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Abstract

Systems engineering' is rapidly assuming a prominent role in neuroscience that
could unify scientific theories, experimental evidence, and medical development. In this
three-part work, I study the neural representation of targets before reaching movements
and the generation of prosthetic control signals through stochastic modeling and
estimation.

In the first part, I show that temporal and history dependence contributes to the
representation of targets in the ensemble spiking activity of neurons in primate dorsal
premotor cortex (PMd). Point process modeling of target representation suggests that
local and possibly also distant neural interactions influence the spiking patterns observed
in PMd.

In the second part, I draw on results from surveillance theory to reconstruct
reaching movements from neural activity related to the desired target and the path to that
target. This approach combines movement planning and execution to surpass estimation
with either target or path related neural activity alone.

In the third part, I describe the principled design of brain-driven neural prosthetic
devices as a filtering problem on interacting discrete and continuous random processes.
This framework subsumes four canonical Bayesian approaches and supports emerging
applications to neural prosthetic devices. Results of a simulated reaching task predict that
the method outperforms previous approaches in the control of arm position and velocity
based on trajectory and endpoint mean squared error.

These results form the starting point for a systems engineering approach to the
design and interpretation of neuroscience experiments that can guide the development of
technology for human-computer interaction and medical treatment.

Thesis Supervisors:

Emery N. Brown, Professor of Brain & Cognitive Sciences and Health Sciences & Technology
Sanjoy K. Mitter, Professor of Electrical Engineering & Computer Science and Engineering Systems

' Here "systems engineering" is a surrogate term for a growing intersection between many fields: statistics,
control, information theory, inference, and others.
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Chapter 1

Introduction

1.1 Problem statement

Our ability to complete everyday tasks such as drinking a glass of water or assembling a

bookshelf relies on the coordination of sensation and actuation through the estimated 100

billion neurons that compose the human nervous system. Most of us go about our daily

routines effortlessly. The true underlying difficulty of these purposeful movements

becomes apparent in the attempt to treat diseases such as stroke, Parkinson's disease, and

spinal cord injury that lead to severe incapacitation. Research in humanoid robotics also

underscores the difficulty of generating systems that produce robust, dexterous, and

efficient movement.

The neuroscience of movement control attempts to discover simplifying principles behind

how this complex nervous system solves challenging motor tasks. The scientific

endeavor attempts to explain and predict empirical observations, while the engineering

discipline works to develop medical treatments for motor deficits. This thesis relates to

both the scientific and medical engineering concerns of neural movement control.

The research presented here begins in Chapter 4 with a focus on directed reaching

movements made with the arm. This study investigates the role of neural activity in

dorsal premotor cortex in the representation of visually presented target positions during

an instructed delay period before the reaching movement begins. We then examine

(Chapter 5) how this target information could be used to constrain estimates of the entire

reaching movement trajectory and subsequently be combined with neural activity related

to the intended path. Finally, we develop (Chapter 6) a general approach to the design of

neural prosthetic devices that may one day enable dexterous control of assistive

technology specified directly by neural activity.



1.2 Contributions of the thesis

This thesis contributes to both the scientific and medical engineering aspects of neural

movement control. In this section, we describe those contributions in general terms,

while a more technical description is provided in the conclusion (Chapter 7).

The average spiking rate of neurons in dorsal premotor cortex (PMd) was previously

understood to relate to visually-presented targets before reaching movements. Here

(Chapter 4), we clarify this concept, demonstrating that the spiking dependence on the

timing of post-target-onset and the history of spiking contribute to target position

representation beyond average spiking rates alone. Furthermore, this study represents the

first statistical modeling study of PMd spiking that incorporates model selection methods

to determine the best description of spiking behavior from a selection of competing

models. This analysis reveals that the physical processes that contribute to the structure

of spiking activity in PMd include spatially local phenomena such as membrane

properties, and possibly distant interactions such as reciprocal connections to other brain

regions. Furthermore, the analysis represents a canonical approach to the interpretation

of experiments that relate spiking responses to defined stimuli.

Previous studies of reaching movements presented estimation procedures to decode target

related neural activity separately from path related neural activity in the brain. This

previous work reinforced a view that certain brain regions during particular time intervals

relative to a reaching movement are exclusively related to either the target or path to the

target. Here (Chapter 5), we instead emphasize the dependence between target and path

through a probabilistic description of reaching movements. The resulting analysis

represents the first recursive filtering procedure that is capable of combining path and

target related neural activity to generate estimates of the entire arm movement, including

real time estimates of the target as the movement proceeds.

Estimation procedures for neural prosthetic devices attempt to map neural activity to

estimates of the user-intended device state. Previously, these estimation procedures were



developed for specific applications, such as arm movement, or typing. Here (Chapter 6),

we unify existing approaches for estimation in prosthetic devices to address a wide range

of current and emerging applications.

Our contributions to the scientific and engineering aspects of neural movement control

develop an approach for approximate estimation based on models using point processes

where the sample space has both discrete and continuous components. The relation

between these technical contributions and the study of neural movement control are

further described in the conclusion (Chapter 7).



Chapter 2

Neurons and the Control of Movement

This chapter introduces concepts in neuroscience that are relevant to subsequent chapters

which study target position representation in PMd spiking (Chapter 4), the estimation of

reaching movements (Chapter 5), and general-purpose filter design for neural prosthetic

devices (Chapter 6).

2.1 Cells of the nervous system and the action potential

The nervous system is composed of neurons, support cells (glia), blood supply

(vasculature), and extracellular material (matrix). Each cell in the nervous system is

composed of basic elements that are common to all cells. A lipid bilayer membrane

defines the boundaries of the cell. Within the cell, organelles are involved in the

controlled production and interaction of proteins, sugars, nucleotides, and other

molecular constituents. The processes that define the state of the nervous system occur

on multiple scales, from molecular interactions to meter-length electrical events.

Ultimately, a unified theory of the nervous system would involve phenomena across all

these scales. Intermediate steps towards reaching this objective include the statistical

characterization of empirical observations, and the development of various biophysical

models, each with different explanatory scope. This section describes the electrical

potentials that facilitate interactions between neurons and with the world that is external

to the nervous system. This discussion is drawn primarily from [1-3].

Protein and protein-sugar channels, receptors, and molecular pumps form a fluid mosaic

in the cell membrane, regulating molecular transport and chemical signalling across the

lipid bilayer. Each neuron consists of a cell body between 4 and 100 pm in diameter.



Several short roots, called dendrites, and one long trunk, called the axon, extend from the

cell body of a typical neuron. A single axon can extend to hundreds of centimeters in

length, as with motor neurons that reach from the surface of the brain to the lower

sections of the spinal cord.

The action of pumps and channels maintains an ionic concentration gradient across the

cell membrane, resulting in a transmembrane electrical potential. In neurons, potassium,

sodium, and calcium ions, together with the resistivity of their corresponding ion-

selective membrane channels, are the principle determinants of the membrane potential.

Among all cell types, neurons are especially capable of rapidly propogating local changes

in this membrane potential across the length of the cell through travelling waves called

action potentials or spikes. This is due to the dynamics of voltage-sensitive potassium,

sodium, and calcium channels. The response is "all-or-nothing," meaning that the

membrane potential in any given location along the cell must exceed a threshold to

generate a spike. Spikes typically travel away from the cell body along the axon, but

possibly also into the dendrites. At the end of the axon, spikes induce the release of

chemical neurotransmitters that diffuse across an extracellular gap called the synaptic

cleft. These neurotransmitters then bind to receptors on the dendrite of a post-synaptic

neuron. The binding of neurotransmitter modulates membrane potentials in the dendrites,

that combine and pass a threshold value at the cell body to induce a spike in the post-

synaptic neuron.

A set of helper cells called glia also regulate neuron membrane potentials. These include

astrocytes, schwann cells, and oligodendrocytes. Astrocytes participate in the uptake of

neurotransmitter at the synapse. These cells also form the blood-brain barrier that

determines the molecules that diffuse from capillaries to extracellular space surrounding

cells. Schwann cells and oligodendrocytes surround axons in a process called

myelination. This increases the propagation velocity of a spike and decreases metabolic

demand by increasing resistance and decreasing capacitance of the membrane in regular

segments. This effectively creates an axon that is composed of passive wires (myelinated



segments) that rapidly transmit the membrane potential, interleaved with slower repeaters

(unmyelinated segements) that boost the signal.

Neurons that are modulated by a given neuron are described as "downstream" with

relation to that neuron. Downstream neurons may be just one synapse away, or

modulated via an intervening network of many neurons. Colloquially, the modulation of

membrane potentials is referred to as "information processing" when examined within a

neuron or network, and "communication" when described as occuring between neurons

or networks. These word choices have inspired the analysis of neural systems in analogy

to computation and data transmission problems.

A spike generates a transient millivolt or picoampere surge in a measurement electrode

that is placed within or outside the cell. An intracellular recording provides observations

of isolated spikes that can unambiguously be attributed to an individual neuron.

However, intracellular recordings are challenging in live-animal studies because the

electrode tip must be stabilized within the cell body while brain matter pulses by

millimeters with each heart beat. In contrast, extracellular recordings from a single

electrode allow the simultaneous observation of spikes from multiple neurons (typically

three). Because the electrode can be placed anywhere within proximity to the cell, it is

feasible to stabilize even an array of hundreds of electrodes for recording in live, moving

animals. However, the spikes cannot be unambiguously assigned to different neurons

simply because the electrodes are not definitively placed within cells. In a process called

spike sorting, the differences in action potential shape that arise with distance and other

factors, are used to assign detected spikes to individual neurons.

Recordings of neural activity are also available on whole-brain scales, with coarser

resolution, and through different modalities. Extracellular recordings from the same

electrodes that observe spikes are low-pass filtered to provide local field potentials,

which are believed to represent coordinated dendritic input averaged over hundreds of

neurons in the vicinity. By adjusting electrode impedence and positioning, averaged

activity can be gathered over millions of neurons. This is the case with



electrocorticoencephalography (EcoG), electroencephalography (EEG), and other

variants that describe electrode placement relative to the dura (the leathery sheath

surrounding the brain), the skull, and the scalp. Electrodes placed closer to the brain are

able of accessing higher frequency electric potentials without attenuation. Other

modalities that support whole-brain imaging on millimeter or coarser scales include

magnetoencephalography (MEG) which employs magnetometers, and functional

magnetic resonance imaging (fMRI), a variant of MRI anatomical imaging that provides

blood flow information that is believed to relate to neural activity.

With current technology, it is virtually impossible to unambiguously verify the

anatomical connectivity of a set of neurons in conjunction with electrophysiological

recording from those neurons. This makes it diffult to understand how patterns of neural

activity are generated from the underlying architecture. Functional magnetic resonance

imaging can provide blood flow measurements related to averaged activity of tens of

thousands of neurons, complementing diffusion tensor imaging which provides gross-

anatomical connectivity. Retrograde electrical stimulation can verify connectivity

between neurons separated by a single synapse in conjuntion with electrophysiology, but

is currently practical for only a few to tens of neuron pairs. Microscope-based techniques

with voltage-contrast dyes are currently being developed to possibly allow detailed

functional and anatomical information of a set of hundreds or thousands of neurons.

To circumvent this present-day disjunction between recordings of membrane potentials

and precise anatomy, the analysis of electrophysiological data can be made in the context

of general anatomical connections that have been previously documented through

dissection, staining, microscopy, MRI, diffusion tensor imaging, and other anatomical

techniques. In the following section, we discuss the most prominent connections of the

brain with a focus on the neural control of movement.



2.2 Functional anatomy of motor control

How does the nervous system work with skeletal muscle and sensory organs to produce

controlled movements? This is the central question in motor neuroscience. A detailed

enumeration of the cellular and molecular constituents and phenomena of the nervous

system is only a starting point in answering this question. Just as in physics, the ultimate

goal here is a simple but powerful explanation for a partial or full set of phenomena that

are observed. Such a theory of motor control would extract only the essential

components of the physiology to reveal operating principles and bounds on performance.

Nevertheless, the initial phase of inquiry involves a cataloging of phenomena placed in

the context of anatomical structure. This chapter introduces the nervous system involved

in motor control through a description of the anatomy. While in this thesis, we work with

electrophysiological phenomena of specific brain regions in relation to behavior, this

more general anatomical framework will be important to subsequently interpreting the

phenomena in the larger context of interconnected regions and motor control.

2.2.1 Basic Anatomical Orientation

The central nervous system encompasses the brain and spinal cord, while the peripheral

nervous system includes nerves that connect the spinal cord to the rest of the body. The

brain alone weighs approximately 1.3 kg and contains an estimated 100 billion neurons.

On crossection, the brain appears to be segmented into grey and white matter, composed

of neuronal cell bodies and myelinated axons, respectively. "Brain regions" correspond

to sections of grey matter, while "tracts" and "connections" refer to white matter. The

major brain regions are denoted in Figure 2.1. The cortex, latin for bark, includes the

outermost layer of brain. Subcortical regions include the thalamus and basal ganglia.

The brainstem extends from the spinal cord into the core of the cerebrum, where it

terminates at the thalamus. The cerebellum connects to the cerebrum through the

brainstem, and contains more cells in a smaller volume than the cerebrum and brainstem

together. White matter tracts coarse between and through all of these regions.



Supporting tissue includes the dura which surrounds the brain, vessels which perfuse the

brain with blood, and ventricles which communicate cerebrospinal fluid (CSF).

Central sulcus/

kcipital lobe

Cerebetum

em

Figure 2.1. Major brain regions. The cortex includes five lobes: frontal,
parietal, occipital, temporal, and insular (not visible). Other major brain
structures include the cerebellum, brainstem, and basal ganglia (not visible).
Adapted from [3].

2.2.2 Historical Context of Motor Anatomy

The modern study of motor control is strongly influenced by a compartmental view of the

brain that emerged in the late eighteenth century. Forwarded by German physician

Francis Gall, the theory of phrenology described the brain as a composite of 35 organs,

each with a different function. The specific claims of this theory have largely been

discredited, including the hypothesized functions of brain regions such as "hope" and

"veneration." Nevertheless, Gall's notion of compartmentalization was reinforced in the

mid-ninteenth and early twentieth century by anatomical and lesion studies that suggested

that individual neurons were organized into distinct ensembles to serve specific functions.

The proponents of this theory of cellular connectionism include Jackson, Wernicke,

Sherrington, and Ram6n y Cajal, some of the most vaunted neurophysiologists in history.

In the early twentieth century, Korbinian Brodmann developed a comprehensive

anatomical segmentation of the brain. Based on detailed studies of cell types and



layering,. Brodmann designated 52 brain areas without specifically attributing functions to

these areas. This segmentation has been influential in guiding electrophysiological

exploration, where it has reinforced the notion of functional homogeneity among

anatomically localized brain regions. As a result, the brain is typically described as a

circuit consisting of modular brain regions with distinct functions.

Within the past fifteen years, Peter Strick and collegues have employed special staining

techniques to provide greater detail with regards to the connectivity of specific brain

regions that project motor axons to the spinal cord [4]. Special tracers are injected into a

region of interest to selectively follow axons that lead towards or project away from that

brain region. One technique based on neurotropic viruses allows the tracer to cross

synapses and follow more extended patterns of connectivity. In conjunction with

previous anatomical studies, this work has helped to clarify the architecture of brain

regions that are located within a few synapses of lower motor neurons which drive

skeletal muscle.

Most recently, cubic-millimeter-resolution MRI has enabled longitudinal studies of

anatomy in normal living humans. For example, changes in brain anatomy have recently

been described with relation to learning, including piano practice [5] and meditation [6].

Diffusion tensor imaging (DTI) is a related technique that allows the segmentation of

white matter tracts. The use of fMRI in combination with MRI and DTI holds the

promise of inspiring biologically grounded models of phenomena in the normal living

human brain that occur at a coarse but broad spatiotemporal scale compared to cellular

electrophysiology.

The modern study of neuroanatomy is a nontrivial exercise in deductive reasoning. The

brain is an intricate three dimensional structure, composed of more than 100 billion

neurons. Within minutes of death, the brain undergoes liquifactive necrosis which

destroys anatomy. Typically, fixing agents or cryogenics are employed to preserve

structure: in a post-mortem preparation. As with most tissue preparations, staining is

necessary to make cell structures visible under light microscopy. Various staining



procedures interact with the tissue to accentuate different nonspecific features of the

cellular structure. Antibody based staining preparations can additionally allow the

detection and localization of specific proteins within the tissue. Mass spectroscopy and

other methods for sample analysis are able to characterize the molecular constituents of

tissue.

All of these methods, from staining procedures to DTI, require inferences to be drawn

about the underlying structure and composition of the brain based on measurements.

This inference stage is particularly subjective and unverifiable in the case of staining and

imaging. Should a spectrum of cell shapes be described in two categories or three? Does

a cross-section contain four cell layers or none? Does a pattern of staining represent two

distinct regions or one contiguous area? Some assay results are unanimously interpreted,

whereas other results require years of training in accepted conventions to provide

conformity in interpretation. Consequently, it is essential to qualify the following

sections on the anatomy of motor control with the caveat that the brain regions and

connections that are described were inferred based on a heterogeneous set of standards

that draw on historical precident and were largely verified based on consistency rather

than ground truths.

2.2.3 Structure and Connectivity in the Sensorimotor System

The neural control of movement requires the contraction of muscles in coordination with

behavioral objectives (goals) and sensory feedback. Classically, motor areas designate

neurons that are two synapses away from the muscle, and sensory areas refer to neurons

that are one or several synapses from sensory organs, but generally farther from muscle.

This distinction has been increasingly weakened by the understanding that in this

interconnected "sensorimotor" system, no neuron is exclusively involved in either

sensory feedback or muscle contraction. In the following sections, we trace the anatomy

of motor control from the sensory organs and muscular actuators of the periphery into the

layers of neural structures that govern the relationship between contraction, behavioral

objectives, and sensory feedback.



2.2.4 Spinal Cord and Muscle

In total, the spinal cord is an extension of the brain, with long, segregated axonal tracts

that relay action potentials towards and away from the brain, and a core of neural cell

bodies that include lower motor neurons that extend towards muscle, and secondary

sensory neurons that extend towards various parts of the brain (Figure 2.2).

Skeletal muscle is composed of oblong multinucleated cells that are 50-100 pm in

diameter and 2-3 cm in length. Each cell is packed with contractile units called

sarcomeres that are chained in serial and parallel. Each lower motor neuron in the spinal

cord extends its axon to between 100 and 1000 muscle cells, although each muscle cell is

innervated by only one lower motor neuron. Lower motor neurons that innervate the

same muscle also have cell bodies that cluster into columns within the spinal cord.

The synapse between a lower motor neuron and a muscle cell is called a neuromuscular

junction. When the lower motor neuron spikes, acetylcholine is released from the neuron

onto the muscle fiber. Receptors on the fiber induce a sequence of molecular events that

increase intracellular calcium and initiates contraction of the cell. Energy for this

contraction is provided by adenosine triphosphate (ATP) which also drives many other

cellular processes.

Peripheral neurons also extend into the spinal cord, modulated by stretch, pressure, and

other sensations. These sensations are described as proprioceptive (relating to joint

position) or exteroceptive (relating to pressure, pain, or other stimuli applied to the skin).

This somatosensory information can be combined with visual and other sensory feedback

to guide movements.

Inhibitory interneurons complete a network that connects peripheral sensory neurons,

lower motor neurons and additional neurons that both descend from the brain (upper

motor neurons) and extend towards the brain (secondary sensory neurons). Reflexive

behaviors represent the interaction of peripheral sensory neurons with lower motor



neurons through inhibitory interneurons that connect them. To demonstrate the patellar

reflex, a subject sits with the thigh supported and leg dangling from a chair. A rubber

hammer strikes the tendon of the rectus femoris, resulting in an uninstructed raising of

the leg. This behavior can be explained by peripheral sensory activity that directly

excites motor neurons to the rectus femoris, and relaxes opposing hamstring muscles

through inhibitory interneurons. Several lines of research suggest that spinal cord

networks might also allow the execution of more complex motor patterns that are

modulated by the brain. For example, cats with full spinal cord transection between the

upper and lower leg regions, are still capable of coordinating leg movements while

walking on a treadmill, although this effect is not generally observed in analogous

injuries to humans.

Figure 2.2. Major connections between spinal cord, brain, and periphery.



2.2.4 Cortical Motor Regions

The earliest definition of cortical motor regions in the brain was functional rather than

anatomical. In the late ninteenth century, it was discovered that electrical stimulation in

areas of the frontal cortex could induce skeletal muscle contraction. These areas were

designated as cortical motor regions. It is now known that other brain regions can be

stimulated to induce muscle contraction, including the mesencephalic locomotor region

in the brainstem that is involved in walking. Conversely, several brain regions are

implicated in motor control, although electrical stimulation of those regions does not

induce muscle contraction. These include neurons in the basal ganglia, cerebellum,

brainstem, somatosensory cortex, posterior parietal cortex, and visual cortex. These

regions are collectively denoted "sensorimotor" to describe their involvement in control,

although some of these regions are classically described as exclusively sensory or motor

based on their proximity to sensory organs or muscle respectively.

A comprehensive view of motor control will likely include all these major sensorimotor

areas. However, cortical motor regions continue to dominate the study of voluntary

movement due to their expansive connections with other brain regions and especially

lower motor neurons and interneurons in the spinal cord. The cortical motor regions are

discussed in greater detail here only because this thesis involves a characterization of

those neurons as described in subsequent sections. The connectivity of motor cortical

regions is also included below, with relation to the other major brain structures involved

in motor control.

The current definition of cortical motor regions is both functional and anatomical, and no

unequivocal universal standard exists. One definition applies the ninteenth century

standard to frontal cortex, and further subdivides motor cortices into primary motor (MI)

and premotor (PM) regions based on the minimum level of current injection required to

induce muscle contraction, while PM regions require increased thresholds. This

approach is convenient for electrophysiologists when detailed post-mortem anatomy is



unavailable. However, it is unknown what the relevance of injected current threshold is

for the physiological control of movement.

An alternate definition, forwarded by Strick, describes MI based on the level of current

injection, but describes PM regions based on anatomical grounds. By injecting

retrograde tracers into MI, Strick claimed six distinct brain regions that projected to MI

[4]. These regions were labeled dorsal premotor (PMd), ventral premotor (PMv),

supplementary motor area (SMA), and rostral, dorsal, and ventral cingulate motor areas

(CMAr, CMAd, and CMAv). However, the published staining sections that support this

claim have an ambiguous segmentation pattern. This illustrates the difficulty in

interpreting tissue stains in terms of anatomical organization. Based on a composite

anatomical view, the cortical motor regions are extensively interconnected and linked to

other brain regions (Figure 2.3).

Figure 2.3. Prominent connections among sensorimotor areas of the brain, with detail on
cortical structures. This diagram is not complete. For example, other brain regions exist
in the brainstem that are involved in motor control and project to the spinal cord. The
word clique in the premotor areas box indicates that these circumscribed brain regions are
fully interconnected. This diagram is a composite based on [4, 7].



Cells in MI and primary somatosensory cortex (SI) demonstrate somatotopy, a relation

between functional characteristics and anatomical location. Somatotopy specifically

refers to the pattern of organization by which neigboring cells tend to respond to

stimulation of localized sensory organelles or induce contraction in a localized region of

musculature. This is the case with muscle contractions induced from current injection in

MI, and spiking activity induced in MI through SI and in SI alone from cutaneous

stimulation. For example, neurons in one region of MI can be stimulated to induce hand

movements. Moreover, the regions of MI that respond to cutaneous stimulation of the

hand can also induce contractions in hand muscles with current injection. Neurons in SI

project to somatotopically corresponding regions in MI, explaining the somatotopic

sensory response in MI. However, the interconnection between SI and MI is not

sufficient to explain the coincidence between somatotopies related to sensory stimulation

and muscle contraction in MI.

These anatomical relationships alone have inspired models based on control theory that

feature a heirarchical and distributed architecture. By definition, anatomy is not

sufficient to determine functional properties. Molecular constituents such as channels

and neurotransmitter receptors determine the response properties of neurons.

Consequently, neurons that appear to be connected in histological sections could instead

possibly operate independently. Nevertheless, anatomy at the supra-molecular level

represents constraints on the structure of the nervous system that begin to provide a

physical context for the various electrophysiological measurements that are commonly

made in stimulus-reponse or behavioral experiments.

A comprehensive review of all electrophysiological experiments related to motor control

would require several volumes. The following section focuses on the classical delayed

reach experiment and previous results that characterize and interpret spiking activity in

dorsal premotor cortex during the moments before reaching movements to visually-

acquired targets.



2.3 Movement plans and the instructed-delay reach experiment

Motor control experiments are interpreted based on basic themes in control theory and

robotics. Elementary control tasks that machines must solve to achieve a goal include

choosing a behavior, movement planning, and executing a movement by coordinating the

goal with sensory feedback and actuation. Neurophysiologists have sought to attribute

each of these tasks to separate groups of neurons in the brain. One prevalent approach

involves the characterization of neural activity recorded from a monkey while it is

engaged in a task with its arms or hands.

Through analogy with robotic control, neurophysiologists postulated that brain activity

related to movement planning could be observed after the target was displayed but before

the movement was initiated. Experiments were designed to extend the planning period,

presumably to expand the time for which movement planning could be observed. This

was the rationale for the delayed reach experiment which is described in the sequel.

The instructed-delay reach experiment is a classical task used in primate

electrophysiology to study motor control. In our variant of this task (Figure 2.4), a

monkey (Macaca mulatta) controls a cursor that it views on a horizonal computer

display, through a two-joint manipulandum. Each trial that the monkey must complete

involves three stages that choreograph a reaching movement to one of typically eight

target locations. The first stage is the hold period, where the monkey is required to place

the cursor over a central point. The second stage is the instructed delay period, where a

target position is visually indicated, but the monkey is required to maintain the central

cursor position for typically 500 to 1000 milliseconds. The third stage is the go period,

where the target begins to flash, telling the monkey to proceed to generate a reaching

movement that places the cursor at the target. If the target is acquired within 2 seconds of

the go signal and held for 500 milliseconds, a water drop reward is delivered to the

monkey's mouth.
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Figure 2.4. One trial of the instructed-delay task as in [8].

We do not naturally pause for any appreciable time before reaching movements.

Nevertheless, some neurophysiologists believe that the delay period is an opportunity to

study the planning of arm movements. From this perspective, it is important to guarantee

that no target-related stimulus is provided during a substantial portion of the delay period.

Accordingly, the instructed-delay experiment is modified so that the target is displayed

for 150 to 300 milliseconds and then extinguished for the remaining 800 or more

milliseconds of the instructed delay period [9]. Without this precaution, neural activity

that is observed cannot be attributed to reach planning in exclusion of activity that is

directly driven by the visual stimulus.

Although important from this perspective, the extinguished target precaution may not be

essential to conduct a realistic study of motor control, because many natural

circumstances involve reaching to targets that are visually accessible throughout the

entire reaching movement. Reaching movements to an extinguished target may require

different neural components than reaching to a continually cued target, but both scenarios

could still be relevant to mechanisms of motor planning, and both essentially still involve

some period of visual stimulus. The analysis presented in this thesis circumvents this

issue by explicitly describing the visually-presented target position as an input to the

neural system during the delay period. The assertion is that delay period activity is being

O
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characterized under different conditions, but that considering this activity in the context

of target position representation is not precluded in either case.

The tracking of eye movements is another consideration in experiment design that is

emphasized by some neuroscientists. The rationale for this emphasis is the notion that

planning activity related to the spatial location of the target must exist in some reference

frame relative to the animal. This reference frame could potentially be retinotopic, where

the represented coordinates of the target change with eye position. Alternatively, the

reference frame could be body centered, or some other intermediate or arbitrary reference

frame. From this view, it might ultimately be desireable for the brain to represent the

target in body-centered or other coordinates to allow arm movements to be easily related

to the goal. The concept of sensorimotor transformation postulates that an important

function of the nervous system is to solve this change of coordinates. This concept has

driven efforts to characterize any target-related brain activity in terms of its coordinate

frames. Consequently, both eye and hand position, measured during the delay period, are

considered important covariates that explain the observed patterns of neural activity.

Eye movements were not recorded in the PMd experiment that is analyzed in this thesis.

Hence, they are not available as explanatory variables in constructing models of delay

period neural activity. Moreover, eye movements or positions were not specifically

constrained. This will add to the potential sources of variation in the patterns of spiking

activity that were recorded on multiple trials of the same target presentation. Such a

characterization where eye movements are unconstrained could prove especially useful in

the context of neural prosthetic devices where it would be particularly taxing to require

that the user control their eye position, or intrusive and algorithmically nontrivial to track

and correct for eye movements. Additionally, the modulation of PMd spiking by eye

position is known to be slight when eye positions are unconstrained [10].

The following sections review qualitative and quantitative studies that were previously

performed to understand the representation of visually-instructed target positions in the

instructed-delay spiking activity of dorsal premotor cortical neurons. Other brain regions



that have been studied in this regard include posterior parietal cortex [11], frontal cortex

[12], and subthalamic nucleus [13].

2.4 Previous studies of PMd in movement planning

Premotor dorsal cortex (PMd) and other brain regions have been extensively studied with

relation to movement planning in general, and the spiking representation of target

position before visually guided reaching movements in particular. Lesions in PMd result

in deficits of visually guided arm movements [14]. Specific features of the PMd delay

period spiking response vary systematically with aspects of the movement or task.

Average delay period firing rates change between trials where different target locations

are presented [15]. A mean-normalized measure of across-trial variability decreases over

the delay period, and covaries with reaction time [16].

Probability distributions have been used to describe the number of spikes (or other

specific features of the response) in a delay period interval for each of a discrete set of

targets. Several decoding methods have demonstrated target estimation from the average

delay period spiking response of an ensemble of PMd neurons with varying degrees of

success [8, 17]. Nevertheless, these studies typically employ unverified Poisson

statistical models, and batch estimation procedures in their characterization of PMd target

representation.

In contrast, the PMd study described in Chapter 4 of this thesis proceeds with a broader

collection of statistical models, coupled to a model selection procedure that assesses both

relative and absolute model quality. The resulting analysis demonstrates the extent to

which various aspects of the PMd spiking response contribute to target representation,

and sheds light on the possible physical processes that might be important to the structure

observed in the PMd response.



2.5 The neural prosthetics design problem

Several neurological conditions dramatically restrict voluntary movement, including

amyotrophic lateral sclerosis, spinal cord injury, brainstem infarcts, advanced-stage

muscular dystrophies, and diseases of the neuromuscular junction. A growing set of

technologies is being developed to allow brain-driven control of assistive devices for

individuals with severe motor deficits. Variously called brain-machine interfaces [18,

19], motor neural prostheses [20-22], and cognitive prostheses [23, 24], they represent a

communication link that bypasses affected channels of motor output.

Many alternative technologies are available that utilize remaining motor function rather

than neural activity to generate control signals. Movements of the eye or tongue can be

tracked to control a cursor. Suction on a straw can navigate a wheelchair. Contractions

or electromyographic signals of larger muscle groups such as the platysma or pectoralis

major can be monitored to activate joints in a prosthetic arm [25]. Volitional grasping

with a prosthetic hand can be achieved through mechanical cabling to the contralateral

shoulder [26]. Although they represent practical solutions for many patients, these

alternatives provide restricted control to any user. Moreover, they may not be feasible for

individuals with profound motor deficits.

Brain-driven interfaces have the potential to provide users with control that is more

dexterous, natural to use, and less susceptible to fatigue than existing muscle-based

alternatives. In principle, these interfaces would be available even for individuals with

near-complete loss of voluntary motor function, such as with locked-in syndrome where

only blinking and vertical gaze remain.

The four common elements of existing brain-driven interfaces are a method to monitor

neural activity, an algorithm to map this activity to control signals, a device to be

controlled, and a feedback mechanism that informs the user about the state of the device

(Figure 2.5). This design problem is multifaceted. The nascent neural prosthetics



literature already spans issues related to recording hardware, signal processing, robotics,

functional electrical stimulation, clinical care, and surgical techniques.

Figure 2.5. Complete circuit diagram of a neural prosthetic device.

Monitoring approaches balance finer spatial resolution and broader frequency bands

against the invasiveness of electrode placement. Scalp leads provide waveforms up to 40

Hertz (Hz), integrating activity from square-centimeters of cortex [27]. Subdural leads

provide electrocorticographic (ECoG) signals up to 200 Hz that are collected from an

estimated area of fractions of a square millimeter [27]. Cortical electrode arrays have

access to local field potentials similar to EcoG, but also monitor action potentials, which

are transient one-millisecond electrical spikes from micrometer-scale neurons. These

arrays typically record from tens but up to hundreds of individual neurons spread over

one square millimeter.
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Signal pre-processing is typically employed in all of these approaches, including band-

pass filtering and spike sorting [28-31], where action potentials are grouped by shape in

an effort to localize spiking events to distinct neurons. Various algorithms can then be

employed to map neural signals to control signals. This mapping can be made adaptive,

changing so as to minimize performance errors even as neurons fade out [32] and the

subject learns to use the interface. Feedback in existing prototypes is predominantly

limited to visualization of the device state and juice rewards [20-24], or auditory cues, but

somatosensory cortical electrodes have also been proposed.

Challenges remain on all fronts in the design of brain-driven interfaces. Cortical

electrode arrays have only preliminarily been evaluated for chronic recording in humans

[33]. To endure long-term use, monitoring approaches must achieve low power

consumption, mechanical stability, biocompatibility, and otherwise reliable access to

relevant neural signals. Movements generated by existing prototypes are either slow and

deliberate, or fast and uncontrolled. The evaluation of learning is not standardized.

Reported training times range from minutes [19] to months [18] for acquiring proficiency

with a device, depending on the device and method of performance evaluation.

Algorithms must be developed to enable increased dexterity, faster learning, and robust

performance. Finally, the optimization of real time feedback and training regimens is

largely unexplored.

The mapping of preprocessed neural activity to device control signals is typically

approached in two steps (Figure 2.6). First, an algorithm estimates the user's intention

for the device based on neural activity that serves as a noisy observation of that intention.

Second, a controller acts to bring the device state close to this estimate of the user's

intention. This second stage is often implicitly assumed in literature on algorithms for

neural prosthetic devices.

The development of neural prosthesis estimation procedures parallels the earlier

development of estimation procedures in electrical engineering and later applications to

neurophysiology: manually adjusted linear combinations of power spectral band energies



[34], population vectors for automated but sub-optimal linear mappings [35], linear

regression for optimized linear mappings [36], and most recently, recursive Bayesian

estimation procedures [37-39]. This last advance in particular has allowed dramatically

better tracking than linear regression in off-line data analyses. In decoding trajectories or

sequences of intentions, this improvement is largely due to the introduction of a state

equation, a mathematical expression of underlying structure in the intention, such as

continuity. Variants have evolved to progressively account for the true statistical nature

of spiking activity: the Kalman filter [39], particle filter [37], and point process filter

[38]. Bayesian estimation [23, 24], support vector machines, and other classification

methods have also been used with neural observations of discrete intentions that are

relevant to prosthetic applications such as icon selection from an on-screen menu.

Figure 2.6. Standard approach to the design of neural prosthetic devices. The user expresses
neural activity (A) to communicate an intended state for the prosthetic device. An estimator
converts this neural activity into an estimate of the intended state (B). A controller generates
inputs (C) to drive the prosthetic device to this estimate in coordination with feedback (D)
that informs the controller about the device state. The user receives sensory information (E)
that serves as an additional level of feedback for guiding the device to the user-intended state.

Two of the chapters in this thesis relate closely to the estimation problem in prosthetic

devices. In Chapter 5, an estimation procedure is developed to drive reaching

movements of a prosthetic limb from the combination of target-related information (such

as from PMd instruted-delay activity) and path related information (such as from MI

activity that corresponds to intended velocities) regardless of the specific recording

modality. In Chapter 6, a general-purpose estimation framework is developed for a

variety of prosthetic devices while incorporating either spiking activity or continuous

field potentials.
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Chapter 3

Modeling and Filtering Point Processes

This chapter introduces concepts in statistical modeling and estimation that are applied in

subsequent chapters to the study of target position representation in PMd spiking

(Chapter 4), the estimation of reaching movements (Chapter 5), and general-purpose

filter design for neural prosthetic devices (Chapter 6).

3.1 The point process in continuous time

Consider a recording of spiking activity from a single neuron over a time interval [0, T),

where the sequence of spike times is given by 0 < w, < w2 <...< wm < T. Let the

counting process N(t) represent the cumulative spike count from the start of the interval

up to time t. The evolution of this counting process may depend causally on continuous

random processes x(t), discrete random processes s(t), or counting processes L(t) that

describe the state of the biological neural network or its inputs, including the neuron's

own spiking history. Define the history of these random processes as

H, = { x(r), s(r), L(r) I re [0, t)}.

We describe this spiking activity as a point process [1-5]. The point process is

completely specified by its conditional intensity function [2], defined as follows:

2(t| H,) = lim P[ N(t+A)- N(t) I H] (3.1)
A-+0 A



This conditional intensity function characterizes the joint data probability of observing a

particular experimental outcome represented by the realized counting process N(t), over

the interval [0, T):

P({N(a) jae [0, T)}) = exp log2(a H,,) dN(a) - J•i(oa H,)do (3.2)
10 0

T m

where log A (a I H) dN(a) log A (w, H) is a Riemann-Stieltjes integral [2].
0 i=-1

3.2 The point process in discrete time

We now introduce additional notation to represent the point process in discrete time, and

to describe the spiking activity of an ensemble of neurons instead of just one neuron.

Divide the recording interval [0, T) into k discrete time steps, each of length 8= TI k

seconds, so that the kth timestep is [(k-1)6,kS). Define the number of spikes that

arrive for neuron c in the kth timestep as n -= J N(a) dcr. The ensemble spiking
(k-1)8

activity of C neurons at the k" timestep is denoted ": c=(n'k, n,...,nkc). Let
xk = x((k-1)8) and sk = s((k-1)8). Define :k =(xi, x2,..., xk), and similarly for i:k.

The discrete-time history is accordingly Hk = (4:c, 4 C 4 X1*,, i :k-,).

The conditional intensity of neuron c evaluated in discrete time is given by

A =A.C ((k-1)86 Ht) in units of spikes per second. Consider time steps S that are

chosen to be smaller than the refractory period, typically 1x 10- seconds, so that n, is

either 0 or 1. The discrete-time joint data probability is then approximated [6] to

resemble the continuous-time data likelihood (3.2) as follows:

p(:C, :c ... , nc) I exp log[2 6 nJ -4 } (3.3)
c-I k=1 k=1



The corresponding discrete-time probability density of the ensemble spiking activity at

time k conditioned on the history and the discrete and continuous states at time k is

given by:

C
p(Ck I x k,s, ) o Aexp(n;log(,A6k) (3.4)

This quantity is the point of departure for applying discrete-time nonlinear filtering

algorithms to point process observations.

3.3 The point process with generalized linear models (GLM)

This section overviews the generalized linear model (GLM) approach [7] used in this

thesis to describe neuronal activity with point processes. The most pervasive approach to

modeling spiking neural activity in the neuroscience literature is to relate stimuli and

spiking through a Gaussian linear model [8]:

y= X8p + C (3.5)

Here, y= [n~,n ,..., n] is a column vector of binned spike times for one neuron,

,8 =[,,,82 ..... R] is a column vector of R parameters, X is a Kx R matrix of

covariate signals. Each column of X includes the discrete-time sequence of values

realized by a one-dimensional covariate signal, such as an attentional state

[si =0,s = 1,..., sK = 1] . The term s = [E,E,..... K]' is a column vector of independent,

identical, zero mean Gaussian random variables with an unknown variance.

This approach typically uses 8 of tens to hundreds of milliseconds that produce a large

set of possible binned spike counts nk, because nk conditioned on the random variables



corresponding to the k'h row of X are described as Gaussian under the model in (3.5).

In contrast, the point process modeling approach allows for millisecond-resolution

modeling.

Generalized linear models extend the linear Gaussian model in (3.5) to the exponential

family of distributions, making it possible to relate covariates to responses that are not

necessarily Gaussian. The exponential family includes distributions of the following

form:

K

f(y lfl) = exp{T(y,)C(fl)+ H(y,)+ D(fl)} (3.6)
k=1

where y, denotes the k'h element of y, and T, C, H, D are known functions. The GLM

describes the linear combination of covariates as some function of p, which refers to the

mean of the distribution in (3.6) for Gaussian and Poisson distributions, but the standard

parameter for the binomial distribution [7]:

g(p) = X/ (3.7)

The link function g(.) is any monotonic differentiable scalar function where

g(p) = [g(,), g(p,),..., g.UK)]. A specific choice of link function, the canonical link,

results in a convex likelihood, which permits a standard gradient-ascent-based maximum

likelihood parameter fitting procedure [7]. The canonical link function is obtained by

equating C(f) = X,8. The canonincal link function for the Poisson model with mean A

is log(A) = XP .

Parameter fitting for GLMs is commonly solved by iterative reweighted least-squares, a

gradient-ascent approach which includes the Fisher scoring method and the Newton-

Raphson method. The Matlab function glmfit automated this procedure for the



maximum likelihood (ML) parameter fitting steps of our study on dorsal premotor cortex

(Chapter 4).

To connect the GLM framework with the point process approach, we model the

distribution of nk as Poisson when conditioned on the covariate random variables

corresponding to the k' row of X. S is chosen small (typically 1 ms) relative to

changes in Ak,. The natural log is the canonical link function for the Poisson distribution.

Accordingly, our generalized linear models are of the form:

logA = Xfp (3.8)

where log = [log('ý),log( 2),...,log(AK )].

3.4 Relative model quality with Akaike Information Criterion

With multiple models specified in the form given in (3.8), a procedure was desired to

select the model that would best conform with the data on average. The Akaike

Information Criterion (AIC) captures this notion, because it is derived as an

approximation to the expected log likelihood Eg(y) [log f( Y; 0)], for the data-generating

distribution g(Y) and the model f(Y; 9) parameterized by 0.

The AIC can also be considered as an approximation to the part of the Kulback-Liebler

(K-L) information Eg() log f(4Y;) that differs between competing models. The

expected log likelihood is identically this deciding term when two models are compared

based on K-L distance to the data-generating distribution. See [9] for a derivation and

[10] for a discussion of small-sample corrections and other properties of the AIC,

including its equivalence to crossvalidation.



The formula for the AIC balances goodness-of-fit against model complexity. It credits a

model for large data likelihood, and penalizes for the number of parameters in the model:

AIC= -2log[p(n[:' 4 :C,..., d"CI)]+ 2R (3.9)

where ft is the ML estimate of 8 given the data, and p( :c, :C,..., C I ) is the data

likelihood in (3.3) evaluated with ML parameters. The term R denotes the number of

parameters, as with our GLM given in (3.8).

3.5 Absolute model quality with the time-rescaling theorem

Although AIC was used to assess relative model quality, we additionally required that the

observed data was sufficiently typical under the minimum AIC model. The time-

rescaling theorem, specific to point processes, provided statistics with confidence

intervals to allow us to characterize the typicality of the deviation between a model and

the spiking data.

The theorem can be stated as follows. Given spike times 0 < w, < w2 <...< w,, < T for a

point process specified by A (tI H,), define the random variables z, for i = 1,2,..., m- 1:

wj+1

z,= f (tj H,)dt (3.10)

Then the z, are independent, unit-mean exponentially distributed random variables.

The z, represent the original interspike intervals (ISI), rescaled with respect to the

conditional intensity function of the model. Statistics based on the time-rescaling

theorem verify the extent to which the rescaled ISI are consistent with a set of

independent and exponentially distributed random variables.



The z, can be further transformed to independent uniform [0,1] random variables u,:

U, = 1- exp(-z,) (3.11)

and then to independent standard Gaussian random variables g, using the inverse CDF of

the standard Gaussian, - -'(u) :

g, = -' (u) (3.12)

where the standard Gaussian CDF is:

(x)= ( X= exp U-2 du (3.13)

For a proof, refer to [11].

The standard Kolmogorov-Smirnov test was used to compare the cumulative density

function (CDF) of the u, against that of the [0,1] uniform distribution [11]. The statistic

is the maximum deviation of the empirical CDF from the uniform CDF. In a cartesian

plot of the empirical CDF as the y coordinate versus the uniform CDF as the x

coordinate, the 95% (99%) confidence interval lines are:

y= x± 1 1/2 Y= X± (_)1/2 (3.14)(m-1) (m-1)
The one-lag autocorrelation am (as a function of the number of spikes m) was used as a

preliminary test of independence. Here, the empirical autocorrelation is calculated on the

standard Gaussian rescaled ISIs g, because uncorrelated Gaussian random variables are

independent:
r-1

am.= g x g, (3.15)
1=1



Confidence intervals were calculated by Monte Carlo, where the distribution on am was

assumed Gaussian, and a variance on the one-lag autocorrelation was estimated from

multiple sets of simulated draws of m independent identically distributed standard

Gaussian random variables.

3.6 Simulating spikes with the time-rescaling theorem

The converse of the time-rescaling theorem is also true [11]. This allows us to simulate

point processes in discrete time from a model specification of the conditional intensity

function ,k by solving (3.10) for w, given z,. Spike simulation is employed in a type of

model validation that is described further in the study on dorsal premotor cortex (Chapter

4). Additionally, we simulate spikes for off-line evaluation of neural prosthesis

estimation algorithms (Chapters 5 and 6), where spiking activity is converted into an

estimate of the user-intended device trajectory.

The procedure is described as follows. To generate the ith simulated spike, draw a unit-

mean exponential waiting time z,. Step forward in discrete time steps k of 1 millisecond

duration, summing the values of A4k until a time step where the summed value equals or

exceeds z,. Generate a spike corresponding to that time step and reset the sum to zero.

Repeat this procedure until the discrete-time point process has been simulated for the

desired time interval.

3.7 Discrete-time point process filtering

In the discrete-time point process filtering problem, the posterior density of an underlying

random process must be estimated from observations of a point process whose

conditional intensity is a function of the underlying random process itself. In this thesis,

we apply discrete-time point process filtering to understand the representation of target



position in dorsal premotor cortex spiking (Chapter 4), and to estimate user-intended

device states from spikes for neural prosthetic devices (Chapters 5, 6).

As mentioned in Section 3.2, the critical element for filtering point processes in discrete

time is the discrete-time probability density in equation (3.4) of the ensemble spiking

activity at time k conditioned on the history Hk, discrete state sk , and continuous state

xk. With this quantity, any of a variety of nonlinear discrete-time filtering procedures

can be adapted to point process filtering of an underlying Markov process. An exact

discrete-time posterior density can be calculated in the case of a discrete-valued Markov

process by applying a recursive form of Bayes' Rule, as employed in this thesis to study

the representation of a discrete set of target positions in ensemble spiking activity

recorded from dorsal premotor cortex (Chapter 4). The Gaussian approximation to the

posterior density, also called the Laplace approximation, is used in this thesis (Chapters 5

and 6) for estimation of continuous-valued and hybrid (continuous and discrete valued)

Markov processes. Other general nonlinear filtering techniques are available in the

literature, including particle filters [12].
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Chapter 4

Delay Period Target Representation
in Dorsal Premotor Cortical Spiking

Premotor dorsal cortex (PMd) is believed to be involved in the representation of target

position during the enforced delay period prior to visually-instructed reaching

movements. In this chapter, we seek to understand the structure of the PMd response and

demonstrate the extent to which aspects of the response contribute to target

representation. Because of its extensive connectivity with other cortical and subcortical

regions, it is unclear whether the PMd target representation can be adequately described

with simple statistical models. Moreover, although various algorithms have

demonstrated target decoding from PMd neurons, it remains an open question as to what

extent various aspects of the PMd response contribute to the representation of targets.

In this study, we apply generalized linear models based on point process statistical

methods to determine how elapsed time (time post-target-onset) and spiking history relate

to the PMd response, and the extent to which these factors contribute to target

representation. Action potentials are obtained from a population of 61 simultaneously

recorded PMd neurons from a macaque monkey during a instructed-delay center out

reaching task to one of 8 fixed target positions arranged evenly on a circle of 6

centimeters radius. PMd neurons span a diverse set of representations, of which more

than 709% demonstrate both history and elapsed-time dependence. Log-linear point

process statistical models adequately describe all target representations in 38 of the 61

recorded cells. Both history and elapsed-time dependencies contribute to faster, more

efficient target position representations than the average firing rate that is typically

summarized in tuning curves.



4.1 Introduction

The generation of voluntary movements involves multiple brain regions that coordinate

goals with sensory input to determine muscle activation patterns. The functions of these

brain regions are classically described in terms of planning and execution. Presented

with an object to reach, a subject develops an estimate of the target position, and

contracts musculature in concert with somatosensory and visual feedback to bring the

hand to the target. The delayed reach experimental paradigm enforces movement phases

that can be interpreted as planning and execution. Here, the subject is required to wait

during a "delay period" for a cue before initiating movement to the target.

Premotor dorsal cortex (PMd) and other brain regions have been extensively studied with

relation to movement planning. Lesions in PMd result in deficits of visually guided arm

movements [1]. Specific features of the PMd delay period spiking response vary

systematically with aspects of the movement or task: Average delay period firing rates

change between trials that present different target locations [2]. A mean-normalized

measure of across-trial variability decreases over the delay period, and covaries with

reaction time [3]. Probability distributions have been used to describe the number of

spikes (or other specific features of the response) in a delay period interval for each of a

discrete set of targets. Several decoding methods have demonstrated target estimation

from the delay period spiking response of an ensemble of PMd neurons with varying

degrees of success [4, 5].

A quantitative theory of the role of PMd in movement control requires that we understand

the whole delay period spiking response of PMd as well as specific features that describe

it in part. How complex are theoretical models of PMd spiking that are consistent with

empirically recorded activity? To what extent do various aspects of the PMd response

contribute to rapid, efficient target representation? An adequate mathematical model of

PMd spiking must capture the effects of a physical system governed by local neuronal

properties and anatomical connections with numerous cortical and subcortical areas.



This chapter investigates these questions with a point process description of PMd delay

period spiking activity. Using a generalized linear model framework, we attempt to

capture the millisecond-by-millisecond spiking probability of a given neuron in terms of

its dependence on elapsed time (time post-target-onset) and spiking history. We

determine the adequacy of these models in relative and absolute terms, and the extent to

which elapsed time and spiking history contribute to model quality and the speed and

efficiency of target position representation with a fixed, discrete target set.

4.2 Methods

4.2.1 Behavioral task

One male macaque monkey (Macaca mulatta) was trained for 11 months to perform the

instructed-delay center-out reaching task. The monkey sat in front of a horizontal display

with its right arm resting in cushioned troughs of a 2-joint robotic arm (KINARM system

[6]) under the display. The hand position was projected to a cursor on the display where

target locations would also subsequently appear. The task consists of 3 time periods:

hold, instructed-delay, and go (Figure 4.1). During the hold period (500 ms), a central

target location appeared on a horizontal display over which the monkey was required to

position the cursor. During the instructed delay period (variable length drawn uniformly

from 1000 to 1500 ms), the target was displayed as a 1 cm x 1 cm square. Target

locations were drawn uniformly from a fixed set of points spaced evenly on a circle of 6

centimeters radius about the central target. The monkey was required to continue

maintaining its hand over the central target during this delay period. In the go period

(maximum of 2 seconds allowed), the peripheral target flashed to instruct the monkey to

initiate and complete a reaching movement to the target. A water drop reward was

delivered when the cursor was held over the target for 500 milliseconds.
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4.2.2 Electrophysiology

Multiple single unit extracellular measurements were obtained from the caudal

subdivision of dorsal premotor cortex (PMd) in the left hemisphere, with a chronically

implanted array containing a 10x10 grid of electrodes (1 mm shaft lengths) spaced evenly

over a 4 mm x 4 mm base (Cyberkinetics, Foxborough, MA). Signals were amplified

with a gain of 150, sampled at 30 kHz per channel, and digitized at 14 bits per sample

with a Cerebus acquisition system (Cyberkinetics, Foxborough, MA). Sampled

waveform windows of 1.6 ms surrounding a threshold-exceeding signal were used to sort

spikes with the Offline Sorter (Plexon, Dallas, TX).

4.2.3 Model forms and fitting

Delay period spiking responses of each neuron corresponding to each target position were

described as a separate point process. The neurons were assumed independent in their

ensemble response, and the quality of this assumption was explicitly tested (see Absolute

Model Quality below).

A point process description of one neuron's spiking provides the instantaneous

probability of firing as a function of elapsed time t and generally conditioned on other

signals x(t) including spiking history H,, where N(t) denotes the total number of spikes

accumulated since target onset:

2(t I x(t),H,) = lim Pr(N(t + A)- N(t) = I I x(t),H) (4.1)
A--0 A

This is the continuous-time conditional intensity function. Each PMd point process

model (,one for each neuron/target pair) is expressed in discrete time steps 8 of 1

millisecond, indexed by k. The value of the continuous-time conditional intensity

function at timestep k is denoted by Ak . This discrete-time conditional intensity may be

a function of elapsed time (time post-target-onset) and the history of preceding spikes.



Elapsed time is described in terms of A, second time intervals post-target-onset. The

indicator function I(i,k, A) denotes whether or not a time step k falls into the i' h

interval 'of elapsed time:

IikA l if (i-1)A, < kS<iA,

o0 otherwise

Elapsed time represents a surrogate for physical processes that determine firing

probabilities in intervals of time after the target presentation, apart from history terms.

The discrete-time spiking history Hk of a particular 1 ms time step k includes both

short-term and long-term history. The short-term history includes spike counts in each of

the last ten milliseconds (nk-I , nk-2 9..., nk-10). The long term history includes spike counts

between 10 ms and 150 ms, binned at 10 ms intervals, denoted by

(nlk-10-1]:[k-20o] , k-20-:lltk-30], "'' [k-140-l]:[k-150]). Short term history is believed to be

dominated by local physical interactions such as PMd neuronal cell membrane properties

or local interneuron inhibition, whereas long term history is generally attributed to more

distant reciprocal connections with conduction delay. These distinctions are not yet well

established, and membrane properties alone may exert effects with histories that last 100

ms [7].



Spike counts in each 1 ms time step k were modeled with a Poisson distribution

conditioned on history, elapsed time, and average firing rate parameters. The mean k

depended log-linearly on the elapsed time interval I(i,k, A,) and spiking history Hk,

with model parameters ai, fl, • :

Model log(A)

1 a,

2 al + flnk-_

3 [ 15ms
A, =l5oms/

• ,lI(i,k, A, =150ms)
i=1

4 isooms 1

. iI(i,k,A, =15Oms)+ 3 I8nk-1

5 [ 10oo0 1
A,=150ms 10 14

•.,i(i,k,A, =150ms)+ Xflnk- i + n[k-1Oj-l]:[k-1Oj-10)]
i=1 i=1 i=1

6 [ I500ms
A,=75ms 10 14

SoiI(i, k, A, = 75ms) + Link-i + "k-1oi-u:[k-IOi-10)
i=1 i=l i=1

This is the generalized-linear model (GLM) form that makes maximum likelihood

parameter estimation easy: a convex optimization problem that can be solved with an

iterativelly reweighed least squares procedure. We employed the Matlab routine glmfit to

perform this procedure. Models 5 and 6 were obtained by further reducing the

corresponding models in the above table. Parameters were discarded that were not

significant at the p=0.10 level based on hypothesis testing with the observed Fisher

information calculated based on the given model's likelihood. While this model

reduction procedure can result in overfitting [8], all models were subsequently compared

using AIC and crossvalidation (see below).



4.2.4 Relative model quality: Akaike Information Criterion (AIC)

How important are elapsed time and spiking history versus average firing rate in

describing the PMd delay period response? To address this question, we evaluated the

relative quality of the six model types that captured various aspects of these factors using

the Akaike Information Criterion (AIC).

See Chapter 3 for an introduction to AIC. The formula for the AIC using notation from

this chapter is expressed as follows:

AIC= -2xlog [pn ( e..=:, I 6;)]+2K (4.3)

The first term contains the data likelihood, p (nd.:r, I ), evaluated at the maximum

likelihood estimate • c, where nd ' =  denotes all delay period one-millisecond time

bins for neuron c and target d over all trials r =1: R,.d, where Rc,d is the number of

trials available for that neuron and target. The second term includes K, notation used to

denote the number of parameters that compose the model. This term penalizes the model

for complexity. The same Matlab function glmfit that was used to determine maximum

likelihood parameter estimates, also returns the deviance with which to calculate the AIC.

4.2.5 Absolute model quality: time-rescaling statistics

Once minimum AIC models were chosen for each neuron/direction pair, we evaluated

whether the model sufficiently described the data in an absolute sense. The time

rescaling theorem and its associated statistics allow us to determine whether the

empirically observed spiking data is sufficiently typical under the proposed point process

model. A detailed mathematical description of this procedure was previously reported

[10]. See Chapter 3 for an introduction to the time rescaling statistics.



4.2.6 Decoding: recursive estimation/classification of targets from ensemble PMd

spiking

How important are elapsed time and history versus average firing rate in the quality of

target representation among the spiking of an ensemble of PMd neurons? To address this

question we applied a discrete time point process filter to provide target estimates that

would theoretically approximate the minimum classification error assuming our selected

models were correct. Because we assumed complete initial uncertainty about the target

in each decoding trial, this approach was equivalent to choosing the maximum a

posteriori (MAP) or the maximum likelihood (ML) target.

The filtering problem requires that we calculate the posterior density on the target

position X given spike counts from a PMd ensemble of C neurons, including the first

k +1 time bins of the delay period. The target position random variable can take on a

particular value x that indicates one of the eight fixed target locations. The task draws

targets at random, so that the initial probability of any given target is uniform:

p(X =x) =0.125 (4.4)

Binned spike counts are updated with each new millisecond bin of ensemble observations

using the following filtering equation:

(+~I+, f)k+n'' exp(-Ak+l,c,x) p(X = x I n'c)
p(X =xlnf Rk+ (4.5)

Here, A:+I,c,x is the instantaneous probability of firing at time k + 1, specified by the

model for neuron c and target position x, and expressed in spikes per bin (here spikes

per millisecond). This term captures history or elapsed-time dependence that is



represented in the model. nllf is the set of spikes counts from the first k one millisecond

bins of the delay period.

Equation (4.5) simply represents an application of Bayes Rule. The expression in square

brackets corresponds to a discrete time approximation of the point process observation

density, namely p (n c I X = x, n:f ; Ok). The normalization constant Rk+1 includes

p(nl:C I ,:Ck)

The mode of this posterior density (4.5) represents the target estimate that is most

frequently correct:

Xk+1 = arg max (p(X = x n1 , C)) (4.6)

The number of trials for which this target estimate is correct at a given time interval k is

reported as "Percent Correct (%)" (Figures 4.4 A,D, and G).

Our use of the point process filter explicitly states its assumptions through the statistical

model. In contrast to previous PMd decoding approaches [4, 5], these assumptions are

verified in the model quality steps (see previous sections). In an effort to reduce the

effects of model mismatch, only minimum AIC models of neurons that passed the time

rescaling statistics were included in the decoding analysis.

The filter allows millisecond-by-millisecond updates of the best target estimate over the

duration of any given delay period. By switching between various model assumptions,

we can demonstrate the extent to which those assumptions are important to target

representation in PMd.

Model fitting and filtering were coordinated using three approaches. In leave-one-out

crossvalidation, only the trial being decoded is not used in fitting model parameters. In

leave-zero-out validation, all trials are used in fitting model parameters. In simulated



validation, premovement PMd activity was generated using the time rescaling theorem

from models that were fit using all trials, and decoded with the same models. See [10]

for a description of spike simulation using the time rescaling theorem. The interpretation

and comparison of these three approaches is explained in subsequent sections.

4.3 Results

We first studied the extent to which elapsed time and spiking history better describe delay

period PMd activity than average firing rate alone. Six point process models were

proposed (see Methods), each of which captured different aspects of average firing rate,

elapsed time, and spiking history. After these models were fit to the data, the relative

importance of these factors in predicting delay period activity could be assessed with the

Akaike Information Criterion (AIC) (see Methods). This measure captures the notion

that models that generalize well to unseen data are careful to balance goodness-of-fit with

simplicity.

The AIC analysis is summarized in a bar graph (Figure 4.4.2A). These results indicate

that elapsed time and spiking history together describe PMd delay period responses better

than any factor alone for more than 70 percent of neuron/direction pairs. Consistent with

the contribution of elapsed time, we would expect that the presentation of a target in the

context of the delayed reach training regimen is associated with physical processes that

preserve a dynamic temporal structure over multiple trials. In contrast, roughly 20% of

neuron/direction pairs were consistent with models that would describe a PMd response

dictated by physical processes that retain a static structure over the delay period.

History terms distributed throughout the last 150 milliseconds were represented in the

minimum AIC models (Figure 4.2C), and their contributions tended to be inhibitory (not

shown). Taken together, this data suggests that both local and distant neuronal processes

contribute to the PMd response during the delay period. Cell membrane properties and

inhibitory interneuron connections might predominate the short term history, while more

distant recurrently connecting pathways [11, 12] to parietal cortex, frontal cortex, basal
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8 directions based on the K-S and autocorrelation tests (Figure 2). (C) Distribution
of history intervals that contributed to the minimum-AIC models described in (A),
including short-term history that extends backwards in time from 1 to 10 ms in 1 ms
intervals, and long term history that further extends from 11 to 150 ms in 10 ms
intervals. (D) Same as in (C), but computed among models that correspond to
neurons with satisfactory models for all 8 directions based on the K-S and
autocorrelation tests (Figure 2). This broad history dependence may arise from
properties of the individual neuron, recurrent connections of the associated
network, and temporal correlations in the visually presented stimulus.
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ganglia, and cerebellum might contribute to long term history. This supports the idea that

a network of neurons distributed throughout cortical and subcortical regions cooperate in

determining activity that specifically precedes the movement and follows the visually-

directed cue, but that local PMd properties also contribute to history dependence. Indeed,

delay period activity distinct from activity in other movement phases has been observed

in posterior parietal cortex [13], frontal cortex [ 14], and the subthalamic nucleus [15].

Could PMd responses, determined by both local and distant physical processes, be

adequately described by these relatively simple models? The time rescaling theorem and

related statistics (see Methods) allowed us to evaluate our models in this absolute sense.

We plot sample results from the K-S statistic and one-lag autocorrelation for illustration

(Figures 4.3A and B). The threshold for passing the K-S test can be varied to include

more neurons that have satisfactory models for every target position (Figure 4.3C). The

99 percent confidence interval corresponds to the vertical dashed line, where 40 of the 61

PMd neurons have adequate models in all directions. Of these 40 neurons, 38

additionally passed the one-lag autocorrelation test. Consequently, just over 60 percent

of the neurons studied could be adequately described (in the sense of time rescaling

statistics) by these model classes. The model classes among this passing subset (Figure

4.2B) tend to include more Poisson models than the original subset (Figure 4.2A). Short

and long term history are still represented (Figure 4.2C).

How important are average firing rate, elapsed time and spiking history in the

representation of targets? By capturing how quickly and efficiently targets could be

decoded when each of these factors were incorporated, our analysis characterized the

extent of advantage that downstream neural networks or prosthetic algorithms would

acquire by tuning their responses to those factors.

Results of leave-one-out crossvalidation (Figures 4.4 A-C), leave-zero-out validation

(Figures 4.4 D-F), and simulated validation (Figures 4.4 G-I) were summarized. See

Methods for definitions. In all decoding cases, the minimum AIC filter provides better

results than inhomogeneous Poisson (elapsed time) or Poisson models (Figures 4.4 A,D,
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Figure 4.3. Use of the time-rescaling theorem to evaluate the minimumAIC
models determined in Figure 2C. The time-rescaling theorem states that the
correct model of spiking activity will proportion the interspike intervals
(ISIs) of a spike train into series of independent, exponentially distributed
random variables of mean 1. (A) The K-S plot verifies that rescaled ISIs are
exponentially distributed. Spikes generated from the Min AIC model of one
example neuron produce empirical cumulative probability density functions
that fall within the solid lines 99 percent of the time. (B) The one-delay-
autocorrelation test checks that neighboring interspike intervals are
independent, as depicted pictorially with this same model from the uniform
scatter of ISIs. (C) More neurons pass the K-S test when the normalized K-
S statistic is increased. At the normalized K-S statistic corresponding to 99
percent confidence intervals (vertical dashed line), 40 out of 61
(approximately 65%) of the neurons pass the K-S test, of which 38 neurons
additionally pass the one-delay-autocorrelation test with a confidence
interval of 3 standard deviations.
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G). Decisions that are made on the scale of reaction times (200 ms) make more efficient

use of neurons when both elapsed time and history are incorporated (Figures 4.4 B,E,H).

Performance improvements appear to diminish substantially as the population size

approaches 40 neurons. This effect is likely an artifact of the analysis: because neurons

are drawn with replacement from a pool of 38 neurons, fewer independent observations

are introduced as the tested ensemble size grows. The simulated validation (Figure 4.4

H) introduces independent responses, but from the same pool of 38 tuning curves

(spiking models). Similarly, projected estimates of performance reported in previous

studies [4, 5, 16] are expected to under or overestimate the number of neurons needed to

achieve a particular performance level if the observed set of neurons have a different

distribution of tuning curves than the general population. Reliable decisions can

generally be made more rapidly by considering elapsed time and history structure in

addition to average firing rate (Figures 4.4 C,F,I).

Why aren't these decoding results perfect? The simulated validation (Figures 4.4 G,H,I)

shows that even when a filter is perfectly matched to spiking activity, decoding errors

cannot be eliminated entirely during the delay period because the spiking response is

intrinsically noisy. However, the error rates can be brought down both by increasing the

numbers of neurons (Figure 4.4H) and by waiting longer before a decision is made

(Figure 4.4G). In practice decoding performance is worse than would be suggested by

the simulated analysis. The concepts of overfitting and underfitting capture this notion.

In overfitting, the model is unable to adequately generalize because it captures features of

the noise specific to the training data set. The difference in performance between leave-

zero-out validation (Figure 4.4D) and leave-one-out crossvalidation (Figure 4.4A)

suggests that the minimum AIC and inhomogeneous Poisson models suffer from

overfitting to a greater extent than the Poisson model. In underfitting, the model fails to

generalize well because it is unable to capture the correct intrinsic structure in the PMd

response. The difference in performance between leave-zero-out and simulated

validation indicates that the Poisson model suffers in part from simplicity: performance

degradation from poor goodness-of-fit (model mismatch) is indicative of underfitting.
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model (model 3, dark gray), and a Poisson model (model 1, light gray). Three types of analyses

are displayed: (A,B,C) Leave-one-out crossvalidated empirical decoding performance. (D,E,F)

Leave-zero-out empirical decoding performance, and (G,H,I) Simulated decoding

performance. Three types of graphs are used to summarize the results: (A,D,G) The percentage

of trials classified correctly is plotted against time for an ensemble of 40 neurons. (B,E,H) The

largest percent correct achieved by each model class in the first 500 ms post-target-onset is

plotted against ensemble size. (C,F,I) The time post-target-onset required to reach 30% correct

is plotted against ensemble size. Shaded lines in all graphs indicate 2 standard deviations above
and below a mean percent correct, calculated from the variance of 10 simulation results, each of

which runs at least 500 decoding trials.
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4.4 Discussion

The modeling analysis presented in this work suggests that for the majority of PMd

neurons, the incorporation of elapsed time and history better describes delay period

activity than the standard average firing rate tuning curve alone. The delay period

response of many PMd neurons can be adequately described (in the sense of time-

rescaling statistics) by these relatively simple models despite extensive local and distant

recurrent connections. The heterogeneity of physical phenomena associated with PMd is

reflected in a broad based history dependence over 150 ms.

The decoding analysis highlights that better target representations can be achieved in at

least three ways: adjusting the neural code, growing the population of neurons in the

ensemble, and waiting longer times before decisions are made. Often we are unable to

wait longer to generate reliable representations, such as when shooting a basketball in a

game, or playing a rapid piano piece. Recruitment of larger population sizes and adjusted

neural codes are two possible ways in which experts might improve their performance in

the face of time constraints.

Our simulated validation shows that even Poisson neural codes with realistic firing rates

and tuning curves are capable of target representation that is far superior to what would

be inferred from leave-one-out crossvalidation. The spiking of most PMd neurons is

better described by elapsed time and history dependence, but a minority of ensemble

subsets that are sufficiently decoupled from recurrent connections might still contribute

to target representation in a Poisson-like fashion.

Although we have characterized the relative importance of various factors in contributing

to high quality target representation in PMd, the best downstream neural systems for

decoding would need to consider robustness, energy consumption, and other costs in

addition to expected classification performance. As a result, the physical instantiation of

an optimized in vivo decoding algorithm could be very different from what is considered

optimal with respect to minimum classification error.



The minimum AIC models in this report present better generalizability than standard

PMd models and achieve adequate goodness-of-fit based on the time rescaling statistics.

However, the statistical description of PMd delay period activity is not complete.

Subsequent work must achieve stronger generalizability in the statistical description of

PMd. The next generation of statistical models should begin to consider known physical

constraints. Techniques like diffusion tensor imaging may be able to provide estimates of

conduction delays related to recurrent connections to the specific PMd neurons being

investigated in any given study. A physically constrained approach may allow for

stronger generalization as well as statements about PMd target representation that can be

interpreted more directly in the context of the neural architecture.
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Chapter 5

A State Space Analysis for
Reconstruction of Goal-Directed Movements
Using Neural Signals'

The execution of reaching movements involves the coordinated activity of multiple brain

regions that relate variously to the desired target and a path of arm states to achieve that

target. These arm states may represent positions, velocities, torques, or other quantities.

Estimation has been previously applied to neural activity in reconstructing target

separately from path. However, target and path are not independent. Because arm

movements are limited by finite muscle contractility, knowledge of the target constrains

the path of states that leads to the target. In this chapter, we derive and illustrate a state

equation to capture this basic dependency between target and path. The solution is

described for discrete-time linear systems and Gaussian increments with known target

arrival time. The resulting analysis enables the use of estimation to study how brain

regions that relate variously to target and path, together specify a trajectory. The

corresponding reconstruction procedure may also be useful in brain-driven prosthetic

devices to generate control signals for goal-directed movements.

L. Srinivasan, U.T. Eden, A.S. Willsky, E.N. Brown. Neural Computation, vol. 18, no. 10, October 2006.



5.1 Introduction

An arm reach can be described by a number of factors, including the desired hand target

and the duration of the movement. We reach when moving to pick up the telephone or to

lift a glass of water. The duration of a reach can be specified explicitly (Todorov &

Jordan, 2002) or emerge implicitly from additional constraints such as target accuracy

(Harris & Wolpert, 1998). Arm kinematics and dynamics during reaching motion have

been studied through their correlation with neural activity in related brain regions,

including motor cortex (Moran & Schwartz, 1999), posterior parietal cortex (Andersen &

Buneo, 2002), basal ganglia (Turner & Anderson, 1997), and cerebellum (Greger, Norris,

& Thach, 2003). Separate studies have developed control models to describe the observed

movements without regard to neural activity (Todorov, 2004a). An emerging area of

interest is the fusion of these two approaches, to evaluate neural activity in terms of the

control of arm movement to target locations (Todorov, 2000; Kemere & Meng, 2005).

While several brain areas have been implicated separately in the planning and execution

of reaches, further study is necessary to elucidate how these regions coordinate their

electrical activity to achieve the muscle activation required for reaching. In this chapter,

we develop state-space estimation to provide a unified framework to evaluate reach

planning and execution related activity.

Primate electrophysiology during reaching movements has focused on primary motor

cortex (Ml) and posterior parietal cortex, regions that represent elements of path and

target, respectively. Lesion studies previously identified M1 with motor execution

(Nudo, Wise, SiFuentes, & Milliken, 1996) and PPC with movement planning

(Geschwind & Damasio, 1985). Several experiments have characterized the relationship

between Ml neuronal activity, arm positions and velocities (Georgopoulos, Kalaska,

Caminiti, & Massey, 1982; Schwartz, 1992; Moran & Schwartz, 1999; Paninski, Fellows,

Hatsopoulos, & Donoghue, 2004), and forces (Georgopoulos, Ashe, Smyrnis, & Taira,

1992; Taira, Boline, Smyrnis, Georgopoulos, & Ashe, 1995; Li, Padoa-Schioppa, &

Bizzi, 2001). PPC is presently described as relating broadly to the formation of intent,

and specifically to the transformation of sensory cues into movement goals (Andersen &



Buneo, 2002). More recent experiments are beginning to elucidate the role of premotor

cortical areas in motion planning and execution (Schwartz, Moran, & Reina, 2004),

including interactions with PPC (Wise, Boussaoud, Johnson & Caminiti, 1997). Explicit

regression analyses have also been performed to relate motor cortical activity to features

of both target and path (Fu, Suarez, & Ebner, 1993; Ashe & Georgopoulos, 1994).

In parallel, theoretical models for the planning and execution of reaches have developed

to include different concepts in control engineering and robotics. A common starting

point is the state equation, a differential equation that describes how the arm moves due

to passive sources like joint tension, and user controlled forces such as muscle activation.

The state equation is used to prescribe a path or a sequence of forces to complete the

reach based on the minimization of some cost function that depends on variables such as

energy, accuracy, or time. Many reach models specify control sequences computed prior

to movement that assume a noise-free state equation and perfect observations of arm state

(Hogan, 1984; Uno, Kawato & Suzuki, 1989; Nakano et al., 1999). The execution of

trajectories planned by these models can be envisioned in the face of random

perturbations by equilibrium-point control, where each prescribed point in the trajectory

is sequentially made steady with arm tension. Recently, reach models have been

developed that explicitly account for noisy dynamics and observations (Harris &

Wolpert, 1998; Todorov, 2004b). Based on stochastic optimal control theory, the most

recent arm models (Todorov & Jordan, 2002; Todorov, 2004b) choose control forces

based on estimates of path history and cost-to-go, the price associated with various ways

of completing the reach. A general review of control-based models is provided in

Todorov, 2004a.

Estimation has been used to relate neural activity with aspects of free arm movements

(Georgopoulos, Kettner, & Schwartz, 1988; Paninski, Fellows, Hatsopoulos, &

Donoghue, 2004). Alternate models of neural response in a specific brain region can be

compared by mean squared error (MSE). Reconstruction of a measured parameter is one

way to characterize neural activity in a brain region. Learning rates can be related

explicitly and simultaneously to continuous and discrete behavioral responses using an



estimation framework (Smith et al., 2004). Mutual information is a related alternative

that has been prevalent in the characterization of neural responses to sensory stimuli

(Warland, Reinagel, & Meister, 1997). Both mean squared error (MSE) and conditional

entropy (calculated in determining mutual information) are functions of the uncertainty in

an estimate given neural observations, and mean squared error (MSE) rises with

conditional entropy for Gaussian distributions. These two methods were recently coupled

to calculate the conditional entropy associated with recursively-computed estimates on

neural data (Barbieri et al., 2004).

Estimation algorithms presently form the interface between brain and machine in the

control of neural prosthetics, bearing directly on the clinical treatment of patients with

motor deficits. Prototype systems have employed either estimation of free arm movement

(Carmena, et al., 2003; Taylor, Tillery, & Schwartz, 2002; Wu, Shaikhouni, Donoghue,

& Black, 2004), or target location (Musallam, Corneil, Greger, Scherberger, & Andersen,

2004; Santhanam, Ryu, Yu, Afshar, & Shenoy, 2005). Most recently, several estimation

procedures were proposed to combine these two approaches and specifically facilitate

reaching movements for brain-controlled prosthetics (Srinivasan, Eden, Willsky, &

Brown, 2005; Cowan & Taylor, 2005; Yu, Santhanam, Ryu, & Shenoy, 2005; Kemere &

Meng, 2005).

Two probability densities are used implicitly in estimation. The first density describes

the probability of neural activity conditioned on relevant covariates like stimulus

intensities or kinematic variables. This density arises through the observation equation in

estimation, and as an explicit function in information theoretic measurements. The

second density describes the interdependence of the relevant covariates before any neural

activity is recorded. This density arises through the state equation in estimation and as a

prior on stimulus values in the information-theoretic characterization of sensory neurons.

In experiments that calculate mutual information between neural activity and independent

stimulus parameters, this second probability density is commonly chosen to be uniform.

In the study of reaching movements, the complete prior density on target and path

variables cannot be uniform because the target and the path state at all times in the



trajectory are dependent. A state equation naturally expresses these constraints, and

serves as a point of departure for analysis based on estimation.

In this chapter, we develop a discrete-time state equation that relates target state and path

states under weak assumptions about a reach. Specifically, the result represents the

extension of the linear state-space description of free arm movement with no additional

constraints. The states of the target or path refer to any vector of measurements of the

arm at a particular point in time, such as joint torque, joint angle, hand velocity, and

elbow position. This method supports arbitrary order, time-varying linear difference

equations, which can be used to approximate more complicated state equation dynamics.

The approach is based on the continuous-time results by Castanon, Levy, & Willsky,

1985 in surveillance theory, and draws on the discrete time derivation of a backwards

Markov process described by Verghese & Kailath, 1979. Unlike existing theoretical

models of reaching movement, we do not begin with an assumed control model or

employ cost functions to constrain a motion to target. The resulting reach state equation

is a probabilistic description of all paths of a particular temporal duration that start and

end at states that are specified with uncertainty.

We first develop a form of the reach state equation that incorporates one prescient

observation on the target state. We then extend this result to describe an augmented state

equation that includes the target state itself. This augmented state equation supports

recursive estimates of path and target that fully integrate ongoing neural observations of

path and target. Sample trajectories from the reach state equation are shown. We then

demonstrate the estimation of reaching movements by incorporating the reach state

equation into a point process filter (Eden, Frank, Barbieri, Solo, & Brown, 2004). We

conclude by discussing the applicability of our approach to the study of motion planning

and execution, as well as to the control of neural prosthetics.



5.2 Theory

5.2.1 State Equation to Support Observations of Target Before Movement

The objective in this section is to construct a state equation for reaching motions that

combines one observation of the target before movement with a general linear state

equation for free arm movement. The resulting state equation enables estimation of the

arm path that is informed by concurrent observations and one target-predictive

observation, such as neural activity from brain regions related to movement execution

and target planning respectively. We begin with definitions and proceed with the

derivation.

A reach of duration T time steps is defined as a sequence of vector random variables

(X, x ,..., xT) called a trajectory. The state variable x, represents any relevant aspects of

the arm at time sample t, such as position, velocity, and joint torque. The target x, is

the final state in the trajectory. While we conventionally think of a target as a resting

position for the arm, x, more generally represents any condition on the arm at time T,

such as movement drawn from a particular probability distribution of velocities.

For simplicity, we restrict our trajectory to be a Gauss-Markov process. This means that

the probability density on the trajectory p( x, x, ..., xT) is jointly Gaussian and that the

probability density of the state at time t conditioned on all previous states

p(x, I x 1 xt2,..., ) equals p(x, I xt_), the state transition density. Although more

general probability densities might be considered, these special restrictions are sufficient

to allow for history dependency of arbitrary length. This is commonly accomplished by

including the state at previous points in time in an augmented state vector (Kailath,

Sayed, & Hassibi, 2000). Figure 5.1A is a schematic representation of the trajectory and

the target observation, emphasizing that the prescient observation of target .y, is related

to the trajectory states xt only through the target state x,.



The conditional densities of the Gauss-Markov model can alternatively be specified with

observation and state equations. For a free arm movement, the state transition density

p(x, I x,-) can be described by a generic linear time-varying multidimensional state

equation,

xt = Axt.I + w,  (5.1)

where the stochastic increment w, is a zero-mean Gaussian random variable with

E[ wwr] = QtS,,. The initial position xo is Gaussian distributed with mean mo and

covariance Io. The prescient observation yT of the target state x, is corrupted by

independent zero-mean Gaussian noise vT with covariance ,'T that denotes the

uncertainty in target position:

YT = XT + VT (5.2)

The state equation coupled with this prescient observation is described schematically in

Figure 5.1B.

Restated, our objective is to represent the free movement state equation together with the

prescient observation on target, as a Gauss-Markov model on an equivalent set of

trajectory states xt conditioned on y, for t= 0,1,..., T. The consequent reach state

equation is of the form:

Xt = Ax,,t + u, + Ct (5.3)

where u, is a drift term corresponding to the expected value of wt xt •, YT, and the 6t are

a new set of independent, zero-mean Gaussian increments whose covariances correspond

to that of w, I x,_, y,. This reach state equation generates a new probability density on

the trajectory of states that corresponds to the probability of the original states

conditioned on the prescient observation, p(x, ..., xT I YT) .
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Figure 5.1. Alternate representations of a reaching trajectory and one observation
on target. In the Markov model (A), circles represent the state of the arm at various
times, and the arrangement of directed arrows indicates that the state of the arm at
time t is independent of all previous states conditioned on knowledge of the state at
time t-l. Accordingly, the only state pointing to y, the prescient observation of
target, is the target state x, itself. In the system diagram (B), the specific evolution
of the arm movement is described. Consistent with the state equation, the arm state
x,., evolves to the next state in time x, through the system matrix A,, with additive
noise w, that represents additional uncertainty in aspects of the arm movement that
are not explained by the system matrix. The diagram also specifies that the
observation y, ofthe target state x, is corrupted by additive noise v,.



To derive this reach state equation, we calculate the state transition probability density

p(x, I x.,, Yr) . Because wt is the only stochastic component of the original state equation,

the new state transition density is specified by p(w, I x, ,y,) . To compute this

distribution, we use the conditional density formula for jointly Gaussian random variables

on the joint density p(wy , I x,,) . The resulting distribution is itself Gaussian with mean

and variance given by:

= E [ w, I xt,, Y,]

= E[ w, x,_, + cov(w,, y, I x,_,) cov-' (y,, y, I x,_,)(y - E[y, | x,, ]) (5.4)

S= cov(w, I x,_, y,)
= cov(w, I Xt-) - cov(w(, YT I x, 1) cov-' (YT I x'-_) cov' (W,, Yr x,) (5.5)

The mean u, corresponds identically to the linear least squares estimate of w, xt, , r

and the variance Q equals the uncertainty in this estimate.

The covariance terms in equations (5.4) and (5.5) can be computed from the following

equation that relates wt to yT given xt-1,

T

.Yr= (T,t-1) x_+ #(T,i) w, + (5.6)

where #(t, s) denotes the state transition matrix that advances the state at time s to time t,

max(t,s)
I Ag(t-s), t S

0(t, s) = I=1+,n(t,s) (5.7)
I, t=s



The covariance terms are accordingly given by

cov(w, I x,_) = Qt (5.8)
cov(w,, y, I x,) = Q, '(T, t) (5.9)

T

cov(.y, yT I x,_1) = n + 0 (T, i) Q'(T,i) (5.10)

For notational convenience, define the following quantity:
T

17(t, T) = (t,)I(t,T) (t, ) +F 0 (t, 1) Q,'(t, 1) (5.11)
I= t

Simplifying and substituting into equations (5.4) and (5.5), we obtain the mean and

covariance of the old increment given the target observation:

t = Qtr-' (t, T)(t, ) [yT -#(T, t- 1)x,] (5.12)

Qt = Q -QI-' (t, T) Q; (5.13)

The density on the initial state conditioned on the target observation is calculated

similarly. The resulting mean and variance of the initial state is given by

flo = (r'-I + ri-' (0, 7))' (5.14)

E[R I y] = I o (0) (Ho'n + r-' (O, T)h (0, T)y,) (5.15)

A recursion can be obtained for equation (5.11) by writing H (t- 1, T) in terms of 1 (t, T):

n(t-1, T) = #(t-1, t)n(t, T)#'(t-1, t)+

O(t- 1, t) Q,_,#'-(t- 1, t) (5.16)

with

H (T, T) = Hr + QT (5.17)

Complementing the new initial conditions (5.14) and (5.15), the reach state equation can

be written in various equivalent forms. The following form emphasizes that the old



increment wt has been broken into the estimate ut of wt from yT and remaining

uncertainty st,

xt = Atxt + u, + Et (5.18)

Et - N(O, Qt) (5.19)

with ut as given in equation (5.12) and ct distributed as a zero-mean Gaussian with

covariance Q,.

This form is suggestive of stochastic control, where ut is the control input that examines

the state at time xt- 1, and generates a force to place the trajectory on track to meet the

observed target. Nevertheless, this form emerges purely from conditioning the free

movement state equation on the target observation rather than from any specific

biological modeling of motor control. Note critically that ut is a function of x,_, , so that

the covariance update in a Kalman filter implementation should not ignore this term.

Alternatively, we can group the xt,_ terms. This form is more conducive to the standard

equations for the Kalman filter prediction update.

Xt = Btxt, 1 + f, + e t  (5.20)

B, = [I- QtE-' (t, T)IA, (5.21)

f, = Qi - 1' (t, T) (t, T) YT (5.22)

In both forms, the resulting reach state equation remains linear with independent

Gaussian errors ct, as detailed in the appendix. Because x, is otherwise dependent on

x,t, or constants, we conclude that the reach state equation in (5.18) or (5.20) is a Markov

process.



5.2.2 Augmented State Equation to Support Concurrent Estimation of Target

Building on the previous result, we can now construct a more versatile state equation that

supports path and target estimation with concurrent observations of path and target. The

previous reach state equation incorporates prescient target information into a space of

current arm state x,. We now augment the state space to include the target random

variable xT. According to this model, the state of the arm at time t is explicitly

determined by the target and the state of the arm at time t- 1.

The reach state equation derived above suggests an approach to calculating the state

transition density p(x,,X I x,•, xT) that corresponds to an augmented state equation.

Because x, is trivially independent of x, conditioned on x,, we can equivalently

calculate the transition density of p(x,• x, xT) . This is identical to the reach state

equation derivation of p(x, I x,- , y,) with v, set to zero. The resulting state equation can

be consolidated into vector notation to give the augmented form:

xt x 'XT C- t (5.23)
T = B, (5.24)

F = QT-' (t, T)q(t, T) (5.25)

Hn =O (5.26)

The initial condition on the augmented state [x,,x,] is the joint distribution that

corresponds to our uncertainty as external observers about the true starting and target

states chosen by the brain at time zero.

This augmented state equation permits additional features to be incorporated into the

model relative to the reach state equation. First, observations of the target can be

incorporated throughout the duration of the reach to improve arm reconstructions. In

contrast, the reach state equation incorporated one target observation before movement.



Second, refined estimates of the target can be generated recursively as estimates become

more informed by reach and target related activity.

5.3 Results

5.3.1 Sample Trajectories

We proceed to illustrate the underlying structure of a reach for our goal-directed state

equation, which appropriately constrains a general linear state equation to an uncertain

target. We also explain how the underlying reach structure is affected by parameters of

the model, namely reach duration, the target state observation, and target uncertainty.

The density on the set of trajectories, p(x,, x, ,..., xO I Yr), can be calculated by iteratively

multiplying the transition densities p(x, I x,_, y) given by the state equation. This

density represents our assumptions about the trajectory before receiving additional

observations of neural activity during the reach. Broader probability densities on the set

of trajectories imply weaker assumptions about the specific path to be executed.

We can visually examine the structure of our assumptions by plotting samples from the

density on trajectories as well as the average trajectory. Sample trajectories are generated

by drawing increments 8, from the density specified in equation (5.19). The simulated

increments are accumulated at each step with Ax, + u,, the deterministic component of

the state equation (5.18). The resulting trajectory represents a sample drawn from

P(x,, xt-•,..., xO l Y), the probability density on trajectories. The average trajectory is

generated from the same procedure, except that the increments e, are set to their means,

which equal zero.



We first examine sample trajectories that result from small changes in model parameters.

For illustration, the states were taken to be vectors [x, y, vx, vY,, representing position

and velocity in each of two orthogonal directions. The original noise covariance was

nonzero in the entries corresponding to velocity increment variances:

0
0

Q= 0

0
LO

The uncertainty in target state HT was also diagonal, with

r

0HrT = 0

0

(5.27)

(5.28)

In Figure 5.2, sample trajectories from the reach state equation are generated with

baseline parameters (Figure 5.2A) from which distance to target, reach duration, and

increment uncertainty have been individually changed (Figures 5.2B-D). The baseline

model parameters are given in the following table:

Parameter Baseline Value

Reach distance 0.35 m

Time step 0.01 sec

Noise covariance (q) 1x10 4 m Z

Reach duration 2 sec

Target position uncertainty (r) 1x10- m

Target velocity uncertainty ( p) 1x10 -b m'
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Figure 5.2. Sample trajectories (grey) and the true mean trajectory (black)
corresponding to the reach state equation for various parameter choices.
Appropriate changes in model parameters increase the observed diversity of
trajectories, making the state equation a more flexible prior in reconstructing arm
movements from neural signals. Parameter choices (detailed in section 3.1) were
varied from (A) baseline, including (B) smaller distance to target, (C) increased time
to target, and (D) increased increment uncertainty.
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Parameters were individually altered from baseline as follows:

In Figure'5.3, sample trajectories are plotted for increasing uncertainty (r) in target

position, with variances (A) 1x10 -4 , (B) lx10-3, (C) lx10-2, and (D) 1x10-1 m2.This

corresponds to scenarios in which observations of neural activity before movement

initiation provide estimates of target position with varying certainty.

Figures 5.4A-C examines the velocity profiles in one direction generated by the reach

state equation with various parameter choices. Velocity profiles from the baseline

trajectory are displayed (Figure 5.4A), and parameters are sequentially altered from the

baseline values (Figures 5.4B-C) as follows:

Parameter Altered Value Graph

Reach duration 4 sec Figure 5.4B

Target position and r=lxl03 m Figure 5.4C
velocity uncertainty p=1xl0 3 m2

Figure 5.4D examines the

increment. The magnitude

plotted over the duration of

effect of target information on uncertainty in the velocity

of one diagonal velocity term of the noise covariance Q, is

the reach for comparison against the noise covariance Q, of

the corresponding free movement state equation.

Parameter Altered Value Graph

Reach distance 0.25 m Figure 5.2B

Reach duration 4 sec Figure 5.2C

Noise covariance (q) 3x10 4 mZ Figure 5.2D
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Figure 5.3. Sample trajectories (grey) and the true mean trajectory (black) of the

reach state equation corresponding to various levels of uncertainty about target arm

position. Variance in the noise v, of the prescient observation y, is progressively

increased from (A) le-4, to (B) le-3, (C) le-2, and (D) le-1 m2. As target

uncertainty grows, trajectories become more unrestricted, corresponding to

increasing flexibility in the prior for reconstruction of arm movements.



5.3.2 Reconstructing Arm Movements During a Reach

The reach state equation can be incorporated into any estimation procedure based on

probabilistic inference, since it represents a recursively-computed prior. Because the

reach state equation minimally constrains the path to the target observation, it may be

useful in the analysis of coordinated neural activity with respect to planning and

execution. We illustrate the reconstruction of reaching movements from simulated neural

activity using a point process filter (Eden, Frank, Barbieri, Solo, & Brown, 2004), an

estimation procedure that is conducive to the description of spiking activity in particular.

The extension to variants of the Kalman filter is also direct, because the reach state

equation (5.20) is written in standard Kalman filter notation.

We first simulated arm trajectories using the reach model as described in the previous

section. For comparison, arm trajectories were also generated from a canonical model.

This canonical model was a family of movement profiles from which specific trajectories

could be chosen that guaranteed arrival at the desired target location and time:

x y +1 )f OlF x 2 0
y 0 1 0 _ y c{0

=)(, + (/)c (5.29),v,-•,, - Yo

This deterministic equation relates velocities [x, y, vx, vy]t to the time increment 6, the

current time step t, and the distances in two orthogonal directions between the target and

starting points, over T+ 1 time steps.

After generating trajectories, we simulated the corresponding multiunit spiking activity

from 9 neurons, a typical ensemble size for present-day recording from a focal, single

layer of cortex (Buziki, 2004). Output from each unit in the ensemble was simulated

independently as a point process with an instantaneous firing rate that was a function of

the velocity.
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Figure 5.4. Sample velocity trajectories (grey) and the true mean velocity
trajectory (black) generated by the reach state equation. (A) For baseline
parameters (detailed in section 3.1) with reach duration of 2 seconds, the velocity
profile is roughly bell-shaped. (B) As reach duration increases to 4 seconds, the

trajectories become more varied. (C) If uncertainty in the observed target velocity

and position is large (le3 m2 for each variance), velocity trajectories resemble

samples from the free movement state equation. (D) Uncertainty in the velocity
increment decreases with time due to the prescient target observation (solid line) as

compared to the original velocity increment of the corresponding free movement
state equation (dashed line).



This function, referred to as the conditional intensity (Eden, Frank, Barbieri, Solo, &

Brown, 2004), is equivalent to specifying a receptive field. Our conditional intensity

function is adapted from a model of primary motor cortex (Moran & Schwartz, 1999):

A(tl v, v,)= exp(fo, +A (Y + v)1/2 cos(0- 0p)) (5.30)

= exp( + a, v8• + , va y) (5.31)

where ýv and v, are velocities in orthogonal directions.

The receptive field

probability densities

parameters were either directly assigned or drawn from uniform

on specific intervals as follows:

The corresponding receptive fields had preferred directions between -n and n,

background firing rates of 10 spikes/sec, and firing rates of 24.9 spikes/sec at a speed of

0.2 m/sec in the preferred direction.

Together with the simulated trajectory, this conditional intensity function specifies the

instantaneous firing rate at each time sample based on current velocity. Spikes were then

generated using the time rescaling theorem (Brown, Barbieri, Ventura, Kass, & Frank,

2002), where inter-spike intervals are first drawn from a single exponential distribution

and then adjusted in proportion to the instantaneous firing rate. This method is an

alternative to probabilistically thinning a homogeneous Poisson process.

Parameter Assignment or Interval

0o 2.28

P1 4.67 sec/m

OP[-tnl



The simulated spiking activity served as the input observations for the point process

filter, described extensively in Eden, Frank, Barbieri, Solo, & Brown, 2004. The two

defining elements of this filter are the state equation and observation equation. Our state

equation is the reach model, and represents the dynamics of the variables we are

estimating, specified by p(x, I xt,, y). Our observation equation is the receptive field of

each neuron, specified by p(AN, AN:N,, 1, x,, y,). This is the probability of observing

ANt spikes at time t, given previous spike observations AN,:t ,-, the current kinematic

state x,t , and the observation of target y,. Because the spiking activity is described as a

point process, the conditional intensity function specifies this observation density:

p(AN, I AN,,..., ANt , x,, yT) " exp[AN' log(AG(tlxt),) - A(tx,t)6] (5.32)

where 6: denotes the time increment.

The formulation of a recursive estimation procedure from these two probability densities

is the to]pic of Eden, Frank, Barbieri, Solo, & Brown, 2004. As with the Kalman filter, the

resulting point process filter is comprised of a prediction step to compute

p(x, AN,:t-, y,) and an update step to compute p(x, I AN,:,, y,). The reach state

equation determines the mean and variance prediction steps of the point process filter, as

given by

X4t-i = BtXt-lt-1 + ft (5.33)

Aq,_, = B tAtIlt_ B +Qt (5.34)

The update step remains unchanged:

(A (,)-= +(At-1)+ log t ak 2 log A (5.35)

tlt = Xlt- + At a log (ANt -A k (5.36)
xI1,-
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Figure 5.5. Reconstruction of reaching arm movements from simulated spiking

activity. The reach state equation was used to generate trajectories, from which

spiking activity was simulated with a receptive field model of primary motor cortex.
Point process filter reconstructions using a free movement state equation (thin grey)

and a reach state equation (thick grey) were compared against true movement values

(black). Trajectories of x and y arm positions were plotted against each other (A),
and as a function of time (B,C). Additionally, trajectories of x and y arm velocities
were plotted against each other (D), and as a function of time (E,F). In these
examples, target location is known almost perfectly to the reconstruction that uses

the reach state equation, with position and velocity variances of 1 e-5 m2



We compared the quality of reconstruction using the reach state equation versus the

standard free arm movement state equation. The same covariance Q, from equation

(5.27) was incorporated into the free arm movement state equation (5.1) and the reach

state equation (5.20). Figure 5.5 compares position and velocity decoding results for one

simulated trial on a trajectory generated from the reach state equation. In this trial, the

filter employing a reach state equation is provided the target location with relative

certainty, by setting both the r and p parameters of ,T to lx 10- m2 in equation (5.28).

The point process filter appears to track the actual trajectory more closely with the reach

state equation than with the free movement state equation.

Next, we examined the performance of the reach model point process filter in estimating

trajectories that were generated from the canonical equation (5.29) rather than the reach

state equation, to determine whether the reconstruction would still perform under model

violation. Decoding performance for one trial with the canonical trajectory is illustrated

in Figure 5.6, using the free movement state equation and the reach state equation with r

and p in 1,T set to 1x10 -
I m2 as with Figure 5.5. Again, the point process filter tracks

the actual trajectory more closely when using the reach state equation than when using

the free movement state equation.

We then assessed whether incorrect and uncertain target-planning information could be

refined 'with neural activity that was informative about the path. We implemented the

target-augmented state equation and examined the mean and variance of estimates of the

target position as the reach progressed. Although the true target coordinates were (0.25

m, 0.25 m) on the x-y plane, the initial estimate of the target location was assigned to (1

m, 1 m) with a variance of 1 m2, large relative to the distance between the initial target

estimate and correct target location. Decoding performance for one trial is illustrated in

Figure 5.7. In Figures 5.7 A and B, the estimate of the target location is shown to settle

close to the true target location relative to the initial target
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Figure 5.6. Reconstruction in the face of model violation. Trajectories are
generated with an appropriately scaled cosine velocity profile. Again, results are
compared for point process filtering using free (thin black) and reach (thick grey)
movement state equations against true values (thick black). As with Figure 5.5,
trajectories of x and y arm positions were plotted against each other (A), and as a
function of time (B,C). Similarly, trajectories of x and y arm velocities were plotted
against each other (D), and as a function of time (E,F). Position and velocity
variances of the target observation are 1 e-5 m'.



estimate within 1.5 seconds of a 2 second reach. In Figure 5.7C, the variances in the

position (solid) and velocity (dotted) estimates for target (black) approach the variances

in estimates for the path (gray) as the reach proceeds.

Finally, we confirmed in simulation that the mean squared error of reconstruction using

the reach state equation approaches that of the free movement state equation as the

uncertainty in target position grows. One common simulated set of neural data was used

to make a performance comparison between the two methods. Mean squared errors were

averaged over 30 trials for the point process filter using the free and reach state equations

separately. The results were plotted in Figure 5.8 for values of r and p in H, set equal,

and over a range from 1x 10-7 m2 to 10 m2, evenly spaced by 0.2 units on a loglo(m2)

scale. The mean squared error line for the reach state equation approaches that of the free

movement state equation as -, grows large, and also flattens as T, approaches zero.

5.4 Discussion

We have developed a method for describing reaching arm movements with a general

linear state equation that is constrained by its target. We first derived a reach state

equation, which incorporates information about the target that is received prior to

movement. This derivation was then adapted to explicitly include the target as an

additional state space variable. The resulting augmented state equation supports the

incorporation of target information throughout the reach as well as during the planning

period.

As described in the derivation, the reach state equation is Markov. This property is

guaranteed in part by the independence of noise increments that is demonstrated in the

appendix. Consequently, the reach state equation is amenable to recursive estimation

procedures. With no further alterations, the estimate of x, can be obtained exclusively

from the neural observation at time t and the estimate of x,-, given data through time

t-1.
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Figure 5.7. Target estimation with the augmented state equation for one trial. The
initial estimate of the target is intentionally set to be incorrect at (1 m, 1 m) and with
variance of 1 m2 that is large relative to the distance to the true target location at (0.25
m, 0.25 m). Subsequent target estimates are produced using simulated neural
spiking activity that relates directly to the path rather than the target. (A) Estimates
of the target position are plotted in gray on the x-y axis, with the actual target marked
as a black cross. (B) Distances from target estimates to the actual target location are
plotted in meters against time. (C) Variances in estimates of target (black) and path
(gray) are plotted on a logarithmic scale over the duration of one reach for position
(solid) and velocity (dashed). These target estimate variances reduce with
observations consisting only of simulated primary motor cortical activity relating to
path.



The form of the reach state equation presented in (5.18) is particularly suggestive of

stochastic control. In fact, the u, component in (5.18) is the solution to the standard

linear quadratic control problem. This represents a duality between estimation and

control (Kailath, Sayed, & Hassibi, 2000). In this interpretation, the reach state equation

is a model for the way in which the subject dynamically plans his path from a current

position to the target. The stochastic increment ct represents our uncertainty as external

observers, about the precise control strategy being employed. The variable u, takes the

role of a control input that represents the adjustments that the subject is expected to make

to return the trajectory to a path that puts it on track to the target. In the reach state

equation, u, is a function of the state x,_1 and target observation y,. In the augmented

state equation, u, is a function of x,_- and the actual target xT rather than the target

observation y,.

Various parameters work together to determine our uncertainty in the control strategy,

including the increment variance in the original free movement state equation, distance to

target, time to target, and target uncertainty. Together, these parameters determine

whether the state equation at any given time forces the trajectory towards a particular

target, or whether the trajectory tends to proceed in a relatively unconstrained fashion.

Figures 5.2 and 3 describe the variation in trajectories that can be generated by

modulating these parameters, from very directed movements to paths with nearly

unconstrained directions.

The reach state equation in its simplest form is sufficient to generate, on average, bell-

shaped velocity profiles that are similar to those observed in natural arm reaching

(Morasso, 1981; Soechting & Lacquaniti, 1981). Models of reaching movement that are

based on optimization of specific cost functions, examples of which include Hogan,

1984, Uno, Kawato, & Suzuki, 1989, Hoff & Arbib, 1993, and Harris & Wolpert, 1998,

also generate these bell-shaped velocity profiles. It has been previously noted in a

literature review (Todorov, 2004a) that these various methods implicitly or explicitly



optimize a smoothness constraint. In our reach state equation, the bell-shaped velocity

profile emerges implicitly from the zero-mean Gaussian increment of the original free

movement state equation. This probability density sets a probabilistic smoothness

constraint, where it is more likely that the state at consecutive time steps will be similar.

Additionally, symmetry in the profile emerges from the choice of a constant, invertible

matrix A, in equation (5.18) and equal mean starting and ending velocities, as with

trajectories in Figures 5.4A. Optimal control models have previously reproduced the

skewed velocity profiles (Hoff, 1992) that occur in experiments (Milner & Ijaz, 1990)

where the target must be acquired with increased precision. With the reach state equation,

skewed profiles may require the appropriate choice of time varying components such as

A and w,. When the arrival time grows longer (Figure 5.4B) or the endpoint becomes

less constrained (Figure 5.4C) in the reach state equation, the trajectory tends to resemble

a sample path of the free movement state equation, as intended by construction.

As the reaching motion approaches the target arrival time, our sense of the subject's

control strategy becomes clearer, because we know the intended target with some

uncertainty. We also know that the path must converge to this target soon. Furthermore,

we can calculate the control signal that would achieve this goal based on the system

dynamics represented by the A, matrices in equation (5.18). Figure 5.4D illustrates that

the uncertainty in the control strategy, represented by the variance in the stochastic

increment 6,, decreases over the duration of the reach based on y,T the prescient

observation of target. In contrast, the free movement state equation maintains constant

uncertainty in the control strategy as the reach progresses because it is not informed about

the target location.

Because the reach state equation incorporates target information, it is able to perform

better than the equivalent free movement state equation that is uninformed about target.

This is illustrated in Figure 5.5, where closer tracking is achieved over the entire reach

when the state equation is informed about target than otherwise.
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This reach model and its augmented form are minimally constrained linear state

equations. In a probabilistic sense, this means that the estimation prior at each step is

only as narrow (or broad) as implied by the original free movement state equation and

observations of path and target. In contrast, most reach models based on specific control

strategies (Todorov, 2004b), cost functions (Todorov, 2004a), or canonical models

(Kemere, Santhanam, Yu, Shenoy, & Meng, 2002; Cowan & Taylor, 2005), place

additional constraints on the path that make the estimation prior more exclusive of

alternate paths to target. An exception is Kemere & Meng, 2005, which uses the linear

quadratic control solution that provides identical average trajectories to the reach state

equation, based on the estimation-control duality (Kailath, Sayed, & Hassibi, 2000)

although the resulting increment variances are different. As depicted in Figure 5.6,

estimation with a reach state equation is able to perform under model violation, where

arm movements are generated by a different model, while still taking advantage of the

target information.

The target-augmented state equation also allows neural activity related to path to inform

estimates of the target. This is illustrated in Figure 5.7, where the initial estimate of

target position was assigned to be incorrect and with large uncertainty (variance).

Consequently, the estimate of the target location relied in large part on neural activity that

related to the path. The augmented state equation projects current path information

forward in time to refine target estimates. As a result, the estimated target location in

Figure 5.7B settled close to the actual target location 0.5 seconds before completion of

the 2 second reach. The remaining distance between the target location estimate and the

actual target location is limited by the extent to which path-related neurons provide good

path estimates. For example, path-related neural activity that is relatively uninformative

about path will result in poor final estimates of target when combined only with poor

initial target information. Because the target in the augmented state equation is simply

the final point of the path, the variance in the target estimate plotted in Figure 5.7C,

approaches that of the path estimate as the reach proceeds to the arrival time T.



The reach state equation in (5.18) or (5.20) reduces to the original free movement state

equation in the limit that the prescient target observation is completely uncertain. This

explains; the trend in Figure 5.8, where mean squared error in trajectory estimates with the

reach state equation approaches that of the free movement state equation. Estimates were

produced from a common simulated set of neural data to allow performance comparison

between these two approaches.

Filtering with the reach (5.18) and augmented state equations (5.23) bears resemblance to

fixed interval smoothing. Fixed interval smoothing refers to a class of estimation

procedures that produce maximum a posteriori estimates of trajectory values over an

interval with observations of the trajectory over the entire interval (Kailath, Sayed, &

Hassibi, 2000). In filtering with the reach state equation, estimates at a given time t are

based on data received through time t and the single prescient observation yT on the

target state x,. In filtering with the augmented state equation, estimates of x, are based

on data received through time t and potentially multiple prescient observations on x,.

While these three filter types employ observations of future states in maximum a

posteriori estimates, there are important distinctions in terms of which observations are

used and allowance for multiple sequential observations of a single state, such as with x,

in the augmented state equation.

Although parallels exist to stochastic control, there is a sharp distinction between the

results of this chapter and a control-based state equation (Todorov, 2004b; Kemere &

Meng, 2005). First, the reach state equation was derived as the natural extension of a free

movement state equation, with no further assumptions. In contrast, control based state

equations are derived by assuming a specific form for the brain's controller and choosing

the parameters that optimize some cost function. Second, the increment in the reach state

equation approaches zero for perfectly known targets. The increment of control-based

state equations persists, and represents system properties rather than our uncertainty

about the control signal. Third, the reach state equation describes the target state in the

most general sense, including the possibility of non-zero velocities. While this can be



accommodated into the control framework, the classical notion of a reaching motion has

been to a target with zero velocity.

Distinctions between the reach state equation and control-based state equations are

especially important in considering the study of reaching motions. Recursive estimation

coupled with a state equation that relates target to path provides a convenient tool for the

analysis of neural data recorded during planning and execution of goal-directed

movements. The state-space estimation framework can assess the extent to which neural

data and an observation equation improve the reconstruction beyond information about

the movement built into the state equation. Classically, control-based state equations

have been developed to explain as many features about reaching movements as possible

without any neural data. In contrast, the reach state equation was developed to extend the

free movement state equation with no further assumptions. Both approaches represent

different levels of detail in a spectrum of models for the dynamics that drive the observed

neural activity in brain regions that coordinate movement. These models can be used to

clarify the roles of various brain regions or the validity of alternate neural spiking

relationships.

The reach and augmented state equations may also provide improved control in brain

machine interfaces (Srinivasan, Eden, Willsky, & Brown, 2005) by allowing the user to

specify a target explicitly with neural signals, or implicitly through the probability

density of potential targets in a workspace. This and other recent approaches (Cowan &

Taylor, 2005; Yu, Santhanam, Ryu, & Shenoy, 2005; Kemere & Meng, 2005) are hybrids

between target based control prosthetics (Musallam, Corneil, Greger, Scherberger, &

Andersen, 2004; Santhanam, Ryu, Yu, Afshar, & Shenoy, 2005) and path based control

prosthetics (Carmena, et al., 2003; Taylor, Tillery, & Schwartz, 2002; Wu, Shaikhouni,

Donoghue, & Black, 2004), perhaps most relevant when neither approach alone is

sufficient for the desired level of control using available recording hardware to complete

a task. Additionally, the method could support more robust receptive field estimates in

the face of disappearing units due to neuronal death or tissue retraction (Eden, Truccolo,

Fellows, Donoghue, & Brown, 2004). The flexibility of the reach and augmented state



equations over more specific reach models might also allow the user to employ the same

reaching algorithm to navigate obstacles in acquiring their target.

In developing the method further for scientific and clinical application, it is important to

consider limitations of the equations presented in this chapter. Importantly, both the

augmented and reach state equation are written for the prescient observation of a target

with known arrival time T. We are currently developing a principled approach to

accommodate uncertain arrival time, although uncertainty in the target velocity estimate

might be a convenient surrogate. Also, the calculations were simplified greatly by

assuming a linear free-arm-movement state equation with Gaussian increments. This

may not be possible if linear approximation is insufficient to describe the nonlinear

dynamics of a movement. Finally, additional experimental work will be needed to

elucidate the appropriate observation equations, recording sites, and patient rehabilitation

regimen that would enhance the clinical application of this hybrid approach to control

prosthetics.



5.5 Appendix: Proof of Independent
Reach State Equation

Increments

The new increments are defined as e, = w,- E[ w I y,, x,] . Substituting equation (5.6)

into an equation that is equivalent to (5.12), we can rewrite the new increments as

VT,6 = w,- Q,(T,t)'S,' (T,) w,+(= ft (5.37)

T

where St = RT + Z (T,1)Q 10(T,1)
i= t

and RT is the covariance of the observation random

T

variable yT, with RT= =(T, t-1) V,1 '(T, t- 1) + (T,1) Q'(T, 1)+ + T .
i= t

Therefore, E, can be written entirely in terms of the future increments { w}jr t and v,.

For s< t,

E[ s4,] = E w, - Q,t(T, t)' S-'
T T

I-- t (_=s

T

= -Q,0 (T, t)' S; s (T, s) Qs + Qt (T, t)'St -' ( T, i ) Q, ( T , ) +

= -Q, (T, t) Ss'$ (T, s) Qs + Qt (T, t)' S1' (T, s) Qs
=0

RT) S;' 1( T, s) Q,

(5.38)

in the
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Chapter 6

General-Purpose Filter Design for
Neural Prosthetic Devices

Brain-driven interfaces depend on estimation procedures to convert neural signals into

inputs of automated controllers of prosthetic devices that can assist individuals with

severe motor deficits. Previous estimation procedures were developed on a case-by-case

basis for specific applications. In this chapter, we present a coherent estimation

framework that unifies these procedures and motivates new applications. The brain-

driven interface is described as an interaction between neural activity and interacting

components of a prosthetic device that may take on discrete or continuous values. To

support neural prosthetics driven by action potentials, a new filtering estimation

procedure is developed for point process observations which depend on hybrid state

dynamics. A corresponding Gaussian process filtering procedure is proposed for

continuous field potentials. We test our framework against dominant approaches in a

motor reaching task using simulated traces of ensemble spiking activity from primary

motor cortex. Results predict that the hybrid framework outperforms previous

approaches in the control of arm position and velocity based on trajectory and endpoint

mean squared error. The hybrid framework can be used to operate a diverse set of

devices including computers, robotic limbs, and muscle-embedded electrodes. Moreover,

the approach can be applied to a diverse set of biological signals, such as

electromyograms (EMG), electroencephalograms (EEG), electrocorticoencephalograms

(ECoG), local field potentials (LFP), and action potentials.
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6.1 Introduction

Amyotrophic lateral sclerosis, spinal cord injury, brainstem infarcts, advanced-stage

muscular dystrophies, and diseases of the neuromuscular junction profoundly disrupt

voluntary muscle control. New technologies, variously called brain-computer interfaces

[1, 2], motor neural prostheses [3-5], and cognitive prostheses [6, 7], represent a

communication link that bypasses affected channels of motor output. Functional

electrical stimulation, manually actuated devices, eye tracking, and other approaches [8,

9] represent practical solutions for many patients, but may not be feasible for individuals

with profound motor deficits. Moreover, brain-driven interfaces have the potential to

provide dexterous and natural control without muscle fatigue.

A brain-driven interface includes a method to monitor neural activity, an algorithm to

map neural activity to control signals, a device to be controlled, and a feedback

mechanism from the device to the user [10-14]. This chapter relates to the optimal

mapping between preprocessed neural activity and estimates of the user's intention that

determine control signals. The method presented here unifies four canonical approaches,

demonstrates new applications, and suggests one path to further algorithm development.

In prosthetics literature, the optimal mapping is predominantly described as an estimation

(filtering) problem followed by a control problem. First, an estimate of the user-intended

prosthetic device state is calculated based on neural activity that serves as a noisy

observation of that intention. Second, a control law determines inputs to the device that

achieve this estimate of the user-intended device state. This optimization ignores

feedback to the user, but provides a practical approach that is accomodated within the

existing framework of estimation theory or similarly, a tracking problem in stochastic

control. Previous approaches to the estimation problem include: manually adjusted linear

combinations of power spectral band energies [15], population vectors for automated but

sub-optimal linear mappings [16], linear regression for optimized linear mappings [17],

support vector machines, and recursive Bayesian estimation procedures, including the

Kalman filter [18], particle filter [19], and point process filter [20, 21].
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Bayesian estimation allows dramatically better tracking than linear regression in off-line

data analyses. This approach describes the intended state of a prosthetic device and

observed neural activity as a sequence of random variables indexed by time. The

trajectory model defines a prior on the sequence of intended device states. The

observation model defines the relationship between neural activity and intended device

states. Actual device states are determined from neural activity based on these trajectory

and observation models.

In the following sections, we present an estimation framework for brain-driven interfaces

that explicitly allows the designer to span a full range of device capabilities by employing

a hybrid state space composed of interacting discrete and continuous valued random

processes. This method is shown to generalize previous Bayesian approaches to

prosthesis design, including finite state machines [6], free arm movement models [18],

reaching: movement trajectory models [22-28] switching observation model [25], and the

mixture of trajectories model [29]. One possible filtering procedure is derived for point

process observations on the hybrid state space, and connections are drawn to existing

literature on hybrid estimation for Gaussian observation processes (switching Kalman

filters). To demonstrate the versatility of this framework, three emerging prosthetic

device applications are described: free arm movement with definitive stopping, reaching

movements with variable arrival time, and reaching to a target that may change within a

discrete set of targets over the course of the movement. This final application is

demonstrated in simulation with a point process model of primary motor cortical activity.

6.2 The hybrid framework

In the formulation of the neural prosthesis estimation problem, the user communicates the

intended state of the prosthetic device via neural signals. The optimal brain-driven

interface must convert these neural signals into an estimate of the intented device state

that minimizes some distance metric (cost) to the intended sequence of device states. The

cost is commonly assumed to be some form of mean squared error for continuous-valued
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device states and frequency of proper classification for discrete-valued states [10-14].

Implicit in this formulation, a controller is subsequently expected to receive the estimate

and drive the device to the corresponding state with the required precision and response

time.

To maintain generality, we describe the user-intended device state at time step k by a

vector of discrete random variables s, and continuous random variables x,. The user

drives neural activity n c from C channels at time step k based on the desired device

states s, and x,. Although we refer to nr as the activity of the c'h neuron in the specific

context ,of multiple single unit recording, nk may correspond more generally to the cth

signal of any measurement of activity, including single neuron spiking, multiunit activity,

continuous electric field measurements, and even eye movements. The history of activity

this time step, Hk =(:C , C,..., n• ), may also affect nn-c due to recurrent neural

connections and other sources of history dependence.

As an illustration of these variables, consider driving a car with your EEG instead of with

your arms. Your intention to increment or decrement the gear as well as the current gear

position can be captured by a discrete variable s,, whereas the desired wheel or gas pedal

angles can be further described by the continuous variable xk that evolve depending on

the resulting gear position recorded in sk+,. The EEG amplitudes on C different

channels, indicated by nkc , may depend on your discrete and continuous-valued

intentions for the car, but also the history of previous amplitudes Hk because of the

nature of oscillations. Note that the intended device state need not correspond literally to

parts of the car, as with the intention to increment or decrement the gear. The choice of

variables can dramatically impact ease of use, just as with the design of an interface to a

consumer electronic device such as the MP3 player.

The hybrid state space is a joint probability density on the entire temporal sequence

(trajectory) of intended states and neural activity p(x, ~, 4fcx,s,,4:C ,...) . Graphical
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models ,on acyclic graphs are a pictoral description of this joint density. By describing

the state space this way, we constrain the form of the joint density to allow a simple and

consistent prescription. Consider our specific graphical model of the hybrid state space

(Figure 6.1a), which illustrates only one segment of the entire trajectory. The circles,

called nodes, denote random variables corresponding to the intended states and neural

activity. The arrows specify interdependencies between the random variables. A

consistent prior distribution on the entire set of nodes is provided by specifying

distributions for each node conditioned on its parents, which are all nodes at the base of

arrows that point to that node. Nodes without parents require unconditioned priors. The

graphical model imposes a Markov structure, where any node is independent of all other

nodes when conditioned on its parents. The hanging arrows directed towards n:,c and

n.'+, represent history dependence in the neural activity.

The probability distribution p(n I , sk, Hk) associated with this hybrid state space

corresponds to the observation model, because it relates the present measurement of

neural activity to the present intention of the user and the history of neural activity. The

probability distributions p(x,+. I x, s,, ) and p(sk+, I s,) comprise the trajectory model;

they describe the frequency and types of transitions in user intent for which the prosthetic

device is designed.

In principle, the observation model should properly describe the relation between neural

observations and user intent and the trajectory model should accurately reflect the

distribution of user intents. Model mismatch describes errors that accumulate from an

incorrect model specification. Whereas continuous field potentials (LFP, ECoG, EEG)

are typically described by Gaussian observation models [30], spiking activity at

millisecond resolution is better described by point process observation models [31-34].

The continuous component p(x, lx,, s*,) of the trajectory model can often be

reasonably approximated as Gaussian to anticipate smooth changes in the user's

continuous state intent when conditioned on a particular discrete state. The discrete

component of the trajectory model p(sk, I sk), also called the state transition density, is
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generally defined by specifying a probability between 0 and I for each possible pair of

intentions (s,,, sk), although parameterization may be relevant to dealing with a large set

of discrete intentions.

Alternate connections could have been used to describe the hybrid state space. The

specific choice of connections made (Figure 6.1a) draws on a standard form used in

hybrid filtering on Gaussian observations [35], but extends it to accommodate arbitrary

history dependence. This imposed structure on the state space makes it easy to obtain

estimates of the intended device state in a recursive fashion, based on the latest set of

neural activity. Moreover, the connections are sufficiently general as to accommodate a

diverse set of applications.

Five previously described Bayesian approaches to neural prosthetics fall within this

single framework (Figures 6.1 b, c, d, and e). A finite state machine description of the

prosthesis [6] consists of a sequence of discrete user-intended states, rules for transitions

between those states, and a relationship between states and neural signals (Figure 6.1b).

Free arm movement models [18] and reaching movement trajectory models [22-24, 26-

28, 36], both describe continuous-valued arm movement intentions that drive neural

activity (Figure 6.1c). The switching observation model [25] accomodates poorly sorted

neural activity that might be better described by combinations of single cell receptive

fields (Figure 6.1d). The mixture of trajectories model [29] was designed for continuous-

valued reaching movements to a stationary target drawn from a discrete set (Figure 6.1 e).

While the hybrid state space depicted (Figure 6.1) unifies these previous conceptions of

neural prosthesis design, an estimation procedure (filter) must still be specified to

generate probability densities of intended device states given neural activity from which

average cost measures can be minimized. In the following sections, we develop a point

process filter for spiking observations in the hybrid state space and review the

corresponding Gaussian process filter for continuous field potentials.
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Figure 6.1. Graphical models of the hybrid state space framework and four
canonical approaches to estimation for prosthetic devices. Nodes represent
random variables, and one probability density is specified for each node
conditioned on its parents. Dashed edges are interactions that are possible in
the hybrid framework but that are not represented in the canonical approach.
(a) The hybrid framework represents a specific relationship between the
sequence of neural signals (nk), user-intended continuous states (xk) and user-
intended discrete states (sk) that encompasses and extends previous
approaches (b-e). (b) The finite state machine description of cognitive
prostheses [6]. (c) Free arm movement models [ 18] and reaching movement
trajectory models [22-24, 26-28, 36]. (d) The switching observation model
[25] for poorly sorted spike trains. (e) The mixture of trajectories model [29]
for movements to stationary discrete targets.
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6.3 Point process models of ensemble spiking activity

Neural activity in the form of action potentials is a sequence of transient spiking events.

We first specify an observation model that captures the quality of temporally localized

events as well as possible dependencies between neurons in an ensemble.

Signals of this nature are naturally described by point process observation models [31-

34]. The crux of the point process description of a single neuron is its conditional

intensity function. This is the instantaneous probability of firing as a function of elapsed

time t and generally conditioned on continuous-valued signals x(t) discrete-valued

signals s(t), and spiking history H(t), where N(t) denotes the total number of spikes

generated by the neuron since some arbitary starting time:

(t x(t), s(t), H(t))= lim Pr( N ( t + A)- N(t)= 1 I x(t), s(t), H(t)) (6.1)
A---0 A

We introduce additional notation to accommodate a population of neurons in a discrete

time setting. For the kth discrete time step of length 6k seconds, the conditional intensity

of neuron c is represented as A2, in units of spikes per second. Spiking activity at the

k'h time step is summarized by a vector nc = (nk, n,...,nfc) of binned spike counts. The

c' element of nkc contains the total number of spikes generated by the c'h neuron in the

respective 6, -second interval. The observation model for the total spiking activity ndC of

each member of an ensemble of C neurons binned at 6, second intervals is

approximated [20] as follows:
C

p(d•c I xk, s,, Hk) oc exp(nk log(A;g,) - Af, ) (6.2)
c=l

where H = (:c, c~,...,n• ) is the history of spiking activity at step k for the ensemble.

This is an approximation in two regards. First, neurons are assumed to be statistically

independent conditioned on the history of population activity and current intended device

state. This assumption still captures a causal notion of statistical dependence among
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neurons, that for example, the spiking history of one neuron might affect the present

spiking probability of another neuron. Second, the discrete time observation model in

(6.2) approximates the exact continuous-time observation model for a point process [37].

6.4 Filtering spikes with the hybrid framework

By combining this observation model and the hybrid state space defined in the previous

section, we now derive a specific filter to estimate hybrid device states from ensemble

activity that has been modeled as a point process. The continuous-time exact solution to

point process filtering with jump-Markov processes is a partial differential equation [38].

The method in this section is one possible approximation.

To develop an estimation procedure that maps spikes to hybrid device states, we looked

to the switching Kalman filter [35, 39] which maps Gaussian signals to hybrid device

states. 'We could possibly bin the spike trains (lump them into sequential intervals of

time) and then apply a standard switching Kalman filter. However, spike trains that have

been binned (lumped into sequential intervals of time) only begin to satisfy the Gaussian

assumption as the binsize grows. This results in a tradeoff between the user's control of

when an action is supposed to happen versus how it is supposed to happen.

To avoid this tradeoff, we wanted to use the point process observation model (previous

section) as a statistical description of spiking that is accurate on a millisecond-by-

millisecond time scale [34, 37]. This necessitated the development of a point process

filter for hybrid states. Just as there are several approaches to the switching Kalman filter

that balance computational complexity and accuracy [39], there are several possible ways

to filter spikes for the hybrid framework. Our point process filter is adapted from a

mixture-of-Gaussians switching Kalman filter called the Interacting Multiple Model

(IMM) [39] that has been a popular choice to balance complexity and accuracy for a

variety of Gaussian applications. We summarize the procedure in the box below.
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Spike filtering with the hybrid framework in nine steps

Each iteration of the point process hybrid filter involves nine basic steps. The quantities p(s, I Hk+I) and

p(Xk I Sk, Hk+) come from the previous iteration, where p(si) and p(~ ) are used instead for the first iteration. A

Gaussian approximation to a probability density on the continuous state x, is specified by a mean and covariance

matrix. A probability mass function on the discrete state sk is specified by a list of probabilities for each possible value

of sk. See (Supplementary Material, Section 4) for a practical note on numerical issues.

Step 1
Compute p(sk+I I Hk+1)= p(sk+ I s,) p(S I Hk+1)

Sk

Step 2

Compute p(s, Is,,,, H,) I I Sk I
SP(Sk+I I Sk,Hk+I)P(Sk HS+1)

Step 3
Approximate p(Xk I Sk+1, Hk+) = p(S I S+1, Hk+,)p(Xk I Sk, Hk+ ) with the Gaussian approximation to Mixtures

of Gaussians (see Methods, Section B).

Step 4
Calculate the Gaussian approximation to p(Xk+I I S,,+, n, Hk+I) . Specifically, for each value that s,+, can take on,

send p(xk I s.+,, Hk+ ) through one full iteration of a point process filter (see Methods, Section A) with observation

equation p(nl+, I Xk+1,S+lHk+1) and state equation p(x,, I x,, sk+I). Retain these densities (one Gaussian for

each possible value of Sk+I ) for the next iteration.

Step 5

Calculate p( rsk+C1, Hk+I) A 12 , " exp(n/k+1 Iog(Akc+6k+J )- k+1
6
k+) . Note that

IAk+|ks 4+=i CI

xk+lZxk+Ikqsk+

Ak+lik+l,Is+ and Ak+l|k,sk+, are posterior and prediction covariance terms from Step 4 (see also Methods, Section A).

This is the Laplace approximation (see Supplementary Material).

Step 6

Calculate p(s,,k+1 I k+) p ] I Sk+l, H k+ H . Retain this density for the next iteration.
C a p+c I Sk+, k+I ), Sk+l Ik

Step 7
Calculate p(Xk+l I Hi+,) = p(Xk+, I .s,1 , d+c,, Hk+,) p(s, , I + •,, Hk+,) using the results from Step 4 and Step

Sk+1

6.

Step 8
Choose the discrete and continuous device states for step k+ 1 based on Steps 6 and 7 and your cost function. For
example, to approximately minimize average classification error, choose the value of sk+1 that maximizes Step 6. To

approximately minimize mean squared error, choose the average value of x,,+ under the density calculated in Step 7.

Step 9
Return to Step I for the next timestep.
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Our point process filter derivation (Supplementary Material, Section 1) first manipulates

probability densities without specifying their functional form, and later introduces the

functional form of the point process observation model given in equation (6.2). The

resulting point process filter retains the same flavor as the IMM filter. Just as the IMM

filter involves a bank of Kalman filters that run in parallel, our hybrid filter employs a

bank of stochastic state point process filters [20] that run in parallel, one for each possible

value of the discrete state at a particular timestep. A practical note on numerical issues

for implementation is available (Supplementary Material, Section 4).

6.5 Filtering continuous field potentials with the hybrid
framework

Continuous field potentials are also viable sources for the control of prosthetic devices,

such as with EEG [1], ECoG [2], and LFP [40]. An EEG based device has the potential

for wide application because it is completely non-invasive. The ECoG and LFP

approaches may allow cheaper and more robust hardware solutions than spike-driven

interfaces, because skull screws and coarse electrodes may suffice for these signals where

micromachined multiunit arrays are needed to record stable ensemble spiking activity.

The physiological basis of these continuous field potentials is varied and different from

that of ensemble spiking activity. Additional research is needed to understand effective

training paradigms and hardware design as they pertain to each of these signal sources.

However, existing filtering procedures are sufficient to incorporate these signals into the

hybrid framework [39]. This is because continuous field potentials have been extensively

modeled as Gaussian observation processes, including autoregressive moving average

(ARMA) models [30]. As a result, the many types of switching Kalman filter can be

applied directly to accommodate these signals into the hybrid framework.
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The interacting multiple model (IMM) [39] is the switching Kalman filter that is

analogous to the point process filter presented in the previous section. The IMM

derivation can be written in almost the same fashion, except that the observation model

(6.2) is now Gaussian. Consequently, the IMM procedure is simply the point process

hybrid filter procedure of the previous section, but with Kalman filters used in Step 4

instead of point process filters. These are the Gaussian filter equations (6.13) and (6.14)

(see Methods, Section A).

6.6 Emerging applications

6.6.1 Application 1: Free arm movement with definitive moving versus stopping

In the control of free movements of a neural prosthetic arm, it would be desireable to

bring the arm to rest without explicitly generating a zero-velocity signal. Also, if the

person is no longer attending to the arm, it may be safer to bring the arm to rest rather

than to allow it to be driven unintentionally. To enable this functionality, define a set of

four discrete device states s, E {(moving, attentive), (moving, inattentive),

(stopped, attentive) ,(stopped, inattentive)} and a continuous device state xk that

corresponds to arm position and velocity. Note that instead of defining two discrete

random processes, this approach merges the two into one. The discrete device states now

determine the evolution of the continuous arm movement. For s, = (moving,inattentive),

(stopped, attentive), or (stopped, inattentive), the arm velocity in Xk can be safely and

gradually damped to zero. In the case where s, = (moving, attentive), a standard isotropic

Gaussian model [18] could be applied with safety constraints on maximum generated

velocities and arm compliance. The discrete state transition probabilities would

correspond to the expected frequency with which the user would switch between these

various modes of operation.
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6.6.2 Application 2: Reaching movements with variable arrival time

The reaching movement trajectory models [22-24, 26-28, 36] are currently defined for a

fixed, known arrival time. Suppose instead that a more flexible device was desired that

could support two arrival times, T7 < T2, corresponding to a fast reach and a slow reach

respectively. We could then define a set of discrete states sk {slow, fast} with

appropriately permissive state transition probabilities to allow switching between slow

and fast reaching. The continuous state trajectory model p(x,l Xk, sk+,) would

correspond to a T, or T2 reach state equation conditioned on the discrete state. The T,

reach state equation could be lengthened with damping dynamics to a Markov chain of

the same length as T2, for consistency. Also, the discrete state transition probability

p(s,,, = fastl s, = slow) might be chosen equal to zero for time greater than T,.

6.6.3 Application 3: Reaching to discrete targets that switch during movement

We now apply the hybrid framework to track a mid-flight change in the desired target. In

the switching target reach task, the subject is required to reach to targets with a prosthetic

arm driven by ensemble spiking activity from primary motor cortex (MI). Each reach

must be completed within 2 seconds in a two dimensional plane from the origin to one of

eight targets arranged evenly on a circle of 0.25 meters radius. In addition, the target

changes once during the course of the movement, requiring the user to make a corrective

maneuver to the new target location. The switch time, unknown to the user, is drawn

uniformly between 0.2 and 1.2 seconds post-movement-onset. These parameters are

chosen to explore reaching movements at a realistic spatial scale for humans, while

maintaining peak arm velocities that are comparable to those studied in related primate

electrophysiology experiments of MI [41-43].
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How can the hybrid framework solve the switching target reach task? We begin by

defining the continuous variable xk as the arm state and the discrete variable sk as the

target identity from a set of R targets on a 2-dimensional workspace:

x position coordinate at timestep k
Sy position coordinate at timestep k

Sxvelocitycoordinateat timestepk, 2,..., R} (6.3)
y velocity coordinate at timestep k

For this example, consider neural observations n, discribed as binned spikes of a point

process (see previous section "Filtering on Hybrid Systems: Point Process

Observations"). The essential structure of this hybrid state space is depicted by the

mixture of trajectories model (Figure 6.1e). To support switching targets, this static

target diagram is altered by indexing the target s with time as in the switching

observation model (Figure 6.1d) [25].

Next, we specify the conditional densities corresponding to each edge. The density

p(sk, • sI) is defined by a state transition matrix M:

Mj = P(Sk+I = i sk = J) (6.4)

This notation means that the entry in the P1 h row and j' column of M corresponds to

p(sk+ = Sk = )

The density p(Xk,, I x,,s ,) constrains the path of a reaching movement for any given

target s,+,. This conditional density can be obtained from any of several reaching

movement trajectory models [22, 23, 27, 28, 36], directed specifically to the target

location corresponding to sk+,. In this example, we use the standard (unaugmented) reach

state equation detailed in [22, 23] based on the following free movement state equation:

x,+, = Ax, + w, (6.5)
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The point process observation model (6.2) that describes p(nc I x,) is specified by a

discrete-time conditional intensity function A, for each neuron c. In this example, we

choose a conditional intensity adapted from a model of primary motor cortex [42] .

Af = exp(flo + fIc v 2 + •)2 cos(_ - #2)) (6.6)

= exp(fi0 + a, vx + a2 vy) (6.7)

where vx and v, are the velocity components of xk in (6.3). Here, we assume that any

lag between neural activity and the user's intentions is known and has been corrected to

allow for the zero-lag indexing used above. In practice, this lag can be estimated as

another model parameter.

The parameters of the observation model p(kc I x,) can be tuned using point process

adaptive filtering [20] that also tracks changes due to neural plasticity. The parameters of

the trajectory model in p(xk., I xk , sk,,) and p(s4k I s,) can be optimized a priori to reflect

the types and frequency of behaviors that the neural prosthesis expects to support.

Alternatively, adaptive methods will need to be developed to track the usage statistics of

the device and adjust the trajectory model accordingly. In this example, we give our

various competing filters an equal footing by providing them the actual trajectory and

observation model parameters where applicable. A caveat is the state transition matrix

M. In free movement and mixture of trajectories estimation, this parameter is

nonexistant, or equivalently, equal to the Rx R identity matrix I. For the hybrid

framework, this parameter can be tuned to the expected frequency of target switches. We

found that performance was relatively insenstive to a range of choices between 0.91

0.991 but changed substantially for M = I. (Although 0.99 is close to 1, this difference

is geometrically magnified by successively multiplying 0.99 over multiple timesteps.)
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With the conditional densities specified, we can now use the hybrid point process

filtering framework to drive the prosthetic device with ensemble spiking activity from

motor cortex. We compare the performance of the hybrid framework against free

movement estimation and the mixture of trajectories model in a simulated analysis of the

switching target reach task. The free movement estimation procedure is implemented

using a standard point process filter. This is mathematically equivalent to our hybrid

framework where each target is given infinite uncertainty. The mixture of trajectories

estimation method reported in [29] is implemented using the same reach state equation

that our hybrid filter uses to provide equal grounds for comparison. This is

mathematically equivalent to the hybrid filter with state transition matrix M = I.

We also examine the effect of premovement instructed delay period activity that may be

available to the prosthetic device. Such activity is known to provide information about

the desired target in posterior parietal cortex [44], premotor cortex [45], frontal cortex

[46], and other brain regions. Premovement target information is easily incorporated into

the mixture of trajectories model and hybrid filter by specifying a non-uniform initial

posterior density on the target states p(sý). We use one fixed moderately informative

non-uniform posterior density (see parameter table) to simulate this premovement target

information.

These filtering procedures were compared in a simulated version of the switching target

reach task. The simulation comprised two stages. First, the subject's desired arm

movement was generated based on the reach state equation [22, 23] which is related to

the stochastic optimal control model [28, 47, 48]. Second, the corresponding ensemble

spiking activity from primary motor cortex (MI) was simulated based on equation (6.6), a

velocity-tuned point process model of MI spiking activity [37, 42].

The subject's arm movement was governed by same unaugmented reach state equation

[22] used above to define p(xk, I x, sk+,) in the hybrid framework. Arm movement at any

given time step followed the reach state equation corresponding to the current target with

low target uncertainty (see parameter table). The constants q, r, and p in that table refer
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Table: Parameters

(a) Receptive field parameters of c' M1 neuron

Parameter Value

° 80C2.28

P 4.67 sec./m

]2A Drawn uniformly from [-n,n]

(b) Reach state equation parameters

Parameter Value

Reach distance 0.25 m

Target Positions (degrees) (45, 90, 135, 180, 225, 270, 315, 360)

Time step 0.01 sec.

Noise covariance (q) 1x104 m 2

Reach duration 2 sec.

Target position uncertainty (r) 1x106 m2

Target velocity uncertainty (p) 1x106 m2

(c) Other motor task parameters

Parameter Value

(p(s, =1), p(s, =2), ... p(s, =8)) (.6, .15, .02, .02, .02, .02, .02, .15)

Switch times (sec.) (.2, .4, .6, .8, 1, 1.2)

Ensemble sizes (# neurons) (9, 16, 25, 36, 49, 64, 81)

Randomized trials per data point (Fig. 4,5) 100



to specific entries of the diagonal matrices for noise covariance and target uncertainty

specified previously [22]. The target itself was allowed to switch once during the course

of the movement. The target switch time was assigned at random, uniformly from a

discrete set of possible times between 0.2 and 1.2 seconds post-movement-onset, spaced

at 0.2 seconds.

Because ensemble spiking is governed by conditional independence (see equation (6.2)),

the spiking activity of each cell could be generated separately. To generate the spike

train of a given cell, the arm trajectory was first passed through the point process model

in equation (6.6). The conditional intensity generated by the point process model of each

neuron was then used to produce ensemble spiking activity based on the time rescaling

theorem [34].

For each neuron c, model parameters 8, and 3, were chosen (see parameter table) to

reflect typical background firing rate and depth of modulation for primate MI neurons

during instructed-delay center-out reaching movements [37]. The model parameter 8P

was drawn randomly over [-;r,;r] to ensure that preferred directions were uniformly

represented over all angles. Neurons in this simulated MI ensemble exhibited

background firing rates of 10 spikes/sec., and firing rates of 24.9 spikes/sec. at a speed of

0.2 m/sec. in the preferred direction.

In total, five filtering procedures were compared in the simulated switching target reach

task: free movement estimation, mixture of trajectory estimation, and hybrid filtering, the

last two methods being evaluated with and without premovement target information.

Figures 6.2-5 provide a comprehensive view of the ability of these filtering procedures to

convert MI spiking activity into reaching movements to switching targets. Figures 6.2

and 3 show sample trajectories driven by ensemble spiking activity under the various

estimation procedures for a population of 25 neurons with a target switch at 1 second

post-movement-onset. Figures 6.4 and 5 characterize how filter performance scales with

ensemble size and target switch time for each of these procedures.
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Sample decoding results from one trial without premovement target information (Figure

6.2) show that the hybrid framework combines the strengths of free movement estimation

and the mixture of trajectories model. By incorporating target information, the hybrid

framework and mixture of trajectories estimates drive the prosthetic arm to rest at the

desired target location, while free movement estimation leaves the arm displaced from

the target and still moving at the 2 second mark. However, this same target information

also causes the mixture of trajectories estimate to pull towards each passing target late in

the reach (Figure 6.1a). This "gravity effect" is reflected in the target probabilities under

the mixture of trajectories model (Figure 6.1c). In the second half of the reach, the

current heading causes the passing targets (black and red lines) to quickly become highly

likely, drawing the trajectory estimate towards those corresponding target locations. The

hybrid framework overcomes this problem because it anticipates that targets may switch.

By choosing the state transition matrix M = 0.991, the target densities (Figure 6.1d) decay

with time, and additional supporting neural activity is required to drive the probability of

any given target to dominate the others. This mollifies the gravity effect of the mixture

of trajectories model.

The hybrid filter also handles premovement target information differently from the

mixture of trajectories model (Figure 6.3). With the premovement information, the first

target's probability under the mixture of trajectories model (blue line, Figure 6.3c)

approaches certainty faster than before (Figure 6.2c). However, single trial decoding

results (Figure 6.3a and 3b) show that the mixture of trajectories estimate appears to

persist to the original target location even when the desired trajectory has begun to

reorient to the new target. This is also seen in the target probabilities (Figure 6.3c) where

the first target (blue) dominates 200 milliseconds beyond the time of the target switch. In

contrast, the hybrid framework incorporates the target information early in the reach but

progressively "forgets" or downweight its influence because it anticipates the possibility

of a target switch, again by using M = 0.991. The free movement estimate does not

incorporate premovement information.
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We next examined filter performance over a wide range of ensemble sizes, ranging from

15 to 80 neurons. Root mean squared (RMS) error was evaluated in two ways: averaged

over the entire trajectory (Figures 6.4 a,b) and over the endpoint at the 2 second mark

(Figures 6.4c and d). Additionally, we examined the fidelity of position tracking (Figures

6.4 a,c) and velocity tracking (Figure 6.4b, d) separately. RMS error decreases for all

five methods with larger ensemble sizes. This is consistant with Bayes Rule, which

predicts that the RMS error of these various methods will converge for large enough

population sizes.

Trajectory RMS errors are typically smaller than endpoint RMS errors because

trajectories begin with the accurate initial condition and accumulate error with time. All

methods appear to perform equally well in endpoint error except free movement

estimation which does not incorporate the discrete target locations. Moreover, endpoint

error appears to level out faster than trajectory error. This is likely due to the fact that

just a few MI neurons are needed to make an accurate target classification, and once the

accurate classification is made, the mixture of trajectories and hybrid framework methods

will drive the prosthetic arm to rest at that target.

Premovement target information appears to provide a slight or insignificant

improvement, but this is largely due to the moderate information provided by our choice

of initial target prior. Higher fidelity premovement target information will likely make

overshooting more pronounced in mixture of trajectories estimation and decrease RMS

error in the first half of the reach generated by hybrid estimation.

Earlier target switches are easier to track for all methods than later target switches (Figure

6.5) for a population of 25 neurons. Later switch times require faster velocity

corrections, causing trajectory RMS error to rise across all methods (Figures 6. 5 a,b).

Trajectory RMS error accumulates rapidly with later switch time for the mixture of

trajectories model which lags in reorienting the arm movement, unlike hybrid estimation

which anticipates switching and reorients quickly.
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Endpoint errors (Figures 6.5 c,d) under mixture of trajectories and hybrid estimation are

largely insensitive to switch time, in contrast to free movement estimation. For mixture

of trajectories and hybrid estimation, neural observations after the switch are sufficient to

classify the target correctly, and because these latter methods incoporate the set of target

locations, the prosthesis movement can reliably converge to the target.

Receiving information from the premovement activity that results in an incorrect

maximum likelihood target classification is comparable to a zero second switch time,

because in both cases, premovement activity initially push path estimates towards the

wrong final target. This represents the easiest case for tracking switching movements,

because subsequent neural activity over the full interval of reach time is available to

correct estimates towards the final target. In later switches, shorter intervals of neural

activity are available to redirect the arm movement. This is the regime where hybrid

estimation shows marked improvement over the mixture of trajectories approach.

The simulation predicts that performance breaks down for all methods under moderate

ensemble sizes for very late switches, where the target can no longer be reliably

identified and high velocity corrective movements must be tracked. A more subtle trend

(Figures 6.5 a,b) shows that free movement estimation performs substantially worse than

the mixture of trajectories model for early switch times but slightly better in very late

switch times. These very late switch times make the overshoot and gravity effects of the

mixture of trajectories model so pronounced that resulting trajectory estimates

accumulate more RMS error than even the free movement model.
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6.7 Discussion

We have introduced a unified approach for the design of filters for prosthetic devices. By

using this technique, we can map spikes and continuous field potentials to estimates of

the user's intention for a wide array of neural prosthetic device applications. The

technique draws on Bayesian filter theory to generalize the dominant approaches to filter

design in neural prosthetic devices [1, 3-7, 17-19, 22-29, 36, 49]. Three emerging

applications are proposed. The hybrid framework is comprehensively evaluated in a

simulated motor reaching task.

For both the hybrid point process filter and the IMM Switching Kalman Filter for

Gaussian observation models, the number of operations at time step k scales with I Sk I,

the number of values that a discrete state variable can take on. This is because the

posterior density on the discrete state is nonparametric and the posterior density on the

continuous state is represented as a mixture of I Sk I Gaussians. The particle filter, a

Monte Carlo approach, would increase the fidelity the posterior density at the expense of

increased computational cost. Ultimately, the way in which the posterior density is

represented will depend on the cost of computation versus device performance in any

specific application.

As shown in the previous section, the hybrid framework accomodates multiple discrete

random processes by condensing them into one. Unfortunately, n discrete random

variables, each with p possible values at step k, results in a condensed random variable

with I SI= nP. Fortunately, filtering on the hybrid framework can be parallelized fairly

directly. This means that even with large I S, I the device can be controlled in real time if

the hardware supports parallel computations. Parallelizing a digital hardware

implementation may not necessarily save energy, but could require a slower clock speed.

In many applications however, the number of discrete states can be kept small by using

context. Context means that the space of device states is restricted at any given step in a
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way that still allows the user to eventually reach the desired device state. Consider how

you organize files on your computer. By arranging your files in a sequence of

subdirectories, you make it easy to scan through the list of files at each step. By placing

all your files on the desktop, you are forced to select your file from a very large list, even

though the file is just one mouseclick away.

Looking forward, we expect to draw extensively on the rich field of dynamic bayesian

networks to address future applications. Prototyping is needed to determine the best

computation/accuracy tradeoff for specific prosthetic devices. Learning and real time

sensory feedback (visual, somatosensory, auditory) must also be considered in

developing algorithms that define the prosthetic interface. Associated technologies like

computer vision and robotic control can be integrated with the hybrid framework to

enhace real-world performance measures.

Finally, estimation with a minimum average cost criterion is not the only approach to

formally describing the prosthetics problem. Future work will explore stochastic control,

heirarchical design architectures, and other themes in systems design to achieve the

increased performance in practical tasks that is necessary to benefit the full spectrum of

limited motor function, from locked-in syndrome to single arm amputation.
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6.8 Methods

6.8.1 (Section A) Approximate point process filter for Gauss-Markov process

(discrete-time)

The Gaussian approximation to the posterior density with a Taylor series expansion about

the prediction mean is employed in the following filter equations [20]. Consider a Gauss-

Markov trajectory model

P(Xk+ I xk)- N(Fkxk +bk, Qk) (6.8)

A point process observation model is specified for an ensemble of C neurons. The

conditional intensity function of the c" neuron, denoted 24, may depend on Hk and k .

For the k'h timestep and cth neuron, nk spikes arrive in a 8 k time interval.

The prediction density mean xk+Il k and covariance Ak+1k are:

Xk+lIk = FkXk + bk (6.9)

Ak+l1k = FkA&Fkj +Qk (6.10)

The posterior density covariance Ak+lk+l and mean Xk+lk+1 are:

(Ak+lIk+lI- = (Ak+lk I J[ log a' logk _Ak (6.11)

Xk+llk+l = Xk+ ik + Ak+llk+l 8 IOg ( -x,, c (6.12)Xk~lk~lý X+Ic C- I - Xk - 5 Xy
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If instead, the observation model for neuron c is a univariate Gaussian with mean f/ ' Xk

and variance Wkc (where 8/ is a column vector), then the posterior density covariance

and mean are:

C

(Ak+llk+ )' = (Ak+Ik)-' + I(f)'(Wc)1 hf (6.13)
c

Xk+lk+ 1 = Xk+lk +(Ak+lk+IZ)-' fl k (, -(f)' Xk+l|k) (6.14)
c=-

6.8.2 (Section B) Gaussian approximation to Mixture of Gaussians

Consider a distribution composed of the weighted average of R multidimensional

Gaussians
R

p(x) = d,N(x; ,,,A ,) (6.15)
1=1

with weights d,, and where N(x;,p,, A) denotes the Gaussian probability density

function with mean u,, and covariance A,.

The following standard approximation [39] is obtained by moment matching (calculating

the mean and covariance of p(x)):

p(x) = N(x; m, K) (6.16)

where

R

m= dia (6.17)
/=-1

R
K = F x [A, + (p, - m)(p, - m)'] (6.18)

i=1

131



6.9 Supplementary Material

6.9.1 (Section 1) Derivation of a Point Process Hybrid Filter to Map Spikes to

Hybrid Prosthetic Device States

For the kth discrete timestep, define the user-intended continuous state xk, discrete state

sk, and the ensemble spiking activity of all C neurons 4nc . The history of ensemble

spiking at timestep k is given by Hk= (:c c,..., n ). Define the observation model

AP(4c I Xk+l,, S,Hk+,) that represents the relationship between user intentions and

spiking activity. Define the trajectory model p(xk+~ I x , sk+,) and discrete state transition

density p(xk+, I xk, Sk+,) that reflect the distribution of intentions that the user is expected

to request over time.

In this section, we seek a recursive method to obtain p(xk,,, Sk+, I nc,, Hk+) from

p(xk, Sk I rt c , Hk) and Vnc,. This constitutes the point process hybrid filtering procedure.

For our specific hybrid state space in Figure lA,

P(Xk+l ,S k+l I nkC, Hk+l) = P(Xk+l I Sk+l, 9rk:C, Hk+l) P(Sk+l n•,Cl, Hk+) (6.19)

This implies that our problem is equivalent to obtaining p(Xk+, I JS,, r c , Hk,,) and

P(Sk+l I~,, Hk+) from p(Xkl Sk, | kC, Hk ), p( Sk l , Hk), and c .

Note that

P(Xk+l I', Hk+1 )= p(Xk+l I Sk+, 9C Hk+l)P Sk+l IC, Hk+l) (6.20)
Sk+1
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We now calculate p(xk , I Sk+,,, Hki,, ,) using equations (6.21)-(6.26) and calculate

p(sk+, I n+c , Hk) using equation (6.27).

Observe that

P(Xk+lI Sk+I, I dC,Hk+) Sk+,Hk+l)p(xk+, I s IH) (6.21)
p(:+.C I Sk+, Hk+I)

where p(Xk+l I S+l, Hk+,) is the prediction density given by the Chapman-Kolmogorov

equation:

p(Xk+, I S,, k+,) = Ip(xXk+, , xsk+, Hk)p(xk I sk+l, H,,)dxk (6.22)
Xk

Equations (6.21) and (6.22) comprise one step of a filter on p(xk I Sk+ , Hk+l) with the

observation model p(n~ , I x,, , H+,, ,+) and trajectory model

P(Xk+l I x,Sk+, Hk+l)= P(Xk+l I Xk, Sk+l). For computational simplicity, we approximate

both the trajectory model and posterior density p(xk+, I sk,, iC, Hk+,) to be Gaussian.

Such a filter (reproduced under Methods Section A) is developed in [20] for point

processes using a Taylor expansion about the prediction density mean rather than the

posterior density mean employed in [50].

The density p(xk I Sk+,, Hk+l) is obtained by

P(Xk I Sk+I,H )p(s s, H,kI ) p(x, I sk,s,, H,I) (6.23)
Sk

This density is a mixture of Gaussians that is approximated by one Gaussian density

using a standard moment-matching formula given in Methods Section B.
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The first density in the summation (6.23) is calculated as follows:

where

P(Sk+IsI Sg Hl = 'P(Sk HP(Sk I Sk+1SH+ k+H

kP(41 + 4 x) = P(SI ) (Sk+l I )

JP(Sk+I IHk+1) = P(Sk+1 I Sk~) ISk I Hk+I)

(6.24)

(6.25)

Here, p(sk+ I Sk) is the discrete state transition density, and p(sk I Hk+l) is the posterior

density on the discrete state, given in the previous iteration.

The second density in the summation (6.23) is given by a quantity retained from the

previous step:

(6.26)P(Xk I Sk,+I, Hk+I)= P(Xk I S, Hk+,)

This statement is verified in Section 2 below.

We now calculate p(sk+l I nkc, Hk+,) in equation (6.20) using the following relation:

P(Sk+I, cH, P(+l, Hk+I)p(s+l I Hk+) (6.2:
P(+c I Hk+I)

Equation (6.25) calculates p(sk+1 I Hk+,). The density p(n c, I sk+I, Hk+) is given by the

following integral.

p(di,+ l sk+,,Hk+,) J p l sk+,,xk+,,H,)x, I s+,H+)dx+ (6.2H
xk+1

7)
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An approximation to this integral for point process observations is given by Laplace

approximation as detailed in Section 3 below. Finally, p(nlc I Hk.,) is a normalizing

factor obtained by summing the numerator over all possible values of sk,,.

6.9.2 (Section 2) Corollary

Verify equation (6.26), that p(Xk I Sk, Sk+, Hk,,) = p(xk I Sk, Hk4) :

P(Xk IS, Sk+I, Hk+l)
P(Sk+l Sk, Hk+I)

P(Sk+I I Xk,Sk,Hk+l)P(Xk Sk, HFL+I)

P(Sk+I SI, HSHk+)

From Figure lA, observe that

P(Sk+I I 4 , Sk, Hk+I)= P(Sk+I Sk4 , Hkl)

Thus, (6.29) and (6.30) imply that

P(Xk I, Sk+, Hk+) = P( I S, Hk+,)

6.9.3 (Section 3) Laplace approximation of p(n+ I sk+,, Hk+l)

This section derives the Laplace approximation of equation (6.28), repeated below for

convenience:

(6.32)

(6.33)h(xkl,, nc) = log[ p(n I S,,,,Xk+, Hk+I)p(xk+i ISk+, Hk+1)]1W( =k~ 10, [Ji"l ) I Sk+ lI Xk+ l , )Hx ÷ I S ÷

135

(6.29)

(6.30)

(6.31)

Define

P(nIc I SkI,, Hk+I) Sk+ +l+) + +, Hk+)p(Xk+ISkH)d Xk+



The Laplace approximation to (6.32) is given by:

p(C I Sk+l, Hk)O S(2;) -Vh(Xj k 1- p(4+ , k+H Sk+I 9Hxk+
I- I k·Xrll SI*+HXk

=(2r)"/ 2 I_ X+Ik+l l )I P-/ Xk+ Sk+, Hk+LPk+ I Sk+, Hk+)
(6.34)

where the mode Ax maximizes p(t,+C I k+, , Hk+,)p(xk+I Sk1, Hk+,) for a given 4Y+.

Approximate the mode as in [20] using a prediction density, in this case given by

(6.35)

Under this approximation, the following equalities hold:

-V2 = k Ik+1,Sk+s
V xk+ l I dk* )I'XkI =xk+ l k +llk+l,sk

p(X,+, I ,,+,Hk+I)
k+ k+sk+ (2 ) 2 k+kk+1 1/2

where Wk4
+k+l,k+,k+ is precisely the variance of the Gaussian approximation to the posterior

density given in [20] and Appendix A.

Using equations (6.36) and (6.37), the Laplace approximation (6.34) simplifies to

p(4+c I Sk+I, Hk+l) ' I Xk+ISk+I, Hk+I)I
xk+=xk+4k,sk+1
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Xo " Xk+llk, s,+,
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Express p(nc j XIk+ 1, Sk,, Hk+,) using a discrete-time approximation for point processes

[20]:

C

P(dc, Ixk+, Sk+1, Hk+l) Oc - exp(nk+~ log(A~SSk+,)- 2l+1k+) (6.39)
c=!

Substituting this approximation into (6.38), we have the final approximate equation for

+dkCI, Sk+, Hk+: c

Xk+1=4k+4k,sk+l

(6.40)

I

6.9.4 (Section 4) Spike filtering with the hybrid framework: practical note on

numerical issues

This section documents four points to consider when implementing the hybrid filter:

1. The spike filtering (hybrid point process) filter described in this paper uses a bank of

stochastic state point process filters (SSPF), described in [20] and Methods, Section A.

As with the SSPF, the prediction or posterior covariance may become singular because of

numerical implementation, or badly conditioned if the values in certain matrix elements

are dramatically smaller than others. In a practical implementation, it is useful to check

that a covariance matrix is well-conditioned or invertible before taking the inverse

operation required by the SSPF (also described in Methods, Section A). If the posterior

covariance is not invertible, perform a Fisher's scoring step instead of executing the

posterior covariance equation, by removing the -(n- 2Ak)~ IOS, term of the posterior
8Xk
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covariance equation for just that timestep. If the prediction covariance is badly

conditioned, retain the prediction covariance as the posterior covariance.

2. You may encounter divide-by-zero or floating-point errors if you incorrectly

implement the nine step spike filtering procedure. Check that you are not dividing by a

discrete state probability that has approached zero.

3. To generate smoother continuous state trajectories, such as in Example 3 of the paper,

augment your state space to include acceleration terms, and introduce the non-zero

diagonal term of increment covariance only in the acceleration dimensions.

4. Note that Example 3 is a discrete-target version of problem of reaching to drifting

targets [24] that evolve over a continuum of positions. The discrete nature of the targets

in Example 3 necessitates the hybrid framework. Similarly, look for parallels between

your application and discrete or continuous versions of it.
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Chapter 7

Conclusion

7.1 Summary of Results

We first (Chapter 4) addressed several questions regarding the representation of visually-

presented targets in the spiking activity of dorsal premotor cortex (PMd) neurons during

an instructed delay period before reaching movements. How can PMd be characterized

during the instructed delay period before an arm reaching task as a time-invariant

ensemble spiking representation of the visually-presented target? How is this

characterization interpreted in terms of physiological mechanism and function? How can

this characterization advance medical technology?

We concluded that delay period spiking activity in PMd supports the representation of

targets through a point process with temporal and history dependence, generated by local

and possibly distant neural interactions. Results suggested that a downstream neural

movement controller or neural prosthetic device could exploit these dependencies to

select targets faster and more reliably.

The analysis comprised three steps:

1 Model description. The millisecond-by-millisecond spiking probabilities were

modeled. Previous studies described only total spike counts during the delay period.

2 Model selection. Models were compared with Akaike Information Criterion (AIC)

and verified using time rescaling statistics. Previous studies have no direct model

verification procedure.
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3 Inference. Point process filtering was used to evaluate the quality of target

representation as it scaled with time post-stimulus-onset and ensemble size. This

analysis was cross-validated in three ways (leave-one-out, leave-zero-out, and

simulated) in order to understand the extent to which alternate models suffered from

over- or underfitting.

These three steps represent a general prescription for the analysis and interpretation of

spiking activity in experiments on the representation of stimuli drawn from a discrete set.

Next (Chapter 5), we investigated how reaching movements can be coordinated with

neural activity that corresponds to both the current arm state and the target of the

movement. We presented a solution that defines reaching movements as a description of

free arm movement (a linear Gauss-Markov process) that is analytically restricted to a

target. The resulting state equation can be used with diverse measurement approaches

and filtering techniques to reconstruct arm movements from target and path related neural

activity.

Finally (Chapter 6), we described the mapping between neural signals and prosthetic

device states as an estimation problem where feedback was ignored, in sufficiently

general terms as to unify the dominant Bayesian approaches to neural prosthetics design.

To support a general-purpose neural prosthetic algorithm, the user's intentions were

described in a state space of interacting discrete- and continuous-valued Markov

processes. An approximate discrete-time filtering procedure was developed on this

hybrid state space for point process observations. Previous approaches to estimation in

neural prosthetics were unified by this framework, which was predicted to improve

performance in a simulated reaching task to switching targets. This framework can be

readily extended with developments in hardware design, new applications, and

discoveries in neuroscience.
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7.2 Continuing Research

The work presented in this thesis lends itself to several avenues of further investigation.

The study on target representation in PMd (Chapter 4) should be expanded to understand

the extent to which target representations generalize across different experimental

scenarios, and especially in the context of reaching movements without explicitly

instructed delay periods. If these representations of target do change, then how do

downstream neural circuits continue to effect reliable arm placement in the face of a

changing PMd target representation? Furthermore, all models investigated suffered in

part from either under- or overfitting. Anatomical constraints could be introduced in

order to simultaneously simplify the models and improve their predictive power.

The reconstruction of reaching movements from target and path related activity (Chapter

5) could be applied to an empirical analysis of neural data from various target and path

related regions to understand how those regions might cooperate in specifying

trajectories. Estimation based on this approach can also help in model selection similar

to the application of cross-validation in Chapter 4. As an alternative, models of reaching

movements can be trained on empirical databases of movement trajectories from the

particular animal being studied to provide subject-specific priors.

In the context of neural prosthetic devices, closed-loop experiments will be crucial to

evaluating both the control of reaching movements (Chapter 5) and the general design

framework (Chapter 6) against alternate approaches. In these experiments, the user can

receive feedback on the estimated reaching movement, and make online adjustments to

neural output. The general framework (Chapter 6) is applicable both to movement

control and an emerging class of prostheses for individuals with communication

disorders. Successful design approaches will need to address human factors that affect

ease of use and reliability, as well as the specific nature and extent of the user's

neurological deficits. Ultimately, the principled design of algorithms for these advanced

medical applications will rely on the characterization of neural systems through

mathematical descriptions that are amenable to engineering, and design approaches that

consider the essential features of human-machine interaction.
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