "rigid" planet (i.e., a planet without a separately

rotating core) are obtained as the limiting values as a approaches 0;

for practical purposes the limit is reached with a = 10-9 (corresponding

to a relaxation time of 4 x 107 yr).

The results of our computations for the local capture probability

at the k = 3 resonance are summarized in Figs. 5, 6 and 7. In each
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figure the local capture probability is shown (with a linear scale) as

a function of c(on a logarithmic scale), for several values of a and a,
with p = 0.1. The three figures correspond to the three different tidal

torque models: constant lag angle (Fig. 5), lag angle proportional

to rate (Fig. 6), and proportional to amplitude (Fig. 7). In each figure

we observe that as a + 0 the probability approaches a small constant

value asymptotically, in the range 0.03 to 0.12. Although it cannot

be seen on the scale of these figures, in each case (i.e. for any given

a and tidal model) the asymptotic value of the probability varies as

the square root of the asymmetry parameter a. This 81/2 dependence

also characterized the capture probability, when small, derived ana-

lytically for the case of fixed orbital eccentricity. A physical ex-

planation of this latter functional behavior may be found in the inter-

pretation of the capture probability as that fraction of the initial

ensemble of systems which flows into the separatrix region (Section II).

Since the density of systems (where nonvanishing) increases uniformly

both near and in this region, the number of systems inside the separa-

trix region will increase at a rate proportional to its area. This

area is in turn proportional to the square root of a (Fig. 4).

In each figure the capture probability is seen to increase as a

increases, and in most cases when the probability exceeds about 0.2

a fair approximation to the actual curve may be obtained in the form

P = AaB where the positive constants A and B vary from one curve to

the next with B remaining in the range 0.6 to 1.0. If the appropriate

power-law approximation of this form is found for each probability curve

(i.e. corresponding to each tidal model and value of a and 8), one

discovers that the exponent B does not depend on the parameter 8, but

that the coefficient A in each approximation varies as 8B/2 . This

means that capture probability curves similar to those shown in Figs.
-45, 6, and 7 for 8 = 1.5 x 10 but for smaller values of $, may be ob-

tained by simply shifting the existing curves to the right along the

a-axis by one decade (power of 10) for every two decades(powers of 10)

0 is reduced. In other words, the capture probability is a function
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of (B /2 ) for moderate-to-large probabilities. We recall that the

asymptotic value of the capture probability (for a approaching 0) also

varied as ý1/2

These approximate and empirically-determined characteristics of

the capture probability curves that we have obtained are mentioned

because of the economy they allow in the presentation of an enormous

amount of numerical data. Clearly the B1/ 2 dependence of both large

and small capture probabilities has its origin in Eq. (34), which

arose in the analytical derivation of capture probabilities for the

highly artificial fixed-eccentricity case. It would have been un-

justified to claim that the 1/2 dependence must necessarily follow

also for the varying eccentricity case; however the fact that it does

serves conceptually to organize our numerical results.

The local capture probabilities calculated for the k = 4 (44-day

rotation period) resonance need not be discussed so extensively, because

a simple formula describes each of the probabilities calculated with an

absolute error less than 0.05. In general for the k = 4 resonance

we find the local capture probability Pc {k=4} given by

P {k=4} = Ca- 1 /2pa (115)c

in which C = 7.5 for constant tidal lag; C = 9.5 for lag proportional

to rate; and C = 5.9 for lag proportional to amplitude.

Formula (115) also describes the local capture probabilities cal-

culated for the k = 5 (35-day rotation period) resonance with an ab-

solute error generally less than 0.05. The empirically determined

values of the constant C are, for the k = 5 resonance, C = 0.36 for

constant tidal lag; C = 0.29 for lag proportional to rate; and C = 0.31

for lag proportional to amplitude.

In general we expect that for given a, 5, p, a, and tidal model,

the local capture probability will become smaller and smaller as we

go to higher and higher resonance numbers k, because the eccentricity
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functions Pk(e) grow smaller for reasonable orbital eccentricities. In the

series representation of Pk(e) we notice that the lowest power of e

with a nonzero coefficient is k - 2 for k > 2. Thus the k = 5 proba-

bilities are substantially smaller than the k = 4 probabilities, which

are in turn smaller than the k = 3 probabilities. In order to calcu-

late the net probability of capture at the k = 3 resonance, therefore,

we are probably justified in neglecting the k = 6,7,8... local capture

probabilities, and using only the k = 3,4 and 5 local probabilities.

If these local probabilities are represented by p3' P4, and ps, then

the net capture probability at the k = 3 resonance is approximately

equal to p3'(l-p 4)(l-P 5). Combining the computed local probabilities

in this manner we obtain the net probability curves shown in Figure 8.

In the Figure we have plotted the net k=3 probability as a function of
-8

a for each of the three tidal torque models, for a = 0.4 x 10 8
-4

8 = 1.5 x 10 , and p = 0.1. Similar curves could be drawn for dif-

ferent values of these parameters, but the principal effect of varying

8 and p would be only to shift the curves to the right or left, as

discussed earlier, and also to vary the small asymptotic (small-a)

probability with the square root of 8. By inspection of formula (104)

and Figures 5,6, and 7, evidently the principal effect of varying the

tidal parameter a would also be a right-left shift, although some change

in peak height, and in the case of amplitude-proportional lag with

a = 1.6 x 10-8 some broading of the peak toward the left, will also

occur. The curves in Figure 8 are representative, however. The net

probability goes abruptly to zero when a exceeds a certain value, be-

cause at this value capture at a higher (k > 4) resonance has become

certain and k = 3 may not be reached. For sufficiently small values

of a the local capture probabilities at the higher resonances become

negligible while a residual (no-core) probability remains at k = 3.

Between these extremes a peak value of the net probability is reached;
-6

for the set of parameters used in Figure 8 the peak is at a ý 10 6

corresponding to a core-mantle velocity relaxation time of about 40,000

years.
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VI. CONCLUSION AND SUGGESTIONS FOR FUTURE STUDY

The two-dimensional mathematical model hitherto used to describe

the evolution of Mercury's spin may be seriously in error. In the

previous section we have shown that the present oscillations in orbi-

tal eccentricity, if typical for geologic time periods, imply that

the probability of Mercury's having evolved to the 3:2 spin-orbit re-

sonance is on the order of 0.02. This probability is too low to be

believable. Therefore we have explored the possibility that Mercury

has a liquid core dissipatively coupled to its mantle. This mechanism

we have found to be probably incapable of significantly raising the

3:2 resonance capture probability. Core-mantle coupling does in fact

act very strongly to increase the local capture probability at each

resonance, i.e. the conditional probability of capture at the kth

resonance given that no capture occurs at the higher (k+l, k+2,...)

resonances. However, since capture at any higher resonance precludes

capture at the kth resonance, it follows that core-mantle coupling

might actually reduce the net capture probability at the kth resonance.

We have found that such a reduction does occur for a large range of

core-mantle coupling constants. But there exists a value of the

coupling constant which maximizes the net k = 3 (59d ) capture proba-

bility for any given values of the tidal torque parameter, (c, the

permanent equatorial asymmetry parameter, 8, and core moment of in-

ertia. The greatest net capture probability found is about 0.5, but

the probability is less than 0.1 if the core-mantle coupling constant

differs from the optimum value by more than a factor of 10. For a

core whose moment of inertia is one-tenth that of the mantle, the 3:2

resonance capture probability is maximized when the core-mantle relaxa-

tion time is about 40,000 years.

The possibility that Mercury's average orbital eccentricity (now

0.175) was significantly higher (> 0.25) in the distant past could

also lead to higher capture probability. Although given the current

state of planetary orbit theory we have no reason to think that

Mercury's average eccentricity was ever greater than it is now, at the

same time neither can we prove with certainty that it was not. (Indeed
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the whole question of the stability of the solar system remains

theoretically unanswered.) How great must the average eccentricity

be in order to raise the capture proability to one-half? We may

obtain a quick and approximate answer to this question from the data

summarized in Figure 9. In this Figure are plotted values of the

net 3:2 resonance capture probability computed for various values

of average eccentricity in the range 0.15 to 0.25, where for the pur-

pose of illustration we have assumed three different manners of ec-

centricity variation about the mean value: In the first case (indi-

cated by circular points in Figure 9) the time-varying eccentricity

is assumed given by the expression

2
e(t) = e0 + I ek sin[27nk(t/Te) + Kk] (116)

k=l

where e0 is the average eccentricity, Te = 5.52 x 106 years, n1 = 8,
n2 = 5, e1 = -0.0255, e2 = 0.0357, K 1 = 194.70, K2 = 152.630 [values

obtained by truncating the harmonic expansion of Figure 3(b).]. In

the second case (square points in Figure 9) we assume simply a sinu-

soidal oscillation of eccentricity with amplitude 0.04, given by

e(t) = e0 + 0.04 sin 27t/T e  ; e = 106 years, (117)

and in the third case (triangular points in Figure 9) we assume sinu-

soidal oscillation with twice the amplitude:

e(t) = e0 + 0.08 sin 27t/Te ; Te = 106 years. (118)

In these probability calculations no liquid core was included, and

constant-lag-angle tidal friction was assumed with the parameter
-8

a = 0.4 x 10-8 (cf. Section II.A); the equatorial asymmetry was (B-A)/C

= 10-4, corresponding to 8 = 1.5 x 10-4. The principal features of

Figure 9 should be insensitive to the exact values used for a and 8,
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or to the choice of tidal model.

We find that no appreciable increase occurs in the 3:2 resonance

capture probability until the average eccentricity is increased to very

nearly 0.25. At this value the tidal torque averages separately to

zero for the resonance spin rate, so that the capture probability ap-

proaches unity. If the average eccentricity were to exceed 0.25 (for

this tidal model; slightly different values for other models), then

the 3:2 resonance would never be reached, because tidal decay of Mer-

cury's spin would cease at a somewhat faster spin rate. But if the

spin rate decayed to tidal equilibrium while Mercury's average eccen-

tricity exceeded 0.25, then a 3:2 resonance capture would be likely

to result if the average eccentricity later decreased very slowly (say

over 10 years) to less than 0.25. We emphasize, however, that celestial

mechanics (at present) suggest no mechanism which would produce such a

secular change in orbital eccentricity. The subject of long-term

(over 109 years) changes in planetary orbits remains eminently open

to further study.

Probably the most vulnerable assumption in our mathematical model

of spin evolution is the planar assumption: that Mercury has always

rotated about an axis nearly normal to the plane of its orbit. To

reconsider this planar assumption must remain for future study. The

three-dimensional equations are formidable, and their solution may be

possible only by numerical integration. That such an effort may be

worthwhile is indicated by the following observation: When a planet's

spin angular velocity greatly exceeds its orbital mean motion and when

the equator is inclined to the orbit plane, if due to friction the tidal

distortion of the planet suffers an angular displacement ("lag") about

the spin axis, then there will be a vector component of the tidal torque

normal to the spin axis. The sense of this normal component is such that

after integration over an orbital period the equatorial inclination,

or angle between the spin angular velocity vector and the orbit pole,

is increased. The magnitude of the normal component of the tidal torque

vanishes as the inclination approaches either zero or 90 degrees, but
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the magnitude is such that moderate inclinations (of a few degrees)

are increased to large inclinations (exceeding 45 degrees) in about

the same time as tidal friction reduces the spin magnitude to 10%

of its original value.

An unpublished analysis by Peale (1968, private communication)

indicates that although the effect of tidal friction on a rapidly

rotating planet, as we have discussed, is to increase the tilt of the

axis, on the other hand the effect of tidal friction on a slow, re-

sonantly rotating planet is to reduce the tilt. If Peale's analysis

is correct, we are led to the following picture of spin evolution

for Mercury: Mercury's spin, like that of most of the other planets,

was once rapid and direct, with a period between 10 and 20 hours, and

an inclination of around 25 degrees. Through the effect of tidal

friction the spin magnitude was reduced while the tilt increased un-

til (possibly) a resonance rotation state was achieved with a severe

axis tilt, perhaps nearly 90 degrees inclination. Then, while a

spin-orbit resonance condition persisted, the spin axis was erected

until the present configuration with small inclination was obtained.

Whether a three-dimensional model might lead to significantly dif-

ferent capture probabilities than we have found for the two-dimensional

model remains unanswered.
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Appendix A

The Tidal Torque

I. Tidal Friction

In the classical theory of tidal friction due to Darwin (1908),

the tidal distortion of the planet's figure is assumed to be approxi-

mated by the equilibrium distortion of a homogeneous elastic sphere.

To first order in (R/r), where r is the distance of the sun and R the

surface radius of the planet, the tide-raising potential of the sun at

the planet is given by a spherical harmonic function of second order.

The equilibrium surface displacement ("tide") of a homogeneous elastic

sphere subject to this potential is a surface harmonic of second order

also, such that the height of the tide is simply proportional to the value

of the disturbing potential everywhere on the surface. The effect of

radial inhomogeneity in the body is only a change of scale of the tide;

the form of the distortion is not changed. Small deviations from rota-

tional symmetry in the body may be treated separately. Thus the elastic-

sphere model may be a reasonable first approximation of a real planet if,

for times characteristic of tidal motions, the planet behaves as a nearly-

elastic solid, and provided that the natural periods of free oscillations

are so short that resonance effects may be ignored. The effects of small

deviations from perfect elasticity may be calculated by perturbation of

this basic model.

At a point on the surface of a spherical planet of radius R where

the zenith distance of the sun is E, the tide-raising potential of the

sun is

23 2
W(S) = - (GM/r3)R2( cos 2 ) (A.1)

where G is the gravitational constant, M the solar mass, and r the sun-

planet distance. Terms of higher order than the first in (R/r) are neglec-

ted. In the steady-state case (r and ( constant), the radial displace-

ment, 6R, of the surface of a spherically-symmetric planet is (Love, 1892)
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R( - h W() (A.2)
g

where g is the surface gravitational field strength of the planet and

h is a dimensionless constant known as the tidal Love number, which

accounts for both the elastic and gravitational resistance to deforma-

tion of the sphere. For a homogeneous solid elastic sphere of mass

density p and modulus of rigidity p(Love, 1892),

h 5/2(A.3)1+19p/2gpR

Eqs. (A.2) and (A.3) will be derived in the following section. Eq.

(A.3) is often written in the form

h 5/2
l+p T (A.4)

where the dimensionless parameter yT E 19p/2gpR is known as the tidal

effective rigidity. Elastic and gravitational restoring forces act in

parallel to resist the tidal deformation, and pT expresses the ratio of

elastic to gravitational effects. In the limit of zero elastic rigidity

(pT 0), the tidal Love number h approaches 2.5. For spheres of radially

varying density the numerator in Eq.(A.4) may be replaced by a general

parameter, hf, known as the fluid Love number. A numerical value hf =

1.96 has been estimated for the Earth from tidal observations (Munk and

MacDonald 1960, p.26); the 5/2 factor is adequate for our purposes, how-

ever.

Numerical estimates of the tidal effective rigidity and tidal Love

number for Mercury can be made from values determined for the Earth.

From seismic data, Gutenberg (1959, ch.8.6) has derived values for the

modulus of a rigidity, ji, of the Earth's mantle ranging from 0.7 x 1012

dyne/cm 2 at a depth of 200 km to 2.8 x 1012 dyne/cm2 at 2800 km, and

dropping off sharply at the outer core. Taking a value of p = 1012

dyne/cm2, g = 980 cm/sec2, p = 5.5 gram/cm3, and R = 6.4 x 10 cm, for

the Earth one calculates pT = 2.8. Observations of Earth tides, by
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comparison, lead to a value of pT = 2.3 (Munk and MacDonald, 1960, p.28),

but this latter inference is somewhat complicated by the yielding of

the oceans so that the fair agreement between these two values may be

fortuitous. The modulus of rigidity value of p = 1012 dyne/cm 2 leads

to an estimated pT = 20 for Mercury. (Note that pT % 1/p2R2; the den-

sity of Mercury is about the same as the Earth's.)

The purely-elastic, steady-state model represented by Eq. (A.2)

must be modified to include the effects of dissipation in the dynamic

case. We first consider the effect of dissipation when the planet is

rotating at a uniform rate, w, about an axis normal to the plane of a

circular orbit around the sun. The constant orbital angular velocity,

n, is measured in the same sense as w. As always in this paper, the dis-

sipation is assumed to be so small that the equilibrium (dissipation-

free) tidal distortion may be used to calculate the effect of the

dissipation. In the limit of zero dissipation, of course, the equi-

librium tide given by Eq. (A.2) is obtained, with the pattern of tidal

distortion rotating to follow the sun at a rate (n-w) with respect to

the planet. (The attainment of this equilibrium configuration would

require finite damping of the free oscillations of the elastic planet.

The damping in this case may be taken arbitrarily small.) Viewed from

a coordinate frame moving with the sun, the tidal distortion has exactly

the form given by Eq. (A.2), independently of the value of (n-w) in this

lossless case. There is no tidal torque because of symmetry. This

symmetry must be destroyed, however, if there is energy dissipation

caused by the (sinusoidally) varying strain within the planet. Any

energy dissipated must be supplied by means of a tidal torque opposing

the planet's rotation with respect to the sun. If the mechanism of

dissipation is presumed to be linear, i.e. "viscous", the modification.

of the tidal distortion is particularly simple (Munk and Macdonald, 1960,

p. 22): the second harmonic form of the distortion is unchanged, but

the entire pattern is rotated so that the axis of symmetry lags behind

the apparent motion of the sun by an angle, 6, which for small dissipation
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is proportional to the relative rate, (n-w), of solar motion. The lag

thus corresponds to a small constant time delay of the tide. The height

of the tidal bulge is unchanged to first order in 6. The tidal torque,

T, due to the small tidal lag angle, 6, may be calculated by the following

procedure: the disturbance of the external gravitational potential of

the planet caused by the surface displacement, 6R, may be calculated by

a straightforward application of potential theory by considering that

an infinitesimally thin layer of surface mass density p6R has been de-

posited on the spherical surface of the planet. As a function of radial

distance, r, from the center of the planet, and of the angle, S, mea-

sured from the axis of symmetry of the tidal distortion, the potential,

V, at an external point due to the surface layer is

V(r) - 3 2 n 4 R 3 2 1 -1
Vr,) 5mR (- )h( 2 cos $ - -)M (A.5)5 g 2 2

4 3
where m = 3 rR p is the mass of the planet. The tidal torque, T, is

obtained by differentiating (A.5) with respect to S, evaluating , = 6,

and multiplying by the solar mass, M, because the torque on the sun is
2 2

equal and opposite to the sun's torque on the planet. If C = -mR

is substituted for the moment of inertia of the sphere the result may

be written

4+ 9 n RC +
T = - - h( ) sin 26 k, (A.6)

4 g

where k is a unit vector in the direction of the planet's angular velo-

city vector.

The linear, or "viscous" dissipation model which implies 6 'u (n-m)

in Eq. (A.6) is very likely not a fair representation of the real mecha-

nisms of tidal- friction, which remain unknown even for the Earth. Studies

of seismic attenuation in the Earth (Smith, 1961; Alsop et al., 1961;

MacDonald and Ness, 1961; Connes et al., 1962; Anderson and Kovach, 1964;

Anderson and Archambeau, 1964; Press, 1966; Nowroozi, 1968) and laboratory

studies of acoustic attenuation in rocks (Knopoff and MacDonald, 1958;

Peselnick and Outerbridge, 1961) both suggest, in fact, that the solid
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dissipation mechanism is nonlinear, such that at least for strain ampli-
-8

tudes less than 10-8 , the elastic "Q" is independent of amplitude and

frequency for sinusoidal strain oscillations between 10
-2 and 106 Hz.

The dimensionless parameter, Q, is defined as 2r times the ratio of

the peak stored elastic energy, Emax, to the energy dissipated per cycle

of the strain oscillation, AE,

27TE
Q max (A.7)

AE

AE is the difference between the mechanical work done to deform the

material and the work returned by the relaxation of the deformation.

In a linear system Q is inversely proportional to frequency for forcing

frequencies much smaller than the natural frequency of free oscillations

of the system and Q is equal to the ratio of the strain amplitude

at resonance to the strain amplitude at low frequencies, for the same

amplitude of applied stress. Non-linear dissipative mechanisms must

be invoked (Knopoff and MacDonald, 1960) to account for the frequency

independence of Q in certain solids.

What is the behavior of the tidal torque if the anelasticity of

the planet is characterized by a constant elastic Q, independent of the

amplitude or frequency of the sinusoidally varying tidal strain? The

stored elastic strain energy, Eel, of the sphere, calculated for the

equilibrium tidal distortion of Eq. (A.2), may be written in the form

9 T n4RCE h (-) . (A.8)
el 8 (gT+1) g

In one cycle of tidal strain, corresponding to one half rotation of the

planet with respect to the sun, the energy dissipated, AE, must be

-1
AE = 27r Q E e (A.9)

This energy, AE, is equal to the work done on the rotating planet by the

tidal torque, T. Eqs. (A.8) and (A.9) are compatible with (A.6) if the
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tidal lag angle, 6, is given by

T -1
sin 26 = (+1) Q (A.10)

The assumption of a constant tidal lag angle, 6, independent of the

rate, (n-a), of relative tidal rotation might seem unreasonable because

it implies a time lag of the tide which varies inversely with the rate

(n-w). This "variable memory", however, is an inherent feature of non-

linear anelasticity models in which dissipative forces depending on rela-

tive displacement are assumed, e.g. hysteresis or Coulomb friction

(Knopoff and MacDonald, 1960).

What value of Q is appropriate for the planet Mercury? Seismic

studies of the Earth's mantle and laboratory measurements on granite

suggest an upper bound on Q of a few hundred, due to simple solid an-

elasticity. For shear strains in the frequency range 3 x 10-S to 2 x
-4

10 Hz, values of Q reported for the Earth's mantle range from Q=100

for the upper 400 km, to Q=2000 for the lower mantle (refs. above).

The effective average Q for the mantle appears to be between 200 and

400. Granite under laboratory conditions has a Q of several hundred

in the frequency range 4 Hz to 107 Hz (Peselnick and Outerbridge, 1961).

Other solid dissipation mechanisms may also be important: e.g. Mac-

Donald (1964) suggests that relative motions of large blocks of the

Earth's crust in response to the tidal force account for about 40% of

the total dissipation, which is characterized by a Q of about 30. Of

course the motion of water on Earth provides a dissipation mechanism

believed to be absent on Mercury.

It remains to consider the effect of orbital eccentricity on the

tidal torque. When the orbital eccentricity is nonzero, the tidal po-

tential (Eq. A.1) is time-varying: not only does the sun's distance

vary, but the orbital angular velocity is variable according to Kepler's

second law. In principle, however, the time-varying potential func-

tion can be expanded in an infinite sum of harmonic terms, each term

having a constant amplitude, and a constant circular motion which is
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a sum or difference of some multiple of the orbital mean motion, n, and

the planet's (constant) spin angular velocity, w. (Cf. Appendix B.)

The amplitudes of the component terms will be functions of orbital ec-

centricity, but for moderate values of the eccentricity the amplitudes

will decrease rapidly with increasing angular arguments (higher multiples

of the orbital mean motion.) Now if the planet is nearly elastic, the

first approximation to the solution for the time varying tidal distor-

tion (in which dissipation is ignored) is given by the sum of the indi-

vidual distortions caused by the individual component terms in the

Fourier-harmonic expansion of the potential, taken separately. From

the previous discussion we recall that the response to each constant-

amplitude, uniformly rotating potential term is a second-order surface

spherical harmonic displacement, with height given by Eq. (A.2). Be-

cause the spin and orbital angular velocities of Mercury (corresponding

to period of tens of days) are so much smaller than the natural fre-

quencies of free oscillations of the elastic sphere (which correspond

to periods of a few hours at most), the effects of resonance on the am-

plitude and phase of each component response may be neglected for all

significant terms. As a result the composite tidal distortion (neglec-

ting dissipation) is simply given by Eq. (A.2) with values of r and r

at every instant corresponding to the instantaneous position of the

sun. The introduction of nonzero orbital eccentricity has no effect,

therefore, on the dissipation-free tidal response. As in the circular-

orbit case, there is no tidal torque when dissipation is absent.

The model of weak linear viscous dissipation remains easy to analyze.

Assuming that all natural oscillation periods are very short compared to

the tidal periods, then each harmonic component of the tide is delayed

by the same constant time delay (i.e. by an angle proportional to the

rotation rate of the component). When the components are added, there-

fore, the composite tide differs from the dissipation-free tide by only

a constant time delay, or by an angle, 6, which at any instant is approxi-

mately proportional to the instantaneous difference between the orbital

angular velocity, v, and spin rate, w. Following the previous deriva-

tion, the instantaneous tidal torque is found to be
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4 6
+ 9 n4RC a
T - h (- ) ) sin 26 i, (A.11)

4 g r

where a is the orbit semi-major axis, r is the instantaneous distance

of the sun, and other terms have the same meanings as in Eq. (A.6).

When other, nonlinear dissipation models are considered, the cal-

culation of the instantaneous tidal torque is in general more difficult

than for the above, linear model. The basic perturbation method, of

using the dissipation-free solution for the instantaneous tidal dis-

tortion in order to calculate the rate of energy dissipation by anelas-

ticity, remains valid as long as the dissipation is "weak" (Q >> 1).

Although the presence of stored elastic energy allows there to be a

difference, instantaneously, between the rate of dissipation and the

power supplied by the tidal torque, these two rates of energy trans-

fer must balance over times long compared to the elastic relaxation

time, defined as the quotient of the (typical or average) stored

energy, divided by the (average) rate of dissiption. On an orbital

time scale (days to hundreds of days), therefore, it is valid to con-

sider the tidal torque at any time as given by Eq. (A.11), where the

tidal lag angle, 6, is determined in such a way as to balance the

work done by the torque, and the rate of energy dissipation at each

instant. The nonlinear, constant-Q dissipation model thus yields a

constant lag angle, 6, according to Eq. (A.10), where the sense of

the tidal lag angle reverses if the sign of (v-w) reverses at some

point in the orbit.

Because the significant actual mechanisms of tidal friction are

unknown, even for the Earth, three different models of tidal fric-

tion are considered in this paper, corresponding to (1)6 = constant;

(2) 6 n'(v-ý); and (3) 6 r, amplitude of the tide. The last model is

intended to represent an amplitude-dependence of Q. These same three

tidal models, referred to as "MacDonald's models," were considered by

Goldreich and Peale (1966b) in their calculations of spin-orbit re-

sonance capture probabilities for Mercury. These authors also con-
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sidered a model ("Darwin's") in which the average (over an orbit) tidal

torque suffers a finite step change as the planet's spin angular velo-

city passes from just above to below each resonance value, i.e. half-

integer multiple of the orbital mean motion. This model, which inci-

dentally leads to high capture probabilities, was justified by an er-

roneous argument: the tidal potential at the planet having been ex-

panded in a Fourier time series (as we have discussed above), the ith

Fourier component of the raised tide was considered to lag behind the
.th
i potential component by a phase angle i. which could be computed

1

separately for each component from the value of the planet's "Q" cor-

responding to the frequency of the ith harmonic. In particular it

was assumed that the phase lag jeil was the same for all components -

this assumption admittedly having been suggested by the experimental

evidence that the Q of rocks is independent of frequency. The contra-

diction inherent in this (so-called "Darwin's") tidal model should be

evident from our discussion above. It is possible to compute separately

the effect of each Fourier component of the tidal potential only when

dissipation is absent (when the smallness of the strain assures the

applicability of linear elasticity), or when the dissipation mechanism

is itself linear. ("Linearity" here is equivalent to superposability

of effects.) The assumption that the phase lags of harmonic strain

components are independent of their frequencies is inconsistent with

the assumption of linearity (superposability).

It should be noted that our own derivation of tidal torque models

above depends on the assumption that the natural frequencies of free

oscillations of the solid planet are very high compared to the planet's

spin and orbital angular velocities. This assumption is probably justified

for Mercury, but would certainly not be justified in a discussion of the

tidal evolution of the Earth-Moon system.

A.2 Tidal equilibrium of an elastic sphere

In this section we derive expressions (A.2) and (A.3) giving the

equilibrium tidal distortion of an elastic sphere. For a homogeneous and

isotropic incompressible elastic solid having shear modulus p and mass
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density p, equilibrium of elastic and gravitational forces requires

that the components ui of the displacement along the Cartesian axes

xi(i=1,2,3) satisfy (Sokolnikov, 1956, p.79):

PV u U x (p+pU); i = 1,2,3 (A.12)
1

in which p is the hydrostatic pressure, U the gravitational potential,

and V2 is the Laplacian operator:

V 2  2 (A.13)
i=l 3x.

1

The condition of incompressibility is

3 9u.
1 = 0 (A.14)

i=l i

(This condition must apply to the interior of a planet to avoid gravi-

tational collapse.) When the gravitational potential U is a known func-

tion Equations (A.12) and (A.14) provide four independent simultaneous

partial differential equations for the four unknown functions ui (i=1,2,3)

and p. When there is a tidal displacement of the surface of a self-

gravitating body, however, then an additional component of the gravita-

tional potential is due to the displaced mass at the surface.

In the absence of an externally originating tidal potential the

gravitational potential distribution within a gravitating sphere is

spherically symmetric and accompanied by a similar hydrostatic pressure

distribution, such that the pressure everywhere balances .the weight of

the overlying mass. In an incompressible sphere these gravitational and

hydrostatic forces are in equilibrium with zero elastic displacement.

Because these spherically symmetric components of the potential and

pressure fields contribute nothing to the displacement they will be ig-

nored in the following discussion.
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In order to compute the equilibrium tidal distortion of a self-

gravitating elastic sphere we will consider first only the displace-

ment produced directly by the externally applied tidal potential; then

we will include the effects of the additional potential and surface

pressure distributions due to the surface mass displacement.

The tide-raising potential, W, of the sun at a planet may be written

in the form

2 2 1 2 1 2 (A.15)
W(x 1 ,x 2 ,x 3 ) = -n (x 3  T xl 2 x2) (A.15)

where n is the mean motion in a circular orbit (cf. Eq. A.1):

n2 = GM/a3 = constant (A.16)

and the Cartesian system of coordinates xi(i=1,2,3) has its origin at

the center of mass of the planet, with the x3-axis directed toward the

sun. The general solution of Eqs. (A.12) for an elastic sphere was

given by Kelvin (1863, 1890; Kelvin and Tait, 1867). For the special

case U=W (Eq. A.15) the solution which satisfies the incompressibility

condition (A.14) and yields zero surface tractions is

5 2 4 2 MW 2
u. = -- [( - r -9 R ) - xiW] , (i=1,2,3)

11 38 19 ~x. 19
1

(A.17)
2

P = 19- PW(x 1 ,x 2 ,x 3)

where

3
r 2 x. (A.18)

i=l

and r = R defines the unstrained surface of the sphere. This solution

(A.17) may be verified by direct substitution into Eqs.(A.12) and (A.14).
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The displacement at the surface, obtained by evaluating (A.17) at r=R,

is purely radial. The (positive-outward) displacement, 6R, at a point

on the surface may be written in the form

6R - pR [W(x 1,x2,x3  * (A.19)
191 23(Xl' r=R

When the sphere is considered to be self-gravitating, there is

an additional contribution to the internal gravitational potential

due to the displaced mass at the surface, and a normal surface trac-

tion at r=R due to the weight of this thin surface layer. The internal

(r<R) gravitational potential, V, generated by the surface displace-

ment may be calculated simply if terms of order higher than the first

in (6R/R) are neglected, by considering an equivalent surface mass

layer of infinitesimal thickness and mass per area of p 6R. If 6R

is of the general form

6R = - (h/g)[W(x 1,x 2,x 3)] (A.20)
r=R

where h is a constant and g is the surface gravity, then the surface-

generated internal potential, V, is given by

3
V(x1'x 2 ,x 3) = -hW(x 1 ,x 2 ,x 3 ), (r<R) (A.21)

The normal surface traction at r=R due to the weight of the displaced

mass is

-g p6R = phW. (A.22)

The displacements caused by this surface traction are completely equi-

valent to those caused by an applied potential of U = -hW(x1 ,x2,x3)

with no traction. This fact becomes evident if the following particular

solution to Eqs. (A.12) and (A.14) is considered:

u. = 0, (i = 1,2,3)
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p = phW(x1,x2,x3) (A.23)

The net effect of the gravitating surface layer on the elastic displace-

ments is thus obtained by adding

V' - hW (A.24)5

to the internal potential. The net surface displacement, 6R, is then

given by Eq. (A.20) with

h = 5 (1- 2h) (A.25)1911 5

or

h = /2gpR (A.3)1+19p/2gpR

The stored elastic strain energy, Eel, associated with this de-

formation may be obtained by direct integration of the energy density

3 3 ýu. 3u.
1 ýI I. ( + )x2  (A.26)

i=1 j=l j 1

over the sphere (r<R).
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Appendix B

Expressions for the Average

Dimensionless Tidal Torque

If the tide lags the sun by a constant lag angle, independent of

the amplitude or rate of the tidal strain (model 1), the dimensionless

tidal torque is aT, where a is a small positive constant and T has the

form (Eq. 4 of text)

6
T(e,w,M) = - l+e sgn ( - (B.1)

1 dM
l-e

in which e is the orbital eccentricity; w, the dimensionless planetary

spin rate; M, orbital mean anomaly; and v, true anomaly. The average

dimensionless tidal torque, T0, is defined by

27r
T O (e,w) = f TO (e,w,M)dM. (B.2)

0

6
The binomial formula may be used to expand (l+e cos v) . The difference

(w-dv/dM) changes sign only if

(1-e)1/2/(1+e) 3 / 2 < w < (l+e)1/2/(l-e) 3 / 2  . (B.3)

In this case break the integral in (B.2) into separate integrals for

0 < v < v , vc < v < f, etc., where

= cos 1 i{ [-e2)3/4 / 2 _ ]} ; 0 < v < . (B.4)
c e -- c -

The derivative, TO', of the average dimensionless tidal torque, defined

by

TO (e,w) - T(e,w) (B.5)
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is obtained most directly by differentiation of (B.2) before the inte-

gration is performed. We obtain in this manner, when

S< (1-e)/2/(l+e)3/2:

(B.6.1)
2 -9/2 2 3 4T0 (e,c) = (1-e ) (l+3e + e ) ; TO'(ew) = 0

when

(B.6.2)
e (9/2 2 3 e4  T(e) =T0(e,w ) = -(l-e 2 ) (1+3e + -T ) ; TO (e,w) = 0

otherwise (B.3):

T0 (e,w) = -(l-e 2 )9/ 2 (27r) - 1 {2(7r-2vc)

-16 e sin v
c

+ 6e 2 (r-2v -2 sin v cos vc)
cc c

-(16/3)e3 (3 sin v c-sin 3v ) (B.6.3)

4 3
+(1/8) e 4 (6-12v -12sin v cos v -8 sin v cos v )}

TO (e,w) = 3/2/[re(1-e2 ) 3/4sin v

in which vc has the definition (B.4).

When the tidal lag angle is proportional to rate (model 2), the

form of the tidal function, T, becomes (Eq.9 of text)

l+e cos v (6 dv
T(e,w,M) = - 2 )( -

l-e
(B.7)
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In this case To, defined by (B.2), and TO', defined by (B.5), become

respectively

2 -6 15 2 45 4 5 6 2 -9/2 2 3 4
T(e,) = (-e (1+ e + -e + e -(-e (1+3e + e )

2 -9/2 2 3 4
TO' (e,w) = -(l-e ) ( 1 + 3e + -e ). (B.8)

When the tidal lag angle is proportional to the strain amplitude

(model 3), we have (Eq. 10 of text)

T- +e cos v
T(e,,M) = - ( 2

dv
sgn(w - d-) .dm:-

The method used above for model 1 yields when

1/2 3/2
w < (1-e)1/2/(l+e)

2 -15/2 21 2 105 4 35 6
T0(e,) = (1-e ) (1+  - e + - e + e )

T0 '(e,w) = 0

when

S> (1+e) /2/(l-e)3/2

-e2 -15/2 21 2 105 4 35 6)
T0 (e,w) -(1-e ) (1+ -2 e + --8 e + 16 )

TO '(e,w) = 0 ;

otherwise (B.3):

1 2 -15/2

TO(e,w) = 7 (1-e )

S 21 2 105 4 35 6
S[l+--- e + --- e + i-e (2vcT)

105 3 105 5 35 7
+[14e +- e + - e + --2 e ] sin v

+[4e+2 4 32c
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21 2 35 4 105 6
+[-- e + 2e e sin 2vc

+ 35 3 35 5 7 7
- e + -- e + ý--e ] sin 3v

+[ 35 e 4 21 e6] sin 4v (B.10.3)

21 5 7 7
+4- e + e ] sin 5vc

+[ e ] sin 6v+[96 c

1 7+[-2- e7] sin 7v

TO ' (e,w) = -w 3/[ e sin v c (1-e2 ) 3 / 2

in which v has the definition (B.4).

The result expressed in (B.6), for the average tidal torque in

the case of constant lag (model 1), was first published by Colombo

and Shapiro (1965). Goldreich and Peale (1966) have published expres-

sions equivalent to (B.6), (B.8), and (B.10) for all three tidal models;

unfortunately their expressions for models 2 and 3 contain several errors.

-83-



Appendix C.

Series Solution of the Spin

Equation of Motion

The spin equation of motion (Eq. 11 of text) is written in the

form

d6
dM

dew 1+e cos v sin 2(-v)d-- - sin 2(6-v)
1-e 2

[1l+e cos v 6  d6 dv (C1)

+Y 2 sgn dM dM(C.1)
1-e

2  

dM

A solution is sought as a power series in 8:

e(M) = 3 6i(M)
i=0

(C.2)

W(M) = = Wio(M)
i=0

Substituting these expansions into the equations of motion and equating

separately the coefficients of terms multiplied by the same power of 6,

as described in Section II.C, we obtain the members .i(M), i.(M) of the

power series solution (C.2):

wO (M) = W0' = const

(C.3)
60(M) = 60' + WO' M

( M) = (e)C2()-{T(e,')M+ (e,0' ) sin j M
w1(M) = P (e)C2(j)-Y{T0(e,w0 )M+ Isin j M }
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00

l(M) =

3=-- 0

1-Y {- T

P.(e)
, {s2 (j) - M cos 2e0'}

(2w0 0-j) 0

O(e,wo0,)M 2  y j- 2T (e,wo0 ')[cos jM-1]}
j=1

Sj2 ( M) = k 2 C4 (j+k)
j,k 12w 0' -k)

+ cos (j-k)M-1(j-k) sin (200')s 2(j)

(2w0 ' -k)
+ 2 cos 2 (2w 0

1-j) ][C(k)+M sin T

+ y S- [2M cos
(20 j -j) (2w00 T

T0 ' [s 2 (j)

·+ y

n(j) - s 2 (j)+M2(2w0 '-j)sin ni(j)]

- M cos 260']

Pj tk-2Tk [2s 2 (j) - s 2 (j-k) - s 2 (j+k)]

Tk 'k
(2w 0 ,-j) [s 2 (k-j) + s 2 (k+j) -

2 0'TO M2  sin kM
+ y 2 M + I [TOTk kI k

cos 2e0 ' sin j M
J

T0 'Tk

cos kM-

k
2

T 'Tk cos (j+k)M-1
2k (j+k)

02 (M) = j

- , i a14SPkP

(2w0 '-k)2

s4  +) - L~v ..U 0
(4w0 ' -j-k)

sin (j-k)M -

(j-k)2

rC 2 (j)+M sin 260'
- 2 sin 20e' 0O_ 2w0

1-
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(ji)]

j,k

(C.5)

(j-k)M



+ 2 cos 26 '[
2s2(k)-M(cos 260'+cos (k))

2w00-j ]

+ Y 1. 2 [6C2 (j)+4M sin Ti(j)-(2w0 '-j)M2 cos n(j)+2M sin 260']j (2w 0
1-j)

1 2
+ TO [C 2 (j)+M sin 26 + 1 (2 0 -j)M cos 20 ]

0 i)M0 2 (2 0
t- O 20]

+ Y I Pjk -2k C2 j(j-k)+M sin 26

j,k k (2w0 '-j+k)

C2 (j+k)+M sin 260
(2w 0 ' - j - k)

C2(j)+M sin 260 Tk '  C2 (j-k)+M sin 260
- 2 ]C+ [(2w0'-j) ] + (2w01-j) 2(2w 0-j+k)

C2 (j+k)+M sin 26 '
2 0 ,1-cos M)]}

2(2w0'-j-k) 0

2 M3  1-cos kM sin kM-kM
{T0 --6 + [TOTk 2 - 'Tk k 3

k k k

T 'T
+ k sin (j +k)M- (j+k)M sin(k-j)M-(k-j)M]

j, 2k (j+k) (k-j) 2

sin[n60 '+(nw0 '-j)M]- sin n 0

b jU) =n

C (j) =n

(nw0 '-j)

cos[nG0'+(nw0'-j)M] - cos nO0 '

(nw0 '-j)

rn(j) - 20 + (2w 0
1 -j)M (C.8)

and the coefficients P., Tj, Tj.' are given by Counselman and Shapiro, 1969.

For the special case e = 0 we find
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3 )e=O

S(20, 2)-4.4
= (2w00-2) *{ (3+4 cos 400')C 2 (2)

9+ (-2 sin 460 )S 2 (2)

+ (6 cos 20 0 ')C 4 (4) + (4 sin 260')S 4 (4)

+ (6+3 cos 460')M sin n(2)

- (2 sin 460') M cos n(2)

+ (2 cos 260' ) M sin 21(2)

- (1+cos 460')(2 0'-2)Mcos n1(2)

+ (2 0
1-2)1 [ cos 3(2)-cos 326']} (C.9)

63(M) e=0= (2 0 
1-2) -5{(12+9 cos 460')S2(2)- - sin 46 0 'C2(2)

+ 4 cos 2e0 ' S4(4)-2 sin 2@0'C4(4)-(2 sin 4o0')M sin n(2)

-(8+6 cos 460')M cos 1(2)

-(2+2 cos 40')M 2sin n(2)

-(3+4 cos 46 0 ')M cos 260 '

- (cos 2 0')M cos 2 n(2)

9
9- sin 4e 0 ')M sin 260 '

- (2 sin 260')M sin 46 0 '

-(3 cos 260')M cos 460'

sin 31 (2)-sin3 2 '0 36(- M cos 2' }6(wO'-i ) 0
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TABLE 1

Constants in the solution for the secular variations
of Mercury's orbital eccentricity, from Brouwer and
van Woerkom (1950).

k Nlk k sk(arcsec/

(degrees) Julian year)

1 +.1745 92.18 - 5.46

2 -.0255 196.88 - 7.34

3 +.0015 335.22 -17.33

4 -.0017 317.95 -18.00

5 +.0357 29.55 - 4.30

6 +.0010 125.12 -27.77

7 +.0004 131.94 - 2.72

8 .0000 69.02 - 0.63

9 -.0002 293.98 +19.17

10 +.0001 220.69 -51.24
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Figure Captions

Figure 1. Spin-orbit geometry: v is the orbital true anomaly; 0 is

the angle of rotation about the spin axis (normal to the orbital plane),

measured between the orbit major axis and the planet's equatorial axis

of minimum moment of inertia; r is the distance between the centers of mass

of Sun and Mercury.

Figure 2(a). Phase plane geometry of resonance capture: 6 (modulo 7r)

is the instantaneous angle of rotation observed stroboscopically at

perihelion passage; 6 is the rotation rate relative to the resonance

rotation rate. (Thus the 8-axis corresponds to the resonance rate.)

C and D denote the unstable and stable equilibrium or fixed points,

respectively. Continuous curves represent sequences of points (e,6)

at successive perihelia which converge asymptotically to C. Points A

and B lying on these curves have the same abscissa as C. The curves

shown were actually computed and plotted from Eq.(23) using exaggerated

parameter values (6eq= TO/ 28Pk = -0.1) in order to display better the

behavior near A, B, and C. With realistic parameter values (a<<B) the

points A, B, and C would appear on the scale of this Figure to coincide

at (0,-7/2). The capture probability for the case drawn is 0.5.

Figure 2(b). Phase plane geometry for escape from resonance [refer to

Fig. 2(a)]: Both A and D are unstable equilibria. Phase point sequences

shown originating near A have the same value of abscissa as A at points

B and C. Sequences (not shown) spiralling outward from D must cross

line segment AB or AC (escape to faster or slower spin, respectively).

For the case drawn here 0 = -0.05, and the probabilities of escape toeq
faster and slower spin are 1/4 and 3/4, respectively.

Figure 3(a) and (b). Variation of Mercury's orbital eccentricity with

time for 25 million years from 1950: (a) according to Brouwer and van

Woerkom (1950); (b) a periodic function with T = 5.52x10 6yr (see text).
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Figure 4. Contours in the phase (8,6) plane of the normalized energy

function En used to trace spin evolution.

Figure 5. Local capture probability at the k=3 (59 day rotation period)

resonance as a function of the core-mantle coupling constant, a, for

various fixed values of the tidal friction parameter, a, and the equa-

torial asymmetry, B, with core-mantle moment-of-inertia ratio p=0.1

and constant tidal lag angle. The orbital eccentricity variation of

Figure 3(b) was assumed.

Figure 6. Same as Figure 5, except that the tidal lag angle is assumed

proportional to the tidal rotation rate.

Figure 7. Same as Figure 5, except that the tidal lag angle is proportional

to the height of the tide.

Figure 8. Net capture probability for the k=3 (59 day rotation period)

resonance as a function of the core-mantle coupling constant, 0, for

typical values of tidal friction, equatorial asymmetry, and core size

parameters, and three different tidal friction models. Cutoff for

large a is due to prior capture at higher (k=4,5,...) resonance. Core-
-6

mantle relaxation time - 1/a; a = 10-6 corresponds to about 40,000 years.

Figure 9. Effect upon local (k=3) resonance capture probability of

changing average value of orbital eccentricity. Circular points were

computed and plotted for the eccentricity variation of Figure 3(b), but

with the different average values shown here. Square and triangular

points correspond to simple sinusoidal variation of eccentricity with

period 106 yr and amplitudes 0.04 and 0.08, respectively. Computed

for constant tidal lag angle and no core-mantle coupling.
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