Coping with Uncertain Dynamics in Visual Tracking:
Redundant State Models and Discrete Search Methods
by
Leonid Taycher

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2006
(© Massachusetts Institute of Technology 2006. All rights reserved.

Department of Electrical Engiheering and Computer Science
July 27, 2006

.............................

Trevor J. Darrell
Associate Professor
Thesis Supervisor

s

Accepted by' C_)/ He L ST G
Arthur C. Smith

Chairman, Department Committee on Graduate Students

IN
OF TECHNOLOGY

JAN 11 2007 ARCHIVES

Coping with Uncertain Dynamics in Visual Tracking: Redundant
State Models and Discrete Search Methods
by
Leonid Taycher

Submitted to the Department of Electrical Engineering and Computer Science
on July 27, 2006, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

A model of the world dynamics is a vital part of any tracking algorithm. The observed
world can exhibit multiple complex dynamics at different spatio-temporal scales. Faith-
fully modeling all motion constraints in a computationally efficient manner may be too
complicated or completely impossible. Resorting to use of approximate motion models
complicates tracking by making it less robust to unmodeled noise and increasing running
times.

We propose two complimentary approaches to tracking with approximate dynamic
models in a probabilistic setting. The Redundant State Multi-Chain Model formalism de-
scribed in the first part of the thesis allows combining multiple weak motion models, each
representing a particular aspect of overall dynamic, in a cooperative manner to improve
state estimates. This is applicable, in particular, to hierarchical machine vision systems
that combine trackers at several spatio-temporal scales. In the second part of the disserta-
tion, we propose supplementing exploration of the continuous likelihood surface with the
discrete search in a fixed set of points distributed through the state space.

We demonstrate the utility of these approaches on a range of machine vision problems:
adaptive background subtraction, structure from motion estimation, and articulated body
tracking.

Thesis Supervisor: Trevor J. Darrell
Title: Associate Professor

Acknowledgments

There are many people without whom this thesis would have never been written. My
advisor, Trevor Darrell, allowed me to seek my own way and, at the same time, helped
me to avoid many obstacles I would not have seen myself. I would like to also thank him
for his skill in showing program committees errors of their ways. Trevor gathered in his
group some of the best students in the lab. These years would not have been the same
without Gregory Shakhnarovich, David Demirdjian, Ariadna Quattoni, Mike Siracusa, and
Ali Rahimi. I have greatly benefited from collaboration with Gregory and David and a
significant part of this dissertation would not have happened without them. Talking and
working with John Fisher was intellectually stimulating and trying to catch him in the lab
provided me with some badly needed physical exercise.

Finally, I would like to thank my parents, Samuil and Liliya, who taught me to love
learning and not to be seduced by paths of the least resistance. They, along with my sister
Lena, and my friends, Leo, Marat, and Lena were instrumental in preserving my sanity in
the last seven years.

Contents

1 Introduction

1.1
1.2

1.3
14
1.5
1.6
1.7

2.1

22
23

24
2.5
2.6
2.7
2.8

29

Tracking, Search and Memory of ThingsPast
Probabilistic Models for Tracking
1.2.1 GenerativeModels
1.2.2 Conditional Random Field Model
Probabilistic Trackingand Search
Redundant State Multi-ChainModels
Tracking Using Discrete Search
Summary of Contributions,
Structure of the Dissertation

Background and Prior Work

Monolithic Generative Models
2.1.1 KalmanFiltering L.
2.1.2 Non-ParametricMethods
Tracking with Structured State Representations
Hierarchical Processing in Vision Applications
2.3.1 Incorporating Higher-level Knowledge into Feature Extractors .

Cooperative Tracking Approaches
Classification and ProductModels
Biological VisionSystems,
Exemplar-based Sequence Analysis
Review of Articulated TrackingMethods
2.8.1 Pose-Observation Compatibility Models
Summary e e e e e e e e e e e

3 Redundant State Multi-Chain Model

3.1
3.2
33
34
35
3.6

GraphicalModel
Analyzing Approximation Validity
Inference in Redundant-State Models
Batch Optimization Algorithm
Relationship to Turbo Code Decoding Algorithm
Summary e e

15
16
17
18
21
22
23
24
25
26

27
27
27
29
31
34
35
37
38
39

40
41
43

4 Applications of RSMCM in Hierarchical Tracking Systems
4.1 Applying Redundant State Modeling to Adaptive Background Maintenance
4.1.1 Prior Approaches
4.1.2 Redundant Model Formulation
4.1.3 Implementation and Results
4.2 Structure from Motion Estimation
4.2.1 Prior Approaches to Structure from Motion Recovery
4.2.2 Factorization Algorithm Incorporating Temporal Coherence
4.2.3 Point Feature Tracking
4.2.4 Implementation
4.3 Summary

............................

...................................

5 Likelihood Sampling and RSMCM for Articulated Body Tracking
51 Introduction
5.2 Tracking with Likelihood Sampling
52.1 UpperBodyModel
5.2.2 Likelihood Sampling
5.2.3 Proposal Distribution
524 Kinematic Constraints
5.2.5 Single Frame Pose Estimation Implementation and Results
5.2.6 Pose PropagationOver Time
5.3 Tracking in a Redundant State Framework
54 Summary ...

6 Exploring Complex Distributions with Discrete Search
6.1 Introduction
6.2 Tracking by Exploring Likelihood Modes
6.2.1 Local Optimization
6.2.2 Temporal Integration
6.3 Tracking with Strong Temporal Constraints and Local Search
6.3.1 ProbabilisticModel
6.3.2 Estimating Continuous Posterior Distribution with Grid Filtering . .
6.4 Implementation
65 Results.
6.5.1 Experiments with syntheticdata
6.5.2 Statistical Analysisof Results
6.5.3 Experiments withrealdata
654 Discussion
6.6 Summary

7 Conclusions
7.1 Contributions L

A Proofs of Analysis Theorems

List of Figures

1-1
1-2

1-3
1-4

22
23
24

2-6

2-7
2-8

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
49

Graphical model corresponding to N-th order Markov chain
First order Markov models with and without explicit instantaneous state

variable
Chain-structured Conditional Random Field model
Redundant State Muiti-Chain Model

First order dynamicmodel Lo,
A factorial dynamicmodelo oL 0oL
Switching dynamic model oL
Dynamic model with overcomplete state
Graphical models used in hierarchical sequence processing
An example of the “sleeping man” problem in adaptive background sub-

fraction L.
Coupled HMM tracking and classificationmodel
A product of HMMs classificationmodel

First order Markov models with an explicit instantaneous state variable . . .
Redundant State Model L.
Synthetic example of the productmodel
Synthetic example of the failure of the productmodel
Variants of the redundant-state model
Graph structures used in inference algorithms in the dual-chain model . . .
Messages exchanged during one approximate filtering iteration
Graphical model representation of turbocode decoding problem
Dual-chain representation of turbocode decoding problem

Graphical models used in hierarchical sequence processing
Combining background maintenance and object tracking models
Fixing “sleeping man” problem
Error types used for evaluating background subtraction algorithms
Background Subtraction Algorithms: Quantitative Comparison
Background Subtraction Algorithms: Qualitative Comparison.
Background Subtraction Algorithms: Qualitative Comparison
Prediction errors in structure-from-motion estimation
Minimum eigenvalues of the indicator matrices

9

4-10 Improvement in feature tracking through iterations of coordinate ascent al-

gorithm 79
4-11 Comparison of typical performance of four SFM algorithms 80
4-12 Quantitative comparison of four SFM algorithms 81
4-13 Qualitative performance evaluation of SFM algorithms on a real-life sequence 82
4-14 Module separationinRSMCM 83
5-1 Articulatedupperbodymodel 87
5-2 Generative model used for single-frame sampling 88
5-3 Generative appearance model used in defining a proposal distribution . .. 89
5-4 Constraining arm configuration 91
5-5 Processing stages of articulated body likelihood sampling 94
5-6 Sample results of single-frame pose estimation 98
5-7 Single-frame pose estimation failure 98
5-8 Tracking sequence 1 withRSMCM 99
5-9 Trackingsequence 2withRSMCM 100
5-10 Tracking sequence 3with RSMCM 101
5-11 Comparing performance of four tracking algorithms on a sample sequence . 103
6-1 High-level overview of the ELMO algorithm 107
6-2 Comparing algorithm performance on synthetic sequences 115
6-3 Error statistics for competing articulated tracking algorithms 116
6-4 Distributions of improvements in joint position estimates over competing

algorithms 117
6-5 Qualitative performance evaluation on a salute-chest-azumi sequence 121
6-6 Qualitative performance evaluation on a gesture sequence 1. 122
6-7 Qualitative performance evaluation on a gesture sequence 2. 123
6-8 Qualitative performance evaluation on a gesture sequence 3. 124

10

List of Tables

3.1 Summary of random variables and conditional distributions used in this

6.1 Average times required for algorithms tested to process a single frame. . . .
6.2 Confidence intervals for median error reduction, with p =0.001

11

12

List of Algorithms

w

Recursive Belief Propagation Algorithm for Filtering in a Redundant State

Model e 58
Coordinate Ascent for Batch Optimization in a Redundant State Model . . . 61
Sampling based articulated pose tracking 95
Tracking Articulated Body by Exploring Likelihood Modes 108

13

14

Chapter 1

Introduction

As computers are becoming a ubiquitous part of our environment, simplifying their inter-
action with us and the world around us becomes more and more important. Before acting
upon the world, a computer (or robot) first needs to perceive it. Right now the world has
to be severely instrumented with relatively noise-free devices such as keyboards, mice, and
RFID tags, to facilitate a computer’s perception of it. This makes interaction with comput-
ers unnatural for humans', and impossible for non-instrumented parts of the world.
Humans, on the other hand, are well adapted for long-range perception of the surround-
ings via such “natural” (but noisy) senses as sight and hearing. We are adept at extracting
the necessary bits from the wealth of information reaching the brain from the eyes and
ears. What is most important is our ability to process sequences of observations. The
world around us is not static, and seeing it in motion provides more information than any
single one, or a collection of random images. Contemporary computers lack this ability:
existing models of sufficient complexity are too hard to specify (or train); simpler mod-
els commonly used in practice are weak in a sense that they are able to characterize only
few aspects of our knowledge about the world. This causes two major problems: signifi-
cant computational resources are required to extract necessary information with sufficient
accuracy; unmodeled behaviors may confuse the model and result in incorrect estimates.
In this dissertation we explore two approaches to improving tracking efficiency and
precision. The first approach is motivated by biological visual systems and uses multi-
ple simple models to track complex behaviors. Each weak model expressing a particular
facet of behavior can be independently designed with a corresponding efficient inference
algorithm. We describe how to combine multiple constraints encoded by weak models by
incorporating them into a single redundant-state framework and propose efficient inference
algorithms for the resulting model. These algorithms are based on the inference meth-
ods developed for constituent models with minimal overhead required for model fusion,
making the overall inference efficient but are more robust to errors that are due to unmod-
eled behaviors. Our second approach is motivated by advances in the available computing
power and our ability to assemble vast databases of images labeled with corresponding
information of interest. We will demonstrate how such a database can be leveraged to
improve running times of weak models’ inference algorithms by performing bulk of the

IThough the definition of “natural” is changing fast

15

computations offline.
We demonstrate the performance of these two approaches in a wide range of applica-

tions from improving performance of adapting background subtraction algorithms to artic-
ulated body tracking.

1.1 Tracking, Search and Memory of Things Past

Visual tracking can be loosely defined as the task of extracting and maintaining some form
of knowledge about the evolving world from sequences of images. It is rarely possible, and
just as rarely necessary, to completely model the state of the observed world.2 We would
like to keep as little information as necessary to perform a specific task. For example, in a
world consisting of vehicles moving on the road it is not necessary to spend memory and
processing time modeling operation of the internal combustion engine in order to track the
cars passing by. Having completely different models for red trucks and white cars might
also be excessive, especially if we do not know what kinds of cars are going to appear.
A relatively simple model of patches with slowly changing appearance passing across a
slowly changing background might suffice in this case. On the other hand, having too little
information is also not acceptable — tracking a person using only his position is not very
useful for sign language gesture recognition tasks.

One can think of tracking as finding the sequence of instantaneous world states (con-
figurations) of the model that best correspond to the sequence of observations. Even if we
are interested in a very limited amount of information, it may be too complicated or even
impossible to obtain these configurations from each image independently. It is often com-
putationally simpler to combine information from multiple images. Many existing tracking
approaches are optimization-based: at every new frame they search for the best configu-
ration corresponding to the given frame starting at the configuration most likely based on
previous observations.> An extension to this approach is to search for a configuration that
corresponds to the current observation and is compatible with state estimates at previous
times.

Before such algorithms can be implemented, four questions have to be answered

e How is the configuration (state of the world) represented?
e How is the compatibility between a configuration and the observation computed?

e How is the new configuration (starting point for the search) predicted from previous
observations?

e How is the search performed?

These questions cannot and should not be answered separately. The state representation
should on the one hand be useful for higher-level inference and on the other make comput-
ing observation compatibility and forward prediction easier. The compatibility function

2The only complete model of the world is the world itself
3Here we conveniently ignore the question of initialization — finding the configuration at the first frame

16

should be simple enough to be computed efficiently, but robust to noise and to parts of
the observation that are unmodeled by the state. The prediction function should be accu-
rate, but not too complicated. The search should be robust to errors in compatibility and
prediction functions but fast.

Each prediction function expresses some constraints on the configuration evolution in
time, and different constraints may be easy to express using different configuration repre-
sentations. For example representing a human body pose as a set of joint angles makes it
very simple to express a constraint that connected segments of the body do not separate
under normal circumstances. Expressing the tendency to move the hands linearly [72] is
hard in terms of joint angles, but simple when the pose is represented by rigid poses of
individual segments [23, 101, 112]. Unfortunately enforcing connectivity preservation is
complicated for the set-of-rigid-poses representation.

If we are interested only in the final state estimate, it is not strictly required that the
function being optimized is identical to the one we are interested in, as long as the loca-
tions of their extrema are the same. Commonly one is interested in computationally viable
functions and commits to a single representation and wants prediction and compatibility
functions to be simple to evaluate. This requirement often leads to severe approximations
to both component functions, and can make the solutions to the final optimization problem
sensitive not only on the system of interest but also to the unmodeled parts of the obser-
vations. The deterministic search algorithms may thus converge to incorrect solution, and
propagating the wrong solution through time results in loosing track. This has led the track-
ing community to adopt probabilistic approaches, which produce a probability distribution
over possible values of the maximum of the objective function rather than a single value at
every frame.

1.2 Probabilistic Models for Tracking

Probabilistic frameworks commonly used for tracking share the structure with the deter-
ministic methods. They treat state variable as latent (unobserved) and images as observed
variables. These models also specify the temporal relationship between state values at dif-
ferent time steps, and the compatibility between state and observation at the same time
step. In contrast to the deterministic tracking, the state is a random variable in probabilistic
models, and the constituent dependencies are stochastic functions. The primary goal is not
computing the best value of the state variable but rather its full distribution function.

The models can be either learned or specified in an ad-hoc fashion, but lack of training
data and general computational complexity they are always only approximations to true
models of the world. Thus even when exact inference is performed in a probabilistic model,
the resulting state distribution may not correspond to the true one. When using a particular
inference algorithm in a particular probabilistic model, one has to distinguish between two
sources of errors, those resulting from the approximations involved in specifying the model,
and those that arise from the algorithm itself.

In this section we review two classes of dynamic probabilistic models commonly used
in tracking, without specifying particular inference algorithms. The algorithm selection is
strongly influenced by the application area and will be addressed in the next chapter.

17

1.2.1 Generative Models

The probabilistic generative models, are widely used in tracking applications as they ex-
plicitly describe how a state can be generated from the values of the state at previous time
steps, and how an observation is generated from the internal state. An implicit assumption
in this class of models is that the state variable contains all available information about the
current observation that can be obtained from observations at other time steps. That is the
current observation is independent from the rest conditioned on the value of the state.

Formally, a dynamic generative model is described by specifying two models:

¢ Rendering (or emission, or forward) model, which describes how an observation—
an image in vision applications—can be generated from a particular value of the state.

e Transition (or evolution) model, which describes how the state evolves in time.
This models allows us to take advantage of the fact that images we see come from a
sequence and not a random collection.

Both models are almost never absolutely precise. Since the state does not contain all
information about the world, specifying a complete forward model is impossible. It is also
unnecessary, since even much simpler models can result in good state estimates. Transition
functions are also not exact. We rarely know completely how to correctly predict the new
value of the state from its previous values, and even when we do, it is not always compu-
tationally viable. As a result both transition and emission models are stochastic and state
becomes a random rather than a deterministic variable. That is, we admit from the begin-
ning that we can never know the exact value of the state, but can estimate its distribution,
and then use it for reasoning about the world.

To use the generative models in computer programs we encode the state ©f, where
superscript indicates the time, as a vector of numbers

t _ (gt pt e \T
e = (01,02,...0N))
Transition and emission models are encoded as stochastic functions

et = f(@o,@l, L0 WY, W~y

I'=r(©%n), n'~p, (-1
where f(-) is a transition function, () is an emission (rendering) function, and w* and n*
are random variables that are included to account for incomplete modeling of the world.

A graphical model corresponding to this generative model is shown in Figure 1-1. The
shaded nodes (I*) are observed, clear nodes (©°) are latent, and the edges in the graph
define the dependencies between the variables. General graphical model formalisms are
described, for example, in [54].

The conditional distributions p(©%|6°, 01, ..., ©'1) and p(It|©¢) can be derived from
Equations 1.1, and the graphical model encodes a factorization of the joint probability

18

Figure 1-1: Probabilistic graphical model corresponding to the generative model in Equa-
tion 1.1. The observed image I is stochastically generated from the latent state ©¢. The
value of the state depends on previous values ©°, 01, ... Ot 1,

density

t
p(e°,6%,...,64L I, ... I =[] o(I"[6")p(67]6°, 6%,...,6™Y) (12)

7=1

Inferring the state of the world in this model amounts to computing the posterior distri-
butions of ©* for every time step ¢. In classical tracking the posterior is conditioned on all

images observed up to time ¢:
p(€YI°, I*,. .., IY).

In batch applications (e.g. shape-from-motion) the state is conditioned on all available
observations from time O to time 7":

p(6Y1° 14, ..., 1I7).

Intermediate algorithms, that are able to “look™ a few time steps into the future have also
been implemented. They amount to computing (for k-step look-ahead) a posterior distri-
bution:
p(YI°, I, ..., I'"F),
All of these distribution can be derived from Equation 1.2.
Inferring the distributions of latent nodes in this graph is made complicated by the

density of the dependence structure. When the current value of the state depends only on a
fixed number of the previous values,

f(@O, @17 o et—l’wt) = f((“)t_N, (_)t—N+1’ e (__)t—l, wt)

then this model becomes an n-th order Markov chain, and can be converted to a first-order
model shown in Figure 1-2(a) [2]. This involves introducing a “superstate” S?, which
contains all information about previous states necessary to generate O:

St a F(St—l’wg)’ w.ts g pr
B' =G (S%ug)y Wh~Pis (1.3)
I'=r(&%7"), n'~p,

19

Figure 1-2: First order Markov models of the world evolution. (a) A two stage model
corresponding to the Equation 1.3.The observed image I® is stochastically generated from
the latent instantaneous state ©°. The value of the instantaneous state is (stochastically)
generated from the temporal state S%, which depends on the it value S*~! at the previous
time step. (b) A variant of the model corresponding to Equation 1.4. The instantaneous
state was integrated out according to Equation 1.5

where the evolution of S* is encoded by the first order transition function F(-), and the G(-)
is a function that extracts information about ©° from the superstate.

In the following discussion we refer to © as an instantaneous state and to S as a tem-
poral state or, when there is no danger of misperception, as simply state. When performing
inference in this model, we need to compute a joint probability distribution of S and ©. In
many models © is an element of S, or can be computed deterministically from it. In this
case O can be completely removed from the model

= FSwh), wh~e

1.4
It = R(St, I/t), I/t ~ Dy ()

where R(-) incorporates G(-) and r(-). From the stochastic perspective it amounts to inte-
grating ©! from the distribution p(I*, ©*|S?)

p(I1|St) = / p(I, ©'|5)d" = / p(I(6")p(6*|5)de* (1.5)

The simplified model is shown in Figure 1-2(b).

Equation 1.4 defines two probability distributions p(S*|S*~!) and p(I*|S*). In keeping
with the standard notation, we will refer to p(I?|S?) seen as a function of S* as likelihood.
The posterior distribution of the state at time ¢ is proportional to the product of the likeli-
hood and the temporal prior. The temporal prior is a distribution that encodes the knowl-
edge about the current state available for the observations other than the current one. For
the online (filtering) case, the temporal prior is defined by Chapman-Kolmogorov equation
[79]

p(StlIL.t—l) s /p(StISt‘l)p(St‘l|Il"t_1)dSt‘1. (1.6)

Similar definitions exist for batch and look-ahead priors.

20

Figure 1-3: Chain-structured Conditional Random Field model. The state of the world
at time ¢ is specified by S¢, and the observed image by I*. The model is described by
motion compatibility (potential) function ¢(S*, St~1) and the image compatibility function

$6(S°%) = ¢(I*, 5°).

1.2.2 Conditional Random Field Model

An alternative to a generative model is a Conditional Random Field (CRF) model that
replaces transition and emission models by a more general compatibility functions. These
functions can be more efficient to evaluate than likelihood or transition function , resulting
in faster inference algorithms. While one could use techniques such as Gibbs Sampling
to generate observations from a CREF, it is not a proper generative model since it does not
explicitly state how the observations are generated from the hidden states.

A chain version of a CRF is shown in Figure 1-3. While, apart from the lack of arrows,
it is quite similar to the generative model, the underlying computations are quite different.
This model is specified by the motion potential #(St, S*~!) and the observation potential
#(S*) = ¢(I% S*). The observation potential function is the measure of compatibility
between the latent state and the observation. Of course, one choice for it might be the
generative model’s emission probability p(I?|S?), but this does not have to be the case. It
can be modeled by any function that is large when the latent state corresponds to the one
observed in the image and small otherwise.

Rather than modeling the joint distribution of poses and observations, the CRF directly
models the distribution of poses conditioned on observation,

p(S*7|PT) = Zp(s) T 105",)55, 1.7

where Z is a normalization constant.
Once the observation potential is defined, a chain-structured CRF can be used to per-
form on-line tracking

p(StIII..t) x ¢Z(St)/¢(st, Srt—l)p(snt—lIIl..t—l)dst—l' (18)

Similarly to generative model formulation, the expressions for conditioning on different
sets of observations can be derived.

The main advantage of this model from the implementation standpoint is that the ob-
servation potential ¢%(.5%) may be significantly simpler to learn and faster to evaluate than
the emission probability p(I*|S?).

21

1.3 Probabilistic Tracking and Search

The models described in Equations 1.4 and 1.7 have been used in a large number of contexts
and standard inference methods have been developed over the past several decades.

The particulars of vision problems define unique conditions on constituent elements
of this model. Computing emission probabilities usually involves a comparison between a
relatively large number of pixels generated by the rendering model and the observed image.
This results in likelihoods that are sharply peaked, which for reasons described later, makes
the shape of the posterior similar to the shape of the likelihood. Likelihoods are also often
multimodal (cf. [102]) with large number of outliers due to approximations involved in the
rendering function, and, in some cases, sensor noise.

On the other hand, the transition probability models involved in computing the temporal
priors are quite uncertain due to the properties discussed in the previous section. In order
for such models to be useful in tracking (i.e. for the posterior estimates to be close to
the true underlying distributions), the temporal priors should assign significant probability
to the regions that would be assigned significant probability by the true prior. This can
be achieved by compensating the uncertainty in the transition function by inflating the
dynamic noise, making the temporal prior wide (i.e. assigning significant probabilities to
a large region in the state space that includes the true prior’s coverage). In this case the
prior does not provide a lot of smoothing, but rather serves in a data association function
by identifying which peaks in the likelihood come from the actual observation and which
are due to noise and/or unmodeled elements in the image generation process.

Taking a search perspective to state estimation, the goal in designing a transition func-
tion is twofold:

e Enforce as many constrains as possible to decrease the search region and decrease
the probability of observing a spurious likelihood peak.

e Make computing the function as fast as possible to improve processing time.

The complexity of the transition function often depends on a particular parameterization
of the state. The transition functions that are complicated in one parameterization can be
made simpler in another. For example, a non-linear transition function can be linearized
by a (non-linear) change in the state representation. Furthermore, there might not exist a
single representation in which all constraints are easily describable.

Wide priors complicate tracking for two main reasons. First, posterior distribution es-
timation often involves searching for the likelihood peaks, and the likelihood (and the pos-
terior) is close to zero everywhere else. The prior defines a search region and a wide prior
implies longer search times. The second problem is that the likelihood peaks may be dense,
and a wide prior may cover (i.e. assign significant probability) to more than one (correct)
peak, thus making the prior’s selectivity quite poor. Both of these issues may result in
posterior estimates that differ significantly from the true posterior and consequent loss of
track.

The first complication has more impact in applications with high-dimensional state
spaces such as articulated body tracking and are less significant for simpler trackers since
search in low-dimensional spaces can be made efficient. The second problem has more

22

Figure 1-4: Redundant State Multi-Chain Model. This model is created by combining two
generative models that describe the evolution of the instantaneous state © using different
parameterizations of the state (S and R) and the propagation and instantaneous state gen-
eration functions.

bearing on the low- and mid-level vision modules, especially in hierarchical systems, that
need to be fast and cannot expend time necessary for maintaining and propagating a multi-
modal posterior.

1.4 Redundant State Multi-Chain Models

One can approach the problem of disambiguating likelihood peaks in different ways. Early
methods chose the most likely mode and ignored the rest. Alternatively, one could prepro-
cess the image in order to remove the extra likelihood peaks. The common practice over the
last decade has been to defer the decision until the modes can be disambiguated [19, 36].
This is achieved by maintaining and propagating a multi-modal posterior distribution in
the expectation that the correct peak can be detected from future observations. This strat-
egy has a significant computational cost, as propagating multi-modal distributions is much
more expensive than the ones with a single mode. It might not be possible to maintain this
distribution indefinitely using finite resources [58].

In this thesis we explore a new approach to improving precision of the posterior esti-
mates without explicit introduction of overly complex priors. The key to our method is the
observation that it is not necessary to commit to a single representation. We propose main-
taining multiple representations of the state simultaneously, propagating each one through
an appropriate approximate transition function and reconciling them at every step with each
other and with the observation.

If considered from the search point of view, each imprecise temporal prior is generated
by a transition function which involves different approximations. In turn, every approxima-
tion requires dynamic noise with different properties in order to ensure that it fully covers
the true region of interest. All imprecise priors will cover the true region, but if the ap-
proximations are sufficiently dissimilar, they will place the rest of the probability mass into
distinct regions in the state space as we will show in section 3.2. It is therefore reasonable
to perform the search only in the region to which all approximate temporal priors assign
significant probability.

From a density estimation perspective, we would like to introduce a new prior distribu-
tion over the instantaneous states that assigns large probability to the region that is covered

23

by all individual priors and a small probability to the rest of the state space. This can be
done by taking a product of the constituent priors and scaling it so that the new prior in-
tegrates to unity. Combining generative models into a single system by forming products
of the temporal priors results in a model shown in Figure 1-4 which we call a Redundant
State Multi-Chain Model (RSMCM) framework.

This approach of modeling a complex distribution as a product of simple ones is mo-
tivated by product models used for classification in [43] and [11]. In contrast to those
methods we are not interested in training the product models, but rather in finding condi-
tions under which combining existing models via a product leads to the improved posterior
estimations and the efficient inference algorithms for the product models.

Combining models expressing similar constraints into a product model is ill advised, as
it would emphasize these constraints more than necessary, making the overall model more
certain and sharpening the prior in the incorrect place. In the following chapters we will
quantify this intuition and make it more precise.

We will show that combining models that describe evolution of the world at different
spatio-temporal scales into a RSMCM has an interpretation of introducing a feedback link
into commonly used hierarchical tracking systems in a principled way. This feedback con-
nection has been postulated (and anatomical evidence found) to be present in biological
vision systems, and has been found to be beneficial in artificial ones as well.

We have designed and implemented inference algorithms for RSMCM that take full ad-
vantage of the inference algorithms that have been designed for individual models. We will
demonstrate how a modular implementation of the practical systems is possible, allowing
independent design of constituent subsystems. ‘

1.5 Tracking Using Discrete Search

The method proposed in the previous section combines complimentary weak models to
reduce the influence of “noise” likelihood peaks on the posterior estimates.

It does not address the second major problem of the probabilistic search — the sheer
amount of computation that is needed to explore the region of the state space covered (i.e.
assigned significant probability) by the wide temporal prior. In the second part of this
dissertation we propose a solution to this problem — quickly exploring large regions of the
state space by using a large, precomputed database of possible observations labeled with
corresponding state values. We will refer to this database as a “grid” without making any
claims about the regularity in the values of the labels.

The key to our approach is to (partly) replace slow exploration of the continuous pose-
space used by state-of-the-art methods by fast search on the discrete grid. The straight-
forward approach to using the grid is to linearly search it for the pose that optimizes the ob-
jective function (matching the current observation and conforming to temporal constrains);
it has two drawbacks. If the grid is large enough to cover the region of interest in pose space
with sufficient density, linear search can still be slow. The search can also be imprecise if
the distances between individual grid points is large so that no point lies near the peak of
the objective function.

We propose complimentary approaches to overcoming these drawbacks, resulting in

24

two grid-based tracking algorithms described in this paper. The first algorithm we propose
does not assume strong temporal constraints and searches the whole database at every time
step by using an efficient approximate search algorithms [96]. The results are then refined
by local, search in continuous pose space around the proposed grid points, resulting in a
mixture-of-Gaussians approximation to the likelihood function. Finally, the approximate
likelihood is combined with the temporal prior to obtain a posterior estimate. In addition to
rectifying possible errors in the approximate search, the refinement step is convenient for
dealing with sparseness of the grid — it would locate the peak of the compatibility function
if the initial grid point lies in its general vicinity.

When the temporal constraints are strong, they can be used to restrict the number of
grid points that need to be considered at every time step. In this case exact search can be
performed on this limited subset yielding the sparse HMM framework given by our second
algorithm. If the grid is dense enough, the pose can be estimated directly from results of
the search. Otherwise an additional local refinement step can be added.

1.6 Summary of Contributions

In this dissertation we propose two methods for exploiting weak temporal models for track-
ing complex scenes.

Our first contribution, Redundant State Multi-Chain model, reduces the effect of the
noise likelihood peaks on the posterior estimates by pooling the behavior constraints ex-
pressed by multiple weak models into a unified probabilistic model. The approach is mo-
tivated by the observation that models describing the same set of observations implicitly
marginalize over an intermediate feature representation between state and observation. By
making the feature representation explicit we obtain a straight-forward and computationally
efficient means of mediating between the constituent models. The resulting fused model
has a clear probabilistic interpretation, reconciling multiple generative models that describe
the same observations, each corresponding to a particular set of independence assumptions
and dynamical model. An integrated model is enabled by the introduction of an explicit
latent appearance model: this model is desirable for reasons of global consistency; how-
ever, exact inference on the resulting combined model is complicated by the introduction of
loops. We propose two methods for adapting algorithms designed for constituent modules
to operate in a combined system. Both algorithms are based on Belief Propagation updates
on acyclic subgraphs of the loopy graph. The online filtering algorithm operates on single-
frame slices of the temporal chain. The batch inference algorithm uses single-chain based
subgraphs. We demonstrate advantages of the RSMC models on background maintenance
[109] and structure-from-motion estimation tasks [39]. In both cases using RSMCM im-
plementation resulted in significant reduction in errors over regular feed-forward systems.

Our second major contribution addresses the computational complexity of search con-
strained by a weak temporal prior such as in articulated body tracking. One approach to
dealing with this problem is likelihood sampling, where a sample-based representation of
the likelihood function is constructed from low-level features extracted from each frame.
Tracking is performed using late temporal integration of single-frame pose estimates. This
method is successful when the constituent feature detectors (and/or trackers) are available.

25

To deal with more general cases we propose using large predefined sets (grids) of likely ob-
servations labeled with corresponding state values to efficiently explore state-observation
compatibility surfaces in large volumes of state space. This is achieved by supplementing
optimization in continuous space by search in the grids. We propose two complimentary
methods of utilizing discrete search for density estimation. The first method is useful in
the presence of very weak dynamic models and searches the whole grid at every time step
with an efficient approximate search algorithm [96]. The results are then refined by local
continuous-space search around grid points, and temporal integration is done as the last
step in the algorithm [25]. The second method uses stronger dynamic model to determine
a region of the grid where a linear search is performed. The state distribution can then be
estimated directly from the search results [118]. When applied to the task of articulated
body pose estimation, both algorithms produce accurate results outperforming state-of-the-
art methods. The local search algorithm, furthermore, can be implemented to operate in
real time.

1.7 Structure of the Dissertation

The rest of this thesis is structures as follows: in Chapter 2 we discuss previous proba-
bilistic approaches to visual tracking including both models and inference methods. We
derive the Redundant State Multi-Chain Model, describe the conditions under which dif-
ferent models should be combined into RSMCM, and present on-line and batch inference
algorithms in Chapter 3. We then describe applications of RSMCM to real-world vision
tasks: improving performance of hierarchical vision systems such as object tracking with
adaptive background subtraction and structure-from motion-estimation from feature tracks
in Chapter 4.

Chapter 5 introduces likelihood sampling method with applications to articulated body
tracking. This methods is restricted to cases when body parts (in particular head and hands)
can be detected or tracked in every frame. We show how pose estimation can be made
more robust by incorporating body pose and constituent part trackers into a redundant state
model.

We turn to grid-based techniques in Chapter 6 and describe two tracking algorithms
based on discrete search: Exploring Likelihood MOdes (ELMO) and Conditional Random
People (CRP). We present results of these algorithms on articulated body tracking without
any part trackers necessary as a preprocessing step.

Discussion of the contributions’ impact and outline of the possible future developments
are presented in chapter 7.

26

Chapter 2

Background and Prior Work

In this chapter we review existing probabilistic approaches to state-space sequence pro-
cessing, with examples drawn (when possible) from applications in computer vision. We
first describe models that do not assume any structure of the state and the generic inference
methods that have been proposed for these models. We then turn to structured generative
models that make specific assumptions about the state space. These assumptions may lead
to decreasing computational requirements, or to better precision in state estimation, or both.

In discussing generative models, we will focus on three distinguishing characteristics —
the state probabilistic density representation, possible transition functions, and the applica-
ble inference methods.

2.1 Monolithic Generative Models

Monolithic models represent the full joint distribution of all parameters, and are used in
cases when the state vector and the transition model do not have an identifiable structure.
The graphical model for such a system is shown in the Figure 2-1. The choice among
monolithic systems can be narrowed down further depending on what is known about the
likelihood function. If it is known to be unimodal, then, generally, the posterior state distri-
bution would also be unimodal. In this case parametric models are preferable, as they have
closed-form solutions and can be efficiently updated. When the likelihood function can
be multimodal, maintaining parametric representation of the posterior can quickly become
unmanageable, and the semi- or non-parametric methods are used.

2.1.1 Kalman Filtering

Simple approximations have been shown to be sufficient for many applications where the
state distribution and evolution models have low complexity. If it is reasonable to assume
that the transition function can be approximated as linear and the transition noise is Gaus-
sian,

St=A8"'+w, w~N(,%,)

27

Figure 2-1: First order dynamic model with monolithic state. The model is specified by the
transition probability p(St|S*~!) and emission probability p(It|S?)

then the state distribution can also be modeled with a single Gaussian. !. Under these
assumptions closed-form solutions are available for both filtering, known as Kalman Filter
[56], and smoothing — Rauch-Tung-Striebel (RTS) algorithm [89].

These algorithms have been used for vision applications such as feature-point tracking
[91], tracking independently moving multiple objects [137], and in early approaches to
articulated pose tracking [92].

The simplicity of observation and dynamic models that allows for efficient implemen-
tation of a Kalman filter are also its main drawbacks when used in tracking applications.
The linear approximation to the dynamics can be inappropriate for some tasks. A large
number of tracking problems also require modeling multimodal posterior distributions that
cannot be represented with a single Gaussian.

Non-Linear Gaussian Filtering

In many applications, while the state distribution may be reasonably approximated with
a normal distribution, the (constant) linear approximation to transition function is grossly
invalid. Several extensions to Kalman filtering concepts have been proposed to deal with
these situations. In the Extended Kalman filter [6] F’ is linearized around the current state
estimate to obtain a (linear) approximation A(S*!), which is then used in the standard
Kalman update.

S A(SHS! 4w, A(S*™Y) = J(f)|st-1,w ~ N(w; 0; %)

This method has been extensively used for articulated tracking purposes [127, 71] and in
structure from motion estimation [52, 6].

An alternative method for propagating Gaussian densities through non-linear func-
tions was proposed in [55]. Rather than approximating the transition function, the Un-
scented Kalman filter deterministically samples points from the distribution, propagates
them through the full transition function and re-estimates the output Gaussian distribution
from propagated samples. The propagated density is then used in the standard Kalman
update. This algorithm has been applied to articulated body tracking in [110].

While these methods allow modeling non-linear dynamics, they still use a unimodal

IThis is true only when the prior on the initial state is Gaussian and the emission model is linear-Gaussian,
but suitable approximations can usually be made for unimodal but non-Gaussian likelihood models

28

Gaussian approximation to the posterior distribution. This makes them inappropriate for
more complicated tracking tasks that require propagating multimodal posterior distribu-
tions.

2.1.2 Non-Parametric Methods

When it can no longer be assumed that the posterior distribution would remain unimodal,
simple models, such as a Gaussian, become inappropriate. In general, an arbitrary dis-
tribution can be approximated to a good precision with a mixture-of-Gaussians, but the
number of components in the mixture may be large. The mixtures can be easily propagated
through the transition function with methods similar to those in the previous sections. Un-
fortunately, the number of Gaussians in the mixture has a capacity to grow geometrically
with every update. While they can be combined, and their number reduced after the update
[13], this approach has been generally discarded in favor of non-parametric sample-based
methods [66].

The sample-based methods are based on the fact that expectation of any function can
be computed using a large number of samples drawn from the distribution.

N
Eo[f(z)] = lim _le > f(z:), wherez; ~ p(z)iid (2.1)
=1

At the heart of any non-parametric density propagation approach lies a particular method
of maintaining and propagating a fair sample from the state posterior distribution at every
time step.

Particle Filtering

Particle filtering makes use of the importance sampling technique to create a sample-based
representation of the posterior distribution at every time step. Rather than drawing samples
directly from the posterior, the samples are drawn from a simpler proposal distribution.
Each sample (particle) is then assigned a weight equal to the ratio of the posterior and the
proposal distributions evaluated at it.

The simplest implementation of this idea is the CONDENSATION algorithm [48], which
has been extensively used for visual tracking tasks [48, 50, 113, 99, 98]. In CONDENSA-
TION the temporal prior is used as a proposal distribution. The posterior at the previous
time-step is sampled with replacement according to the particles’ weights, each sample is
then propagated through the transition function, and dynamic noise is added. Each particle
is then assigned a weight equal to its likelihood (proportional to the ratio of the posterior
and the prior).

The advantages of this method are its simplicity and ability to use any of the transition
functions. Its major disadvantage is the deterioration of performance in high dimensions
[104]. Approximate knowledge of the transition function requires inflating dynamic noise
in order to ensure that the temporal prior (the proposal distribution) sufficiently covers the
region where the true prior would be high. This also ensures that the temporal prior covers

29

a large region of the state space which requires a large number of samples to make compu-
tation with finite number of samples approximate that in Equation 2.1. CONDENSATION
can also suffer from problems related to the use of pseudo-random number generators for
sampling [58]. The combination of these issues can lead to sample impoverishment, where
a large number of samples are concentrated at a single mode of the posterior and do not
represent the full distribution. Using a large number of particles increases running time of
the algorithm, since particle filtering requires evaluating likelihood for every particle in the
set.

When the high-dimensional state evolves in a low-dimensional subspace, it is possible
to use CONDENSATION -style algorithms with better effect by sampling in the subspace
rather than in the full state space [129].

More complicated particle filtering algorithms [49, 102, 104] use likelihood as well
as temporal priors to create a proposal distribution that better approximates the posterior.
These algorithms have better theoretical properties, allow representation of the posterior
with a smaller number of particles, and have better running times. They are, however, more
difficult to implement.

Problems with pseudo-random number generators have been addressed by using deter-
ministic, quasi-random sampling [82, 78]. These methods do not suffer from the degenera-
cies faced by the regular particle filters, but can still be subject to sample impoverishment
as they do not account for the multiple samples corresponding to the same point in state
space.

Markov-Chain Monte Carlo

A more general, albeit generally slower approach to tracking using sample-based distribu-
tion is Markov-chain Monte Carlo (MCMC) family of algorithms [66]. MCMC methods
construct a Markov chain that has the target distribution as its stationary distribution. This
chain is then simulated until it reaches the equilibrium distribution (in reality, this is only
done for a fixed number of steps). States generated by the Markov Chain after this “burn-
in period” are fair samples from the target distribution. The transition probabilities in the
Markov chain can be implemented as a random walk using Metropolis-Hastings algorithm
[66], or take into account gradient of the target density (so-called Hybrid Monte Carlo
[16D-

Well designed MCMC methods tend to be more accurate than particle filters such as
CONDENSATION allowing for better exploration of sample space and are not suscepti-
ble to sample impoverishment. However, they are also relatively slow and harder to use
(e.g. detecting when the Markov chain has reached the equilibrium is not easy). While
MCMC-based methods have been applied to articulated pose estimation [107, 16], multi-
body tracking [57], and shape-from-motion estimation [22], they are not yet widely used
in vision community due to difficulties in implementation and computational complexity.

30

Figure 2-2: A first order factorial dynamic model. The state S* is partitioned into subsets
St and S%, with factored evolution model p(St, S| St~1, S51) = p(StS1)p(SE|SE1),
and the observation is generated according to emission probability is p(I*|S%, S&)

2.2 Tracking with Structured State Representations

The posterior estimates may be made more tractable and transition models more precise
by introducing structure into the state. The resulting graphical model no longer has a sim-
ple chain structure of an HMM, but becomes a more general Dynamic Bayesian Network
(DBN) (cf. Figures 2-2 and 2-3). The increase in the complexity of the model (graph)
structure is compensated for by reducing complexity of the individual conditional distribu-
tions. The main advantage of the structured models from the computational point of view
is the ability to approximate the full posterior distribution of the state by the product of
marginal distributions of the partitions. This reduces the effective dimensionality of the
space where the distributions have to be maintained. For sample based models this reduces
the necessary number of samples to be evaluated.

Factorial Models

Several different names have been assigned to the technique of partitioning the state into
non-interacting substates that combine to generate the observation (Figure 2-2). When the
state is discrete the approach is known as a Factorial Hidden Markov Model [37]. The fully
sample-based method has been presented as Partitioned Sampling [65, 27]. The hybrid
models where part of the state is represented with a parametric distribution and part with
sample-based are known as Rao-Blackwellized Particle filters [29].

In this model the transition probability is approximated by the product of transition
probabilities for each substate, but the observation is still generated based on all of the
subsets.

p(S*|S*™1) = p(St, S31SE71, S571) = p(SE|ST)p(S5 S571)

p(I'[S*) = p(I*|S}, 53)
Even though the transition probability can be factored, the individual substates are cou-
pled through the observed image and are nor independent. The key to success of the fac-

torial models is the fact that the factored approximation to the posterior can indeed be
maintained without inflating the errors caused by this approximation [8]. Factorial mod-

(2:2)

31

Figure 2-3: A first order switching dynamic model. The state S¢ is partitioned into a
discrete “activity” meta-variable S¢ and continuous pose S. The activity variable evolves
independently, p(S%|St~1, Si1) = p(St|St~1), and the pose evolution depends on activity.
The full transition probability is p(S?, S5| ST, S371) = p(St|SE1)p(SE|SE, S51), and the
observation is generated only based on the pose p(I*|S?, S%) = p(It|S%)

els have been used for articulated body [65] and multi-object [51] tracking applications
in computer vision. The multi-object tracking application has been successful, since the
main assumption that observed objects move independently is borne out in practice. This
assumption is questionable in human body tracking, since evolution of joint angles in the
whole body is often strongly correlated.

Switching and Mixture Models

An alternative to fixed dynamic models used in the above models is to incorporate some
kind of meta-information into the state, and use different dynamics based on this meta-
information (Figure 2-3). The approach proposed in [80] partitions the state S* into “ac-
tivity” (S%) and “pose” (S%). The activity evolves independently, while the pose transition
model depends on the current activity. The resulting model is

Bl S SEee = Sy = (ST B~ (5[5 1) (2.3)

A marginal distribution of the pose,
p(SEISIH, SE71) =) p(St =1, 851577, 8571 = Y w(St = 1St)p(S51S% =4, 857,

is a mixture of different behaviors where mixture coefficients are the probabilities of the
corresponding activities.

A similar model has been used in [1]. In that case the discrete variable determined the
“class” of a pose, and depended not on the previous class as in Figure 2-3 but rather on the
previous pose.

These models are at their best when they need to represent a small number of simple
possible behaviors. The behavior models compete instead of cooperating, so more compli-
cated motions can be difficult to model.

2

Figure 2-4: Dynamic model with overcomplete state. The state has an overcomplete
representation S = (St S%,S%). Dependencies between subsets are introduced in
order to ensure that the state is valid. The graphical model is undirected in order
to correctly represent a dependency structure. The transition probability can be fac-
tored into the product of individual substate transitions p(St, S, S5|St~1, S&~1, St71) =
p(S11817")p(85155~)p(S51S5)

Overcomplete Models and Non-parametric Belief Propagation

In overcomplete models the state is represented with a set of dependent random variables
whose number is greater than the actual number of degrees of freedom. These models
have been used for articulated body tracking with each variable representing a rigid pose
of a particular limb [112, 101]. Compared to the standard approach of representing body
poses with a set of joint angles, this representation allows using simpler emission models
— each limb can be rendered individually, although occlusions have to be accounted for.
The relationships between sub-states (poses) have to become more complicated, in order to
ensure that they represent valid articulated poses (e.g., the forearms do not become detached
from the shoulders). The graphical model for this type of system is shown in Figure 2-4.
Inference in these models is complicated due to the presence of loops, even for online
(filtering) tasks. The key observation that allows for tractable inference is that we can
approximate the joint posterior distribution of the nodes by the product of marginals

N
p(Stlll..t) ~ Hp(SfII”)

i=1

The same approximation was used for inference in the factorial models.

An important tool for computing marginal posterior distribution in the graphical models
is Belief Propagation algorithm [81]. The marginals are computed in a distributed fashion
by passing messages that contain partial beliefs between the nodes in the graph. It has
been proven that Belief Propagation can compute exact distributions on tree-shaped graphs
and both empirical evidence and theoretical results [134] suggest that it can produce good
results on loopy graphs as well.

When distributions at the nodes are Gaussian, and the dependencies are linear-Gaussian,

: 2

(b)

Figure 2-5: Hierarchical processing of sequential data. The marginal distributions
p(©¢| 1% are computed using the low-level feature extractor (a). These marginals are then
used as input to high-level algorithm (b).

then the messages can be computed in closed-form. As we have seen, this is not the case for
many real-life applications, and so a non-parametric version of Belief Propagation [111, 47]
have been used in articulated body tracking applications [112, 101].

2.3 Hierarchical Processing in Vision Applications

The generative models described in the previous sections are all defined as generating the
image I*. This is convenient for defining models, but in reality complete rendering is rarely
used for modeling emission probabilities. High level models, e.g., articulated and multi-
body tracking and structure from motion estimation, generate “feature” representations,
such as edge pixels, feature point locations, foreground labels, etc. These features are then
compared to those extracted from the observed images and the likelihood is computed using
some kind of similarity metric.

This approach can be mapped to the proposed probabilistic model in a straight-forward
way if the features are extracted for each individual frame independently (e.g., edges, color
segmentations, etc). When the feature extractor is itself a sequential processor, for example
an adaptive background subtraction algorithm [84, 40, 109], the inference procedure should
be described using two models shown in Figure 2-5.

These models define, in effect, two different dynamics on the intermediate “feature”
variables. One can be derived from the feature extractor, and is usually local. The other is
from the high-level global model. The fact that both of them are used, makes it clear that the
independence assumptions encoded in each model (i.e., that the features are independent,
conditioned on the states) are false.

Low-level algorithms tend to ignore global spatial relationships by modeling the evo-
lution of each image patch (in feature extraction [109, 120]) or object (in object tracking
[77]) as independent, and compensating for it with restrictive assumptions about the local
behavior of the scene. For example, feature-point trackers usually assume that the image
patch about the point of interest has a relatively stable appearance, and adaptive background
subtraction modules typically assume that the foreground object does not remain stationary
for extended periods of time. When these assumptions are violated, the resulting errors

34

are passed to higher-level modules, and these are not always able to correct them (e.g., the
so-called “sleeping man problem”, Figure 2-6).

While in general the posterior estimates produced by a high-level model are still cor-
rect, it is advantageous to incorporate both dynamics into a single probabilistic model.
Several approaches have been proposed where the full posterior distribution over features
is considered in the high-level model [46, 122]. These methods use the uncertainty about a
particular feature estimate to decrease its influence on the high-level estimates.

Ad-hoc methods of incorporating feedback from high-level to low-level models have
also been proposed [70, 128, 52]. These methods generally use the high-level estimates to
validate the output of low-level tracking. The high-level estimates are used to gate feature
tracking output in [70]. In [52] feature position is deterministically selected from those
predicted by the global and local models but no fusion is performed. The main drawback
of all of these methods is the deterministic nature of the feedback mechanism. They do not
allow for soft decision making (e.g. deferring the final decision to the future time steps)
and are sensitive to the thresholds used to trigger the feedback.

2.3.1 Incorporating Higher-level Knowledge into Feature Extractors

Rather than using feedback from the high-level tracking modules for regularizing feature
extraction, one could incorporate higher-level constraints into feature tracking itself. In-
stead of considering individual feature trackers to be completely independent, which can
lead to merged tracks, techniques such as Multiple Hypothesis Tracking (MHT, [19]) or
Joint Probabilistic Data Association Filter (JPDAF, [36]) can be incorporated into low-level
tracking process [119]. The goal of both of these techniques is to solve data association
problem (i.e., which observation corresponds to which tracked point). They assume that
individual motions are independent, which is completely incorrect in feature-extraction ap-
plications, since features are coherently generated by a single high-level motion.

Several methods have been proposed in the context of background maintenance for
motion-independent high-level analysis [41, 123]. The use global (or region) based anal-
ysis at a single time point to detect sudden illumination changes and be more robust to
sensor noise. These approaches do not use motion information, and thus cannot deal with
“sleeping-man”-type problems. This problem is usually approached with ad-hoc heuristics-
based methods that disable the background model adaptation in the general vicinity of the
detected object. If the “vicinity” broadly defined (e.g., as a bounding box of the detected
object), these methods may disable correct adaptation. If, on the other hand, an object shape
is used to define non-adapting region, then using adaptive shape models is complicated.

35

paindwod ayy)

(3

“(m01 wonoq ay3 ur are sdew punoi3aloy
Keme-opey,, Uay) yorym s109[qo punoidaioy ssojuonow o) sidepe (sol J[ppiw) [9pow punoisydeq ay) ‘(mox doy oy ut

umoys 2ouanbas 9y} Ul SB) 3sLD Ay} JOU SI SIY) USYA\ "AIRUOLIBIS UIBWAI JoU Op $392[qo punoigdaioj jeyy uondwnsse jorduwr ue ayew
swaysAs aouruuIEW punoidyorq aandepy ‘uonoenqns punoisyoeq sandepe ur wapgod uew Surdasys,, ay) jo sjduwrexa uy :9-g aIn31]

sdeJq punoi3aioq

- B

(UMOYS ST dWEIj .ﬁoﬁbﬁ KIOAQ) ooco,:mom induy

36

Figure 2-7: Coupled HMM tracking and classification model. States S’ and R’
independently generate observations I and I%, but the transitions are coupled:
p(St, RtISt_l,Rt—l) = p(St|St_1,Rt_l)p(Rt|St_1,Rt—l)

2.4 Cooperative Tracking Approaches

Multiple methods have been proposed for improving robustness of tracking results with
respect to image noise. One such approach is to use more than one type of features derived
from the observed images. In tracking heads, for example, one can take advantage of the
edge maps, flesh color detection and optical flow measurements. One could use all of these
“independent” measurements simultaneously, by devising an appropriate emission model.
Alternatively, a separate tracker can be run using each available modality, with state beliefs
reinforcing each other at every step [34, 64, 131, 132].

These approaches are characterized by assuming that features (e.g. color and edges)
are independent when conditioned on the state values, and can be tracked using different
state representations. The graphical model corresponding to this assumption is shown in
Figure 2-7, and is equivalent to the Coupled HMM model proposed by [9]. The output
nodes 1% and I, corresponding to different modalities, are assumed to be independent in
this model although the reality is that they are tightly coupled. Indeed, they come from the
same observation.

Another feature of all of these approaches is that the information exchange between
individual trackers is performed on the temporal state probability distribution level. In
particular, the scaled products of posterior distributions are formed at every time step in
[64, 34]. The ability to form such products relies on the access to “translators”—functions
that map between distributions in different state spaces. This requirement complicates
the resulting algorithms and makes them less general, since such functions are not always
available.

Cue integration approaches differ significantly from the redundant state model proposed
in Section 1.4 and described in detail in Chapter 3. The RSMCM is a method for combining
multiple dynamic models to interpret a single stream of data. The information exchange in
this framework is performed at the shared instantaneous state level, removing the necessity

37

Figure 2-8: A product of HMMs classification model. Individual models are specified, each
modeling a particular aspect of the class distribution. The observed sequence is assigned a
probability equal to the scaled product of probabilities assigned by each chain.

for explicit translation functions.

2.5 Classification and Product Models

In previous sections we have discussed using probabilistic dynamical models to infer the
distributions of the hidden states at every time step. Similar models have been applied to
the task of classifying sequences. They are trained to assign to each observed sequence a
probability of belonging to a particular class.

Most of the models described in the previous sections have been used for classifica-
tion. Hidden Markov Models (HMMs), in particular, are used extensively in language [67],
speech [86] and vision [126]. Parameters of these models are learned from the data belong-
ing to a certain class, and are then used to assign a probability of belonging to this class to
novel sequences. Classifiers based on individual chain models have also been extended to
mixtures of chains, each trained to detect a specific subclass with mixture coefficients set
depending on the relative frequency of each subclass.

An alternative method of combining densities to model complicated distributions is to
form their (scaled) products. This approach is appealing since it makes inference (classi-
fication) easy — as component models are usually simple. A product of experts model was
proposed for individual observations’ classification [43]. It has been extended to sequence
models in Product of HMMs [11] (PoOHMMs).

The product model consists of a set of HMM s that are trained jointly, but inference is
performed independently. Each model can be thought of as representing a single aspect
of the sequence behavior, and their product assigns a large probability only to sequences
exhibiting all of the individual behaviors. The graphical model for POHMMs model is
shown in Figure 2-8. The joint distribution of an observed sequence and the hidden state
sequence for the top chain is

T
ps(Il"T, SO"T) - p(So) H (p(St|St_1)p(It|St)))

t=1

38

By integrating out the state sequence we obtain a marginal density assigned to a sequence
T =402, .. I

ps(I™T) = / p(s°) [] (o(SH1S2)p(I'|S")) dS°dsS" ... dST

The observation probability for the bottom chain, pr(I*-T) can be obtained in a similar
manner. Combining the probabilities obtained from both chains, the final probability of a
sequence is

p(IT) = Zps(I* T)pa(T") 2.4

where Z is the scaling constant necessary for p(I*T) to integrate to unity.

While inference in the POHMMs model is straight-forward, training is complicated.
The models should be trained to be “independent”, since taking product of similar densities
(representing similar constraints) does not add new information to the system, but rather
makes the result tighter.

The PoOHMMs model cannot be used for tracking directly in a way a factorial model can.
In factorial models the individual states (parts of the global state) interact with each other,
which allows the model to maintain consistency. In POHMMs the states are decoupled at
run-time and without this interaction their estimates can easily diverge, making the overall
estimate meaningless.

2.6 Biological Vision Systems

Early theories of motion processing in the brain [68] proposed a purely feed-forward inter-
pretation similar in spirit to hierarchical bottom-up models described in section 2.3. More
recently, however, anatomical evidence of feedback connections in the brain has emerged
[108]. A model that simultaneously maintains and propagates multiple coherent represen-
tations of motion at different levels in the brain has been proposed in [136].

Motion processing in the brain has been described as inference in a directed hierarchical
generative model [87, 88]. Online inference was described as loopy belief propagation but
with no symmetry between messages (due to the structure of the model). A computational
model of pattern recognition in the brain has been proposed in [63]. While this model
describes analyzing static patterns, it does postulate that the feed-forward/feedback nature
of the multi-scale processing may be described by message passing in an undirected model.

Our motivation for the redundant state model comes partially from hierarchical feed-
back models of [136, 63]. In particular the Belief-Propagation based inference algorithm of
[63] is quite similar to the one that we will propose for performing on-line state estimation
in the redundant state models.

39

2.7 Exemplar-based Sequence Analysis

The tracking approaches discussed above rely on the analytic representation of the rela-
tionship between the state (pose) and the observation. This is a natural point of view in the
context of generative models. It is also efficient from the coding standpoint — it takes less
memory to store a sequence of states and the observation generating function than to store
images themselves. However by using the analytic generation function, a tracking method
becomes a subject to the approximation errors in its specification.

The state-observation correspondence function may be alternatively specified as a set of
exemplars — image-pose pairs. Several methods that use a database of such exemplars have
been proposed. Using exemplars removes the rendering step from the tracking process,
making computing observation compatibility computation more efficient and potentially
more precise.

Exemplars have been used for tracking by specifying possible transitions between keyframe
states [124]. This method requires augmenting the pose-observation compatibility encoded
by the exemplars by an analytic transformation function, which limited its usefulness for
generic tracking.

Keyframes have also been used as a part of larger system for recovering 3D structure
from 2D observations in [28]. In this work the keyframes have provided “anchor points” to
which the pose sequence corresponding to observations was fitted.

While designed originally for single-frame pose estimation, nearest neighbors search
[96] can also be used for tracking by smoothing the resulting pose estimates.

Rather than operating on single labeled frames and then enforcing temporal continuity,
full sequence exemplars have been used for pose estimation and activity recognition in
[30].

2.8 Review of Articulated Tracking Methods

In this section we move away from the general problem of state estimation in visual tracking
and concentrate on methods used for articulated body tracking. This particular application
has been instrumental in bringing a large number of probabilistic techniques to the attention
of machine vision community, since it involves operating in a very high-dimensional state
space with large number of unobserved degreed of freedom and complicated dynamics.

Tracking in complicated state spaces (e.g., human pose) is naturally approached as
a search or optimization problem. The deterministic algorithms optimize a model-based
pose-observation correspondence function using local search methods (e.g., gradient de-
scent) [83, 21, 24]. The search is performed at every frame in the sequence starting with
the previous frame’s optimum. These methods are computationally efficient, but suffer
from local minima and observation ambiguities. They are able to handle relatively small
interframe motion and can fail when fast motion or occlusion occurs.

The probabilistic paradigm was introduced to articulated tracking when the need to
maintain uncertainty about estimates was recognized. Many of the models described in
Chapter 2 were used in the body tracking applications. Early probabilistic human tracking
approaches (e.g., [92]) used a Kalman Filtering framework, thus implicitly modeling all

40

constituent distributions with Gaussians. These assumptions have been later relaxed to
account for nonlinear mono-modal dynamics (while still using Gaussian state model) by
using Extended [53] or Unscented [110] Kalman Filters. Switched linear systems [80]
were proposed to describe arbitrary learned dynamics.

Unimodality assumptions needed to be removed in order for the body trackers to re-
cover from errors caused by projective ambiguities causing multiple peaks in the objective
function. This led to introduction of semi- and non-parametric density propagation algo-
rithms such as Multi-Hypothesis Tracking [13] and particle filtering [99]. These approaches
use pseudo-random sampling to explore the pose space and evaluate the pose-observation
compatibility. The sampling process also incorporates dynamic coherence constraints ab-
sent from the deterministic methods, but require large numbers of samples to sufficiently
cover the high-dimensional pose space.

While knowledge about the local motion behavior can be incorporated into the sampling
process to guide the search [102, 129], local search around each sample is still necessary
to improve performance [103, 14]. Gradient information can also be directly incorporated
into the sampling process [16]. An alternative approach to search in probabilistic setting is
to use simulated annealing where the search is initialized by sampling the temporal prior
derived from the results of the search at the previous time step [26]. Partitioned [65] and
Layered [113] sampling use factored state dynamics, which allows semi-independent prop-
agation of parts of the state vector.

One could also search for the optima at every frame independently, and incorporate
temporal information later. This approach has been implemented in a probabilistic set-
ting by [114, 100]. Bottom-up cues have also been used in [61] in the context of Rao-
Blackwellized particle filtering to reduce the number of parameters that need to be sam-
pled. Recently, several approaches have been proposed to learn the (possibly multi-valued)
function directly mapping the previous pose estimate and the observation to the new pose
estimate [1, 106, 105]. These approaches have been demonstrated to perform well on a
limited range of motion but require large amounts of training data.

Content-based retrieval methods using databases of images or image sequences labeled
with pose information have been used to perform single-frame pose estimation [96] and ac-
tion recognition [30]. These algorithms compute descriptors for all labeled exemplars and
observations, and use (approximate) k-nearest-neighbors search based on this descriptor to
retrieve examples from the database that are then interpreted according to the task.

2.8.1 Pose-Observation Compatibility Models

An important part of any articulated-body tracking system is a observation compatibility
function that computes how well a particular pose matches an observed image. Such func-
tions are usually based on rendering an image of a human in a specified pose and then
comparing it to the image. While the comparison can be performed using raw pixel values
[13], features such as edges [44, 26], silhouettes [83, 106], results of color segmentation
[127], or learned filter responses [98] are usually employed.

All features described above are inherently image-to-image comparison features. Their
usefulness for computing pose-image similarity is limited by the sophistication of the ren-
dering function, and the sensitivity of a particular feature to the pose variation. The ren-

41

dering function is supposed to be computed for every state value where the likelihood has
to be evaluated and the state-of-the-art non-parametric methods require large number of
such evaluations; therefore, in order for algorithms to run in reasonable time the rendering
function cannot be very sophisticated. Additionally, the features may be relatively insen-
sitive to pose changes: for example, silhouettes do not preserve much information about
self-occlusion.

Similarity Sensitive Embedding

Instead of choosing features on an ad-hoc basis, one could learn the features that are most
sensitive to pose similarity. One method for learning such features is Similarity Sensitive
Embedding (SSE) introduced in [96]. The general approach it takes is to use two sets of
image pairs — one with images depicting objects (in our case humans) in similar poses, and
the other with objects in dissimilar poses — to select features that are likely to have the same
value for similar examples and different values for dissimilar ones. The SSE algorithm as
described in [96] and used in this thesis operates on a set binary features that are obtained
by thresholding bins of edge direction histograms computed over all possible windows in
the input image. ’

The output of the learning stage of the algorithm is a function that maps images into
fixed-length binary strings, such that the images depicting people in similar poses are
mapped into binary strings that are close in Hamming distance, and images of people in
dissimilar poses are mapped to strings that are far. Formally, the algorithm learns a function
H,

H:I-{0,1}".

such that with high probability

small if #; is similar to 6,
large otherwise

|H (1(61)) — H (1(62))] is {
where I(6) is the image of a person in pose §. The similarity measured in the embedding
space may be different from the distance in the image space which is often dominated by
the factors irrelevant to the difference in the parameters of interest.

The similarity sensitive encoding can be used for approximate search in the database,
using, e.g., locality sensitive hashing as proposed in [96]. It can also be incorporated into
a conventional pose-observation compatibility function by using it as a parameter in the
exponential distribution

¢(1,0) = exp{—-A|H(L(6)) — H(I)[} (2.5)

that is large for compatible image/pose pairs and small otherwise.

The distances in the learned embedding space strongly depend on the training image
pairs. If the image pairs labeled as similar contain images with large variations in some
of the parameters, then the distance will not be sensitive to them. This behavior can occur
if the similar pairs are selected automatically using a distance function that that weighs
some parameters more than others. For example if the mean distance between selected

42

joint positions is used (as in [96, 118]), then the distance in the embedding space would be
more sensitive to the upper-body pose than to the lower body.

2.9 Summary

In this chapter we have given an overview of probabilistic models that are used for visual
tracking. The main source of complexity of the generative models is the lack of precise
knowledge about transition probabilities. This necessitates maintaining potentially com-
plex posterior distributions. These distributions can be simplified by introducing extra
independence assumptions or by the use of preprocessing techniques that can decrease in-
fluence of spurious peaks in the likelihood. In the absence of feedback from high-level
modules, simple preprocessing models can themselves be confused by noise and produce
incorrect outputs resulting in the erroneous high-level estimates. Feedback connections
have been shown to be present in the biological visual systems, and useful in computer
vision applications.

Inference methods used in tracking algorithms range from closed-form formulas for
Kalman filter variants through non-parametric density propagation in tree-shaped struc-
tures (particle filtering and MCMC tracking) to non-parametric Belief Propagation in loopy
graphs.

Existing product models are appropriate for classification tasks but are not very useful
for tracking since they do not allow information exchange between individual chains at
run-time.

43

44

Chapter 3
Redundant State Multi-Chain Model

True models of the world’s evolution are seldom fully known and computationally viable
true models are almost non-existent. The observed world can be approximately described
by many different models at various levels of abstraction and using various representations.
For example feature points moving in two dimensions can be thought of as moving inde-
pendently or as parts of a three dimensional object observed by a moving camera. Cars on
the road are autonomous, but their collections (especially in a traffic jam) have properties
of a fluid and can be modeled as such.

In this chapter we introduce and describe in detail the first main contribution of this
thesis— the Redundant State Multi-Chain Model. This framework allows us to combine ex-
isting models of dynamics in a principled way to take advantage of differences in their char-
acterization of observed behavior and of different constraints on the motion they represent.
We propose inference methods that take full advantage of efficient algorithms designed to
perform inference in constituent models.

Our approach is based on the fact that the evolution of the same set of observations
can be tracked using several models that have different states and/or transition models but
share an instantaneous state (defined in section 1.2). In this chapter we will assume that
each individual model can be used for tracking independently. That is, each would pro-
duce posterior estimates that are very similar to the true underlying one in the presence
of very low noise in the likelihood function. The noise-free likelihood function in vision
tasks is sharply peaked and unimodal under these conditions, and the shape of the poste-
rior is dominated by the shape of the likelihood. The temporal prior serves as a “gating”
function (Section 1.3), and since the approximate models are capable of tracking noise-
free observations, their temporal priors should always assign non-negligible probability
(“cover”) the location of the likelihood peak. It is reasonable to expect that the true under-
lying prior would cover only the possible locations of the likelihood peak, but approximate
priors would assign some probability mass to other regions. In the noise-free case the true
and approximate posteriors will be essentially the same. The differences between true and
approximate models becomes significant in the case of noisy observations (this is made pre-
cise in Section 3.2). The sensor noise (and/or, approximations to the likelihood function)
can result in introducing extra peaks into the likelihood mode and/or broadening the true
one. Since the approximate priors “cover” larger regions of the state space than the true one,
they are more likely to assign non-negligible probability to the region of the noise-related

45

peak in the likelihood resulting in the posterior estimate that is significantly different from
the true posterior. Using the true prior should also produce better estimates in case of the
broadened likelihood peak.

An important observation that we will exploit in this chapter is that while all temporal
priors cover (i.e. assign significant probability mass to) a region of the state space which the
true prior would cover, they are likely to place the rest of the probability mass to different
regions if the approximations involved in formulating them are sufficiently dissimilar. By
taking a product of the priors, the probability mass should be concentrated in the region
covered by the true prior, and result in better posterior estimates for the instantaneous
state as well as the states of constituent models. We will quantify this intuition later in
the chapter. The sharing of the latent instantaneous state variable between the models
constitutes the main advantage of RSMCMs over the product models described in section
2.5. It allows information exchange between temporal states of constituent models at every
time step and prevents posterior estimates from diverging. Individual chains in the product
models are, on the other hand, decoupled during inference making interaction impossible.

For the ease of the argument we will concentrate on the two-chain models in the fol-
lowing discussion, although it will be shown that more than two approximate models can
be combined. The rest of this chapter is structured as follows: in section 3.1 we describe
RSMCM graphical model and how it can be created based on the individual single-chain
dynamic models. We then go on to describe the conditions under which RSMCM produces
better results than any of the constituent models. We present the on-line filtering algorithm
in Section 3.3 and batch optimization algorithms in Section 3.4. We conclude by discussing
the relationship of RSMCM to turbo codes and turbocode decoding algorithm.

3.1 Graphical Model

We wish to use multiple single-chain dynamic models of the form shown in the Figure 3-1
(same as one described in the section 1.2) to define a redundant state multi-chain model.
All individual single-chain systems share the same instantaneous state and, consequently,
a model for generating observations from the instantaneous state.

The multi-chain system shown in Figure 3-2 is formed from two such models. It con-
sists of two temporal state chains S and R corresponding to each constituent systems’
transition models, shared instantaneous states ©°, and observations I*. In contrast to the
single-chain models, the multi-chain model is undirected'. The intuition for this is that
we would like for the temporal chains to be independent if the instantaneous states are
known. The potentials of the edges are equal to the conditional probability densities from
the original models (e.g., ¢(S¢, S*71) = p(S?St1), #(©%, RY) = p(©*|R), etc.). The
ambiguity in choosing the potential ¢(It, ©¢) does not arise, since the conditional density
p(I|©%) is conceptually the same in both models. The random variables and conditional
distributions used in this chapter are summarized in Table 3.1. To complete the description
of the model we need to specify the distribution p(S°, R®). We choose to model it as a
product p(S°)p(R?), where the marginal distributions are the same as those used in the

In keeping with notation of [11] we preserve the edge directionality of the single-chain models when it
does not affect the independence properties.

46

Figure 3-1: A two stage model corresponding to the Equation 1.3.The observed image / tis
stochastically generated from the latent instantaneous state ©°. The value of the instanta-
neous state is (stochastically) generated from the temporal state S*, which depends on the
it value St~ at the previous time step.

Figure 3-2: A Redundant State Model that incorporates the models with structure shown in
Figure 3-1. The model is presented using directed/undirected formalism of [11]. The model
is undirected, but the arrows are preserved when they do not affect the conditional indepen-
dence assumptions. The potential in this undirected model correspond to the conditional
probabilities in the individual models (e.g., (R, R*~!) = p(R!|R*™1), etc.).

47

t - Time index

It - Image observed at time ¢

I* - All images used for inference at time ¢

I\ - All images used for inference at time ¢ other than I*

St Rt - Temporal states of the constituent chains at time ¢

p(S|St1), p(RY| Rt~1) - State evolution models of constituent models

ot - Latent instantaneous description of the world used by both con-
stituent models

p(©]S?), p(©| RY) - The instantaneous state generation models in constituent mod-
els

p(It|6Y) - Observation generation model

Table 3.1: Summary of random variables and conditional distributions used in this chapter

constituent models. While R° and S° are in reality tightly coupled, we chose to make this
approximation to simplify inference algorithms.

Based on our choice of potentials, in the absence of all but one of the temporal chains
the model reduces back to a standard single-chain structure. The only interaction between
the chains can be through the instantaneous state nodes. We will show that these properties
of the model enable us to partially utilize single-chain inference methods for inference in
RSMC models.

To understand how the individual chains influence each other, it is first instructive to
consider what is going on at the instantaneous state level. The posterior distribution of ©*
is proportional to the product of three functions: the likelihood, and predictions from the
top (S) and bottom (R) chains. Let p4(S?|I°\) be a temporal prior at S¢, where the dis-
tribution is conditioned on the observation set appropriate for the particular inference task
(e.g. It for filtering and I'-t-1t+1-t+k for look-ahead), and p(R¢|I*\) be similarly
defined. Two corresponding temporal priors for the instantaneous state are then

p5(©F|1°V) = / p(6']5)pls(S*|1°)dS* and 3.1)
PR(EHI*) = / p(OY R\)pla (B I°V)d R 3.2)

We denote the product of these distributions, rescaled to integrate to unity as the product
temporal prior,
PL(OFI°Y) o pls(OF |17V)p(°I1°Y). (3.3)

That is S* and R! jointly serve as redundant memory about the past (and/or future) obser-
vations. This is very similar to the Product of HMMs [11] formulation, with one extremely
important difference — ©° is a latent rather than observed variable. This allows informa-
tion to be shared between individual temporal chains during inference, in contrast to the
product models in which inference in the component chains is independent. The posterior
distribution of the latent instantaneous state is proportional to the product of the likelihood
and product prior.

p.(©7|I°) o< p(I*|6%)p}(6F|1°Y) (34)

48

94 NI > ~ S Vi N

(a) (b) ©)

Figure 3-3: Synthetic example of the product model. Each pane shows the noisy likelihood
function overlayed with (a) true temporal prior distribution; (b) two approximate temporal
priors; and (c) product prior. The product prior is more similar to the true prior than any of
its factors. Using this prior instead of either or the factors during inference should improve
the posterior estimate.

By using the product prior RSMCM places most of the probability mass in the region
covered by both of the constituent priors resulting in better selectivity, and, as discussed
in section 1.2, improved posterior estimates. An illustration of this behavior is shown in
Figure 3-3.

The reason that the true prior, p*(6¢|I°\t), can be better approximated by a product
prior rather than any of its factors lies in the assumptions involved in designing constituent
models of the RSMCM. Each of these models assumes that the instantaneous state nodes
are independent when conditioned on the values of the temporal states. This assumption
is rendered invalid by their use of the approximate evolution functions (and the transition
distributions). Under very general conditions, the true prior can be represented as a product
of an approximate prior and a “correcting function” (not necessarily a distribution),

ﬁt(@tllo\t) . QS(@t; Io\t)pts(@t“'o\t) s QR(et; I°\t)p§%(@t|f'\t) (35)
While gs has a trivial definition,

A CHI)

t. T\t
gs(©%51°Y) PACHISRN

If

(3.6)

when the prediction errors in individual models are sufficiently large and independent of
each other, the approximations

gs(0%; I*\t) o p& (64 I°V) (3.7

qr(0% I°\Y) pk (O 1°\) (3.8)

can be used for the reasons given in the previous section. This leads directly to our product
model.

The effect of the RSMCM on the posterior distribution estimates of the temporal states

S and R is more subtle, but similar to the one described above. Consider the joint temporal
prior of ©f and S* from the top chain (Figure 1-2(a)) only,

Ps(6°, SI°V) = p(*|S*)p (S| I°Y)

49

LA e N

() (b) (c)

Figure 3-4: Synthetic example of the failure of the product model. Each pane shows the
noisy likelihood function overlayed with (a) true temporal prior distribution; (b) two ap-
proximate temporal priors; and (c) product prior. The product prior is less similar to the
true prior than any of its factors. Taking a product incorrectly increases confidence of the
model about the wrong mean.

Again, the independence assumptions encoded by the single-chain graphical model are
incorrect, since it does not use the true evolution function. Instead, in RSMCM we use the
approximation

ﬁt(@t, StIIo\t) ~ pi;%(@tl_[o\t)plfs(@t7 Stuo\t) (39)

The product prior has the effect of decreasing the relative probability density of any
configuration (©¢, S*) that is likely under the approximate dynamic defined by the top
chain such that ©¢ is unlikely under the temporal prior derived from the bottom model. The
reverse relationship is

P(0, SHI*\) ~ pls(OF|I°\)pl (O, RY|I°N) (3.10)

One-way information transfer (i.e. using equation 3.9 without the companion equation
3.10) is used in the hierarchical systems described in Section 2.3 (e.g., [109, 46]). For ex-
ample the background model (i.e. the state of the low-level background subtraction) affects
the high-level tracker state through the foreground labeling. The high-level knowledge,
however, is not propagated to the background model. This can lead to mis-estimation of
the model and will affect subsequent foreground estimates and the tracking performance.
This case is discussed in detail in Chapter 4.1.

Although we have so far discussed the case when individual models use the same latent
appearance features, it is possible to combine models with intersecting feature sets (the
graphical representation of such a model is presented in Figure 3-5(a). In that case, the
combined feature model would be the union of individual feature sets, and the likelihood
potentials are extended to produce uniform likelihoods for features that are not part of the
original submodel. In general, when the feature sets are disjoint, the model would reduce to
a POHMMs model with non-interacting chains. Since we are interested in combining mod-
els that correspond to interacting stages of a feed-forward algorithm, we do not consider
such cases.

It is also possible to define a hierarchical RSMCM. In such a model, rather than using
a single instantaneous state representation, a set of such representations (e.g. at different
levels of abstraction) is used, and separate approximate dynamic models are used for each
of them. An example of this model is shown in Figure 3-5(b)

50

(b)

Figure 3-5: Variants of the redundant-state model. (a) RSMC model with intersecting
feature sets. The instantaneous state is partitioned into 3 sub-states: ©prg is shared by
both chains, © g depends only on R, and ©g depends on S. This variant is appropriate for
combining models that use partially intersecting feature sets. (b) A hierarchical RSMCM.
This model combines three models describing evolution on the world at three different
levels of abstraction, from highest ©%, to lowest ©}.

a1

3.2 Analyzing Approximation Validity

The redundant-state model described above is quite general, in that it allows combining
any two probabilistic dynamics models sharing the same “feature” or instantaneous state
representation. Since the errors involved in defining constituent models are stochastic in
nature, both cases shown in Figures 3-3 and 3-4 may happen for particular observation
sequences.

It is clear that there are cases when one of the constituent models would produce better
results than RSMCM. For example if R and S are defined over the same state space, and
share the same dynamics, then the product model would amplify the errors rather than
decrease them! Even taking the product of the true temporal prior with itself results in a
prior that is more certain (has smaller variance) and thus may assign very low probability
to correct likelihood peaks. A somewhat less extreme case is shown in Figure 3-4. While
the Product of HMMs [11] model may suffer from the same drawback, it is specifically
trained to reduce the correlation between individual models and reduce the probability of
being overconfident. Rather than learning the individual chains, we consider the models
predefined and concentrate on determining when combination of the existing single-chain
models into a RSMCM results in the improvement in posterior estimates.

The RSMCM combines stochastic models, and both cases shown in Figures 3-3 and
3-4 may happen for particular observation sequences. The following analysis is focused on
determining which of these cases is more likely. Intuitively, we would expect that taking
products of the independent approximations to the true prior would result in a better pos-
terior estimates, and combining strongly correlated approximations would result in worse
estimates. This is, as we will show, indeed true but with some caveats. When two priors
are combined via a scaled product, the product is sharper than either of them, so if the
approximations are not significantly wider than the true prior, there is a danger of the prod-
uct prior to.become overconfident, reducing the quality of the posterior estimates. Thus
it is not possible to continuously improve the performance by combining more and more
independent tracking models.

We will quantify the quality of the posterior distribution estimates as an expected value
of KL-divergence between the optimal (i.e. using the correct model) and approximate
posteriors.?

If p(x|y) is the true posterior, and ¢(x|q) is an approximation, then

C(q) = Ey [Dkz (p(z]y)lla(zy))] (3.11)

Since KL-divergence is an expectation over z in this case, the cost is an average error
in posterior density computed over all possible state-observation pairs. If both true and
approximate models use the same emission model py,(y|z) and differ only in the prior

2KL-divergence is, for reasons detailed in [18], a natural way to measure differences between distributions

52

pz(x) vs. gz(z), then

Eyp,) [Pxr (Poly (1)@= (2]y))] = Dk (p2()|lgz(x))
— Dgr, (py(y)ll9y(v))
where

py(y) = / p(yle)ps(2)de
&) = / P(yl2)gs(z)dz

(3.12)

The proof is given in the Appendix. The fact that using an approximate prior that is non-
negligible anywhere the true prior is non-negligible incurs no cost when the observations
are noise-free follows from this equation. Indeed, if p(y|z) = d(y — z), then p,(y) = p(y)

and ¢,(y) = ¢,(y) and Dk, (pz(2)||¢(z)) = Dkr (0, (¥)l2y(¥))-

In order to demonstrate the properties of the RSMCM we analyze a case where the
underlying and both approximate models are linear-Gaussian, since closed-form analysis
of the RSMCM cannot be performed for general priors, However, this case is directly useful
and provides intuition about more complicated cases.

We consider the system that is described by the following equations:

{@t =g(6") +uh, wh~ N(0,%o) A.13)

I'=0e '+, vt~ N(0,%,),

where N(-; 4, X) is a multi-variate Gaussian distribution with mean y and covariance 2.
The approximate models are described by

(St = gl(St_l) -I-w’i, (4.}]1E ~ N(O, 21)

{ef=3 (3.14)
\ I'=0'+ ' ~ N(0,%,),
and)) ~
R = go(R*™1) + o, wh ~ N(0,%,)
{ 6t =R (3.15)
| I'=06'+1, V'~ N(0,%,),

Both approximate models share the emission (image generation) equations with the true
model, but incorporate approximate evolution functions g (-) and go(-) rather than the true
function g(-). All functions are modeled as linear. We denote u; = §;(©%) — g(©* 1)
and pp = §o(61) — g(©41).

For ease of analysis we assume that both approximate estimators are unbiased, that is
E@t—l [/-ll] = Eet—l [/1,2] =0 (316)

53

and have the covariance structure

1 _ (A P
Egt-1 [(W) (1 Mz)] = (Pé 1;22) (3.17)

with the expectation taken with respect to the marginal distribution p(©*~1).
Evolution equations of each model can be described via conditional distributions

p(6'16* 1) = N(g(6* 1), o) (3.18)
7 (60" 1) = N(g(6" 1), %) (3.19)
¢(0'6"1) = N(g(6'1), ,) (3.20)

by using the property ©° = St and ©! = R! of approximate models. All models share the
same emission model

p(I*|©%) = N(e%, %)) (3.21)

Using these conditional distributions we can define posterior distributions

p(O'[I,081) o p(I'|0%)p(©F|0"1),
q(OYIt, 0" 1) « p(I'|©%)q, (6|6 ?), and
%(O°|I', 071) o« p(I'|6)g2(©%0F71).

We assume that single-chain models combined into a RSMCM are optimal, in the sense
that they use noise distributions that would, on average, result in the best posterior esti-
mates. Lemma 1 describes the conditions under which C(q;) and C(gs) are optimal.

Lemma 1. C(q:) and C(q2) are minimized by setting ¥y = P, + Yo and Ly = P, + %

It is worth noting that for the optimal performance, the dynamic noise in the approxi-
mate models needs to be inflated exactly by the error covariance of the transition function
— using smaller noise covariance results in a prior that is too sharp (i.e. does not assign
enough probability to the region covered by the true priors). Using larger noise covariance
results in a prior that is overly broad.

Theorem 1 describes sufficient conditions under which the product approximation that
uses the conditional distribution

¢:(8'16"") ox ¢ (616" ")gz(6'|07)

has cost C'(g.) that is less than the cost of each of the constituent models.

Theorem 1. C(g.) < C(q1) and C(q.) < C(q) if the respective indicator matrices

I = QP — (QuPrz + (QunPi2)” + (Quy%0)T) and
Ty = Qo P2 — (Q2n Pl + (Q2n P)T + (Q2nZ0)T)

54

are positive semidefinite when

Qu =+ (So+P)T;H™
Qan = (I + (Zo+ P)T; N7

The proofs of this theorem and Lemma 1 can be found in the Appendix.

Theorem 1 confirms our intuition that the models combined into RSMCM should be
decorrelated. In the extreme case where the models are perfectly correlated, P, = P;5 and
Iy =- (QL(PS+X7))T is not positive semidefinite.

While it is well understood that unbiased estimators, whose errors are uncorrelated,
can be coherently combined to produce an improved estimate, the previous analysis is
more specific. For the Gaussian case, Theorem 1 describes the degree of correlation in the
estimation errors which can be tolerated and still produce an improved using an RSMCM.
It is instructive to consider a one-dimensional case when all constituent matrices become
scalars. The sufficient conditions then reduce to

p1 > 2p12 + 0 and

3.22
D2 > 2p12 + Ug (3:22)

That is each of the diagonal terms on the covariance matrix of the estimators should be
greater than the sum of the off-diagonal terms and the noise variance of the underlying
model. The off-diagonal terms in this case are equal to /p1P2p12 Where py2 is the correla-
tion coefficient. For the above conditions to be satisfied, it is necessary for the correlation
coefficient to be less than 0.5.

Another observation that can be made from this theorem is that it is possible for RSMCM
combination to improve posterior estimates of one chain and worsen those of the other.
This will happen if the estimators are not perfectly uncorrelated and one of them has sig-
nificantly higher variance than the other. In this case the off-diagonal terms (P;2 and Py;)
would dominate one of the diagonal ones (P; or P») making one of the indicator matrices
not positive semidefinite. This behavior is illustrated in Section 4.2.4.

3.3 Inference in Redundant-State Models

Single-chain models are popular because there exist efficient algorithms for performing
inference in them. While our proposed multi-chain model is loopy (Figure 3-6(a)), mak-
ing inference complicated in general, we take advantage of the fact that we are interested
only in marginal distributions for the state nodes and propose a set of algorithms based on
Belief Propagation [81] for inference in RSMCM. The standard BP techniques for loopy
graphs involve simultaneous exchange of messages between all nodes; approaches that use
a different message schedule have also been proposed [135]. In this section we propose a
message schedule that allows for efficient filtering in the redundant state model.

Consider the model in Figure 3-6(a). At time ¢ = 1, we are concerned with nodes with
superscripts (times) ¢ < 1. If the initial states S° and R are independent (as shown), then
the resulting subgraph is a tree, and we can use standard Belief Propagation techniques to

55

©

Figure 3-6: Graph structures used in inference algorithms in the dual-chain model. (a) A
tree-shaped subgraph on which a single step of approximate filtering is performed. The
marginal distributions, p(St~1|1%¢~1) and p(R*~!|I%*~1), have been computed at the pre-
vious iteration, and are not modified; I* is observed. (b, ¢) Subgraphs for coordinate ascent
in the dual-chain model. By fixing values of states S°T, the structure is reduced to the
single-chain model shown in (b). Existing feature-extraction algorithms may be adapted to
perform inference in this model with relatively little modifications. When R%T are fixed
(c) an existing high-level optimization algorithm can be applied.

56

compute exact marginal distributions at state nodes S* and R!.
i) = 5| [o5t somsnas?| | [atehecer.) 6.23)
[o€ B [olr: B)p(rO)iRdR 83,

where ¢(©') = ¢(I', ©1). The expression for p(R!|I') can be similarly derived.
Filtering at the next time step (¢ = 2) is more complex since the model now contains
loops and the exact inference would require representing the joint p(S*, R*|I*):

oI, = [oe0en,57) [ot B [[os shert) 629
p(SY, RYIY)dR'dSdR2dO?.

In order to simplify computations, we approximate the joint distribution, p(S*, R|I*)
with a product, g(S*)g(R!). It can be easily shown that the best such approximation (in
the KL-divergence sense) is the product of marginal distributions, p(S*|I*) and p(R!|I?).
Substituting p(S|I')p(R|I*) for p(S?, R |I') in Equation 3.24, we obtain an approximate
inference equation:

pS) = [(52 SDp(sas? [a(en(e?,) (3.25)
/ $(6% R?) / #(R?, RY)p(R')dR'dR%*d62.

The similarity between Equations (3.23) and (3.25) suggests an approximate filtering
algorithm that estimates marginal distributions of the state variables by recursively applying
Belief Propagation to acyclic subgraphs of the form shown in Figure 3-6(a), using the
marginal state distribution obtained at time ¢ — 1 as priors at time ¢.

It can be shown that this approximation preserves the main property of the exact model:
the appearance features that are assigned zero probability under any of the constituent mod-
els are assigned zero probability in the computation of all of the marginal distributions.

The messages exchanged between nodes during Belief Propagation are computed as
described in Algorithm 1. An illustration of messages exchanged during one iteration of
the algorithm in a system similar to one discussed in Section 3.2 is shown in Figure 3-7.
Note that computations required for the prediction and update steps, as well as for part of
the feature estimation step, are the same as those of individual object tracking and feature
extraction algorithms.

If inference on constituent Markov chains were performed individually, it would still
involve steps analogous to the prediction, update, and to part of the feature prediction
steps of the approximate algorithm; consequently, combining models introduces very little
additional complexity to the inference process.

At the first glance, the proposed algorithm appears to be very similar to one proposed by
Boyen and Koller in [8] for factorial models. The differences are, in fact, quite significant.

57

Algorithm 1 Recursive Belief Propagation Algorithm for Filtering in a Redundant State
Model
INPUTS p(S°) and p(RP)
forallt > 0do
PREDICT the current states of the constituent models by computing messages:
Hst-1_gt = det“lqb(St, St_l)p(st_lul“t_l) and
PR-1_ Rt = f th_1¢(Rt, Rt“l)p(Rt“llll“t"l).
ESTIMATE Instantaneous state distributions based on predicted states and current
observations, compute messages:
Ustiet = detd)(@t, St).u'St"l—)Sta
KRt = det¢(@t, Rt)“R“'lﬁR"
Het_ st = fd@tﬂ/Rt_,et¢(It, @t), and
Het Rt = fd@t,usme@(ft,@t)-
UPDATE individual model state distributions by computing message products:
P(SHI*?) o< pge-1_,gt phot st
P(RYI*?) o pge-1pefhor—pe-
OUTPUT p(S?|I'-*) and p(R?| 1)
end for

Our algorithm maintains and updates multiple redundant representations of the posterior
and the interaction between component temporal chains is quite strong, since they all model
evolution of the same process. The B&K algorithm propagates a non-redundant factored
representation and the main underlying assumption is that individual chains are interacting
weakly, if at all. Furthermore, in our filtering algorithm information exchange between
constituent chains is moderated by the instantaneous state nodes and the need for junction-
tree based computation never arises. The major difference between our algorithm and
algorithms proposed in [34, 64, 131, 132] is that in our case both chains are processing
the same stream of features, and the interaction between the chains is performed at the
shared latent feature level. The other algorithms process parallel streams of features, and
the interaction is performed at the temporal state level.

3.4 Batch Optimization Algorithm

While filtering is appropriate for online tasks, some object-tracking problems are formu-
lated as global optimizations in single-chain models such as the one in Figure 3-1. For ex-
ample, in structure-from-motion estimation we may be interested in computing the shape of
the object based on all observed data, that is computing arg maxgo.r p(F*-7|S%T). Once
again, the algorithms developed for single-chain models need to be modified to be of use
in the dual-chain setting.

We base our optimization approach on a coordinate ascent algorithm that alternates
between optimizing one set of states (either R®T or S%T) while keeping the other one
fixed. The dual-chain structure, with latent feature nodes separating states, naturally lends
itself to this algorithm. Fixing one set of states reduces the problem to a single-chain

58

Predict currents states
of the constituent models

Loy T

Hri—er

Compute temporal priors
of the instantaneous state

Ust—e KRi—6t

Combine likelihood with
individual temporal priors

Ll |

l Heot—st Het— Rt j

Update constituent model
state distributions

L L

p(SI) p(R|I™)

Figure 3-7: Messages exchanged during one approximate filtering iteration described in
Algorithm 1. The arrows indicate dependencies between individual messages.

optimization that can be performed with available algorithms, (cf. Figures 3-6(b, c)). The
summary of our method is presented in Algorithm 2.

3.5 Relationship to Turbo Code Decoding Algorithm

It is instructive to consider the similarity between the redundant state models for tracking
and powerful error correcting turbo codes [7] for data communication. Both are based on
combining multiple redundant weak sequence models to obtain a stronger model.

Turbocode decoding (1/3 code with 1 bit memory) can be viewed as inference in a
graphical model shown in Figure 3-8. The input codeword X = (X**', X e XHE. X
is transmitted directly, as well as being passed as input to two convoluuon encoders in the
original and permuted orders. The output of convolution encoders (in this case just parities
YJ between neighboring bits in the encoder inputs) is also transmitted. The decoding is
equlvalent to computing marginal distributions of X t+1 Xt from the noisy observations
XL Kty Y, Y+l Y,

34

Figure 3-8: Graphical model representation of turbocode decoding prob-
lem. The codeword bits X*®+-t+4 contaminated by noise are observed as
Xt+lt+4 The codeword also serves as input to convolution encoder as direct
copy (CIt1,Ci2,Ci,CitY) = (X1, X2, X3 X)) and permuted copy
(CEF, G52, C3F3, OFHY) = (XH+2, X+ X1 Xt43) The parity bits Y7 are computed
by Ehg: convolution decoders as Yij = C,f kg Cg , and are observed contaminated by noise
asY;.

Figure 3-9: Dual-chain representation of turbocode decoding problem. This model can be
obtained from one shown in Figure 3-8 by marginalizing over parity bits Y;.

60

Algorithm 2 Coordinate Ascent for Batch Optimization in a Redundant State Model

INITIALIZE marginal distributions p®(S?) to uniform
k20
while not converged do
k—k+1
PERFORM exact inference on the graph shown in Figure 3-6(b), using marginal dis-
tributions p*~1(S?)
INITIALIZE marginal distributions: p*(R?) « p(R!|I%-T)
PERFORM exact inference on the graph shown in Figure 3-6(c), using marginal dis-
tributions p*(R?)
INITIALIZE marginal distributions: p*(S?) « p(St|I1%T)
end while
OUTPUT marginal distributions: p(St|1%T) « p*(St) and p(R|I°T) « p*(R?)

The original graphical model can be transformed to one shown in Figure 3-9 by marginal-
izing over the values of Y;. The potentials between neighboring elements of C; sequences
then become
p(Y! =1¥)) Cit#CY

CtL ot = A |
A {p(w=ow> ct = ¢t

The particular algorithm proposed in [7] has been shown in [69] to be analogous to Be-
lief Propagation with a particular schedule: iterating optimization of marginal distributions
of states in one chain while keeping the marginals of the second chain’s states fixed. This
is exactly the schedule proposed in Algorithm 2.

Turbo codes as described in [7] can be seen as an instance of the RSMCM, with re-
dundancy provided by using different permutations of the codeword bits as input to the
identical convolution encoders. The the turbo coding algorithm is thus inherently block-
oriented, with larger blocks resulting in better performance. RSMCM, in contrast, is able to
combine different dynamic models making possible online inference (e.q. using Algorithm

1).

3.6 Summary

We have proposed a methodology for combining simple dynamical models with redundant
representations as a way of modeling more complex dynamical structures. The approach
was motivated by the simple observation that nearly all generative-model based tracking
algorithms for tracking complex structures implicitly marginalize over an intermediate fea-
ture representation between state and observation. By making the feature representation
explicit in our approach we obtained a straightforward means of mediating between sim-
pler models as a means of capturing more complex behavior.

Exact inference on the resulting structure is complicated due to the introduction of loops
in the graphical structure representing the combined models. However, we have proposed
two methods for adapting algorithms designed for constituent modules to operate in a com-

61

bined system. An approximate inference method based on sequential inference on acyclic
subgraphs provides a suitable alternative to exact inference appropriate for online tracking
(filtering). An coordinate-ascent based algorithm has been designed for the batch inference
case. Both approximations have the important property that infeasible configurations in
any of the naive models precluded an infeasible configuration in all of the others. This
property may be both an advantage and a disadvantage of the system framework. On one
hand it allows restricting each model’s search only to those configurations that are possible
under other models, but on the other it requires careful design of the constituent systems,
so that they never assign zero probability to feasible configurations.

We have also shown a connection between RSMCM and turbo codes, where the turbo
decoding procedure is an instance of the batch RSMCM inference algorithm.

62

Chapter 4

Applications of RSMCM in Hierarchical
Tracking Systems

Motion analysis algorithms are often structured in a multistage fashion, with each stage
operating at a particular spatio-temporal scale and exploiting a different model of scene
dynamics. Systems of this type are usually more computationally efficient than mono-
lithic ones that jointly model local and global dynamics. They also have the advantage of
modularity, as algorithms at each stage can be designed independently. Rather than using
raw pixel data, high-level (large scale) stages treat the output of early, low-level ones as
observations. For example, an algorithm may start by extracting local features (e.g. fore-
ground/background labels or feature point tracks) from incoming frames, use these features
to determine poses of the objects moving in the scene, and then analyze object interaction
based on the individual objects’ poses. High-level algorithms use models that are often too
coarse and/or approximate for local motion estimation, but take into account global spatial
relationships.

Low-level algorithms ignore global spatial relationships by modeling the evolution of
each image patch (in feature extraction [109, 120]) or object (in object tracking [77]) in-
dependently, and compensating for it with restrictive assumptions about the local behavior
of the scene. Feature-point trackers usually assume that the image patch about the point of
interest has a relatively stable appearance. Adaptive background subtraction modules typi-
cally assume that foreground objects do not remain stationary for extended periods of time.
When these assumptions are violated, the resulting errors (e.g. so-called “sleeping man
problem”, Figure 2-6), are propagated to higher-level modules, and those are not always
able to correct them.

While algorithms operating at each stage are often formulated as inference in proba-
bilistic generative models, most existing multi-stage systems are formed in an ad-hoc fash-
ion and do not have a consistent probabilistic interpretation—e.g., the uncertainty informa-
tion is propagated only in one direction, from low- to high-level models. One alternative
is to use more sophisticated algorithms (e.g. [119]) to introduce more high-level infroma-
tion directly into feature extraction process to reduce its sensitivity to locality assumptions.
This makes the design of low-level modules complicated and substantially increases their
running times. A more attactive solution would be to introduce a feedback connection into
the hierarchical framework, in which knowledge available to high-level algorithms is prop-

63

(b)

Figure 4-1: Hierarchical processing of sequential data (repeating Figure 2-5). The marginal
distributions p(©*|I%* are computed using the low-level feature extractor (a). These
marginals are then used as input to high-level algorithm (b).

agated to low-level processing modules making them more robust to local perturbations.

This need to incorporate a feedback mechanism into multistage systems has long been
recognized [91, 6]. There are three desirable criteria for a viable feedback framework. First,
it should preserve existing modularity i.e., not be reduced to a monolithic model. Second,
it should allow the use of existing algorithms with minimal modifications. Finally, it must
consistently propagate uncertainty from high- to low-level processing. While the first two
requirements are satisfied by the ad-hoc feedback mechanisms, they lack the consistency
property. The feedback connection introduced in the redundant state model meets all three
criteria.

In this chapter we explore applications of redundant state models for robust tracking in
hierarchical systems. The hierarchical models (reviewed, e.g., in Section 2.3) lend them-
selves very well to conversion into RSMCMs. The low- and high-level models (Figure
4-1, repeating Figure 2-5) naturally share the feature values © that can be treated as an
instantaneous state. While high-level module (Figure 4-1(b)) treats features as observed
and does not explicitly define an image generation model, it is not strictly necessary since
it is implicitly assumed to be shared with the feature extraction.

We demonstrate the performance of RSMCM-based hierarchical systems on two spe-
cific applications: adaptive background subtraction and structure from motion estimation.
In both applications we demonstrate very high level of performance even though very sim-
ple feature extraction modules are used. The work presented in this section has been pub-
lished in [117] and [116].

4.1 Applying Redundant State Modeling to Adaptive Back-
ground Maintenance

Background subtraction is a first step in many object tracking applications. It is used to
determine likely locations of objects of interest (foreground objects) by comparing a newly
acquired frame with an internally maintained model of the scene without objects of interest
(background). One of the most popular classes of background maintenance systems are

64

the so called adaptive models [109, 42, 123, 40]. Such models are able to adjust to scene
changes due to causes other than objects of interest (e.g., lighting variations).

Background models are usually designed to be task independent, and this often means
that they can use very little high-level information. While region-based reasoning may
be utilized at every individual frame [109, 123], temporal consistency is usually exploited
only on a per-pixel basis. This limitation can cause the scene model to adapt to foreground
objects that remain stationary for extended periods of time. After these objects “fade” into
the background, their locations are no longer considered as regions of interest.

Several approaches to incorporating information about foreground objects into back-
ground maintenance have been proposed. They may be broadly grouped into two cate-
gories: probabilistic frameworks that jointly model scene and foreground object evolution
[128], and systems consisting of separate modules for scene modeling and high-level in-
ference (e.g., object tracking) [109, 42, 123]. Adjustments to the background model in
modular systems depend on heuristic-based feedback from the higher-level modules.

We use the redundant state model to implement the first (to our knowledge) approach
that incorporates background modeling and object tracking in a unified statistical frame-
work, while still enabling an efficient modular implementation. Our approach is based on
the observation that both background maintenance and object tracking may be formulated
as state estimation in dynamic Bayesian networks representing generative models (see sec-
tion 4.1.2). Each generative model is approximate. The background model models the
underlying scene but is agnostic about pixels generated by the moving objects. On the
other hand, the object tracker models foreground pixels but not the rest of the image.

These models have different failure modes: the background model fails when fore-
ground pixel values are close enough to the expected background, and the tracker fails
when the background contains patterns similar to the ones expected for the objects being
tracked. We were able to use the RSMCM to pool the knowledge from both models and
improve background model estimation, segmentation and tracking. Combining individ-
ual modules into the redundant-state framework improves the results without incurring a
significant computational cost in comparison to the feed-forward system.

4.1.1 Prior Approaches

While many approaches to adaptive background modeling have been proposed, it remains
an active research area. Several methods have been proposed that incorporate background
estimation and object tracking in a single monolithic system [51, 128], but most systems
take a modular approach that allows using a single background subtraction subsystem in
different applications.

Stand-alone background subtraction algorithms assign background/foreground labels
based on the history of the local measurements in a particular location. Popular modeling
techniques may be separated into two broad classes, parametric and non-parametric [15].
Non-parametric models [123, 137] use previously observed frames directly, and consider a
pixel to belong to the foreground if its value is different from a sufficient number of stored
values. Parametric models maintain a representation of pixel value probability distribution
(such as a mixture of Gaussians in [109]) that is recursively updated at every frame.

65

Figure 4-2: Combining background maintenance and object tracking models. (a) A genera-
tive model used for background maintenance. At time ¢, pixel j belongs to the background
if Bf; = 1. In this case its latent value, L;, is generated according to p(L{;|M*), where
M;; : are the sufficient statistics of the scene background distribution. Otherw1se the latent
value is generated from a uniform distribution. L; contaminated by noise is observed as
;. t.. Nodes enclosed in dashed rectangles are duphcated for every j. (b) The intermediate
feature representation, F; = (L, BY), p(F5|M?) = p(L4;|M7, BY;)p(BY;). (c) Gener-
ative model used for object tracking. The state 7 contains both spatial and appearance
information about moving objects. If a pixel belongs to an object, then B; = 0, and L},

is set depending on the object appearance. Otherwise B}; = 1 and Lj; is generated by a

uniform distribution.

Local measurements, such as depth [42] and spatial and temporal gradients [84] have
been used in addition to raw intensity values to improve segmentation.

While methods have been proposed for using high-level information to handle global
changes (e.g., lights being switched on and off) [41], we are not aware of statistically con-
sistent approaches to incorporating temporal information from object tracking into back-
ground modeling.

4.1.2 Redundant Model Formulation

For this application we have considered a background maintenance system, similar to that
described in [109]. At every time step it performs two tasks: assigning each pixel in the
image a probability of belonging to the background or foreground class, and modifying
the internal representation of the scene based on the current input. Its operation may be
described as inference (filtering) in the dynamic Bayesian network shown in Figure 4-2(a).

This network represents a generative model of image formation as follows: first the
background model, M?, is predicted based on the model at the previous time step, M*~1,
and transition probability p(M?|M*~!) that is usually based on a diffusion model. A binary
background label, ij, is generated according to the prior probability, P(ij), for every
pixel (¢,7). The latent pixel value, L is generated according to the predicted model,
M, if the pixel belongs to background (Bt = 1) and by a uniform distribution otherwise.
The value of Lt contaminated by observatlon noise is then observed as I;;. t.. The posterior
background label probability for every pixel and the updated model may be computed using
standard inference techniques. It may be shown that the model update rules in such methods
as [109] may be derived in this manner.

Note that while per-pixel models (},) are usually used, this is not assumed. In the
following discussion, we use the notatron I ¥ U,JI to represent the complete observed

66

image, B* = U;; B}; for the background probability image, etc.

To simplify derivations, we use a slightly modified generative model shown in Fig-
ure 4-2(b), where F; = (L};, B;) is the instantaneous pixel representation, p(F;|M*) =
p(L;, By |M*) = p(Ly;|M?, Bj;)p(BY;), and p(I;| Fy) = p(I|LE;)-

This generative model represents the evolution of the scene only approximately, since
while it models background pixels, it makes an (incorrect) assumption that the foreground
pixels are generated by a uniform distribution. Thus temporal dependency between fore-
ground pixel locations and values is not modeled, and the independence assumptions made
in DBN do not hold.

Incorporating the dependency between F" and prior observations, which remains un-
represented by this generative model, allows for better estimation of both the background
model and the background/foreground labels. When a model of foreground object motion
is available (e.g., when the output of the background subtraction system is used for ob-
ject tracking), we can use redundant-state formulation to incorporate it into our inference
algorithm.

We use an independent object tracking model similar to that described in [51]. Each ob-
ject state is a five-tuple Of, = (%, 3, ul, o}, Gt), with position (z%,, ¢), velocity (uf,, v%),
and shape G . The object pose evolves in a first-order linear fashion,

t—1

zk, 101 0\ [z

ol _ [0 10 1| [y N

uf" - 0010 ug—l +77a N N(())En), (41)
vt 000 1/ \of

The shape is encoded as a binary foreground/background mask. The shape evolution is
modeled with random flipping of individual foreground/background labels

p(GL(k, 1) = b|GE 2 (k, 1)) =b) =1 —a

p(GL(k,1) = |G (k) =1—b) = 4.2)

where « is the evolution rate.

The state 7" is a collection of object states, T* = {O?}. Each object is modeled as
evolving independently, and with certain probability objects can disappear and new ones
appear anywhere in the scene. To simplify implementation we ignore the possibility of
occlusion, and thus the background map B? is generated deterministically via

B = max Gn(i = |2'],5 — %)) 4.3)

Our object model does not include texture information, so the latent pixel values are as-
sumed to have uniform probability at every time step.

It is worth noting that the probability of an object appearing in the scene can be made
such that it makes p(B;;|T%"!) =~ 0.5, making the prediction at the locations not corre-
sponding to any of the tracked objects uninformative. This has the effect of not modifying
the behavior of the background maintenance module in the RSMCM in those locations.
If the objects are modeled as being able to appear only in parts of the scene, then pixels

67

assigned low probability by the object model in the rest of the scene would be considered
background, and the effect of the object-based prior would be to increase the adaptation
rate at those pixels.

4.1.3 Implementation and Results

Since our objective was to compare the performance of the background maintenance system
with and without tracking feedback, we chose to implement a very simple adaptive module,
although a more advanced system can certainly be used. The background distribution was
modeled with a single (per-pixel) Gaussian with fixed variance and variable mean. Model
dynamics and observation noise were also represented with Gaussian distributions with
fixed variances. We used an object (blob) tracker similar to the one described in [109].

The resulting RSMCM implementation is able to solve the “sleeping man” problem
described in Section 2.3. Compare the segmentation results from a stand-alone system in
Figure 2-6 and the redundant state system output in Figure 4-3.

We have evaluated the redundant state system and three stand-alone background sub-
traction models with different settings of P(B) (0.5, 0.3, and 0.2) on datasets provided
for the PETS 2001 workshop.! Algorithms were evaluated as follows: at every frame, we
have computed a raw foreground map by thresholding (at 0.5) the background probability
value at every pixel and extracted a set of connected components. Sample frames from the
sequences with corresponding estimated background images and foreground components
are shown in Figures 4-6 and 4-7.

We were interested in three common types of coarse errors: missing people, missing
vehicles, and incorrectly detected “ghost” objects. We evaluated the following performance
metrics: (1) less than 50% of a pedestrian covered by extracted components; (2) less than
50% of a vehicle covered by extracted components; and (3) a foreground component de-
tected in a location where no moving objects were present. These error types are illustrated
in Figure 4-4. Results of quantitative comparison between the RSMCM implementation
and stand-alone modules are summarized in Figure 4-5. Raw results for the first and sec-
ond sequences are presented in 4-5(a, c). Results for the first sequence corrected for the
type 2 errors due to the car that remains stationary for the rest of the sequence are shown
in 4-5(b). Changing P(B) in a stand-alone module results in a trade-off between missing
parts of foreground objects (types 1 and 2) and extra detections (type 3). In the redundant
state system we are able to can have high P(B) (reducing the number of type 3 errors)
and use high-level feedback to avoid fast adaptation (reducing the number of type 1 and
2 errors). As a result RSMCM system significantly outperforms stand-alone background
subtraction modules.

Importantly, replacing the feed-forward tracking algorithm with a RSMCM framework
did not result in a large performance penalty. In our experiments, the difference between
running times of the RSMCM algorithm and the feed-forward system was less than 4%.
Partially optimized code on a 2.8GHz workstation was able to achieve 9.6fps for sequential
processing and 9.3fps for RSMCM processing on 768 x 576 images (this time included
reading images from the hard drive).

! Available from ftp://pets.rdg.ac.uk/PETS2001/

68

‘Kreuonels st uosiad a3 S[Iym paurejurews axe sdew punoi3a10§ pue [SPOUW PUNOIFHOR] 1991100
o) 18] 210N "9-7 INSL] Ul UMOYSs 20uanbas oY) uo waisAs ureyo-[enp sy JO OUBULIOLID] ‘worqoad uew Surdoesrs,, Surxy :¢- I3

sdey punoi3aioq

69

Type 1

Figure 4-4: Error types used for evaluating background subtraction algorithms. 1: no fore-
ground components corresponding to a pedestrian have been detected. 2: no foreground
components corresponding to a vehicle have been detected. 3: foreground component
detected when no foreground object is present. Input images are shown in the first, and
erroneous segmentation masks in the second rows. Errors are circled in red.

C W . Type |
 Type 2 (. Typo 2
I Type 3 . Type 3
2500 1000
2000 800

Number of Errors.
Number of Errors

3
8
3

400

0
Dual-chain Model Single, P(8) = 0.5 Single, P(8) = 0.3 Single, P(B) = 0.2 Dual~chain Model Single, P(B) = 0.5 Single, P(B) = 0.3 Single, P(B) = 0.2

(a) (b)

500

Number of Errors
8 H

8
3
S

100

"
Dual—chain Model Single, P(B) = 0.5 Single, P(B) = 0.3 Single, P(B) = 0.2

(©)

Figure 4-5: Quantitative evaluation of background subtraction performance on PETS 2001
image sequences. The charts show the number of errors of each type (described in Figure 4-
4) produced by each background subtraction algorithm. Total number of errors in sequence
1 is presented in (a). Since one car in this sequence remains stationary after parking, its
incorporation into the background model by single-chain trackers can be justified. The
error chart in (b) shows results for sequence 1 ignoring type 2 errors corresponding to this
car. Error statistics for sequence 2 are shown in (c) See the text for more details.

70

Frame
Num

500

650

800

1000

1700

2000

2250

Input

frame

2400

Stand- alone background sub.,
=0.5

Backoround Foreground

-

- P]
% R
>

Dual chain model,

=505
Backoround Foreground

Figure 4-6: Qualitative comparison of background subtraction performance on one of

PETS2001 image sequence. Second column holds input frames.

Estimated background

model and the computed foreground components are presented in the third and fourth
columns for stand-alone background subtraction and in fifth and sixth columns for dual-
chain model. Note that while input images are in color, all computations were performed
in grayscale. See text for more details.

71

Frame
Num

370

1000

1080

1180

1290

1390

1750

2000

Input
frame

—

Stand-alone background sub.,
PSB) =05
Backgroun

- Foreground

A

]
»

Dual-chain model,

P(By=05
Background
Foreground
model

-—

Figure 4-7: Qualitative comparison of background subtraction performance on the second
PETS2001 image sequence. Second column holds input frames. Estimated background
model and the computed foreground components are presented in the third and fourth
columns for stand-alone background subtraction and in fifth and sixth columns for dual-
chain model. Note that while input images are in color, all computations were performed
in grayscale. See text for more details.

2

4.2 Structure from Motion Estimation

Estimating 3D structure of the world from one or a collection of 2D images is a task that
is effortless for humans but is still extremely difficult for computers. Significant progress
has been made over the last two decades of the task of Structure-from-Motion estimation
(SFM). SFM is formulated as recovering 3D positions of the 2D feature points observed
moving in the image plane. The original solutions assumed that the motion is caused either
by the rigid motion of the observed object or, equivalently, by the motion of the camera
observing the 3D world [70, 121]. These approaches have later been extended to multi-
object and non-rigid motion cases [122, 17]. The key assumption of most SFM algorithms
is that the 2D tracks of the features can be extracted from the image sequences.

Feature tracking is noisy and error-prone. It is often based on differential optical flow
[121] or direct patch matching [70]. Each technique considers only a small number of
pixels around a feature point, which may cause an individual track to drift or get completely
lost due to such unmodeled behaviors as illumination changes. Feature tracking is done
as a preprocessing step, and every feature point is considered independently; thus, the
classically formulated SFM algorithms cannot use the global motion constraints to improve
feature point tracking and the subsequent shape estimates.

Several ad-hoc methods that use the global motion to detect and terminate lost tracks
have been proposed [52, 70]. In [70] the estimated feature positions were compared with
ones predicted by the global model and ones that had significant differences were discarded.
Local search was initialized from both global and local predictions of feature position in
[52], and the best result was chosen. Neither of these methods was able to recover the track
after occlusion, or had a consistent way of maintaining the uncertainty. In this section we
describe how the RSMCM can be used to combine feature tracking and structure-from-
motion recovery into a single, coherent probabilistic structure.

4.2.1 Prior Approaches to Structure from Motion Recovery

Estimating the shape of the objects from their observed motion has been an active area of
research for the last twenty years (for an overview see [32, 33]). One can view it as an
extension of multi-baseline stereo [85] or optical flow analysis [45] using information from
the whole image. However, most researchers have taken a different approach of basing
the estimates only on the salient features (e.g., corners and lines) detected and/or tracked
through the sequence.

The recursive formulations proposed in [4, 6, 70] are based on simultaneously updating
the shape and motion estimates at every frame using Kalman filter variants. A powerful
tool for using feature point tracks for recovering structure from motion is the factorization
approach [121, 75]. It is based on the fact that the matrix consisting of all the coordinates
of the tracked feature points in all frames is low-rank (modulo image noise), and can be
factored into low-rank shape and motion matrices. This approach has been extended to
the cases of multi-body [130] and non-rigid motion [122]. A recursive algorithm based on
factorization concept has also been proposed [74].

73

4.2.2 Factorization Algorithm Incorporating Temporal Coherence

Until recently, no factorization method has taken advantage of the fact that not only fea-
ture tracks should be smooth, but so should be the motion estimates corresponding to the
neighboring frames. The first factorization approach to use this constraint is was proposed
in [39]. In this section we review this algorithm in detail, as we will use it as a part of our
RSMCM shape-from-motion formulation.

This algorithm is based on the factor analysis [95] view of factorization. Denoting the
3D position of the ith point as (z;,y;, 2;), its projection at time ¢ as (uf, v}), and the first
two rows of the homogeneous projection matrix at time ¢ as m* = (mf, ..., m}), the noisy
projection equations for P points in T frames are written by [39] as

up ...oub ool v mi ... m}
: P B i ..t | A+ wirxep), where 4.4
uf oWl T L of mP m¥
S
2 11xP s X1 ... Xp .
= g |S=1wn - w ywij ~ N(0,07;).
11xP 21 ... R2p

This equation is then solved using the standard EM algorithm for factor analysis. The
temporal coherence in pose estimates is enforced by adding second-order smoothness con-
straints over camera-motion parameters m?:

_ P S
mt =mtt +m 1+§mt L te, elrvN(O,af1
mt=mt + i e, e~ N(0,02
mt = it + €3, €3 ~ N(O, 0'623 .

The factor-analysis algorithm may be converted to inference in the single-chain model

in Figure 4-1(b) by using S* = (&*, m*, m*, "), where &' = (21,41, 21,...,%p,Yp, 2p)
and © = (uf,...,ub,t,. .., vh). The model dynamics are then
mt 11 3 mi~!
(SISt =66t —&)N(|mt) ;0 1 1) [t t],2), @5)
it 1/ \mt

where the first factor ensures the constancy of shape estimates across time and the second
term describes the pose evolution. The feature generation model is

p(©%S") = N(F';m*A, %), (4.6)
with A defined in Equation 4.4.

74

4.2.3 Point Feature Tracking

We have implemented a Kalman-filter-based feature point tracker in a manner similar to
that of [70]. Since point tracking is a part of a batch process, it it possible to further smooth
point tracks using an RTS smoother [89]. The points are tracked independently, and each
point-tracker state is a five-tuple Rt = (zf,y?, ul,o?, of, Gt), there (zf,y}) is the point’s
position at time ¢, (uf, v?) is it’s velocity, and G is the appearance model (a template). The
point is observed at time ¢ if o = 1 and occluded if of = 0. Point’s state evolves according
to the first-order dynamics,

¢ 1 01 0\ [z
: 0101 -1
Zzt = 001 O z%—& + n, n~ N(O’ 217),
'U: 0 001 'U:_l (4.7)

pof =1l =1)=1~a
pof =1lo{ " =0) = ¢,
Gg =G§_1+V’ v~ N(0,%,)

The the state R of the low-level tracking model (Figure 4-1(a)) is a collection of indi-
vidual point-tracker states, R = {R!}, and the feature set © consisted of the 2D positions
of the individual feature points and their appearances © = {(z;, ¥;, G;)}. The appearance
templates are combined based on the feature-point positions, and are observed and image
I* contaminated by sensor noise. Note that while the feature model of the point tracker
includes the appearance information, the high-level model does not. This does not prevent
us from combining them into RSMCM, since the form of the Figure 3-5(a) can be used.

4.2.4 Implementation

The feature tracking and structure estimation chains were combined as described in Algo-
rithm 2. At every iteration of the coordinate-ascent algorithm, prediction available from the
global model was incorporated into the feature tracking process by replacing the Kalman
prediction in the individual feature’s prior by the product of the and the global motion pre-
diction available from Equation 4.5. Rigid object shape and motion were then reestimated
using feature tracks produced by the point tracker. The effect of this combination was two-
fold: it reduced the point drift and allowed for more robust handling of occlusions. If the
feature point became occluded (i.e., the peak correlation value was below the threshold),
the uncertainty in its position quickly became too large and it was dropped by the stand-
alone tracker, and a new track was started when the point became visible again. In the
RSMCM, the high-level prediction was, in effect, providing a virtual observation, which
would preserve the track for longer periods of time.

We have experimented with RSMCM extensions of both the pure factor-analysis based
algorithm and a variant that enforced pose coherence. In order to quantitatively compare
the performance of these algorithms, we have created a synthetic dataset that emulated the
behavior of common feature trackers on real data. Forty points randomly distributed on a
unit cylinder were observed for sixty frames by a camera moving with a constant angular

75

velocity. To emulate occlusions and misdetections, every point changed state from visible
to invisible in each frame with probability P(loose). To emulate template drift, consistent
bias was introduced into each visible point for five frames with probability P(drift).

Shapes recovered for P(loose) = 0.1, P(drift) = 0.3 are shown in Figure 4-11. The
shapes computed by the single-chain variants contain more points. This is due to the fact
that each point on the cylinder had produced several partial tracks separated by occlusions.
The inability of a feature tracker to recognize partial tracks as belonging to a single feature
complicated shape recovery. Since RSMCM methods are able to use the global model for
data association, their shape estimates are much more accurate. Figure 4-10 illustrates the
interaction of feature tracking and shape recovery modules in the RSMCM. The true path
of a particular feature point and the observations available to the system are shown in the
first column. The second column shows the output of single-feature tracker, and the third
— a re-projected path of the corresponding point in the 3D shape through several iterations
of the coordinate ascent algorithm. Note that the global constraints available to the shape-
from-motion module enabled the system to track the point through occlusions, which in
turn improved shape estimates.

A quantitative evaluation of this experiment is shown in Figure 4-12. The errors in
individual feature trackers and structure-based predictions have been empirically verified
to have low correlation, so, as we would expect from the analysis in section 3.2, RSMCM
estimates have significantly lower errors than those from a feed-forward system. Note
that the number of occlusions (related to P(loose)) had the greatest impact on the shape
estimation. Neither of the single-chain approaches was able to deal with the multiple partial
tracks observed for one feature point. Both failed to correctly recover the shape (signified
by large re-projection errors), even for small values of P(loose).

We have also used the experimental setup described above to verify that the analysis of
Section 3.2 is applicable to this problem. As can be expected, each individual model (fea-
ture tracker and rigid motion) is an unbiased predictor of the feature point position. The
plots of errors in z and y predictions by each model, evaluated for different levels of ob-
servation noise are shown in Figure 4-8. We have computed I" indicator matrices for each
system — I'; was computed for the rigid motion model and I'; for feature tracking model —
for the corresponding noise levels. Their minimum eigenvalues are plotted in Figure 4-9.
Both minimum eigenvalues are small for very low noise levels indicating that the RSMCM
system does not offer much improvement over single-chain estimates. Under these circum-
stances the likelihood is close to the delta-function, and completely dominates the posterior
distribution. The minimum eigenvalue of I'; is always positive and increasing (and thus I'y
is positive definite), indicating that the feature-tracking model estimates benefit from the
RSMCM combination. For low noise levels the minimum eigen value of I'; is also increas-
ing, as the local smoothness constraints improve coarser global-motion-model estimates.
When the observation noise level is increased even further, the minimum eigenvalue of I'y
becomes negative since the local motion model becomes too uncertain, and the RSMCM
combination is detrimental to the quality of high-level estimates.

The results of applying factor analysis with temporal coherence and its RSMCM variant
to a fifty-frame video sequence? of a rotating box are shown in Figure 4-13. The initial

2We used part of an original sequence from http://www.cs.ucla.edu/~hljin/research/voi.html

76

0.02
[

H
Hi
Hy
HH
Hy

o T
-— e == T

Error
o
]

L Feature tracker prediction errors (X)|

_0 02 1 ! 1 N | |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 01

0.02
E or = == = T e o - T T
w B= T —+- T 1
[Feature tracker prediction errors (Y)|
_0-02 | 1 1] |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.02
S T T T T T T T B
E o+ = T T T T T 1 I 1
| ——— Object tracker prediction errors (X—)|
_002 1 1 1 1 i
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.02
g o FH——*F+—"F"F—3 3 3 FT—7
| —— Object tracker prediction errors (Y)}
_0.02 1 I 1]

1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Standard Deviation of Observation Noise

Figure 4-8: Prediction errors in structure-from-motion estimation. The prediction errors
in z and y coordinates of local-feature tracking model (top plots) and rigid motion model
(bottom plots) for different noise levels. The means and standard deviations were computed
over 20 trials for each data point.

points of interest were located using Tomasi-Kanade feature point detector [120], and the
5 x 5 patches around the points were extracted. The points were then tracked using a
first order Kalman filter, with the likelihood computed based on the normalized correlation
scores around the location predicted by the filter. In our experiments we have not filtered
out points with very short tracks before passing them to high-level inference algorithms — an
approach frequently taken in feed-forward frameworks to reduce the effect of intermittent
occlusions on the final shape estimate. As a result the shape recovered by stand-alone
factor analysis contains many spurious points, exhibiting behavior we have observed in
the synthetic experiments. The RSMCM framework, however, succeeded in estimating the
correct shape.

77

Minimum Eigenvalues of the I matrices in
x 107 Structure—from-Motion RSMCM

B L i (Bl S
G [t 8 0 0 B AT B T e e R R 2 B T R e R T o S AR D e
) | a8 i S e R R T R A B RS R S T T R b | D e i e
10t = - - s e e b e
Minimum Eigenvalue of 1“1 (Object chain) i
— — — Minimum Eigenvalue of I, (Feature chain)
_1 2 1 1 1 ! 1]
0 0.02 0.04 0.06 0.08 0.1 0.12

Standard Deviation of Observation Noise

Figure 4-9: Minimum eigenvalues of the indicator matrices in RSMCM analysis com-
puted for different noise levels. The minimum eigenvalue of I'; corresponding to the local-
feature tracking model is always positive, indicating that the local model always benefits
from global constraints. The minimum eigenvalue of I'; is negative for high noise levels,
indicating that the over-emphasizing local smoothness can decrease quality of high-level
estimates in these situations.

78

Feature Tracker Output Reprojected 3D Path

Iteration 1

Actual Path

Iteration 2

Iteration 3

Iteration 7

Figure 4-10: Improvement in feature tracking through iterations of coordinate ascent algo-
rithm. First column: true path of a particular feature point, and its observations. Second
and third columns: outputs of the feature tracking and structure from motion modules of
the RSMCM described in Section 4.2. The lines are color-coded for convenience. Note
that the feature tracking module was able to use output of SFM module to “stitch” the track
broken by occlusion, which in turn enabled better global shape and motion estimates.

79

"jutod owes ay) jo syoen) [ented usamlaq soouapuodsalIod YsIqels? 03 AN[Iqeul Iy}

03 anp suoIsSN[o00 Jo doudsaid ayy ur synsax 10100d yonw donpoid spoylow ureyo-o[3urs (S[reIep Joj 1x) 23s ‘¢’ = (2/14p)d ‘10
= (9500])4) @ouanbas onoYUAS B UO SWYILOI[E UONOW-WOIF-2INMONNs Inoj Jo doueuniopad [eord4 jo uosuedwo)) :[[- 2anSig

0uR1aY09 [erodwdl yiim
: SIsATeu® J030R} Uureyo-fen(g
SIsA[eue 10308J ureyo-ren(y

<
X x gx

92UaIY0D [eIodwa
401 ! SIsA[eue 10308, yinag,
Um SISA[eUR 10108, :

x
x
x
x
xx

80

Ermor as a function of drift. Prababiity of occlusion 0.000000 Error as a functon of it Probabiity of acclusion 0, 120000
LI T T T

10 6 120
EM with temporal coherence EM with temporal coherence
ot § EM in dual-chain system V 1 § EMin dual-chain system 0 X
+ EM with temporal coherence in dual-chain system| w0 4 EMwith temporal coherenca in dual-chain system
~ L
b o In| v
7+ . sof
: o ¥ :
£ £
5 &k k
; ¢ e
2]
2 sl
H g
2 5
5 5
T et 1 T a0
3k
=r D
ha i
v@r =] ® =] B8 +
f L L " L L & . n . L L
[005 0.1 0.15 02 025 03 035 0 008 0.1 015 0.2 025 03 035
Probability of drift Probability of drift
Eror as a function of acclusion. Probability of drift 0.000000 Error as a function of occlusion. Probability of drift 0.200000
4 T T T T T T 140 T T
EM
EM with temporal coherence EMvnm tomporal
E£M in dual-chain system & EMin dual—cham zysum \v4
1201 £M with temporal coharence in dual-chain sysiom) g 120+ | - EMwith temporal coherence in dualchain system| \/ O
o v v e
100F 8 v/ 4 100 o
] 8
: 9 8
=
8of
e § H
£ £
2 2 v
) < § wf
3 E
2 e
0 40
20F 20
+
-+ & @ @ 2 2
? 3 . M " - - 8, & o s L L : " s
0.05 01 015 02 0.25 03 035 0 008 0.1 0.15 0.2 0.2% 0.3 0.35
Probability of occlusion Probability of occlusion

Figure 4-12: Quantitative comparison of structure-from-motion recovery algorithms on
the synthetic sequence with varying amounts of drift and occlusion. Top row—total re-
projection error as a function of drift with no occlusion, i.e., P(loose) = 0 (left) and with
12% chance of occlusion, i.e., P{loose) = 0.12 (right). Bottom row—total re-projection
error as a function of occlusion for P(drift) = 0 (left) and P(drift) = 0.2 (right). Dual-
chain algorithms were able to approximately reconstruct shape in all cases. Single-chain
methods failed for even small values of P(loose).

81

‘snorinds a19m sjurod 2y Jo J[ey uey) 10U SISA[RUR I010R]
£q poaonpoid adeys ay) ur jey) AJON "WILIOSF[R ureyd-fenp ay3 Aq paonpoid adeys ay) jo wed doy oY) 01UO 9A0QE WOIJ MIIA (q) SISA[RUR
-10108] Aq paonpoid adeys oy jo 1red dol a1 0JUO SA0QE WOIJ MITA (B) :MOI WONog -oouanbas oapra ndur oy jo sewely oy :moi1 doy,
“JUBLIEA UTBYO-[ENP S)I PUB 90UAISYOD [e1odwa) Yiim SISA[euB-10J08) dUO[E-puEls oy} Aq paindwoo syurod adeys Surredwo)) :¢ |- 231y

) (®)
X X

82

Object Tracking Module

Feature
Estimates
SjuTEISUO))
[eqo1D

Feature Extraction Module

Figure 4-14: Module separation in RSMCM. The high-level (S) and low-level (R) infer-
ence algorithms (modules) can be designed and implemented separately. The only con-
nection between modules are the (S, ©) edges, along which the forward (feature estimate)
messages [et—, gt are passed from feature extraction to object-level module, and feedback
(global constraints) messages gt .ot are passed another way.

4.3 Summary

In this chapter we have demonstrated using of the redundant state framework to combine
probabilistic feature extraction and object tracking systems, resulting in significantly im-
proved tracking results. We have shown that applying the approximate filtering algorithm
(Section 3.3) to the model incorporating per-pixel adaptive background subtraction and ob-
ject tracking systems results in improved segmentation results and thus better tracking per-
formance. The shape estimates obtained from the RSMCM combination of high-level mo-
tion model and individual feature-point trackers was superior to the standard feed-forward
system.

As shown in Figure 4-14, the RSMCM framework allows modular implementation
of the hierarchical models. The only interaction between high- and low-level modules
is through the (.S, ©) edges, along which forward and feedback messages flow.

83

84

Chapter 5

Likelihood Sampling and RSMCM for
Articulated Body Tracking

In the preceding chapters we have presented approaches to coping with the deterioration of
selectivity (i.e. ambiguity of posterior peaks) due to the use of uncertain dynamic model. In
the applications we have considered, the state space was relatively low dimensional. This
makes it possible to search the region covered by the relatively wide prior: the difficulty
lies in deciding which likelihood peak corresponds to the true observation and which is
due to unmodeled noise. In the applications such that require density estimation in high
dimensional spaces, e.g. articulated body tracking, the search aspect becomes most impor-
tant. Even if the likelihood function has only one peak, finding it in the large region with
significant temporal prior probability is a computationally intensive task.

In this chapter we present a likelihood sampling approach to articulated pose tracking.
Our method is based on using lower level features such as hand and face positions to explore
the likelihood surface and using dynamics to provide temporal smoothing. The danger of
locking onto the wrong peak in the likelihood and loosing track is reduced since our tracker
does not rely in the temporal prior to guide the search. Likelihood sampling assumes
that the output of the low-level face and hand detectors or trackers is available, but the
constituent trackers are often brittle. We improve the performance of the combined system
by incorporating articulated-body- and low-level trackers into a redundant state model. In
the following chapter we will present a body pose tracking method for the cases when
low-level trackers are not available.

5.1 Introduction

Articulated body tracking has been traditionally approached from a differential tracking
perspective [99, 10, 13, 16]. The trackers combine dynamics, prior pose information and
the current frame data to estimate pose (or a pose distribution) for the current frame. This
approach suffers from several common drawbacks, most critically error accumulation over
time and the need for manual initialization. A complimentary approach is to track using
the repeated application of a single image pose estimation technique at every frame [35,
93, 73, 94]. However, neither of these methods uses the pose information from previous

85

frames and only estimate a single “best” pose that corresponds to the current observed
image. Sequences of such estimates do not always correspond to correct dynamics due to
the ambiguities that arise from projecting 3D bodies onto 2D images.

Our probabilistic tracking framework incorporates features of both approaches. For
a single frame, the distribution of articulated pose parameters is estimated from static
observations; with multiple frames, pose posteriors are propagated through time using a
Bayesian technique. Our framework uses information from the current observation early in
the inference process which improves the tracking stability when a strong dynamics model
is not available.

Since parametric modeling of pose distributions is not feasible, we represent them
with weighted sample sets. In our system, single frame pose parameter distributions are
estimated using an importance sampling technique [66]. We represent image likelihood
functions using a generative model of body appearance (described in Section 5.2.1). Pro-
posal distributions are automatically constructed from image measurements, kinematic
constraints, and parameter priors (Section 5.2.2). Pose distribution samples for the current
frame are evaluated with respect to a sampled representation of the prior pose distribu-
tion, producing a pose posterior conditioned on all observed data (Section 5.2.6). Since
the pose is sampled at each frame independently, our system does not require initialization
and is able to gracefully recover from tracking failures. Propagation over time ensures the
temporal continuity of the pose estimate.

5.2 Tracking with Likelihood Sampling

5.2.1 Upper Body Model

We model the human upper body with the articulated model in Figure 5-1. The model
configuration at time ¢ is described by the parameter vector (¢, ©%), where ¢ € R” con-
tains time independent metric parameters — neck and upper and lower arm lengths, body
width, depth and length, and head size; ©f = (6%, ... 65) € R contains pose parameters
(three rotational degrees of freedom at neck and each shoulder, one at each elbow, and five
global position parameters)!. Since we assume that the observed images are formed using
orthographic projection, the global depth parameter is ignored.

The parameters of articulated joints {6? }, metric parameters ¢ and segment appearances
{A;} are modeled as independent. The pose of the ith segment, P;, is deterministically
computed from the pose of its parent in the articulated tree, denoted F,, and appropriate
joint parameters ;. Segment appearance A; and pose P; are combined to produce a segment
latent image L;. Poses P; are also used to compute the binary support maps M; for each
segment (note that if the segment is not occluded, the support map depends only on the
corresponding pose).

Due to the deterministic nature of the above steps, the following conditional pdfs used
in the graphical model become delta functions with the factorization of ¢(-) implied by the
Bayesian Network in Figure 5-3.

1A global scale parameter is subsumed into individual length paramsters.

86

Figure 5-1: Articulated model of human upper body used in this work. The model consists
of the head (51), torso (S2), and two arms with upper and lower arm segments (S5, S5 and
S4, Se respectively) and hands (S7 and Sg). The model configuration includes 7 metric
parameters: head radius, neck length, body width (distance between shoulder joints) length
and depth, and upper and lower arm lengths. The pose is specified by 16 parameters: 11
internal rotational parameters (3 degrees of freedom at the neck, 3 degrees of freedom at
each shoulder, and 1 at each elbow) and 5 global degrees of freedom (2 translational and 3
rotational).

The combined latent images (masked by their regions of support) corrupted by uncor-
related Gaussian noise are then observed as I,

p(I(z,9)|M;, L) = N(I(z,); Q_(M; - Li)(z,9)),0%(z,9)) 5.1

k3

The joint probability of the described model may then be factored as

p(o, {0:}, {P:}, {A}, {L:}, {M:},T) = p(9) Hp(oi) I]p(A» Hp(PAPm, 0;,9) (5.2)
[I»(ZilP;, 4) [T pM{PHR(AHL}, {M:})

1

This generative model is described by a graphical network in Figure 5-2.

In our model, the ith segment is “responsible” for the region of the observed image I
that corresponds to its support map M;. Let us define the ith observation region

L =1IM; = () M;L; + v)M; = L;M; + vM, (5.3)

Since support maps M; are disjoint, the observation regions are independent, condi-
tioned on {M;} and {L;}. Furthermore, analyzing the conditional p(L;| P;, A;, M;), we find

87

Figure 5-2: Generative model for an articulated body image (see Equation 5.2). The
subscripts correspond to segment number is Figure 5-1 (the nodes corresponding to Sz, Ss
and S; are symmetric to Sy, Sg and Sg and are not shown). The segment pose at time ¢, P}
is depends on the pose of a parent segment Pti, body lengths ¢, and corresponding joint
parameters 7. 6, contains the global position parameters. The latent image of a segment, L¢
is obtained by transforming appearance A; according to the pose P}. The observed image
I depends on the latent images masked by support maps M = (M?,--- | M{), which are,
in turn, determined from all segment poses.

that
p(L| B, A;, M;) =/ p(L| Ly, Mi)p(Ls| Py, As) (5.4)
L;
:/ p(LiM; + v M;| Ly, My)o(L; — fH(P;, A))

- II ~a (fl(P, A))(z,9), 0% (2,v))

T,yeM;

allowing us to use the simplified image generation model that induces the following joint
pdf factorization

p(6,{0:} {P}, {A}, {M:},{T}) Hp HpA)Hp | Pois 05, 0) (5.5
H (Mil{P}) Hp |{P}{A}{M}>

This equation can be used to evaluate image likelihoods of poses generated using our
single frame pose sampling framework.

88

Figure 5-3: Generative appearance model used in defining a proposal distribution (see
Equation. 5.7).

5.2.2 Likelihood Sampling

We wish to infer a distribution of articulated pose parameters from a single frame. We as-
sume that segment appearances { A; } and prior distributions of parameters p(6;) are known,
and wish to describe the posterior distribution p(©|{A;},I). In the following discussion
we assume that the metric parameters of the model (¢,) are also known and concentrate on
sampling the posterior distribution of the pose parameters p(©*|I*). We address estimation
of ¢ in Section 5.2.5. Using Bayes’ rule, independence assumptions, and Equation 5.2, the
pose posterior distribution may be expressed as

The complexity of natural images makes it hard to specify this distribution analytically.
While evaluating the posterior (up to a scaling factor) at any particular ©y is relatively easy,
sampling from it (necessary for tasks such as providing input to an articulated tracker) is
hard. The alternative approach is to use Monte Carlo methods and represent p(©|{A;},I) as
a set of samples with attached weights {©;, 7;}. One such method is importance sampling
[66].

In the importance sampling framework, instead of sampling a target distribution p(z),
a proposal distribution ¢(z) that approximates p(x) is sampled, and then the weight of the
sample zy, is set to 7, = %. A reasonable choice of a proposal distribution used in this
technique should “concentrate” the samples in the areas of configuration space with high
values of target distribution.

This approach is similar in spirit to [62] that used MCMC sampling incorporating
observation-based proposals. The major difference is that while [62] uses single-body-part
proposals, we sample from proposal distribution that combines multile low-level body-part
hypothesis that jointly satisfy inverse kinematics constraints.

89

5.2.3 Proposal Distribution

Our approach to constructing a proposal distribution is based on the assumption that partial
pose information for certain segments in the model may be extracted directly from the
image. That s, it is possible to efficiently sample from the conditional p(Pi|A;, 1), where
P; contains partial information about F;. In our system such segments are the head and
hands (segments 1, 7, and 8), that are easy to detect in the image. The appropriate models
are discussed in Section 5.2.5.

We define our proposal distribution as

q(O|A;, A7, Ag, 60, 1) = q(O|Py, Py, Ps, ¢0)q(Py| Ay, 1)q(Pr| A7, T)q(Ps| As, 1) (5.7)
= Qhead(91|Plz ¢0)Qneck(92|91, 157, 1587 ¢0)Q1efta1m(93, 95|91, 0,]57, ¢0)
Gright arm (04, 06101, 02, Ps, do)p(Pr| A1,)p(Pr| A7, T)p(Ps| As, 1)

We sample from q in five steps:

1. Obtain head and hands pose samples 13’15 ,]575 , and ﬁg from the appropriate distribu-
tions

2. Compute global parameters 62 from P¢
3. Obtain neck joint configuration 65 from gpecx
4. Obtain left arm configuration (65 and 6g) by sampling from gies arm

5. Obtain right arm configuration (6§ and 6Z) by sampling from grigh(arm

5.2.4 Kinematic Constraints

We would like to specify gneck(-), Giefearm(-)> and Grightarm(-) based on image information,
joint parameter priors and kinematic constraints.

The samples of the distributions conditioned on the image, P? = (2, Tpys Up)T» P =
(Tpr, Ypy) T, and P = (ps» Yps)* are the orientation and image position of the head and
hands (Section 5.2.5).

Without loss of generality we define the world coordinate system to have z and y axes
parallel to image axes, and z axis passing through the origin of the image plane. Then
the external parameters of the articulated model are simply 6; = (€2, x,,, Y,)" and P =
f1 (01, #o)-

Let us define a feasible configuration of shoulder pose P> = f¥(6s, f(6;)) and image
plane hand locations P7,]58 to be one in which it is possible to reach each hand from a
corresponding shoulder, that is, the image plane distance from the shoulder joint to the
hand is less than the arm-length. Then, if we disallow all infeasible configurations, we can
define ggeck as

p(8) (282, fF(0,)), P2, Py) is feasible

) (5.8)
0 otherwise

qneck(92|917p7:p7sap8:p887¢0) N{

90

C

2

Figure 5-4: When the 3D position of the shoulder A and position of the hand C in the
zy-plane are known, the arm has two degrees of freedom, depth of the hand and rotation of
the elbow B about the shoulder-hand line.

Let us consider left arm as a two link assembly shown in Figure 5-4. The shoulders
pose P = fP(Pf,05) uniquely determines the position of the left shoulder joint A =
(24,94, 24)7. The position of the left hand, C is known up to the translation along z axis

C = (zps,yps, 2c)" (5.9)
2a—T<zo<zZg+r (5.10)

r= \/(lupperarm + llowerann)2 - (33/1 - P)2 - (yA - ?JP;)2

where limits in Equation 5.10 ensure that the distance between the shoulder joint and the
hand is not greater than the total arm-length (lypperarm + llowerarm)- The whole assembly
may then be rotated about the line AC by 0 < ¢ < 27. The configuration of the arm
©; = (#3,05)7 is then uniquely determined by ¥ and z¢ (i.e. ©; = g(z¢, 9, Py, 65,]57)).
We model gief; arm aS

Gretvarm (03, 05101, 62, Pr, do) = p(63,05|2c, %, 02, 0, Pr, o) (5.11)
p(zc| Py, 0, Pr, ¢0)p(v| Py, 6, Pr, ¢0)p(63)p(65)
= 8(6, — g(zc, ¥, Py, 05, Py, o))
p(zc|Py, 62, Py, ¢o)p(y)| P1, 0, Pr, 60)p(65)p(65)

where

p(zc|Py, 02, Py, ¢0) = u(20; 24 — 1, 24 + 1) (5.12)
(| P1, 02, Py, o) = u(1; 0, 27) (5.13)

The corresponding proposal distribution for the right arm, grighiam, is defined in the

91

same fashion.

Once the sample © = (61, ...,6;) is selected, we need to determine its weight 7 =
p(©1{4i},¢0,)
q(©) ’
Note that
Gietrarm (O3, O304, 03, Py, o) (5.14)

= /5(61 - Q(ZC>7/)a P1702a p77 ¢0))p(ZC|P1, 927P77 d)O)X

x p(¢o| P1, 02, Pr, ¢0)p(83)p(65)dzedi

p(03)p(05) if configuration is valid
0 otherwise

And thus, if we have obtained a sample © = (64, ..., 8) from ¢(-), then

6
q(01, ..., 06| A1, A7, As, 60, 1) = p(P1| AL, Dp(Py| A7, D)p(Ps|As, 1) [[p(6:) (5.15)
=2
and the weight is given by
p(O{ A}, 60, 1)
= 1
" GO{A}, 60, D) (-1
_ p(f?l) 11, p(IiIA{Pi}, {Ai}:{Mi})
p(Pl \Ah I)p(P7|A77 I)p(PS)A& I)

By processing a frame I* using the algorithm described in this section, we obtain a
sample set {(Of, !)} representation of p(©*|I*) that may then be used for tracking or esti-
mating the Maximum Likelihood pose at the current timestep.

5.2.5 Single Frame Pose Estimation Implementation and Results

The description of our algorithm is completed by specification of the parameter priors p(6;),
appearance A;, and image formation models. We also need to address recovering metric
model parameters ¢.

We have obtained the joint angle limits from [76], and have represented shoulder and
elbow angle prior probabilities as uniform between those limits. The neck angle prior was
specified as a broad Gaussian centered on the origin.

For our method to be practical, the image formation models p(L;|P;, A;, M;) have to
be efficient to evaluate, and, in the case of the head and hands, lead to simple-to-sample-
from posteriors p(f’ill, A;). Many general techniques are possible. Here we use simple
implementations flesh color and face pattern detection.

Our general framework requires the estimate of the head pose p(ﬁl I, A;). Ideally, we
would use a face detector that is capable of detecting faces that have orientations other than
frontal, while reporting size, location and orientation. For most of the experiments in this
paper (other than Figure 5-6(b)) we assume that the person is in the upright position facing

92

the camera, so we estimate p(P;|I, A;) based on the output of a 2D frontal face detector
(we use the method described in [125]). The detector output is a set of image squares that
are reasonably well centered on the faces, and the distribution is represented as a mixture
of Gaussians,

A ~ 0.0572 0
pBILA) = Y NPy, (VO L)) G.17)
f

where c; is a center of the detected square, and 7 is half of its width.

The face square size is also used to estimate the distribution of the metric parameter
vector ¢. We use anthropometric data from [76] combined with empirically estimated ratio
of 75 to head radius to define the means and standard deviations of Gaussian distributions
from which elements of ¢ is drawn. Once the tracker has settled in, we replace the original
metric prior p(¢) by the new prior p.(¢) that is computed from the body sizes estimated in
the previous frames.

We model hands as flesh-colored blobs. The flesh color segmentation is performed
on the input image using a detector initialized from the middle region of the face rectan-
gle (Figure 5-5(c)). Connected components are then computed from the resulting binary
image. All components that either overlap the face rectangle, are larger than it in one of
the dimensions, or have an area smaller than 10% of the face rectangle area are filtered
out. The hand pose posterior p(P;[I, A7) = p(Ps|I, As) is then approximated as mixture-
of-Gaussians where each constituent Gaussian distribution is initialized from one of the
remaining components (Figure 5-5(d)).

We model elongated segments in the model (torso, lower and upper arms) as cylinders,
and use the intensity gradient as an image measurement. Along the contour of the segment’s
image plane projection (cf. Figure 5-5(f, h)), we expect the gradient to be perpendicular
to the edge, and to have high magnitude [90, 92]. Let G be the gradient direction image,
E be the set of the points on the predicted edges under the support map, and o be the
predicted gradient direction. Then we define the image likelihood function as an average
match along the predicted edges,

1 .
P(LI Py Ai, M) ~ 1 D eesAGilmne0) (5.18)
(z.y)EE

Sampling from Gaussian and uniform distributions is implemented using direct meth-
ods [66]. The distributions defined in Equations 5.8 and 5.11 are sampled by discretizing
the parameter space, assigning each discrete sample s; weight w; proportional to the value
of the appropriate pdf (gneck(S; - --) OF Garm(s;) respectively), and then drawing a sample
from the produced weighted sample set {(s;, w;)}

We have applied our algorithm to a set of images of people in natural settings. Various
stages of the algorithm are shown in Figure 5-5. The face rectangle detected in the input
image (a) is shown in (b). Raw flesh color segmentation results and filtered image used
to construct hand position distribution are (c) and (d). Panes (e) and (f), and (g) and (h)
contain sample pose and corresponding edges overlaid on gradient magnitude image.

The results of applying our single frame pose detection algorithm to a set of four images
is shown in Figure 5-6. For each of the examples, we present 20 random samples from the

93

(c) (d

(e) (2

Figure 5-5: Stages of processing input image (a). The face rectangle (b) was located using
a face detector [125], and the flesh color map (c) was computed by a detector initialized
from the color distribution in the face rectangle . The result (d) of filtering the raw binary
map (Section 5.2.5) was used to initialize the hand position distribution. Two sample poses
with corresponding test edges overlaid on gradient image are shown in (e, f) and (g, h). The
pose () was determined to be more likely that (g).

posterior pose distribution overlaid over the source image and the 3D reconstruction of the
maximum likelihood particle. The head region and global transformation for the profile
view (b) were manually initialized due to the lack of profile face detector. Despite gross
estimation errors in some samples, reporting a distribution of poses as opposed to a single
result allows a higher level process to use additional information (such as motion or context)
to select the most appropriate one.

An example of the algorithm’s failure is shown in Figure 5-7. The image likelihood
computation is confused by the strong background gradients, which results in incorrect
pose estimation.

5.2.6 Pose Propagation Over Time

When a motion sequence rather than a single frame are available, we would like to combine
the pose estimate at the current frame with the previous observations, to produce a posterior
distribution p(©*|I°...I*). We make a Markovian assumption that all information about
observations I° . . . I* is preserved in distribution of ©¢~1, that is p(©*|©*~1, I ... I*71) =
p(©f|©1~1). We can then express the full posterior as

p(OYI°...It) ~ p(I°... I 1|©")p(It|©%)p(©Y) (5.19)

p(©'|I%)
p(©?)

~J

/p(@tlgt—l)p(@t—llfo . It—l)d(__)t—l

94

Algorithm 3 Sampling based articulated pose tracking
forallt > 0do
EXTRACT image features such as face position and flesh-colored blobs from the frame
It
CONSTRUCT a proposal distribution ¢*(©*) from the extracted features and pose pa-
rameter priors.
GENERATE N samples {(©f, 7})|1 < ¢ < N*} from the proposal distribution with
corresponding weight computed as 7! = p(©|1*)/q(O?Y).
if the prior p(©1|1°... I*71) is available then
GENERATE samples {(©¢, \)|1 < i < Nt} from p(©[I°... I*) by evaluating
No=m Y XIp(Of = F|ert = 671) /p(6})
UPDATE p(¢) from {(©¢, N\f)|1 < i < N*}
else
OUTPUT {(O%,t)} as the estimate of p(©*|1°. .. I?)
end if

end for

As the shape of the posterior distribution is similar to the shape of the likelihood, we
can use the pose samples {O!} from p(©!|I*) to represent the full posterior. The extra
information present in the temporal prior would be encoded in the new weights AL If we
assume that the prior p(©~1|1° ... I'"1) is also represented with a set of weighted particles
{(©51, X:"1)} obtained at the previous iteration of the algorithm, A may be computed as

¢ Nt—l
N = p(gt) D Ap(ef = efjett = o) (5.20)

i=1

The complete tracking algorithm is presented in Algorithm 3.

5.3 Tracking in a Redundant State Framework

While a tracker based on likelihood sampling can successfully operate with a small number
of samples and is self recovering, it is extremely sensitive to feature detector failures (such
as flesh-color misdetections). In this work, we combine a likelihood-sampling tracker with
low-level flesh-blob trackers and face trackers. The state of each part tracker contains
positions and velocities of the corresponding part, The part trackers and the likelihood-
sampling based tracker share latent features corresponding to 2D part positions (P, P;,
and 157), and the observation models described in Section 5.2.5. They are combined into
the RSMCM of the form shown in Figure 3-5(a), and the online inference algorithm is
used.

We have applied our RSMCM tracker to three sample sequences, with results shown
in Figures 5-8, 5-9, and 5-10. For each frame in the sequence, we have rendered forty
randomly drawn samples from the posterior state distribution (the frontal view overlaid on
top of the input image is shown in the middle row, and side view is shown in the bottom

95

row). In most frames, the tracker succeeded in estimating poses that contained significant
out of plane components and self occlusions, and was able to recover from mistracks (e.g.,
around frame 61 in the third sequence).

In Figure 5-11, we compare the performance of the enhanced RSMCM tracker us-
ing 1,000 samples per frame (first column), likelihood-sampling tracker using 1,000 sam-
ples (second column), CONDENSATION tracker with 5,000 samples that runs as fast as the
RSMCM tracker (third column), and finally CONDENSATION tracker with 15,000 sam-
ples (the smallest number of samples that enables CONDENSATION to perform with accu-
racy approaching RSMCM tracker performance). The results are presented using the same
method as in Figure 5-8, the frontal view is shown overlayed on top of the input image,
with the side view to the right of it.

The RSMCM tracker was able to successtully track the body through the entire se-
quence. The likelihood-sampling tracker was generally able to correctly estimate the pose
distribution, but failed on frames where image features were not correctly extracted (cf.
frames 20, 60, etc.). While CONDENSATION was using the same observation model as
the RSMCM tracker (using both flesh color and edges), the CONDENSATION variant with
5,000 samples failed after 30 frames due to sample impoverishment (note that only a few
distinct samples were drawn in frames 40 and later). Increasing the size of the sample set
to 15,000 (with similar increase in running time) allowed CONDENSATION to successfully
track through most of the sequence.

Our method improves upon likelihood-sampling, and compares favorably with the CON-
DENSATION algorithm in two ways. First, a monolithic approach using CONDENSATION
requires a significantly greater number of samples in order to explore the configuration
space sufficiently as compared to the RSMCM with likelihood sampling. Secondly, in
the experiments presented the estimate of the posterior state distribution more accurately
represents the uncertainty of the upper-body pose than the alternative methods.

We assumed that constituent low-level detectors or trackers were available — a signifi-
cant limitation — the following chapter addresses this drawback.

5.4 Summary

We have presented a technique for sampling human upper body pose posterior distribution
from single images, and its application to tracking. In our approach, the kinematic con-
straints and image information are incorporated at early stages of inference process, which
allows us to reduce the number of samples needed to approximate the high-dimensional
articulated body distributions.

We use importance sampling with proposal distribution is constructed from prior prob-
abilities of joint angles obtained from anthropometric data, inverse kinematics constraints,
and from image face and hand locations detected by well-known methods. The observation
likelihoods are represented using a novel Bayesian network description of a generative ap-
pearance model that also explicitly incorporates kinematic constraints. The distribution is
propagated in time using Bayesian methods and Monte Carlo integration.

The redundant state methodology have been empirically demonstrated to improve the
behavior of the likelihood sampling tracker by incorporating information from the body

96

pose estimates into the face and hands trackers that are in turn used to guide pose esti-
mation. The combined method compares favorably with the well-known CONDENSATION
algorithm in two ways. First, a monolithic approach using CONDENSATION required a
significantly greater number of samples in order to explore the configuration space suffi-
ciently as compared to the multi-chain method. Secondly, and perhaps more importantly,
in the experiments presented the estimate of the posterior state distribution more accurately
represents the uncertainty of the upper-body pose than the alternative methods.

97

@)

() (d)

Figure 5-6: Sampling pose from a single image. For each example, twenty samples from
the estimated posterior are shown overlaid on the image and the maximum likelihood pose

is shown in 3D.

Figure 5-7: An example of the failure of pose estimation on a still frame. The algorithm
was confused by the strong background image gradients, which resulted in assigning high
probabilities to incorrect poses. Use of dynamic information in video mitigates such errors.

98

"AMQIA 9PIS Y} UI paIdpual a1k A3y} M01 Wwopoq
oy ul {(mar1a [ruody) oSewr jndur oY) 0JuUO PAISpUI Ik sA[dNIRd JY) ‘MO S[PPIU JY) UL :UMOYS dIe suonnqrysip 9sod Iouaisod pajewnss
oy) wouj saponted wopuer K110, ‘sowely indur surejuod moi doy oy, ‘| souanbas sdwes 03 Suppoery ureyo-fenp Suik[ddy :g-G 2In3ig

121 swely 16 QWel] 19 Qwiel] € Qwel] [wel]

99

"MIIA JPIS) UI PAIIpUI I8 A3Y) MOI WOII0q
Ay} Ut {(m31A [ejuody) a3euwr Indul AY) 0JUO PAIAPURI ATk sa[onIed YY) M0 [PPIW JY} UI :UMOYS 218 suonnqrLisip asod Jouwisod pajewnsa
oy} woly sspnred wopuer A110 sowet) ndul surejuod mol doy sy, 'z 2ouanbas ojdwes 01 Suryorn ureyo-enp Sulf[ddy :g-¢ 21y

11 Qwel] 16 dwel] 19 sweL] € swel] [sweL]

100

"IOA0JRI 0} J[qe SeM
JoORI) Y] ‘[SWIBLJ JedU 20USNbas PIIY) 9Y) UO PALINI0 SeY YOBMSIW B A[IYM TBY) SJON “MIIA IPIS 3y} UI palopual aIe A9 m01 wWoNnoq
o) ur $(mara [ejuody) oSe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>