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Abstract
In this thesis, we study the problem of efficiently scheduling users in a multi-antenna
Gaussian broadcast channel with M1l transmit antennas and K independent receivers
each with a single receive antenna. We first focus on a scenario with two transmit
antennas and statistically identical users, and analyze the gap between the full sum
capacity and the rate that can be achieved by transmitting to a suitably selected pair
of users. In particular, we consider a scheme that picks the user with the largest
channel gain., and selects a second user from the next L - 1 largest ones to form
the best pair, taking the orientation of channel vectors into account as well. We
prove that the expected rate gap converges to 1/(L - 1) nats/symbol when the total
number of users K tends to infinity. Allowing L to increase with K, it; may be deduced
that transmitting to a properly chosen pair of users is asymptotically optimal, while
dramatically reducing the feedback overhead and operational complexity. Next, we
tackle the problem of maximizing a weighted sum rate in a scenario with heterogeneous
user characteristics. We establish a novel upper bound for the weighted sum capacity,
which we then use to show that the maximum expected weighted sum rate can be
asymptotically achieved by transmitting to a suitably selected subset of at most MC
users, where C denotes the number of distinct user classes. Numerical experiments
indicate that the asymptotic results are remarkably accurate and that the proposed
schemes operate close to absolute performance bounds, even for a moderate number
of users.
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Chapter 1

Introduction

The use of wireless communications for data as well as voice applications continues to

experience tremendous growth. This continual growth creates an increasing pressure

to squeeze the most out of the limited amount of wireless spectrum available. The use

of antenna arrays offers a promising technique for improving spectrum efficiency so

as to achieve higher data rates, larger capacity, better coverage, or a combination of

these. The increase in data rates is of vital importance for enabling high-speed data

applications in wireless environments. In dense urban areas where cell splitting and

sectorization may have reached practical limitations, the capacity gain (supporting

more users) is particularly relevant. The increase in coverage (installing fewer base

stations) is especially attractive for service providers seeking to enter the market at

an affordable capital investment.

The multi-antenna broadcast channel (BC) has been the subject of much research

interest recently, owing primarily to the impressive capacity benefits that these sys-

tems can potentially offer. In order to achieve the full performance gain in any multi-

antenna system, it is crucial that there be enough separation between the antenna

elements in an array. Clearly, it is easier to realize this physical separation at a base

station than on a mobile handset. Also, the incremental cost involved in setting up

multiple antennas at a base station may be negligible compared to the total capital

and operational costs. Thus, on the downlink from the base station to the mobile,

it is easier to have multiple transmit than receive antennas, whereas the opposite is



true for the uplink.

In this thesis, we consider the downlink transmission from a single base station

equipped with M > 1 transmit antennas to K independent data users each with

a single receive antenna. In information-theoretic terms, this may be modeled as a

multi-antenna broadcast channel (BC). Caire & Shamai [3] were the first to obtain the

sum capacity expression for the Gaussian BC with two receivers, and to suggest the

use of Dirty Paper Coding (DPC) [4] for transmitting over this channel. Viswanath

& Tse [26] and Vishwanath et al. [25] extended the result for the sum capacity to

an arbitrary number of users and receive antennas by exploiting a powerful duality

relation with the multi-access channel which was further explored in Jindal et al. [12].

Recently, Weingarten et al. [30] showed that DPC in fact achieves the full capacity

region of the multi-antenna Gaussian BC, thus providing a characterization of the

entire capacity region.

Various researchers have investigated the sum capacity gains achievable in the

above-described system by simultaneously transmitting to several users. In particular,

Jindal & Goldsmith [10] show that the sum capacity gain over a TDMA strategy is

approximately min{M, K}, i.e., the minimum of the number of transmit antennas and

the number of users. Jindal [8] demonstrates that the sum capacity grows with the

SNR at rate min {M, K}. In other words, multiple transmit antennas can potentially

provide an M-fold gain in the sum capacity.

The above capacity results rely on the assumption that perfect channel state

information is available at the transmitter, which usually involves feedback from the

receivers. The amount of feedback overhead involved may be prohibitive, especially

when the rLumnber of users is large, or just not be worth the actual gain in rate. In

addition, DPC is quite a sophisticated technique and challenging to implement in an

actual systemn.

Motivated by the above issues, extensive efforts have been made to devise practical

transmission and coding schemes and find ways to reduce the amount of channel

feedback information required. Hochwald et al. [6, 7] describe ain algorithm based on



channel inversion and sphere encoding, and demonstrate that it closely approaches

the sum capacity while being simpler to operate than DPC. Jindal [9] considers a

multi-antenna BC with limited channel feedback information, and shows that the full

sum capacity gain at high SNR values is achievable as long as the number of feedback

bits grows linearly with the SNR (in dB).

As mentioned above, multiple transmit antennas can potentially yield an M-fold

increase in the sum capacity. However, it is necessary that at least M users are served

simultaneously in order to reap the full benefits. Transmitting to fewer than M users

falls short of the maximum rate as it fails to fully exploit the available degrees of

freedom. Transmitting to more than M users may be necessary to achieve the sum

capacity in general, but the upper bound in [10] suggests that transmitting to a

suitably selected subset of M near-orthogonal users is close to optimal. When the

total number of users to choose from is sufficiently large, such a subset exists with

high probability [21, 22].

Clearly, the above principle allows for a reduction of the amount of channel feed-

back and coding complexity. In particular, it suggests beam-forming (BF) schemes

which construct M (random) orthogonal beams and serve the users with the largest

channel gains on each of them with equal power. Transmission schemes along these

lines are presented in Viswanath et al. [27], Sharif & Hassibi [17], and Vakili et al. [24].

Viswanathan & Kumaran [28] proposed fixed-beams and adaptive steerable-beams

schemes grounded on that principle as well. Further related results may be found in

Sharif & Hassibi [18, 19] who derive the asymptotic sum capacity for TDMA, DPC

and beam-forming in the limit where the number of users grows large.

In this thesis, we propose scheduling schemes that transmit only to a small subset

of users with favorable channel characteristics, and provide near-optimal performance

when the total number of users to choose from is large. Extensive numerical experi-

ments reveal that the scheduling schemes in fact operate remarkably close to absolute

performance bounds, even when the number of users is fairly moderate. Since the pro-

posed schemes only transmit to a small fraction of the users, they provide significant



scope for reducing the feedback overhead and operational complexity.

We first focus on a scenario with two-transmit antennas and statistically identical

users, and analyze the gap between the full sum capacity and the rate that can be

achieved by transmitting to a suitably selected pair of users. In particular, we consider

a scheme that picks the user with the largest channel gain, and then selects a second

user from the next L - 1 strongest ones to form the best possible pair with it, taking

the orientation of channel vectors into account as well. We prove that the expected

rate gap converges to 1/(L - 1) nats/symbol when the total number of users K tends

to infinity. Allowing L to increase with K, we conclude that the gap asymptotically

vanishes, and that the maximum expected sum rate is achievable by transmitting

to a properly chosen pair of users. The fact that the rate gap decays as 1/(L - 1)

also suggests that a modest value of L is adequate for most practical purposes. We

remark that our scheme requires full channel feedback (i.e., both magnitude and

phase information) only from the L strongest users. Finding the users with the

largest channel gains can be accomplished using simple thresholding schemes wherein

users with good channel gains feedback quantized versions of the magnitude of their

channel vectors.

Next, we turn our attention to a more general system with M transmit antennas

and heterogeneous user characteristics. For a heterogeneous system, the sum capac-

ity is no longer an appropriate performance metric, because it does not reflect the

potential fairness issues that arise. Hence, we will focus on maximizing a weighted

sum rate, where the users with weaker channels would typically be assigned higher

weights. Leaving fairness considerations aside, maximizing a weighted sum rate is

also of critical importance in so-called queue-based scheduling strategies where the

user weights are taken to be functions of the respective queue lengths. Queue-based

scheduling strategies are particularly attractive because under mild assumptions they

are known to achieve stability whenever feasible without explicit knowledge of the

system parameters, see for instance [15, 20, 23].

Although the sum rate expression for the multi-antenna Gaussian BC and associ-



ated bounds have been thoroughly investigated, the problem of maximizing a general

function over the capacity region has not attracted nearly as much attention. To the

best of our knowledge, Viswanathan et al. [29] are among the few authors who con-

sider the problem of attaining more general points on the boundary of the capacity

region. In particular, they present an algorithm for finding the power allocation to

achieve any weighted sum rate maximizing point. However, the optimization proce-

dure is computationally demanding, especially for large numbers of users, and requires

perfect channel state information. Lee & Jindal [13] study the problem of attaining

the symmetric capacity, i.e., the maximum rate that can be provided to each of the

users simultaneously.

In this work, we consider a M antenna broadcast system with a user population

that consists of C distinct classes, where each class is assigned a non-negative weight.

In this setting, we derive a generic upper bound for the weighted sum capacity, which

includes as a special case the sum capacity bound in [10]. We then proceed to show

that the upper bound is in fact attained for a particular 'ideal' configuration of MC

channel vectors. Finally, we prove that a nearly ideal configuration of such channel

vectors exists with high probability, and that the maximum expected weighted sum

rate can thus be asymptotically achieved, when the total number of users grows large.

The remainder of this document is organized as follows. In Chapter 2, we present

a detailed description of our system model, and review some known information

theoretic results regarding the multi-antenna broadcast channel. In Chapter 3 we

focus on the problem of maximizing the sum rate in a system with homogeneous

users. Chapter 4 tackles the problem of maximizing the weighted sum rate in a

system with heterogeneous user characteristics. In Chapter 5, we present the results

of numerical simulations which indicate that the asymptotic results derived in the

previous chapters are remarkably accurate even for moderate system sizes. Chapter 6

concludes the thesis.



Chapter 2

System Model and Known Results

2.1 Model description

We consider a broadcast channel (BC) with M > 1 transmit antennas and K receivers

each with a single antenna, as schematically represented in Figure 2.1(a).

Let x E CA xl be the transmitted vector signal and let hk E C1XM be the channel

gain vector of the k-th receiver. Denote by H = [h ..---. h~]tl the concatenated

channel matrix of all K receivers. For now, the matrix H is arbitrary but fixed.

We assume that the transmitter has perfect channel state information, i.e., exact

knowledge of the matrix H. The circularly symmetric complex Gaussian noise at

the k-th receiver is nk E C where nk is distributed according to C.A(0, 1). Thus

the received signal at the k-th receiver is Yk = hkx + nk. The covariance matrix

of the transmitted signal is Ex = E [xxt]. The transmitter is subject to a power

constraint P, which implies Tr(Ex) • P. (Here Tr denotes the trace operator, which

is the sum of the diagonal elements of a square matrix.)

2.2 Known information theoretic results

Now we review some known results regarding the capacity region and the sum capacity

of the multi-antenna Gaussian BC.
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Figure 2-1: The multi-antenna BC (left) and the MAC (right) have the same capacity
region.

Let ir(k), k = 1,. .. , K, be a permutation of k = 1,... , K. As shown in [25], the

following rate vector is achievable using Dirty Paper Coding (DPC):

R() 1 + h(k)(-l<k r(l) )(k) k= 1, K.

R(k) = log ht k 1...,
1 + hl(k)(•l<k r(k() l (k)

The DPC region is defined as the convex hull of the union of all such rate vectors,

over all positive semi-definite covariance matrices that satisfy the power constraint

Z~k=l 1 Tr(Ek) < P, and over all possible permutations ir(k). As shown in [3, 30],

DPC in fact achieves the entire capacity region denoted as 4Bc. The weighted sum

capacity C c(H, P) for any weight vector we R+K can therefore be written as

K K (1 + h(k)(-l<k En(l))ht(k)
Cgc(H , P) - max wkRk = max max w(k)log 1.

REeBC k=1 kŽ 0
,k Tr(Ek)<P k=l - h(k)(l<k Zr(l))h(k)

(2.1)

Unfortunately, the maximization in (2.1) involves a non-concave function of the

covariance matrices, which makes it hard to deal with analytically as well as numer-

ically. However, in [25, 26], a duality is shown to exist between the BC and the

Gaussian multiple-access channel (MAC) with a sum-power constraint P. That is,

the dual MAC which is formed by reversing the roles of transmitters and receivers,



as represented in Figure 2.1(b), has the same capacity region as the BC.

Let Sk RI= R1 be the partial sum rate of the first k users. Note that the

weighted capacity can be written in terms of the partial sum rates as C'(H, P) =

E k AwkSk, where AWk := wk - Wk+1, with the convention that WK+1 = 0. Without

loss of generality we may assume that wl > w2 >... >_ WK. Using the duality result,

the weighted sum capacity (2.1) of the BC can thus be expressed in terms of the dual

MAC weighted sum rate as

K k

C (H, P) = x Awklogdet IM + Ptht h , (2.2)
k-P=1 Pk•P k= 1=1

where Pk _ 0 denotes the power allocated to the k-th receiver. As a special case

of (2.2) with wk = 1, k = 1,..., K, the sum capacity is obtained as

(H, P) = max log det IM + Pkhhk. (2.3)

Since log det(.) is a concave function on the cone of positive-definite matrices, the

problems in (2.2) and (2.3) only involve maximizing a concave objective function

subject to convex constraints. Specialized algorithms have been developed to solve

these problems [11, 29].



Chapter 3

Scheduling in a Homogeneous

System

In this chapter, we study the problem of maximizing the sum rate in a system with

M = 2 transmit antennas and statistically identical users. The sum capacity is

a key metric of interest for the BC as it measures the maximum achievable total

rate. Since it only considers the aggregate throughput, it does not reflect potential

fairness issues that arise when users with widely disparate channel characteristics

obtain vastly different throughput portions. In the present chapter, however, we

focus on the case of statistically identical users, which by symmetry will obtain equal

long-term throughput shares, so that fairness is not a major issue. In the next chapter,

we will address the problem of maximizing a weighted sum rate in a system where

the users may have different characteristics.

We will show that the sum capacity can be closely approached by transmitting to a

suitably selected pair of users as the total number of users grows large. In preparation

for that, we first present some useful lower and upper bounds for the sum capacity.

3.1 Bounds for the Sum Capacity

Denote by h(k) the channel vector of the receiver with the k-th largest norm, i.e.,

I1h(1)1| 2 > Ih(2)112 > ... > 1h(K) 112 . The next upper bound for the sum capacity is



established in [10]:

C•B(H, P) < Mlog 1+ ± |h(1)II2 . (3.1)

Observe that the above bound can be achieved when there are M receivers with

orthogonal channel vectors tied for the maximum norm Ilh(1)l2. From now on, we

focus on the case of M = 2 transmit antennas, unless mentioned otherwise. The

upper bound for the sum capacity in (3.1) then becomes

Cu(H, P) < 2log 1 + IIh(I) 12 (3.2)

Taking P, = Pj = P/2 and Pk = 0 for all k 2 i,j in Equation (2.3), we obtain a

simple lower bound for the sum capacity

C'm(H, P) C(hi, h, P) :=log det 12 (hh+ ) (3.3)

which corresponds to transmitting to users i and j at equal power.

For any two vectors g, h C2, let U(g, h) := 2 be the squared normalized

inner product. Using Lemma A.1.2 in the Appendix, we obtain

C'(h, h, P) = log 1 + 2 2 2 4I h l2i) , (3.4)

with Vij = 1 - U(kh, hj).

The lower bound expression (3.4) reflects the fact that the sum rate for two users

critically depends on the norms of the respective channel vectors and their degree of

orthogonality. In particular, the sum rate is large when the channel vectors are nearly

orthogonal and have large norms. Indeed, the lower bound coincides with the upper

bound (3.2) when users i and j are orthogonal and tied for the maximum norm, i.e.,

lIiI2 = Ilh:J 2 = IIh(1)112 and < h, hj >= 0.



3.2 Random channel vectors

The lower and upper bounds for the sum capacity in the previous section hold for any

arbitrary but fixed set of channel vectors. In order to derive meaningful asymptotic

results, we will, in the remainder of this chapter, assume the channel vectors to

be random and focus on the expected sum rate. We will adhere to the common

assumption that the components of the channel vectors of the various users to be

independent and distributed according to CAN(0, 1), which corresponds to independent

Rayleigh fading.

Remark 3.2.1 The randomness in the channel vectors may be interpreted as vari-

ations resulting from fast fading due to multi-path propagation effects. The expected

sum rate then represents the long-term system throughput. Implicitly, we make here

the usual block fading assumption, where the frame length is short enough for the

channel to remain (nearly) constant over the duration of a frame, yet sufficiently long

to achieve a transmission rate close to the theoretical capacity.

As mentioned earlier, the two-user sum rate critically depends on the norms of

the channel vectors and their squared normalized inner product, and the statistical

properties of these two quantities will therefore play a crucial role. The next lemma

characterizes the distribution of the squared normalized inner product of two arbitrary

channel vectors.

Lemma 3.2.1 For any two users i, j = 1,... , K, i Z j, the squared normalized inner

product U(h 2 , hj) := j is independent of the norms of the respective channel

vectors and distributed as the minimum of (M - 1) i.i.d. uniform random variables

in [0,1]. In particular, when M = 2, the above quantity is uniform in [0,1].

Proof

Since the normalized inner product is invariant under a unitary transformation of

both vectors (i.e., a rotation of the co-ordinate axes), we can assume that one of the

vectors, say hi, is oriented along the [1 0.. .0] direction. Thus hk = [W1  0... 0],

where W1 = IhI I. Also, since the distribution of circularly symmetric complex



Gaussian vectors is invariant under unitary transformations, we may assume that

hy = [Xi + iYI X 2 + iY2... XM + iYM], where X, X2 ,..., XM, Y1, Y2,..., YM are

i.i.d. normal random variables, independent of W1. Thus, the quantity U(hi, hj) is

distributed as

x2 + 12  Z1
X2 + 2+ X + Y2 +.._ + X2 + Yh z1 +...y+ z2'

where Z 1,...,ZM are i.i.d. unit exponential random variables. The latter quantity

may be interpreted as the ratio of the first and M-th event times in a Poisson process,

which is known to be distributed as the minimum of (M - 1) i.i.d. uniform random

variables in [0, 1], independent of Ilhjl = Z +-- ... + ZM (as well as |lhWlj = VW).

See [16, p. 67].

We now turn the attention to the order statistics of the channel norms. The next

lemma shows that the difference between the L-th largest and the maximum channel

norm is asymptotically negligible in a certain sense, as long as L grows sufficiently

slowly with K.

Lemma 3.2.2 Let L(K) be a sequence such that L(K) = o(K 6 ) for any 0 < 6 < 1

as K -+ oc and A, B, Q > 0 positive constants. Then

lim E [log (A + Q Ih()ll 2)] - E [log (B + Qllh(L(K))11 2)] = 0.
K--oo

Proof

See Appendix. O

3.3 Large-K asymptotics

As mentioned earlier, the upper bound in (3.2) for the sum capacity can be achieved

when there is a pair of orthogonal users tied for the maximum channel norm I lh(i) 12

by granting equal power to each of them. Intuitively, when the total number of users



is large, there exists with high probability a pair of users which are nearly orthogonal

and have norms close to the maximum. This suggests that the sum capacity can be

closely approached by transmitting to such a pair of users and allocating equal power

to each of them.

We are now ready to formalize the above assertion. We will consider three heuristic

selection schemes for scheduling a pair of users with equal power. Scheme I picks two

arbitrary users among the L strongest ones. Scheme II selects an arbitrary user among

the L strongest ones, and a second one from the same group to form the best pair,

i.e., the pair that maximizes the sum rate. Scheme III picks the best pair among the

L strongest users, i.e., the pair that maximizes the sum rate. Note that scheme II

dominates scheme I and that scheme III in turn dominates scheme II, and that all

three schemes coincide when L = 2.

3.3.1 Ratio asymptotics

We first establish ratio asymptotics for the above-described schemes. Specifically,

the next theorem shows that the ratio of the rate achieved by scheme I to the upper

bound in (3.2) converges to unity as the number of users grows large. Thus, scheme I

is asymptotically optimal in a ratio sense, and hence so are the dominating schemes

II and III.

Theorem 3.3.1 For any fixed value of L > 2,

S E [C(h(q, h(j), P)]
lir [2 log( h 2)1 = 1, (3.5)K oo E [2log (1 + E||h(||1)

for all i,j < L, i j j.

Proof

It follows from Equations (3.2) and (3.3) the ratio is no larger than one for any

fixed K and L. Thus, it suffices to show that the liminf of the ratio is no smaller



than one as K -- 00c. Lemma A.3.1 in the Appendix gives that

C(h(j), h(j), P) > 2log 1 + P lh(L) 12 + log(Vi)(.j)),

with V(j)(j) := 1 - U(h(j), h(j)).

Lemma 3.2.1 implies

E [log(V()(y))] = log(x)dx = [x(log(x) - 1)1'o = -1./1]= o - 0

The proof is then completed using Lemma 3.2.2 with A = B = 1, Q = P/2, and

noting that E [log (1+ IIh( 21 2)] -- oo as K --ý c.

While the ratio asymptotics provide some initial understanding, they only offer

limited practical insight. The fact that all three selection schemes are asymptotically

optimal for any fixed value of L reflects the insensitivity of the results. In particular,

the ratio asymptotics are too crude to capture the relative importance of the degree

of orthogonality versus the magnitude of the channel vectors. Thus, they provide no

indication of the relative performance of the various schemes and little guidance as

to what a suitable choice of L might be for a given finite value of K. Also, the ratio

asymptotics are too rough to discern any possible o(log log K) gap between the sum

rate achieved by any of these schemes and the capacity limit.

3.3.2 Rate gap asymptotics

In order to discriminate among the various selection schemes and gain a better sense

of the performance impact of the parameter L, we now proceed to derive sharper

asymptotics. In particular, we consider the difference between the expected sum rate

and the upper bound in (3.2), which is not only more discerning than the ratio but

also more physically meaningful.



Theorem 3.3.2 For any fixed value of L > 2, 1 < L, the difference

E [2 log + -lh()Il2) - E k= x C(h(,),h(k),,2 k=1,...,L,khl P)]
1

L-1

as K -, oc.

Proof

We first prove that the limsup of the difference is no larger than 1/(L - 1).

Using Lemma A.3.1 in the Appendix, we obtain

max C(h(j), h(k), P)
k=1,...,L,k#l

> max 2 log 1
k=1,...,L,k# I (

+ P Ih(L) 12
2 + log(V(1)(k))

+ -Ih(L) 112
2

+ max log(V(1)(k)),
k=1,...,L,k l

with V(1)(k) := 1 - U(h(l), h(k)).

For compactness, denote

A(L) := log (I 2 J

2E log 1 + h(2 - E max C(h(, h(k),
( P2 k=1,...,L,khl

< -2E [A(L)] - E max log(V(1)(k))
k=1,...,L,kOl

Taking A = B = 1, Q = P/2 in Lemma 3.2.2, it follows that lim suPK_-oo -E [A(L)] =

Using Lemma 3.2.1, a straightforward calculation yields

log(x) (L 1)xL- 2dx [xL-1 (log()

We now show that the liminf of the difference is no smaller than 1/(L - 1).

= 2log (1

Then,

P)]

1
L-1

1 )
L --l z=0

- log 1 + P Ih(l) 2

E max log(V(1)(k)) =k=1,...,L,kFl ]



Using Lemma A.3.4 in the Appendix, we obtain

max C(h(l), h(k), P)
k=1,...,L,kfl

< max 2log -+
k ,.L,kl E-+
k-= ,...,L,kT£1 \rl (

2 |h(1) 12 + log(max{E, V(i)(k))

< 2 log (-+ - IIh(1) 22 + log(max{e, max V(i)(k)).
k= ,...,L,kf l

)I2)1 k=1,.[.,L,km

-2E log( + I •h(1) 2) -E [log (max{, k:1 Lax ' (1)(k)

Taking A = 1, B = , Q = P/2 in Lemma 3.2.2, it follows that for any E > 0,

- E [log

Using Lemma 3.2.1, a straightforward computation yields

E log (max{c, max
L \k=1,..Lk#1

f 1

-= log(x)(L - 1)xL-2dx + JL - 1 log(E)
=--(

XL-1 log(X) - )1 1

LL-1_

L-1

Letting Er 0, the result follows.

Thus,

2E [log (I +

+ 2 h(1) 22E [log

P
+ -2- h(i)12

V(1)(k) }) I

+ E log(C)

C(h(/), h(k), P)

limn sup E log 1 + |I h() 112
K--oo 2



Theorem 3.3.3 For any fixed value I and sequence L(K) with limK,, L(K) -- 00,

2E [log (1 P Ni+ IIh() 11
2

P)] -,0

as K - oo00.

Proof

Equations (3.2) and (3.3) imply that the above difference is non-negative for any

fixed K. Thus, it suffices to show that the limsup of the difference is non-positive.

This follows by observing that

lim sup E max
K--oo k=1,...,L(K),k#l

C(h(l), h(k), P)] - E og
P

+ -h(1)2 2)

lim sup E [ max C(h(j), h(k),
K--+oo k=1,....,L,kOl

P)] - E log ( + PIh(i)1 ]2

for any fixed value of L, and then invoking Theorem 3.3.2 and letting L - oc.

O

The next corollaries follow as immediate consequences from Theorems 3.3.2 and 3.3.3.

Corollary 3.3.1 For any fixed value of L, 1 < L,

E us (H-, P)] - E max C(h(), h(k), P)BC Lk=1,...,L,kIl

1
L-1

as K -+ 00.

The above corollary shows that the asymptotic performance gap of scheme II

decays as 1/(L - 1), which suggests that a relatively moderate value of L may be

adequate for most practical purposes.

Corollary 3.3.2

IE [C"'(H, P)] - E [C(h(1), h(2), P)] -t 1

as K --- 00.

- E ] max C(h(), h(k),
Lk=1,...,L(K),kfl



The above corollary corresponds to a special case of scheme I with L = 2, and

shows that simply selecting the two strongest users leaves a performance gap of 1

nats/symbol.

Corollary 3.3.3 For any fixed value 1 and sequence L(K) with lirnK-,o L(K) = oo,

C,~ (H, P)]- E max C(h(), h(k)P ) -- 0
l k=1,...,L(K),kTAl

as K -+ 0o.

The above corollary shows that scheme II is asymptotically optimal when suf-

ficiently many users are considered, and thus implies that the dominating scheme

III is asymptotically optimal as well. As a by-product, we conclude that the upper

bound (3.2) is asymptotically tight.

In conclusion, the above results show that scheme II is asymptotically optimal

in the sense that the absolute gap to the sum capacity vanishes to zero provided

L(K) -+ x00 as K -+ oc. Thus, transmitting to a suitably selected pair of users is

asymptotically optimal, where one of them may in fact be arbitrarily chosen from

a fixed short list. The gain from considering all pairs of users, as in scheme III, is

asymptotically negligible. However, picking an arbitrary pair of users, as in scheme I,

is not optimal even when the users are the two strongest ones.

3.4 Large and small-P asymptotics

We now take a brief look at small and large-P asymptotics for a fixed system size K,

where the channel vectors are no longer assumed to be random.

Proposition 3.4.1 For any i,j with I < hi, hj > 12 < Ihil 121 hjII 2, lim C(hl,hj,P)
P-00 2log 1+-||jh |j2)

1.

Proof



It is clear that the ratio is smaller than one for any value of P. Thus, it suffices

to show that the liminf of the ratio is not smaller than one as P -- 00.

Using Lemma A.3.1, we obtain

P PC(h4,hj, P) Ž log ( 1 + -IhiI2) +log 1 + -I hli2) +log~(Vl),

with Vi. := 2 I<h~h> > 0.

The result now follows readily.

Corollary 3.4.1 For any i, j with I < hi, hi > 12 < Ilhil 21 hj l 2, lim CBc(hl,h1,P) _
P--+00 CBC(hj,...,h!,P)

1.

Proof

Follows from Proposition 3.4.1 and the fact that CBC(hi, hj, P) • CBc(hl, . . . , hK, P) <

2log (1 + (lh(1) 12).

Like in the large-K regime, we find that considering ratios is too crude to provide

much practical insight in the large-P regime. As the above proposition indicates,

transmitting to any pair of users which are not perfectly co-linear, is asymptotically

optimal in that sense, which does not offer any meaningful guidance as to how to per-

form user selection in an actual system. In contrast, considering absolute differences

does yield valuable insight, as the next lemma shows, and in fact suggests a specific

criterion for user pair selection: the best pair of users in the large-P regime is the one

that maximizes the expression r(i,j):= |IIhi|211hj l2Vi

Proposition 3.4.2 For any i, j,

lim 2 log 1 + I jh(1)2) - C(hi,hj, P) = limr 2log 1 I + jh(i)1 2 -Csc(h, h, P) =
P---Co 2 P--oo 2

log ( I h•.•14

\jh 21 Ihj2V,.



Proof

Since C(kh, hj, P) 5 CBc(I,, hj, P), it suffices to consider the limsup of the first term

and the liminf of the second term.

We first prove that the limsup is no larger than the stated quantity.

Using Lemma A.3.1, we obtain

C(h•, h, P) Ž 2 log

2log ( + | h(1)

+ log (|h| 2) + log (h 2) + log(Vi).

12 = 2log ( 2log + Ih( 112).

Subtracting (3.6) from (3.7) and letting P --+ o, the first part of the assertion

follows.

Next, we deal with the liminf of the second expression.

max 1 + P~llhi•• 2 + PjllhjI 2 + PPjlhII2lhj l 2Uij
P2< 1+ P(llk||112  + lhj II)2+ IlkI 1211hjll24 U.

Thus,

CBc(kh, h, P) < 2log (- +log 4 2 2 2

Subtracting (3.8) from (3.7), and then letting P -4 oc, the result follows.

(3.8)

O

In the small-P regime, the gain obtained by using Dirty Paper Coding approaches

unity [10]. That is, it is asymptotically optimal to transmit to the user with the

largest channel gain.

Proposition 3.4.3

limCBc(hl,..., hK, P)/P = limlog(det(1 + Pllh()l)|2))/P := |Ih(1)|12
PI0o P0

Also,

(3.6)

(3.7)



Proof

Follows directly from Equation (3.2).



Chapter 4

Scheduling in a Heterogeneous

System

In the previous chapter, we studied the problem of maximizing the sum rate in a two-

antenna system with statistically identical users, and showed that transmitting to a

suitably selected pair of users asymptotically achieves the maximum expected sum

rate. We now turn our attention to a more general system with M transmit antennas

and heterogeneous user characteristics (i.e., channels are not necessarily i.i.d). As

mentioned earlier, the sum capacity is no longer an appropriate performance metric

now, because it does not reflect the potential fairness issues that arise when users with

different channel statistics obtain vastly different throughput portions. Hence, we will

focus on the problem of maximizing a weighted sum rate, and we will demonstrate

that transmitting to a properly selected group of users asymptotically achieves the

maximum expected weighted sum rate, although scheduling just two users will no

longer be sufficient in general.

4.1 Bounds for the weighted sum rate

We first establish a generic upper bound for the weighted sum rate for an arbitrary

number of M transmit antennas. Let wk be the weight associated with the k-th

user. For notational convenience, define Awk := wk - Wk+1 with the convention that



WK+1 = 0. Without loss of generality, we assume that the users are indexed such that

W1 _ W2 > " " - WK-

Theorem 4.1.1 For any given set of channel vectors,

C c(H, P) • max
k=1I Pk<P

K og(
Awl log(1 + PI hi 112 ) + M E

Proof

Equation (2.2) yields that C;c(H, P) = EK=1 AwkSk, with

Sk = log det (IM + =11=1
Pt h hi)

S 1 = log(1 + P iIh1112).

Using Hadamard's inequality for Hermitian positive semi-definite matrices [5, p.

502], and the concavity of the log function, we obtain

Al

Sk < E log
m=l

Ptm h im)5 log (1 +
k

/= 1
S|1h),112

Mlh l
(4.2)

for all k = 2,...,K.

Substituting inequalities (4.1) and (4.2), the statement of the theorem follows.

The next upper bound follows as a straightforward corollary of Theorem 4.1.1.

Corollary 4.1.1 For any given set of channel vectors,

Cwc(H,P) < M/
K k

max E Awk log(1 + 5 PlIlh 2).
k=-I Pk<P/M k-i=l =1

In order to develop a suitable asymptotic framework, we assume that there are

C classes of users, with Kc the number of class-c users and EC-1 Kc = K. Let h(c) be

Awk log (1

Clearly,

(4.1)

(4.3)

+ P |] hP 12

+ = 1



the channel vector of the k-th class-c user. With minor abuse of notation, we let wc be

the weight associated with class c, and define Aw := w, - wc+l, with the convention

that wc+l = 0 as before. Let T, be the total rate received by class c. Thus the

weighted sum rate is T := ~C= wcTc. Without loss of generality, we assume that the

classes are indexed such that w1 Ž w2  ... > wc. Let h(c) be the channel vector ofs ae i d s(k)

the class-c user with the k-th largest norm, i.e., h) 112 > II >Ž > II. (c) 2

The next corollary specializes the upper bound in (4.3) to a class-based system.

Corollary 4.1.2 For any given set of channel vectors,

wcTcT <M max Awclog 1 + Pd |()12 (4.4)
c=1 EC1 Pc P/M c=l d=l

Proof

Using Corollary 4.1.1, we obtain

w,Tc < M max AWclog 1+ E) E) 2
c= C K =c PC)< P/M c=1 d=l k=1

C c

< M max EAwelog 1+ PPdlh(•I2
C=1 Pc<-P/M c=l d=1

Note that when all weights are taken equal to one, the upper bound in (4.3) reduces to

that in Equation (3.1) for the sum rate. Recall that the upper bound in (3.1) is tight

in the sense that it can actually be achieved when there are M users with orthogonal

channel vectors tied for the maximum norm. Likewise, the upper bound in (4.4) can

be attained for a particular configuration of channel vectors. Specifically, assume

that there are M unit orthogonal vectors u~ E C M , m = 1,..., M, i.e., IIUH l = 1

for all m, < 2u, u, >= 0, m # n, and MC users, M from each class, with channel

vectors h , c = 1,... ,C, m = 1,...,1 M, that satisfy the following two properties:

(i) within each class, all M users are tied for the maximum norm, i.e., II•l11 =

I Ih(I112 for all c= 1,...,C, m= 1,..., M;

(ii) the channel vector of one of the users of each class is parallel to uj,,, and thus



---- Class II

IL

Figure 4-1: The optimal channel configuration for two user classes.

orthogonal to vu, m • n, i.e., < um, hcI >= hII-Uc and < 2u, h c >= 0 for all

c= 1,...,C.

The second property implies that all the ur-users are orthogonal to all the un-

users, i.e., < h4c, hf >= 0 for all c,d = 1,..., C, m = n. For brevity, the above-

described constellation of channel vectors will be referred to as the optimal configu-

ration. Figure 4.1 provides a pictorial representation of the optimal configuration for

the case of C = 2 user classes and M = 2 transmit antennas.

As mentioned above, the optimal configuration in fact achieves the upper bound

in (4.4). In order to see this, let P*(K),..., P*(K) be the optimizing power levels of

the upper bound in (4.4) for given values of I jhF)2, C= 1, ... , i.e.,

C c
P*(K) = (P*(K),... P*(K)) := arg max E Awclog 1 + Pallh• 2

C=1 PP/M c=1 d=1

Now suppose that we assign power Pc*(K) to all M class-c users in the optimal

configuration, and arrange the users in order of increasing class index in the DPC

sequence. Because of the orthogonality, the partial sum rate S, := d=1 Td of the

first c classes will be

Sc = Mlog 1 + P*(K ) 112
dd= 1



Since the total weighted sum rate may be written as E• • wcTc = AwcSc, it

follows that the optimal configuration indeed achieves the upper bound in (4.4).

For the sake of brevity, we introduce the following notation for the upper bound

expression in (4.4):

C c

U(wc; h(C) I2; P) M max wclog + (4.5)
C(1) E Ih ( 45

C= 1 Pc-P/M c=1 d=1

4.2 Random channel vectors

The bounds for the weighted sum rate in the previous section hold for any arbitrary

but fixed set of channel vectors. In order to derive asymptotic results, we will as

before, assume the channel vectors to be random and focus on the expected weighted

sum rate. Within each class we assume the channel vectors to be independent and

identically distributed, i.e., hic), h),... are i.i.d. copies of some random vector h(c) E

CM. Across the various classes, the channel vectors may however have different

statistical characteristics. The numbers of users of the various classes are assumed to

grow large in fixed proportions, i.e., Kc = acK for fixed coefficients al,..., ac with

Ec= QOc = 1.

We assume that the channel vectors of all users in class c are Rayleigh faded with

parameter ,3, c = 1,..., C. In other words, for each class c, h(c) = /c3h, where the

components of h are independent and distributed according to CJf(O, 1) as in the

homogeneous case.

4.3 Large-K asymptotics

We now proceed to show that the upper bound in (4.4) is asymptotically achievable

by transmitting to a judiciously chosen subset of MC users. In the case of homoge-

neous users, the key observation was that when the total number of users is large,

there exists with high probability a pair of users which are nearly orthogonal and

have norms close to the maximum. This intuitive insight was then formalized by



establishing that selecting such a pair of users and allocating equal power to each

of them asymptotically achieves the maximum expected sum rate. Likewise, there

exists with high probability a group of MC users with channel vectors close to the

optimal configuration in the heterogeneous case when the total number of users is

large. Thus, we will show that selecting such a group of MC users and allocating

power Pc* to the M class-c users, where

C c
P* = (P*,... P):=arg max LAwc log PAd

C=1 Pc<P/M c=l d=1

asymptotically achieves the upper bound in (4.4). Define

V(wc;/2;P) := max Awc log Pd = AwOg .
c=1 Pc-P/2 c=l d=1 c=1 d-=1

(4.6)

Note that the power levels (P*, . . . , P) are the limiting values of (Pl*(K),..., Pý(K))

when the norms IIhlI 112 grow large. It may in fact be shown that (P*(K),... ,P (K))

converge to (Pr*,...,Pý) in probability, as K -- oc. Finally, note also that the

asymptotic powers (P*,..., Pý) depend only on the values of the weights wc and the

relative channel qualities /c of the various classes.

4.3.1 User selection schemes

We will now prove that transmitting to a carefully selected subset of MC users asymp-

totically achieves the upper bound (4.4) and thus maximizes the expected weighted

sum rate. Motivated by the knowledge of the optimal channel configuration, we will

consider the following two user selection schemes which will be referred to as the 'list'

scheme and the 'cone' scheme, respectively.



List schernme

The 'list' scheme first identifies for each class the users with norms close to the

maximum, and then selects a nearly orthogonal set of users among these. Specifically,

the list scheme first selects the MLc strongest users from class c. and divides them

into lM 'groups' of size Lc each, say in a round-robin fashion. Let ul, u2 , ... , UM E CM

be an arbitrary set of orthonormal vectors. From the M groups of L, users formed

above, the scheme picks, from group i, the user whose channel is most collinear to uj.

That is, it selects the user in group i who maximizes the normalized inner product

with u•,i ::: 1,2,..., AI. This procedure is repeated for every class c = 1,2,...,C.

This leads to a set of MC users, XM from each class, which have a geometry close to

the optimal configuration described earlier.

Cone scheme

Definition: Fix a 0 < A < 1. Then,

(a) two vectors u and v are said to be A-aligned if

U(u, v) := > 2 > 1- A.

If this is true, we also say that u lies in the A-cone of v and vice-versa.

(b) two channel vectors u and v are said to be A-orthogonal if

< U, v> 2U(u, v) := < A.2

The 'cone' scheme first identifies a group of users that are close to orthogonal,

and then selects the ones with the largest norms among these. Specifically, let

u 1 , u2 ,..., 11M E CM be an arbitrary set of orthonormal vectors, and let 0 < A < 1

be a small tolerance margin. The cone scheme first considers the set of all channel

vectors that, are A-aligned with ut, for i = 1,2,... , M. From each of these M nearly

orthogonal 'cones' of channel vectors, the scheme picks the strongest user from each

class.



After selecting the users in the above-described fashion, both the list and the cone

schemes allocate power Pc (defined in (4.6)) to all M class-c users.

4.3.2 Asymptotic optimality of the proposed schemes

Optimality of the List scheme

Define T, as the rate received by class c under the list scheme, i.e., the sum rate of
C ^the M class-c users selected, and denote by T := c=1 wcTc the total weighted sum

rate. The next theorem shows that the list scheme asymptotically maximizes the

expected weighted sum rate, as long as the list size Lc grows with the system size as

Lc(K) = O(K') for some 6 > 0. Let h() denote the channel vector of the class c user

who was chosen as being most collinear with uv, i = 1, 2,..., M, c = 1, 2,... , C.

Theorem 4.3.1 In the list scheme described above, assume that the list size L,(K)

for every class grows with the system size as Lc(K) = O(K') for some 6 > 0. Then,

the List scheme is asymptotically optimal in the sense that it closes the gap to the

weighted sum capacity. Specifically, the gap between the upper bound in (4.5) and the

weighted sum rate achieved using the List scheme converges to 0 as K becomes large:

lirm E U(wc; 11|() 2; p)- _E [T= 0.
K--oo L

Proof

Since the above difference is always non-negative, it suffices to show that the limsup

of the difference is non-positive.

We may write

C c
,((wc; 112; P) = M Z Awclog 1+ P ( (d) 112

c=1 d=1

Using Lemma A.4.1 and the fact that Awe > 0 for all c = 1,..., C, we obtain

lim sup E [U('wc; I hc)1 2;P) Mw1 log(B(K)) < MV(wc; -32; P). (4.7)



Next, we lower bound the partial sum rate quantity Sc = Ed= Td for each c. For any

c = 1. 2,..., C, the partial sum rate S, is given by the Mc x Mc determinant

Sc = log det(IMc + XMc)

where

XMC =

X 1  y,2 ... y,M

X2 ... y2,M

C

(4.8)

In (4.8), the matrix XMc is Hermitian, so that the entries below the main diagonal

can be obtained by taking the conjugates of the entries above the diagonal. The

sub-matrices Xc's and Y,'s have the following interpretation:

(i) For each i = 1,..., M, X is a c x c Hermitian matrix that involves only inner

products between the c nearly collinear channel vectors h(d), d = 1 c.

(ii) For each i,j = 1,..., M, i j, Y, is a c x c matrix in which each entry is an

inner product between one vector from the set h(d), d = 1,..., c and the other from a

nearly orthogonal set h(d) , d = 1,...,c.

We now argue that the entries in each of the sub-matrices Yci' become small

with high probability as K becomes large. Let Dý denote the event that for every

i,j = 1, M,i 5 j, classes d, f = 1, .. ., c, and some ( > 0, U(h ( ) h ( ) <
K 2(M--1)

That is

c {? h() K2(M-1) (4.9)

It can be deduced from Lemma A.4.4 that there exists an rc > 0 such that

KP~{D.}> 1 - . (4.10)

Now, conditioned on the event D9, all the entries in each of the sub-matrices Y,',j tend

to zero, since the magnitudes of the channel vectors increase as O(log K), while the

normalized inner product terms decrease as O(K- 6/ 2(M- 1)). Therefore, conditioned



on the event D', we can asymptotically ignore all terms coming from the Y matrices,

and expand the partial sum rate determinant as

det(IMc + XMc) = det(IMc + FMc) + PK, (4.11)

where PK -+ 0 and FMc is the block diagonal matrix

F UIC = diag(X 1, X,..., X M ) .Fhie -r C C C y

Notation: For a random variable X and an event

space,

A defined on the same probability

E [X; A] := E [X1A],

where 1A is the indicator function of the event A.

We can now write the following series of lower bounds:

SE [] -Mlog(B(K)) - E [log det(IMc + XMc)] - M log(B(K))

> E [log det(IMc + XMc); Df] - M log(B(K))

> E [log(det(IM, + FMc) + Pk)] (1 - )~ - M log(B(K))K6

Thus,

lim inf E [S - Mlog(B(K)) > liminflE [log det(IMc_ + FMc)] - M log(B(K))
K-0oo L K-oo

M

= lim inf E [log det(Ic + Xm)] - Mlog(B(K))
K-oo

m=l

(4.12)

Note that the expression log det(Ic + Xcm ) in the above equation is equal to the sum

rate of the c users which are nearly collinear to urn, in the absence of the other users.

Now, consider a hypothetical scenario where these nearly collinear channel vectors in

fact become perfectly collinear to u,,, without any change in the channel norms. It is



clear that the partial sum rate corresponding to the original channel configuration is

lower bounded by the partial sum rate of this hypothetical user configuration. This

is because the users in the 'perfectly parallel' channel configuration suffer a higher

level of interference than that in the original configuration, where the channel vectors

were not perfectly parallel. We can therefore write

log det(Ic + Xc) (4.13)> log(1 + EP| hd*j 12) , m = 1,2,..., M.
d=1

Now, continuing from (4.12),

lim inf I e [S -- Mlog(B(K))
K-oo I

M c

_ liminf E log(1 + E PI h d,1 2)K-oo
m=1 d=1
M c

> lim inf E Elog(1 + P I hd(K d)
-- K--+oo ( Ld(K))

m=-1 d=1

> M (log ( PP + log(1 - 26)
(d=1

- M log(B(K))

2)1 - Mlog(B( K))

where the final step follows from Lemma A.4.2. Since the above lower bound holds

for every c := 1,2,..., C, and since T = c=1 AwSc, we can conclude that

C
lim inf E IT] - Mwl log(B(K)) > M E Awe log

c=1
( Pd= + log(1 - 25)).

(4.14)

Finally, subtracting (4.14) from (4.7), and noting that 6 is arbitrary, we obtain

limsupE [U(wc; h ( ) 2; P) ]- [ ] 0.
K-oo

The above theorem shows that scheduling a suitably selected group of MC users

asymptotically achieves the upper bound (4.4) and thus maximizes the expected

weighted sum rate. In fact, it shows that scheduling M users from each of the classes

c C C* is sufficient to asymptotically achieve the maximum expected weighted sum



rate, where C* := {c : P* > 0}.

In a similar fashion, it can be shown that the cone scheme described above also

asymptotically achieves the maximum weighted sum rate, as long as the tolerance

margin A is scaled down at an appropriate rate. The proof of this statement is largely

similar to the proof for the list scheme given above, and is sketched below.

Optimality of the Cone scheme

Let T. denote the throughput obtained by class c under the cone scheme, and define

T:= =1 wT, to be the total weighted sum rate. Denote by h(") i = 1,..., M, c =

1,..., C the channel vector of the strongest class c user which lies in the A-cone of

vU. The following theorem shows that the cone scheme asymptotically closes the gap

to weighted sum capacity, as long as the tolerance margin is scaled down with the

system size as

A oc (log K) - 2 . (4.15)

Theorem 4.3.2 In the cone scheme described above, assume that the tolerance mar-

gin A scales with the system size as A = (loK)2 for t > O0. Then, the cone scheme is

asymptotically optimal in the sense that it closes the gap to the weighted sum capacity.

Specifically,

lim E [U(wc; Ih 2;P) - T] = 0.
K--oo(

Proof(Sketch)

The partial sum rate of the first c classes S E = Ia= Td is given by

S, = log det(IM + XMc)

where
X1 y' 2 ... yl,M

C C C

X2 ... 2,
XMC c c (4.16)

XCAI



In the above equation, the matrix XnAI has the same structure as the one in (4.8),

except that; the channel vectors are now chosen according to the cone scheme. Now,

by Lemma A.4.3, we see that users in different cones are at least 3A-orthogonal.

Thus, if we scale down A fast enough with K, the Y sub-matrices in XMe can be

made arbitrarily small, and will not contribute to the determinant as K becomes

large. More precisely, we can write

det(Ivc + XMi ) = det(IMc + FkM) + PK, (4.17)

where PK --+ 0 and FMC is a block diagonal matrix as in the previous proof. Following

the arguments leading to equation (4.13), we can write

lim inf E FS-M log(B(K)) > lim inf E Elog(1 + P I h(d ) -M log(B(K))
K-oo K-00oo mM

m=l d=l

(4.18)

Now, as shown in Lemma 3.2.1, the probability that an arbitrary channel vector lies

in the A-cone of uv is equal to

\ := 1 - (1 - A)M- 1  (4.19)

Thus, the number of class d vectors in the A-cone of u, (denoted by Ndm) is a

binomial random variable with mean PAKd. Thus it can be seen that Ih 12 is

distributed as the maximum among Ndm i.i.d Erlang(M) random variables, where

Ndm ~,Binomnial(Kd, PA). Using Chebychev's inequality, and keeping the scaling rate

of A in mind (4.15), we get

P{Ndv > pxKd - Kd} > 1 - (log) 2  C(log K)2

from which it follows that

P{Nd ' > AKd/2} > 1- 2,d= 1,...,C, (4.20)
(log K)2 '



since pAKd - V-d > AKd - V-d > AKd/2.

We can now write the following inequalities for each m = 1, 2,..., M:

+ P d I I2) - log(B(K)) 2
d=1

E log(l + E Ph d12); Ndm > AKd/2, d = 1,...,
d=1

_E log(1 + P I k nax AK d/2 1 2)

L +d=1

where Ilhmax,r12 denotes denotes the maximum among r i.i.d channel norms.

Similar to the result in Lemma A.2.1, we can show that for any E > 0, there exists a

constant C!c) for each class c such that

P{ llI rax,AKd/211 > (1 - E)OdB(AKd/2)} > 1 - 2

(log AKd/2)2 "

Thus, the expression in (4.21) is greater than or equal to

(log K)2) did=1
log(l+ E  Pd* d (1-E)B(AKd/2)) 1

d=1 (log AKd/2)2
-log B(K).

(4.22)

Noting that the centering constant scales as B(K) = O(log K) (Section A.2 in the

appendix), it is immediate that the liminf of the above expression is equal to

C

log( P~i).
d=1

Therefore, going back to (4.18),

C

lim inf E [Sc]- Mlog(B(K)) Ž Mlog(E P* 2),
d=1

i io(I1

- log(B(K))

(log K)
(log K) 2 - log B(K), (4.21)



C c

lim infE T - Mwi log(B(K)) > M Awc log P . (4.23)
c=l d=l

Now, subtracting (4.23) from (4.7), we get the desired result:

lim sup E [U(wc; h) I 2; P)] - ET] < 0.
K-oo

Remark 4.3.1 Inspection of the proof of theorem 4.3.1 reveals that E [U(wc; IJh()l I2; p)]

asymptotically behaves as Mwl log(B(K))+MV(wc; /32; P) in the sense that the differ-

ence decays to zero asymptotically, and hence so does E IT]. In fact, it may be deduced

that the total rate received by class 1 grows as M[log(B(K)) + log(P,*) + 2 log(0 1)],

while the total rate received by class c, c = 2,... , C, asymptotically converges to

M [log (E= 1 P ) - log (ZCIE P 2od )]. Thus, asymptotically, the lion's share of

the aggregate throughput is accounted for by class 1.



Chapter 5

Numerical Results

In this chapter, we present the results of some of the numerical experiments that

we performed in order to evaluate the practical efficacy of the various scheduling

schemes proposed in this thesis. We first present results for a homogeneous system

with two antennas, followed by a heterogeneous system with two-antennas and two

user classes. In both cases, the proposed schemes perform close to the capacity limit,

even for relatively small system sizes considered here.

5.1 Homogeneous case

Here, we compare the sum rate obtained by the various user selection schemes with

the TDMA rate. We also make a comparison with a beam-forming (BF) scheme along

the lines described in [18] and [27].

We present numerical results for a system with two transmit antennas and K = 25

users in Figure 5.1. In Figure 5.1(a), we plot the ratio of the sum rate obtained by the

various schemes to the TDMA sum rate, versus the SNR (in dB). The results shown

here were an average over 100 channel realizations. The solid line corresponds to the

optimal DPC scheme. The dotted line just underneath the solid line corresponds to

scheme II with L = 5. It is clear that even for this moderate value of K, scheme

II performs very well, in addition to being asymptotically optimal. The broken line

corresponds to a special case of scheme I, where the two strongest users are scheduled



with equal power. It is clear that scheme II dominates scheme I quite significantly.

It is also interesting to note that the upper bound in (3.2), although asymptotically

tight, is quite loose for practical values of K and SNR. We finally observe that TDMA

is optimal in the very low SNR regime. The absolute sum rate (in nats) for this system

is graphed as a function of SNR in Figure 5.1(b).

The BF scheme proposed in [18] selects two users which have the best Signal-

to-Interference-and-Noise Ratio (SINR) on each of the antennas. In particular, the

transmitter forms random beams along the direction of two orthonormal vectors ¢ 1

and 02, and selects two users k*= arg maXk=l,...,K SINRk,m, m = 1, 2, where

I <hkOm > 12
SINRk 7,

2/P + < hk, 3 -m > 2

The expected sum rate obtained (ignoring potential complications when k* = k*), is

therefore

RBF := E [log(1 + SNRk',l) + log(1 + SNRk', 2 )].

The lower curves in Figure 5.1 plot the sum rate of this BF scheme compared with

the other schemes. We observe that transmitting along two pre-determined beams

without using actual phase information performs poorly, even though it is known to

be asymptotically optimal in the limit of a large number of users. However, a plot

of the quantity C(hk., hk-) (not shown in the figure) revealed that this particular

scheme actually does well in terms of selecting a pair of users.

Note that as P 1 0, we have

P
RBF -E [ < hk.,¢l > 12 +1< hk,02 > 12]

PE [I < hk;, l > 12] PRE [h(1) 2] T• DMA

Denoting gij := < hki , Oj > 12, we find that RBF approaches

E log l ) +log 1+ 922) = 2E log +912 921 / 912



as P --+ oc. This shows that for any fixed number of users, the sum rate of the BF

scheme saturates at a finite value as the transmit power becomes large, as is shown in

Figure 5.1(b). In contrast, the TDMA sum rate RTDMA grows without bound, albeit

slowly.

5.2 Heterogeneous case

Background for the numerical results

The simulation results which are provided below are for a two-antenna, two-class

system. The weights are taken to be wl = 2, w2 = 1 (although we usually equivalently

normalized these to sum to 1 over the users), and the coefficients P1 = 0.5, 32 = 1.0

determine the mean SNR's. The two populations of users are of equal size, K 1 =

K 2 = 10. Under these circumstances, the asymptotically optimal power values are

Pj = 1/3, P2 = 1/6, scaling out P, which is varied in most of the results below. We

will state its value when necessary.

We now describe the schemes themselves. As far as the list and cone schemes are

concerned, these are detailed in the text. Throughout, the asymptotically optimal

power settings will be used, no power optimization is being employed. We will also

consider TDMA, by which we mean the scheme that picks the user which has the

maximum weighted rate when assigned full power, over all the users. Thus, it selects

the k-th class-c user which maximizes

max max wlog(1 + Pllh( •2) = max wlog(1 + PjIIjh(j12).
c=1,...,C k=1,...,Kc c=1,...,C

Finally, we consider two BF versions. The first version (referred to as BeamForm 2

in the figure) schedules one user in each beam, with the powers equally split and the

user with the maximum weighted rate as determined by the SINR being the one

selected for each beam. The second version (referred to as BeamForm 4) schedules

one user from each class in each of the beams. In this case, each user is assigned its

asymptotic power. Note that the latter scheme generalizes the BF technique proposed



in [18] to a class-based system. However, this scheme is not expected to perform

well as the interference between users on the same beam cannot be resolved except

by using DPC or some equivalent approach.

Graphs for basic schemes

Figure 5.2(a) shows results for all the main schemes as well as the upper bound and

the average maximum weighted capacity limit. L = 5 was set for the list scheme

and 6 = 0.2 for the cone scheme. (Further numerical experiments indicated that the

performance of the list scheme is quite robust with respect to the list size L, so that

the exact value is not that critical.) As expected, the upper bound (4.5) is loose and

the list and cone schemes perform well at high SNR values. For low SNR values,

TDMA outperforms these schemes. The BF schemes fall off at very high SNR as the

figure shows.

As far as the list and cone schemes are concerned, good performance at high SNR

is expected. However, at low SNR TDMA is close to optimal. (This latter conclusion

follows from the linearity of the log.) Thus for low to moderate SNR.'s, one could make

up for the loss of rate in the list scheme by optimizing the powers, instead of assigning

asymptotically optimal powers to each user. Similarly, the cone scheme does well at

high SNR but not at low SNR. This loss in performance can also be addressed by

assigning the powers optimally. This is a concave optimization in three independent

variables, and is therefore potentially a time-consuming calculation, since we have no

explicit formula for determining the optimal powers.

Figure 5.2(b) shows the same results, but gives the ratio to TDMA. Note that

unlike the homogeneous case, BF is not asymptotically optimal in terms of differences

as the number of users is increased at fixed SNR. However, at low SNR's (below 0 dB)

BeamForm 2 does better than cone or list. Figure 5.2(b) shows that BeamForm 2

performs consistently worse than TDMA, which was also observed in the homogeneous

example which had a similar number of users. The results for BeamForm 4 are worse

than those for BeamForm 2 as expected.



Additional compound schemes

We now look at simpler enhancements to avoid power optimization among the four

selected users. One such enhancement to the list scheme is to identify the best possible

pair among the already selected four users. Consider the two-user weighted sum rates

obtained by scheduling all possible pairs of these users. The power is split equally

while scheduling two users of the same class, but when scheduling one user from each

class, we allocate them powers 2P1* and 2P2 respectively. The two-user scheme picks

the pair that corresponds to the highest weighted sum rate among the six possible

pairs.

We thus arrive at the following heuristic schemes. Compound scheme I selects

the better among TDMA and the list schemes. Compound scheme II goes further

and selects the best among TDMA, the two-user scheme above, and the original list

scheme.

A three-user heuristic scheme was also considered, but since it did not provide

any appreciable improvement, it has been omitted from the results.

In Figure 5.3, we compare the list scheme with the two heuristic schemes, Com-

pound I and Compound II. These results are more clearly seen as a ratio to TDMA

rather than the absolute rates which are difficult to distinguish. Since Compound I

takes the best of TDMA and the list scheme, it cannot do worse than TDMA at any

point and list at any point. Hence, it does well at low SNRs and at high SNRs. There

is nevertheless a significant rate gap for this scheme for moderate SNR's, roughly in

the range 0-5dB. Here TDMA falls off, but the list scheme is not yet in its most

advantageous range. However, Compound II closes most of this gap as can be seen.

The results in Figures 5.2 and 5.3 were averaged over 50 channel realizations.
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Chapter 6

Conclusions

We studied the problem of maximizing the expected (weighted) sum rate in a Gaus-

sian broadcast channel with multiple transmit antennas and K independent users

each with a single receive antenna. We first focused on a scenario with two transmit

antennas and statistically identical users, and analyzed the gap between the full sum

capacity and the rate that can be achieved by transmitting to a suitably selected

pair of users. In particular, we considered a scheme that picks the user with the

largest channel gain, and selects a second user from the next L - 1 strongest ones

to form the best pair, taking channel angles into account as well. We proved that

the expected rate gap converges to 1/(L - 1) nats/symbol when the total number of

users K tends to infinity. Allowing L to increase with K, it followed that transmit-

ting to a properly chosen pair of users is asymptotically optimal, while dramatically

reducing the feedback overhead and operational complexity. Next, we addressed the

problem of maximizing a weighted sum rate in a scenario with M antennas and het-

erogeneous user characteristics. We established a novel upper bound for the weighted

sum capacity, which we then used to show that the maximum expected weighted sum

rate can be asymptotically achieved by transmitting to a properly chosen subset of

at most MC users, where C denotes the number of distinct user classes. Numerical

experiments showed that the asymptotic results are remarkably accurate and that the

proposed schemes provide near-optimal performance, even for a moderate number of

users.



Appendix A

A.1 Some useful determinant identities

In preparation for some of the subsequent proofs, we first establish a few useful

determinant identities.

Lemma A.1.1 For any K, AlM,

det (IM
K

+ Qkhthk = det(IK + J),
k=1

with IJk := v/(kQjhkhl, k, = 1,... ,K.

Proof

Define the K x M matrix H by Hkm := Qkh-km, k = 1,..., K, m = 1,..., M.

The proof then follows easily from the identity relation det(IMN + IH) = det(IK +

Hilt).



Indeed,

K

det(IM +- EZQk hhk)
k=1

-det Il +
VQIlhl

. .hK•

= det(IA + IHIH)

= det(IK + H 1 )

= det IK +

VQ- h1

vQhK

-Q-1 hiK

= det(IK + J)

Lemma A.1.2

det(I2 + I-Pkt h,) - 1+EPk llhkj •I h2 + PkP hk 2 lhl h2Vk,
k=l

U(hk, hi).with Vkl := 1

Proof

lh,v-Q-lh I

V/•hK



Expanding the determinant, we obtain

K

det(12 + E Pkh hk)
k=1

K

+k=
k=1

Pk h 1kl

K

k=1

K K

: Pk2 hk1 E khk1 k2
k=1 k=1

K

= 1+± Pklhkl 2

k=1

K K
+- E E kPl[htlhklh h12 - h lhl2

k 12 12 l2
k=1 1=1

K

1± 7PkIlhkII2 + : PkPI[hklhklh 2 hl2 + hthllht2 hk2 - ht 2hklht hl2 - ht hllhtlhk2I.k 112 1 11 11 k2 k2 k 11 12 k2
k::=l 14k

In order to complete the proof, it remains to be shown that

hlhk ,h h 1h2 + ht hllh 2hk2 ht hklht h12- ht hlhtk hk2 = kI'll 211h I 2 Vkl,

1 12 1 k2 2 k2 11 12 k1 k2

which follows from

hthk1 k1 h 2 + h 1 hi 2ht hk2 - h h hl212 11 k2 k2 k2 kit1 1 - h hl khl2h1 k2

= hk klhhl ±h t ht hklht 2 h1 2 ht hk2h h1  h 2 hk2h 2h 211 k1 12 k2 11 k2 k /t 1

- hklht hil - ht hkl h12 - h hlh lhk2k1 11 kc2 11 12 k1 k - h1 2hk2h k 2

- [hlht hkl+ hk2l[ht hl + ht 2h12]- [hth + h 2h 2][hhkl h 2hk2]112 k+ 12 k k 1 1 12 k2

= IIhH1211h 2 - I< hk, h > 12

= IIhk I 1 hl 12Vki.

A.2 Some results from extremal theory

Here, we quickly collect some useful results from the theory of extremal order statis-

tics. The interested reader is referred to [1] for a detailed treatment.

Extrenial theory deals with the behavior of the largest and smallest among K i.i.d.

kh k2k2



random variables. In many cases, the centered versions of these variables have weak

limits. For instance, consider K i.i.d. unit exponential random variables DI,..., DK,

let Y) := max(D,..., DK), and define Z( := Y) - log K. Then the distribution

function of Z(), Fu )(z) converges to F(1)(z) - e-e , [2].

A similar result holds for i.i.d Erlang(M) random variables which are a sum

of M unit exponentials. In this case, the limiting distribution for the centered

maximum remains the same as in the exponential case, but the centering constant

logK is replaced by B(K) = logK + (M - 1)loglogK - log(M - 1)!. Specifi-

cally let, El, E 2,..., EK be i.i.d Erlang variables with M degrees of freedom. Let

Y( := max(E,... ,EK), and define Z1 ):= Y(1)-B(K). Then, Zf )  e- e -(, where

= denotes convergence in distribution. This weak convergence result is straightfor-

ward to verify. Note that the sequence B(K) is distinct from the sequence of the

means mK := E [YK]. Similar results can also be derived for the centered second

largest variable, third largest and so on.

A further useful fact that can be shown regarding the sequence of centered maxima

Z( ) is that they are uniformly integrable [2]. It is a well known fact that a sequence

of uniformly integrable random variables that have a weak limit also converge in the

mean [2, p. 338]. Thus we can conclude that the sequence of means E [Z()] converge:

limE [Z( ) = lim mK - B(K) = E [Z], (A.1)
K-•o k I . K-oo

where E [Z] is the mean of the limiting distribution function e -e - . Interestingly, the

mean of this distribution function turns out to be equal to the celebrated Euler-

Mascheroni constant [14]:

E [Z] = y = 0. 57 72 ...

Finally, we state without proof another interesting and useful fact regarding the

largest few realizations in a set of i.i.d Erlang random variables. Specifically, the

following lemma states that for 0 < 6 < 1, the largest K 6 random variables are

unlikely to take values that are significantly lesser than the centering constant B(K).



Lemma A.2.1 Given c, 5 > O, 6 < c/2, define

pK E Ip{KK6) < (1 - ) B(K) ,

where Y (kK 5) is the K6 order statistic among a set of K i.i.d unit Erlang(M) random

variables. There exists a constant Csj, such that

p',' - (log(K)) 2 "

Note that as a consequence of (A.1), the statement of the above lemma also holds

when B(K) is replaced by the sequence of means mK in the definition of p.K

A.3 Lemmas and proofs for the homogeneous case

A.3.1 Additional bounds for the sum capacity

Here we gather a few further bounds for the sum capacity that will be used in estab-

lishing Theorems 3.3.1 and 3.3.2. We first prove a simple lower bound.

Lemma A.3.1 For any i, j,

C(hi, hj, P) 2log ( 1+
with IIhiA j 2 := min{lIh I|2, Ilhj| 2}.

Proof

From Equation (3.4),

> log 1 + Ihi|2 ) (1+ 2Bhjj

> 2log (1
P

+ 2| hinj 2 + log(Vij)-

C(hk, hj, P)

Vij

P
2 |hisy 12 + log(Vij),



We now state a few upper bounds. Define

F(h, hi, P) := 1 P 2

+ Plhv, + 2  j,4

with IIhVlVt2 := max{lhh jt2, Ilhjll }.

Lemma A.3.2 For any i, j,

Csm(hi, hj, P) < log(F(hi, hj, P)).

Proof

Using Equation (2.3) and Lemma A.1.1,

max log detP• + j sP ( +
P(ht•h
2

+hj h2 ))

max log (1 + Pi Plh 2+ pj h 2 + p 212[lhaI 2V1•)
P l+p+<P

< max log (1 + (P + P) j)P, +P, <P

= log ( + P , 12

Lemma A.3.3 For any ij, c E (0, 1),

(j
C

2
2 Inax c }.

Proof

By definition, for any c E (0, 1),

F(hhP) =1+ Phvj12 + Ilhivjj I (_F(k., hj, P) = I1+ PI ivj2 4j <
P 2

12 ) max{ , Vj}.

P
2

+ 4 IhiVj 4Vi4

P

2

CBC ,(,., hj, P)

F(h, hi , P) <



Lemma A.3.4 For any i,jj, E (0, 1),

C(hi, hj, P) < 2log ( + P Ihv ) + log(max{e, VK}).
•2

Follows from Lemmas A.3.2 and A.3.3 and observing that C(h., hj, P) < CS5 (h', hj, P).

O

A.3.2 Proof of Lemma 3.2.2

Proof

First note that the difference is bounded from below by

E log 1 + A-B
B + Qllh()12

so the liminf is non-negative since IIh(1) 12 --+ co almost surely as K -- oc.

We now show that the limsup is non-positive.

Denoting mK := E [ h(1) 112] and applying Jensen's inequality, we obtain

E [log (A + QIIh(1)112)] < log(A + QmK).

For any c > 0,

E [log (B + QIh(L) 12)] >

log(B) + [log (B + QmK(1 - E)) - log(B)]P{ lh(L) 112 _> mK(l - E)}.

Since L(K) = o(K') for any 6 > 0, it follows that

lim inf IP{ h(L)112  mK (1 - 6)} Ž lim inf P{lIh(Ke/4)112 > (1- E)-
K--oo K-+oo

Proof



We now use a fact that is derived using the theory of extremal order statistics. As

stated in Lemma A.2.1, it can be shown that there exists a constant CE/4,E for which

P{jIh(KE/4)112  K(1 - )} < /4,
(log(K))2'

Combining the above inequalities and observing that log(1+Qmk(1-e)) = o((log(K))2)

as K -- oc, we deduce that the limsup is bounded from above by

lim sup log(A + QmK) - log(B + QmK(1 - E)).
K-*oo

The latter quantity is no larger than

limlog 1 +
K-oo+(o

B + QmKJ-B+QmK
because mK -- oc as K -- oc. Letting c 1 0, the result follows.

A.4 Lemmas and proofs for the heterogeneous case

The following lemmas are useful in proving Theorem 4.3.1.

Lemma A.4.1 For all c = 1, . . . , C,

lim sup E lo (1 +
K-oo SPd(K)

d=1
h11h(d) ) - log(B(K)) < log

Proof

Since I (d) 12 is a scaled version of a unit Erlang(M) random variable, we can write

Ih Id) = /3, [B(K) + Z(d)(K)].

P/d) .



This is in view of Section A.2 above.

Then.

E log

= E log

C

1 + EP(K)

+ P(K)P3d(B(K) +
d=1

Z(d)(K))) - log(B(K))

< E log ( 1So B(K- )

" log B(K) +

c

+ EP(K), 3
d=1 (1 +

P (K) +
d=1

• [P (K)]
/= 1

ZB (K))
B(K) )

P (Z(d)(K))
2 B(K)

p E [(Z(d)(K))]
+ 2 B(K)

where the last step follows from Jensen's inequality. We see from (A.1) that

E [(Z(d) (K))]
B(K)

as K --+ 00. Hence,

C

+ E P (K)I h(d)112
d=1

-log(B((K))) 5 lim sup log
K--oo

As stated earlier, the powers (P,*(K),..., P*(K)) converge to (P*,.. . , P*) in

probability, as K -+ oc. Also, since the powers are bounded above by P/M, P*(K)

is a sequence of uniformly integrable random variables for each class c. Using these

two facts, one may deduce that limK-,, 0 E [P (K)] = PI for d = 1, 2,. . . , C, see [2].

The result easily follows now since

lim sup log
K--4oo

C
=log (

d=1
P 3) .

Lemma A.4.2 For all c = 1,...,C, if Ld(K) = O(K6 ), 6 > 0, for all d = 1,...,c,

))

V
lim sup E

K--*oo
L.

11h ) -12 log(B(K))

( E -[Pd*(K)]od=1

E [Pd*(K)] Od(Cd=1



then

lim inf E log -log(B(K)) > log+
d=1

Proof

Take c > 26.

Define the event

- -0p)B(K)

and its complement

K =1 (d) 2 (1 -CE d (Ld(K)) -

In view of Lemma A.2.1, it is easy to deduce that

fP{L K} = o((log B(K)-)).

Next,

Pd h(La2(K))
2)1- log(B(K))

L,] - log(B(K))

> log (1+ (1 - dl) j P 3B(K)
d=l

(1 - Pf{L })

Pd= [1d( d= 1

- log(B(K))

> [log(1 - e) + log(B(K)) + log

> log(1 - C) + log og(B(K)) + log 4E·
E}] - log(B(K))

Since P{L •} = o((log(B(K)))- '), the statement of the lemma follows.

E log

> E log

d=1

+ Pd h(Ld (K))d=l1

d=1
Pdd +log(1--26).

L K := U (K)) lh(d 2 < (
C,t =U~ .(L,(K)) l _<(

d)P B(K).

- P{LK

P)d

P (Lh L(K))1 2



Lemma A.4.3 Let ul, u2 C CM be two orthonormal vectors. Let g be A-aligned with

ul and h be A-aligned with u 2, for some A < 1. Then, g and h are 3A-orthogonal.

Proof

Let g = [gl, g2,..., gM] and h = [hl, h2 ,... , hM]. Without loss of generality, we may

assume ul := [1, 0,..., 0] and ul = [0, 1,...,0]. By hypothesis, we have,

i >1-A

and
(h2 2 > 1 - A.

EM I hj 2

Now,

U(h,g) - IM gj h l2

< EM Ig1 J Igjl Ihj12

- M l gjl2 lhj l2

g1 12(1h112 + j=3 Ihjl2) ± g2121h212

h 1 2 + jM3 2 hj 2  212

h2 12  + 912
2A

<1 < 3A.
1-A

In the above, step 2 follows from triangle inequality and step 5 from the hypothesis.

Lemma A.4.4 Consider the MC users chosen by the List scheme described earlier.

For any c, d = 1, 2,..., C, and any i, j = 1,2,..., M, i M j there exist constants Gc,d

and 7rc,d such that

P{ U(h(), h(d)) < } > 1 cd
Ki 2(M- Ki)



Proof

As shown in Lemma 3.2.1, the normalized inner product between any arbitrary chan-

nel vector and the unit vector 7u has the distribution function

Fu(u) = 1 - (1 - u) M - .

For the special case of M = 2, this corresponds to a uniform distribution. Now, recall

that h(' ) is chosen as the vector which is most collinear with u7 from among a group

of L, = K,6 class c users. In other words, the normalized inner product U(h.), Ui)

is chosen as the maximum among L, = K[ i.i.d variables, distributed according to

Fu(u) above. The distribution function of U(h (), Ui) can therefore be written as

IP{U(hV , Ui) < u} = (1 - (1 - u)M-1)L

from which it is easy to deduce that

P{U(h ) , t4) < 1 - Kr 2(M-l } = (1 )L1

We now use the fact that the function f(x) = (1 - 1/x), x > 1 is bounded above by

1/e, to upper bound the above probability as

1P?{U(h$), u4) < 1 - 2KC M- } < e-V-.

Even though this is a sharp bound on the above probability, the following loose bound

will suffice here:

IP{U(h , u) > 1 - K••(M 1 > 1 - / = 1 - K .

Similarly, we can write, for j = i,

P{U(h(d) , ) > 1 - Kd 2(M-1) } > 1 - 1/Ld = 1- Kdý



Using the above pair of inequalities, and invoking Lemma A.4.3, we get

P{U(h( , h) < }>1- -
minn(Kc, Kd) 2(A -1)

Finally, noting that each Kc acK, with a~ constant, the result follows.
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